1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1StringDedup.hpp"
  52 #include "gc_implementation/g1/g1YCTypes.hpp"
  53 #include "gc_implementation/g1/heapRegion.inline.hpp"
  54 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  55 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  56 #include "gc_implementation/g1/vm_operations_g1.hpp"
  57 #include "gc_implementation/shared/gcHeapSummary.hpp"
  58 #include "gc_implementation/shared/gcTimer.hpp"
  59 #include "gc_implementation/shared/gcTrace.hpp"
  60 #include "gc_implementation/shared/gcTraceTime.hpp"
  61 #include "gc_implementation/shared/isGCActiveMark.hpp"
  62 #include "memory/allocation.hpp"
  63 #include "memory/gcLocker.inline.hpp"
  64 #include "memory/generationSpec.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "memory/referenceProcessor.hpp"
  67 #include "oops/oop.inline.hpp"
  68 #include "oops/oop.pcgc.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 
  74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  75 
  76 // turn it on so that the contents of the young list (scan-only /
  77 // to-be-collected) are printed at "strategic" points before / during
  78 // / after the collection --- this is useful for debugging
  79 #define YOUNG_LIST_VERBOSE 0
  80 // CURRENT STATUS
  81 // This file is under construction.  Search for "FIXME".
  82 
  83 // INVARIANTS/NOTES
  84 //
  85 // All allocation activity covered by the G1CollectedHeap interface is
  86 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  87 // and allocate_new_tlab, which are the "entry" points to the
  88 // allocation code from the rest of the JVM.  (Note that this does not
  89 // apply to TLAB allocation, which is not part of this interface: it
  90 // is done by clients of this interface.)
  91 
  92 // Notes on implementation of parallelism in different tasks.
  93 //
  94 // G1ParVerifyTask uses heap_region_par_iterate() for parallelism.
  95 // The number of GC workers is passed to heap_region_par_iterate().
  96 // It does use run_task() which sets _n_workers in the task.
  97 // G1ParTask executes g1_process_roots() ->
  98 // SharedHeap::process_roots() which calls eventually to
  99 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
 100 // SequentialSubTasksDone.  SharedHeap::process_roots() also
 101 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
 102 //
 103 
 104 // Local to this file.
 105 
 106 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 107   bool _concurrent;
 108 public:
 109   RefineCardTableEntryClosure() : _concurrent(true) { }
 110 
 111   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 112     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 113     // This path is executed by the concurrent refine or mutator threads,
 114     // concurrently, and so we do not care if card_ptr contains references
 115     // that point into the collection set.
 116     assert(!oops_into_cset, "should be");
 117 
 118     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 119       // Caller will actually yield.
 120       return false;
 121     }
 122     // Otherwise, we finished successfully; return true.
 123     return true;
 124   }
 125 
 126   void set_concurrent(bool b) { _concurrent = b; }
 127 };
 128 
 129 
 130 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 131   size_t _num_processed;
 132   CardTableModRefBS* _ctbs;
 133   int _histo[256];
 134 
 135  public:
 136   ClearLoggedCardTableEntryClosure() :
 137     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
 138   {
 139     for (int i = 0; i < 256; i++) _histo[i] = 0;
 140   }
 141 
 142   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 143     unsigned char* ujb = (unsigned char*)card_ptr;
 144     int ind = (int)(*ujb);
 145     _histo[ind]++;
 146 
 147     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
 148     _num_processed++;
 149 
 150     return true;
 151   }
 152 
 153   size_t num_processed() { return _num_processed; }
 154 
 155   void print_histo() {
 156     gclog_or_tty->print_cr("Card table value histogram:");
 157     for (int i = 0; i < 256; i++) {
 158       if (_histo[i] != 0) {
 159         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 160       }
 161     }
 162   }
 163 };
 164 
 165 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 166  private:
 167   size_t _num_processed;
 168 
 169  public:
 170   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 171 
 172   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 173     *card_ptr = CardTableModRefBS::dirty_card_val();
 174     _num_processed++;
 175     return true;
 176   }
 177 
 178   size_t num_processed() const { return _num_processed; }
 179 };
 180 
 181 YoungList::YoungList(G1CollectedHeap* g1h) :
 182     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 183     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 184   guarantee(check_list_empty(false), "just making sure...");
 185 }
 186 
 187 void YoungList::push_region(HeapRegion *hr) {
 188   assert(!hr->is_young(), "should not already be young");
 189   assert(hr->get_next_young_region() == NULL, "cause it should!");
 190 
 191   hr->set_next_young_region(_head);
 192   _head = hr;
 193 
 194   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 195   ++_length;
 196 }
 197 
 198 void YoungList::add_survivor_region(HeapRegion* hr) {
 199   assert(hr->is_survivor(), "should be flagged as survivor region");
 200   assert(hr->get_next_young_region() == NULL, "cause it should!");
 201 
 202   hr->set_next_young_region(_survivor_head);
 203   if (_survivor_head == NULL) {
 204     _survivor_tail = hr;
 205   }
 206   _survivor_head = hr;
 207   ++_survivor_length;
 208 }
 209 
 210 void YoungList::empty_list(HeapRegion* list) {
 211   while (list != NULL) {
 212     HeapRegion* next = list->get_next_young_region();
 213     list->set_next_young_region(NULL);
 214     list->uninstall_surv_rate_group();
 215     // This is called before a Full GC and all the non-empty /
 216     // non-humongous regions at the end of the Full GC will end up as
 217     // old anyway.
 218     list->set_old();
 219     list = next;
 220   }
 221 }
 222 
 223 void YoungList::empty_list() {
 224   assert(check_list_well_formed(), "young list should be well formed");
 225 
 226   empty_list(_head);
 227   _head = NULL;
 228   _length = 0;
 229 
 230   empty_list(_survivor_head);
 231   _survivor_head = NULL;
 232   _survivor_tail = NULL;
 233   _survivor_length = 0;
 234 
 235   _last_sampled_rs_lengths = 0;
 236 
 237   assert(check_list_empty(false), "just making sure...");
 238 }
 239 
 240 bool YoungList::check_list_well_formed() {
 241   bool ret = true;
 242 
 243   uint length = 0;
 244   HeapRegion* curr = _head;
 245   HeapRegion* last = NULL;
 246   while (curr != NULL) {
 247     if (!curr->is_young()) {
 248       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 249                              "incorrectly tagged (y: %d, surv: %d)",
 250                              curr->bottom(), curr->end(),
 251                              curr->is_young(), curr->is_survivor());
 252       ret = false;
 253     }
 254     ++length;
 255     last = curr;
 256     curr = curr->get_next_young_region();
 257   }
 258   ret = ret && (length == _length);
 259 
 260   if (!ret) {
 261     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 262     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 263                            length, _length);
 264   }
 265 
 266   return ret;
 267 }
 268 
 269 bool YoungList::check_list_empty(bool check_sample) {
 270   bool ret = true;
 271 
 272   if (_length != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 274                   _length);
 275     ret = false;
 276   }
 277   if (check_sample && _last_sampled_rs_lengths != 0) {
 278     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 279     ret = false;
 280   }
 281   if (_head != NULL) {
 282     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 283     ret = false;
 284   }
 285   if (!ret) {
 286     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 287   }
 288 
 289   return ret;
 290 }
 291 
 292 void
 293 YoungList::rs_length_sampling_init() {
 294   _sampled_rs_lengths = 0;
 295   _curr               = _head;
 296 }
 297 
 298 bool
 299 YoungList::rs_length_sampling_more() {
 300   return _curr != NULL;
 301 }
 302 
 303 void
 304 YoungList::rs_length_sampling_next() {
 305   assert( _curr != NULL, "invariant" );
 306   size_t rs_length = _curr->rem_set()->occupied();
 307 
 308   _sampled_rs_lengths += rs_length;
 309 
 310   // The current region may not yet have been added to the
 311   // incremental collection set (it gets added when it is
 312   // retired as the current allocation region).
 313   if (_curr->in_collection_set()) {
 314     // Update the collection set policy information for this region
 315     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 316   }
 317 
 318   _curr = _curr->get_next_young_region();
 319   if (_curr == NULL) {
 320     _last_sampled_rs_lengths = _sampled_rs_lengths;
 321     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 322   }
 323 }
 324 
 325 void
 326 YoungList::reset_auxilary_lists() {
 327   guarantee( is_empty(), "young list should be empty" );
 328   assert(check_list_well_formed(), "young list should be well formed");
 329 
 330   // Add survivor regions to SurvRateGroup.
 331   _g1h->g1_policy()->note_start_adding_survivor_regions();
 332   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 333 
 334   int young_index_in_cset = 0;
 335   for (HeapRegion* curr = _survivor_head;
 336        curr != NULL;
 337        curr = curr->get_next_young_region()) {
 338     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 339 
 340     // The region is a non-empty survivor so let's add it to
 341     // the incremental collection set for the next evacuation
 342     // pause.
 343     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 344     young_index_in_cset += 1;
 345   }
 346   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 347   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 348 
 349   _head   = _survivor_head;
 350   _length = _survivor_length;
 351   if (_survivor_head != NULL) {
 352     assert(_survivor_tail != NULL, "cause it shouldn't be");
 353     assert(_survivor_length > 0, "invariant");
 354     _survivor_tail->set_next_young_region(NULL);
 355   }
 356 
 357   // Don't clear the survivor list handles until the start of
 358   // the next evacuation pause - we need it in order to re-tag
 359   // the survivor regions from this evacuation pause as 'young'
 360   // at the start of the next.
 361 
 362   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 363 
 364   assert(check_list_well_formed(), "young list should be well formed");
 365 }
 366 
 367 void YoungList::print() {
 368   HeapRegion* lists[] = {_head,   _survivor_head};
 369   const char* names[] = {"YOUNG", "SURVIVOR"};
 370 
 371   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 372     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 373     HeapRegion *curr = lists[list];
 374     if (curr == NULL)
 375       gclog_or_tty->print_cr("  empty");
 376     while (curr != NULL) {
 377       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 378                              HR_FORMAT_PARAMS(curr),
 379                              curr->prev_top_at_mark_start(),
 380                              curr->next_top_at_mark_start(),
 381                              curr->age_in_surv_rate_group_cond());
 382       curr = curr->get_next_young_region();
 383     }
 384   }
 385 
 386   gclog_or_tty->cr();
 387 }
 388 
 389 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 390   OtherRegionsTable::invalidate(start_idx, num_regions);
 391 }
 392 
 393 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 394   // The from card cache is not the memory that is actually committed. So we cannot
 395   // take advantage of the zero_filled parameter.
 396   reset_from_card_cache(start_idx, num_regions);
 397 }
 398 
 399 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 400 {
 401   // Claim the right to put the region on the dirty cards region list
 402   // by installing a self pointer.
 403   HeapRegion* next = hr->get_next_dirty_cards_region();
 404   if (next == NULL) {
 405     HeapRegion* res = (HeapRegion*)
 406       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 407                           NULL);
 408     if (res == NULL) {
 409       HeapRegion* head;
 410       do {
 411         // Put the region to the dirty cards region list.
 412         head = _dirty_cards_region_list;
 413         next = (HeapRegion*)
 414           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 415         if (next == head) {
 416           assert(hr->get_next_dirty_cards_region() == hr,
 417                  "hr->get_next_dirty_cards_region() != hr");
 418           if (next == NULL) {
 419             // The last region in the list points to itself.
 420             hr->set_next_dirty_cards_region(hr);
 421           } else {
 422             hr->set_next_dirty_cards_region(next);
 423           }
 424         }
 425       } while (next != head);
 426     }
 427   }
 428 }
 429 
 430 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 431 {
 432   HeapRegion* head;
 433   HeapRegion* hr;
 434   do {
 435     head = _dirty_cards_region_list;
 436     if (head == NULL) {
 437       return NULL;
 438     }
 439     HeapRegion* new_head = head->get_next_dirty_cards_region();
 440     if (head == new_head) {
 441       // The last region.
 442       new_head = NULL;
 443     }
 444     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 445                                           head);
 446   } while (hr != head);
 447   assert(hr != NULL, "invariant");
 448   hr->set_next_dirty_cards_region(NULL);
 449   return hr;
 450 }
 451 
 452 #ifdef ASSERT
 453 // A region is added to the collection set as it is retired
 454 // so an address p can point to a region which will be in the
 455 // collection set but has not yet been retired.  This method
 456 // therefore is only accurate during a GC pause after all
 457 // regions have been retired.  It is used for debugging
 458 // to check if an nmethod has references to objects that can
 459 // be move during a partial collection.  Though it can be
 460 // inaccurate, it is sufficient for G1 because the conservative
 461 // implementation of is_scavengable() for G1 will indicate that
 462 // all nmethods must be scanned during a partial collection.
 463 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 464   if (p == NULL) {
 465     return false;
 466   }
 467   return heap_region_containing(p)->in_collection_set();
 468 }
 469 #endif
 470 
 471 // Returns true if the reference points to an object that
 472 // can move in an incremental collection.
 473 bool G1CollectedHeap::is_scavengable(const void* p) {
 474   HeapRegion* hr = heap_region_containing(p);
 475   return !hr->is_humongous();
 476 }
 477 
 478 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 479   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 480   CardTableModRefBS* ct_bs = g1_barrier_set();
 481 
 482   // Count the dirty cards at the start.
 483   CountNonCleanMemRegionClosure count1(this);
 484   ct_bs->mod_card_iterate(&count1);
 485   int orig_count = count1.n();
 486 
 487   // First clear the logged cards.
 488   ClearLoggedCardTableEntryClosure clear;
 489   dcqs.apply_closure_to_all_completed_buffers(&clear);
 490   dcqs.iterate_closure_all_threads(&clear, false);
 491   clear.print_histo();
 492 
 493   // Now ensure that there's no dirty cards.
 494   CountNonCleanMemRegionClosure count2(this);
 495   ct_bs->mod_card_iterate(&count2);
 496   if (count2.n() != 0) {
 497     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 498                            count2.n(), orig_count);
 499   }
 500   guarantee(count2.n() == 0, "Card table should be clean.");
 501 
 502   RedirtyLoggedCardTableEntryClosure redirty;
 503   dcqs.apply_closure_to_all_completed_buffers(&redirty);
 504   dcqs.iterate_closure_all_threads(&redirty, false);
 505   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 506                          clear.num_processed(), orig_count);
 507   guarantee(redirty.num_processed() == clear.num_processed(),
 508             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
 509                     redirty.num_processed(), clear.num_processed()));
 510 
 511   CountNonCleanMemRegionClosure count3(this);
 512   ct_bs->mod_card_iterate(&count3);
 513   if (count3.n() != orig_count) {
 514     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 515                            orig_count, count3.n());
 516     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 517   }
 518 }
 519 
 520 // Private class members.
 521 
 522 G1CollectedHeap* G1CollectedHeap::_g1h;
 523 
 524 // Private methods.
 525 
 526 HeapRegion*
 527 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 528   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 529   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 530     if (!_secondary_free_list.is_empty()) {
 531       if (G1ConcRegionFreeingVerbose) {
 532         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 533                                "secondary_free_list has %u entries",
 534                                _secondary_free_list.length());
 535       }
 536       // It looks as if there are free regions available on the
 537       // secondary_free_list. Let's move them to the free_list and try
 538       // again to allocate from it.
 539       append_secondary_free_list();
 540 
 541       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 542              "empty we should have moved at least one entry to the free_list");
 543       HeapRegion* res = _hrm.allocate_free_region(is_old);
 544       if (G1ConcRegionFreeingVerbose) {
 545         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 546                                "allocated "HR_FORMAT" from secondary_free_list",
 547                                HR_FORMAT_PARAMS(res));
 548       }
 549       return res;
 550     }
 551 
 552     // Wait here until we get notified either when (a) there are no
 553     // more free regions coming or (b) some regions have been moved on
 554     // the secondary_free_list.
 555     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 556   }
 557 
 558   if (G1ConcRegionFreeingVerbose) {
 559     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 560                            "could not allocate from secondary_free_list");
 561   }
 562   return NULL;
 563 }
 564 
 565 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 566   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 567          "the only time we use this to allocate a humongous region is "
 568          "when we are allocating a single humongous region");
 569 
 570   HeapRegion* res;
 571   if (G1StressConcRegionFreeing) {
 572     if (!_secondary_free_list.is_empty()) {
 573       if (G1ConcRegionFreeingVerbose) {
 574         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 575                                "forced to look at the secondary_free_list");
 576       }
 577       res = new_region_try_secondary_free_list(is_old);
 578       if (res != NULL) {
 579         return res;
 580       }
 581     }
 582   }
 583 
 584   res = _hrm.allocate_free_region(is_old);
 585 
 586   if (res == NULL) {
 587     if (G1ConcRegionFreeingVerbose) {
 588       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 589                              "res == NULL, trying the secondary_free_list");
 590     }
 591     res = new_region_try_secondary_free_list(is_old);
 592   }
 593   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 594     // Currently, only attempts to allocate GC alloc regions set
 595     // do_expand to true. So, we should only reach here during a
 596     // safepoint. If this assumption changes we might have to
 597     // reconsider the use of _expand_heap_after_alloc_failure.
 598     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 599 
 600     ergo_verbose1(ErgoHeapSizing,
 601                   "attempt heap expansion",
 602                   ergo_format_reason("region allocation request failed")
 603                   ergo_format_byte("allocation request"),
 604                   word_size * HeapWordSize);
 605     if (expand(word_size * HeapWordSize)) {
 606       // Given that expand() succeeded in expanding the heap, and we
 607       // always expand the heap by an amount aligned to the heap
 608       // region size, the free list should in theory not be empty.
 609       // In either case allocate_free_region() will check for NULL.
 610       res = _hrm.allocate_free_region(is_old);
 611     } else {
 612       _expand_heap_after_alloc_failure = false;
 613     }
 614   }
 615   return res;
 616 }
 617 
 618 HeapWord*
 619 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 620                                                            uint num_regions,
 621                                                            size_t word_size,
 622                                                            AllocationContext_t context) {
 623   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 624   assert(is_humongous(word_size), "word_size should be humongous");
 625   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 626 
 627   // Index of last region in the series + 1.
 628   uint last = first + num_regions;
 629 
 630   // We need to initialize the region(s) we just discovered. This is
 631   // a bit tricky given that it can happen concurrently with
 632   // refinement threads refining cards on these regions and
 633   // potentially wanting to refine the BOT as they are scanning
 634   // those cards (this can happen shortly after a cleanup; see CR
 635   // 6991377). So we have to set up the region(s) carefully and in
 636   // a specific order.
 637 
 638   // The word size sum of all the regions we will allocate.
 639   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 640   assert(word_size <= word_size_sum, "sanity");
 641 
 642   // This will be the "starts humongous" region.
 643   HeapRegion* first_hr = region_at(first);
 644   // The header of the new object will be placed at the bottom of
 645   // the first region.
 646   HeapWord* new_obj = first_hr->bottom();
 647   // This will be the new end of the first region in the series that
 648   // should also match the end of the last region in the series.
 649   HeapWord* new_end = new_obj + word_size_sum;
 650   // This will be the new top of the first region that will reflect
 651   // this allocation.
 652   HeapWord* new_top = new_obj + word_size;
 653 
 654   // First, we need to zero the header of the space that we will be
 655   // allocating. When we update top further down, some refinement
 656   // threads might try to scan the region. By zeroing the header we
 657   // ensure that any thread that will try to scan the region will
 658   // come across the zero klass word and bail out.
 659   //
 660   // NOTE: It would not have been correct to have used
 661   // CollectedHeap::fill_with_object() and make the space look like
 662   // an int array. The thread that is doing the allocation will
 663   // later update the object header to a potentially different array
 664   // type and, for a very short period of time, the klass and length
 665   // fields will be inconsistent. This could cause a refinement
 666   // thread to calculate the object size incorrectly.
 667   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 668 
 669   // We will set up the first region as "starts humongous". This
 670   // will also update the BOT covering all the regions to reflect
 671   // that there is a single object that starts at the bottom of the
 672   // first region.
 673   first_hr->set_starts_humongous(new_top, new_end);
 674   first_hr->set_allocation_context(context);
 675   // Then, if there are any, we will set up the "continues
 676   // humongous" regions.
 677   HeapRegion* hr = NULL;
 678   for (uint i = first + 1; i < last; ++i) {
 679     hr = region_at(i);
 680     hr->set_continues_humongous(first_hr);
 681     hr->set_allocation_context(context);
 682   }
 683   // If we have "continues humongous" regions (hr != NULL), then the
 684   // end of the last one should match new_end.
 685   assert(hr == NULL || hr->end() == new_end, "sanity");
 686 
 687   // Up to this point no concurrent thread would have been able to
 688   // do any scanning on any region in this series. All the top
 689   // fields still point to bottom, so the intersection between
 690   // [bottom,top] and [card_start,card_end] will be empty. Before we
 691   // update the top fields, we'll do a storestore to make sure that
 692   // no thread sees the update to top before the zeroing of the
 693   // object header and the BOT initialization.
 694   OrderAccess::storestore();
 695 
 696   // Now that the BOT and the object header have been initialized,
 697   // we can update top of the "starts humongous" region.
 698   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 699          "new_top should be in this region");
 700   first_hr->set_top(new_top);
 701   if (_hr_printer.is_active()) {
 702     HeapWord* bottom = first_hr->bottom();
 703     HeapWord* end = first_hr->orig_end();
 704     if ((first + 1) == last) {
 705       // the series has a single humongous region
 706       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 707     } else {
 708       // the series has more than one humongous regions
 709       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 710     }
 711   }
 712 
 713   // Now, we will update the top fields of the "continues humongous"
 714   // regions. The reason we need to do this is that, otherwise,
 715   // these regions would look empty and this will confuse parts of
 716   // G1. For example, the code that looks for a consecutive number
 717   // of empty regions will consider them empty and try to
 718   // re-allocate them. We can extend is_empty() to also include
 719   // !is_continues_humongous(), but it is easier to just update the top
 720   // fields here. The way we set top for all regions (i.e., top ==
 721   // end for all regions but the last one, top == new_top for the
 722   // last one) is actually used when we will free up the humongous
 723   // region in free_humongous_region().
 724   hr = NULL;
 725   for (uint i = first + 1; i < last; ++i) {
 726     hr = region_at(i);
 727     if ((i + 1) == last) {
 728       // last continues humongous region
 729       assert(hr->bottom() < new_top && new_top <= hr->end(),
 730              "new_top should fall on this region");
 731       hr->set_top(new_top);
 732       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 733     } else {
 734       // not last one
 735       assert(new_top > hr->end(), "new_top should be above this region");
 736       hr->set_top(hr->end());
 737       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 738     }
 739   }
 740   // If we have continues humongous regions (hr != NULL), then the
 741   // end of the last one should match new_end and its top should
 742   // match new_top.
 743   assert(hr == NULL ||
 744          (hr->end() == new_end && hr->top() == new_top), "sanity");
 745   check_bitmaps("Humongous Region Allocation", first_hr);
 746 
 747   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 748   _allocator->increase_used(first_hr->used());
 749   _humongous_set.add(first_hr);
 750 
 751   return new_obj;
 752 }
 753 
 754 // If could fit into free regions w/o expansion, try.
 755 // Otherwise, if can expand, do so.
 756 // Otherwise, if using ex regions might help, try with ex given back.
 757 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 758   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 759 
 760   verify_region_sets_optional();
 761 
 762   uint first = G1_NO_HRM_INDEX;
 763   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 764 
 765   if (obj_regions == 1) {
 766     // Only one region to allocate, try to use a fast path by directly allocating
 767     // from the free lists. Do not try to expand here, we will potentially do that
 768     // later.
 769     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 770     if (hr != NULL) {
 771       first = hr->hrm_index();
 772     }
 773   } else {
 774     // We can't allocate humongous regions spanning more than one region while
 775     // cleanupComplete() is running, since some of the regions we find to be
 776     // empty might not yet be added to the free list. It is not straightforward
 777     // to know in which list they are on so that we can remove them. We only
 778     // need to do this if we need to allocate more than one region to satisfy the
 779     // current humongous allocation request. If we are only allocating one region
 780     // we use the one-region region allocation code (see above), that already
 781     // potentially waits for regions from the secondary free list.
 782     wait_while_free_regions_coming();
 783     append_secondary_free_list_if_not_empty_with_lock();
 784 
 785     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 786     // are lucky enough to find some.
 787     first = _hrm.find_contiguous_only_empty(obj_regions);
 788     if (first != G1_NO_HRM_INDEX) {
 789       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 790     }
 791   }
 792 
 793   if (first == G1_NO_HRM_INDEX) {
 794     // Policy: We could not find enough regions for the humongous object in the
 795     // free list. Look through the heap to find a mix of free and uncommitted regions.
 796     // If so, try expansion.
 797     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 798     if (first != G1_NO_HRM_INDEX) {
 799       // We found something. Make sure these regions are committed, i.e. expand
 800       // the heap. Alternatively we could do a defragmentation GC.
 801       ergo_verbose1(ErgoHeapSizing,
 802                     "attempt heap expansion",
 803                     ergo_format_reason("humongous allocation request failed")
 804                     ergo_format_byte("allocation request"),
 805                     word_size * HeapWordSize);
 806 
 807       _hrm.expand_at(first, obj_regions);
 808       g1_policy()->record_new_heap_size(num_regions());
 809 
 810 #ifdef ASSERT
 811       for (uint i = first; i < first + obj_regions; ++i) {
 812         HeapRegion* hr = region_at(i);
 813         assert(hr->is_free(), "sanity");
 814         assert(hr->is_empty(), "sanity");
 815         assert(is_on_master_free_list(hr), "sanity");
 816       }
 817 #endif
 818       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 819     } else {
 820       // Policy: Potentially trigger a defragmentation GC.
 821     }
 822   }
 823 
 824   HeapWord* result = NULL;
 825   if (first != G1_NO_HRM_INDEX) {
 826     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 827                                                        word_size, context);
 828     assert(result != NULL, "it should always return a valid result");
 829 
 830     // A successful humongous object allocation changes the used space
 831     // information of the old generation so we need to recalculate the
 832     // sizes and update the jstat counters here.
 833     g1mm()->update_sizes();
 834   }
 835 
 836   verify_region_sets_optional();
 837 
 838   return result;
 839 }
 840 
 841 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 842   assert_heap_not_locked_and_not_at_safepoint();
 843   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 844 
 845   unsigned int dummy_gc_count_before;
 846   int dummy_gclocker_retry_count = 0;
 847   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 848 }
 849 
 850 HeapWord*
 851 G1CollectedHeap::mem_allocate(size_t word_size,
 852                               bool*  gc_overhead_limit_was_exceeded) {
 853   assert_heap_not_locked_and_not_at_safepoint();
 854 
 855   // Loop until the allocation is satisfied, or unsatisfied after GC.
 856   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 857     unsigned int gc_count_before;
 858 
 859     HeapWord* result = NULL;
 860     if (!is_humongous(word_size)) {
 861       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 862     } else {
 863       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 864     }
 865     if (result != NULL) {
 866       return result;
 867     }
 868 
 869     // Create the garbage collection operation...
