1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "ci/ciObjArray.hpp"
  35 #include "memory/cardTableModRefBS.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "runtime/vm_version.hpp"
  40 #include "utilities/bitMap.inline.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc_implementation/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef ASSERT
  47 #define __ gen()->lir(__FILE__, __LINE__)->
  48 #else
  49 #define __ gen()->lir()->
  50 #endif
  51 
  52 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
  53 #ifdef ARM
  54 #define PATCHED_ADDR  (204)
  55 #else
  56 #define PATCHED_ADDR  (max_jint)
  57 #endif
  58 
  59 void PhiResolverState::reset(int max_vregs) {
  60   // Initialize array sizes
  61   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  62   _virtual_operands.trunc_to(0);
  63   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  64   _other_operands.trunc_to(0);
  65   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  66   _vreg_table.trunc_to(0);
  67 }
  68 
  69 
  70 
  71 //--------------------------------------------------------------
  72 // PhiResolver
  73 
  74 // Resolves cycles:
  75 //
  76 //  r1 := r2  becomes  temp := r1
  77 //  r2 := r1           r1 := r2
  78 //                     r2 := temp
  79 // and orders moves:
  80 //
  81 //  r2 := r3  becomes  r1 := r2
  82 //  r1 := r2           r2 := r3
  83 
  84 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  85  : _gen(gen)
  86  , _state(gen->resolver_state())
  87  , _temp(LIR_OprFact::illegalOpr)
  88 {
  89   // reinitialize the shared state arrays
  90   _state.reset(max_vregs);
  91 }
  92 
  93 
  94 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  95   assert(src->is_valid(), "");
  96   assert(dest->is_valid(), "");
  97   __ move(src, dest);
  98 }
  99 
 100 
 101 void PhiResolver::move_temp_to(LIR_Opr dest) {
 102   assert(_temp->is_valid(), "");
 103   emit_move(_temp, dest);
 104   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 105 }
 106 
 107 
 108 void PhiResolver::move_to_temp(LIR_Opr src) {
 109   assert(_temp->is_illegal(), "");
 110   _temp = _gen->new_register(src->type());
 111   emit_move(src, _temp);
 112 }
 113 
 114 
 115 // Traverse assignment graph in depth first order and generate moves in post order
 116 // ie. two assignments: b := c, a := b start with node c:
 117 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 118 // Generates moves in this order: move b to a and move c to b
 119 // ie. cycle a := b, b := a start with node a
 120 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 121 // Generates moves in this order: move b to temp, move a to b, move temp to a
 122 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 123   if (!dest->visited()) {
 124     dest->set_visited();
 125     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 126       move(dest, dest->destination_at(i));
 127     }
 128   } else if (!dest->start_node()) {
 129     // cylce in graph detected
 130     assert(_loop == NULL, "only one loop valid!");
 131     _loop = dest;
 132     move_to_temp(src->operand());
 133     return;
 134   } // else dest is a start node
 135 
 136   if (!dest->assigned()) {
 137     if (_loop == dest) {
 138       move_temp_to(dest->operand());
 139       dest->set_assigned();
 140     } else if (src != NULL) {
 141       emit_move(src->operand(), dest->operand());
 142       dest->set_assigned();
 143     }
 144   }
 145 }
 146 
 147 
 148 PhiResolver::~PhiResolver() {
 149   int i;
 150   // resolve any cycles in moves from and to virtual registers
 151   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 152     ResolveNode* node = virtual_operands()[i];
 153     if (!node->visited()) {
 154       _loop = NULL;
 155       move(NULL, node);
 156       node->set_start_node();
 157       assert(_temp->is_illegal(), "move_temp_to() call missing");
 158     }
 159   }
 160 
 161   // generate move for move from non virtual register to abitrary destination
 162   for (i = other_operands().length() - 1; i >= 0; i --) {
 163     ResolveNode* node = other_operands()[i];
 164     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 165       emit_move(node->operand(), node->destination_at(j)->operand());
 166     }
 167   }
 168 }
 169 
 170 
 171 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 172   ResolveNode* node;
 173   if (opr->is_virtual()) {
 174     int vreg_num = opr->vreg_number();
 175     node = vreg_table().at_grow(vreg_num, NULL);
 176     assert(node == NULL || node->operand() == opr, "");
 177     if (node == NULL) {
 178       node = new ResolveNode(opr);
 179       vreg_table()[vreg_num] = node;
 180     }
 181     // Make sure that all virtual operands show up in the list when
 182     // they are used as the source of a move.
 183     if (source && !virtual_operands().contains(node)) {
 184       virtual_operands().append(node);
 185     }
 186   } else {
 187     assert(source, "");
 188     node = new ResolveNode(opr);
 189     other_operands().append(node);
 190   }
 191   return node;
 192 }
 193 
 194 
 195 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 196   assert(dest->is_virtual(), "");
 197   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 198   assert(src->is_valid(), "");
 199   assert(dest->is_valid(), "");
 200   ResolveNode* source = source_node(src);
 201   source->append(destination_node(dest));
 202 }
 203 
 204 
 205 //--------------------------------------------------------------
 206 // LIRItem
 207 
 208 void LIRItem::set_result(LIR_Opr opr) {
 209   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 210   value()->set_operand(opr);
 211 
 212   if (opr->is_virtual()) {
 213     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 214   }
 215 
 216   _result = opr;
 217 }
 218 
 219 void LIRItem::load_item() {
 220   if (result()->is_illegal()) {
 221     // update the items result
 222     _result = value()->operand();
 223   }
 224   if (!result()->is_register()) {
 225     LIR_Opr reg = _gen->new_register(value()->type());
 226     __ move(result(), reg);
 227     if (result()->is_constant()) {
 228       _result = reg;
 229     } else {
 230       set_result(reg);
 231     }
 232   }
 233 }
 234 
 235 
 236 void LIRItem::load_for_store(BasicType type) {
 237   if (_gen->can_store_as_constant(value(), type)) {
 238     _result = value()->operand();
 239     if (!_result->is_constant()) {
 240       _result = LIR_OprFact::value_type(value()->type());
 241     }
 242   } else if (type == T_BYTE || type == T_BOOLEAN) {
 243     load_byte_item();
 244   } else {
 245     load_item();
 246   }
 247 }
 248 
 249 void LIRItem::load_item_force(LIR_Opr reg) {
 250   LIR_Opr r = result();
 251   if (r != reg) {
 252 #if !defined(ARM) && !defined(E500V2)
 253     if (r->type() != reg->type()) {
 254       // moves between different types need an intervening spill slot
 255       r = _gen->force_to_spill(r, reg->type());
 256     }
 257 #endif
 258     __ move(r, reg);
 259     _result = reg;
 260   }
 261 }
 262 
 263 ciObject* LIRItem::get_jobject_constant() const {
 264   ObjectType* oc = type()->as_ObjectType();
 265   if (oc) {
 266     return oc->constant_value();
 267   }
 268   return NULL;
 269 }
 270 
 271 
 272 jint LIRItem::get_jint_constant() const {
 273   assert(is_constant() && value() != NULL, "");
 274   assert(type()->as_IntConstant() != NULL, "type check");
 275   return type()->as_IntConstant()->value();
 276 }
 277 
 278 
 279 jint LIRItem::get_address_constant() const {
 280   assert(is_constant() && value() != NULL, "");
 281   assert(type()->as_AddressConstant() != NULL, "type check");
 282   return type()->as_AddressConstant()->value();
 283 }
 284 
 285 
 286 jfloat LIRItem::get_jfloat_constant() const {
 287   assert(is_constant() && value() != NULL, "");
 288   assert(type()->as_FloatConstant() != NULL, "type check");
 289   return type()->as_FloatConstant()->value();
 290 }
 291 
 292 
 293 jdouble LIRItem::get_jdouble_constant() const {
 294   assert(is_constant() && value() != NULL, "");
 295   assert(type()->as_DoubleConstant() != NULL, "type check");
 296   return type()->as_DoubleConstant()->value();
 297 }
 298 
 299 
 300 jlong LIRItem::get_jlong_constant() const {
 301   assert(is_constant() && value() != NULL, "");
 302   assert(type()->as_LongConstant() != NULL, "type check");
 303   return type()->as_LongConstant()->value();
 304 }
 305 
 306 
 307 
 308 //--------------------------------------------------------------
 309 
 310 
 311 void LIRGenerator::init() {
 312   _bs = Universe::heap()->barrier_set();
 313 }
 314 
 315 
 316 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 317 #ifndef PRODUCT
 318   if (PrintIRWithLIR) {
 319     block->print();
 320   }
 321 #endif
 322 
 323   // set up the list of LIR instructions
 324   assert(block->lir() == NULL, "LIR list already computed for this block");
 325   _lir = new LIR_List(compilation(), block);
 326   block->set_lir(_lir);
 327 
 328   __ branch_destination(block->label());
 329 
 330   if (LIRTraceExecution &&
 331       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 332       !block->is_set(BlockBegin::exception_entry_flag)) {
 333     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 334     trace_block_entry(block);
 335   }
 336 }
 337 
 338 
 339 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 340 #ifndef PRODUCT
 341   if (PrintIRWithLIR) {
 342     tty->cr();
 343   }
 344 #endif
 345 
 346   // LIR_Opr for unpinned constants shouldn't be referenced by other
 347   // blocks so clear them out after processing the block.
 348   for (int i = 0; i < _unpinned_constants.length(); i++) {
 349     _unpinned_constants.at(i)->clear_operand();
 350   }
 351   _unpinned_constants.trunc_to(0);
 352 
 353   // clear our any registers for other local constants
 354   _constants.trunc_to(0);
 355   _reg_for_constants.trunc_to(0);
 356 }
 357 
 358 
 359 void LIRGenerator::block_do(BlockBegin* block) {
 360   CHECK_BAILOUT();
 361 
 362   block_do_prolog(block);
 363   set_block(block);
 364 
 365   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 366     if (instr->is_pinned()) do_root(instr);
 367   }
 368 
 369   set_block(NULL);
 370   block_do_epilog(block);
 371 }
 372 
 373 
 374 //-------------------------LIRGenerator-----------------------------
 375 
 376 // This is where the tree-walk starts; instr must be root;
 377 void LIRGenerator::do_root(Value instr) {
 378   CHECK_BAILOUT();
 379 
 380   InstructionMark im(compilation(), instr);
 381 
 382   assert(instr->is_pinned(), "use only with roots");
 383   assert(instr->subst() == instr, "shouldn't have missed substitution");
 384 
 385   instr->visit(this);
 386 
 387   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 388          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 389 }
 390 
 391 
 392 // This is called for each node in tree; the walk stops if a root is reached
 393 void LIRGenerator::walk(Value instr) {
 394   InstructionMark im(compilation(), instr);
 395   //stop walk when encounter a root
 396   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 397     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 398   } else {
 399     assert(instr->subst() == instr, "shouldn't have missed substitution");
 400     instr->visit(this);
 401     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 402   }
 403 }
 404 
 405 
 406 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 407   assert(state != NULL, "state must be defined");
 408 
 409 #ifndef PRODUCT
 410   state->verify();
 411 #endif
 412 
 413   ValueStack* s = state;
 414   for_each_state(s) {
 415     if (s->kind() == ValueStack::EmptyExceptionState) {
 416       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 417       continue;
 418     }
 419 
 420     int index;
 421     Value value;
 422     for_each_stack_value(s, index, value) {
 423       assert(value->subst() == value, "missed substitution");
 424       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 425         walk(value);
 426         assert(value->operand()->is_valid(), "must be evaluated now");
 427       }
 428     }
 429 
 430     int bci = s->bci();
 431     IRScope* scope = s->scope();
 432     ciMethod* method = scope->method();
 433 
 434     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 435     if (bci == SynchronizationEntryBCI) {
 436       if (x->as_ExceptionObject() || x->as_Throw()) {
 437         // all locals are dead on exit from the synthetic unlocker
 438         liveness.clear();
 439       } else {
 440         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 441       }
 442     }
 443     if (!liveness.is_valid()) {
 444       // Degenerate or breakpointed method.
