< prev index next >

src/jdk.internal.vm.compiler/share/classes/org.graalvm.compiler.lir.amd64/src/org/graalvm/compiler/lir/amd64/AMD64ArrayEqualsOp.java

Print this page

        

*** 39,70 **** import org.graalvm.compiler.asm.amd64.AMD64Assembler.SSEOp; import org.graalvm.compiler.asm.amd64.AMD64BaseAssembler.OperandSize; import org.graalvm.compiler.asm.amd64.AMD64MacroAssembler; import org.graalvm.compiler.asm.amd64.AVXKind; import org.graalvm.compiler.core.common.LIRKind; ! import org.graalvm.compiler.core.common.NumUtil; import org.graalvm.compiler.lir.LIRInstructionClass; import org.graalvm.compiler.lir.Opcode; import org.graalvm.compiler.lir.asm.CompilationResultBuilder; import org.graalvm.compiler.lir.gen.LIRGeneratorTool; import static jdk.vm.ci.code.ValueUtil.asRegister; import static org.graalvm.compiler.lir.LIRInstruction.OperandFlag.ILLEGAL; import static org.graalvm.compiler.lir.LIRInstruction.OperandFlag.REG; /** * Emits code which compares two arrays of the same length. If the CPU supports any vector * instructions specialized code is emitted to leverage these instructions. */ @Opcode("ARRAY_EQUALS") public final class AMD64ArrayEqualsOp extends AMD64LIRInstruction { public static final LIRInstructionClass<AMD64ArrayEqualsOp> TYPE = LIRInstructionClass.create(AMD64ArrayEqualsOp.class); ! private final JavaKind kind; ! private final int arrayBaseOffset; ! private final int arrayIndexScale; ! private final int constantByteLength; @Def({REG}) private Value resultValue; @Alive({REG}) private Value array1Value; @Alive({REG}) private Value array2Value; @Alive({REG}) private Value lengthValue; --- 39,81 ---- import org.graalvm.compiler.asm.amd64.AMD64Assembler.SSEOp; import org.graalvm.compiler.asm.amd64.AMD64BaseAssembler.OperandSize; import org.graalvm.compiler.asm.amd64.AMD64MacroAssembler; import org.graalvm.compiler.asm.amd64.AVXKind; import org.graalvm.compiler.core.common.LIRKind; ! import org.graalvm.compiler.debug.GraalError; import org.graalvm.compiler.lir.LIRInstructionClass; import org.graalvm.compiler.lir.Opcode; import org.graalvm.compiler.lir.asm.CompilationResultBuilder; import org.graalvm.compiler.lir.gen.LIRGeneratorTool; import static jdk.vm.ci.code.ValueUtil.asRegister; import static org.graalvm.compiler.lir.LIRInstruction.OperandFlag.ILLEGAL; import static org.graalvm.compiler.lir.LIRInstruction.OperandFlag.REG; + import java.util.Objects; + /** * Emits code which compares two arrays of the same length. If the CPU supports any vector * instructions specialized code is emitted to leverage these instructions. + * + * This op can also compare arrays of different integer types (e.g. {@code byte[]} and + * {@code char[]}) with on-the-fly sign- or zero-extension. If one of the given arrays is a + * {@code char[]} array, the smaller elements are zero-extended, otherwise they are sign-extended. */ @Opcode("ARRAY_EQUALS") public final class AMD64ArrayEqualsOp extends AMD64LIRInstruction { public static final LIRInstructionClass<AMD64ArrayEqualsOp> TYPE = LIRInstructionClass.create(AMD64ArrayEqualsOp.class); ! private final JavaKind kind1; ! private final JavaKind kind2; ! private final int arrayBaseOffset1; ! private final int arrayBaseOffset2; ! private final Scale arrayIndexScale1; ! private final Scale arrayIndexScale2; ! private final AVXKind.AVXSize vectorSize; ! private final int constantLength; ! private final boolean signExtend; @Def({REG}) private Value resultValue; @Alive({REG}) private Value array1Value; @Alive({REG}) private Value array2Value; @Alive({REG}) private Value lengthValue;
*** 79,102 **** @Temp({REG, ILLEGAL}) private Value vectorTemp1; @Temp({REG, ILLEGAL}) private Value vectorTemp2; @Temp({REG, ILLEGAL}) private Value vectorTemp3; @Temp({REG, ILLEGAL}) private Value vectorTemp4; ! public AMD64ArrayEqualsOp(LIRGeneratorTool tool, JavaKind kind, Value result, Value array1, Value array2, Value length, int constantLength, boolean directPointers, int maxVectorSize) { super(TYPE); ! this.kind = kind; ! ! this.arrayBaseOffset = directPointers ? 0 : tool.getProviders().getMetaAccess().getArrayBaseOffset(kind); ! this.arrayIndexScale = tool.getProviders().getMetaAccess().getArrayIndexScale(kind); ! ! if (constantLength >= 0 && arrayIndexScale > 1) { ! // scale length ! this.constantByteLength = constantLength << NumUtil.log2Ceil(arrayIndexScale); ! } else { ! this.constantByteLength = constantLength; ! } this.resultValue = result; this.array1Value = array1; this.array2Value = array2; this.lengthValue = length; --- 90,114 ---- @Temp({REG, ILLEGAL}) private Value vectorTemp1; @Temp({REG, ILLEGAL}) private Value vectorTemp2; @Temp({REG, ILLEGAL}) private Value vectorTemp3; @Temp({REG, ILLEGAL}) private Value vectorTemp4; ! public AMD64ArrayEqualsOp(LIRGeneratorTool tool, JavaKind kind1, JavaKind kind2, Value result, Value array1, Value array2, Value length, int constantLength, boolean directPointers, int maxVectorSize) { super(TYPE); ! this.kind1 = kind1; ! this.kind2 = kind2; ! this.signExtend = kind1 != JavaKind.Char && kind2 != JavaKind.Char; ! ! assert kind1.isNumericInteger() && kind2.isNumericInteger() || kind1 == kind2; ! ! this.arrayBaseOffset1 = directPointers ? 0 : tool.getProviders().getMetaAccess().getArrayBaseOffset(kind1); ! this.arrayBaseOffset2 = directPointers ? 0 : tool.getProviders().getMetaAccess().getArrayBaseOffset(kind2); ! this.arrayIndexScale1 = Objects.requireNonNull(Scale.fromInt(tool.getProviders().getMetaAccess().getArrayIndexScale(kind1))); ! this.arrayIndexScale2 = Objects.requireNonNull(Scale.fromInt(tool.getProviders().getMetaAccess().getArrayIndexScale(kind2))); ! this.vectorSize = ((AMD64) tool.target().arch).getFeatures().contains(CPUFeature.AVX2) && (maxVectorSize < 0 || maxVectorSize >= 32) ? AVXKind.AVXSize.YMM : AVXKind.AVXSize.XMM; ! this.constantLength = constantLength; this.resultValue = result; this.array1Value = array1; this.array2Value = array2; this.lengthValue = length;
*** 105,127 **** this.temp1 = tool.newVariable(LIRKind.unknownReference(tool.target().arch.getWordKind())); this.temp2 = tool.newVariable(LIRKind.unknownReference(tool.target().arch.getWordKind())); this.temp3 = tool.newVariable(LIRKind.value(tool.target().arch.getWordKind())); this.temp4 = tool.newVariable(LIRKind.value(tool.target().arch.getWordKind())); ! this.temp5 = kind.isNumericFloat() ? tool.newVariable(LIRKind.value(tool.target().arch.getWordKind())) : Value.ILLEGAL; ! if (kind == JavaKind.Float) { this.tempXMM = tool.newVariable(LIRKind.value(AMD64Kind.SINGLE)); ! } else if (kind == JavaKind.Double) { this.tempXMM = tool.newVariable(LIRKind.value(AMD64Kind.DOUBLE)); } else { this.tempXMM = Value.ILLEGAL; } // We only need the vector temporaries if we generate SSE code. if (supportsSSE41(tool.target())) { if (canGenerateConstantLengthCompare(tool.target())) { ! LIRKind lirKind = LIRKind.value(supportsAVX2(tool.target()) && (maxVectorSize < 0 || maxVectorSize >= 32) ? AMD64Kind.V256_BYTE : AMD64Kind.V128_BYTE); this.vectorTemp1 = tool.newVariable(lirKind); this.vectorTemp2 = tool.newVariable(lirKind); this.vectorTemp3 = tool.newVariable(lirKind); this.vectorTemp4 = tool.newVariable(lirKind); } else { --- 117,139 ---- this.temp1 = tool.newVariable(LIRKind.unknownReference(tool.target().arch.getWordKind())); this.temp2 = tool.newVariable(LIRKind.unknownReference(tool.target().arch.getWordKind())); this.temp3 = tool.newVariable(LIRKind.value(tool.target().arch.getWordKind())); this.temp4 = tool.newVariable(LIRKind.value(tool.target().arch.getWordKind())); ! this.temp5 = kind1.isNumericFloat() || kind1 != kind2 ? tool.newVariable(LIRKind.value(tool.target().arch.getWordKind())) : Value.ILLEGAL; ! if (kind1 == JavaKind.Float) { this.tempXMM = tool.newVariable(LIRKind.value(AMD64Kind.SINGLE)); ! } else if (kind1 == JavaKind.Double) { this.tempXMM = tool.newVariable(LIRKind.value(AMD64Kind.DOUBLE)); } else { this.tempXMM = Value.ILLEGAL; } // We only need the vector temporaries if we generate SSE code. if (supportsSSE41(tool.target())) { if (canGenerateConstantLengthCompare(tool.target())) { ! LIRKind lirKind = LIRKind.value(vectorSize == AVXKind.AVXSize.YMM ? AMD64Kind.V256_BYTE : AMD64Kind.V128_BYTE); this.vectorTemp1 = tool.newVariable(lirKind); this.vectorTemp2 = tool.newVariable(lirKind); this.vectorTemp3 = tool.newVariable(lirKind); this.vectorTemp4 = tool.newVariable(lirKind); } else {
*** 137,147 **** this.vectorTemp4 = Value.ILLEGAL; } } private boolean canGenerateConstantLengthCompare(TargetDescription target) { ! return constantByteLength >= 0 && kind.isNumericInteger() && supportsSSE41(target); } @Override public void emitCode(CompilationResultBuilder crb, AMD64MacroAssembler masm) { Register result = asRegister(resultValue); --- 149,159 ---- this.vectorTemp4 = Value.ILLEGAL; } } private boolean canGenerateConstantLengthCompare(TargetDescription target) { ! return constantLength >= 0 && kind1.isNumericInteger() && (kind1 == kind2 || getElementsPerVector(AVXKind.AVXSize.XMM) <= constantLength) && supportsSSE41(target); } @Override public void emitCode(CompilationResultBuilder crb, AMD64MacroAssembler masm) { Register result = asRegister(resultValue);
*** 151,180 **** Label trueLabel = new Label(); Label falseLabel = new Label(); Label done = new Label(); // Load array base addresses. ! masm.leaq(array1, new AMD64Address(asRegister(array1Value), arrayBaseOffset)); ! masm.leaq(array2, new AMD64Address(asRegister(array2Value), arrayBaseOffset)); if (canGenerateConstantLengthCompare(crb.target)) { ! emitConstantLengthArrayCompareBytes(masm, array1, array2, asRegister(temp3), asRegister(temp4), ! new Register[]{asRegister(vectorTemp1), asRegister(vectorTemp2), asRegister(vectorTemp3), asRegister(vectorTemp4)}, ! falseLabel, constantByteLength, AVXKind.getRegisterSize(vectorTemp1).getBytes()); } else { Register length = asRegister(temp3); ! ! // Get array length in bytes. masm.movl(length, asRegister(lengthValue)); ! ! if (arrayIndexScale > 1) { ! masm.shll(length, NumUtil.log2Ceil(arrayIndexScale)); // scale length ! } ! ! masm.movl(result, length); // copy ! ! emitArrayCompare(crb, masm, kind, result, array1, array2, length, temp4, temp5, tempXMM, vectorTemp1, vectorTemp2, trueLabel, falseLabel); } // Return true masm.bind(trueLabel); masm.movl(result, 1); --- 163,185 ---- Label trueLabel = new Label(); Label falseLabel = new Label(); Label done = new Label(); // Load array base addresses. ! masm.leaq(array1, new AMD64Address(asRegister(array1Value), arrayBaseOffset1)); ! masm.leaq(array2, new AMD64Address(asRegister(array2Value), arrayBaseOffset2)); if (canGenerateConstantLengthCompare(crb.target)) { ! emitConstantLengthArrayCompareBytes(crb, masm, array1, array2, asRegister(temp3), asRegister(temp4), ! new Register[]{asRegister(vectorTemp1), asRegister(vectorTemp2), asRegister(vectorTemp3), asRegister(vectorTemp4)}, falseLabel); } else { Register length = asRegister(temp3); ! // Get array length. masm.movl(length, asRegister(lengthValue)); ! // copy ! masm.movl(result, length); ! emitArrayCompare(crb, masm, result, array1, array2, length, trueLabel, falseLabel); } // Return true masm.bind(trueLabel); masm.movl(result, 1);
*** 186,208 **** // That's it masm.bind(done); } ! private static void emitArrayCompare(CompilationResultBuilder crb, AMD64MacroAssembler masm, JavaKind kind, Register result, Register array1, Register array2, Register length, - Value temp4, Value temp5, Value tempXMM, Value vectorTemp1, Value vectorTemp2, Label trueLabel, Label falseLabel) { ! if (supportsAVX2(crb.target)) { ! emitAVXCompare(crb, masm, kind, result, array1, array2, length, temp4, temp5, tempXMM, vectorTemp1, vectorTemp2, trueLabel, falseLabel); ! } else if (supportsSSE41(crb.target)) { ! // this code is used for AVX as well because our backend correctly ensures that ! // VEX-prefixed instructions are emitted if AVX is supported ! emitSSE41Compare(crb, masm, kind, result, array1, array2, length, temp4, temp5, tempXMM, vectorTemp1, vectorTemp2, trueLabel, falseLabel); } - emit8ByteCompare(crb, masm, kind, result, array1, array2, length, temp4, tempXMM, trueLabel, falseLabel); - emitTailCompares(masm, kind, result, array1, array2, length, temp4, tempXMM, trueLabel, falseLabel); } /** * Returns if the underlying AMD64 architecture supports SSE 4.1 instructions. * --- 191,212 ---- // That's it masm.bind(done); } ! private void emitArrayCompare(CompilationResultBuilder crb, AMD64MacroAssembler masm, Register result, Register array1, Register array2, Register length, Label trueLabel, Label falseLabel) { ! if (supportsSSE41(crb.target)) { ! emitVectorCompare(crb, masm, result, array1, array2, length, trueLabel, falseLabel); ! } ! if (kind1 == kind2) { ! emit8ByteCompare(crb, masm, result, array1, array2, length, trueLabel, falseLabel); ! emitTailCompares(masm, result, array1, array2, length, trueLabel, falseLabel); ! } else { ! emitDifferentKindsElementWiseCompare(crb, masm, result, array1, array2, length, trueLabel, falseLabel); } } /** * Returns if the underlying AMD64 architecture supports SSE 4.1 instructions. *
*** 213,421 **** AMD64 arch = (AMD64) target.arch; return arch.getFeatures().contains(CPUFeature.SSE4_1); } /** ! * Vector size used in {@link #emitSSE41Compare}. */ ! private static final int SSE4_1_VECTOR_SIZE = 16; ! ! /** ! * Emits code that uses SSE4.1 128-bit (16-byte) vector compares. ! */ ! private static void emitSSE41Compare(CompilationResultBuilder crb, AMD64MacroAssembler masm, JavaKind kind, Register result, Register array1, Register array2, Register length, - Value temp4, Value temp5, Value tempXMM, Value vectorTemp1, Value vectorTemp2, Label trueLabel, Label falseLabel) { assert supportsSSE41(crb.target); Register vector1 = asRegister(vectorTemp1); Register vector2 = asRegister(vectorTemp2); Label loop = new Label(); Label compareTail = new Label(); ! boolean requiresNaNCheck = kind.isNumericFloat(); Label loopCheck = new Label(); Label nanCheck = new