 870     VM_G1CollectForAllocation op(gc_count_before, word_size);
 871     op.set_allocation_context(AllocationContext::current());
 872 
 873     // ...and get the VM thread to execute it.
 874     VMThread::execute(&op);
 875 
 876     if (op.prologue_succeeded() && op.pause_succeeded()) {
 877       // If the operation was successful we'll return the result even
 878       // if it is NULL. If the allocation attempt failed immediately
 879       // after a Full GC, it's unlikely we'll be able to allocate now.
 880       HeapWord* result = op.result();
 881       if (result != NULL && !is_humongous(word_size)) {
 882         // Allocations that take place on VM operations do not do any
 883         // card dirtying and we have to do it here. We only have to do
 884         // this for non-humongous allocations, though.
 885         dirty_young_block(result, word_size);
 886       }
 887       return result;
 888     } else {
 889       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 890         return NULL;
 891       }
 892       assert(op.result() == NULL,
 893              "the result should be NULL if the VM op did not succeed");
 894     }
 895 
 896     // Give a warning if we seem to be looping forever.
 897     if ((QueuedAllocationWarningCount > 0) &&
 898         (try_count % QueuedAllocationWarningCount == 0)) {
 899       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 900     }
 901   }
 902 
 903   ShouldNotReachHere();
 904   return NULL;
 905 }
 906 
 907 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 908                                                    AllocationContext_t context,
 909                                                    unsigned int *gc_count_before_ret,
 910                                                    int* gclocker_retry_count_ret) {
 911   // Make sure you read the note in attempt_allocation_humongous().
 912 
 913   assert_heap_not_locked_and_not_at_safepoint();
 914   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 915          "be called for humongous allocation requests");
 916 
 917   // We should only get here after the first-level allocation attempt
 918   // (attempt_allocation()) failed to allocate.
 919 
 920   // We will loop until a) we manage to successfully perform the
 921   // allocation or b) we successfully schedule a collection which
 922   // fails to perform the allocation. b) is the only case when we'll
 923   // return NULL.
 924   HeapWord* result = NULL;
 925   for (int try_count = 1; /* we'll return */; try_count += 1) {
 926     bool should_try_gc;
 927     unsigned int gc_count_before;
 928 
 929     {
 930       MutexLockerEx x(Heap_lock);
 931       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 932                                                                                     false /* bot_updates */);
 933       if (result != NULL) {
 934         return result;
 935       }
 936 
 937       // If we reach here, attempt_allocation_locked() above failed to
 938       // allocate a new region. So the mutator alloc region should be NULL.
 939       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 940 
 941       if (GC_locker::is_active_and_needs_gc()) {
 942         if (g1_policy()->can_expand_young_list()) {
 943           // No need for an ergo verbose message here,
 944           // can_expand_young_list() does this when it returns true.
 945           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 946                                                                                        false /* bot_updates */);
 947           if (result != NULL) {
 948             return result;
 949           }
 950         }
 951         should_try_gc = false;
 952       } else {
 953         // The GCLocker may not be active but the GCLocker initiated
 954         // GC may not yet have been performed (GCLocker::needs_gc()
 955         // returns true). In this case we do not try this GC and
 956         // wait until the GCLocker initiated GC is performed, and
 957         // then retry the allocation.
 958         if (GC_locker::needs_gc()) {
 959           should_try_gc = false;
 960         } else {
 961           // Read the GC count while still holding the Heap_lock.
 962           gc_count_before = total_collections();
 963           should_try_gc = true;
 964         }
 965       }
 966     }
 967 
 968     if (should_try_gc) {
 969       bool succeeded;
 970       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 971           GCCause::_g1_inc_collection_pause);
 972       if (result != NULL) {
 973         assert(succeeded, "only way to get back a non-NULL result");
 974         return result;
 975       }
 976 
 977       if (succeeded) {
 978         // If we get here we successfully scheduled a collection which
 979         // failed to allocate. No point in trying to allocate
 980         // further. We'll just return NULL.
 981         MutexLockerEx x(Heap_lock);
 982         *gc_count_before_ret = total_collections();
 983         return NULL;
 984       }
 985     } else {
 986       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 987         MutexLockerEx x(Heap_lock);
 988         *gc_count_before_ret = total_collections();
 989         return NULL;
 990       }
 991       // The GCLocker is either active or the GCLocker initiated
 992       // GC has not yet been performed. Stall until it is and
 993       // then retry the allocation.
 994       GC_locker::stall_until_clear();
 995       (*gclocker_retry_count_ret) += 1;
 996     }
 997 
 998     // We can reach here if we were unsuccessful in scheduling a
 999     // collection (because another thread beat us to it) or if we were
1000     // stalled due to the GC locker. In either can we should retry the
1001     // allocation attempt in case another thread successfully
1002     // performed a collection and reclaimed enough space. We do the
1003     // first attempt (without holding the Heap_lock) here and the
1004     // follow-on attempt will be at the start of the next loop
1005     // iteration (after taking the Heap_lock).
1006     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
1007                                                                            false /* bot_updates */);
1008     if (result != NULL) {
1009       return result;
1010     }
1011 
1012     // Give a warning if we seem to be looping forever.
1013     if ((QueuedAllocationWarningCount > 0) &&
1014         (try_count % QueuedAllocationWarningCount == 0)) {
1015       warning("G1CollectedHeap::attempt_allocation_slow() "
1016               "retries %d times", try_count);
1017     }
1018   }
1019 
1020   ShouldNotReachHere();
1021   return NULL;
1022 }
1023 
1024 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1025                                                         unsigned int * gc_count_before_ret,
1026                                                         int* gclocker_retry_count_ret) {
1027   // The structure of this method has a lot of similarities to
1028   // attempt_allocation_slow(). The reason these two were not merged
1029   // into a single one is that such a method would require several "if
1030   // allocation is not humongous do this, otherwise do that"
1031   // conditional paths which would obscure its flow. In fact, an early
1032   // version of this code did use a unified method which was harder to
1033   // follow and, as a result, it had subtle bugs that were hard to
1034   // track down. So keeping these two methods separate allows each to
1035   // be more readable. It will be good to keep these two in sync as
1036   // much as possible.
1037 
1038   assert_heap_not_locked_and_not_at_safepoint();
1039   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1040          "should only be called for humongous allocations");
1041 
1042   // Humongous objects can exhaust the heap quickly, so we should check if we
1043   // need to start a marking cycle at each humongous object allocation. We do
1044   // the check before we do the actual allocation. The reason for doing it
1045   // before the allocation is that we avoid having to keep track of the newly
1046   // allocated memory while we do a GC.
1047   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1048                                            word_size)) {
1049     collect(GCCause::_g1_humongous_allocation);
1050   }
1051 
1052   // We will loop until a) we manage to successfully perform the
1053   // allocation or b) we successfully schedule a collection which
1054   // fails to perform the allocation. b) is the only case when we'll
1055   // return NULL.
1056   HeapWord* result = NULL;
1057   for (int try_count = 1; /* we'll return */; try_count += 1) {
1058     bool should_try_gc;
1059     unsigned int gc_count_before;
1060 
1061     {
1062       MutexLockerEx x(Heap_lock);
1063 
1064       // Given that humongous objects are not allocated in young
1065       // regions, we'll first try to do the allocation without doing a
1066       // collection hoping that there's enough space in the heap.
1067       result = humongous_obj_allocate(word_size, AllocationContext::current());
1068       if (result != NULL) {
1069         return result;
1070       }
1071 
1072       if (GC_locker::is_active_and_needs_gc()) {
1073         should_try_gc = false;
1074       } else {
1075          // The GCLocker may not be active but the GCLocker initiated
1076         // GC may not yet have been performed (GCLocker::needs_gc()
1077         // returns true). In this case we do not try this GC and
1078         // wait until the GCLocker initiated GC is performed, and
1079         // then retry the allocation.
1080         if (GC_locker::needs_gc()) {
1081           should_try_gc = false;
1082         } else {
1083           // Read the GC count while still holding the Heap_lock.
1084           gc_count_before = total_collections();
1085           should_try_gc = true;
1086         }
1087       }
1088     }
1089 
1090     if (should_try_gc) {
1091       // If we failed to allocate the humongous object, we should try to
1092       // do a collection pause (if we're allowed) in case it reclaims
1093       // enough space for the allocation to succeed after the pause.
1094 
1095       bool succeeded;
1096       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1097           GCCause::_g1_humongous_allocation);
1098       if (result != NULL) {
1099         assert(succeeded, "only way to get back a non-NULL result");
1100         return result;
1101       }
1102 
1103       if (succeeded) {
1104         // If we get here we successfully scheduled a collection which
1105         // failed to allocate. No point in trying to allocate
1106         // further. We'll just return NULL.
1107         MutexLockerEx x(Heap_lock);
1108         *gc_count_before_ret = total_collections();
1109         return NULL;
1110       }
1111     } else {
1112       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1113         MutexLockerEx x(Heap_lock);
1114         *gc_count_before_ret = total_collections();
1115         return NULL;
1116       }
1117       // The GCLocker is either active or the GCLocker initiated
1118       // GC has not yet been performed. Stall until it is and
1119       // then retry the allocation.
1120       GC_locker::stall_until_clear();
1121       (*gclocker_retry_count_ret) += 1;
1122     }
1123 
1124     // We can reach here if we were unsuccessful in scheduling a
1125     // collection (because another thread beat us to it) or if we were
1126     // stalled due to the GC locker. In either can we should retry the
1127     // allocation attempt in case another thread successfully
1128     // performed a collection and reclaimed enough space.  Give a
1129     // warning if we seem to be looping forever.
1130 
1131     if ((QueuedAllocationWarningCount > 0) &&
1132         (try_count % QueuedAllocationWarningCount == 0)) {
1133       warning("G1CollectedHeap::attempt_allocation_humongous() "
1134               "retries %d times", try_count);
1135     }
1136   }
1137 
1138   ShouldNotReachHere();
1139   return NULL;
1140 }
1141 
1142 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1143                                                            AllocationContext_t context,
1144                                                            bool expect_null_mutator_alloc_region) {
1145   assert_at_safepoint(true /* should_be_vm_thread */);
1146   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1147                                              !expect_null_mutator_alloc_region,
1148          "the current alloc region was unexpectedly found to be non-NULL");
1149 
1150   if (!is_humongous(word_size)) {
1151     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1152                                                       false /* bot_updates */);
1153   } else {
1154     HeapWord* result = humongous_obj_allocate(word_size, context);
1155     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1156       g1_policy()->set_initiate_conc_mark_if_possible();
1157     }
1158     return result;
1159   }
1160 
1161   ShouldNotReachHere();
1162 }
1163 
1164 class PostMCRemSetClearClosure: public HeapRegionClosure {
1165   G1CollectedHeap* _g1h;
1166   ModRefBarrierSet* _mr_bs;
1167 public:
1168   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1169     _g1h(g1h), _mr_bs(mr_bs) {}
1170 
1171   bool doHeapRegion(HeapRegion* r) {
1172     HeapRegionRemSet* hrrs = r->rem_set();
1173 
1174     if (r->is_continues_humongous()) {
1175       // We'll assert that the strong code root list and RSet is empty
1176       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1177       assert(hrrs->occupied() == 0, "RSet should be empty");
1178       return false;
1179     }
1180 
1181     _g1h->reset_gc_time_stamps(r);
1182     hrrs->clear();
1183     // You might think here that we could clear just the cards
1184     // corresponding to the used region.  But no: if we leave a dirty card
1185     // in a region we might allocate into, then it would prevent that card
1186     // from being enqueued, and cause it to be missed.
1187     // Re: the performance cost: we shouldn't be doing full GC anyway!
1188     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1189 
1190     return false;
1191   }
1192 };
1193 
1194 void G1CollectedHeap::clear_rsets_post_compaction() {
1195   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1196   heap_region_iterate(&rs_clear);
1197 }
1198 
1199 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1200   G1CollectedHeap*   _g1h;
1201   UpdateRSOopClosure _cl;
1202   int                _worker_i;
1203 public:
1204   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1205     _cl(g1->g1_rem_set(), worker_i),
1206     _worker_i(worker_i),
1207     _g1h(g1)
1208   { }
1209 
1210   bool doHeapRegion(HeapRegion* r) {
1211     if (!r->is_continues_humongous()) {
1212       _cl.set_from(r);
1213       r->oop_iterate(&_cl);
1214     }
1215     return false;
1216   }
1217 };
1218 
1219 class ParRebuildRSTask: public AbstractGangTask {
1220   G1CollectedHeap* _g1;
1221   HeapRegionClaimer _hrclaimer;
1222 
1223 public:
1224   ParRebuildRSTask(G1CollectedHeap* g1) :
1225       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1226 
1227   void work(uint worker_id) {
1228     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1229     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1230   }
1231 };
1232 
1233 class PostCompactionPrinterClosure: public HeapRegionClosure {
1234 private:
1235   G1HRPrinter* _hr_printer;
1236 public:
1237   bool doHeapRegion(HeapRegion* hr) {
1238     assert(!hr->is_young(), "not expecting to find young regions");
1239     if (hr->is_free()) {
1240       // We only generate output for non-empty regions.
1241     } else if (hr->is_starts_humongous()) {
1242       if (hr->region_num() == 1) {
1243         // single humongous region
1244         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1245       } else {
1246         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1247       }
1248     } else if (hr->is_continues_humongous()) {
1249       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1250     } else if (hr->is_old()) {
1251       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1252     } else {
1253       ShouldNotReachHere();
1254     }
1255     return false;
1256   }
1257 
1258   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1259     : _hr_printer(hr_printer) { }
1260 };
1261 
1262 void G1CollectedHeap::print_hrm_post_compaction() {
1263   PostCompactionPrinterClosure cl(hr_printer());
1264   heap_region_iterate(&cl);
1265 }
1266 
1267 bool G1CollectedHeap::do_collection(bool explicit_gc,
1268                                     bool clear_all_soft_refs,
1269                                     size_t word_size) {
1270   assert_at_safepoint(true /* should_be_vm_thread */);
1271 
1272   if (GC_locker::check_active_before_gc()) {
1273     return false;
1274   }
1275 
1276   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1277   gc_timer->register_gc_start();
1278 
1279   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1280   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1281 
1282   SvcGCMarker sgcm(SvcGCMarker::FULL);
1283   ResourceMark rm;
1284 
1285   print_heap_before_gc();
1286   trace_heap_before_gc(gc_tracer);
1287 
1288   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1289 
1290   verify_region_sets_optional();
1291 
1292   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1293                            collector_policy()->should_clear_all_soft_refs();
1294 
1295   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1296 
1297   {
1298     IsGCActiveMark x;
1299 
1300     // Timing
1301     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1302     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1303     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1304 
1305     {
1306       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1307       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1308       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1309 
1310       double start = os::elapsedTime();
1311       g1_policy()->record_full_collection_start();
1312 
1313       // Note: When we have a more flexible GC logging framework that
1314       // allows us to add optional attributes to a GC log record we
1315       // could consider timing and reporting how long we wait in the
1316       // following two methods.
1317       wait_while_free_regions_coming();
1318       // If we start the compaction before the CM threads finish
1319       // scanning the root regions we might trip them over as we'll
1320       // be moving objects / updating references. So let's wait until
1321       // they are done. By telling them to abort, they should complete
1322       // early.
1323       _cm->root_regions()->abort();
1324       _cm->root_regions()->wait_until_scan_finished();
1325       append_secondary_free_list_if_not_empty_with_lock();
1326 
1327       gc_prologue(true);
1328       increment_total_collections(true /* full gc */);
1329       increment_old_marking_cycles_started();
1330 
1331       assert(used() == recalculate_used(), "Should be equal");
1332 
1333       verify_before_gc();
1334 
1335       check_bitmaps("Full GC Start");
1336       pre_full_gc_dump(gc_timer);
1337 
1338       COMPILER2_PRESENT(DerivedPointerTable::clear());
1339 
1340       // Disable discovery and empty the discovered lists
1341       // for the CM ref processor.
1342       ref_processor_cm()->disable_discovery();
1343       ref_processor_cm()->abandon_partial_discovery();
1344       ref_processor_cm()->verify_no_references_recorded();
1345 
1346       // Abandon current iterations of concurrent marking and concurrent
1347       // refinement, if any are in progress. We have to do this before
1348       // wait_until_scan_finished() below.
1349       concurrent_mark()->abort();
1350 
1351       // Make sure we'll choose a new allocation region afterwards.
1352       _allocator->release_mutator_alloc_region();
1353       _allocator->abandon_gc_alloc_regions();
1354       g1_rem_set()->cleanupHRRS();
1355 
1356       // We should call this after we retire any currently active alloc
1357       // regions so that all the ALLOC / RETIRE events are generated
1358       // before the start GC event.
1359       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1360 
1361       // We may have added regions to the current incremental collection
1362       // set between the last GC or pause and now. We need to clear the
1363       // incremental collection set and then start rebuilding it afresh
1364       // after this full GC.
1365       abandon_collection_set(g1_policy()->inc_cset_head());
1366       g1_policy()->clear_incremental_cset();
1367       g1_policy()->stop_incremental_cset_building();
1368 
1369       tear_down_region_sets(false /* free_list_only */);
1370       g1_policy()->set_gcs_are_young(true);
1371 
1372       // See the comments in g1CollectedHeap.hpp and
1373       // G1CollectedHeap::ref_processing_init() about
1374       // how reference processing currently works in G1.
1375 
1376       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1377       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1378 
1379       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1380       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1381 
1382       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1383       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1384 
1385       // Do collection work
1386       {
1387         HandleMark hm;  // Discard invalid handles created during gc
1388         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1389       }
1390 
1391       assert(num_free_regions() == 0, "we should not have added any free regions");
1392       rebuild_region_sets(false /* free_list_only */);
1393 
1394       // Enqueue any discovered reference objects that have
1395       // not been removed from the discovered lists.
1396       ref_processor_stw()->enqueue_discovered_references();
1397 
1398       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1399 
1400       MemoryService::track_memory_usage();
1401 
1402       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1403       ref_processor_stw()->verify_no_references_recorded();
1404 
1405       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1406       ClassLoaderDataGraph::purge();
1407       MetaspaceAux::verify_metrics();
1408 
1409       // Note: since we've just done a full GC, concurrent
1410       // marking is no longer active. Therefore we need not
1411       // re-enable reference discovery for the CM ref processor.
1412       // That will be done at the start of the next marking cycle.
1413       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1414       ref_processor_cm()->verify_no_references_recorded();
1415 
1416       reset_gc_time_stamp();
1417       // Since everything potentially moved, we will clear all remembered
1418       // sets, and clear all cards.  Later we will rebuild remembered
1419       // sets. We will also reset the GC time stamps of the regions.
1420       clear_rsets_post_compaction();
1421       check_gc_time_stamps();
1422 
1423       // Resize the heap if necessary.
1424       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1425 
1426       if (_hr_printer.is_active()) {
1427         // We should do this after we potentially resize the heap so
1428         // that all the COMMIT / UNCOMMIT events are generated before
1429         // the end GC event.
1430 
1431         print_hrm_post_compaction();
1432         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1433       }
1434 
1435       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1436       if (hot_card_cache->use_cache()) {
1437         hot_card_cache->reset_card_counts();
1438         hot_card_cache->reset_hot_cache();
1439       }
1440 
1441       // Rebuild remembered sets of all regions.
1442       uint n_workers =
1443         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1444                                                 workers()->active_workers(),
1445                                                 Threads::number_of_non_daemon_threads());
1446       assert(UseDynamicNumberOfGCThreads ||
1447              n_workers == workers()->total_workers(),
1448              "If not dynamic should be using all the  workers");
1449       workers()->set_active_workers(n_workers);
1450       // Set parallel threads in the heap (_n_par_threads) only
1451       // before a parallel phase and always reset it to 0 after
1452       // the phase so that the number of parallel threads does
1453       // no get carried forward to a serial phase where there
1454       // may be code that is "possibly_parallel".
1455       set_par_threads(n_workers);
1456 
1457       ParRebuildRSTask rebuild_rs_task(this);
1458       assert(UseDynamicNumberOfGCThreads ||
1459              workers()->active_workers() == workers()->total_workers(),
1460              "Unless dynamic should use total workers");
1461       // Use the most recent number of  active workers
1462       assert(workers()->active_workers() > 0,
1463              "Active workers not properly set");
1464       set_par_threads(workers()->active_workers());
1465       workers()->run_task(&rebuild_rs_task);
1466       set_par_threads(0);
1467 
1468       // Rebuild the strong code root lists for each region
1469       rebuild_strong_code_roots();
1470 
1471       if (true) { // FIXME
1472         MetaspaceGC::compute_new_size();
1473       }
1474 
1475 #ifdef TRACESPINNING
1476       ParallelTaskTerminator::print_termination_counts();
1477 #endif
1478 
1479       // Discard all rset updates
1480       JavaThread::dirty_card_queue_set().abandon_logs();
1481       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1482 
1483       _young_list->reset_sampled_info();
1484       // At this point there should be no regions in the
1485       // entire heap tagged as young.
1486       assert(check_young_list_empty(true /* check_heap */),
1487              "young list should be empty at this point");
1488 
1489       // Update the number of full collections that have been completed.
1490       increment_old_marking_cycles_completed(false /* concurrent */);
1491 
1492       _hrm.verify_optional();
1493       verify_region_sets_optional();
1494 
1495       verify_after_gc();
1496 
1497       // Clear the previous marking bitmap, if needed for bitmap verification.
1498       // Note we cannot do this when we clear the next marking bitmap in
1499       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1500       // objects marked during a full GC against the previous bitmap.
1501       // But we need to clear it before calling check_bitmaps below since
1502       // the full GC has compacted objects and updated TAMS but not updated
1503       // the prev bitmap.
1504       if (G1VerifyBitmaps) {
1505         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1506       }
1507       check_bitmaps("Full GC End");
1508 
1509       // Start a new incremental collection set for the next pause
1510       assert(g1_policy()->collection_set() == NULL, "must be");
1511       g1_policy()->start_incremental_cset_building();
1512 
1513       clear_cset_fast_test();
1514 
1515       _allocator->init_mutator_alloc_region();
1516 
1517       double end = os::elapsedTime();
1518       g1_policy()->record_full_collection_end();
1519 
1520       if (G1Log::fine()) {
1521         g1_policy()->print_heap_transition();
1522       }
1523 
1524       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1525       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1526       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1527       // before any GC notifications are raised.
1528       g1mm()->update_sizes();
1529 
1530       gc_epilogue(true);
1531     }
1532 
1533     if (G1Log::finer()) {
1534       g1_policy()->print_detailed_heap_transition(true /* full */);
1535     }
1536 
1537     print_heap_after_gc();
1538     trace_heap_after_gc(gc_tracer);
1539 
1540     post_full_gc_dump(gc_timer);
1541 
1542     gc_timer->register_gc_end();
1543     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1544   }
1545 
1546   return true;
1547 }
1548 
1549 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1550   // do_collection() will return whether it succeeded in performing
1551   // the GC. Currently, there is no facility on the
1552   // do_full_collection() API to notify the caller than the collection
1553   // did not succeed (e.g., because it was locked out by the GC
1554   // locker). So, right now, we'll ignore the return value.
1555   bool dummy = do_collection(true,                /* explicit_gc */
1556                              clear_all_soft_refs,
1557                              0                    /* word_size */);
1558 }
1559 
1560 // This code is mostly copied from TenuredGeneration.
1561 void
1562 G1CollectedHeap::
1563 resize_if_necessary_after_full_collection(size_t word_size) {
1564   // Include the current allocation, if any, and bytes that will be
1565   // pre-allocated to support collections, as "used".
1566   const size_t used_after_gc = used();
1567   const size_t capacity_after_gc = capacity();
1568   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1569 
1570   // This is enforced in arguments.cpp.
1571   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1572          "otherwise the code below doesn't make sense");
1573 
1574   // We don't have floating point command-line arguments
1575   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1576   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1577   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1578   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1579 
1580   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1581   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1582 
1583   // We have to be careful here as these two calculations can overflow
1584   // 32-bit size_t's.
1585   double used_after_gc_d = (double) used_after_gc;
1586   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1587   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1588 
1589   // Let's make sure that they are both under the max heap size, which
1590   // by default will make them fit into a size_t.
1591   double desired_capacity_upper_bound = (double) max_heap_size;
1592   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1593                                     desired_capacity_upper_bound);
1594   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1595                                     desired_capacity_upper_bound);
1596 
1597   // We can now safely turn them into size_t's.
1598   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1599   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1600 
1601   // This assert only makes sense here, before we adjust them
1602   // with respect to the min and max heap size.
1603   assert(minimum_desired_capacity <= maximum_desired_capacity,
1604          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1605                  "maximum_desired_capacity = "SIZE_FORMAT,
1606                  minimum_desired_capacity, maximum_desired_capacity));
1607 
1608   // Should not be greater than the heap max size. No need to adjust
1609   // it with respect to the heap min size as it's a lower bound (i.e.,
1610   // we'll try to make the capacity larger than it, not smaller).
1611   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1612   // Should not be less than the heap min size. No need to adjust it
1613   // with respect to the heap max size as it's an upper bound (i.e.,
1614   // we'll try to make the capacity smaller than it, not greater).
1615   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1616 
1617   if (capacity_after_gc < minimum_desired_capacity) {
1618     // Don't expand unless it's significant
1619     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1620     ergo_verbose4(ErgoHeapSizing,
1621                   "attempt heap expansion",
1622                   ergo_format_reason("capacity lower than "
1623                                      "min desired capacity after Full GC")
1624                   ergo_format_byte("capacity")
1625                   ergo_format_byte("occupancy")
1626                   ergo_format_byte_perc("min desired capacity"),
1627                   capacity_after_gc, used_after_gc,
1628                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1629     expand(expand_bytes);
1630 
1631     // No expansion, now see if we want to shrink
1632   } else if (capacity_after_gc > maximum_desired_capacity) {
1633     // Capacity too large, compute shrinking size
1634     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1635     ergo_verbose4(ErgoHeapSizing,
1636                   "attempt heap shrinking",
1637                   ergo_format_reason("capacity higher than "
1638                                      "max desired capacity after Full GC")
1639                   ergo_format_byte("capacity")
1640                   ergo_format_byte("occupancy")
1641                   ergo_format_byte_perc("max desired capacity"),
1642                   capacity_after_gc, used_after_gc,
1643                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1644     shrink(shrink_bytes);
1645   }
1646 }
1647 
1648 
1649 HeapWord*
1650 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1651                                            AllocationContext_t context,
1652                                            bool* succeeded) {
1653   assert_at_safepoint(true /* should_be_vm_thread */);
1654 
1655   *succeeded = true;
1656   // Let's attempt the allocation first.
1657   HeapWord* result =
1658     attempt_allocation_at_safepoint(word_size,
1659                                     context,
1660                                     false /* expect_null_mutator_alloc_region */);
1661   if (result != NULL) {
1662     assert(*succeeded, "sanity");
1663     return result;
1664   }
1665 
1666   // In a G1 heap, we're supposed to keep allocation from failing by
1667   // incremental pauses.  Therefore, at least for now, we'll favor
1668   // expansion over collection.  (This might change in the future if we can
1669   // do something smarter than full collection to satisfy a failed alloc.)
