1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  29 #include "memory/collectorPolicy.hpp"
  30 #include "memory/generation.hpp"
  31 #include "memory/sharedHeap.hpp"
  32 
  33 class SubTasksDone;
  34 
  35 // A "GenCollectedHeap" is a SharedHeap that uses generational
  36 // collection.  It is represented with a sequence of Generation's.
  37 class GenCollectedHeap : public SharedHeap {
  38   friend class GenCollectorPolicy;
  39   friend class Generation;
  40   friend class DefNewGeneration;
  41   friend class TenuredGeneration;
  42   friend class ConcurrentMarkSweepGeneration;
  43   friend class CMSCollector;
  44   friend class GenMarkSweep;
  45   friend class VM_GenCollectForAllocation;
  46   friend class VM_GenCollectFull;
  47   friend class VM_GenCollectFullConcurrent;
  48   friend class VM_GC_HeapInspection;
  49   friend class VM_HeapDumper;
  50   friend class HeapInspection;
  51   friend class GCCauseSetter;
  52   friend class VMStructs;
  53 public:
  54   enum SomeConstants {
  55     max_gens = 10
  56   };
  57 
  58   friend class VM_PopulateDumpSharedSpace;
  59 
  60  protected:
  61   // Fields:
  62   static GenCollectedHeap* _gch;
  63 
  64  private:
  65   int _n_gens;
  66   Generation* _gens[max_gens];
  67   GenerationSpec** _gen_specs;
  68 
  69   // The generational collector policy.
  70   GenCollectorPolicy* _gen_policy;
  71 
  72   // Indicates that the most recent previous incremental collection failed.
  73   // The flag is cleared when an action is taken that might clear the
  74   // condition that caused that incremental collection to fail.
  75   bool _incremental_collection_failed;
  76 
  77   // In support of ExplicitGCInvokesConcurrent functionality
  78   unsigned int _full_collections_completed;
  79 
  80   // Data structure for claiming the (potentially) parallel tasks in
  81   // (gen-specific) roots processing.
  82   SubTasksDone* _gen_process_roots_tasks;
  83   SubTasksDone* gen_process_roots_tasks() { return _gen_process_roots_tasks; }
  84 
  85   // In block contents verification, the number of header words to skip
  86   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
  87 
  88 protected:
  89   // Helper functions for allocation
  90   HeapWord* attempt_allocation(size_t size,
  91                                bool   is_tlab,
  92                                bool   first_only);
  93 
  94   // Helper function for two callbacks below.
  95   // Considers collection of the first max_level+1 generations.
  96   void do_collection(bool   full,
  97                      bool   clear_all_soft_refs,
  98                      size_t size,
  99                      bool   is_tlab,
 100                      int    max_level);
 101 
 102   // Callback from VM_GenCollectForAllocation operation.
 103   // This function does everything necessary/possible to satisfy an
 104   // allocation request that failed in the youngest generation that should
 105   // have handled it (including collection, expansion, etc.)
 106   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 107 
 108   // Callback from VM_GenCollectFull operation.
 109   // Perform a full collection of the first max_level+1 generations.
 110   virtual void do_full_collection(bool clear_all_soft_refs);
 111   void do_full_collection(bool clear_all_soft_refs, int max_level);
 112 
 113   // Does the "cause" of GC indicate that
 114   // we absolutely __must__ clear soft refs?
 115   bool must_clear_all_soft_refs();
 116 
 117 public:
 118   GenCollectedHeap(GenCollectorPolicy *policy);
 119 
 120   GCStats* gc_stats(int level) const;
 121 
 122   // Returns JNI_OK on success
 123   virtual jint initialize();
 124   char* allocate(size_t alignment, size_t* _total_reserved, ReservedSpace* heap_rs);
 125 
 126   // Does operations required after initialization has been done.
 127   void post_initialize();
 128 
 129   // Initialize ("weak") refs processing support
 130   virtual void ref_processing_init();
 131 
 132   virtual CollectedHeap::Name kind() const {
 133     return CollectedHeap::GenCollectedHeap;
 134   }
 135 
 136   // The generational collector policy.
 137   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 138   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
 139 
 140   // Adaptive size policy
 141   virtual AdaptiveSizePolicy* size_policy() {
 142     return gen_policy()->size_policy();
 143   }
 144 
 145   // Return the (conservative) maximum heap alignment
 146   static size_t conservative_max_heap_alignment() {
 147     return Generation::GenGrain;
 148   }
 149 
 150   size_t capacity() const;
 151   size_t used() const;
 152 
 153   // Save the "used_region" for generations level and lower.