 445       bailout("Degenerate or breakpointed method");
 446     } else {
 447       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 448       for_each_local_value(s, index, value) {
 449         assert(value->subst() == value, "missed substition");
 450         if (liveness.at(index) && !value->type()->is_illegal()) {
 451           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 452             walk(value);
 453             assert(value->operand()->is_valid(), "must be evaluated now");
 454           }
 455         } else {
 456           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 457           s->invalidate_local(index);
 458         }
 459       }
 460     }
 461   }
 462 
 463   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 464 }
 465 
 466 
 467 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 468   return state_for(x, x->exception_state());
 469 }
 470 
 471 
 472 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 473   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 474    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 475    * the class. */
 476   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 477     assert(info != NULL, "info must be set if class is not loaded");
 478     __ klass2reg_patch(NULL, r, info);
 479   } else {
 480     // no patching needed
 481     __ metadata2reg(obj->constant_encoding(), r);
 482   }
 483 }
 484 
 485 
 486 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 487                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 488   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 489   if (index->is_constant()) {
 490     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 491                 index->as_jint(), null_check_info);
 492     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 493   } else {
 494     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 495                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 496     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 497   }
 498 }
 499 
 500 
 501 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 502   CodeStub* stub = new RangeCheckStub(info, index, true);
 503   if (index->is_constant()) {
 504     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 505     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 506   } else {
 507     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 508                 java_nio_Buffer::limit_offset(), T_INT, info);
 509     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 510   }
 511   __ move(index, result);
 512 }
 513 
 514 
 515 
 516 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 517   LIR_Opr result_op = result;
 518   LIR_Opr left_op   = left;
 519   LIR_Opr right_op  = right;
 520 
 521   if (TwoOperandLIRForm && left_op != result_op) {
 522     assert(right_op != result_op, "malformed");
 523     __ move(left_op, result_op);
 524     left_op = result_op;
 525   }
 526 
 527   switch(code) {
 528     case Bytecodes::_dadd:
 529     case Bytecodes::_fadd:
 530     case Bytecodes::_ladd:
 531     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 532     case Bytecodes::_fmul:
 533     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 534 
 535     case Bytecodes::_dmul:
 536       {
 537         if (is_strictfp) {
 538           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 539         } else {
 540           __ mul(left_op, right_op, result_op); break;
 541         }
 542       }
 543       break;
 544 
 545     case Bytecodes::_imul:
 546       {
 547         bool    did_strength_reduce = false;
 548 
 549         if (right->is_constant()) {
 550           int c = right->as_jint();
 551           if (is_power_of_2(c)) {
 552             // do not need tmp here
 553             __ shift_left(left_op, exact_log2(c), result_op);
 554             did_strength_reduce = true;
 555           } else {
 556             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 557           }
 558         }
 559         // we couldn't strength reduce so just emit the multiply
 560         if (!did_strength_reduce) {
 561           __ mul(left_op, right_op, result_op);
 562         }
 563       }
 564       break;
 565 
 566     case Bytecodes::_dsub:
 567     case Bytecodes::_fsub:
 568     case Bytecodes::_lsub:
 569     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 570 
 571     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 572     // ldiv and lrem are implemented with a direct runtime call
 573 
 574     case Bytecodes::_ddiv:
 575       {
 576         if (is_strictfp) {
 577           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 578         } else {
 579           __ div (left_op, right_op, result_op); break;
 580         }
 581       }
 582       break;
 583 
 584     case Bytecodes::_drem:
 585     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 586 
 587     default: ShouldNotReachHere();
 588   }
 589 }
 590 
 591 
 592 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 593   arithmetic_op(code, result, left, right, false, tmp);
 594 }
 595 
 596 
 597 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 598   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 599 }
 600 
 601 
 602 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 603   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 604 }
 605 
 606 
 607 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 608   if (TwoOperandLIRForm && value != result_op) {
 609     assert(count != result_op, "malformed");
 610     __ move(value, result_op);
 611     value = result_op;
 612   }
 613 
 614   assert(count->is_constant() || count->is_register(), "must be");
 615   switch(code) {
 616   case Bytecodes::_ishl:
 617   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 618   case Bytecodes::_ishr:
 619   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 620   case Bytecodes::_iushr:
 621   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 622   default: ShouldNotReachHere();
 623   }
 624 }
 625 
 626 
 627 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 628   if (TwoOperandLIRForm && left_op != result_op) {
 629     assert(right_op != result_op, "malformed");
 630     __ move(left_op, result_op);
 631     left_op = result_op;
 632   }
 633 
 634   switch(code) {
 635     case Bytecodes::_iand:
 636     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 637 
 638     case Bytecodes::_ior:
 639     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 640 
 641     case Bytecodes::_ixor:
 642     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 643 
 644     default: ShouldNotReachHere();
 645   }
 646 }
 647 
 648 
 649 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 650   if (!GenerateSynchronizationCode) return;
 651   // for slow path, use debug info for state after successful locking
 652   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 653   __ load_stack_address_monitor(monitor_no, lock);
 654   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 655   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 656 }
 657 
 658 
 659 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 660   if (!GenerateSynchronizationCode) return;
 661   // setup registers
 662   LIR_Opr hdr = lock;
 663   lock = new_hdr;
 664   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 665   __ load_stack_address_monitor(monitor_no, lock);
 666   __ unlock_object(hdr, object, lock, scratch, slow_path);
 667 }
 668 
 669 #ifndef PRODUCT
 670 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 671   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 672     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 673   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 674     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 675   }
 676 }
 677 #endif
 678 
 679 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 680   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 681   // If klass is not loaded we do not know if the klass has finalizers:
 682   if (UseFastNewInstance && klass->is_loaded()
 683       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 684 
 685     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 686 
 687     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 688 
 689     assert(klass->is_loaded(), "must be loaded");
 690     // allocate space for instance
 691     assert(klass->size_helper() >= 0, "illegal instance size");
 692     const int instance_size = align_object_size(klass->size_helper());
 693     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 694                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 695   } else {
 696     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 697     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 698     __ branch_destination(slow_path->continuation());
 699   }
 700 }
 701 
 702 
 703 static bool is_constant_zero(Instruction* inst) {
 704   IntConstant* c = inst->type()->as_IntConstant();
 705   if (c) {
 706     return (c->value() == 0);
 707   }
 708   return false;
 709 }
 710 
 711 
 712 static bool positive_constant(Instruction* inst) {
 713   IntConstant* c = inst->type()->as_IntConstant();
 714   if (c) {
 715     return (c->value() >= 0);
 716   }
 717   return false;
 718 }
 719 
 720 
 721 static ciArrayKlass* as_array_klass(ciType* type) {
 722   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 723     return (ciArrayKlass*)type;
 724   } else {
 725     return NULL;
 726   }
 727 }
 728 
 729 static ciType* phi_declared_type(Phi* phi) {
 730   ciType* t = phi->operand_at(0)->declared_type();
 731   if (t == NULL) {
 732     return NULL;
 733   }
 734   for(int i = 1; i < phi->operand_count(); i++) {
 735     if (t != phi->operand_at(i)->declared_type()) {
 736       return NULL;
 737     }
 738   }
 739   return t;
 740 }
 741 
 742 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 743   Instruction* src     = x->argument_at(0);
 744   Instruction* src_pos = x->argument_at(1);
 745   Instruction* dst     = x->argument_at(2);
 746   Instruction* dst_pos = x->argument_at(3);
 747   Instruction* length  = x->argument_at(4);
 748 
 749   // first try to identify the likely type of the arrays involved
 750   ciArrayKlass* expected_type = NULL;
 751   bool is_exact = false, src_objarray = false, dst_objarray = false;
 752   {
 753     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 754     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 755     Phi* phi;
 756     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 757       src_declared_type = as_array_klass(phi_declared_type(phi));
 758     }
 759     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 760     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 761     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 762       dst_declared_type = as_array_klass(phi_declared_type(phi));
 763     }
 764 
 765     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 766       // the types exactly match so the type is fully known
 767       is_exact = true;
 768       expected_type = src_exact_type;
 769     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 770       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 771       ciArrayKlass* src_type = NULL;
 772       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 773         src_type = (ciArrayKlass*) src_exact_type;
 774       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 775         src_type = (ciArrayKlass*) src_declared_type;
 776       }
 777       if (src_type != NULL) {
 778         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 779           is_exact = true;
 780           expected_type = dst_type;
 781         }
 782       }
 783     }
 784     // at least pass along a good guess
 785     if (expected_type == NULL) expected_type = dst_exact_type;
 786     if (expected_type == NULL) expected_type = src_declared_type;
 787     if (expected_type == NULL) expected_type = dst_declared_type;
 788 
 789     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 790     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 791   }
 792 
 793   // if a probable array type has been identified, figure out if any
 794   // of the required checks for a fast case can be elided.
 795   int flags = LIR_OpArrayCopy::all_flags;
 796 
 797   if (!src_objarray)
 798     flags &= ~LIR_OpArrayCopy::src_objarray;
 799   if (!dst_objarray)
 800     flags &= ~LIR_OpArrayCopy::dst_objarray;
 801 
 802   if (!x->arg_needs_null_check(0))
 803     flags &= ~LIR_OpArrayCopy::src_null_check;
 804   if (!x->arg_needs_null_check(2))
 805     flags &= ~LIR_OpArrayCopy::dst_null_check;
 806 
 807 
 808   if (expected_type != NULL) {
 809     Value length_limit = NULL;
 810 
 811     IfOp* ifop = length->as_IfOp();
 812     if (ifop != NULL) {
 813       // look for expressions like min(v, a.length) which ends up as
 814       //   x > y ? y : x  or  x >= y ? y : x
 815       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 816           ifop->x() == ifop->fval() &&
 817           ifop->y() == ifop->tval()) {
 818         length_limit = ifop->y();
 819       }
 820     }
 821 
 822     // try to skip null checks and range checks
 823     NewArray* src_array = src->as_NewArray();
 824     if (src_array != NULL) {
 825       flags &= ~LIR_OpArrayCopy::src_null_check;
 826       if (length_limit != NULL &&
 827           src_array->length() == length_limit &&
 828           is_constant_zero(src_pos)) {
 829         flags &= ~LIR_OpArrayCopy::src_range_check;
 830       }
 831     }
 832 
 833     NewArray* dst_array = dst->as_NewArray();
 834     if (dst_array != NULL) {
 835       flags &= ~LIR_OpArrayCopy::dst_null_check;
 836       if (length_limit != NULL &&
 837           dst_array->length() == length_limit &&
 838           is_constant_zero(dst_pos)) {
 839         flags &= ~LIR_OpArrayCopy::dst_range_check;
 840       }
 841     }
 842 
 843     // check from incoming constant values
 844     if (positive_constant(src_pos))
 845       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 846     if (positive_constant(dst_pos))
 847       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 848     if (positive_constant(length))
 849       flags &= ~LIR_OpArrayCopy::length_positive_check;
 850 
 851     // see if the range check can be elided, which might also imply
 852     // that src or dst is non-null.
 853     ArrayLength* al = length->as_ArrayLength();
 854     if (al != NULL) {
 855       if (al->array() == src) {
 856         // it's the length of the source array
 857         flags &= ~LIR_OpArrayCopy::length_positive_check;
 858         flags &= ~LIR_OpArrayCopy::src_null_check;
 859         if (is_constant_zero(src_pos))
 860           flags &= ~LIR_OpArrayCopy::src_range_check;
 861       }
 862       if (al->array() == dst) {
 863         // it's the length of the destination array
 864         flags &= ~LIR_OpArrayCopy::length_positive_check;
 865         flags &= ~LIR_OpArrayCopy::dst_null_check;
 866         if (is_constant_zero(dst_pos))
 867           flags &= ~LIR_OpArrayCopy::dst_range_check;
 868       }
 869     }
 870     if (is_exact) {
 871       flags &= ~LIR_OpArrayCopy::type_check;
 872     }
 873   }
 874 
 875   IntConstant* src_int = src_pos->type()->as_IntConstant();
 876   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 877   if (src_int && dst_int) {
 878     int s_offs = src_int->value();
 879     int d_offs = dst_int->value();
 880     if (src_int->value() >= dst_int->value()) {
 881       flags &= ~LIR_OpArrayCopy::overlapping;
 882     }
 883     if (expected_type != NULL) {
 884       BasicType t = expected_type->element_type()->basic_type();
 885       int element_size = type2aelembytes(t);
 886       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 887           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 888         flags &= ~LIR_OpArrayCopy::unaligned;
 889       }
 890     }
 891   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 892     // src and dest positions are the same, or dst is zero so assume
 893     // nonoverlapping copy.
 894     flags &= ~LIR_OpArrayCopy::overlapping;
 895   }
 896 
 897   if (src == dst) {
 898     // moving within a single array so no type checks are needed
 899     if (flags & LIR_OpArrayCopy::type_check) {
 900       flags &= ~LIR_OpArrayCopy::type_check;
 901     }
 902   }
 903   *flagsp = flags;
 904   *expected_typep = (ciArrayKlass*)expected_type;
 905 }
 906 
 907 
 908 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 909   assert(opr->is_register(), "why spill if item is not register?");
 910 
 911   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 912     LIR_Opr result = new_register(T_FLOAT);
 913     set_vreg_flag(result, must_start_in_memory);
 914     assert(opr->is_register(), "only a register can be spilled");
 915     assert(opr->value_type()->is_float(), "rounding only for floats available");
 916     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 917     return result;
 918   }
 919   return opr;
 920 }
 921 
 922 
 923 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 924   assert(type2size[t] == type2size[value->type()],
 925          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
 926   if (!value->is_register()) {
 927     // force into a register
 928     LIR_Opr r = new_register(value->type());
 929     __ move(value, r);
 930     value = r;
 931   }
 932 
 933   // create a spill location
 934   LIR_Opr tmp = new_register(t);
 935   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 936 
 937   // move from register to spill
 938   __ move(value, tmp);
 939   return tmp;
 940 }
 941 
 942 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 943   if (if_instr->should_profile()) {
 944     ciMethod* method = if_instr->profiled_method();
 945     assert(method != NULL, "method should be set if branch is profiled");
 946     ciMethodData* md = method->method_data_or_null();
 947     assert(md != NULL, "Sanity");
 948     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 949     assert(data != NULL, "must have profiling data");
 950     assert(data->is_BranchData(), "need BranchData for two-way branches");
 951     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 952     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 953     if (if_instr->is_swapped()) {
 954       int t = taken_count_offset;
 955       taken_count_offset = not_taken_count_offset;
 956       not_taken_count_offset = t;
 957     }
 958 
 959     LIR_Opr md_reg = new_register(T_METADATA);
 960     __ metadata2reg(md->constant_encoding(), md_reg);
 961 
 962     LIR_Opr data_offset_reg = new_pointer_register();
 963     __ cmove(lir_cond(cond),
 964              LIR_OprFact::intptrConst(taken_count_offset),
 965              LIR_OprFact::intptrConst(not_taken_count_offset),
 966              data_offset_reg, as_BasicType(if_instr->x()->type()));
 967 
 968     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 969     LIR_Opr data_reg = new_pointer_register();
 970     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 971     __ move(data_addr, data_reg);
 972     // Use leal instead of add to avoid destroying condition codes on x86
 973     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 974     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 975     __ move(data_reg, data_addr);
 976   }
 977 }
 978 
 979 // Phi technique:
 980 // This is about passing live values from one basic block to the other.
 981 // In code generated with Java it is rather rare that more than one
 982 // value is on the stack from one basic block to the other.
 983 // We optimize our technique for efficient passing of one value
 984 // (of type long, int, double..) but it can be extended.
 985 // When entering or leaving a basic block, all registers and all spill
 986 // slots are release and empty. We use the released registers
 987 // and spill slots to pass the live values from one block
 988 // to the other. The topmost value, i.e., the value on TOS of expression
 989 // stack is passed in registers. All other values are stored in spilling
 990 // area. Every Phi has an index which designates its spill slot
 991 // At exit of a basic block, we fill the register(s) and spill slots.
 992 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 993 // and locks necessary registers and spilling slots.