1670   result = expand_and_allocate(word_size, context);
1671   if (result != NULL) {
1672     assert(*succeeded, "sanity");
1673     return result;
1674   }
1675 
1676   // Expansion didn't work, we'll try to do a Full GC.
1677   bool gc_succeeded = do_collection(false, /* explicit_gc */
1678                                     false, /* clear_all_soft_refs */
1679                                     word_size);
1680   if (!gc_succeeded) {
1681     *succeeded = false;
1682     return NULL;
1683   }
1684 
1685   // Retry the allocation
1686   result = attempt_allocation_at_safepoint(word_size,
1687                                            context,
1688                                            true /* expect_null_mutator_alloc_region */);
1689   if (result != NULL) {
1690     assert(*succeeded, "sanity");
1691     return result;
1692   }
1693 
1694   // Then, try a Full GC that will collect all soft references.
1695   gc_succeeded = do_collection(false, /* explicit_gc */
1696                                true,  /* clear_all_soft_refs */
1697                                word_size);
1698   if (!gc_succeeded) {
1699     *succeeded = false;
1700     return NULL;
1701   }
1702 
1703   // Retry the allocation once more
1704   result = attempt_allocation_at_safepoint(word_size,
1705                                            context,
1706                                            true /* expect_null_mutator_alloc_region */);
1707   if (result != NULL) {
1708     assert(*succeeded, "sanity");
1709     return result;
1710   }
1711 
1712   assert(!collector_policy()->should_clear_all_soft_refs(),
1713          "Flag should have been handled and cleared prior to this point");
1714 
1715   // What else?  We might try synchronous finalization later.  If the total
1716   // space available is large enough for the allocation, then a more
1717   // complete compaction phase than we've tried so far might be
1718   // appropriate.
1719   assert(*succeeded, "sanity");
1720   return NULL;
1721 }
1722 
1723 // Attempting to expand the heap sufficiently
1724 // to support an allocation of the given "word_size".  If
1725 // successful, perform the allocation and return the address of the
1726 // allocated block, or else "NULL".
1727 
1728 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1729   assert_at_safepoint(true /* should_be_vm_thread */);
1730 
1731   verify_region_sets_optional();
1732 
1733   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1734   ergo_verbose1(ErgoHeapSizing,
1735                 "attempt heap expansion",
1736                 ergo_format_reason("allocation request failed")
1737                 ergo_format_byte("allocation request"),
1738                 word_size * HeapWordSize);
1739   if (expand(expand_bytes)) {
1740     _hrm.verify_optional();
1741     verify_region_sets_optional();
1742     return attempt_allocation_at_safepoint(word_size,
1743                                            context,
1744                                            false /* expect_null_mutator_alloc_region */);
1745   }
1746   return NULL;
1747 }
1748 
1749 bool G1CollectedHeap::expand(size_t expand_bytes) {
1750   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1751   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1752                                        HeapRegion::GrainBytes);
1753   ergo_verbose2(ErgoHeapSizing,
1754                 "expand the heap",
1755                 ergo_format_byte("requested expansion amount")
1756                 ergo_format_byte("attempted expansion amount"),
1757                 expand_bytes, aligned_expand_bytes);
1758 
1759   if (is_maximal_no_gc()) {
1760     ergo_verbose0(ErgoHeapSizing,
1761                       "did not expand the heap",
1762                       ergo_format_reason("heap already fully expanded"));
1763     return false;
1764   }
1765 
1766   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1767   assert(regions_to_expand > 0, "Must expand by at least one region");
1768 
1769   uint expanded_by = _hrm.expand_by(regions_to_expand);
1770 
1771   if (expanded_by > 0) {
1772     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1773     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1774     g1_policy()->record_new_heap_size(num_regions());
1775   } else {
1776     ergo_verbose0(ErgoHeapSizing,
1777                   "did not expand the heap",
1778                   ergo_format_reason("heap expansion operation failed"));
1779     // The expansion of the virtual storage space was unsuccessful.
1780     // Let's see if it was because we ran out of swap.
1781     if (G1ExitOnExpansionFailure &&
1782         _hrm.available() >= regions_to_expand) {
1783       // We had head room...
1784       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1785     }
1786   }
1787   return regions_to_expand > 0;
1788 }
1789 
1790 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1791   size_t aligned_shrink_bytes =
1792     ReservedSpace::page_align_size_down(shrink_bytes);
1793   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1794                                          HeapRegion::GrainBytes);
1795   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1796 
1797   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1798   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1799 
1800   ergo_verbose3(ErgoHeapSizing,
1801                 "shrink the heap",
1802                 ergo_format_byte("requested shrinking amount")
1803                 ergo_format_byte("aligned shrinking amount")
1804                 ergo_format_byte("attempted shrinking amount"),
1805                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1806   if (num_regions_removed > 0) {
1807     g1_policy()->record_new_heap_size(num_regions());
1808   } else {
1809     ergo_verbose0(ErgoHeapSizing,
1810                   "did not shrink the heap",
1811                   ergo_format_reason("heap shrinking operation failed"));
1812   }
1813 }
1814 
1815 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1816   verify_region_sets_optional();
1817 
1818   // We should only reach here at the end of a Full GC which means we
1819   // should not not be holding to any GC alloc regions. The method
1820   // below will make sure of that and do any remaining clean up.
1821   _allocator->abandon_gc_alloc_regions();
1822 
1823   // Instead of tearing down / rebuilding the free lists here, we
1824   // could instead use the remove_all_pending() method on free_list to
1825   // remove only the ones that we need to remove.
1826   tear_down_region_sets(true /* free_list_only */);
1827   shrink_helper(shrink_bytes);
1828   rebuild_region_sets(true /* free_list_only */);
1829 
1830   _hrm.verify_optional();
1831   verify_region_sets_optional();
1832 }
1833 
1834 // Public methods.
1835 
1836 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1837 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1838 #endif // _MSC_VER
1839 
1840 
1841 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1842   SharedHeap(policy_),
1843   _g1_policy(policy_),
1844   _dirty_card_queue_set(false),
1845   _into_cset_dirty_card_queue_set(false),
1846   _is_alive_closure_cm(this),
1847   _is_alive_closure_stw(this),
1848   _ref_processor_cm(NULL),
1849   _ref_processor_stw(NULL),
1850   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1851   _bot_shared(NULL),
1852   _evac_failure_scan_stack(NULL),
1853   _mark_in_progress(false),
1854   _cg1r(NULL),
1855   _g1mm(NULL),
1856   _refine_cte_cl(NULL),
1857   _full_collection(false),
1858   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1859   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1860   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1861   _humongous_is_live(),
1862   _has_humongous_reclaim_candidates(false),
1863   _free_regions_coming(false),
1864   _young_list(new YoungList(this)),
1865   _gc_time_stamp(0),
1866   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1867   _old_plab_stats(OldPLABSize, PLABWeight),
1868   _expand_heap_after_alloc_failure(true),
1869   _surviving_young_words(NULL),
1870   _old_marking_cycles_started(0),
1871   _old_marking_cycles_completed(0),
1872   _concurrent_cycle_started(false),
1873   _heap_summary_sent(false),
1874   _in_cset_fast_test(),
1875   _dirty_cards_region_list(NULL),
1876   _worker_cset_start_region(NULL),
1877   _worker_cset_start_region_time_stamp(NULL),
1878   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1879   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1880   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1881   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1882 
1883   _g1h = this;
1884   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1885     vm_exit_during_initialization("Failed necessary allocation.");
1886   }
1887 
1888   _allocator = G1Allocator::create_allocator(_g1h);
1889   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1890 
1891   int n_queues = MAX2((int)ParallelGCThreads, 1);
1892   _task_queues = new RefToScanQueueSet(n_queues);
1893 
1894   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1895   assert(n_rem_sets > 0, "Invariant.");
1896 
1897   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1898   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1899   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1900 
1901   for (int i = 0; i < n_queues; i++) {
1902     RefToScanQueue* q = new RefToScanQueue();
1903     q->initialize();
1904     _task_queues->register_queue(i, q);
1905     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1906   }
1907   clear_cset_start_regions();
1908 
1909   // Initialize the G1EvacuationFailureALot counters and flags.
1910   NOT_PRODUCT(reset_evacuation_should_fail();)
1911 
1912   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1913 }
1914 
1915 jint G1CollectedHeap::initialize() {
1916   CollectedHeap::pre_initialize();
1917   os::enable_vtime();
1918 
1919   G1Log::init();
1920 
1921   // Necessary to satisfy locking discipline assertions.
1922 
1923   MutexLocker x(Heap_lock);
1924 
1925   // We have to initialize the printer before committing the heap, as
1926   // it will be used then.
1927   _hr_printer.set_active(G1PrintHeapRegions);
1928 
1929   // While there are no constraints in the GC code that HeapWordSize
1930   // be any particular value, there are multiple other areas in the
1931   // system which believe this to be true (e.g. oop->object_size in some
1932   // cases incorrectly returns the size in wordSize units rather than
1933   // HeapWordSize).
1934   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1935 
1936   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1937   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1938   size_t heap_alignment = collector_policy()->heap_alignment();
1939 
1940   // Ensure that the sizes are properly aligned.
1941   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1942   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1943   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1944 
1945   _refine_cte_cl = new RefineCardTableEntryClosure();
1946 
1947   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1948 
1949   // Reserve the maximum.
1950 
1951   // When compressed oops are enabled, the preferred heap base
1952   // is calculated by subtracting the requested size from the
1953   // 32Gb boundary and using the result as the base address for
1954   // heap reservation. If the requested size is not aligned to
1955   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1956   // into the ReservedHeapSpace constructor) then the actual
1957   // base of the reserved heap may end up differing from the
1958   // address that was requested (i.e. the preferred heap base).
1959   // If this happens then we could end up using a non-optimal
1960   // compressed oops mode.
1961 
1962   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1963                                                  heap_alignment);
1964 
1965   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1966 
1967   // Create the gen rem set (and barrier set) for the entire reserved region.
1968   _rem_set = collector_policy()->create_rem_set(reserved_region(), 2);
1969   set_barrier_set(rem_set()->bs());
1970   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
1971     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
1972     return JNI_ENOMEM;
1973   }
1974 
1975   // Also create a G1 rem set.
1976   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1977 
1978   // Carve out the G1 part of the heap.
1979 
1980   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1981   G1RegionToSpaceMapper* heap_storage =
1982     G1RegionToSpaceMapper::create_mapper(g1_rs,
1983                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1984                                          HeapRegion::GrainBytes,
1985                                          1,
1986                                          mtJavaHeap);
1987   heap_storage->set_mapping_changed_listener(&_listener);
1988 
1989   // Reserve space for the block offset table. We do not support automatic uncommit
1990   // for the card table at this time. BOT only.
1991   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1992   G1RegionToSpaceMapper* bot_storage =
1993     G1RegionToSpaceMapper::create_mapper(bot_rs,
1994                                          os::vm_page_size(),
1995                                          HeapRegion::GrainBytes,
1996                                          G1BlockOffsetSharedArray::N_bytes,
1997                                          mtGC);
1998 
1999   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2000   G1RegionToSpaceMapper* cardtable_storage =
2001     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
2002                                          os::vm_page_size(),
2003                                          HeapRegion::GrainBytes,
2004                                          G1BlockOffsetSharedArray::N_bytes,
2005                                          mtGC);
2006 
2007   // Reserve space for the card counts table.
2008   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
2009   G1RegionToSpaceMapper* card_counts_storage =
2010     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
2011                                          os::vm_page_size(),
2012                                          HeapRegion::GrainBytes,
2013                                          G1BlockOffsetSharedArray::N_bytes,
2014                                          mtGC);
2015 
2016   // Reserve space for prev and next bitmap.
2017   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2018 
2019   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
2020   G1RegionToSpaceMapper* prev_bitmap_storage =
2021     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
2022                                          os::vm_page_size(),
2023                                          HeapRegion::GrainBytes,
2024                                          CMBitMap::mark_distance(),
2025                                          mtGC);
2026 
2027   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
2028   G1RegionToSpaceMapper* next_bitmap_storage =
2029     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
2030                                          os::vm_page_size(),
2031                                          HeapRegion::GrainBytes,
2032                                          CMBitMap::mark_distance(),
2033                                          mtGC);
2034 
2035   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2036   g1_barrier_set()->initialize(cardtable_storage);
2037    // Do later initialization work for concurrent refinement.
2038   _cg1r->init(card_counts_storage);
2039 
2040   // 6843694 - ensure that the maximum region index can fit
2041   // in the remembered set structures.
2042   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2043   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2044 
2045   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2046   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2047   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2048             "too many cards per region");
2049 
2050   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2051 
2052   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2053 
2054   _g1h = this;
2055 
2056   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
2057   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
2058 
2059   // Create the ConcurrentMark data structure and thread.
2060   // (Must do this late, so that "max_regions" is defined.)
2061   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2062   if (_cm == NULL || !_cm->completed_initialization()) {
2063     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2064     return JNI_ENOMEM;
2065   }
2066   _cmThread = _cm->cmThread();
2067 
2068   // Initialize the from_card cache structure of HeapRegionRemSet.
2069   HeapRegionRemSet::init_heap(max_regions());
2070 
2071   // Now expand into the initial heap size.
2072   if (!expand(init_byte_size)) {
2073     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2074     return JNI_ENOMEM;
2075   }
2076 
2077   // Perform any initialization actions delegated to the policy.
2078   g1_policy()->init();
2079 
2080   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2081                                                SATB_Q_FL_lock,
2082                                                G1SATBProcessCompletedThreshold,
2083                                                Shared_SATB_Q_lock);
2084 
2085   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2086                                                 DirtyCardQ_CBL_mon,
2087                                                 DirtyCardQ_FL_lock,
2088                                                 concurrent_g1_refine()->yellow_zone(),
2089                                                 concurrent_g1_refine()->red_zone(),
2090                                                 Shared_DirtyCardQ_lock);
2091 
2092   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2093                                     DirtyCardQ_CBL_mon,
2094                                     DirtyCardQ_FL_lock,
2095                                     -1, // never trigger processing
2096                                     -1, // no limit on length
2097                                     Shared_DirtyCardQ_lock,
2098                                     &JavaThread::dirty_card_queue_set());
2099 
2100   // Initialize the card queue set used to hold cards containing
2101   // references into the collection set.
2102   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2103                                              DirtyCardQ_CBL_mon,
2104                                              DirtyCardQ_FL_lock,
2105                                              -1, // never trigger processing
2106                                              -1, // no limit on length
2107                                              Shared_DirtyCardQ_lock,
2108                                              &JavaThread::dirty_card_queue_set());
2109 
2110   // In case we're keeping closure specialization stats, initialize those
2111   // counts and that mechanism.
2112   SpecializationStats::clear();
2113 
2114   // Here we allocate the dummy HeapRegion that is required by the
2115   // G1AllocRegion class.
2116   HeapRegion* dummy_region = _hrm.get_dummy_region();
2117 
2118   // We'll re-use the same region whether the alloc region will
2119   // require BOT updates or not and, if it doesn't, then a non-young
2120   // region will complain that it cannot support allocations without
2121   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2122   dummy_region->set_eden();
2123   // Make sure it's full.
2124   dummy_region->set_top(dummy_region->end());
2125   G1AllocRegion::setup(this, dummy_region);
2126 
2127   _allocator->init_mutator_alloc_region();
2128 
2129   // Do create of the monitoring and management support so that
2130   // values in the heap have been properly initialized.
2131   _g1mm = new G1MonitoringSupport(this);
2132 
2133   G1StringDedup::initialize();
2134 
2135   return JNI_OK;
2136 }
2137 
2138 void G1CollectedHeap::stop() {
2139   // Stop all concurrent threads. We do this to make sure these threads
2140   // do not continue to execute and access resources (e.g. gclog_or_tty)
2141   // that are destroyed during shutdown.
2142   _cg1r->stop();
2143   _cmThread->stop();
2144   if (G1StringDedup::is_enabled()) {
2145     G1StringDedup::stop();
2146   }
2147 }
2148 
2149 void G1CollectedHeap::clear_humongous_is_live_table() {
2150   guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
2151   _humongous_is_live.clear();
2152 }
2153 
2154 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2155   return HeapRegion::max_region_size();
2156 }
2157 
2158 void G1CollectedHeap::ref_processing_init() {
2159   // Reference processing in G1 currently works as follows:
2160   //
2161   // * There are two reference processor instances. One is
2162   //   used to record and process discovered references
2163   //   during concurrent marking; the other is used to
2164   //   record and process references during STW pauses
2165   //   (both full and incremental).
2166   // * Both ref processors need to 'span' the entire heap as
2167   //   the regions in the collection set may be dotted around.
2168   //
2169   // * For the concurrent marking ref processor:
2170   //   * Reference discovery is enabled at initial marking.
2171   //   * Reference discovery is disabled and the discovered
2172   //     references processed etc during remarking.
2173   //   * Reference discovery is MT (see below).
2174   //   * Reference discovery requires a barrier (see below).
2175   //   * Reference processing may or may not be MT
2176   //     (depending on the value of ParallelRefProcEnabled
2177   //     and ParallelGCThreads).
2178   //   * A full GC disables reference discovery by the CM
2179   //     ref processor and abandons any entries on it's
2180   //     discovered lists.
2181   //
2182   // * For the STW processor:
2183   //   * Non MT discovery is enabled at the start of a full GC.
2184   //   * Processing and enqueueing during a full GC is non-MT.
2185   //   * During a full GC, references are processed after marking.
2186   //
2187   //   * Discovery (may or may not be MT) is enabled at the start
2188   //     of an incremental evacuation pause.
2189   //   * References are processed near the end of a STW evacuation pause.
2190   //   * For both types of GC:
2191   //     * Discovery is atomic - i.e. not concurrent.
2192   //     * Reference discovery will not need a barrier.
2193 
2194   SharedHeap::ref_processing_init();
2195   MemRegion mr = reserved_region();
2196 
2197   // Concurrent Mark ref processor
2198   _ref_processor_cm =
2199     new ReferenceProcessor(mr,    // span
2200                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2201                                 // mt processing
2202                            (int) ParallelGCThreads,
2203                                 // degree of mt processing
2204                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2205                                 // mt discovery
2206                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2207                                 // degree of mt discovery
2208                            false,
2209                                 // Reference discovery is not atomic
2210                            &_is_alive_closure_cm);
2211                                 // is alive closure
2212                                 // (for efficiency/performance)
2213 
2214   // STW ref processor
2215   _ref_processor_stw =
2216     new ReferenceProcessor(mr,    // span
2217                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2218                                 // mt processing
2219                            MAX2((int)ParallelGCThreads, 1),
2220                                 // degree of mt processing
2221                            (ParallelGCThreads > 1),
2222                                 // mt discovery
2223                            MAX2((int)ParallelGCThreads, 1),
2224                                 // degree of mt discovery
2225                            true,
2226                                 // Reference discovery is atomic
2227                            &_is_alive_closure_stw);
2228                                 // is alive closure
2229                                 // (for efficiency/performance)
2230 }
2231 
2232 size_t G1CollectedHeap::capacity() const {
2233   return _hrm.length() * HeapRegion::GrainBytes;
2234 }
2235 
2236 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2237   assert(!hr->is_continues_humongous(), "pre-condition");
2238   hr->reset_gc_time_stamp();
2239   if (hr->is_starts_humongous()) {
2240     uint first_index = hr->hrm_index() + 1;
2241     uint last_index = hr->last_hc_index();
2242     for (uint i = first_index; i < last_index; i += 1) {
2243       HeapRegion* chr = region_at(i);
2244       assert(chr->is_continues_humongous(), "sanity");
2245       chr->reset_gc_time_stamp();
2246     }
2247   }
2248 }
2249 
2250 #ifndef PRODUCT
2251 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2252 private:
2253   unsigned _gc_time_stamp;
2254   bool _failures;
2255 
2256 public:
2257   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2258     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2259 
2260   virtual bool doHeapRegion(HeapRegion* hr) {
2261     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2262     if (_gc_time_stamp != region_gc_time_stamp) {
2263       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2264                              "expected %d", HR_FORMAT_PARAMS(hr),
2265                              region_gc_time_stamp, _gc_time_stamp);
2266       _failures = true;
2267     }
2268     return false;
2269   }
2270 
2271   bool failures() { return _failures; }
2272 };
2273 
2274 void G1CollectedHeap::check_gc_time_stamps() {
2275   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2276   heap_region_iterate(&cl);
2277   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2278 }
2279 #endif // PRODUCT
2280 
2281 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2282                                                  DirtyCardQueue* into_cset_dcq,
2283                                                  bool concurrent,
2284                                                  uint worker_i) {
2285   // Clean cards in the hot card cache
2286   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2287   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2288 
2289   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2290   int n_completed_buffers = 0;
2291   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2292     n_completed_buffers++;
2293   }
2294   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2295   dcqs.clear_n_completed_buffers();
2296   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2297 }
2298 
2299 
2300 // Computes the sum of the storage used by the various regions.
2301 size_t G1CollectedHeap::used() const {
2302   return _allocator->used();
2303 }
2304 
2305 size_t G1CollectedHeap::used_unlocked() const {
2306   return _allocator->used_unlocked();
2307 }
2308 
2309 class SumUsedClosure: public HeapRegionClosure {
2310   size_t _used;
2311 public:
2312   SumUsedClosure() : _used(0) {}
2313   bool doHeapRegion(HeapRegion* r) {
2314     if (!r->is_continues_humongous()) {
2315       _used += r->used();
2316     }
2317     return false;
2318   }
2319   size_t result() { return _used; }
2320 };
2321 
2322 size_t G1CollectedHeap::recalculate_used() const {
2323   double recalculate_used_start = os::elapsedTime();
2324 
2325   SumUsedClosure blk;
2326   heap_region_iterate(&blk);
2327 
2328   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2329   return blk.result();
2330 }
2331 
2332 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2333   switch (cause) {
2334     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2335     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2336     case GCCause::_g1_humongous_allocation: return true;
2337     case GCCause::_update_allocation_context_stats_inc: return true;
2338     default:                                return false;
2339   }
2340 }
2341 
2342 #ifndef PRODUCT
2343 void G1CollectedHeap::allocate_dummy_regions() {
2344   // Let's fill up most of the region
2345   size_t word_size = HeapRegion::GrainWords - 1024;
2346   // And as a result the region we'll allocate will be humongous.
2347   guarantee(is_humongous(word_size), "sanity");
2348 
2349   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2350     // Let's use the existing mechanism for the allocation
2351     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2352                                                  AllocationContext::system());
2353     if (dummy_obj != NULL) {
2354       MemRegion mr(dummy_obj, word_size);
2355       CollectedHeap::fill_with_object(mr);
2356     } else {
2357       // If we can't allocate once, we probably cannot allocate
2358       // again. Let's get out of the loop.
2359       break;
2360     }
2361   }
2362 }
2363 #endif // !PRODUCT
2364 
2365 void G1CollectedHeap::increment_old_marking_cycles_started() {
2366   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2367     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2368     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2369     _old_marking_cycles_started, _old_marking_cycles_completed));
2370 
2371   _old_marking_cycles_started++;
2372 }
2373 
2374 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2375   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2376 
2377   // We assume that if concurrent == true, then the caller is a
2378   // concurrent thread that was joined the Suspendible Thread
2379   // Set. If there's ever a cheap way to check this, we should add an
2380   // assert here.
2381 
2382   // Given that this method is called at the end of a Full GC or of a
2383   // concurrent cycle, and those can be nested (i.e., a Full GC can
2384   // interrupt a concurrent cycle), the number of full collections
2385   // completed should be either one (in the case where there was no
2386   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2387   // behind the number of full collections started.
2388 
2389   // This is the case for the inner caller, i.e. a Full GC.
2390   assert(concurrent ||
2391          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2392          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2393          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2394                  "is inconsistent with _old_marking_cycles_completed = %u",
2395                  _old_marking_cycles_started, _old_marking_cycles_completed));
2396 
2397   // This is the case for the outer caller, i.e. the concurrent cycle.
2398   assert(!concurrent ||
2399          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2400          err_msg("for outer caller (concurrent cycle): "
2401                  "_old_marking_cycles_started = %u "
2402                  "is inconsistent with _old_marking_cycles_completed = %u",
2403                  _old_marking_cycles_started, _old_marking_cycles_completed));
2404 
2405   _old_marking_cycles_completed += 1;
2406 
2407   // We need to clear the "in_progress" flag in the CM thread before
2408   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2409   // is set) so that if a waiter requests another System.gc() it doesn't
2410   // incorrectly see that a marking cycle is still in progress.
2411   if (concurrent) {
2412     _cmThread->clear_in_progress();
2413   }
2414 
2415   // This notify_all() will ensure that a thread that called
2416   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2417   // and it's waiting for a full GC to finish will be woken up. It is
2418   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2419   FullGCCount_lock->notify_all();
2420 }
2421 
2422 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2423   _concurrent_cycle_started = true;
2424   _gc_timer_cm->register_gc_start(start_time);
2425 
2426   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2427   trace_heap_before_gc(_gc_tracer_cm);
2428 }
2429 
2430 void G1CollectedHeap::register_concurrent_cycle_end() {
2431   if (_concurrent_cycle_started) {
2432     if (_cm->has_aborted()) {
2433       _gc_tracer_cm->report_concurrent_mode_failure();
2434     }
2435 
2436     _gc_timer_cm->register_gc_end();
2437     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2438 
2439     // Clear state variables to prepare for the next concurrent cycle.
2440     _concurrent_cycle_started = false;
2441     _heap_summary_sent = false;
2442   }
2443 }
2444 
2445 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2446   if (_concurrent_cycle_started) {
2447     // This function can be called when:
2448     //  the cleanup pause is run
2449     //  the concurrent cycle is aborted before the cleanup pause.
2450     //  the concurrent cycle is aborted after the cleanup pause,
2451     //   but before the concurrent cycle end has been registered.
2452     // Make sure that we only send the heap information once.
2453     if (!_heap_summary_sent) {
2454       trace_heap_after_gc(_gc_tracer_cm);
2455       _heap_summary_sent = true;
2456     }
2457   }
2458 }
2459 
2460 G1YCType G1CollectedHeap::yc_type() {
2461   bool is_young = g1_policy()->gcs_are_young();
2462   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2463   bool is_during_mark = mark_in_progress();
2464 
2465   if (is_initial_mark) {
2466     return InitialMark;
2467   } else if (is_during_mark) {
2468     return DuringMark;
2469   } else if (is_young) {
2470     return Normal;
2471   } else {
2472     return Mixed;
2473   }
2474 }
2475 
2476 void G1CollectedHeap::collect(GCCause::Cause cause) {
2477   assert_heap_not_locked();
2478 
2479   unsigned int gc_count_before;
2480   unsigned int old_marking_count_before;
2481   unsigned int full_gc_count_before;
2482   bool retry_gc;
2483 
2484   do {
2485     retry_gc = false;
2486 
2487     {
2488       MutexLocker ml(Heap_lock);
2489 
2490       // Read the GC count while holding the Heap_lock
2491       gc_count_before = total_collections();
2492       full_gc_count_before = total_full_collections();
2493       old_marking_count_before = _old_marking_cycles_started;
2494     }
2495 
2496     if (should_do_concurrent_full_gc(cause)) {
2497       // Schedule an initial-mark evacuation pause that will start a
2498       // concurrent cycle. We're setting word_size to 0 which means that
2499       // we are not requesting a post-GC allocation.