 154   void save_used_regions(int level);
 155 
 156   size_t max_capacity() const;
 157 
 158   HeapWord* mem_allocate(size_t size,
 159                          bool*  gc_overhead_limit_was_exceeded);
 160 
 161   // We may support a shared contiguous allocation area, if the youngest
 162   // generation does.
 163   bool supports_inline_contig_alloc() const;
 164   HeapWord** top_addr() const;
 165   HeapWord** end_addr() const;
 166 
 167   // Does this heap support heap inspection? (+PrintClassHistogram)
 168   virtual bool supports_heap_inspection() const { return true; }
 169 
 170   // Perform a full collection of the heap; intended for use in implementing
 171   // "System.gc". This implies as full a collection as the CollectedHeap
 172   // supports. Caller does not hold the Heap_lock on entry.
 173   void collect(GCCause::Cause cause);
 174 
 175   // The same as above but assume that the caller holds the Heap_lock.
 176   void collect_locked(GCCause::Cause cause);
 177 
 178   // Perform a full collection of the first max_level+1 generations.
 179   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 180   void collect(GCCause::Cause cause, int max_level);
 181 
 182   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 183   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 184   // be expensive to compute in general, so, to prevent
 185   // their inadvertent use in product jvm's, we restrict their use to
 186   // assertion checking or verification only.
 187   bool is_in(const void* p) const;
 188 
 189   // override
 190   bool is_in_closed_subset(const void* p) const {
 191     if (UseConcMarkSweepGC) {
 192       return is_in_reserved(p);
 193     } else {
 194       return is_in(p);
 195     }
 196   }
 197 
 198   // Returns true if the reference is to an object in the reserved space
 199   // for the young generation.
 200   // Assumes the the young gen address range is less than that of the old gen.
 201   bool is_in_young(oop p);
 202 
 203 #ifdef ASSERT
 204   virtual bool is_in_partial_collection(const void* p);
 205 #endif
 206 
 207   virtual bool is_scavengable(const void* addr) {
 208     return is_in_young((oop)addr);
 209   }
 210 
 211   // Iteration functions.
 212   void oop_iterate(ExtendedOopClosure* cl);
 213   void object_iterate(ObjectClosure* cl);
 214   void safe_object_iterate(ObjectClosure* cl);
 215   Space* space_containing(const void* addr) const;
 216 
 217   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 218   // each address in the (reserved) heap is a member of exactly
 219   // one block.  The defining characteristic of a block is that it is
 220   // possible to find its size, and thus to progress forward to the next
 221   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 222   // represent Java objects, or they might be free blocks in a
 223   // free-list-based heap (or subheap), as long as the two kinds are
 224   // distinguishable and the size of each is determinable.
 225 
 226   // Returns the address of the start of the "block" that contains the
 227   // address "addr".  We say "blocks" instead of "object" since some heaps
 228   // may not pack objects densely; a chunk may either be an object or a
 229   // non-object.
 230   virtual HeapWord* block_start(const void* addr) const;
 231 
 232   // Requires "addr" to be the start of a chunk, and returns its size.
 233   // "addr + size" is required to be the start of a new chunk, or the end
 234   // of the active area of the heap. Assumes (and verifies in non-product
 235   // builds) that addr is in the allocated part of the heap and is
 236   // the start of a chunk.
 237   virtual size_t block_size(const HeapWord* addr) const;
 238 
 239   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 240   // the block is an object. Assumes (and verifies in non-product
 241   // builds) that addr is in the allocated part of the heap and is
 242   // the start of a chunk.
 243   virtual bool block_is_obj(const HeapWord* addr) const;
 244 
 245   // Section on TLAB's.
 246   virtual bool supports_tlab_allocation() const;
 247   virtual size_t tlab_capacity(Thread* thr) const;
 248   virtual size_t tlab_used(Thread* thr) const;
 249   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 250   virtual HeapWord* allocate_new_tlab(size_t size);
 251 
 252   // Can a compiler initialize a new object without store barriers?
 253   // This permission only extends from the creation of a new object
 254   // via a TLAB up to the first subsequent safepoint.
 255   virtual bool can_elide_tlab_store_barriers() const {
 256     return true;
 257   }
 258 
 259   virtual bool card_mark_must_follow_store() const {
 260     return UseConcMarkSweepGC;
 261   }
 262 
 263   // We don't need barriers for stores to objects in the
 264   // young gen and, a fortiori, for initializing stores to
 265   // objects therein. This applies to DefNew+Tenured and ParNew+CMS
 266   // only and may need to be re-examined in case other
 267   // kinds of collectors are implemented in the future.
 268   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 269     // We wanted to assert that:-
 270     // assert(UseSerialGC || UseConcMarkSweepGC,
 271     //       "Check can_elide_initializing_store_barrier() for this collector");
 272     // but unfortunately the flag UseSerialGC need not necessarily always
 273     // be set when DefNew+Tenured are being used.