 994 
 995 
 996 // move current value to referenced phi function
 997 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 998   Phi* phi = sux_val->as_Phi();
 999   // cur_val can be null without phi being null in conjunction with inlining
1000   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1001     LIR_Opr operand = cur_val->operand();
1002     if (cur_val->operand()->is_illegal()) {
1003       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1004              "these can be produced lazily");
1005       operand = operand_for_instruction(cur_val);
1006     }
1007     resolver->move(operand, operand_for_instruction(phi));
1008   }
1009 }
1010 
1011 
1012 // Moves all stack values into their PHI position
1013 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1014   BlockBegin* bb = block();
1015   if (bb->number_of_sux() == 1) {
1016     BlockBegin* sux = bb->sux_at(0);
1017     assert(sux->number_of_preds() > 0, "invalid CFG");
1018 
1019     // a block with only one predecessor never has phi functions
1020     if (sux->number_of_preds() > 1) {
1021       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1022       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1023 
1024       ValueStack* sux_state = sux->state();
1025       Value sux_value;
1026       int index;
1027 
1028       assert(cur_state->scope() == sux_state->scope(), "not matching");
1029       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1030       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1031 
1032       for_each_stack_value(sux_state, index, sux_value) {
1033         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1034       }
1035 
1036       for_each_local_value(sux_state, index, sux_value) {
1037         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1038       }
1039 
1040       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1041     }
1042   }
1043 }
1044 
1045 
1046 LIR_Opr LIRGenerator::new_register(BasicType type) {
1047   int vreg = _virtual_register_number;
1048   // add a little fudge factor for the bailout, since the bailout is
1049   // only checked periodically.  This gives a few extra registers to
1050   // hand out before we really run out, which helps us keep from
1051   // tripping over assertions.
1052   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1053     bailout("out of virtual registers");
1054     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1055       // wrap it around
1056       _virtual_register_number = LIR_OprDesc::vreg_base;
1057     }
1058   }
1059   _virtual_register_number += 1;
1060   return LIR_OprFact::virtual_register(vreg, type);
1061 }
1062 
1063 
1064 // Try to lock using register in hint
1065 LIR_Opr LIRGenerator::rlock(Value instr) {
1066   return new_register(instr->type());
1067 }
1068 
1069 
1070 // does an rlock and sets result
1071 LIR_Opr LIRGenerator::rlock_result(Value x) {
1072   LIR_Opr reg = rlock(x);
1073   set_result(x, reg);
1074   return reg;
1075 }
1076 
1077 
1078 // does an rlock and sets result
1079 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1080   LIR_Opr reg;
1081   switch (type) {
1082   case T_BYTE:
1083   case T_BOOLEAN:
1084     reg = rlock_byte(type);
1085     break;
1086   default:
1087     reg = rlock(x);
1088     break;
1089   }
1090 
1091   set_result(x, reg);
1092   return reg;
1093 }
1094 
1095 
1096 //---------------------------------------------------------------------
1097 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1098   ObjectType* oc = value->type()->as_ObjectType();
1099   if (oc) {
1100     return oc->constant_value();
1101   }
1102   return NULL;
1103 }
1104 
1105 
1106 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1107   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1108   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1109 
1110   // no moves are created for phi functions at the begin of exception
1111   // handlers, so assign operands manually here
1112   for_each_phi_fun(block(), phi,
1113                    operand_for_instruction(phi));
1114 
1115   LIR_Opr thread_reg = getThreadPointer();
1116   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1117                exceptionOopOpr());
1118   __ move_wide(LIR_OprFact::oopConst(NULL),
1119                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1120   __ move_wide(LIR_OprFact::oopConst(NULL),
1121                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1122 
1123   LIR_Opr result = new_register(T_OBJECT);
1124   __ move(exceptionOopOpr(), result);
1125   set_result(x, result);
1126 }
1127 
1128 
1129 //----------------------------------------------------------------------
1130 //----------------------------------------------------------------------
1131 //----------------------------------------------------------------------
1132 //----------------------------------------------------------------------
1133 //                        visitor functions
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 //----------------------------------------------------------------------
1138 
1139 void LIRGenerator::do_Phi(Phi* x) {
1140   // phi functions are never visited directly
1141   ShouldNotReachHere();
1142 }
1143 
1144 
1145 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1146 void LIRGenerator::do_Constant(Constant* x) {
1147   if (x->state_before() != NULL) {
1148     // Any constant with a ValueStack requires patching so emit the patch here
1149     LIR_Opr reg = rlock_result(x);
1150     CodeEmitInfo* info = state_for(x, x->state_before());
1151     __ oop2reg_patch(NULL, reg, info);
1152   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1153     if (!x->is_pinned()) {
1154       // unpinned constants are handled specially so that they can be
1155       // put into registers when they are used multiple times within a
1156       // block.  After the block completes their operand will be
1157       // cleared so that other blocks can't refer to that register.
1158       set_result(x, load_constant(x));
1159     } else {
1160       LIR_Opr res = x->operand();
1161       if (!res->is_valid()) {
1162         res = LIR_OprFact::value_type(x->type());
1163       }
1164       if (res->is_constant()) {
1165         LIR_Opr reg = rlock_result(x);
1166         __ move(res, reg);
1167       } else {
1168         set_result(x, res);
1169       }
1170     }
1171   } else {
1172     set_result(x, LIR_OprFact::value_type(x->type()));
1173   }
1174 }
1175 
1176 
1177 void LIRGenerator::do_Local(Local* x) {
1178   // operand_for_instruction has the side effect of setting the result
1179   // so there's no need to do it here.
1180   operand_for_instruction(x);
1181 }
1182 
1183 
1184 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1185   Unimplemented();
1186 }
1187 
1188 
1189 void LIRGenerator::do_Return(Return* x) {
1190   if (compilation()->env()->dtrace_method_probes()) {
1191     BasicTypeList signature;
1192     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1193     signature.append(T_METADATA); // Method*
1194     LIR_OprList* args = new LIR_OprList();
1195     args->append(getThreadPointer());
1196     LIR_Opr meth = new_register(T_METADATA);
1197     __ metadata2reg(method()->constant_encoding(), meth);
1198     args->append(meth);
1199     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1200   }
1201 
1202   if (x->type()->is_void()) {
1203     __ return_op(LIR_OprFact::illegalOpr);
1204   } else {
1205     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1206     LIRItem result(x->result(), this);
1207 
1208     result.load_item_force(reg);
1209     __ return_op(result.result());
1210   }
1211   set_no_result(x);
1212 }
1213 
1214 // Examble: ref.get()
1215 // Combination of LoadField and g1 pre-write barrier
1216 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1217 
1218   const int referent_offset = java_lang_ref_Reference::referent_offset;
1219   guarantee(referent_offset > 0, "referent offset not initialized");
1220 
1221   assert(x->number_of_arguments() == 1, "wrong type");
1222 
1223   LIRItem reference(x->argument_at(0), this);
1224   reference.load_item();
1225 
1226   // need to perform the null check on the reference objecy
1227   CodeEmitInfo* info = NULL;
1228   if (x->needs_null_check()) {
1229     info = state_for(x);
1230   }
1231 
1232   LIR_Address* referent_field_adr =
1233     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1234 
1235   LIR_Opr result = rlock_result(x);
1236 
1237   __ load(referent_field_adr, result, info);
1238 
1239   // Register the value in the referent field with the pre-barrier
1240   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1241               result /* pre_val */,
1242               false  /* do_load */,
1243               false  /* patch */,
1244               NULL   /* info */);
1245 }
1246 
1247 // Example: clazz.isInstance(object)
1248 void LIRGenerator::do_isInstance(Intrinsic* x) {
1249   assert(x->number_of_arguments() == 2, "wrong type");
1250 
1251   // TODO could try to substitute this node with an equivalent InstanceOf
1252   // if clazz is known to be a constant Class. This will pick up newly found
1253   // constants after HIR construction. I'll leave this to a future change.
1254 
1255   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1256   // could follow the aastore example in a future change.
1257 
1258   LIRItem clazz(x->argument_at(0), this);
1259   LIRItem object(x->argument_at(1), this);
1260   clazz.load_item();
1261   object.load_item();
1262   LIR_Opr result = rlock_result(x);
1263 
1264   // need to perform null check on clazz
1265   if (x->needs_null_check()) {
1266     CodeEmitInfo* info = state_for(x);
1267     __ null_check(clazz.result(), info);
1268   }
1269 
1270   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1271                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1272                                      x->type(),
1273                                      NULL); // NULL CodeEmitInfo results in a leaf call
1274   __ move(call_result, result);
1275 }
1276 
1277 // Example: object.getClass ()
1278 void LIRGenerator::do_getClass(Intrinsic* x) {
1279   assert(x->number_of_arguments() == 1, "wrong type");
1280 
1281   LIRItem rcvr(x->argument_at(0), this);
1282   rcvr.load_item();
1283   LIR_Opr temp = new_register(T_METADATA);
1284   LIR_Opr result = rlock_result(x);
1285 
1286   // need to perform the null check on the rcvr
1287   CodeEmitInfo* info = NULL;
1288   if (x->needs_null_check()) {
1289     info = state_for(x);
1290   }
1291 
1292   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1293   // meaning of these two is mixed up (see JDK-8026837).
1294   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1295   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1296 }
1297 
1298 
1299 // Example: Thread.currentThread()
1300 void LIRGenerator::do_currentThread(Intrinsic* x) {
1301   assert(x->number_of_arguments() == 0, "wrong type");
1302   LIR_Opr reg = rlock_result(x);
1303   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1304 }
1305 
1306 
1307 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1308   assert(x->number_of_arguments() == 1, "wrong type");
1309   LIRItem receiver(x->argument_at(0), this);
1310 
1311   receiver.load_item();
1312   BasicTypeList signature;
1313   signature.append(T_OBJECT); // receiver
1314   LIR_OprList* args = new LIR_OprList();
1315   args->append(receiver.result());
1316   CodeEmitInfo* info = state_for(x, x->state());
1317   call_runtime(&signature, args,
1318                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1319                voidType, info);
1320 
1321   set_no_result(x);
1322 }
1323 
1324 
1325 //------------------------local access--------------------------------------
1326 
1327 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1328   if (x->operand()->is_illegal()) {
1329     Constant* c = x->as_Constant();
1330     if (c != NULL) {
1331       x->set_operand(LIR_OprFact::value_type(c->type()));
1332     } else {
1333       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1334       // allocate a virtual register for this local or phi
1335       x->set_operand(rlock(x));
1336       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1337     }
1338   }
1339   return x->operand();
1340 }
1341 
1342 
1343 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1344   if (opr->is_virtual()) {
1345     return instruction_for_vreg(opr->vreg_number());
1346   }
1347   return NULL;
1348 }
1349 
1350 
1351 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1352   if (reg_num < _instruction_for_operand.length()) {
1353     return _instruction_for_operand.at(reg_num);
1354   }
1355   return NULL;
1356 }
1357 
1358 
1359 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1360   if (_vreg_flags.size_in_bits() == 0) {
1361     BitMap2D temp(100, num_vreg_flags);
1362     temp.clear();
1363     _vreg_flags = temp;
1364   }
1365   _vreg_flags.at_put_grow(vreg_num, f, true);
1366 }
1367 
1368 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1369   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1370     return false;
1371   }
1372   return _vreg_flags.at(vreg_num, f);
1373 }
1374 
1375 
1376 // Block local constant handling.  This code is useful for keeping
1377 // unpinned constants and constants which aren't exposed in the IR in
1378 // registers.  Unpinned Constant instructions have their operands
1379 // cleared when the block is finished so that other blocks can't end
1380 // up referring to their registers.
1381 
1382 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1383   assert(!x->is_pinned(), "only for unpinned constants");
1384   _unpinned_constants.append(x);
1385   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1386 }
1387 
1388 
1389 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1390   BasicType t = c->type();
1391   for (int i = 0; i < _constants.length(); i++) {
1392     LIR_Const* other = _constants.at(i);
1393     if (t == other->type()) {
1394       switch (t) {
1395       case T_INT:
1396       case T_FLOAT:
1397         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1398         break;
1399       case T_LONG:
1400       case T_DOUBLE:
1401         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1402         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1403         break;
1404       case T_OBJECT:
1405         if (c->as_jobject() != other->as_jobject()) continue;
1406         break;
1407       }
1408       return _reg_for_constants.at(i);
1409     }
1410   }
1411 
1412   LIR_Opr result = new_register(t);
1413   __ move((LIR_Opr)c, result);
1414   _constants.append(c);
1415   _reg_for_constants.append(result);
1416   return result;
1417 }
1418 
1419 // Various barriers
1420 
1421 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1422                                bool do_load, bool patch, CodeEmitInfo* info) {
1423   // Do the pre-write barrier, if any.
1424   switch (_bs->kind()) {
1425 #if INCLUDE_ALL_GCS
1426     case BarrierSet::G1SATBCT:
1427     case BarrierSet::G1SATBCTLogging:
1428       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1429       break;
1430 #endif // INCLUDE_ALL_GCS
1431     case BarrierSet::CardTableModRef:
1432     case BarrierSet::CardTableExtension:
1433       // No pre barriers
1434       break;
1435     case BarrierSet::ModRef:
1436       // No pre barriers
1437       break;
1438     default      :
1439       ShouldNotReachHere();
1440 
1441   }
1442 }
1443 
1444 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1445   switch (_bs->kind()) {
1446 #if INCLUDE_ALL_GCS
1447     case BarrierSet::G1SATBCT:
1448     case BarrierSet::G1SATBCTLogging:
1449       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1450       break;
1451 #endif // INCLUDE_ALL_GCS
1452     case BarrierSet::CardTableModRef:
1453     case BarrierSet::CardTableExtension:
1454       CardTableModRef_post_barrier(addr,  new_val);
1455       break;
1456     case BarrierSet::ModRef:
1457       // No post barriers
1458       break;
1459     default      :
1460       ShouldNotReachHere();
1461     }
1462 }
1463 
1464 ////////////////////////////////////////////////////////////////////////
1465 #if INCLUDE_ALL_GCS
1466 
1467 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1468                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1469   // First we test whether marking is in progress.