2500       VM_G1IncCollectionPause op(gc_count_before,
2501                                  0,     /* word_size */
2502                                  true,  /* should_initiate_conc_mark */
2503                                  g1_policy()->max_pause_time_ms(),
2504                                  cause);
2505       op.set_allocation_context(AllocationContext::current());
2506 
2507       VMThread::execute(&op);
2508       if (!op.pause_succeeded()) {
2509         if (old_marking_count_before == _old_marking_cycles_started) {
2510           retry_gc = op.should_retry_gc();
2511         } else {
2512           // A Full GC happened while we were trying to schedule the
2513           // initial-mark GC. No point in starting a new cycle given
2514           // that the whole heap was collected anyway.
2515         }
2516 
2517         if (retry_gc) {
2518           if (GC_locker::is_active_and_needs_gc()) {
2519             GC_locker::stall_until_clear();
2520           }
2521         }
2522       }
2523     } else {
2524       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2525           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2526 
2527         // Schedule a standard evacuation pause. We're setting word_size
2528         // to 0 which means that we are not requesting a post-GC allocation.
2529         VM_G1IncCollectionPause op(gc_count_before,
2530                                    0,     /* word_size */
2531                                    false, /* should_initiate_conc_mark */
2532                                    g1_policy()->max_pause_time_ms(),
2533                                    cause);
2534         VMThread::execute(&op);
2535       } else {
2536         // Schedule a Full GC.
2537         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2538         VMThread::execute(&op);
2539       }
2540     }
2541   } while (retry_gc);
2542 }
2543 
2544 bool G1CollectedHeap::is_in(const void* p) const {
2545   if (_hrm.reserved().contains(p)) {
2546     // Given that we know that p is in the reserved space,
2547     // heap_region_containing_raw() should successfully
2548     // return the containing region.
2549     HeapRegion* hr = heap_region_containing_raw(p);
2550     return hr->is_in(p);
2551   } else {
2552     return false;
2553   }
2554 }
2555 
2556 #ifdef ASSERT
2557 bool G1CollectedHeap::is_in_exact(const void* p) const {
2558   bool contains = reserved_region().contains(p);
2559   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2560   if (contains && available) {
2561     return true;
2562   } else {
2563     return false;
2564   }
2565 }
2566 #endif
2567 
2568 // Iteration functions.
2569 
2570 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2571 
2572 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2573   ExtendedOopClosure* _cl;
2574 public:
2575   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2576   bool doHeapRegion(HeapRegion* r) {
2577     if (!r->is_continues_humongous()) {
2578       r->oop_iterate(_cl);
2579     }
2580     return false;
2581   }
2582 };
2583 
2584 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2585   IterateOopClosureRegionClosure blk(cl);
2586   heap_region_iterate(&blk);
2587 }
2588 
2589 // Iterates an ObjectClosure over all objects within a HeapRegion.
2590 
2591 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2592   ObjectClosure* _cl;
2593 public:
2594   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2595   bool doHeapRegion(HeapRegion* r) {
2596     if (!r->is_continues_humongous()) {
2597       r->object_iterate(_cl);
2598     }
2599     return false;
2600   }
2601 };
2602 
2603 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2604   IterateObjectClosureRegionClosure blk(cl);
2605   heap_region_iterate(&blk);
2606 }
2607 
2608 // Calls a SpaceClosure on a HeapRegion.
2609 
2610 class SpaceClosureRegionClosure: public HeapRegionClosure {
2611   SpaceClosure* _cl;
2612 public:
2613   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2614   bool doHeapRegion(HeapRegion* r) {
2615     _cl->do_space(r);
2616     return false;
2617   }
2618 };
2619 
2620 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2621   SpaceClosureRegionClosure blk(cl);
2622   heap_region_iterate(&blk);
2623 }
2624 
2625 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2626   _hrm.iterate(cl);
2627 }
2628 
2629 void
2630 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2631                                          uint worker_id,
2632                                          HeapRegionClaimer *hrclaimer) const {
2633   _hrm.par_iterate(cl, worker_id, hrclaimer);
2634 }
2635 
2636 // Clear the cached CSet starting regions and (more importantly)
2637 // the time stamps. Called when we reset the GC time stamp.
2638 void G1CollectedHeap::clear_cset_start_regions() {
2639   assert(_worker_cset_start_region != NULL, "sanity");
2640   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2641 
2642   int n_queues = MAX2((int)ParallelGCThreads, 1);
2643   for (int i = 0; i < n_queues; i++) {
2644     _worker_cset_start_region[i] = NULL;
2645     _worker_cset_start_region_time_stamp[i] = 0;
2646   }
2647 }
2648 
2649 // Given the id of a worker, obtain or calculate a suitable
2650 // starting region for iterating over the current collection set.
2651 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2652   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2653 
2654   HeapRegion* result = NULL;
2655   unsigned gc_time_stamp = get_gc_time_stamp();
2656 
2657   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2658     // Cached starting region for current worker was set
2659     // during the current pause - so it's valid.
2660     // Note: the cached starting heap region may be NULL
2661     // (when the collection set is empty).
2662     result = _worker_cset_start_region[worker_i];
2663     assert(result == NULL || result->in_collection_set(), "sanity");
2664     return result;
2665   }
2666 
2667   // The cached entry was not valid so let's calculate
2668   // a suitable starting heap region for this worker.
2669 
2670   // We want the parallel threads to start their collection
2671   // set iteration at different collection set regions to
2672   // avoid contention.
2673   // If we have:
2674   //          n collection set regions
2675   //          p threads
2676   // Then thread t will start at region floor ((t * n) / p)
2677 
2678   result = g1_policy()->collection_set();
2679   uint cs_size = g1_policy()->cset_region_length();
2680   uint active_workers = workers()->active_workers();
2681   assert(UseDynamicNumberOfGCThreads ||
2682            active_workers == workers()->total_workers(),
2683            "Unless dynamic should use total workers");
2684 
2685   uint end_ind   = (cs_size * worker_i) / active_workers;
2686   uint start_ind = 0;
2687 
2688   if (worker_i > 0 &&
2689       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2690     // Previous workers starting region is valid
2691     // so let's iterate from there
2692     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2693     result = _worker_cset_start_region[worker_i - 1];
2694   }
2695 
2696   for (uint i = start_ind; i < end_ind; i++) {
2697     result = result->next_in_collection_set();
2698   }
2699 
2700   // Note: the calculated starting heap region may be NULL
2701   // (when the collection set is empty).
2702   assert(result == NULL || result->in_collection_set(), "sanity");
2703   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2704          "should be updated only once per pause");
2705   _worker_cset_start_region[worker_i] = result;
2706   OrderAccess::storestore();
2707   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2708   return result;
2709 }
2710 
2711 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2712   HeapRegion* r = g1_policy()->collection_set();
2713   while (r != NULL) {
2714     HeapRegion* next = r->next_in_collection_set();
2715     if (cl->doHeapRegion(r)) {
2716       cl->incomplete();
2717       return;
2718     }
2719     r = next;
2720   }
2721 }
2722 
2723 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2724                                                   HeapRegionClosure *cl) {
2725   if (r == NULL) {
2726     // The CSet is empty so there's nothing to do.
2727     return;
2728   }
2729 
2730   assert(r->in_collection_set(),
2731          "Start region must be a member of the collection set.");
2732   HeapRegion* cur = r;
2733   while (cur != NULL) {
2734     HeapRegion* next = cur->next_in_collection_set();
2735     if (cl->doHeapRegion(cur) && false) {
2736       cl->incomplete();
2737       return;
2738     }
2739     cur = next;
2740   }
2741   cur = g1_policy()->collection_set();
2742   while (cur != r) {
2743     HeapRegion* next = cur->next_in_collection_set();
2744     if (cl->doHeapRegion(cur) && false) {
2745       cl->incomplete();
2746       return;
2747     }
2748     cur = next;
2749   }
2750 }
2751 
2752 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2753   HeapRegion* result = _hrm.next_region_in_heap(from);
2754   while (result != NULL && result->is_humongous()) {
2755     result = _hrm.next_region_in_heap(result);
2756   }
2757   return result;
2758 }
2759 
2760 Space* G1CollectedHeap::space_containing(const void* addr) const {
2761   return heap_region_containing(addr);
2762 }
2763 
2764 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2765   Space* sp = space_containing(addr);
2766   return sp->block_start(addr);
2767 }
2768 
2769 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2770   Space* sp = space_containing(addr);
2771   return sp->block_size(addr);
2772 }
2773 
2774 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2775   Space* sp = space_containing(addr);
2776   return sp->block_is_obj(addr);
2777 }
2778 
2779 bool G1CollectedHeap::supports_tlab_allocation() const {
2780   return true;
2781 }
2782 
2783 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2784   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2785 }
2786 
2787 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2788   return young_list()->eden_used_bytes();
2789 }
2790 
2791 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2792 // must be smaller than the humongous object limit.
2793 size_t G1CollectedHeap::max_tlab_size() const {
2794   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2795 }
2796 
2797 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2798   // Return the remaining space in the cur alloc region, but not less than
2799   // the min TLAB size.
2800 
2801   // Also, this value can be at most the humongous object threshold,
2802   // since we can't allow tlabs to grow big enough to accommodate
2803   // humongous objects.
2804 
2805   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2806   size_t max_tlab = max_tlab_size() * wordSize;
2807   if (hr == NULL) {
2808     return max_tlab;
2809   } else {
2810     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2811   }
2812 }
2813 
2814 size_t G1CollectedHeap::max_capacity() const {
2815   return _hrm.reserved().byte_size();
2816 }
2817 
2818 jlong G1CollectedHeap::millis_since_last_gc() {
2819   // assert(false, "NYI");
2820   return 0;
2821 }
2822 
2823 void G1CollectedHeap::prepare_for_verify() {
2824   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2825     ensure_parsability(false);
2826   }
2827   g1_rem_set()->prepare_for_verify();
2828 }
2829 
2830 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2831                                               VerifyOption vo) {
2832   switch (vo) {
2833   case VerifyOption_G1UsePrevMarking:
2834     return hr->obj_allocated_since_prev_marking(obj);
2835   case VerifyOption_G1UseNextMarking:
2836     return hr->obj_allocated_since_next_marking(obj);
2837   case VerifyOption_G1UseMarkWord:
2838     return false;
2839   default:
2840     ShouldNotReachHere();
2841   }
2842   return false; // keep some compilers happy
2843 }
2844 
2845 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2846   switch (vo) {
2847   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2848   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2849   case VerifyOption_G1UseMarkWord:    return NULL;
2850   default:                            ShouldNotReachHere();
2851   }
2852   return NULL; // keep some compilers happy
2853 }
2854 
2855 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2856   switch (vo) {
2857   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2858   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2859   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2860   default:                            ShouldNotReachHere();
2861   }
2862   return false; // keep some compilers happy
2863 }
2864 
2865 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2866   switch (vo) {
2867   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2868   case VerifyOption_G1UseNextMarking: return "NTAMS";
2869   case VerifyOption_G1UseMarkWord:    return "NONE";
2870   default:                            ShouldNotReachHere();
2871   }
2872   return NULL; // keep some compilers happy
2873 }
2874 
2875 class VerifyRootsClosure: public OopClosure {
2876 private:
2877   G1CollectedHeap* _g1h;
2878   VerifyOption     _vo;
2879   bool             _failures;
2880 public:
2881   // _vo == UsePrevMarking -> use "prev" marking information,
2882   // _vo == UseNextMarking -> use "next" marking information,
2883   // _vo == UseMarkWord    -> use mark word from object header.
2884   VerifyRootsClosure(VerifyOption vo) :
2885     _g1h(G1CollectedHeap::heap()),
2886     _vo(vo),
2887     _failures(false) { }
2888 
2889   bool failures() { return _failures; }
2890 
2891   template <class T> void do_oop_nv(T* p) {
2892     T heap_oop = oopDesc::load_heap_oop(p);
2893     if (!oopDesc::is_null(heap_oop)) {
2894       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2895       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2896         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2897                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2898         if (_vo == VerifyOption_G1UseMarkWord) {
2899           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2900         }
2901         obj->print_on(gclog_or_tty);
2902         _failures = true;
2903       }
2904     }
2905   }
2906 
2907   void do_oop(oop* p)       { do_oop_nv(p); }
2908   void do_oop(narrowOop* p) { do_oop_nv(p); }
2909 };
2910 
2911 class G1VerifyCodeRootOopClosure: public OopClosure {
2912   G1CollectedHeap* _g1h;
2913   OopClosure* _root_cl;
2914   nmethod* _nm;
2915   VerifyOption _vo;
2916   bool _failures;
2917 
2918   template <class T> void do_oop_work(T* p) {
2919     // First verify that this root is live
2920     _root_cl->do_oop(p);
2921 
2922     if (!G1VerifyHeapRegionCodeRoots) {
2923       // We're not verifying the code roots attached to heap region.
2924       return;
2925     }
2926 
2927     // Don't check the code roots during marking verification in a full GC
2928     if (_vo == VerifyOption_G1UseMarkWord) {
2929       return;
2930     }
2931 
2932     // Now verify that the current nmethod (which contains p) is
2933     // in the code root list of the heap region containing the
2934     // object referenced by p.
2935 
2936     T heap_oop = oopDesc::load_heap_oop(p);
2937     if (!oopDesc::is_null(heap_oop)) {
2938       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2939 
2940       // Now fetch the region containing the object
2941       HeapRegion* hr = _g1h->heap_region_containing(obj);
2942       HeapRegionRemSet* hrrs = hr->rem_set();
2943       // Verify that the strong code root list for this region
2944       // contains the nmethod
2945       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2946         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2947                               "from nmethod "PTR_FORMAT" not in strong "
2948                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2949                               p, _nm, hr->bottom(), hr->end());
2950         _failures = true;
2951       }
2952     }
2953   }
2954 
2955 public:
2956   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2957     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2958 
2959   void do_oop(oop* p) { do_oop_work(p); }
2960   void do_oop(narrowOop* p) { do_oop_work(p); }
2961 
2962   void set_nmethod(nmethod* nm) { _nm = nm; }
2963   bool failures() { return _failures; }
2964 };
2965 
2966 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2967   G1VerifyCodeRootOopClosure* _oop_cl;
2968 
2969 public:
2970   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2971     _oop_cl(oop_cl) {}
2972 
2973   void do_code_blob(CodeBlob* cb) {
2974     nmethod* nm = cb->as_nmethod_or_null();
2975     if (nm != NULL) {
2976       _oop_cl->set_nmethod(nm);
2977       nm->oops_do(_oop_cl);
2978     }
2979   }
2980 };
2981 
2982 class YoungRefCounterClosure : public OopClosure {
2983   G1CollectedHeap* _g1h;
2984   int              _count;
2985  public:
2986   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2987   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2988   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2989 
2990   int count() { return _count; }
2991   void reset_count() { _count = 0; };
2992 };
2993 
2994 class VerifyKlassClosure: public KlassClosure {
2995   YoungRefCounterClosure _young_ref_counter_closure;
2996   OopClosure *_oop_closure;
2997  public:
2998   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2999   void do_klass(Klass* k) {
3000     k->oops_do(_oop_closure);
3001 
3002     _young_ref_counter_closure.reset_count();
3003     k->oops_do(&_young_ref_counter_closure);
3004     if (_young_ref_counter_closure.count() > 0) {
3005       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
3006     }
3007   }
3008 };
3009 
3010 class VerifyLivenessOopClosure: public OopClosure {
3011   G1CollectedHeap* _g1h;
3012   VerifyOption _vo;
3013 public:
3014   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3015     _g1h(g1h), _vo(vo)
3016   { }
3017   void do_oop(narrowOop *p) { do_oop_work(p); }
3018   void do_oop(      oop *p) { do_oop_work(p); }
3019 
3020   template <class T> void do_oop_work(T *p) {
3021     oop obj = oopDesc::load_decode_heap_oop(p);
3022     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3023               "Dead object referenced by a not dead object");
3024   }
3025 };
3026 
3027 class VerifyObjsInRegionClosure: public ObjectClosure {
3028 private:
3029   G1CollectedHeap* _g1h;
3030   size_t _live_bytes;
3031   HeapRegion *_hr;
3032   VerifyOption _vo;
3033 public:
3034   // _vo == UsePrevMarking -> use "prev" marking information,
3035   // _vo == UseNextMarking -> use "next" marking information,
3036   // _vo == UseMarkWord    -> use mark word from object header.
3037   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3038     : _live_bytes(0), _hr(hr), _vo(vo) {
3039     _g1h = G1CollectedHeap::heap();
3040   }
3041   void do_object(oop o) {
3042     VerifyLivenessOopClosure isLive(_g1h, _vo);
3043     assert(o != NULL, "Huh?");
3044     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3045       // If the object is alive according to the mark word,
3046       // then verify that the marking information agrees.
3047       // Note we can't verify the contra-positive of the
3048       // above: if the object is dead (according to the mark
3049       // word), it may not be marked, or may have been marked
3050       // but has since became dead, or may have been allocated
3051       // since the last marking.
3052       if (_vo == VerifyOption_G1UseMarkWord) {
3053         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3054       }
3055 
3056       o->oop_iterate_no_header(&isLive);
3057       if (!_hr->obj_allocated_since_prev_marking(o)) {
3058         size_t obj_size = o->size();    // Make sure we don't overflow
3059         _live_bytes += (obj_size * HeapWordSize);
3060       }
3061     }
3062   }
3063   size_t live_bytes() { return _live_bytes; }
3064 };
3065 
3066 class PrintObjsInRegionClosure : public ObjectClosure {
3067   HeapRegion *_hr;
3068   G1CollectedHeap *_g1;
3069 public:
3070   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3071     _g1 = G1CollectedHeap::heap();
3072   };
3073 
3074   void do_object(oop o) {
3075     if (o != NULL) {
3076       HeapWord *start = (HeapWord *) o;
3077       size_t word_sz = o->size();
3078       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3079                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3080                           (void*) o, word_sz,
3081                           _g1->isMarkedPrev(o),
3082                           _g1->isMarkedNext(o),
3083                           _hr->obj_allocated_since_prev_marking(o));
3084       HeapWord *end = start + word_sz;
3085       HeapWord *cur;
3086       int *val;
3087       for (cur = start; cur < end; cur++) {
3088         val = (int *) cur;
3089         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3090       }
3091     }
3092   }
3093 };
3094 
3095 class VerifyRegionClosure: public HeapRegionClosure {
3096 private:
3097   bool             _par;
3098   VerifyOption     _vo;
3099   bool             _failures;
3100 public:
3101   // _vo == UsePrevMarking -> use "prev" marking information,
3102   // _vo == UseNextMarking -> use "next" marking information,
3103   // _vo == UseMarkWord    -> use mark word from object header.
3104   VerifyRegionClosure(bool par, VerifyOption vo)
3105     : _par(par),
3106       _vo(vo),
3107       _failures(false) {}
3108 
3109   bool failures() {
3110     return _failures;
3111   }
3112 
3113   bool doHeapRegion(HeapRegion* r) {
3114     if (!r->is_continues_humongous()) {
3115       bool failures = false;
3116       r->verify(_vo, &failures);
3117       if (failures) {
3118         _failures = true;
3119       } else {
3120         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3121         r->object_iterate(&not_dead_yet_cl);
3122         if (_vo != VerifyOption_G1UseNextMarking) {
3123           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3124             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3125                                    "max_live_bytes "SIZE_FORMAT" "
3126                                    "< calculated "SIZE_FORMAT,
3127                                    r->bottom(), r->end(),
3128                                    r->max_live_bytes(),
3129                                  not_dead_yet_cl.live_bytes());
3130             _failures = true;
3131           }
3132         } else {
3133           // When vo == UseNextMarking we cannot currently do a sanity
3134           // check on the live bytes as the calculation has not been
3135           // finalized yet.
3136         }
3137       }
3138     }
3139     return false; // stop the region iteration if we hit a failure
3140   }
3141 };
3142 
3143 // This is the task used for parallel verification of the heap regions
3144 
3145 class G1ParVerifyTask: public AbstractGangTask {
3146 private:
3147   G1CollectedHeap*  _g1h;
3148   VerifyOption      _vo;
3149   bool              _failures;
3150   HeapRegionClaimer _hrclaimer;
3151 
3152 public:
3153   // _vo == UsePrevMarking -> use "prev" marking information,
3154   // _vo == UseNextMarking -> use "next" marking information,
3155   // _vo == UseMarkWord    -> use mark word from object header.
3156   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3157       AbstractGangTask("Parallel verify task"),
3158       _g1h(g1h),
3159       _vo(vo),
3160       _failures(false),
3161       _hrclaimer(g1h->workers()->active_workers()) {}
3162 
3163   bool failures() {
3164     return _failures;
3165   }
3166 
3167   void work(uint worker_id) {
3168     HandleMark hm;
3169     VerifyRegionClosure blk(true, _vo);
3170     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3171     if (blk.failures()) {
3172       _failures = true;
3173     }
3174   }
3175 };
3176 
3177 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3178   if (SafepointSynchronize::is_at_safepoint()) {
3179     assert(Thread::current()->is_VM_thread(),
3180            "Expected to be executed serially by the VM thread at this point");
3181 
3182     if (!silent) { gclog_or_tty->print("Roots "); }
3183     VerifyRootsClosure rootsCl(vo);
3184     VerifyKlassClosure klassCl(this, &rootsCl);
3185     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3186 
3187     // We apply the relevant closures to all the oops in the
3188     // system dictionary, class loader data graph, the string table
3189     // and the nmethods in the code cache.
3190     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3191     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3192 
3193     process_all_roots(true,            // activate StrongRootsScope
3194                       SO_AllCodeCache, // roots scanning options
3195                       &rootsCl,
3196                       &cldCl,
3197                       &blobsCl);
3198 
3199     bool failures = rootsCl.failures() || codeRootsCl.failures();
3200 
3201     if (vo != VerifyOption_G1UseMarkWord) {
3202       // If we're verifying during a full GC then the region sets
3203       // will have been torn down at the start of the GC. Therefore
3204       // verifying the region sets will fail. So we only verify
3205       // the region sets when not in a full GC.
3206       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3207       verify_region_sets();
3208     }
3209 
3210     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3211     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3212 
3213       G1ParVerifyTask task(this, vo);
3214       assert(UseDynamicNumberOfGCThreads ||
3215         workers()->active_workers() == workers()->total_workers(),
3216         "If not dynamic should be using all the workers");
3217       int n_workers = workers()->active_workers();
3218       set_par_threads(n_workers);
3219       workers()->run_task(&task);
3220       set_par_threads(0);
3221       if (task.failures()) {
3222         failures = true;
3223       }
3224 
3225     } else {
3226       VerifyRegionClosure blk(false, vo);
3227       heap_region_iterate(&blk);
3228       if (blk.failures()) {
3229         failures = true;
3230       }
3231     }
3232     if (!silent) gclog_or_tty->print("RemSet ");
3233     rem_set()->verify();
3234 
3235     if (G1StringDedup::is_enabled()) {
3236       if (!silent) gclog_or_tty->print("StrDedup ");
3237       G1StringDedup::verify();
3238     }
3239 
3240     if (failures) {
3241       gclog_or_tty->print_cr("Heap:");
3242       // It helps to have the per-region information in the output to
3243       // help us track down what went wrong. This is why we call
3244       // print_extended_on() instead of print_on().
3245       print_extended_on(gclog_or_tty);
3246       gclog_or_tty->cr();
3247 #ifndef PRODUCT
3248       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3249         concurrent_mark()->print_reachable("at-verification-failure",
3250                                            vo, false /* all */);
3251       }
3252 #endif
3253       gclog_or_tty->flush();
3254     }
3255     guarantee(!failures, "there should not have been any failures");
3256   } else {
3257     if (!silent) {
3258       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3259       if (G1StringDedup::is_enabled()) {
3260         gclog_or_tty->print(", StrDedup");
3261       }
3262       gclog_or_tty->print(") ");
3263     }
3264   }
3265 }
3266 
3267 void G1CollectedHeap::verify(bool silent) {
3268   verify(silent, VerifyOption_G1UsePrevMarking);
3269 }
3270 
3271 double G1CollectedHeap::verify(bool guard, const char* msg) {
3272   double verify_time_ms = 0.0;
3273 
3274   if (guard && total_collections() >= VerifyGCStartAt) {
3275     double verify_start = os::elapsedTime();
3276     HandleMark hm;  // Discard invalid handles created during verification
3277     prepare_for_verify();
3278     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3279     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3280   }
3281 
3282   return verify_time_ms;
3283 }
3284 
3285 void G1CollectedHeap::verify_before_gc() {
3286   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3287   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3288 }
3289 
3290 void G1CollectedHeap::verify_after_gc() {
3291   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3292   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3293 }
3294 
3295 class PrintRegionClosure: public HeapRegionClosure {
3296   outputStream* _st;
3297 public:
3298   PrintRegionClosure(outputStream* st) : _st(st) {}
3299   bool doHeapRegion(HeapRegion* r) {
3300     r->print_on(_st);
3301     return false;
3302   }
3303 };
3304 
3305 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3306                                        const HeapRegion* hr,
3307                                        const VerifyOption vo) const {
3308   switch (vo) {
3309   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3310   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3311   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3312   default:                            ShouldNotReachHere();
3313   }
3314   return false; // keep some compilers happy
3315 }
3316 
3317 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3318                                        const VerifyOption vo) const {
3319   switch (vo) {
3320   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3321   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3322   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3323   default:                            ShouldNotReachHere();
3324   }
3325   return false; // keep some compilers happy
3326 }
3327 
3328 void G1CollectedHeap::print_on(outputStream* st) const {
3329   st->print(" %-20s", "garbage-first heap");
3330   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3331             capacity()/K, used_unlocked()/K);
3332   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3333             _hrm.reserved().start(),
3334             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3335             _hrm.reserved().end());
3336   st->cr();
3337   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3338   uint young_regions = _young_list->length();
3339   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3340             (size_t) young_regions * HeapRegion::GrainBytes / K);
3341   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3342   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3343             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3344   st->cr();
3345   MetaspaceAux::print_on(st);
3346 }
3347 
3348 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3349   print_on(st);
3350 
3351   // Print the per-region information.