 274     return is_in_young(new_obj);
 275   }
 276 
 277   // The "requestor" generation is performing some garbage collection
 278   // action for which it would be useful to have scratch space.  The
 279   // requestor promises to allocate no more than "max_alloc_words" in any
 280   // older generation (via promotion say.)   Any blocks of space that can
 281   // be provided are returned as a list of ScratchBlocks, sorted by
 282   // decreasing size.
 283   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 284   // Allow each generation to reset any scratch space that it has
 285   // contributed as it needs.
 286   void release_scratch();
 287 
 288   // Ensure parsability: override
 289   virtual void ensure_parsability(bool retire_tlabs);
 290 
 291   // Time in ms since the longest time a collector ran in
 292   // in any generation.
 293   virtual jlong millis_since_last_gc();
 294 
 295   // Total number of full collections completed.
 296   unsigned int total_full_collections_completed() {
 297     assert(_full_collections_completed <= _total_full_collections,
 298            "Can't complete more collections than were started");
 299     return _full_collections_completed;
 300   }
 301 
 302   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 303   unsigned int update_full_collections_completed();
 304   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 305   unsigned int update_full_collections_completed(unsigned int count);
 306 
 307   // Update "time of last gc" for all constituent generations
 308   // to "now".
 309   void update_time_of_last_gc(jlong now) {
 310     for (int i = 0; i < _n_gens; i++) {
 311       _gens[i]->update_time_of_last_gc(now);
 312     }
 313   }
 314 
 315   // Update the gc statistics for each generation.
 316   // "level" is the level of the latest collection.
 317   void update_gc_stats(int current_level, bool full) {
 318     for (int i = 0; i < _n_gens; i++) {
 319       _gens[i]->update_gc_stats(current_level, full);
 320     }
 321   }
 322 
 323   // Override.
 324   bool no_gc_in_progress() { return !is_gc_active(); }
 325 
 326   // Override.
 327   void prepare_for_verify();
 328 
 329   // Override.
 330   void verify(bool silent, VerifyOption option);
 331 
 332   // Override.
 333   virtual void print_on(outputStream* st) const;
 334   virtual void print_gc_threads_on(outputStream* st) const;
 335   virtual void gc_threads_do(ThreadClosure* tc) const;
 336   virtual void print_tracing_info() const;
 337   virtual void print_on_error(outputStream* st) const;
 338 
 339   // PrintGC, PrintGCDetails support
 340   void print_heap_change(size_t prev_used) const;
 341 
 342   // The functions below are helper functions that a subclass of
 343   // "CollectedHeap" can use in the implementation of its virtual
 344   // functions.
 345 
 346   class GenClosure : public StackObj {
 347    public:
 348     virtual void do_generation(Generation* gen) = 0;
 349   };
 350 
 351   // Apply "cl.do_generation" to all generations in the heap
 352   // If "old_to_young" determines the order.
 353   void generation_iterate(GenClosure* cl, bool old_to_young);
 354 
 355   void space_iterate(SpaceClosure* cl);
 356 
 357   // Return "true" if all generations have reached the
 358   // maximal committed limit that they can reach, without a garbage
 359   // collection.
 360   virtual bool is_maximal_no_gc() const;
 361 
 362   // Return the generation before "gen".
 363   Generation* prev_gen(Generation* gen) const {
 364     int l = gen->level();
 365     guarantee(l > 0, "Out of bounds");
 366     return _gens[l-1];
 367   }
 368 
 369   // Return the generation after "gen".
 370   Generation* next_gen(Generation* gen) const {
 371     int l = gen->level() + 1;
 372     guarantee(l < _n_gens, "Out of bounds");
 373     return _gens[l];
 374   }
 375 
 376   Generation* get_gen(int i) const {
 377     guarantee(i >= 0 && i < _n_gens, "Out of bounds");
 378     return _gens[i];
 379   }
 380 
 381   int n_gens() const {
 382     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
 383     return _n_gens;
 384   }
 385 
 386   // Convenience function to be used in situations where the heap type can be
 387   // asserted to be this type.
 388   static GenCollectedHeap* heap();
 389 
 390   void set_par_threads(uint t);
 391 
 392   // Invoke the "do_oop" method of one of the closures "not_older_gens"
 393   // or "older_gens" on root locations for the generation at
 394   // "level".  (The "older_gens" closure is used for scanning references
 395   // from older generations; "not_older_gens" is used everywhere else.)
 396   // If "younger_gens_as_roots" is false, younger generations are
 397   // not scanned as roots; in this case, the caller must be arranging to
 398   // scan the younger generations itself.  (For example, a generation might
 399   // explicitly mark reachable objects in younger generations, to avoid
 400   // excess storage retention.)