1470   BasicType flag_type;
1471   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1472     flag_type = T_INT;
1473   } else {
1474     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1475               "Assumption");
1476     flag_type = T_BYTE;
1477   }
1478   LIR_Opr thrd = getThreadPointer();
1479   LIR_Address* mark_active_flag_addr =
1480     new LIR_Address(thrd,
1481                     in_bytes(JavaThread::satb_mark_queue_offset() +
1482                              PtrQueue::byte_offset_of_active()),
1483                     flag_type);
1484   // Read the marking-in-progress flag.
1485   LIR_Opr flag_val = new_register(T_INT);
1486   __ load(mark_active_flag_addr, flag_val);
1487   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1488 
1489   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1490 
1491   CodeStub* slow;
1492 
1493   if (do_load) {
1494     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1495     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1496 
1497     if (patch)
1498       pre_val_patch_code = lir_patch_normal;
1499 
1500     pre_val = new_register(T_OBJECT);
1501 
1502     if (!addr_opr->is_address()) {
1503       assert(addr_opr->is_register(), "must be");
1504       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1505     }
1506     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1507   } else {
1508     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1509     assert(pre_val->is_register(), "must be");
1510     assert(pre_val->type() == T_OBJECT, "must be an object");
1511     assert(info == NULL, "sanity");
1512 
1513     slow = new G1PreBarrierStub(pre_val);
1514   }
1515 
1516   __ branch(lir_cond_notEqual, T_INT, slow);
1517   __ branch_destination(slow->continuation());
1518 }
1519 
1520 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1521   // If the "new_val" is a constant NULL, no barrier is necessary.
1522   if (new_val->is_constant() &&
1523       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1524 
1525   if (!new_val->is_register()) {
1526     LIR_Opr new_val_reg = new_register(T_OBJECT);
1527     if (new_val->is_constant()) {
1528       __ move(new_val, new_val_reg);
1529     } else {
1530       __ leal(new_val, new_val_reg);
1531     }
1532     new_val = new_val_reg;
1533   }
1534   assert(new_val->is_register(), "must be a register at this point");
1535 
1536   if (addr->is_address()) {
1537     LIR_Address* address = addr->as_address_ptr();
1538     LIR_Opr ptr = new_pointer_register();
1539     if (!address->index()->is_valid() && address->disp() == 0) {
1540       __ move(address->base(), ptr);
1541     } else {
1542       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1543       __ leal(addr, ptr);
1544     }
1545     addr = ptr;
1546   }
1547   assert(addr->is_register(), "must be a register at this point");
1548 
1549   LIR_Opr xor_res = new_pointer_register();
1550   LIR_Opr xor_shift_res = new_pointer_register();
1551   if (TwoOperandLIRForm ) {
1552     __ move(addr, xor_res);
1553     __ logical_xor(xor_res, new_val, xor_res);
1554     __ move(xor_res, xor_shift_res);
1555     __ unsigned_shift_right(xor_shift_res,
1556                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1557                             xor_shift_res,
1558                             LIR_OprDesc::illegalOpr());
1559   } else {
1560     __ logical_xor(addr, new_val, xor_res);
1561     __ unsigned_shift_right(xor_res,
1562                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1563                             xor_shift_res,
1564                             LIR_OprDesc::illegalOpr());
1565   }
1566 
1567   if (!new_val->is_register()) {
1568     LIR_Opr new_val_reg = new_register(T_OBJECT);
1569     __ leal(new_val, new_val_reg);
1570     new_val = new_val_reg;
1571   }
1572   assert(new_val->is_register(), "must be a register at this point");
1573 
1574   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1575 
1576   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1577   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1578   __ branch_destination(slow->continuation());
1579 }
1580 
1581 #endif // INCLUDE_ALL_GCS
1582 ////////////////////////////////////////////////////////////////////////
1583 
1584 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1585 
1586   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1587   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1588   if (addr->is_address()) {
1589     LIR_Address* address = addr->as_address_ptr();
1590     // ptr cannot be an object because we use this barrier for array card marks
1591     // and addr can point in the middle of an array.
1592     LIR_Opr ptr = new_pointer_register();
1593     if (!address->index()->is_valid() && address->disp() == 0) {
1594       __ move(address->base(), ptr);
1595     } else {
1596       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1597       __ leal(addr, ptr);
1598     }
1599     addr = ptr;
1600   }
1601   assert(addr->is_register(), "must be a register at this point");
1602 
1603 #ifdef ARM
1604   // TODO: ARM - move to platform-dependent code
1605   LIR_Opr tmp = FrameMap::R14_opr;
1606   if (VM_Version::supports_movw()) {
1607     __ move((LIR_Opr)card_table_base, tmp);
1608   } else {
1609     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1610   }
1611 
1612   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1613   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1614   if(((int)ct->byte_map_base & 0xff) == 0) {
1615     __ move(tmp, card_addr);
1616   } else {
1617     LIR_Opr tmp_zero = new_register(T_INT);
1618     __ move(LIR_OprFact::intConst(0), tmp_zero);
1619     __ move(tmp_zero, card_addr);
1620   }
1621 #else // ARM
1622   LIR_Opr tmp = new_pointer_register();
1623   if (TwoOperandLIRForm) {
1624     __ move(addr, tmp);
1625     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1626   } else {
1627     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1628   }
1629   if (can_inline_as_constant(card_table_base)) {
1630     __ move(LIR_OprFact::intConst(0),
1631               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1632   } else {
1633     __ move(LIR_OprFact::intConst(0),
1634               new LIR_Address(tmp, load_constant(card_table_base),
1635                               T_BYTE));
1636   }
1637 #endif // ARM
1638 }
1639 
1640 
1641 //------------------------field access--------------------------------------
1642 
1643 // Comment copied form templateTable_i486.cpp
1644 // ----------------------------------------------------------------------------
1645 // Volatile variables demand their effects be made known to all CPU's in
1646 // order.  Store buffers on most chips allow reads & writes to reorder; the
1647 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1648 // memory barrier (i.e., it's not sufficient that the interpreter does not
1649 // reorder volatile references, the hardware also must not reorder them).
1650 //
1651 // According to the new Java Memory Model (JMM):
1652 // (1) All volatiles are serialized wrt to each other.
1653 // ALSO reads & writes act as aquire & release, so:
1654 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1655 // the read float up to before the read.  It's OK for non-volatile memory refs
1656 // that happen before the volatile read to float down below it.
1657 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1658 // that happen BEFORE the write float down to after the write.  It's OK for
1659 // non-volatile memory refs that happen after the volatile write to float up
1660 // before it.
1661 //
1662 // We only put in barriers around volatile refs (they are expensive), not
1663 // _between_ memory refs (that would require us to track the flavor of the
1664 // previous memory refs).  Requirements (2) and (3) require some barriers
1665 // before volatile stores and after volatile loads.  These nearly cover
1666 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1667 // case is placed after volatile-stores although it could just as well go
1668 // before volatile-loads.
1669 
1670 
1671 void LIRGenerator::do_StoreField(StoreField* x) {
1672   bool needs_patching = x->needs_patching();
1673   bool is_volatile = x->field()->is_volatile();
1674   BasicType field_type = x->field_type();
1675   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1676 
1677   CodeEmitInfo* info = NULL;
1678   if (needs_patching) {
1679     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1680     info = state_for(x, x->state_before());
1681   } else if (x->needs_null_check()) {
1682     NullCheck* nc = x->explicit_null_check();
1683     if (nc == NULL) {
1684       info = state_for(x);
1685     } else {
1686       info = state_for(nc);
1687     }
1688   }
1689 
1690 
1691   LIRItem object(x->obj(), this);
1692   LIRItem value(x->value(),  this);
1693 
1694   object.load_item();
1695 
1696   if (is_volatile || needs_patching) {
1697     // load item if field is volatile (fewer special cases for volatiles)
1698     // load item if field not initialized
1699     // load item if field not constant
1700     // because of code patching we cannot inline constants
1701     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1702       value.load_byte_item();
1703     } else  {
1704       value.load_item();
1705     }
1706   } else {
1707     value.load_for_store(field_type);
1708   }
1709 
1710   set_no_result(x);
1711 
1712 #ifndef PRODUCT
1713   if (PrintNotLoaded && needs_patching) {
1714     tty->print_cr("   ###class not loaded at store_%s bci %d",
1715                   x->is_static() ?  "static" : "field", x->printable_bci());
1716   }
1717 #endif
1718 
1719   if (x->needs_null_check() &&
1720       (needs_patching ||
1721        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1722     // emit an explicit null check because the offset is too large
1723     __ null_check(object.result(), new CodeEmitInfo(info));
1724   }
1725 
1726   LIR_Address* address;
1727   if (needs_patching) {
1728     // we need to patch the offset in the instruction so don't allow
1729     // generate_address to try to be smart about emitting the -1.
1730     // Otherwise the patching code won't know how to find the
1731     // instruction to patch.
1732     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1733   } else {
1734     address = generate_address(object.result(), x->offset(), field_type);
1735   }
1736 
1737   if (is_volatile && os::is_MP()) {
1738     __ membar_release();
1739   }
1740 
1741   if (is_oop) {
1742     // Do the pre-write barrier, if any.
1743     pre_barrier(LIR_OprFact::address(address),
1744                 LIR_OprFact::illegalOpr /* pre_val */,
1745                 true /* do_load*/,
1746                 needs_patching,
1747                 (info ? new CodeEmitInfo(info) : NULL));
1748   }
1749 
1750   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1751   if (needs_atomic_access && !needs_patching) {
1752     volatile_field_store(value.result(), address, info);
1753   } else {
1754     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1755     __ store(value.result(), address, info, patch_code);
1756   }
1757 
1758   if (is_oop) {
1759     // Store to object so mark the card of the header
1760     post_barrier(object.result(), value.result());
1761   }
1762 
1763   if (is_volatile && os::is_MP()) {
1764     __ membar();
1765   }
1766 }
1767 
1768 
1769 void LIRGenerator::do_LoadField(LoadField* x) {
1770   bool needs_patching = x->needs_patching();
1771   bool is_volatile = x->field()->is_volatile();
1772   BasicType field_type = x->field_type();
1773 
1774   CodeEmitInfo* info = NULL;
1775   if (needs_patching) {
1776     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1777     info = state_for(x, x->state_before());
1778   } else if (x->needs_null_check()) {
1779     NullCheck* nc = x->explicit_null_check();
1780     if (nc == NULL) {
1781       info = state_for(x);
1782     } else {
1783       info = state_for(nc);
1784     }
1785   }
1786 
1787   LIRItem object(x->obj(), this);
1788 
1789   object.load_item();
1790 
1791 #ifndef PRODUCT
1792   if (PrintNotLoaded && needs_patching) {
1793     tty->print_cr("   ###class not loaded at load_%s bci %d",
1794                   x->is_static() ?  "static" : "field", x->printable_bci());
1795   }
1796 #endif
1797 
1798   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1799   if (x->needs_null_check() &&
1800       (needs_patching ||
1801        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1802        stress_deopt)) {
1803     LIR_Opr obj = object.result();
1804     if (stress_deopt) {
1805       obj = new_register(T_OBJECT);
1806       __ move(LIR_OprFact::oopConst(NULL), obj);
1807     }
1808     // emit an explicit null check because the offset is too large
1809     __ null_check(obj, new CodeEmitInfo(info));
1810   }
1811 
1812   LIR_Opr reg = rlock_result(x, field_type);
1813   LIR_Address* address;
1814   if (needs_patching) {
1815     // we need to patch the offset in the instruction so don't allow
1816     // generate_address to try to be smart about emitting the -1.
1817     // Otherwise the patching code won't know how to find the
1818     // instruction to patch.
1819     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1820   } else {
1821     address = generate_address(object.result(), x->offset(), field_type);
1822   }
1823 
1824   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1825   if (needs_atomic_access && !needs_patching) {
1826     volatile_field_load(address, reg, info);
1827   } else {
1828     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1829     __ load(address, reg, info, patch_code);
1830   }
1831 
1832   if (is_volatile && os::is_MP()) {
1833     __ membar_acquire();
1834   }
1835 }
1836 
1837 
1838 //------------------------java.nio.Buffer.checkIndex------------------------
1839 
1840 // int java.nio.Buffer.checkIndex(int)
1841 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1842   // NOTE: by the time we are in checkIndex() we are guaranteed that
1843   // the buffer is non-null (because checkIndex is package-private and
1844   // only called from within other methods in the buffer).