3352   st->cr();
3353   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3354                "HS=humongous(starts), HC=humongous(continues), "
3355                "CS=collection set, F=free, TS=gc time stamp, "
3356                "PTAMS=previous top-at-mark-start, "
3357                "NTAMS=next top-at-mark-start)");
3358   PrintRegionClosure blk(st);
3359   heap_region_iterate(&blk);
3360 }
3361 
3362 void G1CollectedHeap::print_on_error(outputStream* st) const {
3363   this->CollectedHeap::print_on_error(st);
3364 
3365   if (_cm != NULL) {
3366     st->cr();
3367     _cm->print_on_error(st);
3368   }
3369 }
3370 
3371 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3372   workers()->print_worker_threads_on(st);
3373   _cmThread->print_on(st);
3374   st->cr();
3375   _cm->print_worker_threads_on(st);
3376   _cg1r->print_worker_threads_on(st);
3377   if (G1StringDedup::is_enabled()) {
3378     G1StringDedup::print_worker_threads_on(st);
3379   }
3380 }
3381 
3382 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3383   workers()->threads_do(tc);
3384   tc->do_thread(_cmThread);
3385   _cg1r->threads_do(tc);
3386   if (G1StringDedup::is_enabled()) {
3387     G1StringDedup::threads_do(tc);
3388   }
3389 }
3390 
3391 void G1CollectedHeap::print_tracing_info() const {
3392   // We'll overload this to mean "trace GC pause statistics."
3393   if (TraceYoungGenTime || TraceOldGenTime) {
3394     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3395     // to that.
3396     g1_policy()->print_tracing_info();
3397   }
3398   if (G1SummarizeRSetStats) {
3399     g1_rem_set()->print_summary_info();
3400   }
3401   if (G1SummarizeConcMark) {
3402     concurrent_mark()->print_summary_info();
3403   }
3404   g1_policy()->print_yg_surv_rate_info();
3405   SpecializationStats::print();
3406 }
3407 
3408 #ifndef PRODUCT
3409 // Helpful for debugging RSet issues.
3410 
3411 class PrintRSetsClosure : public HeapRegionClosure {
3412 private:
3413   const char* _msg;
3414   size_t _occupied_sum;
3415 
3416 public:
3417   bool doHeapRegion(HeapRegion* r) {
3418     HeapRegionRemSet* hrrs = r->rem_set();
3419     size_t occupied = hrrs->occupied();
3420     _occupied_sum += occupied;
3421 
3422     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3423                            HR_FORMAT_PARAMS(r));
3424     if (occupied == 0) {
3425       gclog_or_tty->print_cr("  RSet is empty");
3426     } else {
3427       hrrs->print();
3428     }
3429     gclog_or_tty->print_cr("----------");
3430     return false;
3431   }
3432 
3433   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3434     gclog_or_tty->cr();
3435     gclog_or_tty->print_cr("========================================");
3436     gclog_or_tty->print_cr("%s", msg);
3437     gclog_or_tty->cr();
3438   }
3439 
3440   ~PrintRSetsClosure() {
3441     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3442     gclog_or_tty->print_cr("========================================");
3443     gclog_or_tty->cr();
3444   }
3445 };
3446 
3447 void G1CollectedHeap::print_cset_rsets() {
3448   PrintRSetsClosure cl("Printing CSet RSets");
3449   collection_set_iterate(&cl);
3450 }
3451 
3452 void G1CollectedHeap::print_all_rsets() {
3453   PrintRSetsClosure cl("Printing All RSets");;
3454   heap_region_iterate(&cl);
3455 }
3456 #endif // PRODUCT
3457 
3458 G1CollectedHeap* G1CollectedHeap::heap() {
3459   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3460          "not a garbage-first heap");
3461   return _g1h;
3462 }
3463 
3464 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3465   // always_do_update_barrier = false;
3466   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3467   // Fill TLAB's and such
3468   accumulate_statistics_all_tlabs();
3469   ensure_parsability(true);
3470 
3471   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3472       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3473     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3474   }
3475 }
3476 
3477 void G1CollectedHeap::gc_epilogue(bool full) {
3478 
3479   if (G1SummarizeRSetStats &&
3480       (G1SummarizeRSetStatsPeriod > 0) &&
3481       // we are at the end of the GC. Total collections has already been increased.
3482       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3483     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3484   }
3485 
3486   // FIXME: what is this about?
3487   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3488   // is set.
3489   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3490                         "derived pointer present"));
3491   // always_do_update_barrier = true;
3492 
3493   resize_all_tlabs();
3494   allocation_context_stats().update(full);
3495 
3496   // We have just completed a GC. Update the soft reference
3497   // policy with the new heap occupancy
3498   Universe::update_heap_info_at_gc();
3499 }
3500 
3501 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3502                                                unsigned int gc_count_before,
3503                                                bool* succeeded,
3504                                                GCCause::Cause gc_cause) {
3505   assert_heap_not_locked_and_not_at_safepoint();
3506   g1_policy()->record_stop_world_start();
3507   VM_G1IncCollectionPause op(gc_count_before,
3508                              word_size,
3509                              false, /* should_initiate_conc_mark */
3510                              g1_policy()->max_pause_time_ms(),
3511                              gc_cause);
3512 
3513   op.set_allocation_context(AllocationContext::current());
3514   VMThread::execute(&op);
3515 
3516   HeapWord* result = op.result();
3517   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3518   assert(result == NULL || ret_succeeded,
3519          "the result should be NULL if the VM did not succeed");
3520   *succeeded = ret_succeeded;
3521 
3522   assert_heap_not_locked();
3523   return result;
3524 }
3525 
3526 void
3527 G1CollectedHeap::doConcurrentMark() {
3528   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3529   if (!_cmThread->in_progress()) {
3530     _cmThread->set_started();
3531     CGC_lock->notify();
3532   }
3533 }
3534 
3535 size_t G1CollectedHeap::pending_card_num() {
3536   size_t extra_cards = 0;
3537   JavaThread *curr = Threads::first();
3538   while (curr != NULL) {
3539     DirtyCardQueue& dcq = curr->dirty_card_queue();
3540     extra_cards += dcq.size();
3541     curr = curr->next();
3542   }
3543   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3544   size_t buffer_size = dcqs.buffer_size();
3545   size_t buffer_num = dcqs.completed_buffers_num();
3546 
3547   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3548   // in bytes - not the number of 'entries'. We need to convert
3549   // into a number of cards.
3550   return (buffer_size * buffer_num + extra_cards) / oopSize;
3551 }
3552 
3553 size_t G1CollectedHeap::cards_scanned() {
3554   return g1_rem_set()->cardsScanned();
3555 }
3556 
3557 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3558   HeapRegion* region = region_at(index);
3559   assert(region->is_starts_humongous(), "Must start a humongous object");
3560   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3561 }
3562 
3563 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3564  private:
3565   size_t _total_humongous;
3566   size_t _candidate_humongous;
3567  public:
3568   RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
3569   }
3570 
3571   virtual bool doHeapRegion(HeapRegion* r) {
3572     if (!r->is_starts_humongous()) {
3573       return false;
3574     }
3575     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3576 
3577     uint region_idx = r->hrm_index();
3578     bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
3579     // Is_candidate already filters out humongous regions with some remembered set.
3580     // This will not lead to humongous object that we mistakenly keep alive because
3581     // during young collection the remembered sets will only be added to.
3582     if (is_candidate) {
3583       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
3584       _candidate_humongous++;
3585     }
3586     _total_humongous++;
3587 
3588     return false;
3589   }
3590 
3591   size_t total_humongous() const { return _total_humongous; }
3592   size_t candidate_humongous() const { return _candidate_humongous; }
3593 };
3594 
3595 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
3596   if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
3597     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
3598     return;
3599   }
3600 
3601   RegisterHumongousWithInCSetFastTestClosure cl;
3602   heap_region_iterate(&cl);
3603   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
3604                                                                   cl.candidate_humongous());
3605   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3606 
3607   if (_has_humongous_reclaim_candidates || G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
3608     clear_humongous_is_live_table();
3609   }
3610 }
3611 
3612 void
3613 G1CollectedHeap::setup_surviving_young_words() {
3614   assert(_surviving_young_words == NULL, "pre-condition");
3615   uint array_length = g1_policy()->young_cset_region_length();
3616   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3617   if (_surviving_young_words == NULL) {
3618     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3619                           "Not enough space for young surv words summary.");
3620   }
3621   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3622 #ifdef ASSERT
3623   for (uint i = 0;  i < array_length; ++i) {
3624     assert( _surviving_young_words[i] == 0, "memset above" );
3625   }
3626 #endif // !ASSERT
3627 }
3628 
3629 void
3630 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3631   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3632   uint array_length = g1_policy()->young_cset_region_length();
3633   for (uint i = 0; i < array_length; ++i) {
3634     _surviving_young_words[i] += surv_young_words[i];
3635   }
3636 }
3637 
3638 void
3639 G1CollectedHeap::cleanup_surviving_young_words() {
3640   guarantee( _surviving_young_words != NULL, "pre-condition" );
3641   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3642   _surviving_young_words = NULL;
3643 }
3644 
3645 #ifdef ASSERT
3646 class VerifyCSetClosure: public HeapRegionClosure {
3647 public:
3648   bool doHeapRegion(HeapRegion* hr) {
3649     // Here we check that the CSet region's RSet is ready for parallel
3650     // iteration. The fields that we'll verify are only manipulated
3651     // when the region is part of a CSet and is collected. Afterwards,
3652     // we reset these fields when we clear the region's RSet (when the
3653     // region is freed) so they are ready when the region is
3654     // re-allocated. The only exception to this is if there's an
3655     // evacuation failure and instead of freeing the region we leave
3656     // it in the heap. In that case, we reset these fields during
3657     // evacuation failure handling.
3658     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3659 
3660     // Here's a good place to add any other checks we'd like to
3661     // perform on CSet regions.
3662     return false;
3663   }
3664 };
3665 #endif // ASSERT
3666 
3667 #if TASKQUEUE_STATS
3668 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3669   st->print_raw_cr("GC Task Stats");
3670   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3671   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3672 }
3673 
3674 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3675   print_taskqueue_stats_hdr(st);
3676 
3677   TaskQueueStats totals;
3678   const int n = workers()->total_workers();
3679   for (int i = 0; i < n; ++i) {
3680     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3681     totals += task_queue(i)->stats;
3682   }
3683   st->print_raw("tot "); totals.print(st); st->cr();
3684 
3685   DEBUG_ONLY(totals.verify());
3686 }
3687 
3688 void G1CollectedHeap::reset_taskqueue_stats() {
3689   const int n = workers()->total_workers();
3690   for (int i = 0; i < n; ++i) {
3691     task_queue(i)->stats.reset();
3692   }
3693 }
3694 #endif // TASKQUEUE_STATS
3695 
3696 void G1CollectedHeap::log_gc_header() {
3697   if (!G1Log::fine()) {
3698     return;
3699   }
3700 
3701   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3702 
3703   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3704     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3705     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3706 
3707   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3708 }
3709 
3710 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3711   if (!G1Log::fine()) {
3712     return;
3713   }
3714 
3715   if (G1Log::finer()) {
3716     if (evacuation_failed()) {
3717       gclog_or_tty->print(" (to-space exhausted)");
3718     }
3719     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3720     g1_policy()->phase_times()->note_gc_end();
3721     g1_policy()->phase_times()->print(pause_time_sec);
3722     g1_policy()->print_detailed_heap_transition();
3723   } else {
3724     if (evacuation_failed()) {
3725       gclog_or_tty->print("--");
3726     }
3727     g1_policy()->print_heap_transition();
3728     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3729   }
3730   gclog_or_tty->flush();
3731 }
3732 
3733 bool
3734 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3735   assert_at_safepoint(true /* should_be_vm_thread */);
3736   guarantee(!is_gc_active(), "collection is not reentrant");
3737 
3738   if (GC_locker::check_active_before_gc()) {
3739     return false;
3740   }
3741 
3742   _gc_timer_stw->register_gc_start();
3743 
3744   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3745 
3746   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3747   ResourceMark rm;
3748 
3749   print_heap_before_gc();
3750   trace_heap_before_gc(_gc_tracer_stw);
3751 
3752   verify_region_sets_optional();
3753   verify_dirty_young_regions();
3754 
3755   // This call will decide whether this pause is an initial-mark
3756   // pause. If it is, during_initial_mark_pause() will return true
3757   // for the duration of this pause.
3758   g1_policy()->decide_on_conc_mark_initiation();
3759 
3760   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3761   assert(!g1_policy()->during_initial_mark_pause() ||
3762           g1_policy()->gcs_are_young(), "sanity");
3763 
3764   // We also do not allow mixed GCs during marking.
3765   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3766 
3767   // Record whether this pause is an initial mark. When the current
3768   // thread has completed its logging output and it's safe to signal
3769   // the CM thread, the flag's value in the policy has been reset.
3770   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3771 
3772   // Inner scope for scope based logging, timers, and stats collection
3773   {
3774     EvacuationInfo evacuation_info;
3775 
3776     if (g1_policy()->during_initial_mark_pause()) {
3777       // We are about to start a marking cycle, so we increment the
3778       // full collection counter.
3779       increment_old_marking_cycles_started();
3780       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3781     }
3782 
3783     _gc_tracer_stw->report_yc_type(yc_type());
3784 
3785     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3786 
3787     int active_workers = workers()->active_workers();
3788     double pause_start_sec = os::elapsedTime();
3789     g1_policy()->phase_times()->note_gc_start(active_workers);
3790     log_gc_header();
3791 
3792     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3793     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3794 
3795     // If the secondary_free_list is not empty, append it to the
3796     // free_list. No need to wait for the cleanup operation to finish;
3797     // the region allocation code will check the secondary_free_list
3798     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3799     // set, skip this step so that the region allocation code has to
3800     // get entries from the secondary_free_list.
3801     if (!G1StressConcRegionFreeing) {
3802       append_secondary_free_list_if_not_empty_with_lock();
3803     }
3804 
3805     assert(check_young_list_well_formed(), "young list should be well formed");
3806 
3807     // Don't dynamically change the number of GC threads this early.  A value of
3808     // 0 is used to indicate serial work.  When parallel work is done,
3809     // it will be set.
3810 
3811     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3812       IsGCActiveMark x;
3813 
3814       gc_prologue(false);
3815       increment_total_collections(false /* full gc */);
3816       increment_gc_time_stamp();
3817 
3818       verify_before_gc();
3819 
3820       check_bitmaps("GC Start");
3821 
3822       COMPILER2_PRESENT(DerivedPointerTable::clear());
3823 
3824       // Please see comment in g1CollectedHeap.hpp and
3825       // G1CollectedHeap::ref_processing_init() to see how
3826       // reference processing currently works in G1.
3827 
3828       // Enable discovery in the STW reference processor
3829       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3830                                             true /*verify_no_refs*/);
3831 
3832       {
3833         // We want to temporarily turn off discovery by the
3834         // CM ref processor, if necessary, and turn it back on
3835         // on again later if we do. Using a scoped
3836         // NoRefDiscovery object will do this.
3837         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3838 
3839         // Forget the current alloc region (we might even choose it to be part
3840         // of the collection set!).
3841         _allocator->release_mutator_alloc_region();
3842 
3843         // We should call this after we retire the mutator alloc
3844         // region(s) so that all the ALLOC / RETIRE events are generated
3845         // before the start GC event.
3846         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3847 
3848         // This timing is only used by the ergonomics to handle our pause target.
3849         // It is unclear why this should not include the full pause. We will
3850         // investigate this in CR 7178365.
3851         //
3852         // Preserving the old comment here if that helps the investigation:
3853         //
3854         // The elapsed time induced by the start time below deliberately elides
3855         // the possible verification above.
3856         double sample_start_time_sec = os::elapsedTime();
3857 
3858 #if YOUNG_LIST_VERBOSE
3859         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3860         _young_list->print();
3861         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3862 #endif // YOUNG_LIST_VERBOSE
3863 
3864         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3865 
3866         double scan_wait_start = os::elapsedTime();
3867         // We have to wait until the CM threads finish scanning the
3868         // root regions as it's the only way to ensure that all the
3869         // objects on them have been correctly scanned before we start
3870         // moving them during the GC.
3871         bool waited = _cm->root_regions()->wait_until_scan_finished();
3872         double wait_time_ms = 0.0;
3873         if (waited) {
3874           double scan_wait_end = os::elapsedTime();
3875           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3876         }
3877         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3878 
3879 #if YOUNG_LIST_VERBOSE
3880         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3881         _young_list->print();
3882 #endif // YOUNG_LIST_VERBOSE
3883 
3884         if (g1_policy()->during_initial_mark_pause()) {
3885           concurrent_mark()->checkpointRootsInitialPre();
3886         }
3887 
3888 #if YOUNG_LIST_VERBOSE
3889         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3890         _young_list->print();
3891         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3892 #endif // YOUNG_LIST_VERBOSE
3893 
3894         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3895 
3896         register_humongous_regions_with_in_cset_fast_test();
3897 
3898         _cm->note_start_of_gc();
3899         // We should not verify the per-thread SATB buffers given that
3900         // we have not filtered them yet (we'll do so during the
3901         // GC). We also call this after finalize_cset() to
3902         // ensure that the CSet has been finalized.
3903         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3904                                  true  /* verify_enqueued_buffers */,
3905                                  false /* verify_thread_buffers */,
3906                                  true  /* verify_fingers */);
3907 
3908         if (_hr_printer.is_active()) {
3909           HeapRegion* hr = g1_policy()->collection_set();
3910           while (hr != NULL) {
3911             _hr_printer.cset(hr);
3912             hr = hr->next_in_collection_set();
3913           }
3914         }
3915 
3916 #ifdef ASSERT
3917         VerifyCSetClosure cl;
3918         collection_set_iterate(&cl);
3919 #endif // ASSERT
3920 
3921         setup_surviving_young_words();
3922 
3923         // Initialize the GC alloc regions.
3924         _allocator->init_gc_alloc_regions(evacuation_info);
3925 
3926         // Actually do the work...
3927         evacuate_collection_set(evacuation_info);
3928 
3929         // We do this to mainly verify the per-thread SATB buffers
3930         // (which have been filtered by now) since we didn't verify
3931         // them earlier. No point in re-checking the stacks / enqueued
3932         // buffers given that the CSet has not changed since last time
3933         // we checked.
3934         _cm->verify_no_cset_oops(false /* verify_stacks */,
3935                                  false /* verify_enqueued_buffers */,
3936                                  true  /* verify_thread_buffers */,
3937                                  true  /* verify_fingers */);
3938 
3939         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3940 
3941         eagerly_reclaim_humongous_regions();
3942 
3943         g1_policy()->clear_collection_set();
3944 
3945         cleanup_surviving_young_words();
3946 
3947         // Start a new incremental collection set for the next pause.
3948         g1_policy()->start_incremental_cset_building();
3949 
3950         clear_cset_fast_test();
3951 
3952         _young_list->reset_sampled_info();
3953 
3954         // Don't check the whole heap at this point as the
3955         // GC alloc regions from this pause have been tagged
3956         // as survivors and moved on to the survivor list.
3957         // Survivor regions will fail the !is_young() check.
3958         assert(check_young_list_empty(false /* check_heap */),
3959           "young list should be empty");
3960 
3961 #if YOUNG_LIST_VERBOSE
3962         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3963         _young_list->print();
3964 #endif // YOUNG_LIST_VERBOSE
3965 
3966         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3967                                              _young_list->first_survivor_region(),
3968                                              _young_list->last_survivor_region());
3969 
3970         _young_list->reset_auxilary_lists();
3971 
3972         if (evacuation_failed()) {
3973           _allocator->set_used(recalculate_used());
3974           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3975           for (uint i = 0; i < n_queues; i++) {
3976             if (_evacuation_failed_info_array[i].has_failed()) {
3977               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3978             }
3979           }
3980         } else {
3981           // The "used" of the the collection set have already been subtracted
3982           // when they were freed.  Add in the bytes evacuated.
3983           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3984         }
3985 
3986         if (g1_policy()->during_initial_mark_pause()) {
3987           // We have to do this before we notify the CM threads that
3988           // they can start working to make sure that all the
3989           // appropriate initialization is done on the CM object.
3990           concurrent_mark()->checkpointRootsInitialPost();
3991           set_marking_started();
3992           // Note that we don't actually trigger the CM thread at
3993           // this point. We do that later when we're sure that
3994           // the current thread has completed its logging output.
3995         }
3996 
3997         allocate_dummy_regions();
3998 
3999 #if YOUNG_LIST_VERBOSE
4000         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4001         _young_list->print();
4002         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4003 #endif // YOUNG_LIST_VERBOSE
4004 
4005         _allocator->init_mutator_alloc_region();
4006 
4007         {
4008           size_t expand_bytes = g1_policy()->expansion_amount();
4009           if (expand_bytes > 0) {
4010             size_t bytes_before = capacity();
4011             // No need for an ergo verbose message here,
4012             // expansion_amount() does this when it returns a value > 0.
4013             if (!expand(expand_bytes)) {
4014               // We failed to expand the heap. Cannot do anything about it.
4015             }
4016           }
4017         }
4018 
4019         // We redo the verification but now wrt to the new CSet which
4020         // has just got initialized after the previous CSet was freed.
4021         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4022                                  true  /* verify_enqueued_buffers */,
4023                                  true  /* verify_thread_buffers */,
4024                                  true  /* verify_fingers */);
4025         _cm->note_end_of_gc();
4026 
4027         // This timing is only used by the ergonomics to handle our pause target.
4028         // It is unclear why this should not include the full pause. We will
4029         // investigate this in CR 7178365.
4030         double sample_end_time_sec = os::elapsedTime();
4031         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4032         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4033 
4034         MemoryService::track_memory_usage();
4035 
4036         // In prepare_for_verify() below we'll need to scan the deferred
4037         // update buffers to bring the RSets up-to-date if
4038         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4039         // the update buffers we'll probably need to scan cards on the
4040         // regions we just allocated to (i.e., the GC alloc
4041         // regions). However, during the last GC we called
4042         // set_saved_mark() on all the GC alloc regions, so card
4043         // scanning might skip the [saved_mark_word()...top()] area of
4044         // those regions (i.e., the area we allocated objects into
4045         // during the last GC). But it shouldn't. Given that
4046         // saved_mark_word() is conditional on whether the GC time stamp
4047         // on the region is current or not, by incrementing the GC time
4048         // stamp here we invalidate all the GC time stamps on all the
4049         // regions and saved_mark_word() will simply return top() for
4050         // all the regions. This is a nicer way of ensuring this rather
4051         // than iterating over the regions and fixing them. In fact, the
4052         // GC time stamp increment here also ensures that
4053         // saved_mark_word() will return top() between pauses, i.e.,
4054         // during concurrent refinement. So we don't need the
4055         // is_gc_active() check to decided which top to use when
4056         // scanning cards (see CR 7039627).
4057         increment_gc_time_stamp();
4058 
4059         verify_after_gc();
4060         check_bitmaps("GC End");
4061 
4062         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4063         ref_processor_stw()->verify_no_references_recorded();
4064 
4065         // CM reference discovery will be re-enabled if necessary.
4066       }
4067 
4068       // We should do this after we potentially expand the heap so
4069       // that all the COMMIT events are generated before the end GC
4070       // event, and after we retire the GC alloc regions so that all
4071       // RETIRE events are generated before the end GC event.
4072       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4073 
4074 #ifdef TRACESPINNING
4075       ParallelTaskTerminator::print_termination_counts();
4076 #endif
4077 
4078       gc_epilogue(false);
4079     }
4080 
4081     // Print the remainder of the GC log output.
4082     log_gc_footer(os::elapsedTime() - pause_start_sec);
4083 
4084     // It is not yet to safe to tell the concurrent mark to
4085     // start as we have some optional output below. We don't want the
4086     // output from the concurrent mark thread interfering with this
4087     // logging output either.
4088 
4089     _hrm.verify_optional();
4090     verify_region_sets_optional();
4091 
4092     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4093     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4094 
4095     print_heap_after_gc();
4096     trace_heap_after_gc(_gc_tracer_stw);
4097 
4098     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4099     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4100     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4101     // before any GC notifications are raised.
4102     g1mm()->update_sizes();
4103 
4104     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4105     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4106     _gc_timer_stw->register_gc_end();
4107     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4108   }
4109   // It should now be safe to tell the concurrent mark thread to start
4110   // without its logging output interfering with the logging output
4111   // that came from the pause.
4112 
4113   if (should_start_conc_mark) {
4114     // CAUTION: after the doConcurrentMark() call below,
4115     // the concurrent marking thread(s) could be running
4116     // concurrently with us. Make sure that anything after
4117     // this point does not assume that we are the only GC thread
4118     // running. Note: of course, the actual marking work will
4119     // not start until the safepoint itself is released in
4120     // SuspendibleThreadSet::desynchronize().
4121     doConcurrentMark();
4122   }
4123 
4124   return true;
4125 }
4126 
4127 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4128 {
4129   size_t gclab_word_size;
4130   switch (purpose) {
4131     case GCAllocForSurvived:
4132       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4133       break;
4134     case GCAllocForTenured:
4135       gclab_word_size = _old_plab_stats.desired_plab_sz();
4136       break;
4137     default:
4138       assert(false, "unknown GCAllocPurpose");
4139       gclab_word_size = _old_plab_stats.desired_plab_sz();
4140       break;
4141   }
4142 
4143   // Prevent humongous PLAB sizes for two reasons:
4144   // * PLABs are allocated using a similar paths as oops, but should
4145   //   never be in a humongous region
4146   // * Allowing humongous PLABs needlessly churns the region free lists
4147   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4148 }
4149 
4150 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4151   _drain_in_progress = false;
4152   set_evac_failure_closure(cl);
4153   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4154 }
4155 
4156 void G1CollectedHeap::finalize_for_evac_failure() {
4157   assert(_evac_failure_scan_stack != NULL &&
4158          _evac_failure_scan_stack->length() == 0,
4159          "Postcondition");
4160   assert(!_drain_in_progress, "Postcondition");
4161   delete _evac_failure_scan_stack;
4162   _evac_failure_scan_stack = NULL;
4163 }
4164 
4165 void G1CollectedHeap::remove_self_forwarding_pointers() {
4166   double remove_self_forwards_start = os::elapsedTime();
4167 
4168   set_par_threads();
4169   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4170   workers()->run_task(&rsfp_task);
4171   set_par_threads(0);
4172 
4173   // Now restore saved marks, if any.
4174   assert(_objs_with_preserved_marks.size() ==
4175             _preserved_marks_of_objs.size(), "Both or none.");
4176   while (!_objs_with_preserved_marks.is_empty()) {
4177     oop obj = _objs_with_preserved_marks.pop();
4178     markOop m = _preserved_marks_of_objs.pop();
4179     obj->set_mark(m);
4180   }
4181   _objs_with_preserved_marks.clear(true);
4182   _preserved_marks_of_objs.clear(true);
4183 
4184   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4185 }
4186 
4187 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4188   _evac_failure_scan_stack->push(obj);
4189 }
4190 
4191 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4192   assert(_evac_failure_scan_stack != NULL, "precondition");
4193 
4194   while (_evac_failure_scan_stack->length() > 0) {
4195      oop obj = _evac_failure_scan_stack->pop();
4196      _evac_failure_closure->set_region(heap_region_containing(obj));
4197      obj->oop_iterate_backwards(_evac_failure_closure);
4198   }
4199 }
4200 
4201 oop
4202 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4203                                                oop old) {
4204   assert(obj_in_cs(old),
4205          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4206                  (HeapWord*) old));
4207   markOop m = old->mark();
4208   oop forward_ptr = old->forward_to_atomic(old);
4209   if (forward_ptr == NULL) {
4210     // Forward-to-self succeeded.
4211     assert(_par_scan_state != NULL, "par scan state");
4212     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4213     uint queue_num = _par_scan_state->queue_num();
4214 
4215     _evacuation_failed = true;
4216     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4217     if (_evac_failure_closure != cl) {
4218       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4219       assert(!_drain_in_progress,
4220              "Should only be true while someone holds the lock.");
4221       // Set the global evac-failure closure to the current thread's.
4222       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4223       set_evac_failure_closure(cl);
4224       // Now do the common part.
4225       handle_evacuation_failure_common(old, m);
4226       // Reset to NULL.
4227       set_evac_failure_closure(NULL);
4228     } else {
4229       // The lock is already held, and this is recursive.
4230       assert(_drain_in_progress, "This should only be the recursive case.");
4231       handle_evacuation_failure_common(old, m);
4232     }
4233     return old;
4234   } else {
4235     // Forward-to-self failed. Either someone else managed to allocate
4236     // space for this object (old != forward_ptr) or they beat us in
4237     // self-forwarding it (old == forward_ptr).
4238     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4239            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4240                    "should not be in the CSet",
4241                    (HeapWord*) old, (HeapWord*) forward_ptr));
4242     return forward_ptr;
4243   }
4244 }
4245 
4246 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4247   preserve_mark_if_necessary(old, m);
4248 
4249   HeapRegion* r = heap_region_containing(old);
4250   if (!r->evacuation_failed()) {
4251     r->set_evacuation_failed(true);
4252     _hr_printer.evac_failure(r);
4253   }
4254 
4255   push_on_evac_failure_scan_stack(old);
4256 
4257   if (!_drain_in_progress) {
4258     // prevent recursion in copy_to_survivor_space()
4259     _drain_in_progress = true;
4260     drain_evac_failure_scan_stack();
4261     _drain_in_progress = false;
4262   }
4263 }
4264 
4265 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4266   assert(evacuation_failed(), "Oversaving!");
4267   // We want to call the "for_promotion_failure" version only in the
4268   // case of a promotion failure.
4269   if (m->must_be_preserved_for_promotion_failure(obj)) {
4270     _objs_with_preserved_marks.push(obj);
4271     _preserved_marks_of_objs.push(m);
4272   }
4273 }
4274 
4275 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4276                                                   size_t word_size,
4277                                                   AllocationContext_t context) {
4278   if (purpose == GCAllocForSurvived) {
4279     HeapWord* result = survivor_attempt_allocation(word_size, context);
4280     if (result != NULL) {
4281       return result;
4282     } else {
4283       // Let's try to allocate in the old gen in case we can fit the
4284       // object there.
4285       return old_attempt_allocation(word_size, context);
4286     }
4287   } else {
4288     assert(purpose ==  GCAllocForTenured, "sanity");
4289     HeapWord* result = old_attempt_allocation(word_size, context);
4290     if (result != NULL) {
4291       return result;
4292     } else {
4293       // Let's try to allocate in the survivors in case we can fit the
4294       // object there.
4295       return survivor_attempt_allocation(word_size, context);
4296     }
4297   }
4298 
4299   ShouldNotReachHere();
4300   // Trying to keep some compilers happy.
4301   return NULL;
4302 }
4303 
4304 void G1ParCopyHelper::mark_object(oop obj) {
4305   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4306 
4307   // We know that the object is not moving so it's safe to read its size.
4308   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4309 }
4310 
4311 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4312   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4313   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4314   assert(from_obj != to_obj, "should not be self-forwarded");
4315 
4316   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4317   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4318 
4319   // The object might be in the process of being copied by another
4320   // worker so we cannot trust that its to-space image is
4321   // well-formed. So we have to read its size from its from-space
4322   // image which we know should not be changing.
4323   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4324 }
4325 
4326 template <class T>
4327 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4328   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4329     _scanned_klass->record_modified_oops();
4330   }
4331 }
4332 
4333 template <G1Barrier barrier, G1Mark do_mark_object>
4334 template <class T>
4335 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4336   T heap_oop = oopDesc::load_heap_oop(p);
4337 
4338   if (oopDesc::is_null(heap_oop)) {
4339     return;
4340   }
4341 
4342   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4343 
4344   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4345 
4346   G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj);
4347 
4348   if (state == G1CollectedHeap::InCSet) {
4349     oop forwardee;
4350     if (obj->is_forwarded()) {
4351       forwardee = obj->forwardee();
4352     } else {
4353       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4354     }
4355     assert(forwardee != NULL, "forwardee should not be NULL");
4356     oopDesc::encode_store_heap_oop(p, forwardee);
4357     if (do_mark_object != G1MarkNone && forwardee != obj) {
4358       // If the object is self-forwarded we don't need to explicitly
4359       // mark it, the evacuation failure protocol will do so.
4360       mark_forwarded_object(obj, forwardee);
4361     }
4362 
4363     if (barrier == G1BarrierKlass) {
4364       do_klass_barrier(p, forwardee);
4365     }
4366   } else {
4367     if (state == G1CollectedHeap::IsHumongous) {
4368       _g1->set_humongous_is_live(obj);
4369     }
4370     // The object is not in collection set. If we're a root scanning
4371     // closure during an initial mark pause then attempt to mark the object.
4372     if (do_mark_object == G1MarkFromRoot) {
4373       mark_object(obj);
4374     }
4375   }
4376 
4377   if (barrier == G1BarrierEvac) {
4378     _par_scan_state->update_rs(_from, p, _worker_id);
4379   }
4380 }
4381 
4382 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4383 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4384 
4385 class G1ParEvacuateFollowersClosure : public VoidClosure {
4386 protected:
4387   G1CollectedHeap*              _g1h;
4388   G1ParScanThreadState*         _par_scan_state;
4389   RefToScanQueueSet*            _queues;
4390   ParallelTaskTerminator*       _terminator;
4391 
4392   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4393   RefToScanQueueSet*      queues()         { return _queues; }
4394   ParallelTaskTerminator* terminator()     { return _terminator; }
4395 
4396 public:
4397   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4398                                 G1ParScanThreadState* par_scan_state,
4399                                 RefToScanQueueSet* queues,
4400                                 ParallelTaskTerminator* terminator)
4401     : _g1h(g1h), _par_scan_state(par_scan_state),
4402       _queues(queues), _terminator(terminator) {}
4403 
4404   void do_void();
4405 
4406 private:
4407   inline bool offer_termination();
4408 };
4409 
4410 bool G1ParEvacuateFollowersClosure::offer_termination() {
4411   G1ParScanThreadState* const pss = par_scan_state();
4412   pss->start_term_time();
4413   const bool res = terminator()->offer_termination();
4414   pss->end_term_time();
4415   return res;
4416 }
4417 
4418 void G1ParEvacuateFollowersClosure::do_void() {
4419   G1ParScanThreadState* const pss = par_scan_state();
4420   pss->trim_queue();
4421   do {
4422     pss->steal_and_trim_queue(queues());
4423   } while (!offer_termination());
4424 }
4425 
4426 class G1KlassScanClosure : public KlassClosure {
4427  G1ParCopyHelper* _closure;
4428  bool             _process_only_dirty;
4429  int              _count;
4430  public:
4431   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4432       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4433   void do_klass(Klass* klass) {
4434     // If the klass has not been dirtied we know that there's
4435     // no references into  the young gen and we can skip it.
4436    if (!_process_only_dirty || klass->has_modified_oops()) {
4437       // Clean the klass since we're going to scavenge all the metadata.
4438       klass->clear_modified_oops();
4439 
4440       // Tell the closure that this klass is the Klass to scavenge
4441       // and is the one to dirty if oops are left pointing into the young gen.
4442       _closure->set_scanned_klass(klass);
4443 
4444       klass->oops_do(_closure);
4445 
4446       _closure->set_scanned_klass(NULL);
4447     }
4448     _count++;
4449   }
4450 };
4451 
4452 class G1CodeBlobClosure : public CodeBlobClosure {
4453   class HeapRegionGatheringOopClosure : public OopClosure {
4454     G1CollectedHeap* _g1h;
4455     OopClosure* _work;
4456     nmethod* _nm;
4457 
4458     template <typename T>
4459     void do_oop_work(T* p) {
4460       _work->do_oop(p);
4461       T oop_or_narrowoop = oopDesc::load_heap_oop(p);
4462       if (!oopDesc::is_null(oop_or_narrowoop)) {
4463         oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop);
4464         HeapRegion* hr = _g1h->heap_region_containing_raw(o);
4465         assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset");
4466         hr->add_strong_code_root(_nm);
4467       }
4468     }
4469 
4470   public:
4471     HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {}
4472 
4473     void do_oop(oop* o) {
4474       do_oop_work(o);
4475     }
4476 
4477     void do_oop(narrowOop* o) {
4478       do_oop_work(o);
4479     }
4480 
4481     void set_nm(nmethod* nm) {
4482       _nm = nm;
4483     }
4484   };
4485 
4486   HeapRegionGatheringOopClosure _oc;
4487 public:
4488   G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {}
4489 
4490   void do_code_blob(CodeBlob* cb) {
4491     nmethod* nm = cb->as_nmethod_or_null();
4492     if (nm != NULL) {
4493       if (!nm->test_set_oops_do_mark()) {
4494         _oc.set_nm(nm);
4495         nm->oops_do(&_oc);
4496         nm->fix_oop_relocations();
4497       }
4498     }
4499   }
4500 };
4501 
4502 class G1ParTask : public AbstractGangTask {
4503 protected:
4504   G1CollectedHeap*       _g1h;
4505   RefToScanQueueSet      *_queues;
4506   ParallelTaskTerminator _terminator;
4507   uint _n_workers;
4508 
4509   Mutex _stats_lock;
4510   Mutex* stats_lock() { return &_stats_lock; }
4511 
4512 public:
4513   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4514     : AbstractGangTask("G1 collection"),
4515       _g1h(g1h),
4516       _queues(task_queues),
4517       _terminator(0, _queues),
4518       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4519   {}
4520 
4521   RefToScanQueueSet* queues() { return _queues; }
4522 
4523   RefToScanQueue *work_queue(int i) {
4524     return queues()->queue(i);
4525   }
4526 
4527   ParallelTaskTerminator* terminator() { return &_terminator; }
4528 
4529   virtual void set_for_termination(int active_workers) {
4530     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4531     // in the young space (_par_seq_tasks) in the G1 heap
4532     // for SequentialSubTasksDone.
4533     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4534     // both of which need setting by set_n_termination().
4535     _g1h->SharedHeap::set_n_termination(active_workers);
4536     _g1h->set_n_termination(active_workers);
4537     terminator()->reset_for_reuse(active_workers);
4538     _n_workers = active_workers;
4539   }
4540 
4541   // Helps out with CLD processing.
4542   //
4543   // During InitialMark we need to:
4544   // 1) Scavenge all CLDs for the young GC.
4545   // 2) Mark all objects directly reachable from strong CLDs.
4546   template <G1Mark do_mark_object>
4547   class G1CLDClosure : public CLDClosure {
4548     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4549     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4550     G1KlassScanClosure                                _klass_in_cld_closure;
4551     bool                                              _claim;
4552 
4553    public:
4554     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4555                  bool only_young, bool claim)
4556         : _oop_closure(oop_closure),
4557           _oop_in_klass_closure(oop_closure->g1(),
4558                                 oop_closure->pss(),
4559                                 oop_closure->rp()),
4560           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4561           _claim(claim) {
4562 
4563     }
4564 
4565     void do_cld(ClassLoaderData* cld) {
4566       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4567     }
4568   };
4569 
4570   void work(uint worker_id) {
4571     if (worker_id >= _n_workers) return;  // no work needed this round
4572 
4573     double start_time_ms = os::elapsedTime() * 1000.0;
4574     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4575 
4576     {
4577       ResourceMark rm;
4578       HandleMark   hm;
4579 
4580       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4581 
4582       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4583       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4584 
4585       pss.set_evac_failure_closure(&evac_failure_cl);
4586 
4587       bool only_young = _g1h->g1_policy()->gcs_are_young();
4588 
4589       // Non-IM young GC.
4590       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4591       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4592                                                                                only_young, // Only process dirty klasses.
4593                                                                                false);     // No need to claim CLDs.
4594       // IM young GC.
4595       //    Strong roots closures.
4596       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4597       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4598                                                                                false, // Process all klasses.
4599                                                                                true); // Need to claim CLDs.
4600       //    Weak roots closures.
4601       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4602       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4603                                                                                     false, // Process all klasses.
4604                                                                                     true); // Need to claim CLDs.
4605 
4606       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
4607       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
4608       // IM Weak code roots are handled later.
4609 
4610       OopClosure* strong_root_cl;
4611       OopClosure* weak_root_cl;
4612       CLDClosure* strong_cld_cl;
4613       CLDClosure* weak_cld_cl;
4614       CodeBlobClosure* strong_code_cl;
4615 
4616       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4617         // We also need to mark copied objects.
4618         strong_root_cl = &scan_mark_root_cl;
4619         strong_cld_cl  = &scan_mark_cld_cl;
4620         strong_code_cl = &scan_mark_code_cl;
4621         if (ClassUnloadingWithConcurrentMark) {
4622           weak_root_cl = &scan_mark_weak_root_cl;
4623           weak_cld_cl  = &scan_mark_weak_cld_cl;
4624         } else {
4625           weak_root_cl = &scan_mark_root_cl;
4626           weak_cld_cl  = &scan_mark_cld_cl;
4627         }
4628       } else {
4629         strong_root_cl = &scan_only_root_cl;
4630         weak_root_cl   = &scan_only_root_cl;
4631         strong_cld_cl  = &scan_only_cld_cl;
4632         weak_cld_cl    = &scan_only_cld_cl;
4633         strong_code_cl = &scan_only_code_cl;
4634       }
4635 
4636 
4637       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
4638 
4639       pss.start_strong_roots();
4640       _g1h->g1_process_roots(strong_root_cl,
4641                              weak_root_cl,
4642                              &push_heap_rs_cl,
4643                              strong_cld_cl,
4644                              weak_cld_cl,
4645                              strong_code_cl,
4646                              worker_id);
4647 
4648       pss.end_strong_roots();
4649 
4650       {
4651         double start = os::elapsedTime();
4652         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4653         evac.do_void();
4654         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4655         double term_ms = pss.term_time()*1000.0;
4656         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4657         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4658       }
4659       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4660       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4661 
4662       if (PrintTerminationStats) {
4663         MutexLocker x(stats_lock());
4664         pss.print_termination_stats(worker_id);
4665       }
4666 
4667       assert(pss.queue_is_empty(), "should be empty");
4668 
4669       // Close the inner scope so that the ResourceMark and HandleMark
4670       // destructors are executed here and are included as part of the
4671       // "GC Worker Time".
4672     }
4673 
4674     double end_time_ms = os::elapsedTime() * 1000.0;
4675     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4676   }
4677 };
4678 
4679 // *** Common G1 Evacuation Stuff
4680 
4681 // This method is run in a GC worker.
4682 
4683 void
4684 G1CollectedHeap::
4685 g1_process_roots(OopClosure* scan_non_heap_roots,
4686                  OopClosure* scan_non_heap_weak_roots,
4687                  OopsInHeapRegionClosure* scan_rs,
4688                  CLDClosure* scan_strong_clds,
4689                  CLDClosure* scan_weak_clds,
4690                  CodeBlobClosure* scan_strong_code,
4691                  uint worker_i) {
4692 
4693   // First scan the shared roots.
4694   double ext_roots_start = os::elapsedTime();
4695   double closure_app_time_sec = 0.0;
4696 
4697   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
4698   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
4699 
4700   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4701   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
4702 
4703   process_roots(false, // no scoping; this is parallel code
4704                 SharedHeap::SO_None,
4705                 &buf_scan_non_heap_roots,
4706                 &buf_scan_non_heap_weak_roots,
4707                 scan_strong_clds,
4708                 // Unloading Initial Marks handle the weak CLDs separately.
4709                 (trace_metadata ? NULL : scan_weak_clds),
4710                 scan_strong_code);
4711 
4712   // Now the CM ref_processor roots.
4713   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4714     // We need to treat the discovered reference lists of the
4715     // concurrent mark ref processor as roots and keep entries
4716     // (which are added by the marking threads) on them live
4717     // until they can be processed at the end of marking.
4718     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4719   }
4720 
4721   if (trace_metadata) {
4722     // Barrier to make sure all workers passed
4723     // the strong CLD and strong nmethods phases.
4724     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
4725 
4726     // Now take the complement of the strong CLDs.
4727     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
4728   }
4729 
4730   // Finish up any enqueued closure apps (attributed as object copy time).
4731   buf_scan_non_heap_roots.done();
4732   buf_scan_non_heap_weak_roots.done();
4733 
4734   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
4735       + buf_scan_non_heap_weak_roots.closure_app_seconds();
4736 
4737   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4738 
4739   double ext_root_time_ms =
4740     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4741 
4742   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4743 
4744   // During conc marking we have to filter the per-thread SATB buffers
4745   // to make sure we remove any oops into the CSet (which will show up
4746   // as implicitly live).
4747   double satb_filtering_ms = 0.0;
4748   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4749     if (mark_in_progress()) {
4750       double satb_filter_start = os::elapsedTime();
4751 
4752       JavaThread::satb_mark_queue_set().filter_thread_buffers();
4753 
4754       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
4755     }
4756   }
4757   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4758 
4759   // Now scan the complement of the collection set.
4760   G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots);
4761 
4762   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
4763 
4764   _process_strong_tasks->all_tasks_completed();
4765 }
4766 
4767 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4768 private:
4769   BoolObjectClosure* _is_alive;
4770   int _initial_string_table_size;
4771   int _initial_symbol_table_size;
4772 
4773   bool  _process_strings;
4774   int _strings_processed;
4775   int _strings_removed;
4776 
4777   bool  _process_symbols;
4778   int _symbols_processed;
4779   int _symbols_removed;
4780 
4781 public:
4782   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4783     AbstractGangTask("String/Symbol Unlinking"),
4784     _is_alive(is_alive),
4785     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4786     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4787 
4788     _initial_string_table_size = StringTable::the_table()->table_size();
4789     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4790     if (process_strings) {
4791       StringTable::clear_parallel_claimed_index();
4792     }
4793     if (process_symbols) {
4794       SymbolTable::clear_parallel_claimed_index();
4795     }
4796   }
4797 
4798   ~G1StringSymbolTableUnlinkTask() {
4799     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4800               err_msg("claim value %d after unlink less than initial string table size %d",
4801                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4802     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4803               err_msg("claim value %d after unlink less than initial symbol table size %d",
4804                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4805 
4806     if (G1TraceStringSymbolTableScrubbing) {
4807       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4808                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4809                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4810                              strings_processed(), strings_removed(),
4811                              symbols_processed(), symbols_removed());
4812     }
4813   }
4814 
4815   void work(uint worker_id) {
4816     int strings_processed = 0;
4817     int strings_removed = 0;
4818     int symbols_processed = 0;
4819     int symbols_removed = 0;
4820     if (_process_strings) {
4821       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4822       Atomic::add(strings_processed, &_strings_processed);
4823       Atomic::add(strings_removed, &_strings_removed);
4824     }
4825     if (_process_symbols) {
4826       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4827       Atomic::add(symbols_processed, &_symbols_processed);
4828       Atomic::add(symbols_removed, &_symbols_removed);
4829     }
4830   }
4831 
4832   size_t strings_processed() const { return (size_t)_strings_processed; }
4833   size_t strings_removed()   const { return (size_t)_strings_removed; }
4834 
4835   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4836   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4837 };
4838 
4839 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4840 private:
4841   static Monitor* _lock;
4842 
4843   BoolObjectClosure* const _is_alive;
4844   const bool               _unloading_occurred;
4845   const uint               _num_workers;
4846 
4847   // Variables used to claim nmethods.
4848   nmethod* _first_nmethod;
4849   volatile nmethod* _claimed_nmethod;
4850 
4851   // The list of nmethods that need to be processed by the second pass.
4852   volatile nmethod* _postponed_list;
4853   volatile uint     _num_entered_barrier;
4854 
4855  public:
4856   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4857       _is_alive(is_alive),
4858       _unloading_occurred(unloading_occurred),
4859       _num_workers(num_workers),
4860       _first_nmethod(NULL),
4861       _claimed_nmethod(NULL),
4862       _postponed_list(NULL),
4863       _num_entered_barrier(0)
4864   {
4865     nmethod::increase_unloading_clock();
4866     // Get first alive nmethod
4867     NMethodIterator iter = NMethodIterator();
4868     if(iter.next_alive()) {
4869       _first_nmethod = iter.method();
4870     }
4871     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4872   }
4873 
4874   ~G1CodeCacheUnloadingTask() {
4875     CodeCache::verify_clean_inline_caches();
4876 
4877     CodeCache::set_needs_cache_clean(false);
4878     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4879 
4880     CodeCache::verify_icholder_relocations();
4881   }
4882 
4883  private:
4884   void add_to_postponed_list(nmethod* nm) {
4885       nmethod* old;
4886       do {
4887         old = (nmethod*)_postponed_list;
4888         nm->set_unloading_next(old);
4889       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4890   }
4891 
4892   void clean_nmethod(nmethod* nm) {
4893     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4894 
4895     if (postponed) {
4896       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4897       add_to_postponed_list(nm);
4898     }
4899 
4900     // Mark that this thread has been cleaned/unloaded.
4901     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4902     nm->set_unloading_clock(nmethod::global_unloading_clock());
4903   }
4904 
4905   void clean_nmethod_postponed(nmethod* nm) {
4906     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4907   }
4908 
4909   static const int MaxClaimNmethods = 16;
4910 
4911   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4912     nmethod* first;
4913     NMethodIterator last;
4914 
4915     do {
4916       *num_claimed_nmethods = 0;
4917 
4918       first = (nmethod*)_claimed_nmethod;
4919       last = NMethodIterator(first);
4920 
4921       if (first != NULL) {
4922 
4923         for (int i = 0; i < MaxClaimNmethods; i++) {
4924           if (!last.next_alive()) {
4925             break;
4926           }
4927           claimed_nmethods[i] = last.method();
4928           (*num_claimed_nmethods)++;
4929         }
4930       }
4931 
4932     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4933   }
4934 
4935   nmethod* claim_postponed_nmethod() {
4936     nmethod* claim;
4937     nmethod* next;
4938 
4939     do {
4940       claim = (nmethod*)_postponed_list;
4941       if (claim == NULL) {
4942         return NULL;
4943       }
4944 
4945       next = claim->unloading_next();
4946 
4947     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4948 
4949     return claim;
4950   }
4951 
4952  public:
4953   // Mark that we're done with the first pass of nmethod cleaning.
4954   void barrier_mark(uint worker_id) {
4955     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4956     _num_entered_barrier++;
4957     if (_num_entered_barrier == _num_workers) {
4958       ml.notify_all();
4959     }
4960   }
4961 
4962   // See if we have to wait for the other workers to
4963   // finish their first-pass nmethod cleaning work.
4964   void barrier_wait(uint worker_id) {
4965     if (_num_entered_barrier < _num_workers) {
4966       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4967       while (_num_entered_barrier < _num_workers) {
4968           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4969       }
4970     }
4971   }
4972 
4973   // Cleaning and unloading of nmethods. Some work has to be postponed
4974   // to the second pass, when we know which nmethods survive.
4975   void work_first_pass(uint worker_id) {
4976     // The first nmethods is claimed by the first worker.
4977     if (worker_id == 0 && _first_nmethod != NULL) {
4978       clean_nmethod(_first_nmethod);
4979       _first_nmethod = NULL;
4980     }
4981 
4982     int num_claimed_nmethods;
4983     nmethod* claimed_nmethods[MaxClaimNmethods];
4984 
4985     while (true) {
4986       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4987 
4988       if (num_claimed_nmethods == 0) {
4989         break;
4990       }
4991 
4992       for (int i = 0; i < num_claimed_nmethods; i++) {
4993         clean_nmethod(claimed_nmethods[i]);
4994       }
4995     }
4996 
4997     // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
4998     // Need to retire the buffers now that this thread has stopped cleaning nmethods.
4999     MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
5000   }
5001 
5002   void work_second_pass(uint worker_id) {
5003     nmethod* nm;
5004     // Take care of postponed nmethods.
5005     while ((nm = claim_postponed_nmethod()) != NULL) {
5006       clean_nmethod_postponed(nm);
5007     }
5008   }
5009 };
5010 
5011 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
5012 
5013 class G1KlassCleaningTask : public StackObj {
5014   BoolObjectClosure*                      _is_alive;
5015   volatile jint                           _clean_klass_tree_claimed;
5016   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
5017 
5018  public:
5019   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
5020       _is_alive(is_alive),
5021       _clean_klass_tree_claimed(0),
5022       _klass_iterator() {
5023   }
5024 
5025  private:
5026   bool claim_clean_klass_tree_task() {
5027     if (_clean_klass_tree_claimed) {
5028       return false;
5029     }
5030 
5031     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
5032   }
5033 
5034   InstanceKlass* claim_next_klass() {
5035     Klass* klass;
5036     do {
5037       klass =_klass_iterator.next_klass();
5038     } while (klass != NULL && !klass->oop_is_instance());
5039 
5040     return (InstanceKlass*)klass;
5041   }
5042 
5043 public:
5044 
5045   void clean_klass(InstanceKlass* ik) {
5046     ik->clean_implementors_list(_is_alive);
5047     ik->clean_method_data(_is_alive);
5048 
5049     // G1 specific cleanup work that has
5050     // been moved here to be done in parallel.
5051     ik->clean_dependent_nmethods();
5052     if (JvmtiExport::has_redefined_a_class()) {
5053       InstanceKlass::purge_previous_versions(ik);
5054     }
5055   }
5056 
5057   void work() {
5058     ResourceMark rm;
5059 
5060     // One worker will clean the subklass/sibling klass tree.
5061     if (claim_clean_klass_tree_task()) {
5062       Klass::clean_subklass_tree(_is_alive);
5063     }
5064 
5065     // All workers will help cleaning the classes,
5066     InstanceKlass* klass;
5067     while ((klass = claim_next_klass()) != NULL) {
5068       clean_klass(klass);
5069     }
5070   }
5071 };
5072 
5073 // To minimize the remark pause times, the tasks below are done in parallel.
5074 class G1ParallelCleaningTask : public AbstractGangTask {
5075 private:
5076   G1StringSymbolTableUnlinkTask _string_symbol_task;
5077   G1CodeCacheUnloadingTask      _code_cache_task;
5078   G1KlassCleaningTask           _klass_cleaning_task;
5079 
5080 public:
5081   // The constructor is run in the VMThread.
5082   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5083       AbstractGangTask("Parallel Cleaning"),
5084       _string_symbol_task(is_alive, process_strings, process_symbols),
5085       _code_cache_task(num_workers, is_alive, unloading_occurred),
5086       _klass_cleaning_task(is_alive) {
5087   }
5088 
5089   void pre_work_verification() {
5090     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5091   }
5092 
5093   void post_work_verification() {
5094     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5095   }
5096 
5097   // The parallel work done by all worker threads.
5098   void work(uint worker_id) {
5099     pre_work_verification();
5100 
5101     // Do first pass of code cache cleaning.
5102     _code_cache_task.work_first_pass(worker_id);
5103 
5104     // Let the threads mark that the first pass is done.
5105     _code_cache_task.barrier_mark(worker_id);
5106 
5107     // Clean the Strings and Symbols.
5108     _string_symbol_task.work(worker_id);
5109 
5110     // Wait for all workers to finish the first code cache cleaning pass.
5111     _code_cache_task.barrier_wait(worker_id);
5112 
5113     // Do the second code cache cleaning work, which realize on
5114     // the liveness information gathered during the first pass.
5115     _code_cache_task.work_second_pass(worker_id);
5116 
5117     // Clean all klasses that were not unloaded.
5118     _klass_cleaning_task.work();
5119 
5120     post_work_verification();
5121   }
5122 };
5123 
5124 
5125 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5126                                         bool process_strings,
5127                                         bool process_symbols,
5128                                         bool class_unloading_occurred) {
5129   uint n_workers = workers()->active_workers();
5130 
5131   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5132                                         n_workers, class_unloading_occurred);
5133   set_par_threads(n_workers);
5134   workers()->run_task(&g1_unlink_task);
5135   set_par_threads(0);
5136 }
5137 
5138 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5139                                                      bool process_strings, bool process_symbols) {
5140   {
5141     uint n_workers = _g1h->workers()->active_workers();
5142     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5143     set_par_threads(n_workers);
5144     workers()->run_task(&g1_unlink_task);
5145     set_par_threads(0);
5146   }
5147 
5148   if (G1StringDedup::is_enabled()) {
5149     G1StringDedup::unlink(is_alive);
5150   }
5151 }
5152 
5153 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5154  private:
5155   DirtyCardQueueSet* _queue;
5156  public:
5157   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5158 
5159   virtual void work(uint worker_id) {
5160     double start_time = os::elapsedTime();
5161 
5162     RedirtyLoggedCardTableEntryClosure cl;
5163     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5164 
5165     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5166     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5167     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5168   }
5169 };
5170 
5171 void G1CollectedHeap::redirty_logged_cards() {
5172   double redirty_logged_cards_start = os::elapsedTime();
5173 
5174   uint n_workers = _g1h->workers()->active_workers();
5175 
5176   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5177   dirty_card_queue_set().reset_for_par_iteration();
5178   set_par_threads(n_workers);
5179   workers()->run_task(&redirty_task);
5180   set_par_threads(0);
5181 
5182   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5183   dcq.merge_bufferlists(&dirty_card_queue_set());
5184   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5185 
5186   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5187 }
5188 
5189 // Weak Reference Processing support
5190 
5191 // An always "is_alive" closure that is used to preserve referents.
5192 // If the object is non-null then it's alive.  Used in the preservation
5193 // of referent objects that are pointed to by reference objects
5194 // discovered by the CM ref processor.
5195 class G1AlwaysAliveClosure: public BoolObjectClosure {
5196   G1CollectedHeap* _g1;
5197 public:
5198   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5199   bool do_object_b(oop p) {
5200     if (p != NULL) {
5201       return true;
5202     }
5203     return false;
5204   }
5205 };
5206 
5207 bool G1STWIsAliveClosure::do_object_b(oop p) {
5208   // An object is reachable if it is outside the collection set,
5209   // or is inside and copied.
5210   return !_g1->obj_in_cs(p) || p->is_forwarded();
5211 }
5212 
5213 // Non Copying Keep Alive closure
5214 class G1KeepAliveClosure: public OopClosure {
5215   G1CollectedHeap* _g1;
5216 public:
5217   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5218   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5219   void do_oop(oop* p) {
5220     oop obj = *p;
5221     assert(obj != NULL, "the caller should have filtered out NULL values");
5222 
5223     G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj);
5224     if (cset_state == G1CollectedHeap::InNeither) {
5225       return;
5226     }
5227     if (cset_state == G1CollectedHeap::InCSet) {
5228       assert( obj->is_forwarded(), "invariant" );
5229       *p = obj->forwardee();
5230     } else {
5231       assert(!obj->is_forwarded(), "invariant" );
5232       assert(cset_state == G1CollectedHeap::IsHumongous,
5233              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state));
5234       _g1->set_humongous_is_live(obj);
5235     }
5236   }
5237 };
5238 
5239 // Copying Keep Alive closure - can be called from both
5240 // serial and parallel code as long as different worker
5241 // threads utilize different G1ParScanThreadState instances
5242 // and different queues.
5243 
5244 class G1CopyingKeepAliveClosure: public OopClosure {
5245   G1CollectedHeap*         _g1h;
5246   OopClosure*              _copy_non_heap_obj_cl;
5247   G1ParScanThreadState*    _par_scan_state;
5248 
5249 public:
5250   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5251                             OopClosure* non_heap_obj_cl,
5252                             G1ParScanThreadState* pss):
5253     _g1h(g1h),
5254     _copy_non_heap_obj_cl(non_heap_obj_cl),
5255     _par_scan_state(pss)
5256   {}
5257 
5258   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5259   virtual void do_oop(      oop* p) { do_oop_work(p); }
5260 
5261   template <class T> void do_oop_work(T* p) {
5262     oop obj = oopDesc::load_decode_heap_oop(p);
5263 
5264     if (_g1h->is_in_cset_or_humongous(obj)) {
5265       // If the referent object has been forwarded (either copied
5266       // to a new location or to itself in the event of an
5267       // evacuation failure) then we need to update the reference
5268       // field and, if both reference and referent are in the G1
5269       // heap, update the RSet for the referent.
5270       //
5271       // If the referent has not been forwarded then we have to keep
5272       // it alive by policy. Therefore we have copy the referent.
5273       //
5274       // If the reference field is in the G1 heap then we can push
5275       // on the PSS queue. When the queue is drained (after each
5276       // phase of reference processing) the object and it's followers
5277       // will be copied, the reference field set to point to the
5278       // new location, and the RSet updated. Otherwise we need to
5279       // use the the non-heap or metadata closures directly to copy
5280       // the referent object and update the pointer, while avoiding
5281       // updating the RSet.
5282 
5283       if (_g1h->is_in_g1_reserved(p)) {
5284         _par_scan_state->push_on_queue(p);
5285       } else {
5286         assert(!Metaspace::contains((const void*)p),
5287                err_msg("Unexpectedly found a pointer from metadata: "
5288                               PTR_FORMAT, p));
5289         _copy_non_heap_obj_cl->do_oop(p);
5290       }
5291     }
5292   }
5293 };
5294 
5295 // Serial drain queue closure. Called as the 'complete_gc'
5296 // closure for each discovered list in some of the
5297 // reference processing phases.
5298 
5299 class G1STWDrainQueueClosure: public VoidClosure {
5300 protected:
5301   G1CollectedHeap* _g1h;
5302   G1ParScanThreadState* _par_scan_state;
5303 
5304   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5305 
5306 public:
5307   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5308     _g1h(g1h),
5309     _par_scan_state(pss)
5310   { }
5311 
5312   void do_void() {
5313     G1ParScanThreadState* const pss = par_scan_state();
5314     pss->trim_queue();
5315   }
5316 };
5317 
5318 // Parallel Reference Processing closures
5319 
5320 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5321 // processing during G1 evacuation pauses.
5322 
5323 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5324 private:
5325   G1CollectedHeap*   _g1h;
5326   RefToScanQueueSet* _queues;
5327   FlexibleWorkGang*  _workers;
5328   int                _active_workers;
5329 
5330 public:
5331   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5332                         FlexibleWorkGang* workers,
5333                         RefToScanQueueSet *task_queues,
5334                         int n_workers) :
5335     _g1h(g1h),
5336     _queues(task_queues),
5337     _workers(workers),
5338     _active_workers(n_workers)
5339   {
5340     assert(n_workers > 0, "shouldn't call this otherwise");
5341   }
5342 
5343   // Executes the given task using concurrent marking worker threads.
5344   virtual void execute(ProcessTask& task);
5345   virtual void execute(EnqueueTask& task);
5346 };
5347 
5348 // Gang task for possibly parallel reference processing
5349 
5350 class G1STWRefProcTaskProxy: public AbstractGangTask {
5351   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5352   ProcessTask&     _proc_task;
5353   G1CollectedHeap* _g1h;
5354   RefToScanQueueSet *_task_queues;
5355   ParallelTaskTerminator* _terminator;
5356 
5357 public:
5358   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5359                      G1CollectedHeap* g1h,
5360                      RefToScanQueueSet *task_queues,
5361                      ParallelTaskTerminator* terminator) :
5362     AbstractGangTask("Process reference objects in parallel"),
5363     _proc_task(proc_task),
5364     _g1h(g1h),
5365     _task_queues(task_queues),
5366     _terminator(terminator)
5367   {}
5368 
5369   virtual void work(uint worker_id) {
5370     // The reference processing task executed by a single worker.
5371     ResourceMark rm;
5372     HandleMark   hm;
5373 
5374     G1STWIsAliveClosure is_alive(_g1h);
5375 
5376     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5377     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5378 
5379     pss.set_evac_failure_closure(&evac_failure_cl);
5380 
5381     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5382 
5383     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5384 
5385     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5386 
5387     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5388       // We also need to mark copied objects.
5389       copy_non_heap_cl = &copy_mark_non_heap_cl;
5390     }
5391 
5392     // Keep alive closure.
5393     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5394 
5395     // Complete GC closure
5396     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5397 
5398     // Call the reference processing task's work routine.
5399     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5400 
5401     // Note we cannot assert that the refs array is empty here as not all
5402     // of the processing tasks (specifically phase2 - pp2_work) execute
5403     // the complete_gc closure (which ordinarily would drain the queue) so
5404     // the queue may not be empty.
5405   }
5406 };
5407 
5408 // Driver routine for parallel reference processing.
5409 // Creates an instance of the ref processing gang
5410 // task and has the worker threads execute it.
5411 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5412   assert(_workers != NULL, "Need parallel worker threads.");
5413 
5414   ParallelTaskTerminator terminator(_active_workers, _queues);
5415   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5416 
5417   _g1h->set_par_threads(_active_workers);
5418   _workers->run_task(&proc_task_proxy);
5419   _g1h->set_par_threads(0);
5420 }
5421 
5422 // Gang task for parallel reference enqueueing.
5423 
5424 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5425   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5426   EnqueueTask& _enq_task;
5427 
5428 public:
5429   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5430     AbstractGangTask("Enqueue reference objects in parallel"),
5431     _enq_task(enq_task)
5432   { }
5433 
5434   virtual void work(uint worker_id) {
5435     _enq_task.work(worker_id);
5436   }
5437 };
5438 
5439 // Driver routine for parallel reference enqueueing.
5440 // Creates an instance of the ref enqueueing gang
5441 // task and has the worker threads execute it.
5442 
5443 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5444   assert(_workers != NULL, "Need parallel worker threads.");
5445 
5446   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5447 
5448   _g1h->set_par_threads(_active_workers);
5449   _workers->run_task(&enq_task_proxy);
5450   _g1h->set_par_threads(0);
5451 }
5452 
5453 // End of weak reference support closures
5454 
5455 // Abstract task used to preserve (i.e. copy) any referent objects
5456 // that are in the collection set and are pointed to by reference
5457 // objects discovered by the CM ref processor.
5458 
5459 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5460 protected:
5461   G1CollectedHeap* _g1h;
5462   RefToScanQueueSet      *_queues;
5463   ParallelTaskTerminator _terminator;
5464   uint _n_workers;
5465 
5466 public:
5467   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5468     AbstractGangTask("ParPreserveCMReferents"),
5469     _g1h(g1h),
5470     _queues(task_queues),
5471     _terminator(workers, _queues),
5472     _n_workers(workers)
5473   { }
5474 
5475   void work(uint worker_id) {
5476     ResourceMark rm;
5477     HandleMark   hm;
5478 
5479     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5480     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5481 
5482     pss.set_evac_failure_closure(&evac_failure_cl);
5483 
5484     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5485 
5486     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5487 
5488     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5489 
5490     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5491 
5492     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5493       // We also need to mark copied objects.
5494       copy_non_heap_cl = &copy_mark_non_heap_cl;
5495     }
5496 
5497     // Is alive closure
5498     G1AlwaysAliveClosure always_alive(_g1h);
5499 
5500     // Copying keep alive closure. Applied to referent objects that need
5501     // to be copied.
5502     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5503 
5504     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5505 
5506     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5507     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5508 
5509     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5510     // So this must be true - but assert just in case someone decides to
5511     // change the worker ids.
5512     assert(0 <= worker_id && worker_id < limit, "sanity");
5513     assert(!rp->discovery_is_atomic(), "check this code");
5514 
5515     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5516     for (uint idx = worker_id; idx < limit; idx += stride) {
5517       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5518 
5519       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5520       while (iter.has_next()) {
5521         // Since discovery is not atomic for the CM ref processor, we
5522         // can see some null referent objects.
5523         iter.load_ptrs(DEBUG_ONLY(true));
5524         oop ref = iter.obj();
5525 
5526         // This will filter nulls.
5527         if (iter.is_referent_alive()) {
5528           iter.make_referent_alive();
5529         }
5530         iter.move_to_next();
5531       }
5532     }
5533 
5534     // Drain the queue - which may cause stealing
5535     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5536     drain_queue.do_void();
5537     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5538     assert(pss.queue_is_empty(), "should be");
5539   }
5540 };
5541 
5542 // Weak Reference processing during an evacuation pause (part 1).
5543 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5544   double ref_proc_start = os::elapsedTime();
5545 
5546   ReferenceProcessor* rp = _ref_processor_stw;
5547   assert(rp->discovery_enabled(), "should have been enabled");
5548 
5549   // Any reference objects, in the collection set, that were 'discovered'
5550   // by the CM ref processor should have already been copied (either by
5551   // applying the external root copy closure to the discovered lists, or
5552   // by following an RSet entry).
5553   //
5554   // But some of the referents, that are in the collection set, that these
5555   // reference objects point to may not have been copied: the STW ref
5556   // processor would have seen that the reference object had already
5557   // been 'discovered' and would have skipped discovering the reference,
5558   // but would not have treated the reference object as a regular oop.
5559   // As a result the copy closure would not have been applied to the
5560   // referent object.
5561   //
5562   // We need to explicitly copy these referent objects - the references
5563   // will be processed at the end of remarking.
5564   //
5565   // We also need to do this copying before we process the reference
5566   // objects discovered by the STW ref processor in case one of these
5567   // referents points to another object which is also referenced by an
5568   // object discovered by the STW ref processor.
5569 
5570   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5571 
5572   set_par_threads(no_of_gc_workers);
5573   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5574                                                  no_of_gc_workers,
5575                                                  _task_queues);
5576 
5577   workers()->run_task(&keep_cm_referents);
5578 
5579   set_par_threads(0);
5580 
5581   // Closure to test whether a referent is alive.
5582   G1STWIsAliveClosure is_alive(this);
5583 
5584   // Even when parallel reference processing is enabled, the processing
5585   // of JNI refs is serial and performed serially by the current thread
5586   // rather than by a worker. The following PSS will be used for processing
5587   // JNI refs.
5588 
5589   // Use only a single queue for this PSS.
5590   G1ParScanThreadState            pss(this, 0, NULL);
5591 
5592   // We do not embed a reference processor in the copying/scanning
5593   // closures while we're actually processing the discovered
5594   // reference objects.
5595   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5596 
5597   pss.set_evac_failure_closure(&evac_failure_cl);
5598 
5599   assert(pss.queue_is_empty(), "pre-condition");
5600 
5601   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5602 
5603   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5604 
5605   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5606 
5607   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5608     // We also need to mark copied objects.
5609     copy_non_heap_cl = &copy_mark_non_heap_cl;
5610   }
5611 
5612   // Keep alive closure.
5613   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5614 
5615   // Serial Complete GC closure
5616   G1STWDrainQueueClosure drain_queue(this, &pss);
5617 
5618   // Setup the soft refs policy...
5619   rp->setup_policy(false);
5620 
5621   ReferenceProcessorStats stats;
5622   if (!rp->processing_is_mt()) {
5623     // Serial reference processing...
5624     stats = rp->process_discovered_references(&is_alive,
5625                                               &keep_alive,
5626                                               &drain_queue,
5627                                               NULL,
5628                                               _gc_timer_stw,
5629                                               _gc_tracer_stw->gc_id());
5630   } else {
5631     // Parallel reference processing
5632     assert(rp->num_q() == no_of_gc_workers, "sanity");
5633     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5634 
5635     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5636     stats = rp->process_discovered_references(&is_alive,
5637                                               &keep_alive,
5638                                               &drain_queue,
5639                                               &par_task_executor,
5640                                               _gc_timer_stw,
5641                                               _gc_tracer_stw->gc_id());
5642   }
5643 
5644   _gc_tracer_stw->report_gc_reference_stats(stats);
5645 
5646   // We have completed copying any necessary live referent objects.
5647   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5648 
5649   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5650   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5651 }
5652 
5653 // Weak Reference processing during an evacuation pause (part 2).
5654 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5655   double ref_enq_start = os::elapsedTime();
5656 
5657   ReferenceProcessor* rp = _ref_processor_stw;
5658   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5659 
5660   // Now enqueue any remaining on the discovered lists on to
5661   // the pending list.
5662   if (!rp->processing_is_mt()) {
5663     // Serial reference processing...
5664     rp->enqueue_discovered_references();
5665   } else {
5666     // Parallel reference enqueueing
5667 
5668     assert(no_of_gc_workers == workers()->active_workers(),
5669            "Need to reset active workers");
5670     assert(rp->num_q() == no_of_gc_workers, "sanity");
5671     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5672 
5673     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5674     rp->enqueue_discovered_references(&par_task_executor);
5675   }
5676 
5677   rp->verify_no_references_recorded();
5678   assert(!rp->discovery_enabled(), "should have been disabled");
5679 
5680   // FIXME
5681   // CM's reference processing also cleans up the string and symbol tables.
5682   // Should we do that here also? We could, but it is a serial operation
5683   // and could significantly increase the pause time.
5684 
5685   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5686   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5687 }
5688 
5689 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5690   _expand_heap_after_alloc_failure = true;
5691   _evacuation_failed = false;
5692 
5693   // Should G1EvacuationFailureALot be in effect for this GC?
5694   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5695 
5696   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5697 
5698   // Disable the hot card cache.
5699   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5700   hot_card_cache->reset_hot_cache_claimed_index();
5701   hot_card_cache->set_use_cache(false);
5702 
5703   uint n_workers;
5704   n_workers =
5705     AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5706                                    workers()->active_workers(),
5707                                    Threads::number_of_non_daemon_threads());
5708   assert(UseDynamicNumberOfGCThreads ||
5709          n_workers == workers()->total_workers(),
5710          "If not dynamic should be using all the  workers");
5711   workers()->set_active_workers(n_workers);
5712   set_par_threads(n_workers);
5713 
5714   G1ParTask g1_par_task(this, _task_queues);
5715 
5716   init_for_evac_failure(NULL);
5717 
5718   rem_set()->prepare_for_younger_refs_iterate(true);
5719 
5720   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5721   double start_par_time_sec = os::elapsedTime();
5722   double end_par_time_sec;
5723 
5724   {
5725     StrongRootsScope srs(this);
5726     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5727     if (g1_policy()->during_initial_mark_pause()) {
5728       ClassLoaderDataGraph::clear_claimed_marks();
5729     }
5730 
5731      // The individual threads will set their evac-failure closures.
5732      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5733      // These tasks use ShareHeap::_process_strong_tasks
5734      assert(UseDynamicNumberOfGCThreads ||
5735             workers()->active_workers() == workers()->total_workers(),
5736             "If not dynamic should be using all the  workers");
5737     workers()->run_task(&g1_par_task);
5738     end_par_time_sec = os::elapsedTime();
5739 
5740     // Closing the inner scope will execute the destructor
5741     // for the StrongRootsScope object. We record the current
5742     // elapsed time before closing the scope so that time
5743     // taken for the SRS destructor is NOT included in the
5744     // reported parallel time.
5745   }
5746 
5747   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5748   g1_policy()->phase_times()->record_par_time(par_time_ms);
5749 
5750   double code_root_fixup_time_ms =
5751         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5752   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5753 
5754   set_par_threads(0);
5755 
5756   // Process any discovered reference objects - we have
5757   // to do this _before_ we retire the GC alloc regions
5758   // as we may have to copy some 'reachable' referent
5759   // objects (and their reachable sub-graphs) that were
5760   // not copied during the pause.
5761   process_discovered_references(n_workers);
5762 
5763   if (G1StringDedup::is_enabled()) {
5764     G1STWIsAliveClosure is_alive(this);
5765     G1KeepAliveClosure keep_alive(this);
5766     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5767   }
5768 
5769   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5770   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5771 
5772   // Reset and re-enable the hot card cache.
5773   // Note the counts for the cards in the regions in the
5774   // collection set are reset when the collection set is freed.
5775   hot_card_cache->reset_hot_cache();
5776   hot_card_cache->set_use_cache(true);
5777 
5778   purge_code_root_memory();
5779 
5780   finalize_for_evac_failure();
5781 
5782   if (evacuation_failed()) {
5783     remove_self_forwarding_pointers();
5784 
5785     // Reset the G1EvacuationFailureALot counters and flags
5786     // Note: the values are reset only when an actual
5787     // evacuation failure occurs.
5788     NOT_PRODUCT(reset_evacuation_should_fail();)
5789   }
5790 
5791   // Enqueue any remaining references remaining on the STW
5792   // reference processor's discovered lists. We need to do
5793   // this after the card table is cleaned (and verified) as
5794   // the act of enqueueing entries on to the pending list
5795   // will log these updates (and dirty their associated
5796   // cards). We need these updates logged to update any
5797   // RSets.
5798   enqueue_discovered_references(n_workers);
5799 
5800   redirty_logged_cards();
5801   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5802 }
5803 
5804 void G1CollectedHeap::free_region(HeapRegion* hr,
5805                                   FreeRegionList* free_list,
5806                                   bool par,
5807                                   bool locked) {
5808   assert(!hr->is_free(), "the region should not be free");
5809   assert(!hr->is_empty(), "the region should not be empty");
5810   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5811   assert(free_list != NULL, "pre-condition");
5812 
5813   if (G1VerifyBitmaps) {
5814     MemRegion mr(hr->bottom(), hr->end());
5815     concurrent_mark()->clearRangePrevBitmap(mr);
5816   }
5817 
5818   // Clear the card counts for this region.
5819   // Note: we only need to do this if the region is not young
5820   // (since we don't refine cards in young regions).
5821   if (!hr->is_young()) {
5822     _cg1r->hot_card_cache()->reset_card_counts(hr);
5823   }
5824   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5825   free_list->add_ordered(hr);
5826 }
5827 
5828 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5829                                      FreeRegionList* free_list,
5830                                      bool par) {
5831   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5832   assert(free_list != NULL, "pre-condition");
5833 
5834   size_t hr_capacity = hr->capacity();
5835   // We need to read this before we make the region non-humongous,
5836   // otherwise the information will be gone.
5837   uint last_index = hr->last_hc_index();
5838   hr->clear_humongous();
5839   free_region(hr, free_list, par);
5840 
5841   uint i = hr->hrm_index() + 1;
5842   while (i < last_index) {
5843     HeapRegion* curr_hr = region_at(i);
5844     assert(curr_hr->is_continues_humongous(), "invariant");
5845     curr_hr->clear_humongous();
5846     free_region(curr_hr, free_list, par);
5847     i += 1;
5848   }
5849 }
5850 
5851 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5852                                        const HeapRegionSetCount& humongous_regions_removed) {
5853   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5854     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5855     _old_set.bulk_remove(old_regions_removed);
5856     _humongous_set.bulk_remove(humongous_regions_removed);
5857   }
5858 
5859 }
5860 
5861 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5862   assert(list != NULL, "list can't be null");
5863   if (!list->is_empty()) {
5864     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5865     _hrm.insert_list_into_free_list(list);
5866   }
5867 }
5868 
5869 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5870   _allocator->decrease_used(bytes);
5871 }
5872 
5873 class G1ParCleanupCTTask : public AbstractGangTask {
5874   G1SATBCardTableModRefBS* _ct_bs;
5875   G1CollectedHeap* _g1h;
5876   HeapRegion* volatile _su_head;
5877 public:
5878   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5879                      G1CollectedHeap* g1h) :
5880     AbstractGangTask("G1 Par Cleanup CT Task"),
5881     _ct_bs(ct_bs), _g1h(g1h) { }
5882 
5883   void work(uint worker_id) {
5884     HeapRegion* r;
5885     while (r = _g1h->pop_dirty_cards_region()) {
5886       clear_cards(r);
5887     }
5888   }
5889 
5890   void clear_cards(HeapRegion* r) {
5891     // Cards of the survivors should have already been dirtied.
5892     if (!r->is_survivor()) {
5893       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5894     }
5895   }
5896 };
5897 
5898 #ifndef PRODUCT
5899 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5900   G1CollectedHeap* _g1h;
5901   G1SATBCardTableModRefBS* _ct_bs;
5902 public:
5903   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5904     : _g1h(g1h), _ct_bs(ct_bs) { }
5905   virtual bool doHeapRegion(HeapRegion* r) {
5906     if (r->is_survivor()) {
5907       _g1h->verify_dirty_region(r);
5908     } else {
5909       _g1h->verify_not_dirty_region(r);
5910     }
5911     return false;
5912   }
5913 };
5914 
5915 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5916   // All of the region should be clean.
5917   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5918   MemRegion mr(hr->bottom(), hr->end());
5919   ct_bs->verify_not_dirty_region(mr);
5920 }
5921 
5922 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5923   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5924   // dirty allocated blocks as they allocate them. The thread that
5925   // retires each region and replaces it with a new one will do a
5926   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5927   // not dirty that area (one less thing to have to do while holding
5928   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5929   // is dirty.
5930   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5931   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5932   if (hr->is_young()) {
5933     ct_bs->verify_g1_young_region(mr);
5934   } else {
5935     ct_bs->verify_dirty_region(mr);
5936   }
5937 }
5938 
5939 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5940   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5941   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5942     verify_dirty_region(hr);
5943   }
5944 }
5945 
5946 void G1CollectedHeap::verify_dirty_young_regions() {
5947   verify_dirty_young_list(_young_list->first_region());
5948 }
5949 
5950 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5951                                                HeapWord* tams, HeapWord* end) {
5952   guarantee(tams <= end,
5953             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5954   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5955   if (result < end) {
5956     gclog_or_tty->cr();
5957     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5958                            bitmap_name, result);
5959     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5960                            bitmap_name, tams, end);
5961     return false;
5962   }
5963   return true;
5964 }
5965 
5966 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5967   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5968   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5969 
5970   HeapWord* bottom = hr->bottom();
5971   HeapWord* ptams  = hr->prev_top_at_mark_start();
5972   HeapWord* ntams  = hr->next_top_at_mark_start();
5973   HeapWord* end    = hr->end();
5974 
5975   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5976 
5977   bool res_n = true;
5978   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5979   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5980   // if we happen to be in that state.
5981   if (mark_in_progress() || !_cmThread->in_progress()) {
5982     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5983   }
5984   if (!res_p || !res_n) {
5985     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5986                            HR_FORMAT_PARAMS(hr));
5987     gclog_or_tty->print_cr("#### Caller: %s", caller);
5988     return false;
5989   }
5990   return true;
5991 }
5992 
5993 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5994   if (!G1VerifyBitmaps) return;
5995 
5996   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5997 }
5998 
5999 class G1VerifyBitmapClosure : public HeapRegionClosure {
6000 private:
6001   const char* _caller;
6002   G1CollectedHeap* _g1h;
6003   bool _failures;
6004 
6005 public:
6006   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
6007     _caller(caller), _g1h(g1h), _failures(false) { }
6008 
6009   bool failures() { return _failures; }
6010 
6011   virtual bool doHeapRegion(HeapRegion* hr) {
6012     if (hr->is_continues_humongous()) return false;
6013 
6014     bool result = _g1h->verify_bitmaps(_caller, hr);
6015     if (!result) {
6016       _failures = true;
6017     }
6018     return false;
6019   }
6020 };
6021 
6022 void G1CollectedHeap::check_bitmaps(const char* caller) {
6023   if (!G1VerifyBitmaps) return;
6024 
6025   G1VerifyBitmapClosure cl(caller, this);
6026   heap_region_iterate(&cl);
6027   guarantee(!cl.failures(), "bitmap verification");
6028 }
6029 #endif // PRODUCT
6030 
6031 void G1CollectedHeap::cleanUpCardTable() {
6032   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6033   double start = os::elapsedTime();
6034 
6035   {
6036     // Iterate over the dirty cards region list.
6037     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6038 
6039     set_par_threads();
6040     workers()->run_task(&cleanup_task);
6041     set_par_threads(0);
6042 #ifndef PRODUCT
6043     if (G1VerifyCTCleanup || VerifyAfterGC) {
6044       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6045       heap_region_iterate(&cleanup_verifier);
6046     }
6047 #endif
6048   }
6049 
6050   double elapsed = os::elapsedTime() - start;
6051   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6052 }
6053 
6054 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6055   size_t pre_used = 0;
6056   FreeRegionList local_free_list("Local List for CSet Freeing");
6057 
6058   double young_time_ms     = 0.0;
6059   double non_young_time_ms = 0.0;
6060 
6061   // Since the collection set is a superset of the the young list,
6062   // all we need to do to clear the young list is clear its
6063   // head and length, and unlink any young regions in the code below
6064   _young_list->clear();
6065 
6066   G1CollectorPolicy* policy = g1_policy();
6067 
6068   double start_sec = os::elapsedTime();
6069   bool non_young = true;
6070 
6071   HeapRegion* cur = cs_head;
6072   int age_bound = -1;
6073   size_t rs_lengths = 0;
6074 
6075   while (cur != NULL) {
6076     assert(!is_on_master_free_list(cur), "sanity");
6077     if (non_young) {
6078       if (cur->is_young()) {
6079         double end_sec = os::elapsedTime();
6080         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6081         non_young_time_ms += elapsed_ms;
6082 
6083         start_sec = os::elapsedTime();
6084         non_young = false;
6085       }
6086     } else {
6087       if (!cur->is_young()) {
6088         double end_sec = os::elapsedTime();
6089         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6090         young_time_ms += elapsed_ms;
6091 
6092         start_sec = os::elapsedTime();
6093         non_young = true;
6094       }
6095     }
6096 
6097     rs_lengths += cur->rem_set()->occupied_locked();
6098 
6099     HeapRegion* next = cur->next_in_collection_set();
6100     assert(cur->in_collection_set(), "bad CS");
6101     cur->set_next_in_collection_set(NULL);
6102     cur->set_in_collection_set(false);
6103 
6104     if (cur->is_young()) {
6105       int index = cur->young_index_in_cset();
6106       assert(index != -1, "invariant");
6107       assert((uint) index < policy->young_cset_region_length(), "invariant");
6108       size_t words_survived = _surviving_young_words[index];
6109       cur->record_surv_words_in_group(words_survived);
6110 
6111       // At this point the we have 'popped' cur from the collection set
6112       // (linked via next_in_collection_set()) but it is still in the
6113       // young list (linked via next_young_region()). Clear the
6114       // _next_young_region field.
6115       cur->set_next_young_region(NULL);
6116     } else {
6117       int index = cur->young_index_in_cset();
6118       assert(index == -1, "invariant");
6119     }
6120 
6121     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6122             (!cur->is_young() && cur->young_index_in_cset() == -1),
6123             "invariant" );
6124 
6125     if (!cur->evacuation_failed()) {
6126       MemRegion used_mr = cur->used_region();
6127 
6128       // And the region is empty.
6129       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6130       pre_used += cur->used();
6131       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6132     } else {
6133       cur->uninstall_surv_rate_group();
6134       if (cur->is_young()) {
6135         cur->set_young_index_in_cset(-1);
6136       }
6137       cur->set_evacuation_failed(false);
6138       // The region is now considered to be old.
6139       cur->set_old();
6140       _old_set.add(cur);
6141       evacuation_info.increment_collectionset_used_after(cur->used());
6142     }
6143     cur = next;
6144   }
6145 
6146   evacuation_info.set_regions_freed(local_free_list.length());
6147   policy->record_max_rs_lengths(rs_lengths);
6148   policy->cset_regions_freed();
6149 
6150   double end_sec = os::elapsedTime();
6151   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6152 
6153   if (non_young) {
6154     non_young_time_ms += elapsed_ms;
6155   } else {
6156     young_time_ms += elapsed_ms;
6157   }
6158 
6159   prepend_to_freelist(&local_free_list);
6160   decrement_summary_bytes(pre_used);
6161   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6162   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6163 }
6164 
6165 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6166  private:
6167   FreeRegionList* _free_region_list;
6168   HeapRegionSet* _proxy_set;
6169   HeapRegionSetCount _humongous_regions_removed;
6170   size_t _freed_bytes;
6171  public:
6172 
6173   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6174     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6175   }
6176 
6177   virtual bool doHeapRegion(HeapRegion* r) {
6178     if (!r->is_starts_humongous()) {
6179       return false;
6180     }
6181 
6182     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6183 
6184     oop obj = (oop)r->bottom();
6185     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6186 
6187     // The following checks whether the humongous object is live are sufficient.
6188     // The main additional check (in addition to having a reference from the roots
6189     // or the young gen) is whether the humongous object has a remembered set entry.
6190     //
6191     // A humongous object cannot be live if there is no remembered set for it
6192     // because:
6193     // - there can be no references from within humongous starts regions referencing
6194     // the object because we never allocate other objects into them.
6195     // (I.e. there are no intra-region references that may be missed by the
6196     // remembered set)
6197     // - as soon there is a remembered set entry to the humongous starts region
6198     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6199     // until the end of a concurrent mark.
6200     //
6201     // It is not required to check whether the object has been found dead by marking
6202     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6203     // all objects allocated during that time are considered live.
6204     // SATB marking is even more conservative than the remembered set.
6205     // So if at this point in the collection there is no remembered set entry,
6206     // nobody has a reference to it.
6207     // At the start of collection we flush all refinement logs, and remembered sets
6208     // are completely up-to-date wrt to references to the humongous object.
6209     //
6210     // Other implementation considerations:
6211     // - never consider object arrays: while they are a valid target, they have not
6212     // been observed to be used as temporary objects.
6213     // - they would also pose considerable effort for cleaning up the the remembered
6214     // sets.
6215     // While this cleanup is not strictly necessary to be done (or done instantly),
6216     // given that their occurrence is very low, this saves us this additional
6217     // complexity.
6218     uint region_idx = r->hrm_index();
6219     if (g1h->humongous_is_live(region_idx) ||
6220         g1h->humongous_region_is_always_live(region_idx)) {
6221 
6222       if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6223         gclog_or_tty->print_cr("Live humongous %d region %d size "SIZE_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6224                                r->is_humongous(),
6225                                region_idx,
6226                                obj->size()*HeapWordSize,
6227                                r->rem_set()->occupied(),
6228                                r->rem_set()->strong_code_roots_list_length(),
6229                                next_bitmap->isMarked(r->bottom()),
6230                                g1h->humongous_is_live(region_idx),
6231                                obj->is_objArray()
6232                               );
6233       }
6234 
6235       return false;
6236     }
6237 
6238     guarantee(!obj->is_objArray(),
6239               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6240                       r->bottom()));
6241 
6242     if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6243       gclog_or_tty->print_cr("Reclaim humongous region %d size "SIZE_FORMAT" start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6244                              r->is_humongous(),
6245                              obj->size()*HeapWordSize,
6246                              r->bottom(),
6247                              region_idx,
6248                              r->region_num(),
6249                              r->rem_set()->occupied(),
6250                              r->rem_set()->strong_code_roots_list_length(),
6251                              next_bitmap->isMarked(r->bottom()),
6252                              g1h->humongous_is_live(region_idx),
6253                              obj->is_objArray()
6254                             );
6255     }
6256     // Need to clear mark bit of the humongous object if already set.
6257     if (next_bitmap->isMarked(r->bottom())) {
6258       next_bitmap->clear(r->bottom());
6259     }
6260     _freed_bytes += r->used();
6261     r->set_containing_set(NULL);
6262     _humongous_regions_removed.increment(1u, r->capacity());
6263     g1h->free_humongous_region(r, _free_region_list, false);
6264 
6265     return false;
6266   }
6267 
6268   HeapRegionSetCount& humongous_free_count() {
6269     return _humongous_regions_removed;
6270   }
6271 
6272   size_t bytes_freed() const {
6273     return _freed_bytes;
6274   }
6275 
6276   size_t humongous_reclaimed() const {
6277     return _humongous_regions_removed.length();
6278   }
6279 };
6280 
6281 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6282   assert_at_safepoint(true);
6283 
6284   if (!G1ReclaimDeadHumongousObjectsAtYoungGC ||
6285       (!_has_humongous_reclaim_candidates && !G1TraceReclaimDeadHumongousObjectsAtYoungGC)) {
6286     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6287     return;
6288   }
6289 
6290   double start_time = os::elapsedTime();
6291 
6292   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6293 
6294   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6295   heap_region_iterate(&cl);
6296 
6297   HeapRegionSetCount empty_set;
6298   remove_from_old_sets(empty_set, cl.humongous_free_count());
6299 
6300   G1HRPrinter* hr_printer = _g1h->hr_printer();
6301   if (hr_printer->is_active()) {
6302     FreeRegionListIterator iter(&local_cleanup_list);
6303     while (iter.more_available()) {
6304       HeapRegion* hr = iter.get_next();
6305       hr_printer->cleanup(hr);
6306     }
6307   }
6308 
6309   prepend_to_freelist(&local_cleanup_list);
6310   decrement_summary_bytes(cl.bytes_freed());
6311 
6312   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6313                                                                     cl.humongous_reclaimed());
6314 }
6315 
6316 // This routine is similar to the above but does not record
6317 // any policy statistics or update free lists; we are abandoning
6318 // the current incremental collection set in preparation of a
6319 // full collection. After the full GC we will start to build up
6320 // the incremental collection set again.
6321 // This is only called when we're doing a full collection
6322 // and is immediately followed by the tearing down of the young list.
6323 
6324 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6325   HeapRegion* cur = cs_head;
6326 
6327   while (cur != NULL) {
6328     HeapRegion* next = cur->next_in_collection_set();
6329     assert(cur->in_collection_set(), "bad CS");
6330     cur->set_next_in_collection_set(NULL);
6331     cur->set_in_collection_set(false);
6332     cur->set_young_index_in_cset(-1);
6333     cur = next;
6334   }
6335 }
6336 
6337 void G1CollectedHeap::set_free_regions_coming() {
6338   if (G1ConcRegionFreeingVerbose) {
6339     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6340                            "setting free regions coming");
6341   }
6342 
6343   assert(!free_regions_coming(), "pre-condition");
6344   _free_regions_coming = true;
6345 }
6346 
6347 void G1CollectedHeap::reset_free_regions_coming() {
6348   assert(free_regions_coming(), "pre-condition");
6349 
6350   {
6351     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6352     _free_regions_coming = false;
6353     SecondaryFreeList_lock->notify_all();
6354   }
6355 
6356   if (G1ConcRegionFreeingVerbose) {
6357     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6358                            "reset free regions coming");
6359   }
6360 }
6361 
6362 void G1CollectedHeap::wait_while_free_regions_coming() {
6363   // Most of the time we won't have to wait, so let's do a quick test
6364   // first before we take the lock.
6365   if (!free_regions_coming()) {
6366     return;
6367   }
6368 
6369   if (G1ConcRegionFreeingVerbose) {
6370     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6371                            "waiting for free regions");
6372   }
6373 
6374   {
6375     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6376     while (free_regions_coming()) {
6377       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6378     }
6379   }
6380 
6381   if (G1ConcRegionFreeingVerbose) {
6382     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6383                            "done waiting for free regions");
6384   }
6385 }
6386 
6387 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6388   assert(heap_lock_held_for_gc(),
6389               "the heap lock should already be held by or for this thread");
6390   _young_list->push_region(hr);
6391 }
6392 
6393 class NoYoungRegionsClosure: public HeapRegionClosure {
6394 private:
6395   bool _success;
6396 public:
6397   NoYoungRegionsClosure() : _success(true) { }
6398   bool doHeapRegion(HeapRegion* r) {
6399     if (r->is_young()) {
6400       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6401                              r->bottom(), r->end());
6402       _success = false;
6403     }
6404     return false;
6405   }
6406   bool success() { return _success; }
6407 };
6408 
6409 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6410   bool ret = _young_list->check_list_empty(check_sample);
6411 
6412   if (check_heap) {
6413     NoYoungRegionsClosure closure;
6414     heap_region_iterate(&closure);
6415     ret = ret && closure.success();
6416   }
6417 
6418   return ret;
6419 }
6420 
6421 class TearDownRegionSetsClosure : public HeapRegionClosure {
6422 private:
6423   HeapRegionSet *_old_set;
6424 
6425 public:
6426   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6427 
6428   bool doHeapRegion(HeapRegion* r) {
6429     if (r->is_old()) {
6430       _old_set->remove(r);
6431     } else {
6432       // We ignore free regions, we'll empty the free list afterwards.
6433       // We ignore young regions, we'll empty the young list afterwards.
6434       // We ignore humongous regions, we're not tearing down the
6435       // humongous regions set.
6436       assert(r->is_free() || r->is_young() || r->is_humongous(),
6437              "it cannot be another type");
6438     }
6439     return false;
6440   }
6441 
6442   ~TearDownRegionSetsClosure() {
6443     assert(_old_set->is_empty(), "post-condition");
6444   }
6445 };
6446 
6447 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6448   assert_at_safepoint(true /* should_be_vm_thread */);
6449 
6450   if (!free_list_only) {
6451     TearDownRegionSetsClosure cl(&_old_set);
6452     heap_region_iterate(&cl);
6453 
6454     // Note that emptying the _young_list is postponed and instead done as
6455     // the first step when rebuilding the regions sets again. The reason for
6456     // this is that during a full GC string deduplication needs to know if
6457     // a collected region was young or old when the full GC was initiated.
6458   }
6459   _hrm.remove_all_free_regions();
6460 }
6461 
6462 class RebuildRegionSetsClosure : public HeapRegionClosure {
6463 private:
6464   bool            _free_list_only;
6465   HeapRegionSet*   _old_set;
6466   HeapRegionManager*   _hrm;
6467   size_t          _total_used;
6468 
6469 public:
6470   RebuildRegionSetsClosure(bool free_list_only,
6471                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6472     _free_list_only(free_list_only),
6473     _old_set(old_set), _hrm(hrm), _total_used(0) {
6474     assert(_hrm->num_free_regions() == 0, "pre-condition");
6475     if (!free_list_only) {
6476       assert(_old_set->is_empty(), "pre-condition");
6477     }
6478   }
6479 
6480   bool doHeapRegion(HeapRegion* r) {
6481     if (r->is_continues_humongous()) {
6482       return false;
6483     }
6484 
6485     if (r->is_empty()) {
6486       // Add free regions to the free list
6487       r->set_free();
6488       r->set_allocation_context(AllocationContext::system());
6489       _hrm->insert_into_free_list(r);
6490     } else if (!_free_list_only) {
6491       assert(!r->is_young(), "we should not come across young regions");
6492 
6493       if (r->is_humongous()) {
6494         // We ignore humongous regions, we left the humongous set unchanged
6495       } else {
6496         // Objects that were compacted would have ended up on regions
6497         // that were previously old or free.
6498         assert(r->is_free() || r->is_old(), "invariant");
6499         // We now consider them old, so register as such.
6500         r->set_old();
6501         _old_set->add(r);
6502       }
6503       _total_used += r->used();
6504     }
6505 
6506     return false;
6507   }
6508 
6509   size_t total_used() {
6510     return _total_used;
6511   }
6512 };
6513 
6514 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6515   assert_at_safepoint(true /* should_be_vm_thread */);
6516 
6517   if (!free_list_only) {
6518     _young_list->empty_list();
6519   }
6520 
6521   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6522   heap_region_iterate(&cl);
6523 
6524   if (!free_list_only) {
6525     _allocator->set_used(cl.total_used());
6526   }
6527   assert(_allocator->used_unlocked() == recalculate_used(),
6528          err_msg("inconsistent _allocator->used_unlocked(), "
6529                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6530                  _allocator->used_unlocked(), recalculate_used()));
6531 }
6532 
6533 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6534   _refine_cte_cl->set_concurrent(concurrent);
6535 }
6536 
6537 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6538   HeapRegion* hr = heap_region_containing(p);
6539   return hr->is_in(p);
6540 }
6541 
6542 // Methods for the mutator alloc region
6543 
6544 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6545                                                       bool force) {
6546   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6547   assert(!force || g1_policy()->can_expand_young_list(),
6548          "if force is true we should be able to expand the young list");
6549   bool young_list_full = g1_policy()->is_young_list_full();
6550   if (force || !young_list_full) {
6551     HeapRegion* new_alloc_region = new_region(word_size,
6552                                               false /* is_old */,
6553                                               false /* do_expand */);
6554     if (new_alloc_region != NULL) {
6555       set_region_short_lived_locked(new_alloc_region);
6556       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6557       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6558       return new_alloc_region;
6559     }
6560   }
6561   return NULL;
6562 }
6563 
6564 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6565                                                   size_t allocated_bytes) {
6566   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6567   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6568 
6569   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6570   _allocator->increase_used(allocated_bytes);
6571   _hr_printer.retire(alloc_region);
6572   // We update the eden sizes here, when the region is retired,
6573   // instead of when it's allocated, since this is the point that its
6574   // used space has been recored in _summary_bytes_used.
6575   g1mm()->update_eden_size();
6576 }
6577 
6578 void G1CollectedHeap::set_par_threads() {
6579   // Don't change the number of workers.  Use the value previously set
6580   // in the workgroup.
6581   uint n_workers = workers()->active_workers();
6582   assert(UseDynamicNumberOfGCThreads ||
6583            n_workers == workers()->total_workers(),
6584       "Otherwise should be using the total number of workers");
6585   if (n_workers == 0) {
6586     assert(false, "Should have been set in prior evacuation pause.");
6587     n_workers = ParallelGCThreads;
6588     workers()->set_active_workers(n_workers);
6589   }
6590   set_par_threads(n_workers);
6591 }
6592 
6593 // Methods for the GC alloc regions
6594 
6595 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6596                                                  uint count,
6597                                                  GCAllocPurpose ap) {
6598   assert(FreeList_lock->owned_by_self(), "pre-condition");
6599 
6600   if (count < g1_policy()->max_regions(ap)) {
6601     bool survivor = (ap == GCAllocForSurvived);
6602     HeapRegion* new_alloc_region = new_region(word_size,
6603                                               !survivor,
6604                                               true /* do_expand */);
6605     if (new_alloc_region != NULL) {
6606       // We really only need to do this for old regions given that we
6607       // should never scan survivors. But it doesn't hurt to do it
6608       // for survivors too.
6609       new_alloc_region->record_top_and_timestamp();
6610       if (survivor) {
6611         new_alloc_region->set_survivor();
6612         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6613         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6614       } else {
6615         new_alloc_region->set_old();
6616         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6617         check_bitmaps("Old Region Allocation", new_alloc_region);
6618       }
6619       bool during_im = g1_policy()->during_initial_mark_pause();
6620       new_alloc_region->note_start_of_copying(during_im);
6621       return new_alloc_region;
6622     } else {
6623       g1_policy()->note_alloc_region_limit_reached(ap);
6624     }
6625   }
6626   return NULL;
6627 }
6628 
6629 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6630                                              size_t allocated_bytes,
6631                                              GCAllocPurpose ap) {
6632   bool during_im = g1_policy()->during_initial_mark_pause();
6633   alloc_region->note_end_of_copying(during_im);
6634   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6635   if (ap == GCAllocForSurvived) {
6636     young_list()->add_survivor_region(alloc_region);
6637   } else {
6638     _old_set.add(alloc_region);
6639   }
6640   _hr_printer.retire(alloc_region);
6641 }
6642 
6643 // Heap region set verification
6644 
6645 class VerifyRegionListsClosure : public HeapRegionClosure {
6646 private:
6647   HeapRegionSet*   _old_set;
6648   HeapRegionSet*   _humongous_set;
6649   HeapRegionManager*   _hrm;
6650 
6651 public:
6652   HeapRegionSetCount _old_count;
6653   HeapRegionSetCount _humongous_count;
6654   HeapRegionSetCount _free_count;
6655 
6656   VerifyRegionListsClosure(HeapRegionSet* old_set,
6657                            HeapRegionSet* humongous_set,
6658                            HeapRegionManager* hrm) :
6659     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6660     _old_count(), _humongous_count(), _free_count(){ }
6661 
6662   bool doHeapRegion(HeapRegion* hr) {
6663     if (hr->is_continues_humongous()) {
6664       return false;
6665     }
6666 
6667     if (hr->is_young()) {
6668       // TODO
6669     } else if (hr->is_starts_humongous()) {
6670       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6671       _humongous_count.increment(1u, hr->capacity());
6672     } else if (hr->is_empty()) {
6673       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6674       _free_count.increment(1u, hr->capacity());
6675     } else if (hr->is_old()) {
6676       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6677       _old_count.increment(1u, hr->capacity());
6678     } else {
6679       ShouldNotReachHere();
6680     }
6681     return false;
6682   }
6683 
6684   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6685     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6686     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6687         old_set->total_capacity_bytes(), _old_count.capacity()));
6688 
6689     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6690     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6691         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6692 
6693     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6694     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6695         free_list->total_capacity_bytes(), _free_count.capacity()));
6696   }
6697 };
6698 
6699 void G1CollectedHeap::verify_region_sets() {
6700   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6701 
6702   // First, check the explicit lists.
6703   _hrm.verify();
6704   {
6705     // Given that a concurrent operation might be adding regions to
6706     // the secondary free list we have to take the lock before
6707     // verifying it.
6708     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6709     _secondary_free_list.verify_list();
6710   }
6711 
6712   // If a concurrent region freeing operation is in progress it will
6713   // be difficult to correctly attributed any free regions we come
6714   // across to the correct free list given that they might belong to
6715   // one of several (free_list, secondary_free_list, any local lists,
6716   // etc.). So, if that's the case we will skip the rest of the
6717   // verification operation. Alternatively, waiting for the concurrent
6718   // operation to complete will have a non-trivial effect on the GC's
6719   // operation (no concurrent operation will last longer than the
6720   // interval between two calls to verification) and it might hide
6721   // any issues that we would like to catch during testing.
6722   if (free_regions_coming()) {
6723     return;
6724   }
6725 
6726   // Make sure we append the secondary_free_list on the free_list so
6727   // that all free regions we will come across can be safely
6728   // attributed to the free_list.
6729   append_secondary_free_list_if_not_empty_with_lock();
6730 
6731   // Finally, make sure that the region accounting in the lists is
6732   // consistent with what we see in the heap.
6733 
6734   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6735   heap_region_iterate(&cl);
6736   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6737 }
6738 
6739 // Optimized nmethod scanning
6740 
6741 class RegisterNMethodOopClosure: public OopClosure {
6742   G1CollectedHeap* _g1h;
6743   nmethod* _nm;
6744 
6745   template <class T> void do_oop_work(T* p) {
6746     T heap_oop = oopDesc::load_heap_oop(p);
6747     if (!oopDesc::is_null(heap_oop)) {
6748       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6749       HeapRegion* hr = _g1h->heap_region_containing(obj);
6750       assert(!hr->is_continues_humongous(),
6751              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6752                      " starting at "HR_FORMAT,
6753                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6754 
6755       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6756       hr->add_strong_code_root_locked(_nm);
6757     }
6758   }
6759 
6760 public:
6761   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6762     _g1h(g1h), _nm(nm) {}
6763 
6764   void do_oop(oop* p)       { do_oop_work(p); }
6765   void do_oop(narrowOop* p) { do_oop_work(p); }
6766 };
6767 
6768 class UnregisterNMethodOopClosure: public OopClosure {
6769   G1CollectedHeap* _g1h;
6770   nmethod* _nm;
6771 
6772   template <class T> void do_oop_work(T* p) {
6773     T heap_oop = oopDesc::load_heap_oop(p);
6774     if (!oopDesc::is_null(heap_oop)) {
6775       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6776       HeapRegion* hr = _g1h->heap_region_containing(obj);
6777       assert(!hr->is_continues_humongous(),
6778              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6779                      " starting at "HR_FORMAT,
6780                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6781 
6782       hr->remove_strong_code_root(_nm);
6783     }
6784   }
6785 
6786 public:
6787   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6788     _g1h(g1h), _nm(nm) {}
6789 
6790   void do_oop(oop* p)       { do_oop_work(p); }
6791   void do_oop(narrowOop* p) { do_oop_work(p); }
6792 };
6793 
6794 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6795   CollectedHeap::register_nmethod(nm);
6796 
6797   guarantee(nm != NULL, "sanity");
6798   RegisterNMethodOopClosure reg_cl(this, nm);
6799   nm->oops_do(&reg_cl);
6800 }
6801 
6802 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6803   CollectedHeap::unregister_nmethod(nm);
6804 
6805   guarantee(nm != NULL, "sanity");
6806   UnregisterNMethodOopClosure reg_cl(this, nm);
6807   nm->oops_do(&reg_cl, true);
6808 }
6809 
6810 void G1CollectedHeap::purge_code_root_memory() {
6811   double purge_start = os::elapsedTime();
6812   G1CodeRootSet::purge();
6813   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6814   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6815 }
6816 
6817 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6818   G1CollectedHeap* _g1h;
6819 
6820 public:
6821   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6822     _g1h(g1h) {}
6823 
6824   void do_code_blob(CodeBlob* cb) {
6825     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6826     if (nm == NULL) {
6827       return;
6828     }
6829 
6830     if (ScavengeRootsInCode) {
6831       _g1h->register_nmethod(nm);
6832     }
6833   }
6834 };
6835 
6836 void G1CollectedHeap::rebuild_strong_code_roots() {
6837   RebuildStrongCodeRootClosure blob_cl(this);
6838   CodeCache::blobs_do(&blob_cl);
6839 }