 401   // The "so" argument determines which of the roots
 402   // the closure is applied to:
 403   // "SO_None" does none;
 404  private:
 405   void gen_process_roots(int level,
 406                          bool younger_gens_as_roots,
 407                          bool activate_scope,
 408                          SharedHeap::ScanningOption so,
 409                          OopsInGenClosure* not_older_gens,
 410                          OopsInGenClosure* weak_roots,
 411                          OopsInGenClosure* older_gens,
 412                          CLDClosure* cld_closure,
 413                          CLDClosure* weak_cld_closure,
 414                          CodeBlobClosure* code_closure);
 415 
 416  public:
 417   static const bool StrongAndWeakRoots = false;
 418   static const bool StrongRootsOnly    = true;
 419 
 420   void gen_process_roots(int level,
 421                          bool younger_gens_as_roots,
 422                          bool activate_scope,
 423                          SharedHeap::ScanningOption so,
 424                          bool only_strong_roots,
 425                          OopsInGenClosure* not_older_gens,
 426                          OopsInGenClosure* older_gens,
 427                          CLDClosure* cld_closure);
 428 
 429   // Apply "root_closure" to all the weak roots of the system.
 430   // These include JNI weak roots, string table,
 431   // and referents of reachable weak refs.
 432   void gen_process_weak_roots(OopClosure* root_closure);
 433 
 434   // Set the saved marks of generations, if that makes sense.
 435   // In particular, if any generation might iterate over the oops
 436   // in other generations, it should call this method.
 437   void save_marks();
 438 
 439   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 440   // allocated since the last call to save_marks in generations at or above
 441   // "level".  The "cur" closure is
 442   // applied to references in the generation at "level", and the "older"
 443   // closure to older generations.
 444 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 445   void oop_since_save_marks_iterate(int level,                          \
 446                                     OopClosureType* cur,                \
 447                                     OopClosureType* older);
 448 
 449   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 450 
 451 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 452 
 453   // Returns "true" iff no allocations have occurred in any generation at
 454   // "level" or above since the last
 455   // call to "save_marks".
 456   bool no_allocs_since_save_marks(int level);
 457 
 458   // Returns true if an incremental collection is likely to fail.
 459   // We optionally consult the young gen, if asked to do so;
 460   // otherwise we base our answer on whether the previous incremental
 461   // collection attempt failed with no corrective action as of yet.
 462   bool incremental_collection_will_fail(bool consult_young) {
 463     // Assumes a 2-generation system; the first disjunct remembers if an
 464     // incremental collection failed, even when we thought (second disjunct)
 465     // that it would not.
 466     assert(heap()->collector_policy()->is_generation_policy(),
 467            "the following definition may not be suitable for an n(>2)-generation system");
 468     return incremental_collection_failed() ||
 469            (consult_young && !get_gen(0)->collection_attempt_is_safe());
 470   }
 471 
 472   // If a generation bails out of an incremental collection,
 473   // it sets this flag.
 474   bool incremental_collection_failed() const {
 475     return _incremental_collection_failed;
 476   }
 477   void set_incremental_collection_failed() {
 478     _incremental_collection_failed = true;
 479   }
 480   void clear_incremental_collection_failed() {
 481     _incremental_collection_failed = false;
 482   }
 483 
 484   // Promotion of obj into gen failed.  Try to promote obj to higher
 485   // gens in ascending order; return the new location of obj if successful.
 486   // Otherwise, try expand-and-allocate for obj in both the young and old
 487   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 488   oop handle_failed_promotion(Generation* old_gen,
 489                               oop obj,
 490                               size_t obj_size);
 491 
 492 private:
 493   // Accessor for memory state verification support
 494   NOT_PRODUCT(
 495     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 496   )
 497 
 498   // Override
 499   void check_for_non_bad_heap_word_value(HeapWord* addr,
 500     size_t size) PRODUCT_RETURN;
 501 
 502   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 503   // in an essential way: compaction is performed across generations, by
 504   // iterating over spaces.
 505   void prepare_for_compaction();
 506 
 507   // Perform a full collection of the first max_level+1 generations.
 508   // This is the low level interface used by the public versions of
 509   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 510   void collect_locked(GCCause::Cause cause, int max_level);
 511 
 512   // Returns success or failure.
 513   bool create_cms_collector();
 514 
 515   // In support of ExplicitGCInvokesConcurrent functionality
 516   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 517   void collect_mostly_concurrent(GCCause::Cause cause);
 518 
 519   // Save the tops of the spaces in all generations
 520   void record_gen_tops_before_GC() PRODUCT_RETURN;
 521 
 522 protected:
 523   virtual void gc_prologue(bool full);
 524   virtual void gc_epilogue(bool full);
 525 };
 526 
 527 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP