1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
  26 #define SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
  27 
  28 #include "gc_implementation/shared/gcTrace.hpp"
  29 #include "memory/referencePolicy.hpp"
  30 #include "memory/referenceProcessorStats.hpp"
  31 #include "memory/referenceType.hpp"
  32 #include "oops/instanceRefKlass.hpp"
  33 
  34 class GCTimer;
  35 
  36 // ReferenceProcessor class encapsulates the per-"collector" processing
  37 // of java.lang.Reference objects for GC. The interface is useful for supporting
  38 // a generational abstraction, in particular when there are multiple
  39 // generations that are being independently collected -- possibly
  40 // concurrently and/or incrementally.  Note, however, that the
  41 // ReferenceProcessor class abstracts away from a generational setting
  42 // by using only a heap interval (called "span" below), thus allowing
  43 // its use in a straightforward manner in a general, non-generational
  44 // setting.
  45 //
  46 // The basic idea is that each ReferenceProcessor object concerns
  47 // itself with ("weak") reference processing in a specific "span"
  48 // of the heap of interest to a specific collector. Currently,
  49 // the span is a convex interval of the heap, but, efficiency
  50 // apart, there seems to be no reason it couldn't be extended
  51 // (with appropriate modifications) to any "non-convex interval".
  52 
  53 // forward references
  54 class ReferencePolicy;
  55 class AbstractRefProcTaskExecutor;
  56 
  57 // List of discovered references.
  58 class DiscoveredList {
  59 public:
  60   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  61   oop head() const     {
  62      return UseCompressedOops ?  oopDesc::decode_heap_oop(_compressed_head) :
  63                                 _oop_head;
  64   }
  65   HeapWord* adr_head() {
  66     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  67                                (HeapWord*)&_oop_head;
  68   }
  69   void set_head(oop o) {
  70     if (UseCompressedOops) {
  71       // Must compress the head ptr.
  72       _compressed_head = oopDesc::encode_heap_oop(o);
  73     } else {
  74       _oop_head = o;
  75     }
  76   }
  77   bool   is_empty() const       { return head() == NULL; }
  78   size_t length()               { return _len; }
  79   void   set_length(size_t len) { _len = len;  }
  80   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  81   void   dec_length(size_t dec) { _len -= dec; }
  82 private:
  83   // Set value depending on UseCompressedOops. This could be a template class
  84   // but then we have to fix all the instantiations and declarations that use this class.
  85   oop       _oop_head;
  86   narrowOop _compressed_head;
  87   size_t _len;
  88 };
  89 
  90 // Iterator for the list of discovered references.
  91 class DiscoveredListIterator {
  92 private:
  93   DiscoveredList&    _refs_list;
  94   HeapWord*          _prev_next;
  95   oop                _prev;
  96   oop                _ref;
  97   HeapWord*          _discovered_addr;
  98   oop                _next;
  99   HeapWord*          _referent_addr;
 100   oop                _referent;
 101   OopClosure*        _keep_alive;
 102   BoolObjectClosure* _is_alive;
 103 
 104   DEBUG_ONLY(
 105   oop                _first_seen; // cyclic linked list check
 106   )
 107 
 108   NOT_PRODUCT(
 109   size_t             _processed;
 110   size_t             _removed;
 111   )
 112 
 113 public:
 114   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 115                                 OopClosure*        keep_alive,
 116                                 BoolObjectClosure* is_alive):
 117     _refs_list(refs_list),
 118     _prev_next(refs_list.adr_head()),
 119     _prev(NULL),
 120     _ref(refs_list.head()),
 121 #ifdef ASSERT
 122     _first_seen(refs_list.head()),
 123 #endif
 124 #ifndef PRODUCT
 125     _processed(0),
 126     _removed(0),
 127 #endif
 128     _next(NULL),
 129     _keep_alive(keep_alive),
 130     _is_alive(is_alive)
 131 { }
 132 
 133   // End Of List.
 134   inline bool has_next() const { return _ref != NULL; }
 135 
 136   // Get oop to the Reference object.