Label(); // Compare 16-byte vectors ! masm.andl(result, SSE4_1_VECTOR_SIZE - 1); // tail count (in bytes) ! masm.andl(length, ~(SSE4_1_VECTOR_SIZE - 1)); // vector count (in bytes) masm.jcc(ConditionFlag.Zero, compareTail); ! masm.leaq(array1, new AMD64Address(array1, length, Scale.Times1, 0)); ! masm.leaq(array2, new AMD64Address(array2, length, Scale.Times1, 0)); masm.negq(length); // Align the main loop masm.align(crb.target.wordSize * 2); masm.bind(loop); ! masm.movdqu(vector1, new AMD64Address(array1, length, Scale.Times1, 0)); ! masm.movdqu(vector2, new AMD64Address(array2, length, Scale.Times1, 0)); ! masm.pxor(vector1, vector2); ! masm.ptest(vector1, vector1); masm.jcc(ConditionFlag.NotZero, requiresNaNCheck ? nanCheck : falseLabel); masm.bind(loopCheck); ! masm.addq(length, SSE4_1_VECTOR_SIZE); masm.jcc(ConditionFlag.NotZero, loop); masm.testl(result, result); masm.jcc(ConditionFlag.Zero, trueLabel); if (requiresNaNCheck) { Label unalignedCheck = new Label(); masm.jmpb(unalignedCheck); masm.bind(nanCheck); ! emitFloatCompareWithinRange(crb, masm, kind, array1, array2, length, temp4, temp5, tempXMM, 0, falseLabel, SSE4_1_VECTOR_SIZE); masm.jmpb(loopCheck); masm.bind(unalignedCheck); } /* * Compare the remaining bytes with an unaligned memory load aligned to the end of the * array. */ ! masm.movdqu(vector1, new AMD64Address(array1, result, Scale.Times1, -SSE4_1_VECTOR_SIZE)); ! masm.movdqu(vector2, new AMD64Address(array2, result, Scale.Times1, -SSE4_1_VECTOR_SIZE)); ! masm.pxor(vector1, vector2); ! masm.ptest(vector1, vector1); if (requiresNaNCheck) { masm.jcc(ConditionFlag.Zero, trueLabel); ! emitFloatCompareWithinRange(crb, masm, kind, array1, array2, result, temp4, temp5, tempXMM, -SSE4_1_VECTOR_SIZE, falseLabel, SSE4_1_VECTOR_SIZE); } else { masm.jcc(ConditionFlag.NotZero, falseLabel); } masm.jmp(trueLabel); masm.bind(compareTail); masm.movl(length, result); } ! /** ! * Returns if the underlying AMD64 architecture supports AVX instructions. ! * ! * @param target target description of the underlying architecture ! * @return true if the underlying architecture supports AVX ! */ ! private static boolean supportsAVX2(TargetDescription target) { ! AMD64 arch = (AMD64) target.arch; ! return arch.getFeatures().contains(CPUFeature.AVX2); } ! /** ! * Vector size used in {@link #emitAVXCompare}. ! */ ! private static final int AVX_VECTOR_SIZE = 32; ! private static void emitAVXCompare(CompilationResultBuilder crb, AMD64MacroAssembler masm, JavaKind kind, Register result, ! Register array1, Register array2, Register length, ! Value temp4, Value temp5, Value tempXMM, Value vectorTemp1, Value vectorTemp2, ! Label trueLabel, Label falseLabel) { ! assert supportsAVX2(crb.target); ! Register vector1 = asRegister(vectorTemp1); ! Register vector2 = asRegister(vectorTemp2); ! Label loop = new Label(); ! Label compareTail = new Label(); ! boolean requiresNaNCheck = kind.isNumericFloat(); ! Label loopCheck = new Label(); ! Label nanCheck = new Label(); ! // Compare 32-byte vectors ! masm.andl(result, AVX_VECTOR_SIZE - 1); // tail count (in bytes) ! masm.andl(length, ~(AVX_VECTOR_SIZE - 1)); // vector count (in bytes) ! masm.jcc(ConditionFlag.Zero, compareTail); ! masm.leaq(array1, new AMD64Address(array1, length, Scale.Times1, 0)); ! masm.leaq(array2, new AMD64Address(array2, length, Scale.Times1, 0)); ! masm.negq(length); ! // Align the main loop ! masm.align(crb.target.wordSize * 2); ! masm.bind(loop); ! masm.vmovdqu(vector1, new AMD64Address(array1, length, Scale.Times1, 0)); ! masm.vmovdqu(vector2, new AMD64Address(array2, length, Scale.Times1, 0)); ! masm.vpxor(vector1, vector1, vector2); ! masm.vptest(vector1, vector1); ! masm.jcc(ConditionFlag.NotZero, requiresNaNCheck ? nanCheck : falseLabel); ! masm.bind(loopCheck); ! masm.addq(length, AVX_VECTOR_SIZE); ! masm.jcc(ConditionFlag.NotZero, loop); ! masm.testl(result, result); ! masm.jcc(ConditionFlag.Zero, trueLabel); ! if (requiresNaNCheck) { ! Label unalignedCheck = new Label(); ! masm.jmpb(unalignedCheck); ! masm.bind(nanCheck); ! emitFloatCompareWithinRange(crb, masm, kind, array1, array2, length, temp4, temp5, tempXMM, 0, falseLabel, AVX_VECTOR_SIZE); ! masm.jmpb(loopCheck); ! masm.bind(unalignedCheck); } ! /* ! * Compare the remaining bytes with an unaligned memory load aligned to the end of the ! * array. ! */ ! masm.vmovdqu(vector1, new AMD64Address(array1, result, Scale.Times1, -AVX_VECTOR_SIZE)); ! masm.vmovdqu(vector2, new AMD64Address(array2, result, Scale.Times1, -AVX_VECTOR_SIZE)); ! masm.vpxor(vector1, vector1, vector2); ! masm.vptest(vector1, vector1); ! if (requiresNaNCheck) { ! masm.jcc(ConditionFlag.Zero, trueLabel); ! emitFloatCompareWithinRange(crb, masm, kind, array1, array2, result, temp4, temp5, tempXMM, -AVX_VECTOR_SIZE, falseLabel, AVX_VECTOR_SIZE); } else { ! masm.jcc(ConditionFlag.NotZero, falseLabel); } - masm.jmp(trueLabel); - - masm.bind(compareTail); - masm.movl(length, result); } /** * Vector size used in {@link #emit8ByteCompare}. */ private static final int VECTOR_SIZE = 8; /** * Emits code that uses 8-byte vector compares. */ ! private static void emit8ByteCompare(CompilationResultBuilder crb, AMD64MacroAssembler masm, JavaKind kind, Register result, Register array1, Register array2, Register length, Value temp4, ! Value tempXMM, Label trueLabel, Label falseLabel) { Label loop = new Label(); Label compareTail = new Label(); ! boolean requiresNaNCheck = kind.isNumericFloat(); Label loopCheck = new Label(); Label nanCheck = new Label(); Register temp = asRegister(temp4); ! masm.andl(result, VECTOR_SIZE - 1); // tail count (in bytes) ! masm.andl(length, ~(VECTOR_SIZE - 1)); // vector count (in bytes) masm.jcc(ConditionFlag.Zero, compareTail); ! masm.leaq(array1, new AMD64Address(array1, length, Scale.Times1, 0)); ! masm.leaq(array2, new AMD64Address(array2, length, Scale.Times1, 0)); masm.negq(length); // Align the main loop masm.align(crb.target.wordSize * 2); masm.bind(loop); ! masm.movq(temp, new AMD64Address(array1, length, Scale.Times1, 0)); ! masm.cmpq(temp, new AMD64Address(array2, length, Scale.Times1, 0)); masm.jcc(ConditionFlag.NotEqual, requiresNaNCheck ? nanCheck : falseLabel); masm.bind(loopCheck); ! masm.addq(length, VECTOR_SIZE); masm.jccb(ConditionFlag.NotZero, loop); masm.testl(result, result); masm.jcc(ConditionFlag.Zero, trueLabel); --- 217,491 ---- AMD64 arch = (AMD64) target.arch; return arch.getFeatures().contains(CPUFeature.SSE4_1); } /** ! * Emits code that uses SSE4.1/AVX1 128-bit (16-byte) or AVX2 256-bit (32-byte) vector compares. */ ! private void emitVectorCompare(CompilationResultBuilder crb, AMD64MacroAssembler masm, Register result, Register array1, Register array2, Register length, Label trueLabel, Label falseLabel) { assert supportsSSE41(crb.target); Register vector1 = asRegister(vectorTemp1); Register vector2 = asRegister(vectorTemp2); + int elementsPerVector = getElementsPerVector(vectorSize); + Label loop = new Label(); Label compareTail = new Label(); ! boolean requiresNaNCheck = kind1.isNumericFloat(); Label loopCheck = new Label(); Label nanCheck = new Label(); // Compare 16-byte vectors ! masm.andl(result, elementsPerVector - 1); // tail count ! masm.andl(length, ~(elementsPerVector - 1)); // vector count masm.jcc(ConditionFlag.Zero, compareTail); ! masm.leaq(array1, new AMD64Address(array1, length, arrayIndexScale1, 0)); ! masm.leaq(array2, new AMD64Address(array2, length, arrayIndexScale2, 0)); masm.negq(length); // Align the main loop masm.align(crb.target.wordSize * 2); masm.bind(loop); ! emitVectorLoad1(masm, vector1, array1, length, 0, vectorSize); ! emitVectorLoad2(masm, vector2, array2, length, 0, vectorSize); ! emitVectorCmp(masm, vector1, vector2, vectorSize); masm.jcc(ConditionFlag.NotZero, requiresNaNCheck ? nanCheck : falseLabel); masm.bind(loopCheck); ! masm.addq(length, elementsPerVector); masm.jcc(ConditionFlag.NotZero, loop); masm.testl(result, result); masm.jcc(ConditionFlag.Zero, trueLabel); if (requiresNaNCheck) { Label unalignedCheck = new Label(); masm.jmpb(unalignedCheck); masm.bind(nanCheck); ! emitFloatCompareWithinRange(crb, masm, array1, array2, length, 0, falseLabel, elementsPerVector); masm.jmpb(loopCheck); masm.bind(unalignedCheck); } /* * Compare the remaining bytes with an unaligned memory load aligned to the end of the * array. */ ! emitVectorLoad1(masm, vector1, array1, result, scaleDisplacement1(-vectorSize.getBytes()), vectorSize); ! emitVectorLoad2(masm, vector2, array2, result, scaleDisplacement2(-vectorSize.getBytes()), vectorSize); ! emitVectorCmp(masm, vector1, vector2, vectorSize); if (requiresNaNCheck) { masm.jcc(ConditionFlag.Zero, trueLabel); ! emitFloatCompareWithinRange(crb, masm, array1, array2, result, -vectorSize.getBytes(), falseLabel, elementsPerVector); } else { masm.jcc(ConditionFlag.NotZero, falseLabel); } masm.jmp(trueLabel); masm.bind(compareTail); masm.movl(length, result); } ! private int getElementsPerVector(AVXKind.AVXSize vSize) { ! return vSize.getBytes() >> Math.max(arrayIndexScale1.log2, arrayIndexScale2.log2); } ! private void emitVectorLoad1(AMD64MacroAssembler asm, Register dst, Register src, int displacement, AVXKind.AVXSize size) { ! emitVectorLoad1(asm, dst, src, Register.None, displacement, size); ! } ! private void emitVectorLoad2(AMD64MacroAssembler asm, Register dst, Register src, int displacement, AVXKind.AVXSize size) { ! emitVectorLoad2(asm, dst, src, Register.None, displacement, size); ! } ! private void emitVectorLoad1(AMD64MacroAssembler asm, Register dst, Register src, Register index, int displacement, AVXKind.AVXSize size) { ! emitVectorLoad(asm, dst, src, index, displacement, arrayIndexScale1, arrayIndexScale2, size); ! } ! private void emitVectorLoad2(AMD64MacroAssembler asm, Register dst, Register src, Register index, int displacement, AVXKind.AVXSize size) { ! emitVectorLoad(asm, dst, src, index, displacement, arrayIndexScale2, arrayIndexScale1, size); ! } ! private void emitVectorLoad(AMD64MacroAssembler asm, Register dst, Register src, Register index, int displacement, Scale ownScale, Scale otherScale, AVXKind.AVXSize size) { ! AMD64Address address = new AMD64Address(src, index, ownScale, displacement); ! if (ownScale.value < otherScale.value) { ! if (size == AVXKind.AVXSize.YMM) { ! getAVX2LoadAndExtendOp(ownScale, otherScale, signExtend).emit(asm, size, dst, address); ! } else { ! loadAndExtendSSE(asm, dst, address, ownScale, otherScale, signExtend); ! } ! } else { ! if (size == AVXKind.AVXSize.YMM) { ! asm.vmovdqu(dst, address); ! } else { ! asm.movdqu(dst, address); ! } ! } ! } ! private int scaleDisplacement1(int displacement) { ! return scaleDisplacement(displacement, arrayIndexScale1, arrayIndexScale2); ! } ! private int scaleDisplacement2(int displacement) { ! return scaleDisplacement(displacement, arrayIndexScale2, arrayIndexScale1); ! } ! private static int scaleDisplacement(int displacement, Scale ownScale, Scale otherScale) { ! if (ownScale.value < otherScale.value) { ! return displacement >> (otherScale.log2 - ownScale.log2); ! } ! return displacement; ! } ! private static AMD64Assembler.VexRMOp getAVX2LoadAndExtendOp(Scale ownScale, Scale otherScale, boolean signExtend) { ! switch (ownScale) { ! case Times1: ! switch (otherScale) { ! case Times2: ! return signExtend ? AMD64Assembler.VexRMOp.VPMOVSXBW : AMD64Assembler.VexRMOp.VPMOVZXBW; ! case Times4: ! return signExtend ? AMD64Assembler.VexRMOp.VPMOVSXBD : AMD64Assembler.VexRMOp.VPMOVZXBD; ! case Times8: ! return signExtend ? AMD64Assembler.VexRMOp.VPMOVSXBQ : AMD64Assembler.VexRMOp.VPMOVZXBQ; ! } ! throw GraalError.shouldNotReachHere(); ! case Times2: ! switch (otherScale) { ! case Times4: ! return signExtend ? AMD64Assembler.VexRMOp.VPMOVSXWD : AMD64Assembler.VexRMOp.VPMOVZXWD; ! case Times8: ! return signExtend ? AMD64Assembler.VexRMOp.VPMOVSXWQ : AMD64Assembler.VexRMOp.VPMOVZXWQ; ! } ! throw GraalError.shouldNotReachHere(); ! case Times4: ! return signExtend ? AMD64Assembler.VexRMOp.VPMOVSXDQ : AMD64Assembler.VexRMOp.VPMOVZXDQ; ! } ! throw GraalError.shouldNotReachHere(); ! } ! ! private static void loadAndExtendSSE(AMD64MacroAssembler asm, Register dst, AMD64Address src, Scale ownScale, Scale otherScale, boolean signExtend) { ! switch (ownScale) { ! case Times1: ! switch (otherScale) { ! case Times2: ! if (signExtend) { ! asm.pmovsxbw(dst, src); ! } else { ! asm.pmovzxbw(dst, src); ! } ! return; ! case Times4: ! if (signExtend) { ! asm.pmovsxbd(dst, src); ! } else { ! asm.pmovzxbd(dst, src); ! } ! return; ! case Times8: ! if (signExtend) { ! asm.pmovsxbq(dst, src); ! } else { ! asm.pmovzxbq(dst, src); ! } ! return; ! } ! throw GraalError.shouldNotReachHere(); ! case Times2: ! switch (otherScale) { ! case Times4: ! if (signExtend) { ! asm.pmovsxwd(dst, src); ! } else { ! asm.pmovzxwd(dst, src); ! } ! return; ! case Times8: ! if (signExtend) { ! asm.pmovsxwq(dst, src); ! } else { ! asm.pmovzxwq(dst, src); ! } ! return; ! } ! throw GraalError.shouldNotReachHere(); ! case Times4: ! if (signExtend) { ! asm.pmovsxdq(dst, src); ! } else { ! asm.pmovzxdq(dst, src); ! } ! return; ! } ! throw GraalError.shouldNotReachHere(); ! } ! private static void emitVectorCmp(AMD64MacroAssembler masm, Register vector1, Register vector2, AVXKind.AVXSize size) { ! emitVectorXor(masm, vector1, vector2, size); ! emitVectorTest(masm, vector1, size); ! } ! private static void emitVectorXor(AMD64MacroAssembler masm, Register vector1, Register vector2, AVXKind.AVXSize size) { ! if (size == AVXKind.AVXSize.YMM) { ! masm.vpxor(vector1, vector1, vector2); ! } else { ! masm.pxor(vector1, vector2); } + } ! private static void emitVectorTest(AMD64MacroAssembler masm, Register vector1, AVXKind.AVXSize size) { ! if (size == AVXKind.AVXSize.YMM) { ! masm.vptest(vector1, vector1); } else { ! masm.ptest(vector1, vector1); } } /** * Vector size used in {@link #emit8ByteCompare}. */ private static final int VECTOR_SIZE = 8; /** * Emits code that uses 8-byte vector compares. */ ! private void emit8ByteCompare(CompilationResultBuilder crb, AMD64MacroAssembler masm, ! Register result, Register array1, Register array2, Register length, Label trueLabel, Label falseLabel) { ! assert kind1 == kind2; Label loop = new Label(); Label compareTail = new Label(); ! int elementsPerVector = 8 >> arrayIndexScale1.log2; ! ! boolean requiresNaNCheck = kind1.isNumericFloat(); Label loopCheck = new Label(); Label nanCheck = new Label(); Register temp = asRegister(temp4); ! masm.andl(result, elementsPerVector - 1); // tail count ! masm.andl(length, ~(elementsPerVector - 1)); // vector count masm.jcc(ConditionFlag.Zero, compareTail); ! masm.leaq(array1, new AMD64Address(array1, length, arrayIndexScale1, 0)); ! masm.leaq(array2, new AMD64Address(array2, length, arrayIndexScale2, 0)); masm.negq(length); // Align the main loop masm.align(crb.target.wordSize * 2); masm.bind(loop); ! masm.movq(temp, new AMD64Address(array1, length, arrayIndexScale1, 0)); ! masm.cmpq(temp, new AMD64Address(array2, length, arrayIndexScale2, 0)); masm.jcc(ConditionFlag.NotEqual, requiresNaNCheck ? nanCheck : falseLabel); masm.bind(loopCheck); ! masm.addq(length, elementsPerVector); masm.jccb(ConditionFlag.NotZero, loop); masm.testl(result, result); masm.jcc(ConditionFlag.Zero, trueLabel);
*** 423,450 **** // NaN check is slow path and hence placed outside of the main loop. Label unalignedCheck = new Label(); masm.jmpb(unalignedCheck); masm.bind(nanCheck); // At most two iterations, unroll in the emitted code. ! for (int offset = 0; offset < VECTOR_SIZE; offset += kind.getByteCount()) { ! emitFloatCompare(masm, kind, array1, array2, length, temp4, tempXMM, offset, falseLabel, kind.getByteCount() == VECTOR_SIZE); } masm.jmpb(loopCheck); masm.bind(unalignedCheck); } /* * Compare the remaining bytes with an unaligned memory load aligned to the end of the * array. */ ! masm.movq(temp, new AMD64Address(array1, result, Scale.Times1, -VECTOR_SIZE)); ! masm.cmpq(temp, new AMD64Address(array2, result, Scale.Times1, -VECTOR_SIZE)); if (requiresNaNCheck) { masm.jcc(ConditionFlag.Equal, trueLabel); // At most two iterations, unroll in the emitted code. ! for (int offset = 0; offset < VECTOR_SIZE; offset += kind.getByteCount()) { ! emitFloatCompare(masm, kind, array1, array2, result, temp4, tempXMM, -VECTOR_SIZE + offset, falseLabel, kind.getByteCount() == VECTOR_SIZE); } } else { masm.jccb(ConditionFlag.NotEqual, falseLabel); } masm.jmpb(trueLabel); --- 493,520 ---- // NaN check is slow path and hence placed outside of the main loop. Label unalignedCheck = new Label(); masm.jmpb(unalignedCheck); masm.bind(nanCheck); // At most two iterations, unroll in the emitted code. ! for (int offset = 0; offset < VECTOR_SIZE; offset += kind1.getByteCount()) { ! emitFloatCompare(masm, array1, array2, length, offset, falseLabel, kind1.getByteCount() == VECTOR_SIZE); } masm.jmpb(loopCheck); masm.bind(unalignedCheck); } /* * Compare the remaining bytes with an unaligned memory load aligned to the end of the * array. */ ! masm.movq(temp, new AMD64Address(array1, result, arrayIndexScale1, -VECTOR_SIZE)); ! masm.cmpq(temp, new AMD64Address(array2, result, arrayIndexScale2, -VECTOR_SIZE)); if (requiresNaNCheck) { masm.jcc(ConditionFlag.Equal, trueLabel); // At most two iterations, unroll in the emitted code. ! for (int offset = 0; offset < VECTOR_SIZE; offset += kind1.getByteCount()) { ! emitFloatCompare(masm, array1, array2, result, -VECTOR_SIZE + offset, falseLabel, kind1.getByteCount() == VECTOR_SIZE); } } else { masm.jccb(ConditionFlag.NotEqual, falseLabel); } masm.jmpb(trueLabel);
*** 454,499 **** } /** * Emits code to compare the remaining 1 to 4 bytes. */ ! private static void emitTailCompares(AMD64MacroAssembler masm, JavaKind kind, Register result, Register array1, Register array2, Register length, Value temp4, Value tempXMM, ! Label trueLabel, Label falseLabel) { Label compare2Bytes = new Label(); Label compare1Byte = new Label(); Register temp = asRegister(temp4); ! if (kind.getByteCount() <= 4) { // Compare trailing 4 bytes, if any. ! masm.testl(result, 4); masm.jccb(ConditionFlag.Zero, compare2Bytes); masm.movl(temp, new AMD64Address(array1, 0)); masm.cmpl(temp, new AMD64Address(array2, 0)); ! if (kind == JavaKind.Float) { masm.jccb(ConditionFlag.Equal, trueLabel); ! emitFloatCompare(masm, kind, array1, array2, Register.None, temp4, tempXMM, 0, falseLabel, true); masm.jmpb(trueLabel); } else { masm.jccb(ConditionFlag.NotEqual, falseLabel); } ! if (kind.getByteCount() <= 2) { // Move array pointers forward. masm.leaq(array1, new AMD64Address(array1, 4)); masm.leaq(array2, new AMD64Address(array2, 4)); // Compare trailing 2 bytes, if any. masm.bind(compare2Bytes); ! masm.testl(result, 2); masm.jccb(ConditionFlag.Zero, compare1Byte); masm.movzwl(temp, new AMD64Address(array1, 0)); masm.movzwl(length, new AMD64Address(array2, 0)); masm.cmpl(temp, length); masm.jccb(ConditionFlag.NotEqual, falseLabel); // The one-byte tail compare is only required for boolean and byte arrays. ! if (kind.getByteCount() <= 1) { // Move array pointers forward before we compare the last trailing byte. masm.leaq(array1, new AMD64Address(array1, 2)); masm.leaq(array2, new AMD64Address(array2, 2)); // Compare trailing byte, if any. --- 524,570 ---- } /** * Emits code to compare the remaining 1 to 4 bytes. */ ! private void emitTailCompares(AMD64MacroAssembler masm, ! Register result, Register array1, Register array2, Register length, Label trueLabel, Label falseLabel) { ! assert kind1 == kind2; Label compare2Bytes = new Label(); Label compare1Byte = new Label(); Register temp = asRegister(temp4); ! if (kind1.getByteCount() <= 4) { // Compare trailing 4 bytes, if any. ! masm.testl(result, arrayIndexScale1.log2 == 0 ? 4 : 4 >> arrayIndexScale1.log2); masm.jccb(ConditionFlag.Zero, compare2Bytes); masm.movl(temp, new AMD64Address(array1, 0)); masm.cmpl(temp, new AMD64Address(array2, 0)); ! if (kind1 == JavaKind.Float) { masm.jccb(ConditionFlag.Equal, trueLabel); ! emitFloatCompare(masm, array1, array2, Register.None, 0, falseLabel, true); masm.jmpb(trueLabel); } else { masm.jccb(ConditionFlag.NotEqual, falseLabel); } ! if (kind1.getByteCount() <= 2) { // Move array pointers forward. masm.leaq(array1, new AMD64Address(array1, 4)); masm.leaq(array2, new AMD64Address(array2, 4)); // Compare trailing 2 bytes, if any. masm.bind(compare2Bytes); ! masm.testl(result, arrayIndexScale1.log2 == 0 ? 2 : 2 >> arrayIndexScale1.log2); masm.jccb(ConditionFlag.Zero, compare1Byte); masm.movzwl(temp, new AMD64Address(array1, 0)); masm.movzwl(length, new AMD64Address(array2, 0)); masm.cmpl(temp, length); masm.jccb(ConditionFlag.NotEqual, falseLabel); // The one-byte tail compare is only required for boolean and byte arrays. ! if (kind1.getByteCount() <= 1) { // Move array pointers forward before we compare the last trailing byte. masm.leaq(array1, new AMD64Address(array1, 2)); masm.leaq(array2, new AMD64Address(array2, 2)); // Compare trailing byte, if any.
*** 511,775 **** masm.bind(compare2Bytes); } } } /** * Emits code to fall through if {@code src} is NaN, otherwise jump to {@code branchOrdered}. */ ! private static void emitNaNCheck(AMD64MacroAssembler masm, JavaKind kind, Value tempXMM, AMD64Address src, Label branchIfNonNaN) { ! assert kind.isNumericFloat(); Register tempXMMReg = asRegister(tempXMM); ! if (kind == JavaKind.Float) { masm.movflt(tempXMMReg, src); } else { masm.movdbl(tempXMMReg, src); } ! SSEOp.UCOMIS.emit(masm, kind == JavaKind.Float ? OperandSize.PS : OperandSize.PD, tempXMMReg, tempXMMReg); masm.jcc(ConditionFlag.NoParity, branchIfNonNaN); } /** * Emits code to compare if two floats are bitwise equal or both NaN. */ ! private static void emitFloatCompare(AMD64MacroAssembler masm, JavaKind kind, Register base1, Register base2, Register index, Value temp4, Value tempXMM, int offset, Label falseLabel, boolean skipBitwiseCompare) { ! AMD64Address address1 = new AMD64Address(base1, index, Scale.Times1, offset); ! AMD64Address address2 = new AMD64Address(base2, index, Scale.Times1, offset); Label bitwiseEqual = new Label(); if (!skipBitwiseCompare) { // Bitwise compare Register temp = asRegister(temp4); ! if (kind == JavaKind.Float) { masm.movl(temp, address1); masm.cmpl(temp, address2); } else { masm.movq(temp, address1); masm.cmpq(temp, address2); } masm.jccb(ConditionFlag.Equal, bitwiseEqual); } ! emitNaNCheck(masm, kind, tempXMM, address1, falseLabel); ! emitNaNCheck(masm, kind, tempXMM, address2, falseLabel); masm.bind(bitwiseEqual); } /** * Emits code to compare float equality within a range. */ ! private static void emitFloatCompareWithinRange(CompilationResultBuilder crb, AMD64MacroAssembler masm, JavaKind kind, Register base1, Register base2, Register index, Value temp4, Value temp5, ! Value tempXMM, int offset, Label falseLabel, int range) { ! assert kind.isNumericFloat(); Label loop = new Label(); Register i = asRegister(temp5); masm.movq(i, range); masm.negq(i); // Align the main loop masm.align(crb.target.wordSize * 2); masm.bind(loop); ! emitFloatCompare(masm, kind, base1, base2, index, temp4, tempXMM, offset, falseLabel, kind.getByteCount() == range); ! masm.addq(index, kind.getByteCount()); ! masm.addq(i, kind.getByteCount()); masm.jccb(ConditionFlag.NotZero, loop); // Floats within the range are equal, revert change to the register index masm.subq(index, range); } /** * Emits specialized assembly for checking equality of memory regions * {@code arrayPtr1[0..nBytes]} and {@code arrayPtr2[0..nBytes]}. If they match, execution * continues directly after the emitted code block, otherwise we jump to {@code noMatch}. */ ! private static void emitConstantLengthArrayCompareBytes( AMD64MacroAssembler asm, Register arrayPtr1, Register arrayPtr2, Register tmp1, Register tmp2, Register[] tmpVectors, ! Label noMatch, ! int nBytes, ! int bytesPerVector) { ! assert bytesPerVector >= 16; ! if (nBytes == 0) { // do nothing return; } ! if (nBytes < 16) { // array is shorter than any vector register, use regular CMP instructions ! int movSize = (nBytes < 2) ? 1 : ((nBytes < 4) ? 2 : ((nBytes < 8) ? 4 : 8)); emitMovBytes(asm, tmp1, new AMD64Address(arrayPtr1), movSize); emitMovBytes(asm, tmp2, new AMD64Address(arrayPtr2), movSize); emitCmpBytes(asm, tmp1, tmp2, movSize); asm.jcc(AMD64Assembler.ConditionFlag.NotEqual, noMatch); ! if (nBytes > movSize) { ! emitMovBytes(asm, tmp1, new AMD64Address(arrayPtr1, nBytes - movSize), movSize); ! emitMovBytes(asm, tmp2, new AMD64Address(arrayPtr2, nBytes - movSize), movSize); emitCmpBytes(asm, tmp1, tmp2, movSize); asm.jcc(AMD64Assembler.ConditionFlag.NotEqual, noMatch); } ! } else if (nBytes < 32 && bytesPerVector >= 32) { ! // we could use YMM registers, but the array is too short, force XMM registers ! int bytesPerXMMVector = AVXKind.AVXSize.XMM.getBytes(); ! AMD64Assembler.VexMoveOp.VMOVDQU.emit(asm, AVXKind.AVXSize.XMM, tmpVectors[0], new AMD64Address(arrayPtr1)); ! AMD64Assembler.VexMoveOp.VMOVDQU.emit(asm, AVXKind.AVXSize.XMM, tmpVectors[1], new AMD64Address(arrayPtr2)); ! AMD64Assembler.VexRVMOp.VPXOR.emit(asm, AVXKind.AVXSize.XMM, tmpVectors[0], tmpVectors[0], tmpVectors[1]); ! if (nBytes > bytesPerXMMVector) { ! AMD64Assembler.VexMoveOp.VMOVDQU.emit(asm, AVXKind.AVXSize.XMM, tmpVectors[2], new AMD64Address(arrayPtr1, nBytes - bytesPerXMMVector)); ! AMD64Assembler.VexMoveOp.VMOVDQU.emit(asm, AVXKind.AVXSize.XMM, tmpVectors[3], new AMD64Address(arrayPtr2, nBytes - bytesPerXMMVector)); ! AMD64Assembler.VexRVMOp.VPXOR.emit(asm, AVXKind.AVXSize.XMM, tmpVectors[2], tmpVectors[2], tmpVectors[3]); ! AMD64Assembler.VexRMOp.VPTEST.emit(asm, AVXKind.AVXSize.XMM, tmpVectors[2], tmpVectors[2]); asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); ! } ! AMD64Assembler.VexRMOp.VPTEST.emit(asm, AVXKind.AVXSize.XMM, tmpVectors[0], tmpVectors[0]); ! asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); ! } else if (bytesPerVector >= 32) { ! // AVX2 supported, use YMM vectors ! assert asm.supports(CPUFeature.AVX2); ! int loopCount = nBytes / (bytesPerVector * 2); ! int rest = nBytes % (bytesPerVector * 2); ! if (loopCount > 0) { ! if (0 < rest && rest < bytesPerVector) { ! loopCount--; ! } ! if (loopCount > 0) { ! if (loopCount > 1) { ! asm.movl(tmp1, loopCount); ! } ! Label loopBegin = new Label(); ! asm.bind(loopBegin); ! asm.vmovdqu(tmpVectors[0], new AMD64Address(arrayPtr1)); ! asm.vmovdqu(tmpVectors[1], new AMD64Address(arrayPtr2)); ! asm.vmovdqu(tmpVectors[2], new AMD64Address(arrayPtr1, bytesPerVector)); ! asm.vmovdqu(tmpVectors[3], new AMD64Address(arrayPtr2, bytesPerVector)); ! asm.vpxor(tmpVectors[0], tmpVectors[0], tmpVectors[1]); ! asm.vpxor(tmpVectors[2], tmpVectors[2], tmpVectors[3]); ! asm.vptest(tmpVectors[0], tmpVectors[0]); ! asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); ! asm.vptest(tmpVectors[2], tmpVectors[2]); ! asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); ! asm.addq(arrayPtr1, bytesPerVector * 2); ! asm.addq(arrayPtr2, bytesPerVector * 2); ! if (loopCount > 1) { ! asm.decrementl(tmp1); ! asm.jcc(AMD64Assembler.ConditionFlag.NotZero, loopBegin); ! } ! } ! if (0 < rest && rest < bytesPerVector) { ! asm.vmovdqu(tmpVectors[0], new AMD64Address(arrayPtr1)); ! asm.vmovdqu(tmpVectors[1], new AMD64Address(arrayPtr2)); ! asm.vmovdqu(tmpVectors[2], new AMD64Address(arrayPtr1, bytesPerVector)); ! asm.vmovdqu(tmpVectors[3], new AMD64Address(arrayPtr2, bytesPerVector)); ! asm.vpxor(tmpVectors[0], tmpVectors[0], tmpVectors[1]); ! asm.vpxor(tmpVectors[2], tmpVectors[2], tmpVectors[3]); ! asm.vptest(tmpVectors[0], tmpVectors[0]); ! asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); ! asm.vptest(tmpVectors[2], tmpVectors[2]); ! asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); ! asm.vmovdqu(tmpVectors[0], new AMD64Address(arrayPtr1, bytesPerVector + rest)); ! asm.vmovdqu(tmpVectors[1], new AMD64Address(arrayPtr2, bytesPerVector + rest)); ! asm.vpxor(tmpVectors[0], tmpVectors[0], tmpVectors[1]); ! asm.vptest(tmpVectors[0], tmpVectors[0]); ! asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); ! } ! } ! if (rest >= bytesPerVector) { ! asm.vmovdqu(tmpVectors[0], new AMD64Address(arrayPtr1)); ! asm.vmovdqu(tmpVectors[1], new AMD64Address(arrayPtr2)); ! asm.vpxor(tmpVectors[0], tmpVectors[0], tmpVectors[1]); ! if (rest > bytesPerVector) { ! asm.vmovdqu(tmpVectors[2], new AMD64Address(arrayPtr1, rest - bytesPerVector)); ! asm.vmovdqu(tmpVectors[3], new AMD64Address(arrayPtr2, rest - bytesPerVector)); ! asm.vpxor(tmpVectors[2], tmpVectors[2], tmpVectors[3]); ! asm.vptest(tmpVectors[2], tmpVectors[2]); ! asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); ! } ! asm.vptest(tmpVectors[0], tmpVectors[0]); asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); } ! } else { ! // on AVX or SSE, use XMM vectors ! int loopCount = nBytes / (bytesPerVector * 2); ! int rest = nBytes % (bytesPerVector * 2); ! if (loopCount > 0) { ! if (0 < rest && rest < bytesPerVector) { ! loopCount--; ! } ! if (loopCount > 0) { ! if (loopCount > 1) { ! asm.movl(tmp1, loopCount); ! } ! Label loopBegin = new Label(); ! asm.bind(loopBegin); ! asm.movdqu(tmpVectors[0], new AMD64Address(arrayPtr1)); ! asm.movdqu(tmpVectors[1], new AMD64Address(arrayPtr2)); ! asm.movdqu(tmpVectors[2], new AMD64Address(arrayPtr1, bytesPerVector)); ! asm.movdqu(tmpVectors[3], new AMD64Address(arrayPtr2, bytesPerVector)); ! asm.pxor(tmpVectors[0], tmpVectors[1]); ! asm.pxor(tmpVectors[2], tmpVectors[3]); ! asm.ptest(tmpVectors[0], tmpVectors[0]); asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); - asm.ptest(tmpVectors[2], tmpVectors[2]); - asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); - asm.addq(arrayPtr1, bytesPerVector * 2); - asm.addq(arrayPtr2, bytesPerVector * 2); - if (loopCount > 1) { - asm.decrementl(tmp1); - asm.jcc(AMD64Assembler.ConditionFlag.NotZero, loopBegin); - } } ! if (0 < rest && rest < bytesPerVector) { ! asm.movdqu(tmpVectors[0], new AMD64Address(arrayPtr1)); ! asm.movdqu(tmpVectors[1], new AMD64Address(arrayPtr2)); ! asm.movdqu(tmpVectors[2], new AMD64Address(arrayPtr1, bytesPerVector)); ! asm.movdqu(tmpVectors[3], new AMD64Address(arrayPtr2, bytesPerVector)); ! asm.pxor(tmpVectors[0], tmpVectors[1]); ! asm.pxor(tmpVectors[2], tmpVectors[3]); ! asm.ptest(tmpVectors[0], tmpVectors[0]); ! asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); ! asm.ptest(tmpVectors[2], tmpVectors[2]); ! asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); ! asm.movdqu(tmpVectors[0], new AMD64Address(arrayPtr1, bytesPerVector + rest)); ! asm.movdqu(tmpVectors[1], new AMD64Address(arrayPtr2, bytesPerVector + rest)); ! asm.pxor(tmpVectors[0], tmpVectors[1]); ! asm.ptest(tmpVectors[0], tmpVectors[0]); ! asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); ! } ! } ! if (rest >= bytesPerVector) { ! asm.movdqu(tmpVectors[0], new AMD64Address(arrayPtr1)); ! asm.movdqu(tmpVectors[1], new AMD64Address(arrayPtr2)); ! asm.pxor(tmpVectors[0], tmpVectors[1]); ! if (rest > bytesPerVector) { ! asm.movdqu(tmpVectors[2], new AMD64Address(arrayPtr1, rest - bytesPerVector)); ! asm.movdqu(tmpVectors[3], new AMD64Address(arrayPtr2, rest - bytesPerVector)); ! asm.pxor(tmpVectors[2], tmpVectors[3]); ! asm.ptest(tmpVectors[2], tmpVectors[2]); ! asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); ! } ! asm.ptest(tmpVectors[0], tmpVectors[0]); asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); } } } ! private static void emitMovBytes(AMD64MacroAssembler asm, Register dst, AMD64Address src, int size) { switch (size) { case 1: ! asm.movzbl(dst, src); break; case 2: ! asm.movzwl(dst, src); break; case 4: ! asm.movl(dst, src); break; case 8: asm.movq(dst, src); break; default: --- 582,815 ---- masm.bind(compare2Bytes); } } } + private void emitDifferentKindsElementWiseCompare(CompilationResultBuilder crb, AMD64MacroAssembler masm, + Register result, Register array1, Register array2, Register length, Label trueLabel, Label falseLabel) { + assert kind1 != kind2; + assert kind1.isNumericInteger() && kind2.isNumericInteger(); + Label loop = new Label(); + Label compareTail = new Label(); + + int elementsPerLoopIteration = 4; + + Register tmp1 = asRegister(temp4); + Register tmp2 = asRegister(temp5); + + masm.andl(result, elementsPerLoopIteration - 1); // tail count + masm.andl(length, ~(elementsPerLoopIteration - 1)); // bulk loop count + masm.jcc(ConditionFlag.Zero, compareTail); + + masm.leaq(array1, new AMD64Address(array1, length, arrayIndexScale1, 0)); + masm.leaq(array2, new AMD64Address(array2, length, arrayIndexScale2, 0)); + masm.negq(length); + + // clear comparison registers because of the missing movzlq instruction + masm.xorq(tmp1, tmp1); + masm.xorq(tmp2, tmp2); + + // Align the main loop + masm.align(crb.target.wordSize * 2); + masm.bind(loop); + for (int i = 0; i < elementsPerLoopIteration; i++) { + emitMovBytes(masm, tmp1, new AMD64Address(array1, length, arrayIndexScale1, i << arrayIndexScale1.log2), kind1.getByteCount()); + emitMovBytes(masm, tmp2, new AMD64Address(array2, length, arrayIndexScale2, i << arrayIndexScale2.log2), kind2.getByteCount()); + masm.cmpq(tmp1, tmp2); + masm.jcc(ConditionFlag.NotEqual, falseLabel); + } + masm.addq(length, elementsPerLoopIteration); + masm.jccb(ConditionFlag.NotZero, loop); + + masm.bind(compareTail); + masm.testl(result, result); + masm.jcc(ConditionFlag.Zero, trueLabel); + for (int i = 0; i < elementsPerLoopIteration - 1; i++) { + emitMovBytes(masm, tmp1, new AMD64Address(array1, length, arrayIndexScale1, 0), kind1.getByteCount()); + emitMovBytes(masm, tmp2, new AMD64Address(array2, length, arrayIndexScale2, 0), kind2.getByteCount()); + masm.cmpq(tmp1, tmp2); + masm.jcc(ConditionFlag.NotEqual, falseLabel); + if (i < elementsPerLoopIteration - 2) { + masm.incrementq(length, 1); + masm.decrementq(result, 1); + masm.jcc(ConditionFlag.Zero, trueLabel); + } else { + masm.jmpb(trueLabel); + } + } + } + /** * Emits code to fall through if {@code src} is NaN, otherwise jump to {@code branchOrdered}. */ ! private void emitNaNCheck(AMD64MacroAssembler masm, AMD64Address src, Label branchIfNonNaN) { ! assert kind1.isNumericFloat(); Register tempXMMReg = asRegister(tempXMM); ! if (kind1 == JavaKind.Float) { masm.movflt(tempXMMReg, src); } else { masm.movdbl(tempXMMReg, src); } ! SSEOp.UCOMIS.emit(masm, kind1 == JavaKind.Float ? OperandSize.PS : OperandSize.PD, tempXMMReg, tempXMMReg); masm.jcc(ConditionFlag.NoParity, branchIfNonNaN); } /** * Emits code to compare if two floats are bitwise equal or both NaN. */ ! private void emitFloatCompare(AMD64MacroAssembler masm, Register base1, Register base2, Register index, int offset, Label falseLabel, boolean skipBitwiseCompare) { ! AMD64Address address1 = new AMD64Address(base1, index, arrayIndexScale1, offset); ! AMD64Address address2 = new AMD64Address(base2, index, arrayIndexScale2, offset); Label bitwiseEqual = new Label(); if (!skipBitwiseCompare) { // Bitwise compare Register temp = asRegister(temp4); ! if (kind1 == JavaKind.Float) { masm.movl(temp, address1); masm.cmpl(temp, address2); } else { masm.movq(temp, address1); masm.cmpq(temp, address2); } masm.jccb(ConditionFlag.Equal, bitwiseEqual); } ! emitNaNCheck(masm, address1, falseLabel); ! emitNaNCheck(masm, address2, falseLabel); masm.bind(bitwiseEqual); } /** * Emits code to compare float equality within a range. */ ! private void emitFloatCompareWithinRange(CompilationResultBuilder crb, AMD64MacroAssembler masm, ! Register base1, Register base2, Register index, int offset, Label falseLabel, int range) { ! assert kind1.isNumericFloat(); Label loop = new Label(); Register i = asRegister(temp5); masm.movq(i, range); masm.negq(i); // Align the main loop masm.align(crb.target.wordSize * 2); masm.bind(loop); ! emitFloatCompare(masm, base1, base2, index, offset, falseLabel, range == 1); ! masm.incrementq(index, 1); ! masm.incrementq(i, 1); masm.jccb(ConditionFlag.NotZero, loop); // Floats within the range are equal, revert change to the register index masm.subq(index, range); } /** * Emits specialized assembly for checking equality of memory regions * {@code arrayPtr1[0..nBytes]} and {@code arrayPtr2[0..nBytes]}. If they match, execution * continues directly after the emitted code block, otherwise we jump to {@code noMatch}. */ ! private void emitConstantLengthArrayCompareBytes( ! CompilationResultBuilder crb, AMD64MacroAssembler asm, Register arrayPtr1, Register arrayPtr2, Register tmp1, Register tmp2, Register[] tmpVectors, ! Label noMatch) { ! if (constantLength == 0) { // do nothing return; } ! AVXKind.AVXSize vSize = vectorSize; ! if (constantLength < getElementsPerVector(vectorSize)) { ! vSize = AVXKind.AVXSize.XMM; ! } ! int elementsPerVector = getElementsPerVector(vSize); ! if (elementsPerVector > constantLength) { ! assert kind1 == kind2; ! int byteLength = constantLength << arrayIndexScale1.log2; // array is shorter than any vector register, use regular CMP instructions ! int movSize = (byteLength < 2) ? 1 : ((byteLength < 4) ? 2 : ((byteLength < 8) ? 4 : 8)); emitMovBytes(asm, tmp1, new AMD64Address(arrayPtr1), movSize); emitMovBytes(asm, tmp2, new AMD64Address(arrayPtr2), movSize); emitCmpBytes(asm, tmp1, tmp2, movSize); asm.jcc(AMD64Assembler.ConditionFlag.NotEqual, noMatch); ! if (byteLength > movSize) { ! emitMovBytes(asm, tmp1, new AMD64Address(arrayPtr1, byteLength - movSize), movSize); ! emitMovBytes(asm, tmp2, new AMD64Address(arrayPtr2, byteLength - movSize), movSize); emitCmpBytes(asm, tmp1, tmp2, movSize); asm.jcc(AMD64Assembler.ConditionFlag.NotEqual, noMatch); } ! } else { ! int elementsPerVectorLoop = 2 * elementsPerVector; ! int tailCount = constantLength & (elementsPerVectorLoop - 1); ! int vectorCount = constantLength & ~(elementsPerVectorLoop - 1); ! int bytesPerVector = vSize.getBytes(); ! if (vectorCount > 0) { ! Label loopBegin = new Label(); ! asm.leaq(arrayPtr1, new AMD64Address(arrayPtr1, vectorCount << arrayIndexScale1.log2)); ! asm.leaq(arrayPtr2, new AMD64Address(arrayPtr2, vectorCount << arrayIndexScale2.log2)); ! asm.movq(tmp1, -vectorCount); ! asm.align(crb.target.wordSize * 2); ! asm.bind(loopBegin); ! emitVectorLoad1(asm, tmpVectors[0], arrayPtr1, tmp1, 0, vSize); ! emitVectorLoad2(asm, tmpVectors[1], arrayPtr2, tmp1, 0, vSize); ! emitVectorLoad1(asm, tmpVectors[2], arrayPtr1, tmp1, scaleDisplacement1(bytesPerVector), vSize); ! emitVectorLoad2(asm, tmpVectors[3], arrayPtr2, tmp1, scaleDisplacement2(bytesPerVector), vSize); ! emitVectorXor(asm, tmpVectors[0], tmpVectors[1], vSize); ! emitVectorXor(asm, tmpVectors[2], tmpVectors[3], vSize); ! emitVectorTest(asm, tmpVectors[0], vSize); asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); ! emitVectorTest(asm, tmpVectors[2], vSize); asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); + asm.addq(tmp1, elementsPerVectorLoop); + asm.jcc(AMD64Assembler.ConditionFlag.NotZero, loopBegin); } ! if (tailCount > 0) { ! emitVectorLoad1(asm, tmpVectors[0], arrayPtr1, (tailCount << arrayIndexScale1.log2) - scaleDisplacement1(bytesPerVector), vSize); ! emitVectorLoad2(asm, tmpVectors[1], arrayPtr2, (tailCount << arrayIndexScale2.log2) - scaleDisplacement2(bytesPerVector), vSize); ! emitVectorXor(asm, tmpVectors[0], tmpVectors[1], vSize); ! if (tailCount > elementsPerVector) { ! emitVectorLoad1(asm, tmpVectors[2], arrayPtr1, 0, vSize); ! emitVectorLoad2(asm, tmpVectors[3], arrayPtr2, 0, vSize); ! emitVectorXor(asm, tmpVectors[2], tmpVectors[3], vSize); ! emitVectorTest(asm, tmpVectors[2], vSize); asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); } ! emitVectorTest(asm, tmpVectors[0], vSize); asm.jcc(AMD64Assembler.ConditionFlag.NotZero, noMatch); } } } ! private void emitMovBytes(AMD64MacroAssembler asm, Register dst, AMD64Address src, int size) { switch (size) { case 1: ! if (signExtend) { ! asm.movsbq(dst, src); ! } else { ! asm.movzbq(dst, src); ! } break; case 2: ! if (signExtend) { ! asm.movswq(dst, src); ! } else { ! asm.movzwq(dst, src); ! } break; case 4: ! if (signExtend) { ! asm.movslq(dst, src); ! } else { ! // there is no movzlq ! asm.movl(dst, src); ! } break; case 8: asm.movq(dst, src); break; default:
< prev index next >