1845   assert(x->number_of_arguments() == 2, "wrong type");
1846   LIRItem buf  (x->argument_at(0), this);
1847   LIRItem index(x->argument_at(1), this);
1848   buf.load_item();
1849   index.load_item();
1850 
1851   LIR_Opr result = rlock_result(x);
1852   if (GenerateRangeChecks) {
1853     CodeEmitInfo* info = state_for(x);
1854     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1855     if (index.result()->is_constant()) {
1856       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1857       __ branch(lir_cond_belowEqual, T_INT, stub);
1858     } else {
1859       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1860                   java_nio_Buffer::limit_offset(), T_INT, info);
1861       __ branch(lir_cond_aboveEqual, T_INT, stub);
1862     }
1863     __ move(index.result(), result);
1864   } else {
1865     // Just load the index into the result register
1866     __ move(index.result(), result);
1867   }
1868 }
1869 
1870 
1871 //------------------------array access--------------------------------------
1872 
1873 
1874 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1875   LIRItem array(x->array(), this);
1876   array.load_item();
1877   LIR_Opr reg = rlock_result(x);
1878 
1879   CodeEmitInfo* info = NULL;
1880   if (x->needs_null_check()) {
1881     NullCheck* nc = x->explicit_null_check();
1882     if (nc == NULL) {
1883       info = state_for(x);
1884     } else {
1885       info = state_for(nc);
1886     }
1887     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1888       LIR_Opr obj = new_register(T_OBJECT);
1889       __ move(LIR_OprFact::oopConst(NULL), obj);
1890       __ null_check(obj, new CodeEmitInfo(info));
1891     }
1892   }
1893   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1894 }
1895 
1896 
1897 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1898   bool use_length = x->length() != NULL;
1899   LIRItem array(x->array(), this);
1900   LIRItem index(x->index(), this);
1901   LIRItem length(this);
1902   bool needs_range_check = x->compute_needs_range_check();
1903 
1904   if (use_length && needs_range_check) {
1905     length.set_instruction(x->length());
1906     length.load_item();
1907   }
1908 
1909   array.load_item();
1910   if (index.is_constant() && can_inline_as_constant(x->index())) {
1911     // let it be a constant
1912     index.dont_load_item();
1913   } else {
1914     index.load_item();
1915   }
1916 
1917   CodeEmitInfo* range_check_info = state_for(x);
1918   CodeEmitInfo* null_check_info = NULL;
1919   if (x->needs_null_check()) {
1920     NullCheck* nc = x->explicit_null_check();
1921     if (nc != NULL) {
1922       null_check_info = state_for(nc);
1923     } else {
1924       null_check_info = range_check_info;
1925     }
1926     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1927       LIR_Opr obj = new_register(T_OBJECT);
1928       __ move(LIR_OprFact::oopConst(NULL), obj);
1929       __ null_check(obj, new CodeEmitInfo(null_check_info));
1930     }
1931   }
1932 
1933   // emit array address setup early so it schedules better
1934   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1935 
1936   if (GenerateRangeChecks && needs_range_check) {
1937     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1938       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1939     } else if (use_length) {
1940       // TODO: use a (modified) version of array_range_check that does not require a
1941       //       constant length to be loaded to a register
1942       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1943       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1944     } else {
1945       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1946       // The range check performs the null check, so clear it out for the load
1947       null_check_info = NULL;
1948     }
1949   }
1950 
1951   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1952 }
1953 
1954 
1955 void LIRGenerator::do_NullCheck(NullCheck* x) {
1956   if (x->can_trap()) {
1957     LIRItem value(x->obj(), this);
1958     value.load_item();
1959     CodeEmitInfo* info = state_for(x);
1960     __ null_check(value.result(), info);
1961   }
1962 }
1963 
1964 
1965 void LIRGenerator::do_TypeCast(TypeCast* x) {
1966   LIRItem value(x->obj(), this);
1967   value.load_item();
1968   // the result is the same as from the node we are casting
1969   set_result(x, value.result());
1970 }
1971 
1972 
1973 void LIRGenerator::do_Throw(Throw* x) {
1974   LIRItem exception(x->exception(), this);
1975   exception.load_item();
1976   set_no_result(x);
1977   LIR_Opr exception_opr = exception.result();
1978   CodeEmitInfo* info = state_for(x, x->state());
1979 
1980 #ifndef PRODUCT
1981   if (PrintC1Statistics) {
1982     increment_counter(Runtime1::throw_count_address(), T_INT);
1983   }
1984 #endif
1985 
1986   // check if the instruction has an xhandler in any of the nested scopes
1987   bool unwind = false;
1988   if (info->exception_handlers()->length() == 0) {
1989     // this throw is not inside an xhandler
1990     unwind = true;
1991   } else {
1992     // get some idea of the throw type
1993     bool type_is_exact = true;
1994     ciType* throw_type = x->exception()->exact_type();
1995     if (throw_type == NULL) {
1996       type_is_exact = false;
1997       throw_type = x->exception()->declared_type();
1998     }
1999     if (throw_type != NULL && throw_type->is_instance_klass()) {
2000       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2001       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2002     }
2003   }
2004 
2005   // do null check before moving exception oop into fixed register
2006   // to avoid a fixed interval with an oop during the null check.
2007   // Use a copy of the CodeEmitInfo because debug information is
2008   // different for null_check and throw.
2009   if (GenerateCompilerNullChecks &&
2010       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
2011     // if the exception object wasn't created using new then it might be null.
2012     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2013   }
2014 
2015   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2016     // we need to go through the exception lookup path to get JVMTI
2017     // notification done
2018     unwind = false;
2019   }
2020 
2021   // move exception oop into fixed register
2022   __ move(exception_opr, exceptionOopOpr());
2023 
2024   if (unwind) {
2025     __ unwind_exception(exceptionOopOpr());
2026   } else {
2027     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2028   }
2029 }
2030 
2031 
2032 void LIRGenerator::do_RoundFP(RoundFP* x) {
2033   LIRItem input(x->input(), this);
2034   input.load_item();
2035   LIR_Opr input_opr = input.result();
2036   assert(input_opr->is_register(), "why round if value is not in a register?");
2037   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2038   if (input_opr->is_single_fpu()) {
2039     set_result(x, round_item(input_opr)); // This code path not currently taken
2040   } else {
2041     LIR_Opr result = new_register(T_DOUBLE);
2042     set_vreg_flag(result, must_start_in_memory);
2043     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2044     set_result(x, result);
2045   }
2046 }
2047 
2048 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2049 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2050 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2051   LIRItem base(x->base(), this);
2052   LIRItem idx(this);
2053 
2054   base.load_item();
2055   if (x->has_index()) {
2056     idx.set_instruction(x->index());
2057     idx.load_nonconstant();
2058   }
2059 
2060   LIR_Opr reg = rlock_result(x, x->basic_type());
2061 
2062   int   log2_scale = 0;
2063   if (x->has_index()) {
2064     log2_scale = x->log2_scale();
2065   }
2066 
2067   assert(!x->has_index() || idx.value() == x->index(), "should match");
2068 
2069   LIR_Opr base_op = base.result();
2070   LIR_Opr index_op = idx.result();
2071 #ifndef _LP64
2072   if (base_op->type() == T_LONG) {
2073     base_op = new_register(T_INT);
2074     __ convert(Bytecodes::_l2i, base.result(), base_op);
2075   }
2076   if (x->has_index()) {
2077     if (index_op->type() == T_LONG) {
2078       LIR_Opr long_index_op = index_op;
2079       if (index_op->is_constant()) {
2080         long_index_op = new_register(T_LONG);
2081         __ move(index_op, long_index_op);
2082       }
2083       index_op = new_register(T_INT);
2084       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2085     } else {
2086       assert(x->index()->type()->tag() == intTag, "must be");
2087     }
2088   }
2089   // At this point base and index should be all ints.
2090   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2091   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2092 #else
2093   if (x->has_index()) {
2094     if (index_op->type() == T_INT) {
2095       if (!index_op->is_constant()) {
2096         index_op = new_register(T_LONG);
2097         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2098       }
2099     } else {
2100       assert(index_op->type() == T_LONG, "must be");
2101       if (index_op->is_constant()) {
2102         index_op = new_register(T_LONG);
2103         __ move(idx.result(), index_op);
2104       }
2105     }
2106   }
2107   // At this point base is a long non-constant
2108   // Index is a long register or a int constant.
2109   // We allow the constant to stay an int because that would allow us a more compact encoding by
2110   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2111   // move it into a register first.
2112   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2113   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2114                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2115 #endif
2116 
2117   BasicType dst_type = x->basic_type();
2118 
2119   LIR_Address* addr;
2120   if (index_op->is_constant()) {
2121     assert(log2_scale == 0, "must not have a scale");
2122     assert(index_op->type() == T_INT, "only int constants supported");
2123     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2124   } else {
2125 #ifdef X86
2126     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2127 #elif defined(ARM)
2128     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2129 #else
2130     if (index_op->is_illegal() || log2_scale == 0) {
2131       addr = new LIR_Address(base_op, index_op, dst_type);
2132     } else {
2133       LIR_Opr tmp = new_pointer_register();
2134       __ shift_left(index_op, log2_scale, tmp);
2135       addr = new LIR_Address(base_op, tmp, dst_type);
2136     }
2137 #endif
2138   }
2139 
2140   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2141     __ unaligned_move(addr, reg);
2142   } else {
2143     if (dst_type == T_OBJECT && x->is_wide()) {
2144       __ move_wide(addr, reg);
2145     } else {
2146       __ move(addr, reg);
2147     }
2148   }
2149 }
2150 
2151 
2152 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2153   int  log2_scale = 0;
2154   BasicType type = x->basic_type();
2155 
2156   if (x->has_index()) {
2157     log2_scale = x->log2_scale();
2158   }
2159 
2160   LIRItem base(x->base(), this);
2161   LIRItem value(x->value(), this);
2162   LIRItem idx(this);
2163 
2164   base.load_item();
2165   if (x->has_index()) {
2166     idx.set_instruction(x->index());
2167     idx.load_item();
2168   }
2169 
2170   if (type == T_BYTE || type == T_BOOLEAN) {
2171     value.load_byte_item();
2172   } else {
2173     value.load_item();
2174   }
2175 
2176   set_no_result(x);
2177 
2178   LIR_Opr base_op = base.result();
2179   LIR_Opr index_op = idx.result();
2180 
2181 #ifndef _LP64
2182   if (base_op->type() == T_LONG) {
2183     base_op = new_register(T_INT);
2184     __ convert(Bytecodes::_l2i, base.result(), base_op);
2185   }
2186   if (x->has_index()) {
2187     if (index_op->type() == T_LONG) {
2188       index_op = new_register(T_INT);
2189       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2190     }
2191   }
2192   // At this point base and index should be all ints and not constants
2193   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2194   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2195 #else
2196   if (x->has_index()) {
2197     if (index_op->type() == T_INT) {
2198       index_op = new_register(T_LONG);
2199       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2200     }
2201   }
2202   // At this point base and index are long and non-constant
2203   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2204   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2205 #endif
2206 
2207   if (log2_scale != 0) {
2208     // temporary fix (platform dependent code without shift on Intel would be better)
2209     // TODO: ARM also allows embedded shift in the address
2210     __ shift_left(index_op, log2_scale, index_op);
2211   }
2212 
2213   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2214   __ move(value.result(), addr);
2215 }
2216 
2217 
2218 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2219   BasicType type = x->basic_type();
2220   LIRItem src(x->object(), this);
2221   LIRItem off(x->offset(), this);
2222 
2223   off.load_item();
2224   src.load_item();
2225 
2226   LIR_Opr value = rlock_result(x, x->basic_type());
2227 
2228   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2229 
2230 #if INCLUDE_ALL_GCS
2231   // We might be reading the value of the referent field of a
2232   // Reference object in order to attach it back to the live
2233   // object graph. If G1 is enabled then we need to record
2234   // the value that is being returned in an SATB log buffer.
2235   //
2236   // We need to generate code similar to the following...
2237   //
2238   // if (offset == java_lang_ref_Reference::referent_offset) {
2239   //   if (src != NULL) {
2240   //     if (klass(src)->reference_type() != REF_NONE) {
2241   //       pre_barrier(..., value, ...);
2242   //     }
2243   //   }
2244   // }
2245 
2246   if (UseG1GC && type == T_OBJECT) {
2247     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2248     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2249     bool gen_source_check = true;    // Assume we need to check the src object for null.
2250     bool gen_type_check = true;      // Assume we need to check the reference_type.
2251 
2252     if (off.is_constant()) {
2253       jlong off_con = (off.type()->is_int() ?
2254                         (jlong) off.get_jint_constant() :
2255                         off.get_jlong_constant());
2256 
2257 
2258       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2259         // The constant offset is something other than referent_offset.
2260         // We can skip generating/checking the remaining guards and
2261         // skip generation of the code stub.
2262         gen_pre_barrier = false;
2263       } else {
2264         // The constant offset is the same as referent_offset -
2265         // we do not need to generate a runtime offset check.
2266         gen_offset_check = false;
2267       }
2268     }
2269 
2270     // We don't need to generate stub if the source object is an array
2271     if (gen_pre_barrier && src.type()->is_array()) {
2272       gen_pre_barrier = false;
2273     }
2274 
2275     if (gen_pre_barrier) {
2276       // We still need to continue with the checks.
2277       if (src.is_constant()) {
2278         ciObject* src_con = src.get_jobject_constant();
2279         guarantee(src_con != NULL, "no source constant");
2280 
2281         if (src_con->is_null_object()) {
2282           // The constant src object is null - We can skip
2283           // generating the code stub.
2284           gen_pre_barrier = false;
2285         } else {
2286           // Non-null constant source object. We still have to generate
2287           // the slow stub - but we don't need to generate the runtime
2288           // null object check.
2289           gen_source_check = false;
2290         }
2291       }
2292     }
2293     if (gen_pre_barrier && !PatchALot) {
2294       // Can the klass of object be statically determined to be
2295       // a sub-class of Reference?
2296       ciType* type = src.value()->declared_type();
2297       if ((type != NULL) && type->is_loaded()) {
2298         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2299           gen_type_check = false;
2300         } else if (type->is_klass() &&
2301                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2302           // Not Reference and not Object klass.
2303           gen_pre_barrier = false;
2304         }
2305       }
2306     }
2307 
2308     if (gen_pre_barrier) {
2309       LabelObj* Lcont = new LabelObj();
2310 
2311       // We can have generate one runtime check here. Let's start with
2312       // the offset check.
2313       if (gen_offset_check) {
2314         // if (offset != referent_offset) -> continue
2315         // If offset is an int then we can do the comparison with the
2316         // referent_offset constant; otherwise we need to move
2317         // referent_offset into a temporary register and generate
2318         // a reg-reg compare.
2319 
2320         LIR_Opr referent_off;
2321 
2322         if (off.type()->is_int()) {
2323           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2324         } else {
2325           assert(off.type()->is_long(), "what else?");
2326           referent_off = new_register(T_LONG);
2327           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2328         }
2329         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2330         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2331       }
2332       if (gen_source_check) {
2333         // offset is a const and equals referent offset
2334         // if (source == null) -> continue
2335         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2336         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2337       }
2338       LIR_Opr src_klass = new_register(T_OBJECT);
2339       if (gen_type_check) {
2340         // We have determined that offset == referent_offset && src != null.
2341         // if (src->_klass->_reference_type == REF_NONE) -> continue
2342         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2343         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2344         LIR_Opr reference_type = new_register(T_INT);
2345         __ move(reference_type_addr, reference_type);
2346         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2347         __ branch(lir_cond_equal, T_INT, Lcont->label());
2348       }
2349       {
2350         // We have determined that src->_klass->_reference_type != REF_NONE
2351         // so register the value in the referent field with the pre-barrier.
2352         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2353                     value  /* pre_val */,
2354                     false  /* do_load */,
2355                     false  /* patch */,
2356                     NULL   /* info */);
2357       }
2358       __ branch_destination(Lcont->label());
2359     }
2360   }
2361 #endif // INCLUDE_ALL_GCS
2362 
2363   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2364 }
2365 
2366 
2367 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2368   BasicType type = x->basic_type();
2369   LIRItem src(x->object(), this);
2370   LIRItem off(x->offset(), this);
2371   LIRItem data(x->value(), this);
2372 
2373   src.load_item();
2374   if (type == T_BOOLEAN || type == T_BYTE) {
2375     data.load_byte_item();
2376   } else {
2377     data.load_item();
2378   }
2379   off.load_item();
2380 
2381   set_no_result(x);
2382 
2383   if (x->is_volatile() && os::is_MP()) __ membar_release();
2384   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2385   if (x->is_volatile() && os::is_MP()) __ membar();
2386 }
2387 
2388 
2389 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2390   LIRItem src(x->object(), this);
2391   LIRItem off(x->offset(), this);
2392 
2393   src.load_item();
2394   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2395     // let it be a constant
2396     off.dont_load_item();
2397   } else {
2398     off.load_item();
2399   }
2400 
2401   set_no_result(x);
2402 
2403   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2404   __ prefetch(addr, is_store);
2405 }
2406 
2407 
2408 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2409   do_UnsafePrefetch(x, false);
2410 }
2411 
2412 
2413 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2414   do_UnsafePrefetch(x, true);
2415 }
2416 
2417 
2418 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2419   int lng = x->length();
2420 
2421   for (int i = 0; i < lng; i++) {
2422     SwitchRange* one_range = x->at(i);
2423     int low_key = one_range->low_key();
2424     int high_key = one_range->high_key();
2425     BlockBegin* dest = one_range->sux();
2426     if (low_key == high_key) {
2427       __ cmp(lir_cond_equal, value, low_key);
2428       __ branch(lir_cond_equal, T_INT, dest);
2429     } else if (high_key - low_key == 1) {
2430       __ cmp(lir_cond_equal, value, low_key);
2431       __ branch(lir_cond_equal, T_INT, dest);
2432       __ cmp(lir_cond_equal, value, high_key);
2433       __ branch(lir_cond_equal, T_INT, dest);
2434     } else {
2435       LabelObj* L = new LabelObj();
2436       __ cmp(lir_cond_less, value, low_key);
2437       __ branch(lir_cond_less, T_INT, L->label());
2438       __ cmp(lir_cond_lessEqual, value, high_key);
2439       __ branch(lir_cond_lessEqual, T_INT, dest);
2440       __ branch_destination(L->label());
2441     }
2442   }
2443   __ jump(default_sux);
2444 }
2445 
2446 
2447 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2448   SwitchRangeList* res = new SwitchRangeList();
2449   int len = x->length();
2450   if (len > 0) {
2451     BlockBegin* sux = x->sux_at(0);
2452     int key = x->lo_key();
2453     BlockBegin* default_sux = x->default_sux();
2454     SwitchRange* range = new SwitchRange(key, sux);
2455     for (int i = 0; i < len; i++, key++) {
2456       BlockBegin* new_sux = x->sux_at(i);
2457       if (sux == new_sux) {
2458         // still in same range
2459         range->set_high_key(key);
2460       } else {
2461         // skip tests which explicitly dispatch to the default
2462         if (sux != default_sux) {
2463           res->append(range);
2464         }
2465         range = new SwitchRange(key, new_sux);
2466       }
2467       sux = new_sux;
2468     }
2469     if (res->length() == 0 || res->last() != range)  res->append(range);
2470   }
2471   return res;
2472 }
2473 
2474 
2475 // we expect the keys to be sorted by increasing value
2476 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2477   SwitchRangeList* res = new SwitchRangeList();
2478   int len = x->length();
2479   if (len > 0) {
2480     BlockBegin* default_sux = x->default_sux();
2481     int key = x->key_at(0);
2482     BlockBegin* sux = x->sux_at(0);
2483     SwitchRange* range = new SwitchRange(key, sux);
2484     for (int i = 1; i < len; i++) {
2485       int new_key = x->key_at(i);
2486       BlockBegin* new_sux = x->sux_at(i);
2487       if (key+1 == new_key && sux == new_sux) {
2488         // still in same range
2489         range->set_high_key(new_key);
2490       } else {
2491         // skip tests which explicitly dispatch to the default
2492         if (range->sux() != default_sux) {
2493           res->append(range);
2494         }
2495         range = new SwitchRange(new_key, new_sux);
2496       }
2497       key = new_key;
2498       sux = new_sux;
2499     }
2500     if (res->length() == 0 || res->last() != range)  res->append(range);
2501   }
2502   return res;
2503 }
2504 
2505 
2506 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2507   LIRItem tag(x->tag(), this);
2508   tag.load_item();
2509   set_no_result(x);
2510 
2511   if (x->is_safepoint()) {
2512     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2513   }
2514 
2515   // move values into phi locations
2516   move_to_phi(x->state());
2517 
2518   int lo_key = x->lo_key();
2519   int hi_key = x->hi_key();
2520   int len = x->length();
2521   LIR_Opr value = tag.result();
2522   if (UseTableRanges) {
2523     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2524   } else {
2525     for (int i = 0; i < len; i++) {
2526       __ cmp(lir_cond_equal, value, i + lo_key);
2527       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2528     }
2529     __ jump(x->default_sux());
2530   }
2531 }
2532 
2533 
2534 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2535   LIRItem tag(x->tag(), this);
2536   tag.load_item();
2537   set_no_result(x);
2538 
2539   if (x->is_safepoint()) {
2540     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2541   }
2542 
2543   // move values into phi locations
2544   move_to_phi(x->state());
2545 
2546   LIR_Opr value = tag.result();
2547   if (UseTableRanges) {
2548     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2549   } else {
2550     int len = x->length();
2551     for (int i = 0; i < len; i++) {
2552       __ cmp(lir_cond_equal, value, x->key_at(i));
2553       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2554     }
2555     __ jump(x->default_sux());
2556   }
2557 }
2558 
2559 
2560 void LIRGenerator::do_Goto(Goto* x) {
2561   set_no_result(x);
2562 
2563   if (block()->next()->as_OsrEntry()) {
2564     // need to free up storage used for OSR entry point
2565     LIR_Opr osrBuffer = block()->next()->operand();
2566     BasicTypeList signature;
2567     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2568     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2569     __ move(osrBuffer, cc->args()->at(0));
2570     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2571                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2572   }
2573 
2574   if (x->is_safepoint()) {
2575     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2576 
2577     // increment backedge counter if needed
2578     CodeEmitInfo* info = state_for(x, state);
2579     increment_backedge_counter(info, x->profiled_bci());
2580     CodeEmitInfo* safepoint_info = state_for(x, state);
2581     __ safepoint(safepoint_poll_register(), safepoint_info);
2582   }
2583 
2584   // Gotos can be folded Ifs, handle this case.
2585   if (x->should_profile()) {
2586     ciMethod* method = x->profiled_method();
2587     assert(method != NULL, "method should be set if branch is profiled");
2588     ciMethodData* md = method->method_data_or_null();
2589     assert(md != NULL, "Sanity");
2590     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2591     assert(data != NULL, "must have profiling data");
2592     int offset;
2593     if (x->direction() == Goto::taken) {
2594       assert(data->is_BranchData(), "need BranchData for two-way branches");
2595       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2596     } else if (x->direction() == Goto::not_taken) {
2597       assert(data->is_BranchData(), "need BranchData for two-way branches");
2598       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2599     } else {
2600       assert(data->is_JumpData(), "need JumpData for branches");
2601       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2602     }
2603     LIR_Opr md_reg = new_register(T_METADATA);
2604     __ metadata2reg(md->constant_encoding(), md_reg);
2605 
2606     increment_counter(new LIR_Address(md_reg, offset,
2607                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2608   }
2609 
2610   // emit phi-instruction move after safepoint since this simplifies
2611   // describing the state as the safepoint.
2612   move_to_phi(x->state());
2613 
2614   __ jump(x->default_sux());
2615 }
2616 
2617 /**
2618  * Emit profiling code if needed for arguments, parameters, return value types
2619  *
2620  * @param md                    MDO the code will update at runtime
2621  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2622  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2623  * @param profiled_k            current profile
2624  * @param obj                   IR node for the object to be profiled
2625  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2626  *                              Set once we find an update to make and use for next ones.
2627  * @param not_null              true if we know obj cannot be null
2628  * @param signature_at_call_k   signature at call for obj
2629  * @param callee_signature_k    signature of callee for obj
2630  *                              at call and callee signatures differ at method handle call
2631  * @return                      the only klass we know will ever be seen at this profile point
2632  */
2633 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2634                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2635                                     ciKlass* callee_signature_k) {
2636   ciKlass* result = NULL;
2637   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2638   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2639   // known not to be null or null bit already set and already set to
2640   // unknown: nothing we can do to improve profiling
2641   if (!do_null && !do_update) {
2642     return result;
2643   }
2644 
2645   ciKlass* exact_klass = NULL;
2646   Compilation* comp = Compilation::current();
2647   if (do_update) {
2648     // try to find exact type, using CHA if possible, so that loading
2649     // the klass from the object can be avoided
2650     ciType* type = obj->exact_type();
2651     if (type == NULL) {
2652       type = obj->declared_type();
2653       type = comp->cha_exact_type(type);
2654     }
2655     assert(type == NULL || type->is_klass(), "type should be class");
2656     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2657 
2658     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2659   }
2660 
2661   if (!do_null && !do_update) {
2662     return result;
2663   }
2664 
2665   ciKlass* exact_signature_k = NULL;
2666   if (do_update) {
2667     // Is the type from the signature exact (the only one possible)?
2668     exact_signature_k = signature_at_call_k->exact_klass();
2669     if (exact_signature_k == NULL) {
2670       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2671     } else {
2672       result = exact_signature_k;
2673       // Known statically. No need to emit any code: prevent
2674       // LIR_Assembler::emit_profile_type() from emitting useless code
2675       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2676     }
2677     // exact_klass and exact_signature_k can be both non NULL but
2678     // different if exact_klass is loaded after the ciObject for
2679     // exact_signature_k is created.
2680     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2681       // sometimes the type of the signature is better than the best type
2682       // the compiler has
2683       exact_klass = exact_signature_k;
2684     }
2685     if (callee_signature_k != NULL &&
2686         callee_signature_k != signature_at_call_k) {
2687       ciKlass* improved_klass = callee_signature_k->exact_klass();
2688       if (improved_klass == NULL) {
2689         improved_klass = comp->cha_exact_type(callee_signature_k);
2690       }
2691       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2692         exact_klass = exact_signature_k;
2693       }
2694     }
2695     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2696   }
2697 
2698   if (!do_null && !do_update) {
2699     return result;
2700   }
2701 
2702   if (mdp == LIR_OprFact::illegalOpr) {
2703     mdp = new_register(T_METADATA);
2704     __ metadata2reg(md->constant_encoding(), mdp);
2705     if (md_base_offset != 0) {
2706       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2707       mdp = new_pointer_register();
2708       __ leal(LIR_OprFact::address(base_type_address), mdp);
2709     }
2710   }
2711   LIRItem value(obj, this);
2712   value.load_item();
2713   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2714                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2715   return result;
2716 }
2717 
2718 // profile parameters on entry to the root of the compilation
2719 void LIRGenerator::profile_parameters(Base* x) {
2720   if (compilation()->profile_parameters()) {
2721     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2722     ciMethodData* md = scope()->method()->method_data_or_null();
2723     assert(md != NULL, "Sanity");
2724 
2725     if (md->parameters_type_data() != NULL) {
2726       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2727       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2728       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2729       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2730         LIR_Opr src = args->at(i);
2731         assert(!src->is_illegal(), "check");
2732         BasicType t = src->type();
2733         if (t == T_OBJECT || t == T_ARRAY) {
2734           intptr_t profiled_k = parameters->type(j);
2735           Local* local = x->state()->local_at(java_index)->as_Local();
2736           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2737                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2738                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2739           // If the profile is known statically set it once for all and do not emit any code
2740           if (exact != NULL) {
2741             md->set_parameter_type(j, exact);
2742           }
2743           j++;
2744         }
2745         java_index += type2size[t];
2746       }
2747     }
2748   }
2749 }
2750 
2751 void LIRGenerator::do_Base(Base* x) {
2752   __ std_entry(LIR_OprFact::illegalOpr);
2753   // Emit moves from physical registers / stack slots to virtual registers
2754   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2755   IRScope* irScope = compilation()->hir()->top_scope();
2756   int java_index = 0;
2757   for (int i = 0; i < args->length(); i++) {
2758     LIR_Opr src = args->at(i);
2759     assert(!src->is_illegal(), "check");
2760     BasicType t = src->type();
2761 
2762     // Types which are smaller than int are passed as int, so
2763     // correct the type which passed.
2764     switch (t) {
2765     case T_BYTE:
2766     case T_BOOLEAN:
2767     case T_SHORT:
2768     case T_CHAR:
2769       t = T_INT;
2770       break;
2771     }
2772 
2773     LIR_Opr dest = new_register(t);
2774     __ move(src, dest);
2775 
2776     // Assign new location to Local instruction for this local
2777     Local* local = x->state()->local_at(java_index)->as_Local();
2778     assert(local != NULL, "Locals for incoming arguments must have been created");
2779 #ifndef __SOFTFP__
2780     // The java calling convention passes double as long and float as int.
2781     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2782 #endif // __SOFTFP__
2783     local->set_operand(dest);
2784     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2785     java_index += type2size[t];
2786   }
2787 
2788   if (compilation()->env()->dtrace_method_probes()) {
2789     BasicTypeList signature;
2790     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2791     signature.append(T_METADATA); // Method*
2792     LIR_OprList* args = new LIR_OprList();
2793     args->append(getThreadPointer());
2794     LIR_Opr meth = new_register(T_METADATA);
2795     __ metadata2reg(method()->constant_encoding(), meth);
2796     args->append(meth);
2797     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2798   }
2799 
2800   if (method()->is_synchronized()) {
2801     LIR_Opr obj;
2802     if (method()->is_static()) {
2803       obj = new_register(T_OBJECT);
2804       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2805     } else {
2806       Local* receiver = x->state()->local_at(0)->as_Local();
2807       assert(receiver != NULL, "must already exist");
2808       obj = receiver->operand();
2809     }
2810     assert(obj->is_valid(), "must be valid");
2811 
2812     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2813       LIR_Opr lock = new_register(T_INT);
2814       __ load_stack_address_monitor(0, lock);
2815 
2816       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2817       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2818 
2819       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2820       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2821     }
2822   }
2823   if (compilation()->age_code()) {
2824     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2825     decrement_age(info);
2826   }
2827   // increment invocation counters if needed
2828   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2829     profile_parameters(x);
2830     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2831     increment_invocation_counter(info);
2832   }
2833 
2834   // all blocks with a successor must end with an unconditional jump
2835   // to the successor even if they are consecutive
2836   __ jump(x->default_sux());
2837 }
2838 
2839 
2840 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2841   // construct our frame and model the production of incoming pointer
2842   // to the OSR buffer.
2843   __ osr_entry(LIR_Assembler::osrBufferPointer());
2844   LIR_Opr result = rlock_result(x);
2845   __ move(LIR_Assembler::osrBufferPointer(), result);
2846 }
2847 
2848 
2849 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2850   assert(args->length() == arg_list->length(),
2851          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2852   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2853     LIRItem* param = args->at(i);
2854     LIR_Opr loc = arg_list->at(i);
2855     if (loc->is_register()) {
2856       param->load_item_force(loc);
2857     } else {
2858       LIR_Address* addr = loc->as_address_ptr();
2859       param->load_for_store(addr->type());
2860       if (addr->type() == T_OBJECT) {
2861         __ move_wide(param->result(), addr);
2862       } else
2863         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2864           __ unaligned_move(param->result(), addr);
2865         } else {
2866           __ move(param->result(), addr);
2867         }
2868     }
2869   }
2870 
2871   if (x->has_receiver()) {
2872     LIRItem* receiver = args->at(0);
2873     LIR_Opr loc = arg_list->at(0);
2874     if (loc->is_register()) {
2875       receiver->load_item_force(loc);
2876     } else {
2877       assert(loc->is_address(), "just checking");
2878       receiver->load_for_store(T_OBJECT);
2879       __ move_wide(receiver->result(), loc->as_address_ptr());
2880     }
2881   }
2882 }
2883 
2884 
2885 // Visits all arguments, returns appropriate items without loading them
2886 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2887   LIRItemList* argument_items = new LIRItemList();
2888   if (x->has_receiver()) {
2889     LIRItem* receiver = new LIRItem(x->receiver(), this);
2890     argument_items->append(receiver);
2891   }
2892   for (int i = 0; i < x->number_of_arguments(); i++) {
2893     LIRItem* param = new LIRItem(x->argument_at(i), this);
2894     argument_items->append(param);
2895   }
2896   return argument_items;
2897 }
2898 
2899 
2900 // The invoke with receiver has following phases:
2901 //   a) traverse and load/lock receiver;
2902 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2903 //   c) push receiver on stack
2904 //   d) load each of the items and push on stack
2905 //   e) unlock receiver
2906 //   f) move receiver into receiver-register %o0
2907 //   g) lock result registers and emit call operation
2908 //
2909 // Before issuing a call, we must spill-save all values on stack
2910 // that are in caller-save register. "spill-save" moves thos registers
2911 // either in a free callee-save register or spills them if no free
2912 // callee save register is available.
2913 //
2914 // The problem is where to invoke spill-save.
2915 // - if invoked between e) and f), we may lock callee save
2916 //   register in "spill-save" that destroys the receiver register
2917 //   before f) is executed
2918 // - if we rearange the f) to be earlier, by loading %o0, it
2919 //   may destroy a value on the stack that is currently in %o0
2920 //   and is waiting to be spilled
2921 // - if we keep the receiver locked while doing spill-save,
2922 //   we cannot spill it as it is spill-locked
2923 //
2924 void LIRGenerator::do_Invoke(Invoke* x) {
2925   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2926 
2927   LIR_OprList* arg_list = cc->args();
2928   LIRItemList* args = invoke_visit_arguments(x);
2929   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2930 
2931   // setup result register
2932   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2933   if (x->type() != voidType) {
2934     result_register = result_register_for(x->type());
2935   }
2936 
2937   CodeEmitInfo* info = state_for(x, x->state());
2938 
2939   invoke_load_arguments(x, args, arg_list);
2940 
2941   if (x->has_receiver()) {
2942     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2943     receiver = args->at(0)->result();
2944   }
2945 
2946   // emit invoke code
2947   bool optimized = x->target_is_loaded() && x->target_is_final();
2948   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2949 
2950   // JSR 292
2951   // Preserve the SP over MethodHandle call sites.
2952   ciMethod* target = x->target();
2953   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2954                                   target->is_method_handle_intrinsic() ||
2955                                   target->is_compiled_lambda_form());
2956   if (is_method_handle_invoke) {
2957     info->set_is_method_handle_invoke(true);
2958     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2959   }
2960 
2961   switch (x->code()) {
2962     case Bytecodes::_invokestatic:
2963       __ call_static(target, result_register,
2964                      SharedRuntime::get_resolve_static_call_stub(),
2965                      arg_list, info);
2966       break;
2967     case Bytecodes::_invokespecial:
2968     case Bytecodes::_invokevirtual:
2969     case Bytecodes::_invokeinterface:
2970       // for final target we still produce an inline cache, in order
2971       // to be able to call mixed mode
2972       if (x->code() == Bytecodes::_invokespecial || optimized) {
2973         __ call_opt_virtual(target, receiver, result_register,
2974                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2975                             arg_list, info);
2976       } else if (x->vtable_index() < 0) {
2977         __ call_icvirtual(target, receiver, result_register,
2978                           SharedRuntime::get_resolve_virtual_call_stub(),
2979                           arg_list, info);
2980       } else {
2981         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2982         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2983         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2984       }
2985       break;
2986     case Bytecodes::_invokedynamic: {
2987       __ call_dynamic(target, receiver, result_register,
2988                       SharedRuntime::get_resolve_static_call_stub(),
2989                       arg_list, info);
2990       break;
2991     }
2992     default:
2993       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2994       break;
2995   }
2996 
2997   // JSR 292
2998   // Restore the SP after MethodHandle call sites.
2999   if (is_method_handle_invoke) {
3000     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3001   }
3002 
3003   if (x->type()->is_float() || x->type()->is_double()) {
3004     // Force rounding of results from non-strictfp when in strictfp
3005     // scope (or when we don't know the strictness of the callee, to
3006     // be safe.)
3007     if (method()->is_strict()) {
3008       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3009         result_register = round_item(result_register);
3010       }
3011     }
3012   }
3013 
3014   if (result_register->is_valid()) {
3015     LIR_Opr result = rlock_result(x);
3016     __ move(result_register, result);
3017   }
3018 }
3019 
3020 
3021 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3022   assert(x->number_of_arguments() == 1, "wrong type");
3023   LIRItem value       (x->argument_at(0), this);
3024   LIR_Opr reg = rlock_result(x);
3025   value.load_item();
3026   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3027   __ move(tmp, reg);
3028 }
3029 
3030 
3031 
3032 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3033 void LIRGenerator::do_IfOp(IfOp* x) {
3034 #ifdef ASSERT
3035   {
3036     ValueTag xtag = x->x()->type()->tag();
3037     ValueTag ttag = x->tval()->type()->tag();
3038     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3039     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3040     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3041   }
3042 #endif
3043 
3044   LIRItem left(x->x(), this);
3045   LIRItem right(x->y(), this);
3046   left.load_item();
3047   if (can_inline_as_constant(right.value())) {
3048     right.dont_load_item();
3049   } else {
3050     right.load_item();
3051   }
3052 
3053   LIRItem t_val(x->tval(), this);
3054   LIRItem f_val(x->fval(), this);
3055   t_val.dont_load_item();
3056   f_val.dont_load_item();
3057   LIR_Opr reg = rlock_result(x);
3058 
3059   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3060   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3061 }
3062 
3063 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
3064     assert(x->number_of_arguments() == expected_arguments, "wrong type");
3065     LIR_Opr reg = result_register_for(x->type());
3066     __ call_runtime_leaf(routine, getThreadTemp(),
3067                          reg, new LIR_OprList());
3068     LIR_Opr result = rlock_result(x);
3069     __ move(reg, result);
3070 }
3071 
3072 #ifdef TRACE_HAVE_INTRINSICS
3073 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
3074     LIR_Opr thread = getThreadPointer();
3075     LIR_Opr osthread = new_pointer_register();
3076     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
3077     size_t thread_id_size = OSThread::thread_id_size();
3078     if (thread_id_size == (size_t) BytesPerLong) {
3079       LIR_Opr id = new_register(T_LONG);
3080       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
3081       __ convert(Bytecodes::_l2i, id, rlock_result(x));
3082     } else if (thread_id_size == (size_t) BytesPerInt) {
3083       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
3084     } else {
3085       ShouldNotReachHere();
3086     }
3087 }
3088 
3089 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3090     CodeEmitInfo* info = state_for(x);
3091     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3092     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
3093     assert(info != NULL, "must have info");
3094     LIRItem arg(x->argument_at(1), this);
3095     arg.load_item();
3096     LIR_Opr klass = new_pointer_register();
3097     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
3098     LIR_Opr id = new_register(T_LONG);
3099     ByteSize offset = TRACE_ID_OFFSET;
3100     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3101     __ move(trace_id_addr, id);
3102     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3103     __ store(id, trace_id_addr);
3104     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
3105     __ move(id, rlock_result(x));
3106 }
3107 #endif
3108 
3109 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3110   switch (x->id()) {
3111   case vmIntrinsics::_intBitsToFloat      :
3112   case vmIntrinsics::_doubleToRawLongBits :
3113   case vmIntrinsics::_longBitsToDouble    :
3114   case vmIntrinsics::_floatToRawIntBits   : {
3115     do_FPIntrinsics(x);
3116     break;
3117   }
3118 
3119 #ifdef TRACE_HAVE_INTRINSICS
3120   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
3121   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
3122   case vmIntrinsics::_counterTime:
3123     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
3124     break;
3125 #endif
3126 
3127   case vmIntrinsics::_currentTimeMillis:
3128     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3129     break;
3130 
3131   case vmIntrinsics::_nanoTime:
3132     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3133     break;
3134 
3135   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3136   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3137   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3138   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3139 
3140   case vmIntrinsics::_dlog:           // fall through
3141   case vmIntrinsics::_dlog10:         // fall through
3142   case vmIntrinsics::_dabs:           // fall through
3143   case vmIntrinsics::_dsqrt:          // fall through
3144   case vmIntrinsics::_dtan:           // fall through
3145   case vmIntrinsics::_dsin :          // fall through
3146   case vmIntrinsics::_dcos :          // fall through
3147   case vmIntrinsics::_dexp :          // fall through
3148   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3149   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3150 
3151   // java.nio.Buffer.checkIndex
3152   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3153 
3154   case vmIntrinsics::_compareAndSwapObject:
3155     do_CompareAndSwap(x, objectType);
3156     break;
3157   case vmIntrinsics::_compareAndSwapInt:
3158     do_CompareAndSwap(x, intType);
3159     break;
3160   case vmIntrinsics::_compareAndSwapLong:
3161     do_CompareAndSwap(x, longType);
3162     break;
3163 
3164   case vmIntrinsics::_loadFence :
3165     if (os::is_MP()) __ membar_acquire();
3166     break;
3167   case vmIntrinsics::_storeFence:
3168     if (os::is_MP()) __ membar_release();
3169     break;
3170   case vmIntrinsics::_fullFence :
3171     if (os::is_MP()) __ membar();
3172     break;
3173 
3174   case vmIntrinsics::_Reference_get:
3175     do_Reference_get(x);
3176     break;
3177 
3178   case vmIntrinsics::_updateCRC32:
3179   case vmIntrinsics::_updateBytesCRC32:
3180   case vmIntrinsics::_updateByteBufferCRC32:
3181     do_update_CRC32(x);
3182     break;
3183 
3184   default: ShouldNotReachHere(); break;
3185   }
3186 }
3187 
3188 void LIRGenerator::profile_arguments(ProfileCall* x) {
3189   if (compilation()->profile_arguments()) {
3190     int bci = x->bci_of_invoke();
3191     ciMethodData* md = x->method()->method_data_or_null();
3192     ciProfileData* data = md->bci_to_data(bci);
3193     if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3194         (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3195       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3196       int base_offset = md->byte_offset_of_slot(data, extra);
3197       LIR_Opr mdp = LIR_OprFact::illegalOpr;
3198       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3199 
3200       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3201       int start = 0;
3202       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3203       if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3204         // first argument is not profiled at call (method handle invoke)
3205         assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3206         start = 1;
3207       }
3208       ciSignature* callee_signature = x->callee()->signature();
3209       // method handle call to virtual method
3210       bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3211       ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3212 
3213       bool ignored_will_link;
3214       ciSignature* signature_at_call = NULL;
3215       x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3216       ciSignatureStream signature_at_call_stream(signature_at_call);
3217 
3218       // if called through method handle invoke, some arguments may have been popped
3219       for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3220         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3221         ciKlass* exact = profile_type(md, base_offset, off,
3222                                       args->type(i), x->profiled_arg_at(i+start), mdp,
3223                                       !x->arg_needs_null_check(i+start),
3224                                       signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3225         if (exact != NULL) {
3226           md->set_argument_type(bci, i, exact);
3227         }
3228       }
3229     } else {
3230 #ifdef ASSERT
3231       Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3232       int n = x->nb_profiled_args();
3233       assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3234                                                   (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3235              "only at JSR292 bytecodes");
3236 #endif
3237     }
3238   }
3239 }
3240 
3241 // profile parameters on entry to an inlined method
3242 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3243   if (compilation()->profile_parameters() && x->inlined()) {
3244     ciMethodData* md = x->callee()->method_data_or_null();
3245     if (md != NULL) {
3246       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3247       if (parameters_type_data != NULL) {
3248         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3249         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3250         bool has_receiver = !x->callee()->is_static();
3251         ciSignature* sig = x->callee()->signature();
3252         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3253         int i = 0; // to iterate on the Instructions
3254         Value arg = x->recv();
3255         bool not_null = false;
3256         int bci = x->bci_of_invoke();
3257         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3258         // The first parameter is the receiver so that's what we start
3259         // with if it exists. One exception is method handle call to
3260         // virtual method: the receiver is in the args list
3261         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3262           i = 1;
3263           arg = x->profiled_arg_at(0);
3264           not_null = !x->arg_needs_null_check(0);
3265         }
3266         int k = 0; // to iterate on the profile data
3267         for (;;) {
3268           intptr_t profiled_k = parameters->type(k);
3269           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3270                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3271                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3272           // If the profile is known statically set it once for all and do not emit any code
3273           if (exact != NULL) {
3274             md->set_parameter_type(k, exact);
3275           }
3276           k++;
3277           if (k >= parameters_type_data->number_of_parameters()) {
3278 #ifdef ASSERT
3279             int extra = 0;
3280             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3281                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3282                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3283               extra += 1;
3284             }
3285             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3286 #endif
3287             break;
3288           }
3289           arg = x->profiled_arg_at(i);
3290           not_null = !x->arg_needs_null_check(i);
3291           i++;
3292         }
3293       }
3294     }
3295   }
3296 }
3297 
3298 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3299   // Need recv in a temporary register so it interferes with the other temporaries
3300   LIR_Opr recv = LIR_OprFact::illegalOpr;
3301   LIR_Opr mdo = new_register(T_OBJECT);
3302   // tmp is used to hold the counters on SPARC
3303   LIR_Opr tmp = new_pointer_register();
3304 
3305   if (x->nb_profiled_args() > 0) {
3306     profile_arguments(x);
3307   }
3308 
3309   // profile parameters on inlined method entry including receiver
3310   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3311     profile_parameters_at_call(x);
3312   }
3313 
3314   if (x->recv() != NULL) {
3315     LIRItem value(x->recv(), this);
3316     value.load_item();
3317     recv = new_register(T_OBJECT);
3318     __ move(value.result(), recv);
3319   }
3320   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3321 }
3322 
3323 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3324   int bci = x->bci_of_invoke();
3325   ciMethodData* md = x->method()->method_data_or_null();
3326   ciProfileData* data = md->bci_to_data(bci);
3327   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3328   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3329   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3330 
3331   bool ignored_will_link;
3332   ciSignature* signature_at_call = NULL;
3333   x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3334 
3335   // The offset within the MDO of the entry to update may be too large
3336   // to be used in load/store instructions on some platforms. So have
3337   // profile_type() compute the address of the profile in a register.
3338   ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3339                                 ret->type(), x->ret(), mdp,
3340                                 !x->needs_null_check(),
3341                                 signature_at_call->return_type()->as_klass(),
3342                                 x->callee()->signature()->return_type()->as_klass());
3343   if (exact != NULL) {
3344     md->set_return_type(bci, exact);
3345   }
3346 }
3347 
3348 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3349   // We can safely ignore accessors here, since c2 will inline them anyway,
3350   // accessors are also always mature.
3351   if (!x->inlinee()->is_accessor()) {
3352     CodeEmitInfo* info = state_for(x, x->state(), true);
3353     // Notify the runtime very infrequently only to take care of counter overflows
3354     int freq_log = Tier23InlineeNotifyFreqLog;
3355     double scale;
3356     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3357       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3358     }
3359     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3360   }
3361 }
3362 
3363 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3364   int freq_log;
3365   int level = compilation()->env()->comp_level();
3366   if (level == CompLevel_limited_profile) {
3367     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3368   } else if (level == CompLevel_full_profile) {
3369     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3370   } else {
3371     ShouldNotReachHere();
3372   }
3373   // Increment the appropriate invocation/backedge counter and notify the runtime.
3374   double scale;
3375   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3376     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3377   }
3378   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3379 }
3380 
3381 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3382   ciMethod* method = info->scope()->method();
3383   MethodCounters* mc_adr = method->ensure_method_counters();
3384   if (mc_adr != NULL) {
3385     LIR_Opr mc = new_pointer_register();
3386     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3387     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3388     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3389     LIR_Opr result = new_register(T_INT);
3390     __ load(counter, result);
3391     __ sub(result, LIR_OprFact::intConst(1), result);
3392     __ store(result, counter);
3393     // DeoptimizeStub will reexecute from the current state in code info.
3394     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3395                                          Deoptimization::Action_make_not_entrant);
3396     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3397     __ branch(lir_cond_lessEqual, T_INT, deopt);
3398   }
3399 }
3400 
3401 
3402 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3403                                                 ciMethod *method, int frequency,
3404                                                 int bci, bool backedge, bool notify) {
3405   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3406   int level = _compilation->env()->comp_level();
3407   assert(level > CompLevel_simple, "Shouldn't be here");
3408 
3409   int offset = -1;
3410   LIR_Opr counter_holder;
3411   if (level == CompLevel_limited_profile) {
3412     MethodCounters* counters_adr = method->ensure_method_counters();
3413     if (counters_adr == NULL) {
3414       bailout("method counters allocation failed");
3415       return;
3416     }
3417     counter_holder = new_pointer_register();
3418     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3419     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3420                                  MethodCounters::invocation_counter_offset());
3421   } else if (level == CompLevel_full_profile) {
3422     counter_holder = new_register(T_METADATA);
3423     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3424                                  MethodData::invocation_counter_offset());
3425     ciMethodData* md = method->method_data_or_null();
3426     assert(md != NULL, "Sanity");
3427     __ metadata2reg(md->constant_encoding(), counter_holder);
3428   } else {
3429     ShouldNotReachHere();
3430   }
3431   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3432   LIR_Opr result = new_register(T_INT);
3433   __ load(counter, result);
3434   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3435   __ store(result, counter);
3436   if (notify) {
3437     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3438     LIR_Opr meth = new_register(T_METADATA);
3439     __ metadata2reg(method->constant_encoding(), meth);
3440     __ logical_and(result, mask, result);
3441     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3442     // The bci for info can point to cmp for if's we want the if bci
3443     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3444     __ branch(lir_cond_equal, T_INT, overflow);
3445     __ branch_destination(overflow->continuation());
3446   }
3447 }
3448 
3449 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3450   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3451   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3452 
3453   if (x->pass_thread()) {
3454     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3455     args->append(getThreadPointer());
3456   }
3457 
3458   for (int i = 0; i < x->number_of_arguments(); i++) {
3459     Value a = x->argument_at(i);
3460     LIRItem* item = new LIRItem(a, this);
3461     item->load_item();
3462     args->append(item->result());
3463     signature->append(as_BasicType(a->type()));
3464   }
3465 
3466   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3467   if (x->type() == voidType) {
3468     set_no_result(x);
3469   } else {
3470     __ move(result, rlock_result(x));
3471   }
3472 }
3473 
3474 #ifdef ASSERT
3475 void LIRGenerator::do_Assert(Assert *x) {
3476   ValueTag tag = x->x()->type()->tag();
3477   If::Condition cond = x->cond();
3478 
3479   LIRItem xitem(x->x(), this);
3480   LIRItem yitem(x->y(), this);
3481   LIRItem* xin = &xitem;
3482   LIRItem* yin = &yitem;
3483 
3484   assert(tag == intTag, "Only integer assertions are valid!");
3485 
3486   xin->load_item();
3487   yin->dont_load_item();
3488 
3489   set_no_result(x);
3490 
3491   LIR_Opr left = xin->result();
3492   LIR_Opr right = yin->result();
3493 
3494   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3495 }
3496 #endif
3497 
3498 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3499 
3500 
3501   Instruction *a = x->x();
3502   Instruction *b = x->y();
3503   if (!a || StressRangeCheckElimination) {
3504     assert(!b || StressRangeCheckElimination, "B must also be null");
3505 
3506     CodeEmitInfo *info = state_for(x, x->state());
3507     CodeStub* stub = new PredicateFailedStub(info);
3508 
3509     __ jump(stub);
3510   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3511     int a_int = a->type()->as_IntConstant()->value();
3512     int b_int = b->type()->as_IntConstant()->value();
3513 
3514     bool ok = false;
3515 
3516     switch(x->cond()) {
3517       case Instruction::eql: ok = (a_int == b_int); break;
3518       case Instruction::neq: ok = (a_int != b_int); break;
3519       case Instruction::lss: ok = (a_int < b_int); break;
3520       case Instruction::leq: ok = (a_int <= b_int); break;
3521       case Instruction::gtr: ok = (a_int > b_int); break;
3522       case Instruction::geq: ok = (a_int >= b_int); break;
3523       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3524       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3525       default: ShouldNotReachHere();
3526     }
3527 
3528     if (ok) {
3529 
3530       CodeEmitInfo *info = state_for(x, x->state());
3531       CodeStub* stub = new PredicateFailedStub(info);
3532 
3533       __ jump(stub);
3534     }
3535   } else {
3536 
3537     ValueTag tag = x->x()->type()->tag();
3538     If::Condition cond = x->cond();
3539     LIRItem xitem(x->x(), this);
3540     LIRItem yitem(x->y(), this);
3541     LIRItem* xin = &xitem;
3542     LIRItem* yin = &yitem;
3543 
3544     assert(tag == intTag, "Only integer deoptimizations are valid!");
3545 
3546     xin->load_item();
3547     yin->dont_load_item();
3548     set_no_result(x);
3549 
3550     LIR_Opr left = xin->result();
3551     LIR_Opr right = yin->result();
3552 
3553     CodeEmitInfo *info = state_for(x, x->state());
3554     CodeStub* stub = new PredicateFailedStub(info);
3555 
3556     __ cmp(lir_cond(cond), left, right);
3557     __ branch(lir_cond(cond), right->type(), stub);
3558   }
3559 }
3560 
3561 
3562 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3563   LIRItemList args(1);
3564   LIRItem value(arg1, this);
3565   args.append(&value);
3566   BasicTypeList signature;
3567   signature.append(as_BasicType(arg1->type()));
3568 
3569   return call_runtime(&signature, &args, entry, result_type, info);
3570 }
3571 
3572 
3573 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3574   LIRItemList args(2);
3575   LIRItem value1(arg1, this);
3576   LIRItem value2(arg2, this);
3577   args.append(&value1);
3578   args.append(&value2);
3579   BasicTypeList signature;
3580   signature.append(as_BasicType(arg1->type()));
3581   signature.append(as_BasicType(arg2->type()));
3582 
3583   return call_runtime(&signature, &args, entry, result_type, info);
3584 }
3585 
3586 
3587 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3588                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3589   // get a result register
3590   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3591   LIR_Opr result = LIR_OprFact::illegalOpr;
3592   if (result_type->tag() != voidTag) {
3593     result = new_register(result_type);
3594     phys_reg = result_register_for(result_type);
3595   }
3596 
3597   // move the arguments into the correct location
3598   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3599   assert(cc->length() == args->length(), "argument mismatch");
3600   for (int i = 0; i < args->length(); i++) {
3601     LIR_Opr arg = args->at(i);
3602     LIR_Opr loc = cc->at(i);
3603     if (loc->is_register()) {
3604       __ move(arg, loc);
3605     } else {
3606       LIR_Address* addr = loc->as_address_ptr();
3607 //           if (!can_store_as_constant(arg)) {
3608 //             LIR_Opr tmp = new_register(arg->type());
3609 //             __ move(arg, tmp);
3610 //             arg = tmp;
3611 //           }
3612       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3613         __ unaligned_move(arg, addr);
3614       } else {
3615         __ move(arg, addr);
3616       }
3617     }
3618   }
3619 
3620   if (info) {
3621     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3622   } else {
3623     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3624   }
3625   if (result->is_valid()) {
3626     __ move(phys_reg, result);
3627   }
3628   return result;
3629 }
3630 
3631 
3632 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3633                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3634   // get a result register
3635   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3636   LIR_Opr result = LIR_OprFact::illegalOpr;
3637   if (result_type->tag() != voidTag) {
3638     result = new_register(result_type);
3639     phys_reg = result_register_for(result_type);
3640   }
3641 
3642   // move the arguments into the correct location
3643   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3644 
3645   assert(cc->length() == args->length(), "argument mismatch");
3646   for (int i = 0; i < args->length(); i++) {
3647     LIRItem* arg = args->at(i);
3648     LIR_Opr loc = cc->at(i);
3649     if (loc->is_register()) {
3650       arg->load_item_force(loc);
3651     } else {
3652       LIR_Address* addr = loc->as_address_ptr();
3653       arg->load_for_store(addr->type());
3654       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3655         __ unaligned_move(arg->result(), addr);
3656       } else {
3657         __ move(arg->result(), addr);
3658       }
3659     }
3660   }
3661 
3662   if (info) {
3663     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3664   } else {
3665     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3666   }
3667   if (result->is_valid()) {
3668     __ move(phys_reg, result);
3669   }
3670   return result;
3671 }
3672 
3673 void LIRGenerator::do_MemBar(MemBar* x) {
3674   if (os::is_MP()) {
3675     LIR_Code code = x->code();
3676     switch(code) {
3677       case lir_membar_acquire   : __ membar_acquire(); break;
3678       case lir_membar_release   : __ membar_release(); break;
3679       case lir_membar           : __ membar(); break;
3680       case lir_membar_loadload  : __ membar_loadload(); break;
3681       case lir_membar_storestore: __ membar_storestore(); break;
3682       case lir_membar_loadstore : __ membar_loadstore(); break;
3683       case lir_membar_storeload : __ membar_storeload(); break;
3684       default                   : ShouldNotReachHere(); break;
3685     }
3686   }
3687 }