 137   inline oop obj() const { return _ref; }
 138 
 139   // Get oop to the referent object.
 140   inline oop referent() const { return _referent; }
 141 
 142   // Returns true if referent is alive.
 143   inline bool is_referent_alive() const {
 144     return _is_alive->do_object_b(_referent);
 145   }
 146 
 147   // Loads data for the current reference.
 148   // The "allow_null_referent" argument tells us to allow for the possibility
 149   // of a NULL referent in the discovered Reference object. This typically
 150   // happens in the case of concurrent collectors that may have done the
 151   // discovery concurrently, or interleaved, with mutator execution.
 152   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 153 
 154   // Move to the next discovered reference.
 155   inline void next() {
 156     _prev_next = _discovered_addr;
 157     _prev = _ref;
 158     move_to_next();
 159   }
 160 
 161   // Remove the current reference from the list
 162   void remove();
 163 
 164   // Make the Reference object active again.
 165   void make_active();
 166 
 167   // Make the referent alive.
 168   inline void make_referent_alive() {
 169     if (UseCompressedOops) {
 170       _keep_alive->do_oop((narrowOop*)_referent_addr);
 171     } else {
 172       _keep_alive->do_oop((oop*)_referent_addr);
 173     }
 174   }
 175 
 176   // NULL out referent pointer.
 177   void clear_referent();
 178 
 179   // Statistics
 180   NOT_PRODUCT(
 181   inline size_t processed() const { return _processed; }
 182   inline size_t removed() const   { return _removed; }
 183   )
 184 
 185   inline void move_to_next() {
 186     if (_ref == _next) {
 187       // End of the list.
 188       _ref = NULL;
 189     } else {
 190       _ref = _next;
 191     }
 192     assert(_ref != _first_seen, "cyclic ref_list found");
 193     NOT_PRODUCT(_processed++);
 194   }
 195 };
 196 
 197 class ReferenceProcessor : public CHeapObj<mtGC> {
 198 
 199  private:
 200   size_t total_count(DiscoveredList lists[]);
 201 
 202  protected:
 203   // Compatibility with pre-4965777 JDK's
 204   static bool _pending_list_uses_discovered_field;
 205 
 206   // The SoftReference master timestamp clock
 207   static jlong _soft_ref_timestamp_clock;
 208 
 209   MemRegion   _span;                    // (right-open) interval of heap
 210                                         // subject to wkref discovery
 211 
 212   bool        _discovering_refs;        // true when discovery enabled
 213   bool        _discovery_is_atomic;     // if discovery is atomic wrt
 214                                         // other collectors in configuration
 215   bool        _discovery_is_mt;         // true if reference discovery is MT.
 216 
 217   bool        _enqueuing_is_done;       // true if all weak references enqueued
 218   bool        _processing_is_mt;        // true during phases when
 219                                         // reference processing is MT.
 220   uint        _next_id;                 // round-robin mod _num_q counter in
 221                                         // support of work distribution
 222 
 223   // For collectors that do not keep GC liveness information
 224   // in the object header, this field holds a closure that
 225   // helps the reference processor determine the reachability
 226   // of an oop. It is currently initialized to NULL for all
 227   // collectors except for CMS and G1.
 228   BoolObjectClosure* _is_alive_non_header;
 229 
 230   // Soft ref clearing policies
 231   // . the default policy
 232   static ReferencePolicy*   _default_soft_ref_policy;
 233   // . the "clear all" policy
 234   static ReferencePolicy*   _always_clear_soft_ref_policy;
 235   // . the current policy below is either one of the above
 236   ReferencePolicy*          _current_soft_ref_policy;
 237 
 238   // The discovered ref lists themselves
 239 
 240   // The active MT'ness degree of the queues below
 241   uint             _num_q;
 242   // The maximum MT'ness degree of the queues below
 243   uint             _max_num_q;
 244 
 245   // Master array of discovered oops
 246   DiscoveredList* _discovered_refs;
 247 
 248   // Arrays of lists of oops, one per thread (pointers into master array above)
 249   DiscoveredList* _discoveredSoftRefs;
 250   DiscoveredList* _discoveredWeakRefs;
 251   DiscoveredList* _discoveredFinalRefs;
 252   DiscoveredList* _discoveredPhantomRefs;
 253   DiscoveredList* _discoveredCleanerRefs;
 254 
 255  public:
 256   static int number_of_subclasses_of_ref() { return (REF_CLEANER - REF_OTHER); }
 257 
 258   uint num_q()                             { return _num_q; }
 259   uint max_num_q()                         { return _max_num_q; }
 260   void set_active_mt_degree(uint v)        { _num_q = v; }
 261 
 262   DiscoveredList* discovered_refs()        { return _discovered_refs; }
 263 
 264   ReferencePolicy* setup_policy(bool always_clear) {
 265     _current_soft_ref_policy = always_clear ?
 266       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 267     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 268     return _current_soft_ref_policy;
 269   }
 270 
 271   // Process references with a certain reachability level.
 272   size_t process_discovered_reflist(DiscoveredList               refs_lists[],
 273                                     ReferencePolicy*             policy,
 274                                     bool                         clear_referent,
 275                                     BoolObjectClosure*           is_alive,
 276                                     OopClosure*                  keep_alive,
 277                                     VoidClosure*                 complete_gc,
 278                                     AbstractRefProcTaskExecutor* task_executor);
 279 
 280   void process_phaseJNI(BoolObjectClosure* is_alive,
 281                         OopClosure*        keep_alive,
 282                         VoidClosure*       complete_gc);
 283 
 284   // Work methods used by the method process_discovered_reflist
 285   // Phase1: keep alive all those referents that are otherwise
 286   // dead but which must be kept alive by policy (and their closure).
 287   void process_phase1(DiscoveredList&     refs_list,
 288                       ReferencePolicy*    policy,
 289                       BoolObjectClosure*  is_alive,
 290                       OopClosure*         keep_alive,
 291                       VoidClosure*        complete_gc);
 292   // Phase2: remove all those references whose referents are
 293   // reachable.
 294   inline void process_phase2(DiscoveredList&    refs_list,
 295                              BoolObjectClosure* is_alive,
 296                              OopClosure*        keep_alive,
 297                              VoidClosure*       complete_gc) {
 298     if (discovery_is_atomic()) {
 299       // complete_gc is ignored in this case for this phase
 300       pp2_work(refs_list, is_alive, keep_alive);
 301     } else {
 302       assert(complete_gc != NULL, "Error");
 303       pp2_work_concurrent_discovery(refs_list, is_alive,
 304                                     keep_alive, complete_gc);
 305     }
 306   }
 307   // Work methods in support of process_phase2
 308   void pp2_work(DiscoveredList&    refs_list,
 309                 BoolObjectClosure* is_alive,
 310                 OopClosure*        keep_alive);
 311   void pp2_work_concurrent_discovery(
 312                 DiscoveredList&    refs_list,
 313                 BoolObjectClosure* is_alive,
 314                 OopClosure*        keep_alive,
 315                 VoidClosure*       complete_gc);
 316   // Phase3: process the referents by either clearing them
 317   // or keeping them alive (and their closure)
 318   void process_phase3(DiscoveredList&    refs_list,
 319                       bool               clear_referent,
 320                       BoolObjectClosure* is_alive,
 321                       OopClosure*        keep_alive,
 322                       VoidClosure*       complete_gc);
 323 
 324   // Enqueue references with a certain reachability level
 325   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
 326 
 327   // "Preclean" all the discovered reference lists
 328   // by removing references with strongly reachable referents.
 329   // The first argument is a predicate on an oop that indicates
 330   // its (strong) reachability and the second is a closure that
 331   // may be used to incrementalize or abort the precleaning process.
 332   // The caller is responsible for taking care of potential
 333   // interference with concurrent operations on these lists
 334   // (or predicates involved) by other threads. Currently
 335   // only used by the CMS collector.
 336   void preclean_discovered_references(BoolObjectClosure* is_alive,
 337                                       OopClosure*        keep_alive,
 338                                       VoidClosure*       complete_gc,
 339                                       YieldClosure*      yield,
 340                                       GCTimer*           gc_timer,
 341                                       GCId               gc_id);
 342 
 343   // Returns the name of the discovered reference list
 344   // occupying the i / _num_q slot.
 345   const char* list_name(uint i);
 346 
 347   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
 348 
 349  protected:
 350   // "Preclean" the given discovered reference list
 351   // by removing references with strongly reachable referents.
 352   // Currently used in support of CMS only.
 353   void preclean_discovered_reflist(DiscoveredList&    refs_list,
 354                                    BoolObjectClosure* is_alive,
 355                                    OopClosure*        keep_alive,
 356                                    VoidClosure*       complete_gc,
 357                                    YieldClosure*      yield);
 358 
 359   // round-robin mod _num_q (not: _not_ mode _max_num_q)
 360   uint next_id() {
 361     uint id = _next_id;
 362     if (++_next_id == _num_q) {
 363       _next_id = 0;
 364     }
 365     return id;
 366   }
 367   DiscoveredList* get_discovered_list(ReferenceType rt);
 368   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
 369                                         HeapWord* discovered_addr);
 370   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
 371 
 372   void clear_discovered_references(DiscoveredList& refs_list);
 373   void abandon_partial_discovered_list(DiscoveredList& refs_list);
 374 
 375   // Calculate the number of jni handles.
 376   unsigned int count_jni_refs();
 377 
 378   // Balances reference queues.
 379   void balance_queues(DiscoveredList ref_lists[]);
 380 
 381   // Update (advance) the soft ref master clock field.
 382   void update_soft_ref_master_clock();
 383 
 384  public:
 385   // Default parameters give you a vanilla reference processor.
 386   ReferenceProcessor(MemRegion span,
 387                      bool mt_processing = false, uint mt_processing_degree = 1,
 388                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
 389                      bool atomic_discovery = true,
 390                      BoolObjectClosure* is_alive_non_header = NULL);
 391 
 392   // RefDiscoveryPolicy values
 393   enum DiscoveryPolicy {
 394     ReferenceBasedDiscovery = 0,
 395     ReferentBasedDiscovery  = 1,
 396     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
 397     DiscoveryPolicyMax      = ReferentBasedDiscovery
 398   };
 399 
 400   static void init_statics();
 401 
 402  public:
 403   // get and set "is_alive_non_header" field
 404   BoolObjectClosure* is_alive_non_header() {
 405     return _is_alive_non_header;
 406   }
 407   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
 408     _is_alive_non_header = is_alive_non_header;
 409   }
 410 
 411   // get and set span
 412   MemRegion span()                   { return _span; }
 413   void      set_span(MemRegion span) { _span = span; }
 414 
 415   // start and stop weak ref discovery
 416   void enable_discovery(bool check_no_refs = true);
 417   void disable_discovery()  { _discovering_refs = false; }
 418   bool discovery_enabled()  { return _discovering_refs;  }
 419 
 420   // whether discovery is atomic wrt other collectors
 421   bool discovery_is_atomic() const { return _discovery_is_atomic; }
 422   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
 423 
 424   // whether the JDK in which we are embedded is a pre-4965777 JDK,
 425   // and thus whether or not it uses the discovered field to chain
 426   // the entries in the pending list.
 427   static bool pending_list_uses_discovered_field() {
 428     return _pending_list_uses_discovered_field;
 429   }
 430 
 431   // whether discovery is done by multiple threads same-old-timeously
 432   bool discovery_is_mt() const { return _discovery_is_mt; }
 433   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
 434 
 435   // Whether we are in a phase when _processing_ is MT.
 436   bool processing_is_mt() const { return _processing_is_mt; }
 437   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
 438 
 439   // whether all enqueueing of weak references is complete
 440   bool enqueuing_is_done()  { return _enqueuing_is_done; }
 441   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
 442 
 443   // iterate over oops
 444   void weak_oops_do(OopClosure* f);       // weak roots
 445 
 446   // Balance each of the discovered lists.
 447   void balance_all_queues();
 448   void verify_list(DiscoveredList& ref_list);
 449 
 450   // Discover a Reference object, using appropriate discovery criteria
 451   bool discover_reference(oop obj, ReferenceType rt);
 452 
 453   // Process references found during GC (called by the garbage collector)
 454   ReferenceProcessorStats
 455   process_discovered_references(BoolObjectClosure*           is_alive,
 456                                 OopClosure*                  keep_alive,
 457                                 VoidClosure*                 complete_gc,
 458                                 AbstractRefProcTaskExecutor* task_executor,
 459                                 GCTimer *gc_timer,
 460                                 GCId    gc_id);
 461 
 462   // Enqueue references at end of GC (called by the garbage collector)
 463   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
 464 
 465   // If a discovery is in process that is being superceded, abandon it: all
 466   // the discovered lists will be empty, and all the objects on them will
 467   // have NULL discovered fields.  Must be called only at a safepoint.
 468   void abandon_partial_discovery();
 469 
 470   // debugging
 471   void verify_no_references_recorded() PRODUCT_RETURN;
 472   void verify_referent(oop obj)        PRODUCT_RETURN;
 473 
 474   // clear the discovered lists (unlinking each entry).
 475   void clear_discovered_references() PRODUCT_RETURN;
 476 };
 477 
 478 // A utility class to disable reference discovery in
 479 // the scope which contains it, for given ReferenceProcessor.
 480 class NoRefDiscovery: StackObj {
 481  private:
 482   ReferenceProcessor* _rp;
 483   bool _was_discovering_refs;
 484  public:
 485   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
 486     _was_discovering_refs = _rp->discovery_enabled();
 487     if (_was_discovering_refs) {
 488       _rp->disable_discovery();
 489     }
 490   }
 491 
 492   ~NoRefDiscovery() {
 493     if (_was_discovering_refs) {
 494       _rp->enable_discovery(false /*check_no_refs*/);
 495     }
 496   }
 497 };
 498 
 499 
 500 // A utility class to temporarily mutate the span of the
 501 // given ReferenceProcessor in the scope that contains it.
 502 class ReferenceProcessorSpanMutator: StackObj {
 503  private:
 504   ReferenceProcessor* _rp;
 505   MemRegion           _saved_span;
 506 
 507  public:
 508   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
 509                                 MemRegion span):
 510     _rp(rp) {
 511     _saved_span = _rp->span();
 512     _rp->set_span(span);
 513   }
 514 
 515   ~ReferenceProcessorSpanMutator() {
 516     _rp->set_span(_saved_span);
 517   }
 518 };
 519 
 520 // A utility class to temporarily change the MT'ness of
 521 // reference discovery for the given ReferenceProcessor
 522 // in the scope that contains it.
 523 class ReferenceProcessorMTDiscoveryMutator: StackObj {
 524  private:
 525   ReferenceProcessor* _rp;
 526   bool                _saved_mt;
 527 
 528  public:
 529   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
 530                                        bool mt):
 531     _rp(rp) {
 532     _saved_mt = _rp->discovery_is_mt();
 533     _rp->set_mt_discovery(mt);
 534   }
 535 
 536   ~ReferenceProcessorMTDiscoveryMutator() {
 537     _rp->set_mt_discovery(_saved_mt);
 538   }
 539 };
 540 
 541 
 542 // A utility class to temporarily change the disposition
 543 // of the "is_alive_non_header" closure field of the
 544 // given ReferenceProcessor in the scope that contains it.
 545 class ReferenceProcessorIsAliveMutator: StackObj {
 546  private:
 547   ReferenceProcessor* _rp;
 548   BoolObjectClosure*  _saved_cl;
 549 
 550  public:
 551   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
 552                                    BoolObjectClosure*  cl):
 553     _rp(rp) {
 554     _saved_cl = _rp->is_alive_non_header();
 555     _rp->set_is_alive_non_header(cl);
 556   }
 557 
 558   ~ReferenceProcessorIsAliveMutator() {
 559     _rp->set_is_alive_non_header(_saved_cl);
 560   }
 561 };
 562 
 563 // A utility class to temporarily change the disposition
 564 // of the "discovery_is_atomic" field of the
 565 // given ReferenceProcessor in the scope that contains it.
 566 class ReferenceProcessorAtomicMutator: StackObj {
 567  private:
 568   ReferenceProcessor* _rp;
 569   bool                _saved_atomic_discovery;
 570 
 571  public:
 572   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
 573                                   bool atomic):
 574     _rp(rp) {
 575     _saved_atomic_discovery = _rp->discovery_is_atomic();
 576     _rp->set_atomic_discovery(atomic);
 577   }
 578 
 579   ~ReferenceProcessorAtomicMutator() {
 580     _rp->set_atomic_discovery(_saved_atomic_discovery);
 581   }
 582 };
 583 
 584 
 585 // A utility class to temporarily change the MT processing
 586 // disposition of the given ReferenceProcessor instance
 587 // in the scope that contains it.
 588 class ReferenceProcessorMTProcMutator: StackObj {
 589  private:
 590   ReferenceProcessor* _rp;
 591   bool  _saved_mt;
 592 
 593  public:
 594   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
 595                                   bool mt):
 596     _rp(rp) {
 597     _saved_mt = _rp->processing_is_mt();
 598     _rp->set_mt_processing(mt);
 599   }
 600 
 601   ~ReferenceProcessorMTProcMutator() {
 602     _rp->set_mt_processing(_saved_mt);
 603   }
 604 };
 605 
 606 
 607 // This class is an interface used to implement task execution for the
 608 // reference processing.
 609 class AbstractRefProcTaskExecutor {
 610 public:
 611 
 612   // Abstract tasks to execute.
 613   class ProcessTask;
 614   class EnqueueTask;
 615 
 616   // Executes a task using worker threads.
 617   virtual void execute(ProcessTask& task) = 0;
 618   virtual void execute(EnqueueTask& task) = 0;
 619 
 620   // Switch to single threaded mode.
 621   virtual void set_single_threaded_mode() { };
 622 };
 623 
 624 // Abstract reference processing task to execute.
 625 class AbstractRefProcTaskExecutor::ProcessTask {
 626 protected:
 627   ProcessTask(ReferenceProcessor& ref_processor,
 628               DiscoveredList      refs_lists[],
 629               bool                marks_oops_alive)
 630     : _ref_processor(ref_processor),
 631       _refs_lists(refs_lists),
 632       _marks_oops_alive(marks_oops_alive)
 633   { }
 634 
 635 public:
 636   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
 637                     OopClosure& keep_alive,
 638                     VoidClosure& complete_gc) = 0;
 639 
 640   // Returns true if a task marks some oops as alive.
 641   bool marks_oops_alive() const
 642   { return _marks_oops_alive; }
 643 
 644 protected:
 645   ReferenceProcessor& _ref_processor;
 646   DiscoveredList*     _refs_lists;
 647   const bool          _marks_oops_alive;
 648 };
 649 
 650 // Abstract reference processing task to execute.
 651 class AbstractRefProcTaskExecutor::EnqueueTask {
 652 protected:
 653   EnqueueTask(ReferenceProcessor& ref_processor,
 654               DiscoveredList      refs_lists[],
 655               HeapWord*           pending_list_addr,
 656               int                 n_queues)
 657     : _ref_processor(ref_processor),
 658       _refs_lists(refs_lists),
 659       _pending_list_addr(pending_list_addr),
 660       _n_queues(n_queues)
 661   { }
 662 
 663 public:
 664   virtual void work(unsigned int work_id) = 0;
 665 
 666 protected:
 667   ReferenceProcessor& _ref_processor;
 668   DiscoveredList*     _refs_lists;
 669   HeapWord*           _pending_list_addr;
 670   int                 _n_queues;
 671 };
 672 
 673 #endif // SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP