1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1StringDedup.hpp"
  52 #include "gc_implementation/g1/g1YCTypes.hpp"
  53 #include "gc_implementation/g1/heapRegion.inline.hpp"
  54 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  55 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  56 #include "gc_implementation/g1/vm_operations_g1.hpp"
  57 #include "gc_implementation/shared/gcHeapSummary.hpp"
  58 #include "gc_implementation/shared/gcTimer.hpp"
  59 #include "gc_implementation/shared/gcTrace.hpp"
  60 #include "gc_implementation/shared/gcTraceTime.hpp"
  61 #include "gc_implementation/shared/isGCActiveMark.hpp"
  62 #include "memory/allocation.hpp"
  63 #include "memory/gcLocker.inline.hpp"
  64 #include "memory/generationSpec.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "memory/referenceProcessor.hpp"
  67 #include "oops/oop.inline.hpp"
  68 #include "oops/oop.pcgc.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 
  74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  75 
  76 // turn it on so that the contents of the young list (scan-only /
  77 // to-be-collected) are printed at "strategic" points before / during
  78 // / after the collection --- this is useful for debugging
  79 #define YOUNG_LIST_VERBOSE 0
  80 // CURRENT STATUS
  81 // This file is under construction.  Search for "FIXME".
  82 
  83 // INVARIANTS/NOTES
  84 //
  85 // All allocation activity covered by the G1CollectedHeap interface is
  86 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  87 // and allocate_new_tlab, which are the "entry" points to the
  88 // allocation code from the rest of the JVM.  (Note that this does not
  89 // apply to TLAB allocation, which is not part of this interface: it
  90 // is done by clients of this interface.)
  91 
  92 // Notes on implementation of parallelism in different tasks.
  93 //
  94 // G1ParVerifyTask uses heap_region_par_iterate() for parallelism.
  95 // The number of GC workers is passed to heap_region_par_iterate().
  96 // It does use run_task() which sets _n_workers in the task.
  97 // G1ParTask executes g1_process_roots() ->
  98 // SharedHeap::process_roots() which calls eventually to
  99 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
 100 // SequentialSubTasksDone.  SharedHeap::process_roots() also
 101 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
 102 //
 103 
 104 // Local to this file.
 105 
 106 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 107   bool _concurrent;
 108 public:
 109   RefineCardTableEntryClosure() : _concurrent(true) { }
 110 
 111   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 112     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 113     // This path is executed by the concurrent refine or mutator threads,
 114     // concurrently, and so we do not care if card_ptr contains references
 115     // that point into the collection set.
 116     assert(!oops_into_cset, "should be");
 117 
 118     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 119       // Caller will actually yield.
 120       return false;
 121     }
 122     // Otherwise, we finished successfully; return true.
 123     return true;
 124   }
 125 
 126   void set_concurrent(bool b) { _concurrent = b; }
 127 };
 128 
 129 
 130 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 131  private:
 132   size_t _num_processed;
 133 
 134  public:
 135   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 136 
 137   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 138     *card_ptr = CardTableModRefBS::dirty_card_val();
 139     _num_processed++;
 140     return true;
 141   }
 142 
 143   size_t num_processed() const { return _num_processed; }
 144 };
 145 
 146 YoungList::YoungList(G1CollectedHeap* g1h) :
 147     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 148     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 149   guarantee(check_list_empty(false), "just making sure...");
 150 }
 151 
 152 void YoungList::push_region(HeapRegion *hr) {
 153   assert(!hr->is_young(), "should not already be young");
 154   assert(hr->get_next_young_region() == NULL, "cause it should!");
 155 
 156   hr->set_next_young_region(_head);
 157   _head = hr;
 158 
 159   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 160   ++_length;
 161 }
 162 
 163 void YoungList::add_survivor_region(HeapRegion* hr) {
 164   assert(hr->is_survivor(), "should be flagged as survivor region");
 165   assert(hr->get_next_young_region() == NULL, "cause it should!");
 166 
 167   hr->set_next_young_region(_survivor_head);
 168   if (_survivor_head == NULL) {
 169     _survivor_tail = hr;
 170   }
 171   _survivor_head = hr;
 172   ++_survivor_length;
 173 }
 174 
 175 void YoungList::empty_list(HeapRegion* list) {
 176   while (list != NULL) {
 177     HeapRegion* next = list->get_next_young_region();
 178     list->set_next_young_region(NULL);
 179     list->uninstall_surv_rate_group();
 180     // This is called before a Full GC and all the non-empty /
 181     // non-humongous regions at the end of the Full GC will end up as
 182     // old anyway.
 183     list->set_old();
 184     list = next;
 185   }
 186 }
 187 
 188 void YoungList::empty_list() {
 189   assert(check_list_well_formed(), "young list should be well formed");
 190 
 191   empty_list(_head);
 192   _head = NULL;
 193   _length = 0;
 194 
 195   empty_list(_survivor_head);
 196   _survivor_head = NULL;
 197   _survivor_tail = NULL;
 198   _survivor_length = 0;
 199 
 200   _last_sampled_rs_lengths = 0;
 201 
 202   assert(check_list_empty(false), "just making sure...");
 203 }
 204 
 205 bool YoungList::check_list_well_formed() {
 206   bool ret = true;
 207 
 208   uint length = 0;
 209   HeapRegion* curr = _head;
 210   HeapRegion* last = NULL;
 211   while (curr != NULL) {
 212     if (!curr->is_young()) {
 213       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 214                              "incorrectly tagged (y: %d, surv: %d)",
 215                              curr->bottom(), curr->end(),
 216                              curr->is_young(), curr->is_survivor());
 217       ret = false;
 218     }
 219     ++length;
 220     last = curr;
 221     curr = curr->get_next_young_region();
 222   }
 223   ret = ret && (length == _length);
 224 
 225   if (!ret) {
 226     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 227     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 228                            length, _length);
 229   }
 230 
 231   return ret;
 232 }
 233 
 234 bool YoungList::check_list_empty(bool check_sample) {
 235   bool ret = true;
 236 
 237   if (_length != 0) {
 238     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 239                   _length);
 240     ret = false;
 241   }
 242   if (check_sample && _last_sampled_rs_lengths != 0) {
 243     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 244     ret = false;
 245   }
 246   if (_head != NULL) {
 247     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 248     ret = false;
 249   }
 250   if (!ret) {
 251     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 252   }
 253 
 254   return ret;
 255 }
 256 
 257 void
 258 YoungList::rs_length_sampling_init() {
 259   _sampled_rs_lengths = 0;
 260   _curr               = _head;
 261 }
 262 
 263 bool
 264 YoungList::rs_length_sampling_more() {
 265   return _curr != NULL;
 266 }
 267 
 268 void
 269 YoungList::rs_length_sampling_next() {
 270   assert( _curr != NULL, "invariant" );
 271   size_t rs_length = _curr->rem_set()->occupied();
 272 
 273   _sampled_rs_lengths += rs_length;
 274 
 275   // The current region may not yet have been added to the
 276   // incremental collection set (it gets added when it is
 277   // retired as the current allocation region).
 278   if (_curr->in_collection_set()) {
 279     // Update the collection set policy information for this region
 280     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 281   }
 282 
 283   _curr = _curr->get_next_young_region();
 284   if (_curr == NULL) {
 285     _last_sampled_rs_lengths = _sampled_rs_lengths;
 286     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 287   }
 288 }
 289 
 290 void
 291 YoungList::reset_auxilary_lists() {
 292   guarantee( is_empty(), "young list should be empty" );
 293   assert(check_list_well_formed(), "young list should be well formed");
 294 
 295   // Add survivor regions to SurvRateGroup.
 296   _g1h->g1_policy()->note_start_adding_survivor_regions();
 297   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 298 
 299   int young_index_in_cset = 0;
 300   for (HeapRegion* curr = _survivor_head;
 301        curr != NULL;
 302        curr = curr->get_next_young_region()) {
 303     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 304 
 305     // The region is a non-empty survivor so let's add it to
 306     // the incremental collection set for the next evacuation
 307     // pause.
 308     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 309     young_index_in_cset += 1;
 310   }
 311   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 312   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 313 
 314   _head   = _survivor_head;
 315   _length = _survivor_length;
 316   if (_survivor_head != NULL) {
 317     assert(_survivor_tail != NULL, "cause it shouldn't be");
 318     assert(_survivor_length > 0, "invariant");
 319     _survivor_tail->set_next_young_region(NULL);
 320   }
 321 
 322   // Don't clear the survivor list handles until the start of
 323   // the next evacuation pause - we need it in order to re-tag
 324   // the survivor regions from this evacuation pause as 'young'
 325   // at the start of the next.
 326 
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 328 
 329   assert(check_list_well_formed(), "young list should be well formed");
 330 }
 331 
 332 void YoungList::print() {
 333   HeapRegion* lists[] = {_head,   _survivor_head};
 334   const char* names[] = {"YOUNG", "SURVIVOR"};
 335 
 336   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 337     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 338     HeapRegion *curr = lists[list];
 339     if (curr == NULL)
 340       gclog_or_tty->print_cr("  empty");
 341     while (curr != NULL) {
 342       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 343                              HR_FORMAT_PARAMS(curr),
 344                              curr->prev_top_at_mark_start(),
 345                              curr->next_top_at_mark_start(),
 346                              curr->age_in_surv_rate_group_cond());
 347       curr = curr->get_next_young_region();
 348     }
 349   }
 350 
 351   gclog_or_tty->cr();
 352 }
 353 
 354 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 355   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 356 }
 357 
 358 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 359   // The from card cache is not the memory that is actually committed. So we cannot
 360   // take advantage of the zero_filled parameter.
 361   reset_from_card_cache(start_idx, num_regions);
 362 }
 363 
 364 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 365 {
 366   // Claim the right to put the region on the dirty cards region list
 367   // by installing a self pointer.
 368   HeapRegion* next = hr->get_next_dirty_cards_region();
 369   if (next == NULL) {
 370     HeapRegion* res = (HeapRegion*)
 371       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 372                           NULL);
 373     if (res == NULL) {
 374       HeapRegion* head;
 375       do {
 376         // Put the region to the dirty cards region list.
 377         head = _dirty_cards_region_list;
 378         next = (HeapRegion*)
 379           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 380         if (next == head) {
 381           assert(hr->get_next_dirty_cards_region() == hr,
 382                  "hr->get_next_dirty_cards_region() != hr");
 383           if (next == NULL) {
 384             // The last region in the list points to itself.
 385             hr->set_next_dirty_cards_region(hr);
 386           } else {
 387             hr->set_next_dirty_cards_region(next);
 388           }
 389         }
 390       } while (next != head);
 391     }
 392   }
 393 }
 394 
 395 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 396 {
 397   HeapRegion* head;
 398   HeapRegion* hr;
 399   do {
 400     head = _dirty_cards_region_list;
 401     if (head == NULL) {
 402       return NULL;
 403     }
 404     HeapRegion* new_head = head->get_next_dirty_cards_region();
 405     if (head == new_head) {
 406       // The last region.
 407       new_head = NULL;
 408     }
 409     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 410                                           head);
 411   } while (hr != head);
 412   assert(hr != NULL, "invariant");
 413   hr->set_next_dirty_cards_region(NULL);
 414   return hr;
 415 }
 416 
 417 #ifdef ASSERT
 418 // A region is added to the collection set as it is retired
 419 // so an address p can point to a region which will be in the
 420 // collection set but has not yet been retired.  This method
 421 // therefore is only accurate during a GC pause after all
 422 // regions have been retired.  It is used for debugging
 423 // to check if an nmethod has references to objects that can
 424 // be move during a partial collection.  Though it can be
 425 // inaccurate, it is sufficient for G1 because the conservative
 426 // implementation of is_scavengable() for G1 will indicate that
 427 // all nmethods must be scanned during a partial collection.
 428 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 429   if (p == NULL) {
 430     return false;
 431   }
 432   return heap_region_containing(p)->in_collection_set();
 433 }
 434 #endif
 435 
 436 // Returns true if the reference points to an object that
 437 // can move in an incremental collection.
 438 bool G1CollectedHeap::is_scavengable(const void* p) {
 439   HeapRegion* hr = heap_region_containing(p);
 440   return !hr->is_humongous();
 441 }
 442 
 443 // Private class members.
 444 
 445 G1CollectedHeap* G1CollectedHeap::_g1h;
 446 
 447 // Private methods.
 448 
 449 HeapRegion*
 450 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 451   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 452   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 453     if (!_secondary_free_list.is_empty()) {
 454       if (G1ConcRegionFreeingVerbose) {
 455         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 456                                "secondary_free_list has %u entries",
 457                                _secondary_free_list.length());
 458       }
 459       // It looks as if there are free regions available on the
 460       // secondary_free_list. Let's move them to the free_list and try
 461       // again to allocate from it.
 462       append_secondary_free_list();
 463 
 464       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 465              "empty we should have moved at least one entry to the free_list");
 466       HeapRegion* res = _hrm.allocate_free_region(is_old);
 467       if (G1ConcRegionFreeingVerbose) {
 468         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 469                                "allocated "HR_FORMAT" from secondary_free_list",
 470                                HR_FORMAT_PARAMS(res));
 471       }
 472       return res;
 473     }
 474 
 475     // Wait here until we get notified either when (a) there are no
 476     // more free regions coming or (b) some regions have been moved on
 477     // the secondary_free_list.
 478     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 479   }
 480 
 481   if (G1ConcRegionFreeingVerbose) {
 482     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 483                            "could not allocate from secondary_free_list");
 484   }
 485   return NULL;
 486 }
 487 
 488 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 489   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 490          "the only time we use this to allocate a humongous region is "
 491          "when we are allocating a single humongous region");
 492 
 493   HeapRegion* res;
 494   if (G1StressConcRegionFreeing) {
 495     if (!_secondary_free_list.is_empty()) {
 496       if (G1ConcRegionFreeingVerbose) {
 497         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 498                                "forced to look at the secondary_free_list");
 499       }
 500       res = new_region_try_secondary_free_list(is_old);
 501       if (res != NULL) {
 502         return res;
 503       }
 504     }
 505   }
 506 
 507   res = _hrm.allocate_free_region(is_old);
 508 
 509   if (res == NULL) {
 510     if (G1ConcRegionFreeingVerbose) {
 511       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 512                              "res == NULL, trying the secondary_free_list");
 513     }
 514     res = new_region_try_secondary_free_list(is_old);
 515   }
 516   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 517     // Currently, only attempts to allocate GC alloc regions set
 518     // do_expand to true. So, we should only reach here during a
 519     // safepoint. If this assumption changes we might have to
 520     // reconsider the use of _expand_heap_after_alloc_failure.
 521     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 522 
 523     ergo_verbose1(ErgoHeapSizing,
 524                   "attempt heap expansion",
 525                   ergo_format_reason("region allocation request failed")
 526                   ergo_format_byte("allocation request"),
 527                   word_size * HeapWordSize);
 528     if (expand(word_size * HeapWordSize)) {
 529       // Given that expand() succeeded in expanding the heap, and we
 530       // always expand the heap by an amount aligned to the heap
 531       // region size, the free list should in theory not be empty.
 532       // In either case allocate_free_region() will check for NULL.
 533       res = _hrm.allocate_free_region(is_old);
 534     } else {
 535       _expand_heap_after_alloc_failure = false;
 536     }
 537   }
 538   return res;
 539 }
 540 
 541 HeapWord*
 542 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 543                                                            uint num_regions,
 544                                                            size_t word_size,
 545                                                            AllocationContext_t context) {
 546   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 547   assert(is_humongous(word_size), "word_size should be humongous");
 548   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 549 
 550   // Index of last region in the series + 1.
 551   uint last = first + num_regions;
 552 
 553   // We need to initialize the region(s) we just discovered. This is
 554   // a bit tricky given that it can happen concurrently with
 555   // refinement threads refining cards on these regions and
 556   // potentially wanting to refine the BOT as they are scanning
 557   // those cards (this can happen shortly after a cleanup; see CR
 558   // 6991377). So we have to set up the region(s) carefully and in
 559   // a specific order.
 560 
 561   // The word size sum of all the regions we will allocate.
 562   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 563   assert(word_size <= word_size_sum, "sanity");
 564 
 565   // This will be the "starts humongous" region.
 566   HeapRegion* first_hr = region_at(first);
 567   // The header of the new object will be placed at the bottom of
 568   // the first region.
 569   HeapWord* new_obj = first_hr->bottom();
 570   // This will be the new end of the first region in the series that
 571   // should also match the end of the last region in the series.
 572   HeapWord* new_end = new_obj + word_size_sum;
 573   // This will be the new top of the first region that will reflect
 574   // this allocation.
 575   HeapWord* new_top = new_obj + word_size;
 576 
 577   // First, we need to zero the header of the space that we will be
 578   // allocating. When we update top further down, some refinement
 579   // threads might try to scan the region. By zeroing the header we
 580   // ensure that any thread that will try to scan the region will
 581   // come across the zero klass word and bail out.
 582   //
 583   // NOTE: It would not have been correct to have used
 584   // CollectedHeap::fill_with_object() and make the space look like
 585   // an int array. The thread that is doing the allocation will
 586   // later update the object header to a potentially different array
 587   // type and, for a very short period of time, the klass and length
 588   // fields will be inconsistent. This could cause a refinement
 589   // thread to calculate the object size incorrectly.
 590   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 591 
 592   // We will set up the first region as "starts humongous". This
 593   // will also update the BOT covering all the regions to reflect
 594   // that there is a single object that starts at the bottom of the
 595   // first region.
 596   first_hr->set_starts_humongous(new_top, new_end);
 597   first_hr->set_allocation_context(context);
 598   // Then, if there are any, we will set up the "continues
 599   // humongous" regions.
 600   HeapRegion* hr = NULL;
 601   for (uint i = first + 1; i < last; ++i) {
 602     hr = region_at(i);
 603     hr->set_continues_humongous(first_hr);
 604     hr->set_allocation_context(context);
 605   }
 606   // If we have "continues humongous" regions (hr != NULL), then the
 607   // end of the last one should match new_end.
 608   assert(hr == NULL || hr->end() == new_end, "sanity");
 609 
 610   // Up to this point no concurrent thread would have been able to
 611   // do any scanning on any region in this series. All the top
 612   // fields still point to bottom, so the intersection between
 613   // [bottom,top] and [card_start,card_end] will be empty. Before we
 614   // update the top fields, we'll do a storestore to make sure that
 615   // no thread sees the update to top before the zeroing of the
 616   // object header and the BOT initialization.
 617   OrderAccess::storestore();
 618 
 619   // Now that the BOT and the object header have been initialized,
 620   // we can update top of the "starts humongous" region.
 621   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 622          "new_top should be in this region");
 623   first_hr->set_top(new_top);
 624   if (_hr_printer.is_active()) {
 625     HeapWord* bottom = first_hr->bottom();
 626     HeapWord* end = first_hr->orig_end();
 627     if ((first + 1) == last) {
 628       // the series has a single humongous region
 629       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 630     } else {
 631       // the series has more than one humongous regions
 632       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 633     }
 634   }
 635 
 636   // Now, we will update the top fields of the "continues humongous"
 637   // regions. The reason we need to do this is that, otherwise,
 638   // these regions would look empty and this will confuse parts of
 639   // G1. For example, the code that looks for a consecutive number
 640   // of empty regions will consider them empty and try to
 641   // re-allocate them. We can extend is_empty() to also include
 642   // !is_continues_humongous(), but it is easier to just update the top
 643   // fields here. The way we set top for all regions (i.e., top ==
 644   // end for all regions but the last one, top == new_top for the
 645   // last one) is actually used when we will free up the humongous
 646   // region in free_humongous_region().
 647   hr = NULL;
 648   for (uint i = first + 1; i < last; ++i) {
 649     hr = region_at(i);
 650     if ((i + 1) == last) {
 651       // last continues humongous region
 652       assert(hr->bottom() < new_top && new_top <= hr->end(),
 653              "new_top should fall on this region");
 654       hr->set_top(new_top);
 655       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 656     } else {
 657       // not last one
 658       assert(new_top > hr->end(), "new_top should be above this region");
 659       hr->set_top(hr->end());
 660       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 661     }
 662   }
 663   // If we have continues humongous regions (hr != NULL), then the
 664   // end of the last one should match new_end and its top should
 665   // match new_top.
 666   assert(hr == NULL ||
 667          (hr->end() == new_end && hr->top() == new_top), "sanity");
 668   check_bitmaps("Humongous Region Allocation", first_hr);
 669 
 670   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 671   _allocator->increase_used(first_hr->used());
 672   _humongous_set.add(first_hr);
 673 
 674   return new_obj;
 675 }
 676 
 677 // If could fit into free regions w/o expansion, try.
 678 // Otherwise, if can expand, do so.
 679 // Otherwise, if using ex regions might help, try with ex given back.
 680 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 681   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 682 
 683   verify_region_sets_optional();
 684 
 685   uint first = G1_NO_HRM_INDEX;
 686   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 687 
 688   if (obj_regions == 1) {
 689     // Only one region to allocate, try to use a fast path by directly allocating
 690     // from the free lists. Do not try to expand here, we will potentially do that
 691     // later.
 692     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 693     if (hr != NULL) {
 694       first = hr->hrm_index();
 695     }
 696   } else {
 697     // We can't allocate humongous regions spanning more than one region while
 698     // cleanupComplete() is running, since some of the regions we find to be
 699     // empty might not yet be added to the free list. It is not straightforward
 700     // to know in which list they are on so that we can remove them. We only
 701     // need to do this if we need to allocate more than one region to satisfy the
 702     // current humongous allocation request. If we are only allocating one region
 703     // we use the one-region region allocation code (see above), that already
 704     // potentially waits for regions from the secondary free list.
 705     wait_while_free_regions_coming();
 706     append_secondary_free_list_if_not_empty_with_lock();
 707 
 708     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 709     // are lucky enough to find some.
 710     first = _hrm.find_contiguous_only_empty(obj_regions);
 711     if (first != G1_NO_HRM_INDEX) {
 712       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 713     }
 714   }
 715 
 716   if (first == G1_NO_HRM_INDEX) {
 717     // Policy: We could not find enough regions for the humongous object in the
 718     // free list. Look through the heap to find a mix of free and uncommitted regions.
 719     // If so, try expansion.
 720     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 721     if (first != G1_NO_HRM_INDEX) {
 722       // We found something. Make sure these regions are committed, i.e. expand
 723       // the heap. Alternatively we could do a defragmentation GC.
 724       ergo_verbose1(ErgoHeapSizing,
 725                     "attempt heap expansion",
 726                     ergo_format_reason("humongous allocation request failed")
 727                     ergo_format_byte("allocation request"),
 728                     word_size * HeapWordSize);
 729 
 730       _hrm.expand_at(first, obj_regions);
 731       g1_policy()->record_new_heap_size(num_regions());
 732 
 733 #ifdef ASSERT
 734       for (uint i = first; i < first + obj_regions; ++i) {
 735         HeapRegion* hr = region_at(i);
 736         assert(hr->is_free(), "sanity");
 737         assert(hr->is_empty(), "sanity");
 738         assert(is_on_master_free_list(hr), "sanity");
 739       }
 740 #endif
 741       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 742     } else {
 743       // Policy: Potentially trigger a defragmentation GC.
 744     }
 745   }
 746 
 747   HeapWord* result = NULL;
 748   if (first != G1_NO_HRM_INDEX) {
 749     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 750                                                        word_size, context);
 751     assert(result != NULL, "it should always return a valid result");
 752 
 753     // A successful humongous object allocation changes the used space
 754     // information of the old generation so we need to recalculate the
 755     // sizes and update the jstat counters here.
 756     g1mm()->update_sizes();
 757   }
 758 
 759   verify_region_sets_optional();
 760 
 761   return result;
 762 }
 763 
 764 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 765   assert_heap_not_locked_and_not_at_safepoint();
 766   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 767 
 768   uint dummy_gc_count_before;
 769   uint dummy_gclocker_retry_count = 0;
 770   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 771 }
 772 
 773 HeapWord*
 774 G1CollectedHeap::mem_allocate(size_t word_size,
 775                               bool*  gc_overhead_limit_was_exceeded) {
 776   assert_heap_not_locked_and_not_at_safepoint();
 777 
 778   // Loop until the allocation is satisfied, or unsatisfied after GC.
 779   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 780     uint gc_count_before;
 781 
 782     HeapWord* result = NULL;
 783     if (!is_humongous(word_size)) {
 784       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 785     } else {
 786       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 787     }
 788     if (result != NULL) {
 789       return result;
 790     }
 791 
 792     // Create the garbage collection operation...
 793     VM_G1CollectForAllocation op(gc_count_before, word_size);
 794     op.set_allocation_context(AllocationContext::current());
 795 
 796     // ...and get the VM thread to execute it.
 797     VMThread::execute(&op);
 798 
 799     if (op.prologue_succeeded() && op.pause_succeeded()) {
 800       // If the operation was successful we'll return the result even
 801       // if it is NULL. If the allocation attempt failed immediately
 802       // after a Full GC, it's unlikely we'll be able to allocate now.
 803       HeapWord* result = op.result();
 804       if (result != NULL && !is_humongous(word_size)) {
 805         // Allocations that take place on VM operations do not do any
 806         // card dirtying and we have to do it here. We only have to do
 807         // this for non-humongous allocations, though.
 808         dirty_young_block(result, word_size);
 809       }
 810       return result;
 811     } else {
 812       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 813         return NULL;
 814       }
 815       assert(op.result() == NULL,
 816              "the result should be NULL if the VM op did not succeed");
 817     }
 818 
 819     // Give a warning if we seem to be looping forever.
 820     if ((QueuedAllocationWarningCount > 0) &&
 821         (try_count % QueuedAllocationWarningCount == 0)) {
 822       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 823     }
 824   }
 825 
 826   ShouldNotReachHere();
 827   return NULL;
 828 }
 829 
 830 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 831                                                    AllocationContext_t context,
 832                                                    uint* gc_count_before_ret,
 833                                                    uint* gclocker_retry_count_ret) {
 834   // Make sure you read the note in attempt_allocation_humongous().
 835 
 836   assert_heap_not_locked_and_not_at_safepoint();
 837   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 838          "be called for humongous allocation requests");
 839 
 840   // We should only get here after the first-level allocation attempt
 841   // (attempt_allocation()) failed to allocate.
 842 
 843   // We will loop until a) we manage to successfully perform the
 844   // allocation or b) we successfully schedule a collection which
 845   // fails to perform the allocation. b) is the only case when we'll
 846   // return NULL.
 847   HeapWord* result = NULL;
 848   for (int try_count = 1; /* we'll return */; try_count += 1) {
 849     bool should_try_gc;
 850     uint gc_count_before;
 851 
 852     {
 853       MutexLockerEx x(Heap_lock);
 854       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 855                                                                                     false /* bot_updates */);
 856       if (result != NULL) {
 857         return result;
 858       }
 859 
 860       // If we reach here, attempt_allocation_locked() above failed to
 861       // allocate a new region. So the mutator alloc region should be NULL.
 862       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 863 
 864       if (GC_locker::is_active_and_needs_gc()) {
 865         if (g1_policy()->can_expand_young_list()) {
 866           // No need for an ergo verbose message here,
 867           // can_expand_young_list() does this when it returns true.
 868           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 869                                                                                        false /* bot_updates */);
 870           if (result != NULL) {
 871             return result;
 872           }
 873         }
 874         should_try_gc = false;
 875       } else {
 876         // The GCLocker may not be active but the GCLocker initiated
 877         // GC may not yet have been performed (GCLocker::needs_gc()
 878         // returns true). In this case we do not try this GC and
 879         // wait until the GCLocker initiated GC is performed, and
 880         // then retry the allocation.
 881         if (GC_locker::needs_gc()) {
 882           should_try_gc = false;
 883         } else {
 884           // Read the GC count while still holding the Heap_lock.
 885           gc_count_before = total_collections();
 886           should_try_gc = true;
 887         }
 888       }
 889     }
 890 
 891     if (should_try_gc) {
 892       bool succeeded;
 893       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 894                                    GCCause::_g1_inc_collection_pause);
 895       if (result != NULL) {
 896         assert(succeeded, "only way to get back a non-NULL result");
 897         return result;
 898       }
 899 
 900       if (succeeded) {
 901         // If we get here we successfully scheduled a collection which
 902         // failed to allocate. No point in trying to allocate
 903         // further. We'll just return NULL.
 904         MutexLockerEx x(Heap_lock);
 905         *gc_count_before_ret = total_collections();
 906         return NULL;
 907       }
 908     } else {
 909       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 910         MutexLockerEx x(Heap_lock);
 911         *gc_count_before_ret = total_collections();
 912         return NULL;
 913       }
 914       // The GCLocker is either active or the GCLocker initiated
 915       // GC has not yet been performed. Stall until it is and
 916       // then retry the allocation.
 917       GC_locker::stall_until_clear();
 918       (*gclocker_retry_count_ret) += 1;
 919     }
 920 
 921     // We can reach here if we were unsuccessful in scheduling a
 922     // collection (because another thread beat us to it) or if we were
 923     // stalled due to the GC locker. In either can we should retry the
 924     // allocation attempt in case another thread successfully
 925     // performed a collection and reclaimed enough space. We do the
 926     // first attempt (without holding the Heap_lock) here and the
 927     // follow-on attempt will be at the start of the next loop
 928     // iteration (after taking the Heap_lock).
 929     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 930                                                                            false /* bot_updates */);
 931     if (result != NULL) {
 932       return result;
 933     }
 934 
 935     // Give a warning if we seem to be looping forever.
 936     if ((QueuedAllocationWarningCount > 0) &&
 937         (try_count % QueuedAllocationWarningCount == 0)) {
 938       warning("G1CollectedHeap::attempt_allocation_slow() "
 939               "retries %d times", try_count);
 940     }
 941   }
 942 
 943   ShouldNotReachHere();
 944   return NULL;
 945 }
 946 
 947 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 948                                                         uint* gc_count_before_ret,
 949                                                         uint* gclocker_retry_count_ret) {
 950   // The structure of this method has a lot of similarities to
 951   // attempt_allocation_slow(). The reason these two were not merged
 952   // into a single one is that such a method would require several "if
 953   // allocation is not humongous do this, otherwise do that"
 954   // conditional paths which would obscure its flow. In fact, an early
 955   // version of this code did use a unified method which was harder to
 956   // follow and, as a result, it had subtle bugs that were hard to
 957   // track down. So keeping these two methods separate allows each to
 958   // be more readable. It will be good to keep these two in sync as
 959   // much as possible.
 960 
 961   assert_heap_not_locked_and_not_at_safepoint();
 962   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 963          "should only be called for humongous allocations");
 964 
 965   // Humongous objects can exhaust the heap quickly, so we should check if we
 966   // need to start a marking cycle at each humongous object allocation. We do
 967   // the check before we do the actual allocation. The reason for doing it
 968   // before the allocation is that we avoid having to keep track of the newly
 969   // allocated memory while we do a GC.
 970   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 971                                            word_size)) {
 972     collect(GCCause::_g1_humongous_allocation);
 973   }
 974 
 975   // We will loop until a) we manage to successfully perform the
 976   // allocation or b) we successfully schedule a collection which
 977   // fails to perform the allocation. b) is the only case when we'll
 978   // return NULL.
 979   HeapWord* result = NULL;
 980   for (int try_count = 1; /* we'll return */; try_count += 1) {
 981     bool should_try_gc;
 982     uint gc_count_before;
 983 
 984     {
 985       MutexLockerEx x(Heap_lock);
 986 
 987       // Given that humongous objects are not allocated in young
 988       // regions, we'll first try to do the allocation without doing a
 989       // collection hoping that there's enough space in the heap.
 990       result = humongous_obj_allocate(word_size, AllocationContext::current());
 991       if (result != NULL) {
 992         return result;
 993       }
 994 
 995       if (GC_locker::is_active_and_needs_gc()) {
 996         should_try_gc = false;
 997       } else {
 998          // The GCLocker may not be active but the GCLocker initiated
 999         // GC may not yet have been performed (GCLocker::needs_gc()
1000         // returns true). In this case we do not try this GC and
1001         // wait until the GCLocker initiated GC is performed, and
1002         // then retry the allocation.
1003         if (GC_locker::needs_gc()) {
1004           should_try_gc = false;
1005         } else {
1006           // Read the GC count while still holding the Heap_lock.
1007           gc_count_before = total_collections();
1008           should_try_gc = true;
1009         }
1010       }
1011     }
1012 
1013     if (should_try_gc) {
1014       // If we failed to allocate the humongous object, we should try to
1015       // do a collection pause (if we're allowed) in case it reclaims
1016       // enough space for the allocation to succeed after the pause.
1017 
1018       bool succeeded;
1019       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1020                                    GCCause::_g1_humongous_allocation);
1021       if (result != NULL) {
1022         assert(succeeded, "only way to get back a non-NULL result");
1023         return result;
1024       }
1025 
1026       if (succeeded) {
1027         // If we get here we successfully scheduled a collection which
1028         // failed to allocate. No point in trying to allocate
1029         // further. We'll just return NULL.
1030         MutexLockerEx x(Heap_lock);
1031         *gc_count_before_ret = total_collections();
1032         return NULL;
1033       }
1034     } else {
1035       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1036         MutexLockerEx x(Heap_lock);
1037         *gc_count_before_ret = total_collections();
1038         return NULL;
1039       }
1040       // The GCLocker is either active or the GCLocker initiated
1041       // GC has not yet been performed. Stall until it is and
1042       // then retry the allocation.
1043       GC_locker::stall_until_clear();
1044       (*gclocker_retry_count_ret) += 1;
1045     }
1046 
1047     // We can reach here if we were unsuccessful in scheduling a
1048     // collection (because another thread beat us to it) or if we were
1049     // stalled due to the GC locker. In either can we should retry the
1050     // allocation attempt in case another thread successfully
1051     // performed a collection and reclaimed enough space.  Give a
1052     // warning if we seem to be looping forever.
1053 
1054     if ((QueuedAllocationWarningCount > 0) &&
1055         (try_count % QueuedAllocationWarningCount == 0)) {
1056       warning("G1CollectedHeap::attempt_allocation_humongous() "
1057               "retries %d times", try_count);
1058     }
1059   }
1060 
1061   ShouldNotReachHere();
1062   return NULL;
1063 }
1064 
1065 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1066                                                            AllocationContext_t context,
1067                                                            bool expect_null_mutator_alloc_region) {
1068   assert_at_safepoint(true /* should_be_vm_thread */);
1069   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1070                                              !expect_null_mutator_alloc_region,
1071          "the current alloc region was unexpectedly found to be non-NULL");
1072 
1073   if (!is_humongous(word_size)) {
1074     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1075                                                       false /* bot_updates */);
1076   } else {
1077     HeapWord* result = humongous_obj_allocate(word_size, context);
1078     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1079       g1_policy()->set_initiate_conc_mark_if_possible();
1080     }
1081     return result;
1082   }
1083 
1084   ShouldNotReachHere();
1085 }
1086 
1087 class PostMCRemSetClearClosure: public HeapRegionClosure {
1088   G1CollectedHeap* _g1h;
1089   ModRefBarrierSet* _mr_bs;
1090 public:
1091   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1092     _g1h(g1h), _mr_bs(mr_bs) {}
1093 
1094   bool doHeapRegion(HeapRegion* r) {
1095     HeapRegionRemSet* hrrs = r->rem_set();
1096 
1097     if (r->is_continues_humongous()) {
1098       // We'll assert that the strong code root list and RSet is empty
1099       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1100       assert(hrrs->occupied() == 0, "RSet should be empty");
1101       return false;
1102     }
1103 
1104     _g1h->reset_gc_time_stamps(r);
1105     hrrs->clear();
1106     // You might think here that we could clear just the cards
1107     // corresponding to the used region.  But no: if we leave a dirty card
1108     // in a region we might allocate into, then it would prevent that card
1109     // from being enqueued, and cause it to be missed.
1110     // Re: the performance cost: we shouldn't be doing full GC anyway!
1111     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1112 
1113     return false;
1114   }
1115 };
1116 
1117 void G1CollectedHeap::clear_rsets_post_compaction() {
1118   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1119   heap_region_iterate(&rs_clear);
1120 }
1121 
1122 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1123   G1CollectedHeap*   _g1h;
1124   UpdateRSOopClosure _cl;
1125   int                _worker_i;
1126 public:
1127   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1128     _cl(g1->g1_rem_set(), worker_i),
1129     _worker_i(worker_i),
1130     _g1h(g1)
1131   { }
1132 
1133   bool doHeapRegion(HeapRegion* r) {
1134     if (!r->is_continues_humongous()) {
1135       _cl.set_from(r);
1136       r->oop_iterate(&_cl);
1137     }
1138     return false;
1139   }
1140 };
1141 
1142 class ParRebuildRSTask: public AbstractGangTask {
1143   G1CollectedHeap* _g1;
1144   HeapRegionClaimer _hrclaimer;
1145 
1146 public:
1147   ParRebuildRSTask(G1CollectedHeap* g1) :
1148       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1149 
1150   void work(uint worker_id) {
1151     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1152     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1153   }
1154 };
1155 
1156 class PostCompactionPrinterClosure: public HeapRegionClosure {
1157 private:
1158   G1HRPrinter* _hr_printer;
1159 public:
1160   bool doHeapRegion(HeapRegion* hr) {
1161     assert(!hr->is_young(), "not expecting to find young regions");
1162     if (hr->is_free()) {
1163       // We only generate output for non-empty regions.
1164     } else if (hr->is_starts_humongous()) {
1165       if (hr->region_num() == 1) {
1166         // single humongous region
1167         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1168       } else {
1169         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1170       }
1171     } else if (hr->is_continues_humongous()) {
1172       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1173     } else if (hr->is_old()) {
1174       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1175     } else {
1176       ShouldNotReachHere();
1177     }
1178     return false;
1179   }
1180 
1181   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1182     : _hr_printer(hr_printer) { }
1183 };
1184 
1185 void G1CollectedHeap::print_hrm_post_compaction() {
1186   PostCompactionPrinterClosure cl(hr_printer());
1187   heap_region_iterate(&cl);
1188 }
1189 
1190 bool G1CollectedHeap::do_collection(bool explicit_gc,
1191                                     bool clear_all_soft_refs,
1192                                     size_t word_size) {
1193   assert_at_safepoint(true /* should_be_vm_thread */);
1194 
1195   if (GC_locker::check_active_before_gc()) {
1196     return false;
1197   }
1198 
1199   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1200   gc_timer->register_gc_start();
1201 
1202   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1203   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1204 
1205   SvcGCMarker sgcm(SvcGCMarker::FULL);
1206   ResourceMark rm;
1207 
1208   print_heap_before_gc();
1209   trace_heap_before_gc(gc_tracer);
1210 
1211   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1212 
1213   verify_region_sets_optional();
1214 
1215   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1216                            collector_policy()->should_clear_all_soft_refs();
1217 
1218   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1219 
1220   {
1221     IsGCActiveMark x;
1222 
1223     // Timing
1224     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1225     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1226 
1227     {
1228       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1229       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1230       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1231 
1232       g1_policy()->record_full_collection_start();
1233 
1234       // Note: When we have a more flexible GC logging framework that
1235       // allows us to add optional attributes to a GC log record we
1236       // could consider timing and reporting how long we wait in the
1237       // following two methods.
1238       wait_while_free_regions_coming();
1239       // If we start the compaction before the CM threads finish
1240       // scanning the root regions we might trip them over as we'll
1241       // be moving objects / updating references. So let's wait until
1242       // they are done. By telling them to abort, they should complete
1243       // early.
1244       _cm->root_regions()->abort();
1245       _cm->root_regions()->wait_until_scan_finished();
1246       append_secondary_free_list_if_not_empty_with_lock();
1247 
1248       gc_prologue(true);
1249       increment_total_collections(true /* full gc */);
1250       increment_old_marking_cycles_started();
1251 
1252       assert(used() == recalculate_used(), "Should be equal");
1253 
1254       verify_before_gc();
1255 
1256       check_bitmaps("Full GC Start");
1257       pre_full_gc_dump(gc_timer);
1258 
1259       COMPILER2_PRESENT(DerivedPointerTable::clear());
1260 
1261       // Disable discovery and empty the discovered lists
1262       // for the CM ref processor.
1263       ref_processor_cm()->disable_discovery();
1264       ref_processor_cm()->abandon_partial_discovery();
1265       ref_processor_cm()->verify_no_references_recorded();
1266 
1267       // Abandon current iterations of concurrent marking and concurrent
1268       // refinement, if any are in progress. We have to do this before
1269       // wait_until_scan_finished() below.
1270       concurrent_mark()->abort();
1271 
1272       // Make sure we'll choose a new allocation region afterwards.
1273       _allocator->release_mutator_alloc_region();
1274       _allocator->abandon_gc_alloc_regions();
1275       g1_rem_set()->cleanupHRRS();
1276 
1277       // We should call this after we retire any currently active alloc
1278       // regions so that all the ALLOC / RETIRE events are generated
1279       // before the start GC event.
1280       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1281 
1282       // We may have added regions to the current incremental collection
1283       // set between the last GC or pause and now. We need to clear the
1284       // incremental collection set and then start rebuilding it afresh
1285       // after this full GC.
1286       abandon_collection_set(g1_policy()->inc_cset_head());
1287       g1_policy()->clear_incremental_cset();
1288       g1_policy()->stop_incremental_cset_building();
1289 
1290       tear_down_region_sets(false /* free_list_only */);
1291       g1_policy()->set_gcs_are_young(true);
1292 
1293       // See the comments in g1CollectedHeap.hpp and
1294       // G1CollectedHeap::ref_processing_init() about
1295       // how reference processing currently works in G1.
1296 
1297       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1298       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1299 
1300       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1301       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1302 
1303       ref_processor_stw()->enable_discovery();
1304       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1305 
1306       // Do collection work
1307       {
1308         HandleMark hm;  // Discard invalid handles created during gc
1309         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1310       }
1311 
1312       assert(num_free_regions() == 0, "we should not have added any free regions");
1313       rebuild_region_sets(false /* free_list_only */);
1314 
1315       // Enqueue any discovered reference objects that have
1316       // not been removed from the discovered lists.
1317       ref_processor_stw()->enqueue_discovered_references();
1318 
1319       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1320 
1321       MemoryService::track_memory_usage();
1322 
1323       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1324       ref_processor_stw()->verify_no_references_recorded();
1325 
1326       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1327       ClassLoaderDataGraph::purge();
1328       MetaspaceAux::verify_metrics();
1329 
1330       // Note: since we've just done a full GC, concurrent
1331       // marking is no longer active. Therefore we need not
1332       // re-enable reference discovery for the CM ref processor.
1333       // That will be done at the start of the next marking cycle.
1334       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1335       ref_processor_cm()->verify_no_references_recorded();
1336 
1337       reset_gc_time_stamp();
1338       // Since everything potentially moved, we will clear all remembered
1339       // sets, and clear all cards.  Later we will rebuild remembered
1340       // sets. We will also reset the GC time stamps of the regions.
1341       clear_rsets_post_compaction();
1342       check_gc_time_stamps();
1343 
1344       // Resize the heap if necessary.
1345       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1346 
1347       if (_hr_printer.is_active()) {
1348         // We should do this after we potentially resize the heap so
1349         // that all the COMMIT / UNCOMMIT events are generated before
1350         // the end GC event.
1351 
1352         print_hrm_post_compaction();
1353         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1354       }
1355 
1356       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1357       if (hot_card_cache->use_cache()) {
1358         hot_card_cache->reset_card_counts();
1359         hot_card_cache->reset_hot_cache();
1360       }
1361 
1362       // Rebuild remembered sets of all regions.
1363       uint n_workers =
1364         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1365                                                 workers()->active_workers(),
1366                                                 Threads::number_of_non_daemon_threads());
1367       assert(UseDynamicNumberOfGCThreads ||
1368              n_workers == workers()->total_workers(),
1369              "If not dynamic should be using all the  workers");
1370       workers()->set_active_workers(n_workers);
1371       // Set parallel threads in the heap (_n_par_threads) only
1372       // before a parallel phase and always reset it to 0 after
1373       // the phase so that the number of parallel threads does
1374       // no get carried forward to a serial phase where there
1375       // may be code that is "possibly_parallel".
1376       set_par_threads(n_workers);
1377 
1378       ParRebuildRSTask rebuild_rs_task(this);
1379       assert(UseDynamicNumberOfGCThreads ||
1380              workers()->active_workers() == workers()->total_workers(),
1381              "Unless dynamic should use total workers");
1382       // Use the most recent number of  active workers
1383       assert(workers()->active_workers() > 0,
1384              "Active workers not properly set");
1385       set_par_threads(workers()->active_workers());
1386       workers()->run_task(&rebuild_rs_task);
1387       set_par_threads(0);
1388 
1389       // Rebuild the strong code root lists for each region
1390       rebuild_strong_code_roots();
1391 
1392       if (true) { // FIXME
1393         MetaspaceGC::compute_new_size();
1394       }
1395 
1396 #ifdef TRACESPINNING
1397       ParallelTaskTerminator::print_termination_counts();
1398 #endif
1399 
1400       // Discard all rset updates
1401       JavaThread::dirty_card_queue_set().abandon_logs();
1402       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1403 
1404       _young_list->reset_sampled_info();
1405       // At this point there should be no regions in the
1406       // entire heap tagged as young.
1407       assert(check_young_list_empty(true /* check_heap */),
1408              "young list should be empty at this point");
1409 
1410       // Update the number of full collections that have been completed.
1411       increment_old_marking_cycles_completed(false /* concurrent */);
1412 
1413       _hrm.verify_optional();
1414       verify_region_sets_optional();
1415 
1416       verify_after_gc();
1417 
1418       // Clear the previous marking bitmap, if needed for bitmap verification.
1419       // Note we cannot do this when we clear the next marking bitmap in
1420       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1421       // objects marked during a full GC against the previous bitmap.
1422       // But we need to clear it before calling check_bitmaps below since
1423       // the full GC has compacted objects and updated TAMS but not updated
1424       // the prev bitmap.
1425       if (G1VerifyBitmaps) {
1426         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1427       }
1428       check_bitmaps("Full GC End");
1429 
1430       // Start a new incremental collection set for the next pause
1431       assert(g1_policy()->collection_set() == NULL, "must be");
1432       g1_policy()->start_incremental_cset_building();
1433 
1434       clear_cset_fast_test();
1435 
1436       _allocator->init_mutator_alloc_region();
1437 
1438       g1_policy()->record_full_collection_end();
1439 
1440       if (G1Log::fine()) {
1441         g1_policy()->print_heap_transition();
1442       }
1443 
1444       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1445       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1446       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1447       // before any GC notifications are raised.
1448       g1mm()->update_sizes();
1449 
1450       gc_epilogue(true);
1451     }
1452 
1453     if (G1Log::finer()) {
1454       g1_policy()->print_detailed_heap_transition(true /* full */);
1455     }
1456 
1457     print_heap_after_gc();
1458     trace_heap_after_gc(gc_tracer);
1459 
1460     post_full_gc_dump(gc_timer);
1461 
1462     gc_timer->register_gc_end();
1463     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1464   }
1465 
1466   return true;
1467 }
1468 
1469 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1470   // do_collection() will return whether it succeeded in performing
1471   // the GC. Currently, there is no facility on the
1472   // do_full_collection() API to notify the caller than the collection
1473   // did not succeed (e.g., because it was locked out by the GC
1474   // locker). So, right now, we'll ignore the return value.
1475   bool dummy = do_collection(true,                /* explicit_gc */
1476                              clear_all_soft_refs,
1477                              0                    /* word_size */);
1478 }
1479 
1480 // This code is mostly copied from TenuredGeneration.
1481 void
1482 G1CollectedHeap::
1483 resize_if_necessary_after_full_collection(size_t word_size) {
1484   // Include the current allocation, if any, and bytes that will be
1485   // pre-allocated to support collections, as "used".
1486   const size_t used_after_gc = used();
1487   const size_t capacity_after_gc = capacity();
1488   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1489 
1490   // This is enforced in arguments.cpp.
1491   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1492          "otherwise the code below doesn't make sense");
1493 
1494   // We don't have floating point command-line arguments
1495   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1496   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1497   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1498   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1499 
1500   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1501   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1502 
1503   // We have to be careful here as these two calculations can overflow
1504   // 32-bit size_t's.
1505   double used_after_gc_d = (double) used_after_gc;
1506   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1507   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1508 
1509   // Let's make sure that they are both under the max heap size, which
1510   // by default will make them fit into a size_t.
1511   double desired_capacity_upper_bound = (double) max_heap_size;
1512   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1513                                     desired_capacity_upper_bound);
1514   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1515                                     desired_capacity_upper_bound);
1516 
1517   // We can now safely turn them into size_t's.
1518   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1519   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1520 
1521   // This assert only makes sense here, before we adjust them
1522   // with respect to the min and max heap size.
1523   assert(minimum_desired_capacity <= maximum_desired_capacity,
1524          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1525                  "maximum_desired_capacity = "SIZE_FORMAT,
1526                  minimum_desired_capacity, maximum_desired_capacity));
1527 
1528   // Should not be greater than the heap max size. No need to adjust
1529   // it with respect to the heap min size as it's a lower bound (i.e.,
1530   // we'll try to make the capacity larger than it, not smaller).
1531   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1532   // Should not be less than the heap min size. No need to adjust it
1533   // with respect to the heap max size as it's an upper bound (i.e.,
1534   // we'll try to make the capacity smaller than it, not greater).
1535   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1536 
1537   if (capacity_after_gc < minimum_desired_capacity) {
1538     // Don't expand unless it's significant
1539     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1540     ergo_verbose4(ErgoHeapSizing,
1541                   "attempt heap expansion",
1542                   ergo_format_reason("capacity lower than "
1543                                      "min desired capacity after Full GC")
1544                   ergo_format_byte("capacity")
1545                   ergo_format_byte("occupancy")
1546                   ergo_format_byte_perc("min desired capacity"),
1547                   capacity_after_gc, used_after_gc,
1548                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1549     expand(expand_bytes);
1550 
1551     // No expansion, now see if we want to shrink
1552   } else if (capacity_after_gc > maximum_desired_capacity) {
1553     // Capacity too large, compute shrinking size
1554     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1555     ergo_verbose4(ErgoHeapSizing,
1556                   "attempt heap shrinking",
1557                   ergo_format_reason("capacity higher than "
1558                                      "max desired capacity after Full GC")
1559                   ergo_format_byte("capacity")
1560                   ergo_format_byte("occupancy")
1561                   ergo_format_byte_perc("max desired capacity"),
1562                   capacity_after_gc, used_after_gc,
1563                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1564     shrink(shrink_bytes);
1565   }
1566 }
1567 
1568 
1569 HeapWord*
1570 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1571                                            AllocationContext_t context,
1572                                            bool* succeeded) {
1573   assert_at_safepoint(true /* should_be_vm_thread */);
1574 
1575   *succeeded = true;
1576   // Let's attempt the allocation first.
1577   HeapWord* result =
1578     attempt_allocation_at_safepoint(word_size,
1579                                     context,
1580                                     false /* expect_null_mutator_alloc_region */);
1581   if (result != NULL) {
1582     assert(*succeeded, "sanity");
1583     return result;
1584   }
1585 
1586   // In a G1 heap, we're supposed to keep allocation from failing by
1587   // incremental pauses.  Therefore, at least for now, we'll favor
1588   // expansion over collection.  (This might change in the future if we can
1589   // do something smarter than full collection to satisfy a failed alloc.)
1590   result = expand_and_allocate(word_size, context);
1591   if (result != NULL) {
1592     assert(*succeeded, "sanity");
1593     return result;
1594   }
1595 
1596   // Expansion didn't work, we'll try to do a Full GC.
1597   bool gc_succeeded = do_collection(false, /* explicit_gc */
1598                                     false, /* clear_all_soft_refs */
1599                                     word_size);
1600   if (!gc_succeeded) {
1601     *succeeded = false;
1602     return NULL;
1603   }
1604 
1605   // Retry the allocation
1606   result = attempt_allocation_at_safepoint(word_size,
1607                                            context,
1608                                            true /* expect_null_mutator_alloc_region */);
1609   if (result != NULL) {
1610     assert(*succeeded, "sanity");
1611     return result;
1612   }
1613 
1614   // Then, try a Full GC that will collect all soft references.
1615   gc_succeeded = do_collection(false, /* explicit_gc */
1616                                true,  /* clear_all_soft_refs */
1617                                word_size);
1618   if (!gc_succeeded) {
1619     *succeeded = false;
1620     return NULL;
1621   }
1622 
1623   // Retry the allocation once more
1624   result = attempt_allocation_at_safepoint(word_size,
1625                                            context,
1626                                            true /* expect_null_mutator_alloc_region */);
1627   if (result != NULL) {
1628     assert(*succeeded, "sanity");
1629     return result;
1630   }
1631 
1632   assert(!collector_policy()->should_clear_all_soft_refs(),
1633          "Flag should have been handled and cleared prior to this point");
1634 
1635   // What else?  We might try synchronous finalization later.  If the total
1636   // space available is large enough for the allocation, then a more
1637   // complete compaction phase than we've tried so far might be
1638   // appropriate.
1639   assert(*succeeded, "sanity");
1640   return NULL;
1641 }
1642 
1643 // Attempting to expand the heap sufficiently
1644 // to support an allocation of the given "word_size".  If
1645 // successful, perform the allocation and return the address of the
1646 // allocated block, or else "NULL".
1647 
1648 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1649   assert_at_safepoint(true /* should_be_vm_thread */);
1650 
1651   verify_region_sets_optional();
1652 
1653   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1654   ergo_verbose1(ErgoHeapSizing,
1655                 "attempt heap expansion",
1656                 ergo_format_reason("allocation request failed")
1657                 ergo_format_byte("allocation request"),
1658                 word_size * HeapWordSize);
1659   if (expand(expand_bytes)) {
1660     _hrm.verify_optional();
1661     verify_region_sets_optional();
1662     return attempt_allocation_at_safepoint(word_size,
1663                                            context,
1664                                            false /* expect_null_mutator_alloc_region */);
1665   }
1666   return NULL;
1667 }
1668 
1669 bool G1CollectedHeap::expand(size_t expand_bytes) {
1670   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1671   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1672                                        HeapRegion::GrainBytes);
1673   ergo_verbose2(ErgoHeapSizing,
1674                 "expand the heap",
1675                 ergo_format_byte("requested expansion amount")
1676                 ergo_format_byte("attempted expansion amount"),
1677                 expand_bytes, aligned_expand_bytes);
1678 
1679   if (is_maximal_no_gc()) {
1680     ergo_verbose0(ErgoHeapSizing,
1681                       "did not expand the heap",
1682                       ergo_format_reason("heap already fully expanded"));
1683     return false;
1684   }
1685 
1686   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1687   assert(regions_to_expand > 0, "Must expand by at least one region");
1688 
1689   uint expanded_by = _hrm.expand_by(regions_to_expand);
1690 
1691   if (expanded_by > 0) {
1692     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1693     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1694     g1_policy()->record_new_heap_size(num_regions());
1695   } else {
1696     ergo_verbose0(ErgoHeapSizing,
1697                   "did not expand the heap",
1698                   ergo_format_reason("heap expansion operation failed"));
1699     // The expansion of the virtual storage space was unsuccessful.
1700     // Let's see if it was because we ran out of swap.
1701     if (G1ExitOnExpansionFailure &&
1702         _hrm.available() >= regions_to_expand) {
1703       // We had head room...
1704       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1705     }
1706   }
1707   return regions_to_expand > 0;
1708 }
1709 
1710 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1711   size_t aligned_shrink_bytes =
1712     ReservedSpace::page_align_size_down(shrink_bytes);
1713   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1714                                          HeapRegion::GrainBytes);
1715   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1716 
1717   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1718   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1719 
1720   ergo_verbose3(ErgoHeapSizing,
1721                 "shrink the heap",
1722                 ergo_format_byte("requested shrinking amount")
1723                 ergo_format_byte("aligned shrinking amount")
1724                 ergo_format_byte("attempted shrinking amount"),
1725                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1726   if (num_regions_removed > 0) {
1727     g1_policy()->record_new_heap_size(num_regions());
1728   } else {
1729     ergo_verbose0(ErgoHeapSizing,
1730                   "did not shrink the heap",
1731                   ergo_format_reason("heap shrinking operation failed"));
1732   }
1733 }
1734 
1735 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1736   verify_region_sets_optional();
1737 
1738   // We should only reach here at the end of a Full GC which means we
1739   // should not not be holding to any GC alloc regions. The method
1740   // below will make sure of that and do any remaining clean up.
1741   _allocator->abandon_gc_alloc_regions();
1742 
1743   // Instead of tearing down / rebuilding the free lists here, we
1744   // could instead use the remove_all_pending() method on free_list to
1745   // remove only the ones that we need to remove.
1746   tear_down_region_sets(true /* free_list_only */);
1747   shrink_helper(shrink_bytes);
1748   rebuild_region_sets(true /* free_list_only */);
1749 
1750   _hrm.verify_optional();
1751   verify_region_sets_optional();
1752 }
1753 
1754 // Public methods.
1755 
1756 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1757 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1758 #endif // _MSC_VER
1759 
1760 
1761 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1762   SharedHeap(policy_),
1763   _g1_policy(policy_),
1764   _dirty_card_queue_set(false),
1765   _into_cset_dirty_card_queue_set(false),
1766   _is_alive_closure_cm(this),
1767   _is_alive_closure_stw(this),
1768   _ref_processor_cm(NULL),
1769   _ref_processor_stw(NULL),
1770   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1771   _bot_shared(NULL),
1772   _evac_failure_scan_stack(NULL),
1773   _mark_in_progress(false),
1774   _cg1r(NULL),
1775   _g1mm(NULL),
1776   _refine_cte_cl(NULL),
1777   _full_collection(false),
1778   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1779   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1780   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1781   _humongous_reclaim_candidates(),
1782   _has_humongous_reclaim_candidates(false),
1783   _free_regions_coming(false),
1784   _young_list(new YoungList(this)),
1785   _gc_time_stamp(0),
1786   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1787   _old_plab_stats(OldPLABSize, PLABWeight),
1788   _expand_heap_after_alloc_failure(true),
1789   _surviving_young_words(NULL),
1790   _old_marking_cycles_started(0),
1791   _old_marking_cycles_completed(0),
1792   _concurrent_cycle_started(false),
1793   _heap_summary_sent(false),
1794   _in_cset_fast_test(),
1795   _dirty_cards_region_list(NULL),
1796   _worker_cset_start_region(NULL),
1797   _worker_cset_start_region_time_stamp(NULL),
1798   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1799   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1800   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1801   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1802 
1803   _g1h = this;
1804   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1805     vm_exit_during_initialization("Failed necessary allocation.");
1806   }
1807 
1808   _allocator = G1Allocator::create_allocator(_g1h);
1809   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1810 
1811   int n_queues = MAX2((int)ParallelGCThreads, 1);
1812   _task_queues = new RefToScanQueueSet(n_queues);
1813 
1814   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1815   assert(n_rem_sets > 0, "Invariant.");
1816 
1817   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1818   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1819   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1820 
1821   for (int i = 0; i < n_queues; i++) {
1822     RefToScanQueue* q = new RefToScanQueue();
1823     q->initialize();
1824     _task_queues->register_queue(i, q);
1825     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1826   }
1827   clear_cset_start_regions();
1828 
1829   // Initialize the G1EvacuationFailureALot counters and flags.
1830   NOT_PRODUCT(reset_evacuation_should_fail();)
1831 
1832   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1833 }
1834 
1835 jint G1CollectedHeap::initialize() {
1836   CollectedHeap::pre_initialize();
1837   os::enable_vtime();
1838 
1839   G1Log::init();
1840 
1841   // Necessary to satisfy locking discipline assertions.
1842 
1843   MutexLocker x(Heap_lock);
1844 
1845   // We have to initialize the printer before committing the heap, as
1846   // it will be used then.
1847   _hr_printer.set_active(G1PrintHeapRegions);
1848 
1849   // While there are no constraints in the GC code that HeapWordSize
1850   // be any particular value, there are multiple other areas in the
1851   // system which believe this to be true (e.g. oop->object_size in some
1852   // cases incorrectly returns the size in wordSize units rather than
1853   // HeapWordSize).
1854   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1855 
1856   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1857   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1858   size_t heap_alignment = collector_policy()->heap_alignment();
1859 
1860   // Ensure that the sizes are properly aligned.
1861   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1862   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1863   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1864 
1865   _refine_cte_cl = new RefineCardTableEntryClosure();
1866 
1867   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1868 
1869   // Reserve the maximum.
1870 
1871   // When compressed oops are enabled, the preferred heap base
1872   // is calculated by subtracting the requested size from the
1873   // 32Gb boundary and using the result as the base address for
1874   // heap reservation. If the requested size is not aligned to
1875   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1876   // into the ReservedHeapSpace constructor) then the actual
1877   // base of the reserved heap may end up differing from the
1878   // address that was requested (i.e. the preferred heap base).
1879   // If this happens then we could end up using a non-optimal
1880   // compressed oops mode.
1881 
1882   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1883                                                  heap_alignment);
1884 
1885   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1886 
1887   // Create the barrier set for the entire reserved region.
1888   G1SATBCardTableLoggingModRefBS* bs
1889     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1890   bs->initialize();
1891   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1892   set_barrier_set(bs);
1893 
1894   // Also create a G1 rem set.
1895   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1896 
1897   // Carve out the G1 part of the heap.
1898 
1899   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1900   G1RegionToSpaceMapper* heap_storage =
1901     G1RegionToSpaceMapper::create_mapper(g1_rs,
1902                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1903                                          HeapRegion::GrainBytes,
1904                                          1,
1905                                          mtJavaHeap);
1906   heap_storage->set_mapping_changed_listener(&_listener);
1907 
1908   // Reserve space for the block offset table. We do not support automatic uncommit
1909   // for the card table at this time. BOT only.
1910   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1911   G1RegionToSpaceMapper* bot_storage =
1912     G1RegionToSpaceMapper::create_mapper(bot_rs,
1913                                          os::vm_page_size(),
1914                                          HeapRegion::GrainBytes,
1915                                          G1BlockOffsetSharedArray::N_bytes,
1916                                          mtGC);
1917 
1918   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1919   G1RegionToSpaceMapper* cardtable_storage =
1920     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
1921                                          os::vm_page_size(),
1922                                          HeapRegion::GrainBytes,
1923                                          G1BlockOffsetSharedArray::N_bytes,
1924                                          mtGC);
1925 
1926   // Reserve space for the card counts table.
1927   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1928   G1RegionToSpaceMapper* card_counts_storage =
1929     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
1930                                          os::vm_page_size(),
1931                                          HeapRegion::GrainBytes,
1932                                          G1BlockOffsetSharedArray::N_bytes,
1933                                          mtGC);
1934 
1935   // Reserve space for prev and next bitmap.
1936   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1937 
1938   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1939   G1RegionToSpaceMapper* prev_bitmap_storage =
1940     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
1941                                          os::vm_page_size(),
1942                                          HeapRegion::GrainBytes,
1943                                          CMBitMap::mark_distance(),
1944                                          mtGC);
1945 
1946   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1947   G1RegionToSpaceMapper* next_bitmap_storage =
1948     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
1949                                          os::vm_page_size(),
1950                                          HeapRegion::GrainBytes,
1951                                          CMBitMap::mark_distance(),
1952                                          mtGC);
1953 
1954   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1955   g1_barrier_set()->initialize(cardtable_storage);
1956    // Do later initialization work for concurrent refinement.
1957   _cg1r->init(card_counts_storage);
1958 
1959   // 6843694 - ensure that the maximum region index can fit
1960   // in the remembered set structures.
1961   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1962   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1963 
1964   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1965   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1966   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1967             "too many cards per region");
1968 
1969   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1970 
1971   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1972 
1973   _g1h = this;
1974 
1975   _in_cset_fast_test.initialize(
1976     _hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1977   _humongous_reclaim_candidates.initialize(
1978     _hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1979 
1980   // Create the ConcurrentMark data structure and thread.
1981   // (Must do this late, so that "max_regions" is defined.)
1982   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1983   if (_cm == NULL || !_cm->completed_initialization()) {
1984     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1985     return JNI_ENOMEM;
1986   }
1987   _cmThread = _cm->cmThread();
1988 
1989   // Initialize the from_card cache structure of HeapRegionRemSet.
1990   HeapRegionRemSet::init_heap(max_regions());
1991 
1992   // Now expand into the initial heap size.
1993   if (!expand(init_byte_size)) {
1994     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1995     return JNI_ENOMEM;
1996   }
1997 
1998   // Perform any initialization actions delegated to the policy.
1999   g1_policy()->init();
2000 
2001   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2002                                                SATB_Q_FL_lock,
2003                                                G1SATBProcessCompletedThreshold,
2004                                                Shared_SATB_Q_lock);
2005 
2006   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2007                                                 DirtyCardQ_CBL_mon,
2008                                                 DirtyCardQ_FL_lock,
2009                                                 concurrent_g1_refine()->yellow_zone(),
2010                                                 concurrent_g1_refine()->red_zone(),
2011                                                 Shared_DirtyCardQ_lock);
2012 
2013   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2014                                     DirtyCardQ_CBL_mon,
2015                                     DirtyCardQ_FL_lock,
2016                                     -1, // never trigger processing
2017                                     -1, // no limit on length
2018                                     Shared_DirtyCardQ_lock,
2019                                     &JavaThread::dirty_card_queue_set());
2020 
2021   // Initialize the card queue set used to hold cards containing
2022   // references into the collection set.
2023   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2024                                              DirtyCardQ_CBL_mon,
2025                                              DirtyCardQ_FL_lock,
2026                                              -1, // never trigger processing
2027                                              -1, // no limit on length
2028                                              Shared_DirtyCardQ_lock,
2029                                              &JavaThread::dirty_card_queue_set());
2030 
2031   // Here we allocate the dummy HeapRegion that is required by the
2032   // G1AllocRegion class.
2033   HeapRegion* dummy_region = _hrm.get_dummy_region();
2034 
2035   // We'll re-use the same region whether the alloc region will
2036   // require BOT updates or not and, if it doesn't, then a non-young
2037   // region will complain that it cannot support allocations without
2038   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2039   dummy_region->set_eden();
2040   // Make sure it's full.
2041   dummy_region->set_top(dummy_region->end());
2042   G1AllocRegion::setup(this, dummy_region);
2043 
2044   _allocator->init_mutator_alloc_region();
2045 
2046   // Do create of the monitoring and management support so that
2047   // values in the heap have been properly initialized.
2048   _g1mm = new G1MonitoringSupport(this);
2049 
2050   G1StringDedup::initialize();
2051 
2052   return JNI_OK;
2053 }
2054 
2055 void G1CollectedHeap::stop() {
2056   // Stop all concurrent threads. We do this to make sure these threads
2057   // do not continue to execute and access resources (e.g. gclog_or_tty)
2058   // that are destroyed during shutdown.
2059   _cg1r->stop();
2060   _cmThread->stop();
2061   if (G1StringDedup::is_enabled()) {
2062     G1StringDedup::stop();
2063   }
2064 }
2065 
2066 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2067   return HeapRegion::max_region_size();
2068 }
2069 
2070 void G1CollectedHeap::ref_processing_init() {
2071   // Reference processing in G1 currently works as follows:
2072   //
2073   // * There are two reference processor instances. One is
2074   //   used to record and process discovered references
2075   //   during concurrent marking; the other is used to
2076   //   record and process references during STW pauses
2077   //   (both full and incremental).
2078   // * Both ref processors need to 'span' the entire heap as
2079   //   the regions in the collection set may be dotted around.
2080   //
2081   // * For the concurrent marking ref processor:
2082   //   * Reference discovery is enabled at initial marking.
2083   //   * Reference discovery is disabled and the discovered
2084   //     references processed etc during remarking.
2085   //   * Reference discovery is MT (see below).
2086   //   * Reference discovery requires a barrier (see below).
2087   //   * Reference processing may or may not be MT
2088   //     (depending on the value of ParallelRefProcEnabled
2089   //     and ParallelGCThreads).
2090   //   * A full GC disables reference discovery by the CM
2091   //     ref processor and abandons any entries on it's
2092   //     discovered lists.
2093   //
2094   // * For the STW processor:
2095   //   * Non MT discovery is enabled at the start of a full GC.
2096   //   * Processing and enqueueing during a full GC is non-MT.
2097   //   * During a full GC, references are processed after marking.
2098   //
2099   //   * Discovery (may or may not be MT) is enabled at the start
2100   //     of an incremental evacuation pause.
2101   //   * References are processed near the end of a STW evacuation pause.
2102   //   * For both types of GC:
2103   //     * Discovery is atomic - i.e. not concurrent.
2104   //     * Reference discovery will not need a barrier.
2105 
2106   SharedHeap::ref_processing_init();
2107   MemRegion mr = reserved_region();
2108 
2109   // Concurrent Mark ref processor
2110   _ref_processor_cm =
2111     new ReferenceProcessor(mr,    // span
2112                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2113                                 // mt processing
2114                            (int) ParallelGCThreads,
2115                                 // degree of mt processing
2116                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2117                                 // mt discovery
2118                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2119                                 // degree of mt discovery
2120                            false,
2121                                 // Reference discovery is not atomic
2122                            &_is_alive_closure_cm);
2123                                 // is alive closure
2124                                 // (for efficiency/performance)
2125 
2126   // STW ref processor
2127   _ref_processor_stw =
2128     new ReferenceProcessor(mr,    // span
2129                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2130                                 // mt processing
2131                            MAX2((int)ParallelGCThreads, 1),
2132                                 // degree of mt processing
2133                            (ParallelGCThreads > 1),
2134                                 // mt discovery
2135                            MAX2((int)ParallelGCThreads, 1),
2136                                 // degree of mt discovery
2137                            true,
2138                                 // Reference discovery is atomic
2139                            &_is_alive_closure_stw);
2140                                 // is alive closure
2141                                 // (for efficiency/performance)
2142 }
2143 
2144 size_t G1CollectedHeap::capacity() const {
2145   return _hrm.length() * HeapRegion::GrainBytes;
2146 }
2147 
2148 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2149   assert(!hr->is_continues_humongous(), "pre-condition");
2150   hr->reset_gc_time_stamp();
2151   if (hr->is_starts_humongous()) {
2152     uint first_index = hr->hrm_index() + 1;
2153     uint last_index = hr->last_hc_index();
2154     for (uint i = first_index; i < last_index; i += 1) {
2155       HeapRegion* chr = region_at(i);
2156       assert(chr->is_continues_humongous(), "sanity");
2157       chr->reset_gc_time_stamp();
2158     }
2159   }
2160 }
2161 
2162 #ifndef PRODUCT
2163 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2164 private:
2165   unsigned _gc_time_stamp;
2166   bool _failures;
2167 
2168 public:
2169   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2170     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2171 
2172   virtual bool doHeapRegion(HeapRegion* hr) {
2173     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2174     if (_gc_time_stamp != region_gc_time_stamp) {
2175       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2176                              "expected %d", HR_FORMAT_PARAMS(hr),
2177                              region_gc_time_stamp, _gc_time_stamp);
2178       _failures = true;
2179     }
2180     return false;
2181   }
2182 
2183   bool failures() { return _failures; }
2184 };
2185 
2186 void G1CollectedHeap::check_gc_time_stamps() {
2187   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2188   heap_region_iterate(&cl);
2189   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2190 }
2191 #endif // PRODUCT
2192 
2193 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2194                                                  DirtyCardQueue* into_cset_dcq,
2195                                                  bool concurrent,
2196                                                  uint worker_i) {
2197   // Clean cards in the hot card cache
2198   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2199   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2200 
2201   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2202   size_t n_completed_buffers = 0;
2203   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2204     n_completed_buffers++;
2205   }
2206   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2207   dcqs.clear_n_completed_buffers();
2208   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2209 }
2210 
2211 
2212 // Computes the sum of the storage used by the various regions.
2213 size_t G1CollectedHeap::used() const {
2214   return _allocator->used();
2215 }
2216 
2217 size_t G1CollectedHeap::used_unlocked() const {
2218   return _allocator->used_unlocked();
2219 }
2220 
2221 class SumUsedClosure: public HeapRegionClosure {
2222   size_t _used;
2223 public:
2224   SumUsedClosure() : _used(0) {}
2225   bool doHeapRegion(HeapRegion* r) {
2226     if (!r->is_continues_humongous()) {
2227       _used += r->used();
2228     }
2229     return false;
2230   }
2231   size_t result() { return _used; }
2232 };
2233 
2234 size_t G1CollectedHeap::recalculate_used() const {
2235   double recalculate_used_start = os::elapsedTime();
2236 
2237   SumUsedClosure blk;
2238   heap_region_iterate(&blk);
2239 
2240   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2241   return blk.result();
2242 }
2243 
2244 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2245   switch (cause) {
2246     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2247     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2248     case GCCause::_g1_humongous_allocation: return true;
2249     case GCCause::_update_allocation_context_stats_inc: return true;
2250     case GCCause::_wb_conc_mark:            return true;
2251     default:                                return false;
2252   }
2253 }
2254 
2255 #ifndef PRODUCT
2256 void G1CollectedHeap::allocate_dummy_regions() {
2257   // Let's fill up most of the region
2258   size_t word_size = HeapRegion::GrainWords - 1024;
2259   // And as a result the region we'll allocate will be humongous.
2260   guarantee(is_humongous(word_size), "sanity");
2261 
2262   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2263     // Let's use the existing mechanism for the allocation
2264     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2265                                                  AllocationContext::system());
2266     if (dummy_obj != NULL) {
2267       MemRegion mr(dummy_obj, word_size);
2268       CollectedHeap::fill_with_object(mr);
2269     } else {
2270       // If we can't allocate once, we probably cannot allocate
2271       // again. Let's get out of the loop.
2272       break;
2273     }
2274   }
2275 }
2276 #endif // !PRODUCT
2277 
2278 void G1CollectedHeap::increment_old_marking_cycles_started() {
2279   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2280     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2281     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2282     _old_marking_cycles_started, _old_marking_cycles_completed));
2283 
2284   _old_marking_cycles_started++;
2285 }
2286 
2287 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2288   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2289 
2290   // We assume that if concurrent == true, then the caller is a
2291   // concurrent thread that was joined the Suspendible Thread
2292   // Set. If there's ever a cheap way to check this, we should add an
2293   // assert here.
2294 
2295   // Given that this method is called at the end of a Full GC or of a
2296   // concurrent cycle, and those can be nested (i.e., a Full GC can
2297   // interrupt a concurrent cycle), the number of full collections
2298   // completed should be either one (in the case where there was no
2299   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2300   // behind the number of full collections started.
2301 
2302   // This is the case for the inner caller, i.e. a Full GC.
2303   assert(concurrent ||
2304          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2305          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2306          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2307                  "is inconsistent with _old_marking_cycles_completed = %u",
2308                  _old_marking_cycles_started, _old_marking_cycles_completed));
2309 
2310   // This is the case for the outer caller, i.e. the concurrent cycle.
2311   assert(!concurrent ||
2312          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2313          err_msg("for outer caller (concurrent cycle): "
2314                  "_old_marking_cycles_started = %u "
2315                  "is inconsistent with _old_marking_cycles_completed = %u",
2316                  _old_marking_cycles_started, _old_marking_cycles_completed));
2317 
2318   _old_marking_cycles_completed += 1;
2319 
2320   // We need to clear the "in_progress" flag in the CM thread before
2321   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2322   // is set) so that if a waiter requests another System.gc() it doesn't
2323   // incorrectly see that a marking cycle is still in progress.
2324   if (concurrent) {
2325     _cmThread->clear_in_progress();
2326   }
2327 
2328   // This notify_all() will ensure that a thread that called
2329   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2330   // and it's waiting for a full GC to finish will be woken up. It is
2331   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2332   FullGCCount_lock->notify_all();
2333 }
2334 
2335 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2336   _concurrent_cycle_started = true;
2337   _gc_timer_cm->register_gc_start(start_time);
2338 
2339   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2340   trace_heap_before_gc(_gc_tracer_cm);
2341 }
2342 
2343 void G1CollectedHeap::register_concurrent_cycle_end() {
2344   if (_concurrent_cycle_started) {
2345     if (_cm->has_aborted()) {
2346       _gc_tracer_cm->report_concurrent_mode_failure();
2347     }
2348 
2349     _gc_timer_cm->register_gc_end();
2350     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2351 
2352     // Clear state variables to prepare for the next concurrent cycle.
2353     _concurrent_cycle_started = false;
2354     _heap_summary_sent = false;
2355   }
2356 }
2357 
2358 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2359   if (_concurrent_cycle_started) {
2360     // This function can be called when:
2361     //  the cleanup pause is run
2362     //  the concurrent cycle is aborted before the cleanup pause.
2363     //  the concurrent cycle is aborted after the cleanup pause,
2364     //   but before the concurrent cycle end has been registered.
2365     // Make sure that we only send the heap information once.
2366     if (!_heap_summary_sent) {
2367       trace_heap_after_gc(_gc_tracer_cm);
2368       _heap_summary_sent = true;
2369     }
2370   }
2371 }
2372 
2373 G1YCType G1CollectedHeap::yc_type() {
2374   bool is_young = g1_policy()->gcs_are_young();
2375   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2376   bool is_during_mark = mark_in_progress();
2377 
2378   if (is_initial_mark) {
2379     return InitialMark;
2380   } else if (is_during_mark) {
2381     return DuringMark;
2382   } else if (is_young) {
2383     return Normal;
2384   } else {
2385     return Mixed;
2386   }
2387 }
2388 
2389 void G1CollectedHeap::collect(GCCause::Cause cause) {
2390   assert_heap_not_locked();
2391 
2392   uint gc_count_before;
2393   uint old_marking_count_before;
2394   uint full_gc_count_before;
2395   bool retry_gc;
2396 
2397   do {
2398     retry_gc = false;
2399 
2400     {
2401       MutexLocker ml(Heap_lock);
2402 
2403       // Read the GC count while holding the Heap_lock
2404       gc_count_before = total_collections();
2405       full_gc_count_before = total_full_collections();
2406       old_marking_count_before = _old_marking_cycles_started;
2407     }
2408 
2409     if (should_do_concurrent_full_gc(cause)) {
2410       // Schedule an initial-mark evacuation pause that will start a
2411       // concurrent cycle. We're setting word_size to 0 which means that
2412       // we are not requesting a post-GC allocation.
2413       VM_G1IncCollectionPause op(gc_count_before,
2414                                  0,     /* word_size */
2415                                  true,  /* should_initiate_conc_mark */
2416                                  g1_policy()->max_pause_time_ms(),
2417                                  cause);
2418       op.set_allocation_context(AllocationContext::current());
2419 
2420       VMThread::execute(&op);
2421       if (!op.pause_succeeded()) {
2422         if (old_marking_count_before == _old_marking_cycles_started) {
2423           retry_gc = op.should_retry_gc();
2424         } else {
2425           // A Full GC happened while we were trying to schedule the
2426           // initial-mark GC. No point in starting a new cycle given
2427           // that the whole heap was collected anyway.
2428         }
2429 
2430         if (retry_gc) {
2431           if (GC_locker::is_active_and_needs_gc()) {
2432             GC_locker::stall_until_clear();
2433           }
2434         }
2435       }
2436     } else {
2437       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2438           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2439 
2440         // Schedule a standard evacuation pause. We're setting word_size
2441         // to 0 which means that we are not requesting a post-GC allocation.
2442         VM_G1IncCollectionPause op(gc_count_before,
2443                                    0,     /* word_size */
2444                                    false, /* should_initiate_conc_mark */
2445                                    g1_policy()->max_pause_time_ms(),
2446                                    cause);
2447         VMThread::execute(&op);
2448       } else {
2449         // Schedule a Full GC.
2450         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2451         VMThread::execute(&op);
2452       }
2453     }
2454   } while (retry_gc);
2455 }
2456 
2457 bool G1CollectedHeap::is_in(const void* p) const {
2458   if (_hrm.reserved().contains(p)) {
2459     // Given that we know that p is in the reserved space,
2460     // heap_region_containing_raw() should successfully
2461     // return the containing region.
2462     HeapRegion* hr = heap_region_containing_raw(p);
2463     return hr->is_in(p);
2464   } else {
2465     return false;
2466   }
2467 }
2468 
2469 #ifdef ASSERT
2470 bool G1CollectedHeap::is_in_exact(const void* p) const {
2471   bool contains = reserved_region().contains(p);
2472   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2473   if (contains && available) {
2474     return true;
2475   } else {
2476     return false;
2477   }
2478 }
2479 #endif
2480 
2481 // Iteration functions.
2482 
2483 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2484 
2485 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2486   ExtendedOopClosure* _cl;
2487 public:
2488   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2489   bool doHeapRegion(HeapRegion* r) {
2490     if (!r->is_continues_humongous()) {
2491       r->oop_iterate(_cl);
2492     }
2493     return false;
2494   }
2495 };
2496 
2497 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2498   IterateOopClosureRegionClosure blk(cl);
2499   heap_region_iterate(&blk);
2500 }
2501 
2502 // Iterates an ObjectClosure over all objects within a HeapRegion.
2503 
2504 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2505   ObjectClosure* _cl;
2506 public:
2507   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2508   bool doHeapRegion(HeapRegion* r) {
2509     if (!r->is_continues_humongous()) {
2510       r->object_iterate(_cl);
2511     }
2512     return false;
2513   }
2514 };
2515 
2516 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2517   IterateObjectClosureRegionClosure blk(cl);
2518   heap_region_iterate(&blk);
2519 }
2520 
2521 // Calls a SpaceClosure on a HeapRegion.
2522 
2523 class SpaceClosureRegionClosure: public HeapRegionClosure {
2524   SpaceClosure* _cl;
2525 public:
2526   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2527   bool doHeapRegion(HeapRegion* r) {
2528     _cl->do_space(r);
2529     return false;
2530   }
2531 };
2532 
2533 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2534   SpaceClosureRegionClosure blk(cl);
2535   heap_region_iterate(&blk);
2536 }
2537 
2538 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2539   _hrm.iterate(cl);
2540 }
2541 
2542 void
2543 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2544                                          uint worker_id,
2545                                          HeapRegionClaimer *hrclaimer,
2546                                          bool concurrent) const {
2547   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2548 }
2549 
2550 // Clear the cached CSet starting regions and (more importantly)
2551 // the time stamps. Called when we reset the GC time stamp.
2552 void G1CollectedHeap::clear_cset_start_regions() {
2553   assert(_worker_cset_start_region != NULL, "sanity");
2554   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2555 
2556   int n_queues = MAX2((int)ParallelGCThreads, 1);
2557   for (int i = 0; i < n_queues; i++) {
2558     _worker_cset_start_region[i] = NULL;
2559     _worker_cset_start_region_time_stamp[i] = 0;
2560   }
2561 }
2562 
2563 // Given the id of a worker, obtain or calculate a suitable
2564 // starting region for iterating over the current collection set.
2565 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2566   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2567 
2568   HeapRegion* result = NULL;
2569   unsigned gc_time_stamp = get_gc_time_stamp();
2570 
2571   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2572     // Cached starting region for current worker was set
2573     // during the current pause - so it's valid.
2574     // Note: the cached starting heap region may be NULL
2575     // (when the collection set is empty).
2576     result = _worker_cset_start_region[worker_i];
2577     assert(result == NULL || result->in_collection_set(), "sanity");
2578     return result;
2579   }
2580 
2581   // The cached entry was not valid so let's calculate
2582   // a suitable starting heap region for this worker.
2583 
2584   // We want the parallel threads to start their collection
2585   // set iteration at different collection set regions to
2586   // avoid contention.
2587   // If we have:
2588   //          n collection set regions
2589   //          p threads
2590   // Then thread t will start at region floor ((t * n) / p)
2591 
2592   result = g1_policy()->collection_set();
2593   uint cs_size = g1_policy()->cset_region_length();
2594   uint active_workers = workers()->active_workers();
2595   assert(UseDynamicNumberOfGCThreads ||
2596            active_workers == workers()->total_workers(),
2597            "Unless dynamic should use total workers");
2598 
2599   uint end_ind   = (cs_size * worker_i) / active_workers;
2600   uint start_ind = 0;
2601 
2602   if (worker_i > 0 &&
2603       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2604     // Previous workers starting region is valid
2605     // so let's iterate from there
2606     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2607     result = _worker_cset_start_region[worker_i - 1];
2608   }
2609 
2610   for (uint i = start_ind; i < end_ind; i++) {
2611     result = result->next_in_collection_set();
2612   }
2613 
2614   // Note: the calculated starting heap region may be NULL
2615   // (when the collection set is empty).
2616   assert(result == NULL || result->in_collection_set(), "sanity");
2617   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2618          "should be updated only once per pause");
2619   _worker_cset_start_region[worker_i] = result;
2620   OrderAccess::storestore();
2621   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2622   return result;
2623 }
2624 
2625 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2626   HeapRegion* r = g1_policy()->collection_set();
2627   while (r != NULL) {
2628     HeapRegion* next = r->next_in_collection_set();
2629     if (cl->doHeapRegion(r)) {
2630       cl->incomplete();
2631       return;
2632     }
2633     r = next;
2634   }
2635 }
2636 
2637 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2638                                                   HeapRegionClosure *cl) {
2639   if (r == NULL) {
2640     // The CSet is empty so there's nothing to do.
2641     return;
2642   }
2643 
2644   assert(r->in_collection_set(),
2645          "Start region must be a member of the collection set.");
2646   HeapRegion* cur = r;
2647   while (cur != NULL) {
2648     HeapRegion* next = cur->next_in_collection_set();
2649     if (cl->doHeapRegion(cur) && false) {
2650       cl->incomplete();
2651       return;
2652     }
2653     cur = next;
2654   }
2655   cur = g1_policy()->collection_set();
2656   while (cur != r) {
2657     HeapRegion* next = cur->next_in_collection_set();
2658     if (cl->doHeapRegion(cur) && false) {
2659       cl->incomplete();
2660       return;
2661     }
2662     cur = next;
2663   }
2664 }
2665 
2666 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2667   HeapRegion* result = _hrm.next_region_in_heap(from);
2668   while (result != NULL && result->is_humongous()) {
2669     result = _hrm.next_region_in_heap(result);
2670   }
2671   return result;
2672 }
2673 
2674 Space* G1CollectedHeap::space_containing(const void* addr) const {
2675   return heap_region_containing(addr);
2676 }
2677 
2678 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2679   Space* sp = space_containing(addr);
2680   return sp->block_start(addr);
2681 }
2682 
2683 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2684   Space* sp = space_containing(addr);
2685   return sp->block_size(addr);
2686 }
2687 
2688 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2689   Space* sp = space_containing(addr);
2690   return sp->block_is_obj(addr);
2691 }
2692 
2693 bool G1CollectedHeap::supports_tlab_allocation() const {
2694   return true;
2695 }
2696 
2697 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2698   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2699 }
2700 
2701 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2702   return young_list()->eden_used_bytes();
2703 }
2704 
2705 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2706 // must be smaller than the humongous object limit.
2707 size_t G1CollectedHeap::max_tlab_size() const {
2708   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2709 }
2710 
2711 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2712   // Return the remaining space in the cur alloc region, but not less than
2713   // the min TLAB size.
2714 
2715   // Also, this value can be at most the humongous object threshold,
2716   // since we can't allow tlabs to grow big enough to accommodate
2717   // humongous objects.
2718 
2719   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2720   size_t max_tlab = max_tlab_size() * wordSize;
2721   if (hr == NULL) {
2722     return max_tlab;
2723   } else {
2724     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2725   }
2726 }
2727 
2728 size_t G1CollectedHeap::max_capacity() const {
2729   return _hrm.reserved().byte_size();
2730 }
2731 
2732 jlong G1CollectedHeap::millis_since_last_gc() {
2733   // assert(false, "NYI");
2734   return 0;
2735 }
2736 
2737 void G1CollectedHeap::prepare_for_verify() {
2738   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2739     ensure_parsability(false);
2740   }
2741   g1_rem_set()->prepare_for_verify();
2742 }
2743 
2744 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2745                                               VerifyOption vo) {
2746   switch (vo) {
2747   case VerifyOption_G1UsePrevMarking:
2748     return hr->obj_allocated_since_prev_marking(obj);
2749   case VerifyOption_G1UseNextMarking:
2750     return hr->obj_allocated_since_next_marking(obj);
2751   case VerifyOption_G1UseMarkWord:
2752     return false;
2753   default:
2754     ShouldNotReachHere();
2755   }
2756   return false; // keep some compilers happy
2757 }
2758 
2759 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2760   switch (vo) {
2761   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2762   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2763   case VerifyOption_G1UseMarkWord:    return NULL;
2764   default:                            ShouldNotReachHere();
2765   }
2766   return NULL; // keep some compilers happy
2767 }
2768 
2769 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2770   switch (vo) {
2771   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2772   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2773   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2774   default:                            ShouldNotReachHere();
2775   }
2776   return false; // keep some compilers happy
2777 }
2778 
2779 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2780   switch (vo) {
2781   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2782   case VerifyOption_G1UseNextMarking: return "NTAMS";
2783   case VerifyOption_G1UseMarkWord:    return "NONE";
2784   default:                            ShouldNotReachHere();
2785   }
2786   return NULL; // keep some compilers happy
2787 }
2788 
2789 class VerifyRootsClosure: public OopClosure {
2790 private:
2791   G1CollectedHeap* _g1h;
2792   VerifyOption     _vo;
2793   bool             _failures;
2794 public:
2795   // _vo == UsePrevMarking -> use "prev" marking information,
2796   // _vo == UseNextMarking -> use "next" marking information,
2797   // _vo == UseMarkWord    -> use mark word from object header.
2798   VerifyRootsClosure(VerifyOption vo) :
2799     _g1h(G1CollectedHeap::heap()),
2800     _vo(vo),
2801     _failures(false) { }
2802 
2803   bool failures() { return _failures; }
2804 
2805   template <class T> void do_oop_nv(T* p) {
2806     T heap_oop = oopDesc::load_heap_oop(p);
2807     if (!oopDesc::is_null(heap_oop)) {
2808       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2809       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2810         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2811                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2812         if (_vo == VerifyOption_G1UseMarkWord) {
2813           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2814         }
2815         obj->print_on(gclog_or_tty);
2816         _failures = true;
2817       }
2818     }
2819   }
2820 
2821   void do_oop(oop* p)       { do_oop_nv(p); }
2822   void do_oop(narrowOop* p) { do_oop_nv(p); }
2823 };
2824 
2825 class G1VerifyCodeRootOopClosure: public OopClosure {
2826   G1CollectedHeap* _g1h;
2827   OopClosure* _root_cl;
2828   nmethod* _nm;
2829   VerifyOption _vo;
2830   bool _failures;
2831 
2832   template <class T> void do_oop_work(T* p) {
2833     // First verify that this root is live
2834     _root_cl->do_oop(p);
2835 
2836     if (!G1VerifyHeapRegionCodeRoots) {
2837       // We're not verifying the code roots attached to heap region.
2838       return;
2839     }
2840 
2841     // Don't check the code roots during marking verification in a full GC
2842     if (_vo == VerifyOption_G1UseMarkWord) {
2843       return;
2844     }
2845 
2846     // Now verify that the current nmethod (which contains p) is
2847     // in the code root list of the heap region containing the
2848     // object referenced by p.
2849 
2850     T heap_oop = oopDesc::load_heap_oop(p);
2851     if (!oopDesc::is_null(heap_oop)) {
2852       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2853 
2854       // Now fetch the region containing the object
2855       HeapRegion* hr = _g1h->heap_region_containing(obj);
2856       HeapRegionRemSet* hrrs = hr->rem_set();
2857       // Verify that the strong code root list for this region
2858       // contains the nmethod
2859       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2860         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2861                               "from nmethod "PTR_FORMAT" not in strong "
2862                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2863                               p, _nm, hr->bottom(), hr->end());
2864         _failures = true;
2865       }
2866     }
2867   }
2868 
2869 public:
2870   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2871     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2872 
2873   void do_oop(oop* p) { do_oop_work(p); }
2874   void do_oop(narrowOop* p) { do_oop_work(p); }
2875 
2876   void set_nmethod(nmethod* nm) { _nm = nm; }
2877   bool failures() { return _failures; }
2878 };
2879 
2880 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2881   G1VerifyCodeRootOopClosure* _oop_cl;
2882 
2883 public:
2884   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2885     _oop_cl(oop_cl) {}
2886 
2887   void do_code_blob(CodeBlob* cb) {
2888     nmethod* nm = cb->as_nmethod_or_null();
2889     if (nm != NULL) {
2890       _oop_cl->set_nmethod(nm);
2891       nm->oops_do(_oop_cl);
2892     }
2893   }
2894 };
2895 
2896 class YoungRefCounterClosure : public OopClosure {
2897   G1CollectedHeap* _g1h;
2898   int              _count;
2899  public:
2900   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2901   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2902   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2903 
2904   int count() { return _count; }
2905   void reset_count() { _count = 0; };
2906 };
2907 
2908 class VerifyKlassClosure: public KlassClosure {
2909   YoungRefCounterClosure _young_ref_counter_closure;
2910   OopClosure *_oop_closure;
2911  public:
2912   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2913   void do_klass(Klass* k) {
2914     k->oops_do(_oop_closure);
2915 
2916     _young_ref_counter_closure.reset_count();
2917     k->oops_do(&_young_ref_counter_closure);
2918     if (_young_ref_counter_closure.count() > 0) {
2919       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2920     }
2921   }
2922 };
2923 
2924 class VerifyLivenessOopClosure: public OopClosure {
2925   G1CollectedHeap* _g1h;
2926   VerifyOption _vo;
2927 public:
2928   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2929     _g1h(g1h), _vo(vo)
2930   { }
2931   void do_oop(narrowOop *p) { do_oop_work(p); }
2932   void do_oop(      oop *p) { do_oop_work(p); }
2933 
2934   template <class T> void do_oop_work(T *p) {
2935     oop obj = oopDesc::load_decode_heap_oop(p);
2936     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2937               "Dead object referenced by a not dead object");
2938   }
2939 };
2940 
2941 class VerifyObjsInRegionClosure: public ObjectClosure {
2942 private:
2943   G1CollectedHeap* _g1h;
2944   size_t _live_bytes;
2945   HeapRegion *_hr;
2946   VerifyOption _vo;
2947 public:
2948   // _vo == UsePrevMarking -> use "prev" marking information,
2949   // _vo == UseNextMarking -> use "next" marking information,
2950   // _vo == UseMarkWord    -> use mark word from object header.
2951   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2952     : _live_bytes(0), _hr(hr), _vo(vo) {
2953     _g1h = G1CollectedHeap::heap();
2954   }
2955   void do_object(oop o) {
2956     VerifyLivenessOopClosure isLive(_g1h, _vo);
2957     assert(o != NULL, "Huh?");
2958     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2959       // If the object is alive according to the mark word,
2960       // then verify that the marking information agrees.
2961       // Note we can't verify the contra-positive of the
2962       // above: if the object is dead (according to the mark
2963       // word), it may not be marked, or may have been marked
2964       // but has since became dead, or may have been allocated
2965       // since the last marking.
2966       if (_vo == VerifyOption_G1UseMarkWord) {
2967         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2968       }
2969 
2970       o->oop_iterate_no_header(&isLive);
2971       if (!_hr->obj_allocated_since_prev_marking(o)) {
2972         size_t obj_size = o->size();    // Make sure we don't overflow
2973         _live_bytes += (obj_size * HeapWordSize);
2974       }
2975     }
2976   }
2977   size_t live_bytes() { return _live_bytes; }
2978 };
2979 
2980 class PrintObjsInRegionClosure : public ObjectClosure {
2981   HeapRegion *_hr;
2982   G1CollectedHeap *_g1;
2983 public:
2984   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2985     _g1 = G1CollectedHeap::heap();
2986   };
2987 
2988   void do_object(oop o) {
2989     if (o != NULL) {
2990       HeapWord *start = (HeapWord *) o;
2991       size_t word_sz = o->size();
2992       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2993                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2994                           (void*) o, word_sz,
2995                           _g1->isMarkedPrev(o),
2996                           _g1->isMarkedNext(o),
2997                           _hr->obj_allocated_since_prev_marking(o));
2998       HeapWord *end = start + word_sz;
2999       HeapWord *cur;
3000       int *val;
3001       for (cur = start; cur < end; cur++) {
3002         val = (int *) cur;
3003         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3004       }
3005     }
3006   }
3007 };
3008 
3009 class VerifyRegionClosure: public HeapRegionClosure {
3010 private:
3011   bool             _par;
3012   VerifyOption     _vo;
3013   bool             _failures;
3014 public:
3015   // _vo == UsePrevMarking -> use "prev" marking information,
3016   // _vo == UseNextMarking -> use "next" marking information,
3017   // _vo == UseMarkWord    -> use mark word from object header.
3018   VerifyRegionClosure(bool par, VerifyOption vo)
3019     : _par(par),
3020       _vo(vo),
3021       _failures(false) {}
3022 
3023   bool failures() {
3024     return _failures;
3025   }
3026 
3027   bool doHeapRegion(HeapRegion* r) {
3028     if (!r->is_continues_humongous()) {
3029       bool failures = false;
3030       r->verify(_vo, &failures);
3031       if (failures) {
3032         _failures = true;
3033       } else {
3034         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3035         r->object_iterate(&not_dead_yet_cl);
3036         if (_vo != VerifyOption_G1UseNextMarking) {
3037           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3038             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3039                                    "max_live_bytes "SIZE_FORMAT" "
3040                                    "< calculated "SIZE_FORMAT,
3041                                    r->bottom(), r->end(),
3042                                    r->max_live_bytes(),
3043                                  not_dead_yet_cl.live_bytes());
3044             _failures = true;
3045           }
3046         } else {
3047           // When vo == UseNextMarking we cannot currently do a sanity
3048           // check on the live bytes as the calculation has not been
3049           // finalized yet.
3050         }
3051       }
3052     }
3053     return false; // stop the region iteration if we hit a failure
3054   }
3055 };
3056 
3057 // This is the task used for parallel verification of the heap regions
3058 
3059 class G1ParVerifyTask: public AbstractGangTask {
3060 private:
3061   G1CollectedHeap*  _g1h;
3062   VerifyOption      _vo;
3063   bool              _failures;
3064   HeapRegionClaimer _hrclaimer;
3065 
3066 public:
3067   // _vo == UsePrevMarking -> use "prev" marking information,
3068   // _vo == UseNextMarking -> use "next" marking information,
3069   // _vo == UseMarkWord    -> use mark word from object header.
3070   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3071       AbstractGangTask("Parallel verify task"),
3072       _g1h(g1h),
3073       _vo(vo),
3074       _failures(false),
3075       _hrclaimer(g1h->workers()->active_workers()) {}
3076 
3077   bool failures() {
3078     return _failures;
3079   }
3080 
3081   void work(uint worker_id) {
3082     HandleMark hm;
3083     VerifyRegionClosure blk(true, _vo);
3084     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3085     if (blk.failures()) {
3086       _failures = true;
3087     }
3088   }
3089 };
3090 
3091 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3092   if (SafepointSynchronize::is_at_safepoint()) {
3093     assert(Thread::current()->is_VM_thread(),
3094            "Expected to be executed serially by the VM thread at this point");
3095 
3096     if (!silent) { gclog_or_tty->print("Roots "); }
3097     VerifyRootsClosure rootsCl(vo);
3098     VerifyKlassClosure klassCl(this, &rootsCl);
3099     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3100 
3101     // We apply the relevant closures to all the oops in the
3102     // system dictionary, class loader data graph, the string table
3103     // and the nmethods in the code cache.
3104     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3105     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3106 
3107     process_all_roots(true,            // activate StrongRootsScope
3108                       SO_AllCodeCache, // roots scanning options
3109                       &rootsCl,
3110                       &cldCl,
3111                       &blobsCl);
3112 
3113     bool failures = rootsCl.failures() || codeRootsCl.failures();
3114 
3115     if (vo != VerifyOption_G1UseMarkWord) {
3116       // If we're verifying during a full GC then the region sets
3117       // will have been torn down at the start of the GC. Therefore
3118       // verifying the region sets will fail. So we only verify
3119       // the region sets when not in a full GC.
3120       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3121       verify_region_sets();
3122     }
3123 
3124     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3125     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3126 
3127       G1ParVerifyTask task(this, vo);
3128       assert(UseDynamicNumberOfGCThreads ||
3129         workers()->active_workers() == workers()->total_workers(),
3130         "If not dynamic should be using all the workers");
3131       int n_workers = workers()->active_workers();
3132       set_par_threads(n_workers);
3133       workers()->run_task(&task);
3134       set_par_threads(0);
3135       if (task.failures()) {
3136         failures = true;
3137       }
3138 
3139     } else {
3140       VerifyRegionClosure blk(false, vo);
3141       heap_region_iterate(&blk);
3142       if (blk.failures()) {
3143         failures = true;
3144       }
3145     }
3146 
3147     if (G1StringDedup::is_enabled()) {
3148       if (!silent) gclog_or_tty->print("StrDedup ");
3149       G1StringDedup::verify();
3150     }
3151 
3152     if (failures) {
3153       gclog_or_tty->print_cr("Heap:");
3154       // It helps to have the per-region information in the output to
3155       // help us track down what went wrong. This is why we call
3156       // print_extended_on() instead of print_on().
3157       print_extended_on(gclog_or_tty);
3158       gclog_or_tty->cr();
3159 #ifndef PRODUCT
3160       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3161         concurrent_mark()->print_reachable("at-verification-failure",
3162                                            vo, false /* all */);
3163       }
3164 #endif
3165       gclog_or_tty->flush();
3166     }
3167     guarantee(!failures, "there should not have been any failures");
3168   } else {
3169     if (!silent) {
3170       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3171       if (G1StringDedup::is_enabled()) {
3172         gclog_or_tty->print(", StrDedup");
3173       }
3174       gclog_or_tty->print(") ");
3175     }
3176   }
3177 }
3178 
3179 void G1CollectedHeap::verify(bool silent) {
3180   verify(silent, VerifyOption_G1UsePrevMarking);
3181 }
3182 
3183 double G1CollectedHeap::verify(bool guard, const char* msg) {
3184   double verify_time_ms = 0.0;
3185 
3186   if (guard && total_collections() >= VerifyGCStartAt) {
3187     double verify_start = os::elapsedTime();
3188     HandleMark hm;  // Discard invalid handles created during verification
3189     prepare_for_verify();
3190     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3191     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3192   }
3193 
3194   return verify_time_ms;
3195 }
3196 
3197 void G1CollectedHeap::verify_before_gc() {
3198   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3199   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3200 }
3201 
3202 void G1CollectedHeap::verify_after_gc() {
3203   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3204   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3205 }
3206 
3207 class PrintRegionClosure: public HeapRegionClosure {
3208   outputStream* _st;
3209 public:
3210   PrintRegionClosure(outputStream* st) : _st(st) {}
3211   bool doHeapRegion(HeapRegion* r) {
3212     r->print_on(_st);
3213     return false;
3214   }
3215 };
3216 
3217 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3218                                        const HeapRegion* hr,
3219                                        const VerifyOption vo) const {
3220   switch (vo) {
3221   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3222   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3223   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3224   default:                            ShouldNotReachHere();
3225   }
3226   return false; // keep some compilers happy
3227 }
3228 
3229 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3230                                        const VerifyOption vo) const {
3231   switch (vo) {
3232   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3233   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3234   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3235   default:                            ShouldNotReachHere();
3236   }
3237   return false; // keep some compilers happy
3238 }
3239 
3240 void G1CollectedHeap::print_on(outputStream* st) const {
3241   st->print(" %-20s", "garbage-first heap");
3242   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3243             capacity()/K, used_unlocked()/K);
3244   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3245             _hrm.reserved().start(),
3246             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3247             _hrm.reserved().end());
3248   st->cr();
3249   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3250   uint young_regions = _young_list->length();
3251   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3252             (size_t) young_regions * HeapRegion::GrainBytes / K);
3253   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3254   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3255             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3256   st->cr();
3257   MetaspaceAux::print_on(st);
3258 }
3259 
3260 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3261   print_on(st);
3262 
3263   // Print the per-region information.
3264   st->cr();
3265   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3266                "HS=humongous(starts), HC=humongous(continues), "
3267                "CS=collection set, F=free, TS=gc time stamp, "
3268                "PTAMS=previous top-at-mark-start, "
3269                "NTAMS=next top-at-mark-start)");
3270   PrintRegionClosure blk(st);
3271   heap_region_iterate(&blk);
3272 }
3273 
3274 void G1CollectedHeap::print_on_error(outputStream* st) const {
3275   this->CollectedHeap::print_on_error(st);
3276 
3277   if (_cm != NULL) {
3278     st->cr();
3279     _cm->print_on_error(st);
3280   }
3281 }
3282 
3283 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3284   workers()->print_worker_threads_on(st);
3285   _cmThread->print_on(st);
3286   st->cr();
3287   _cm->print_worker_threads_on(st);
3288   _cg1r->print_worker_threads_on(st);
3289   if (G1StringDedup::is_enabled()) {
3290     G1StringDedup::print_worker_threads_on(st);
3291   }
3292 }
3293 
3294 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3295   workers()->threads_do(tc);
3296   tc->do_thread(_cmThread);
3297   _cg1r->threads_do(tc);
3298   if (G1StringDedup::is_enabled()) {
3299     G1StringDedup::threads_do(tc);
3300   }
3301 }
3302 
3303 void G1CollectedHeap::print_tracing_info() const {
3304   // We'll overload this to mean "trace GC pause statistics."
3305   if (TraceYoungGenTime || TraceOldGenTime) {
3306     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3307     // to that.
3308     g1_policy()->print_tracing_info();
3309   }
3310   if (G1SummarizeRSetStats) {
3311     g1_rem_set()->print_summary_info();
3312   }
3313   if (G1SummarizeConcMark) {
3314     concurrent_mark()->print_summary_info();
3315   }
3316   g1_policy()->print_yg_surv_rate_info();
3317 }
3318 
3319 #ifndef PRODUCT
3320 // Helpful for debugging RSet issues.
3321 
3322 class PrintRSetsClosure : public HeapRegionClosure {
3323 private:
3324   const char* _msg;
3325   size_t _occupied_sum;
3326 
3327 public:
3328   bool doHeapRegion(HeapRegion* r) {
3329     HeapRegionRemSet* hrrs = r->rem_set();
3330     size_t occupied = hrrs->occupied();
3331     _occupied_sum += occupied;
3332 
3333     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3334                            HR_FORMAT_PARAMS(r));
3335     if (occupied == 0) {
3336       gclog_or_tty->print_cr("  RSet is empty");
3337     } else {
3338       hrrs->print();
3339     }
3340     gclog_or_tty->print_cr("----------");
3341     return false;
3342   }
3343 
3344   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3345     gclog_or_tty->cr();
3346     gclog_or_tty->print_cr("========================================");
3347     gclog_or_tty->print_cr("%s", msg);
3348     gclog_or_tty->cr();
3349   }
3350 
3351   ~PrintRSetsClosure() {
3352     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3353     gclog_or_tty->print_cr("========================================");
3354     gclog_or_tty->cr();
3355   }
3356 };
3357 
3358 void G1CollectedHeap::print_cset_rsets() {
3359   PrintRSetsClosure cl("Printing CSet RSets");
3360   collection_set_iterate(&cl);
3361 }
3362 
3363 void G1CollectedHeap::print_all_rsets() {
3364   PrintRSetsClosure cl("Printing All RSets");;
3365   heap_region_iterate(&cl);
3366 }
3367 #endif // PRODUCT
3368 
3369 G1CollectedHeap* G1CollectedHeap::heap() {
3370   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3371          "not a garbage-first heap");
3372   return _g1h;
3373 }
3374 
3375 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3376   // always_do_update_barrier = false;
3377   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3378   // Fill TLAB's and such
3379   accumulate_statistics_all_tlabs();
3380   ensure_parsability(true);
3381 
3382   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3383       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3384     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3385   }
3386 }
3387 
3388 void G1CollectedHeap::gc_epilogue(bool full) {
3389 
3390   if (G1SummarizeRSetStats &&
3391       (G1SummarizeRSetStatsPeriod > 0) &&
3392       // we are at the end of the GC. Total collections has already been increased.
3393       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3394     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3395   }
3396 
3397   // FIXME: what is this about?
3398   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3399   // is set.
3400   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3401                         "derived pointer present"));
3402   // always_do_update_barrier = true;
3403 
3404   resize_all_tlabs();
3405   allocation_context_stats().update(full);
3406 
3407   // We have just completed a GC. Update the soft reference
3408   // policy with the new heap occupancy
3409   Universe::update_heap_info_at_gc();
3410 }
3411 
3412 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3413                                                uint gc_count_before,
3414                                                bool* succeeded,
3415                                                GCCause::Cause gc_cause) {
3416   assert_heap_not_locked_and_not_at_safepoint();
3417   g1_policy()->record_stop_world_start();
3418   VM_G1IncCollectionPause op(gc_count_before,
3419                              word_size,
3420                              false, /* should_initiate_conc_mark */
3421                              g1_policy()->max_pause_time_ms(),
3422                              gc_cause);
3423 
3424   op.set_allocation_context(AllocationContext::current());
3425   VMThread::execute(&op);
3426 
3427   HeapWord* result = op.result();
3428   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3429   assert(result == NULL || ret_succeeded,
3430          "the result should be NULL if the VM did not succeed");
3431   *succeeded = ret_succeeded;
3432 
3433   assert_heap_not_locked();
3434   return result;
3435 }
3436 
3437 void
3438 G1CollectedHeap::doConcurrentMark() {
3439   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3440   if (!_cmThread->in_progress()) {
3441     _cmThread->set_started();
3442     CGC_lock->notify();
3443   }
3444 }
3445 
3446 size_t G1CollectedHeap::pending_card_num() {
3447   size_t extra_cards = 0;
3448   JavaThread *curr = Threads::first();
3449   while (curr != NULL) {
3450     DirtyCardQueue& dcq = curr->dirty_card_queue();
3451     extra_cards += dcq.size();
3452     curr = curr->next();
3453   }
3454   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3455   size_t buffer_size = dcqs.buffer_size();
3456   size_t buffer_num = dcqs.completed_buffers_num();
3457 
3458   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3459   // in bytes - not the number of 'entries'. We need to convert
3460   // into a number of cards.
3461   return (buffer_size * buffer_num + extra_cards) / oopSize;
3462 }
3463 
3464 size_t G1CollectedHeap::cards_scanned() {
3465   return g1_rem_set()->cardsScanned();
3466 }
3467 
3468 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3469  private:
3470   size_t _total_humongous;
3471   size_t _candidate_humongous;
3472 
3473   DirtyCardQueue _dcq;
3474 
3475   // We don't nominate objects with many remembered set entries, on
3476   // the assumption that such objects are likely still live.
3477   bool is_remset_small(HeapRegion* region) const {
3478     HeapRegionRemSet* const rset = region->rem_set();
3479     return G1EagerReclaimHumongousObjectsWithStaleRefs
3480       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3481       : rset->is_empty();
3482   }
3483 
3484   bool is_typeArray_region(HeapRegion* region) const {
3485     return oop(region->bottom())->is_typeArray();
3486   }
3487 
3488   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3489     assert(region->is_starts_humongous(), "Must start a humongous object");
3490 
3491     if (!heap->mark_in_progress()
3492         || (region->bottom() >= region->next_top_at_mark_start())) {
3493       // In order to maintain SATB invariants, during concurrent mark
3494       // we should only nominate an object containing references if it
3495       // was allocated after the start of marking, as such an object
3496       // doesn't need to have its references scanned.
3497       //
3498       // Also, we must not reclaim an object that is in the concurrent
3499       // mark stack.  Objects allocated since the start of marking are
3500       // never added to the mark stack.
3501 
3502       // However, we presently only nominate is_typeArray() objects.
3503       // A humongous object containing references induces remembered
3504       // set entries on other regions.  In order to reclaim such an
3505       // object, those remembered sets would need to be cleaned up.
3506       return is_typeArray_region(region) && is_remset_small(region);
3507 
3508     } else {
3509       // We may allow nomination of is_typeArray() objects that were
3510       // allocated before the start of concurrent marking.  For this
3511       // we rely on mark stack insertion to exclude is_typeArray()
3512       // objects, preventing reclaiming an object that is in the mark
3513       // stack.  Frequent allocation and drop of large binary blobs is
3514       // an important use case for eager reclaim, and this special
3515       // handling may reduce needed headroom.
3516       return G1EagerReclaimHumongousPreSnapshotTypeArrays
3517         && is_typeArray_region(region)
3518         && is_remset_small(region);
3519     }
3520   }
3521 
3522  public:
3523   RegisterHumongousWithInCSetFastTestClosure()
3524   : _total_humongous(0),
3525     _candidate_humongous(0),
3526     _dcq(&JavaThread::dirty_card_queue_set()) {
3527   }
3528 
3529   virtual bool doHeapRegion(HeapRegion* r) {
3530     if (!r->is_starts_humongous()) {
3531       return false;
3532     }
3533     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3534 
3535     if (!humongous_region_is_candidate(g1h, r)) {
3536       g1h->remove_humongous_reclaim_candidate(r->hrm_index());
3537     } else {
3538       // Is_candidate already filters out humongous object with large remembered sets.
3539       // If we have a humongous object with a few remembered sets, we simply flush these
3540       // remembered set entries into the DCQS. That will result in automatic
3541       // re-evaluation of their remembered set entries during the following evacuation
3542       // phase.
3543       if (!r->rem_set()->is_empty()) {
3544         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3545                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3546         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3547         HeapRegionRemSetIterator hrrs(r->rem_set());
3548         size_t card_index;
3549         while (hrrs.has_next(card_index)) {
3550           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3551           // The remembered set might contain references to already freed
3552           // regions. Filter out such entries to avoid failing card table
3553           // verification.
3554           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3555             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3556               *card_ptr = CardTableModRefBS::dirty_card_val();
3557               _dcq.enqueue(card_ptr);
3558             }
3559           }
3560         }
3561         r->rem_set()->clear_locked();
3562       }
3563       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3564       uint rindex = r->hrm_index();
3565       g1h->add_humongous_reclaim_candidate(rindex);
3566       g1h->register_humongous_region_with_cset(rindex);
3567       _candidate_humongous++;
3568     }
3569     _total_humongous++;
3570 
3571     return false;
3572   }
3573 
3574   size_t total_humongous() const { return _total_humongous; }
3575   size_t candidate_humongous() const { return _candidate_humongous; }
3576 
3577   void flush_rem_set_entries() { _dcq.flush(); }
3578 };
3579 
3580 void G1CollectedHeap::register_humongous_regions_with_cset() {
3581   if (!G1EagerReclaimHumongousObjects) {
3582     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3583     return;
3584   }
3585   double time = os::elapsed_counter();
3586 
3587   // Collect reclaim candidate information and register candidates with cset.
3588   RegisterHumongousWithInCSetFastTestClosure cl;
3589   heap_region_iterate(&cl);
3590 
3591   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3592   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3593                                                                   cl.total_humongous(),
3594                                                                   cl.candidate_humongous());
3595   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3596 
3597   // Finally flush all remembered set entries to re-check into the global DCQS.
3598   cl.flush_rem_set_entries();
3599 }
3600 
3601 void
3602 G1CollectedHeap::setup_surviving_young_words() {
3603   assert(_surviving_young_words == NULL, "pre-condition");
3604   uint array_length = g1_policy()->young_cset_region_length();
3605   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3606   if (_surviving_young_words == NULL) {
3607     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3608                           "Not enough space for young surv words summary.");
3609   }
3610   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3611 #ifdef ASSERT
3612   for (uint i = 0;  i < array_length; ++i) {
3613     assert( _surviving_young_words[i] == 0, "memset above" );
3614   }
3615 #endif // !ASSERT
3616 }
3617 
3618 void
3619 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3620   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3621   uint array_length = g1_policy()->young_cset_region_length();
3622   for (uint i = 0; i < array_length; ++i) {
3623     _surviving_young_words[i] += surv_young_words[i];
3624   }
3625 }
3626 
3627 void
3628 G1CollectedHeap::cleanup_surviving_young_words() {
3629   guarantee( _surviving_young_words != NULL, "pre-condition" );
3630   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3631   _surviving_young_words = NULL;
3632 }
3633 
3634 #ifdef ASSERT
3635 class VerifyCSetClosure: public HeapRegionClosure {
3636 public:
3637   bool doHeapRegion(HeapRegion* hr) {
3638     // Here we check that the CSet region's RSet is ready for parallel
3639     // iteration. The fields that we'll verify are only manipulated
3640     // when the region is part of a CSet and is collected. Afterwards,
3641     // we reset these fields when we clear the region's RSet (when the
3642     // region is freed) so they are ready when the region is
3643     // re-allocated. The only exception to this is if there's an
3644     // evacuation failure and instead of freeing the region we leave
3645     // it in the heap. In that case, we reset these fields during
3646     // evacuation failure handling.
3647     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3648 
3649     // Here's a good place to add any other checks we'd like to
3650     // perform on CSet regions.
3651     return false;
3652   }
3653 };
3654 #endif // ASSERT
3655 
3656 #if TASKQUEUE_STATS
3657 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3658   st->print_raw_cr("GC Task Stats");
3659   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3660   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3661 }
3662 
3663 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3664   print_taskqueue_stats_hdr(st);
3665 
3666   TaskQueueStats totals;
3667   const int n = workers()->total_workers();
3668   for (int i = 0; i < n; ++i) {
3669     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3670     totals += task_queue(i)->stats;
3671   }
3672   st->print_raw("tot "); totals.print(st); st->cr();
3673 
3674   DEBUG_ONLY(totals.verify());
3675 }
3676 
3677 void G1CollectedHeap::reset_taskqueue_stats() {
3678   const int n = workers()->total_workers();
3679   for (int i = 0; i < n; ++i) {
3680     task_queue(i)->stats.reset();
3681   }
3682 }
3683 #endif // TASKQUEUE_STATS
3684 
3685 void G1CollectedHeap::log_gc_header() {
3686   if (!G1Log::fine()) {
3687     return;
3688   }
3689 
3690   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3691 
3692   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3693     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3694     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3695 
3696   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3697 }
3698 
3699 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3700   if (!G1Log::fine()) {
3701     return;
3702   }
3703 
3704   if (G1Log::finer()) {
3705     if (evacuation_failed()) {
3706       gclog_or_tty->print(" (to-space exhausted)");
3707     }
3708     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3709     g1_policy()->phase_times()->note_gc_end();
3710     g1_policy()->phase_times()->print(pause_time_sec);
3711     g1_policy()->print_detailed_heap_transition();
3712   } else {
3713     if (evacuation_failed()) {
3714       gclog_or_tty->print("--");
3715     }
3716     g1_policy()->print_heap_transition();
3717     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3718   }
3719   gclog_or_tty->flush();
3720 }
3721 
3722 bool
3723 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3724   assert_at_safepoint(true /* should_be_vm_thread */);
3725   guarantee(!is_gc_active(), "collection is not reentrant");
3726 
3727   if (GC_locker::check_active_before_gc()) {
3728     return false;
3729   }
3730 
3731   _gc_timer_stw->register_gc_start();
3732 
3733   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3734 
3735   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3736   ResourceMark rm;
3737 
3738   print_heap_before_gc();
3739   trace_heap_before_gc(_gc_tracer_stw);
3740 
3741   verify_region_sets_optional();
3742   verify_dirty_young_regions();
3743 
3744   // This call will decide whether this pause is an initial-mark
3745   // pause. If it is, during_initial_mark_pause() will return true
3746   // for the duration of this pause.
3747   g1_policy()->decide_on_conc_mark_initiation();
3748 
3749   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3750   assert(!g1_policy()->during_initial_mark_pause() ||
3751           g1_policy()->gcs_are_young(), "sanity");
3752 
3753   // We also do not allow mixed GCs during marking.
3754   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3755 
3756   // Record whether this pause is an initial mark. When the current
3757   // thread has completed its logging output and it's safe to signal
3758   // the CM thread, the flag's value in the policy has been reset.
3759   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3760 
3761   // Inner scope for scope based logging, timers, and stats collection
3762   {
3763     EvacuationInfo evacuation_info;
3764 
3765     if (g1_policy()->during_initial_mark_pause()) {
3766       // We are about to start a marking cycle, so we increment the
3767       // full collection counter.
3768       increment_old_marking_cycles_started();
3769       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3770     }
3771 
3772     _gc_tracer_stw->report_yc_type(yc_type());
3773 
3774     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3775 
3776     uint active_workers = workers()->active_workers();
3777     double pause_start_sec = os::elapsedTime();
3778     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3779     log_gc_header();
3780 
3781     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3782     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3783 
3784     // If the secondary_free_list is not empty, append it to the
3785     // free_list. No need to wait for the cleanup operation to finish;
3786     // the region allocation code will check the secondary_free_list
3787     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3788     // set, skip this step so that the region allocation code has to
3789     // get entries from the secondary_free_list.
3790     if (!G1StressConcRegionFreeing) {
3791       append_secondary_free_list_if_not_empty_with_lock();
3792     }
3793 
3794     assert(check_young_list_well_formed(), "young list should be well formed");
3795 
3796     // Don't dynamically change the number of GC threads this early.  A value of
3797     // 0 is used to indicate serial work.  When parallel work is done,
3798     // it will be set.
3799 
3800     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3801       IsGCActiveMark x;
3802 
3803       gc_prologue(false);
3804       increment_total_collections(false /* full gc */);
3805       increment_gc_time_stamp();
3806 
3807       verify_before_gc();
3808 
3809       check_bitmaps("GC Start");
3810 
3811       COMPILER2_PRESENT(DerivedPointerTable::clear());
3812 
3813       // Please see comment in g1CollectedHeap.hpp and
3814       // G1CollectedHeap::ref_processing_init() to see how
3815       // reference processing currently works in G1.
3816 
3817       // Enable discovery in the STW reference processor
3818       ref_processor_stw()->enable_discovery();
3819 
3820       {
3821         // We want to temporarily turn off discovery by the
3822         // CM ref processor, if necessary, and turn it back on
3823         // on again later if we do. Using a scoped
3824         // NoRefDiscovery object will do this.
3825         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3826 
3827         // Forget the current alloc region (we might even choose it to be part
3828         // of the collection set!).
3829         _allocator->release_mutator_alloc_region();
3830 
3831         // We should call this after we retire the mutator alloc
3832         // region(s) so that all the ALLOC / RETIRE events are generated
3833         // before the start GC event.
3834         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3835 
3836         // This timing is only used by the ergonomics to handle our pause target.
3837         // It is unclear why this should not include the full pause. We will
3838         // investigate this in CR 7178365.
3839         //
3840         // Preserving the old comment here if that helps the investigation:
3841         //
3842         // The elapsed time induced by the start time below deliberately elides
3843         // the possible verification above.
3844         double sample_start_time_sec = os::elapsedTime();
3845 
3846 #if YOUNG_LIST_VERBOSE
3847         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3848         _young_list->print();
3849         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3850 #endif // YOUNG_LIST_VERBOSE
3851 
3852         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3853 
3854         double scan_wait_start = os::elapsedTime();
3855         // We have to wait until the CM threads finish scanning the
3856         // root regions as it's the only way to ensure that all the
3857         // objects on them have been correctly scanned before we start
3858         // moving them during the GC.
3859         bool waited = _cm->root_regions()->wait_until_scan_finished();
3860         double wait_time_ms = 0.0;
3861         if (waited) {
3862           double scan_wait_end = os::elapsedTime();
3863           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3864         }
3865         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3866 
3867 #if YOUNG_LIST_VERBOSE
3868         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3869         _young_list->print();
3870 #endif // YOUNG_LIST_VERBOSE
3871 
3872         if (g1_policy()->during_initial_mark_pause()) {
3873           concurrent_mark()->checkpointRootsInitialPre();
3874         }
3875 
3876 #if YOUNG_LIST_VERBOSE
3877         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3878         _young_list->print();
3879         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3880 #endif // YOUNG_LIST_VERBOSE
3881 
3882         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3883 
3884         register_humongous_regions_with_cset();
3885 
3886         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3887 
3888         _cm->note_start_of_gc();
3889         // We should not verify the per-thread SATB buffers given that
3890         // we have not filtered them yet (we'll do so during the
3891         // GC). We also call this after finalize_cset() to
3892         // ensure that the CSet has been finalized.
3893         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3894                                  true  /* verify_enqueued_buffers */,
3895                                  false /* verify_thread_buffers */,
3896                                  true  /* verify_fingers */);
3897 
3898         if (_hr_printer.is_active()) {
3899           HeapRegion* hr = g1_policy()->collection_set();
3900           while (hr != NULL) {
3901             _hr_printer.cset(hr);
3902             hr = hr->next_in_collection_set();
3903           }
3904         }
3905 
3906 #ifdef ASSERT
3907         VerifyCSetClosure cl;
3908         collection_set_iterate(&cl);
3909 #endif // ASSERT
3910 
3911         setup_surviving_young_words();
3912 
3913         // Initialize the GC alloc regions.
3914         _allocator->init_gc_alloc_regions(evacuation_info);
3915 
3916         // Actually do the work...
3917         evacuate_collection_set(evacuation_info);
3918 
3919         // We do this to mainly verify the per-thread SATB buffers
3920         // (which have been filtered by now) since we didn't verify
3921         // them earlier. No point in re-checking the stacks / enqueued
3922         // buffers given that the CSet has not changed since last time
3923         // we checked.
3924         _cm->verify_no_cset_oops(false /* verify_stacks */,
3925                                  false /* verify_enqueued_buffers */,
3926                                  true  /* verify_thread_buffers */,
3927                                  true  /* verify_fingers */);
3928 
3929         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3930 
3931         eagerly_reclaim_humongous_regions();
3932 
3933         g1_policy()->clear_collection_set();
3934 
3935         cleanup_surviving_young_words();
3936 
3937         // Start a new incremental collection set for the next pause.
3938         g1_policy()->start_incremental_cset_building();
3939 
3940         clear_cset_fast_test();
3941 
3942         _young_list->reset_sampled_info();
3943 
3944         // Don't check the whole heap at this point as the
3945         // GC alloc regions from this pause have been tagged
3946         // as survivors and moved on to the survivor list.
3947         // Survivor regions will fail the !is_young() check.
3948         assert(check_young_list_empty(false /* check_heap */),
3949           "young list should be empty");
3950 
3951 #if YOUNG_LIST_VERBOSE
3952         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3953         _young_list->print();
3954 #endif // YOUNG_LIST_VERBOSE
3955 
3956         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3957                                              _young_list->first_survivor_region(),
3958                                              _young_list->last_survivor_region());
3959 
3960         _young_list->reset_auxilary_lists();
3961 
3962         if (evacuation_failed()) {
3963           _allocator->set_used(recalculate_used());
3964           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3965           for (uint i = 0; i < n_queues; i++) {
3966             if (_evacuation_failed_info_array[i].has_failed()) {
3967               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3968             }
3969           }
3970         } else {
3971           // The "used" of the the collection set have already been subtracted
3972           // when they were freed.  Add in the bytes evacuated.
3973           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3974         }
3975 
3976         if (g1_policy()->during_initial_mark_pause()) {
3977           // We have to do this before we notify the CM threads that
3978           // they can start working to make sure that all the
3979           // appropriate initialization is done on the CM object.
3980           concurrent_mark()->checkpointRootsInitialPost();
3981           set_marking_started();
3982           // Note that we don't actually trigger the CM thread at
3983           // this point. We do that later when we're sure that
3984           // the current thread has completed its logging output.
3985         }
3986 
3987         allocate_dummy_regions();
3988 
3989 #if YOUNG_LIST_VERBOSE
3990         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3991         _young_list->print();
3992         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3993 #endif // YOUNG_LIST_VERBOSE
3994 
3995         _allocator->init_mutator_alloc_region();
3996 
3997         {
3998           size_t expand_bytes = g1_policy()->expansion_amount();
3999           if (expand_bytes > 0) {
4000             size_t bytes_before = capacity();
4001             // No need for an ergo verbose message here,
4002             // expansion_amount() does this when it returns a value > 0.
4003             if (!expand(expand_bytes)) {
4004               // We failed to expand the heap. Cannot do anything about it.
4005             }
4006           }
4007         }
4008 
4009         // We redo the verification but now wrt to the new CSet which
4010         // has just got initialized after the previous CSet was freed.
4011         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4012                                  true  /* verify_enqueued_buffers */,
4013                                  true  /* verify_thread_buffers */,
4014                                  true  /* verify_fingers */);
4015         _cm->note_end_of_gc();
4016 
4017         // This timing is only used by the ergonomics to handle our pause target.
4018         // It is unclear why this should not include the full pause. We will
4019         // investigate this in CR 7178365.
4020         double sample_end_time_sec = os::elapsedTime();
4021         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4022         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4023 
4024         MemoryService::track_memory_usage();
4025 
4026         // In prepare_for_verify() below we'll need to scan the deferred
4027         // update buffers to bring the RSets up-to-date if
4028         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4029         // the update buffers we'll probably need to scan cards on the
4030         // regions we just allocated to (i.e., the GC alloc
4031         // regions). However, during the last GC we called
4032         // set_saved_mark() on all the GC alloc regions, so card
4033         // scanning might skip the [saved_mark_word()...top()] area of
4034         // those regions (i.e., the area we allocated objects into
4035         // during the last GC). But it shouldn't. Given that
4036         // saved_mark_word() is conditional on whether the GC time stamp
4037         // on the region is current or not, by incrementing the GC time
4038         // stamp here we invalidate all the GC time stamps on all the
4039         // regions and saved_mark_word() will simply return top() for
4040         // all the regions. This is a nicer way of ensuring this rather
4041         // than iterating over the regions and fixing them. In fact, the
4042         // GC time stamp increment here also ensures that
4043         // saved_mark_word() will return top() between pauses, i.e.,
4044         // during concurrent refinement. So we don't need the
4045         // is_gc_active() check to decided which top to use when
4046         // scanning cards (see CR 7039627).
4047         increment_gc_time_stamp();
4048 
4049         verify_after_gc();
4050         check_bitmaps("GC End");
4051 
4052         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4053         ref_processor_stw()->verify_no_references_recorded();
4054 
4055         // CM reference discovery will be re-enabled if necessary.
4056       }
4057 
4058       // We should do this after we potentially expand the heap so
4059       // that all the COMMIT events are generated before the end GC
4060       // event, and after we retire the GC alloc regions so that all
4061       // RETIRE events are generated before the end GC event.
4062       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4063 
4064 #ifdef TRACESPINNING
4065       ParallelTaskTerminator::print_termination_counts();
4066 #endif
4067 
4068       gc_epilogue(false);
4069     }
4070 
4071     // Print the remainder of the GC log output.
4072     log_gc_footer(os::elapsedTime() - pause_start_sec);
4073 
4074     // It is not yet to safe to tell the concurrent mark to
4075     // start as we have some optional output below. We don't want the
4076     // output from the concurrent mark thread interfering with this
4077     // logging output either.
4078 
4079     _hrm.verify_optional();
4080     verify_region_sets_optional();
4081 
4082     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4083     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4084 
4085     print_heap_after_gc();
4086     trace_heap_after_gc(_gc_tracer_stw);
4087 
4088     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4089     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4090     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4091     // before any GC notifications are raised.
4092     g1mm()->update_sizes();
4093 
4094     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4095     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4096     _gc_timer_stw->register_gc_end();
4097     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4098   }
4099   // It should now be safe to tell the concurrent mark thread to start
4100   // without its logging output interfering with the logging output
4101   // that came from the pause.
4102 
4103   if (should_start_conc_mark) {
4104     // CAUTION: after the doConcurrentMark() call below,
4105     // the concurrent marking thread(s) could be running
4106     // concurrently with us. Make sure that anything after
4107     // this point does not assume that we are the only GC thread
4108     // running. Note: of course, the actual marking work will
4109     // not start until the safepoint itself is released in
4110     // SuspendibleThreadSet::desynchronize().
4111     doConcurrentMark();
4112   }
4113 
4114   return true;
4115 }
4116 
4117 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4118   _drain_in_progress = false;
4119   set_evac_failure_closure(cl);
4120   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4121 }
4122 
4123 void G1CollectedHeap::finalize_for_evac_failure() {
4124   assert(_evac_failure_scan_stack != NULL &&
4125          _evac_failure_scan_stack->length() == 0,
4126          "Postcondition");
4127   assert(!_drain_in_progress, "Postcondition");
4128   delete _evac_failure_scan_stack;
4129   _evac_failure_scan_stack = NULL;
4130 }
4131 
4132 void G1CollectedHeap::remove_self_forwarding_pointers() {
4133   double remove_self_forwards_start = os::elapsedTime();
4134 
4135   set_par_threads();
4136   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4137   workers()->run_task(&rsfp_task);
4138   set_par_threads(0);
4139 
4140   // Now restore saved marks, if any.
4141   assert(_objs_with_preserved_marks.size() ==
4142             _preserved_marks_of_objs.size(), "Both or none.");
4143   while (!_objs_with_preserved_marks.is_empty()) {
4144     oop obj = _objs_with_preserved_marks.pop();
4145     markOop m = _preserved_marks_of_objs.pop();
4146     obj->set_mark(m);
4147   }
4148   _objs_with_preserved_marks.clear(true);
4149   _preserved_marks_of_objs.clear(true);
4150 
4151   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4152 }
4153 
4154 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4155   _evac_failure_scan_stack->push(obj);
4156 }
4157 
4158 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4159   assert(_evac_failure_scan_stack != NULL, "precondition");
4160 
4161   while (_evac_failure_scan_stack->length() > 0) {
4162      oop obj = _evac_failure_scan_stack->pop();
4163      _evac_failure_closure->set_region(heap_region_containing(obj));
4164      obj->oop_iterate_backwards(_evac_failure_closure);
4165   }
4166 }
4167 
4168 oop
4169 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4170                                                oop old) {
4171   assert(obj_in_cs(old),
4172          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4173                  (HeapWord*) old));
4174   markOop m = old->mark();
4175   oop forward_ptr = old->forward_to_atomic(old);
4176   if (forward_ptr == NULL) {
4177     // Forward-to-self succeeded.
4178     assert(_par_scan_state != NULL, "par scan state");
4179     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4180     uint queue_num = _par_scan_state->queue_num();
4181 
4182     _evacuation_failed = true;
4183     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4184     if (_evac_failure_closure != cl) {
4185       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4186       assert(!_drain_in_progress,
4187              "Should only be true while someone holds the lock.");
4188       // Set the global evac-failure closure to the current thread's.
4189       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4190       set_evac_failure_closure(cl);
4191       // Now do the common part.
4192       handle_evacuation_failure_common(old, m);
4193       // Reset to NULL.
4194       set_evac_failure_closure(NULL);
4195     } else {
4196       // The lock is already held, and this is recursive.
4197       assert(_drain_in_progress, "This should only be the recursive case.");
4198       handle_evacuation_failure_common(old, m);
4199     }
4200     return old;
4201   } else {
4202     // Forward-to-self failed. Either someone else managed to allocate
4203     // space for this object (old != forward_ptr) or they beat us in
4204     // self-forwarding it (old == forward_ptr).
4205     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4206            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4207                    "should not be in the CSet",
4208                    (HeapWord*) old, (HeapWord*) forward_ptr));
4209     return forward_ptr;
4210   }
4211 }
4212 
4213 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4214   preserve_mark_if_necessary(old, m);
4215 
4216   HeapRegion* r = heap_region_containing(old);
4217   if (!r->evacuation_failed()) {
4218     r->set_evacuation_failed(true);
4219     _hr_printer.evac_failure(r);
4220   }
4221 
4222   push_on_evac_failure_scan_stack(old);
4223 
4224   if (!_drain_in_progress) {
4225     // prevent recursion in copy_to_survivor_space()
4226     _drain_in_progress = true;
4227     drain_evac_failure_scan_stack();
4228     _drain_in_progress = false;
4229   }
4230 }
4231 
4232 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4233   assert(evacuation_failed(), "Oversaving!");
4234   // We want to call the "for_promotion_failure" version only in the
4235   // case of a promotion failure.
4236   if (m->must_be_preserved_for_promotion_failure(obj)) {
4237     _objs_with_preserved_marks.push(obj);
4238     _preserved_marks_of_objs.push(m);
4239   }
4240 }
4241 
4242 void G1ParCopyHelper::mark_object(oop obj) {
4243   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4244 
4245   // We know that the object is not moving so it's safe to read its size.
4246   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4247 }
4248 
4249 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4250   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4251   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4252   assert(from_obj != to_obj, "should not be self-forwarded");
4253 
4254   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4255   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4256 
4257   // The object might be in the process of being copied by another
4258   // worker so we cannot trust that its to-space image is
4259   // well-formed. So we have to read its size from its from-space
4260   // image which we know should not be changing.
4261   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4262 }
4263 
4264 template <class T>
4265 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4266   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4267     _scanned_klass->record_modified_oops();
4268   }
4269 }
4270 
4271 template <G1Barrier barrier, G1Mark do_mark_object>
4272 template <class T>
4273 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4274   T heap_oop = oopDesc::load_heap_oop(p);
4275 
4276   if (oopDesc::is_null(heap_oop)) {
4277     return;
4278   }
4279 
4280   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4281 
4282   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4283 
4284   const InCSetState state = _g1->in_cset_state(obj);
4285   if (state.is_in_cset()) {
4286     oop forwardee;
4287     markOop m = obj->mark();
4288     if (m->is_marked()) {
4289       forwardee = (oop) m->decode_pointer();
4290     } else {
4291       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4292     }
4293     assert(forwardee != NULL, "forwardee should not be NULL");
4294     oopDesc::encode_store_heap_oop(p, forwardee);
4295     if (do_mark_object != G1MarkNone && forwardee != obj) {
4296       // If the object is self-forwarded we don't need to explicitly
4297       // mark it, the evacuation failure protocol will do so.
4298       mark_forwarded_object(obj, forwardee);
4299     }
4300 
4301     if (barrier == G1BarrierKlass) {
4302       do_klass_barrier(p, forwardee);
4303     }
4304   } else {
4305     if (state.is_humongous()) {
4306       _g1->set_humongous_is_live(obj);
4307     }
4308     // The object is not in collection set. If we're a root scanning
4309     // closure during an initial mark pause then attempt to mark the object.
4310     if (do_mark_object == G1MarkFromRoot) {
4311       mark_object(obj);
4312     }
4313   }
4314 
4315   if (barrier == G1BarrierEvac) {
4316     _par_scan_state->update_rs(_from, p, _worker_id);
4317   }
4318 }
4319 
4320 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4321 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4322 
4323 class G1ParEvacuateFollowersClosure : public VoidClosure {
4324 protected:
4325   G1CollectedHeap*              _g1h;
4326   G1ParScanThreadState*         _par_scan_state;
4327   RefToScanQueueSet*            _queues;
4328   ParallelTaskTerminator*       _terminator;
4329 
4330   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4331   RefToScanQueueSet*      queues()         { return _queues; }
4332   ParallelTaskTerminator* terminator()     { return _terminator; }
4333 
4334 public:
4335   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4336                                 G1ParScanThreadState* par_scan_state,
4337                                 RefToScanQueueSet* queues,
4338                                 ParallelTaskTerminator* terminator)
4339     : _g1h(g1h), _par_scan_state(par_scan_state),
4340       _queues(queues), _terminator(terminator) {}
4341 
4342   void do_void();
4343 
4344 private:
4345   inline bool offer_termination();
4346 };
4347 
4348 bool G1ParEvacuateFollowersClosure::offer_termination() {
4349   G1ParScanThreadState* const pss = par_scan_state();
4350   pss->start_term_time();
4351   const bool res = terminator()->offer_termination();
4352   pss->end_term_time();
4353   return res;
4354 }
4355 
4356 void G1ParEvacuateFollowersClosure::do_void() {
4357   G1ParScanThreadState* const pss = par_scan_state();
4358   pss->trim_queue();
4359   do {
4360     pss->steal_and_trim_queue(queues());
4361   } while (!offer_termination());
4362 }
4363 
4364 class G1KlassScanClosure : public KlassClosure {
4365  G1ParCopyHelper* _closure;
4366  bool             _process_only_dirty;
4367  int              _count;
4368  public:
4369   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4370       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4371   void do_klass(Klass* klass) {
4372     // If the klass has not been dirtied we know that there's
4373     // no references into  the young gen and we can skip it.
4374    if (!_process_only_dirty || klass->has_modified_oops()) {
4375       // Clean the klass since we're going to scavenge all the metadata.
4376       klass->clear_modified_oops();
4377 
4378       // Tell the closure that this klass is the Klass to scavenge
4379       // and is the one to dirty if oops are left pointing into the young gen.
4380       _closure->set_scanned_klass(klass);
4381 
4382       klass->oops_do(_closure);
4383 
4384       _closure->set_scanned_klass(NULL);
4385     }
4386     _count++;
4387   }
4388 };
4389 
4390 class G1CodeBlobClosure : public CodeBlobClosure {
4391   class HeapRegionGatheringOopClosure : public OopClosure {
4392     G1CollectedHeap* _g1h;
4393     OopClosure* _work;
4394     nmethod* _nm;
4395 
4396     template <typename T>
4397     void do_oop_work(T* p) {
4398       _work->do_oop(p);
4399       T oop_or_narrowoop = oopDesc::load_heap_oop(p);
4400       if (!oopDesc::is_null(oop_or_narrowoop)) {
4401         oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop);
4402         HeapRegion* hr = _g1h->heap_region_containing_raw(o);
4403         assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset");
4404         hr->add_strong_code_root(_nm);
4405       }
4406     }
4407 
4408   public:
4409     HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {}
4410 
4411     void do_oop(oop* o) {
4412       do_oop_work(o);
4413     }
4414 
4415     void do_oop(narrowOop* o) {
4416       do_oop_work(o);
4417     }
4418 
4419     void set_nm(nmethod* nm) {
4420       _nm = nm;
4421     }
4422   };
4423 
4424   HeapRegionGatheringOopClosure _oc;
4425 public:
4426   G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {}
4427 
4428   void do_code_blob(CodeBlob* cb) {
4429     nmethod* nm = cb->as_nmethod_or_null();
4430     if (nm != NULL) {
4431       if (!nm->test_set_oops_do_mark()) {
4432         _oc.set_nm(nm);
4433         nm->oops_do(&_oc);
4434         nm->fix_oop_relocations();
4435       }
4436     }
4437   }
4438 };
4439 
4440 class G1ParTask : public AbstractGangTask {
4441 protected:
4442   G1CollectedHeap*       _g1h;
4443   RefToScanQueueSet      *_queues;
4444   ParallelTaskTerminator _terminator;
4445   uint _n_workers;
4446 
4447   Mutex _stats_lock;
4448   Mutex* stats_lock() { return &_stats_lock; }
4449 
4450 public:
4451   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4452     : AbstractGangTask("G1 collection"),
4453       _g1h(g1h),
4454       _queues(task_queues),
4455       _terminator(0, _queues),
4456       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4457   {}
4458 
4459   RefToScanQueueSet* queues() { return _queues; }
4460 
4461   RefToScanQueue *work_queue(int i) {
4462     return queues()->queue(i);
4463   }
4464 
4465   ParallelTaskTerminator* terminator() { return &_terminator; }
4466 
4467   virtual void set_for_termination(int active_workers) {
4468     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4469     // in the young space (_par_seq_tasks) in the G1 heap
4470     // for SequentialSubTasksDone.
4471     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4472     // both of which need setting by set_n_termination().
4473     _g1h->SharedHeap::set_n_termination(active_workers);
4474     _g1h->set_n_termination(active_workers);
4475     terminator()->reset_for_reuse(active_workers);
4476     _n_workers = active_workers;
4477   }
4478 
4479   // Helps out with CLD processing.
4480   //
4481   // During InitialMark we need to:
4482   // 1) Scavenge all CLDs for the young GC.
4483   // 2) Mark all objects directly reachable from strong CLDs.
4484   template <G1Mark do_mark_object>
4485   class G1CLDClosure : public CLDClosure {
4486     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4487     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4488     G1KlassScanClosure                                _klass_in_cld_closure;
4489     bool                                              _claim;
4490 
4491    public:
4492     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4493                  bool only_young, bool claim)
4494         : _oop_closure(oop_closure),
4495           _oop_in_klass_closure(oop_closure->g1(),
4496                                 oop_closure->pss(),
4497                                 oop_closure->rp()),
4498           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4499           _claim(claim) {
4500 
4501     }
4502 
4503     void do_cld(ClassLoaderData* cld) {
4504       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4505     }
4506   };
4507 
4508   void work(uint worker_id) {
4509     if (worker_id >= _n_workers) return;  // no work needed this round
4510 
4511     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4512 
4513     {
4514       ResourceMark rm;
4515       HandleMark   hm;
4516 
4517       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4518 
4519       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4520       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4521 
4522       pss.set_evac_failure_closure(&evac_failure_cl);
4523 
4524       bool only_young = _g1h->g1_policy()->gcs_are_young();
4525 
4526       // Non-IM young GC.
4527       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4528       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4529                                                                                only_young, // Only process dirty klasses.
4530                                                                                false);     // No need to claim CLDs.
4531       // IM young GC.
4532       //    Strong roots closures.
4533       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4534       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4535                                                                                false, // Process all klasses.
4536                                                                                true); // Need to claim CLDs.
4537       //    Weak roots closures.
4538       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4539       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4540                                                                                     false, // Process all klasses.
4541                                                                                     true); // Need to claim CLDs.
4542 
4543       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
4544       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
4545       // IM Weak code roots are handled later.
4546 
4547       OopClosure* strong_root_cl;
4548       OopClosure* weak_root_cl;
4549       CLDClosure* strong_cld_cl;
4550       CLDClosure* weak_cld_cl;
4551       CodeBlobClosure* strong_code_cl;
4552 
4553       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4554         // We also need to mark copied objects.
4555         strong_root_cl = &scan_mark_root_cl;
4556         strong_cld_cl  = &scan_mark_cld_cl;
4557         strong_code_cl = &scan_mark_code_cl;
4558         if (ClassUnloadingWithConcurrentMark) {
4559           weak_root_cl = &scan_mark_weak_root_cl;
4560           weak_cld_cl  = &scan_mark_weak_cld_cl;
4561         } else {
4562           weak_root_cl = &scan_mark_root_cl;
4563           weak_cld_cl  = &scan_mark_cld_cl;
4564         }
4565       } else {
4566         strong_root_cl = &scan_only_root_cl;
4567         weak_root_cl   = &scan_only_root_cl;
4568         strong_cld_cl  = &scan_only_cld_cl;
4569         weak_cld_cl    = &scan_only_cld_cl;
4570         strong_code_cl = &scan_only_code_cl;
4571       }
4572 
4573 
4574       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
4575 
4576       pss.start_strong_roots();
4577       _g1h->g1_process_roots(strong_root_cl,
4578                              weak_root_cl,
4579                              &push_heap_rs_cl,
4580                              strong_cld_cl,
4581                              weak_cld_cl,
4582                              strong_code_cl,
4583                              worker_id);
4584 
4585       pss.end_strong_roots();
4586 
4587       {
4588         double start = os::elapsedTime();
4589         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4590         evac.do_void();
4591         double elapsed_sec = os::elapsedTime() - start;
4592         double term_sec = pss.term_time();
4593         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4594         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4595         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4596       }
4597       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4598       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4599 
4600       if (PrintTerminationStats) {
4601         MutexLocker x(stats_lock());
4602         pss.print_termination_stats(worker_id);
4603       }
4604 
4605       assert(pss.queue_is_empty(), "should be empty");
4606 
4607       // Close the inner scope so that the ResourceMark and HandleMark
4608       // destructors are executed here and are included as part of the
4609       // "GC Worker Time".
4610     }
4611     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4612   }
4613 };
4614 
4615 // *** Common G1 Evacuation Stuff
4616 
4617 // This method is run in a GC worker.
4618 
4619 void
4620 G1CollectedHeap::
4621 g1_process_roots(OopClosure* scan_non_heap_roots,
4622                  OopClosure* scan_non_heap_weak_roots,
4623                  G1ParPushHeapRSClosure* scan_rs,
4624                  CLDClosure* scan_strong_clds,
4625                  CLDClosure* scan_weak_clds,
4626                  CodeBlobClosure* scan_strong_code,
4627                  uint worker_i) {
4628 
4629   // First scan the shared roots.
4630   double ext_roots_start = os::elapsedTime();
4631   double closure_app_time_sec = 0.0;
4632 
4633   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
4634   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
4635 
4636   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4637   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
4638 
4639   process_roots(false, // no scoping; this is parallel code
4640                 SharedHeap::SO_None,
4641                 &buf_scan_non_heap_roots,
4642                 &buf_scan_non_heap_weak_roots,
4643                 scan_strong_clds,
4644                 // Unloading Initial Marks handle the weak CLDs separately.
4645                 (trace_metadata ? NULL : scan_weak_clds),
4646                 scan_strong_code);
4647 
4648   // Now the CM ref_processor roots.
4649   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4650     // We need to treat the discovered reference lists of the
4651     // concurrent mark ref processor as roots and keep entries
4652     // (which are added by the marking threads) on them live
4653     // until they can be processed at the end of marking.
4654     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4655   }
4656 
4657   if (trace_metadata) {
4658     // Barrier to make sure all workers passed
4659     // the strong CLD and strong nmethods phases.
4660     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
4661 
4662     // Now take the complement of the strong CLDs.
4663     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
4664   }
4665 
4666   // Finish up any enqueued closure apps (attributed as object copy time).
4667   buf_scan_non_heap_roots.done();
4668   buf_scan_non_heap_weak_roots.done();
4669 
4670   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
4671       + buf_scan_non_heap_weak_roots.closure_app_seconds();
4672 
4673   g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::ObjCopy, worker_i, obj_copy_time_sec);
4674 
4675   double ext_root_time_sec = os::elapsedTime() - ext_roots_start - obj_copy_time_sec;
4676   g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::ExtRootScan, worker_i, ext_root_time_sec);
4677 
4678   // During conc marking we have to filter the per-thread SATB buffers
4679   // to make sure we remove any oops into the CSet (which will show up
4680   // as implicitly live).
4681   {
4682     G1GCParPhaseTimesTracker x(g1_policy()->phase_times(), G1GCPhaseTimes::SATBFiltering, worker_i);
4683     if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers) && mark_in_progress()) {
4684       JavaThread::satb_mark_queue_set().filter_thread_buffers();
4685     }
4686   }
4687 
4688   // Now scan the complement of the collection set.
4689   G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots);
4690 
4691   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
4692 
4693   _process_strong_tasks->all_tasks_completed();
4694 }
4695 
4696 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4697 private:
4698   BoolObjectClosure* _is_alive;
4699   int _initial_string_table_size;
4700   int _initial_symbol_table_size;
4701 
4702   bool  _process_strings;
4703   int _strings_processed;
4704   int _strings_removed;
4705 
4706   bool  _process_symbols;
4707   int _symbols_processed;
4708   int _symbols_removed;
4709 
4710 public:
4711   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4712     AbstractGangTask("String/Symbol Unlinking"),
4713     _is_alive(is_alive),
4714     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4715     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4716 
4717     _initial_string_table_size = StringTable::the_table()->table_size();
4718     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4719     if (process_strings) {
4720       StringTable::clear_parallel_claimed_index();
4721     }
4722     if (process_symbols) {
4723       SymbolTable::clear_parallel_claimed_index();
4724     }
4725   }
4726 
4727   ~G1StringSymbolTableUnlinkTask() {
4728     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4729               err_msg("claim value %d after unlink less than initial string table size %d",
4730                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4731     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4732               err_msg("claim value %d after unlink less than initial symbol table size %d",
4733                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4734 
4735     if (G1TraceStringSymbolTableScrubbing) {
4736       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4737                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4738                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4739                              strings_processed(), strings_removed(),
4740                              symbols_processed(), symbols_removed());
4741     }
4742   }
4743 
4744   void work(uint worker_id) {
4745     int strings_processed = 0;
4746     int strings_removed = 0;
4747     int symbols_processed = 0;
4748     int symbols_removed = 0;
4749     if (_process_strings) {
4750       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4751       Atomic::add(strings_processed, &_strings_processed);
4752       Atomic::add(strings_removed, &_strings_removed);
4753     }
4754     if (_process_symbols) {
4755       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4756       Atomic::add(symbols_processed, &_symbols_processed);
4757       Atomic::add(symbols_removed, &_symbols_removed);
4758     }
4759   }
4760 
4761   size_t strings_processed() const { return (size_t)_strings_processed; }
4762   size_t strings_removed()   const { return (size_t)_strings_removed; }
4763 
4764   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4765   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4766 };
4767 
4768 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4769 private:
4770   static Monitor* _lock;
4771 
4772   BoolObjectClosure* const _is_alive;
4773   const bool               _unloading_occurred;
4774   const uint               _num_workers;
4775 
4776   // Variables used to claim nmethods.
4777   nmethod* _first_nmethod;
4778   volatile nmethod* _claimed_nmethod;
4779 
4780   // The list of nmethods that need to be processed by the second pass.
4781   volatile nmethod* _postponed_list;
4782   volatile uint     _num_entered_barrier;
4783 
4784  public:
4785   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4786       _is_alive(is_alive),
4787       _unloading_occurred(unloading_occurred),
4788       _num_workers(num_workers),
4789       _first_nmethod(NULL),
4790       _claimed_nmethod(NULL),
4791       _postponed_list(NULL),
4792       _num_entered_barrier(0)
4793   {
4794     nmethod::increase_unloading_clock();
4795     // Get first alive nmethod
4796     NMethodIterator iter = NMethodIterator();
4797     if(iter.next_alive()) {
4798       _first_nmethod = iter.method();
4799     }
4800     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4801   }
4802 
4803   ~G1CodeCacheUnloadingTask() {
4804     CodeCache::verify_clean_inline_caches();
4805 
4806     CodeCache::set_needs_cache_clean(false);
4807     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4808 
4809     CodeCache::verify_icholder_relocations();
4810   }
4811 
4812  private:
4813   void add_to_postponed_list(nmethod* nm) {
4814       nmethod* old;
4815       do {
4816         old = (nmethod*)_postponed_list;
4817         nm->set_unloading_next(old);
4818       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4819   }
4820 
4821   void clean_nmethod(nmethod* nm) {
4822     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4823 
4824     if (postponed) {
4825       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4826       add_to_postponed_list(nm);
4827     }
4828 
4829     // Mark that this thread has been cleaned/unloaded.
4830     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4831     nm->set_unloading_clock(nmethod::global_unloading_clock());
4832   }
4833 
4834   void clean_nmethod_postponed(nmethod* nm) {
4835     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4836   }
4837 
4838   static const int MaxClaimNmethods = 16;
4839 
4840   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4841     nmethod* first;
4842     NMethodIterator last;
4843 
4844     do {
4845       *num_claimed_nmethods = 0;
4846 
4847       first = (nmethod*)_claimed_nmethod;
4848       last = NMethodIterator(first);
4849 
4850       if (first != NULL) {
4851 
4852         for (int i = 0; i < MaxClaimNmethods; i++) {
4853           if (!last.next_alive()) {
4854             break;
4855           }
4856           claimed_nmethods[i] = last.method();
4857           (*num_claimed_nmethods)++;
4858         }
4859       }
4860 
4861     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4862   }
4863 
4864   nmethod* claim_postponed_nmethod() {
4865     nmethod* claim;
4866     nmethod* next;
4867 
4868     do {
4869       claim = (nmethod*)_postponed_list;
4870       if (claim == NULL) {
4871         return NULL;
4872       }
4873 
4874       next = claim->unloading_next();
4875 
4876     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4877 
4878     return claim;
4879   }
4880 
4881  public:
4882   // Mark that we're done with the first pass of nmethod cleaning.
4883   void barrier_mark(uint worker_id) {
4884     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4885     _num_entered_barrier++;
4886     if (_num_entered_barrier == _num_workers) {
4887       ml.notify_all();
4888     }
4889   }
4890 
4891   // See if we have to wait for the other workers to
4892   // finish their first-pass nmethod cleaning work.
4893   void barrier_wait(uint worker_id) {
4894     if (_num_entered_barrier < _num_workers) {
4895       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4896       while (_num_entered_barrier < _num_workers) {
4897           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4898       }
4899     }
4900   }
4901 
4902   // Cleaning and unloading of nmethods. Some work has to be postponed
4903   // to the second pass, when we know which nmethods survive.
4904   void work_first_pass(uint worker_id) {
4905     // The first nmethods is claimed by the first worker.
4906     if (worker_id == 0 && _first_nmethod != NULL) {
4907       clean_nmethod(_first_nmethod);
4908       _first_nmethod = NULL;
4909     }
4910 
4911     int num_claimed_nmethods;
4912     nmethod* claimed_nmethods[MaxClaimNmethods];
4913 
4914     while (true) {
4915       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4916 
4917       if (num_claimed_nmethods == 0) {
4918         break;
4919       }
4920 
4921       for (int i = 0; i < num_claimed_nmethods; i++) {
4922         clean_nmethod(claimed_nmethods[i]);
4923       }
4924     }
4925 
4926     // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
4927     // Need to retire the buffers now that this thread has stopped cleaning nmethods.
4928     MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
4929   }
4930 
4931   void work_second_pass(uint worker_id) {
4932     nmethod* nm;
4933     // Take care of postponed nmethods.
4934     while ((nm = claim_postponed_nmethod()) != NULL) {
4935       clean_nmethod_postponed(nm);
4936     }
4937   }
4938 };
4939 
4940 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4941 
4942 class G1KlassCleaningTask : public StackObj {
4943   BoolObjectClosure*                      _is_alive;
4944   volatile jint                           _clean_klass_tree_claimed;
4945   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4946 
4947  public:
4948   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4949       _is_alive(is_alive),
4950       _clean_klass_tree_claimed(0),
4951       _klass_iterator() {
4952   }
4953 
4954  private:
4955   bool claim_clean_klass_tree_task() {
4956     if (_clean_klass_tree_claimed) {
4957       return false;
4958     }
4959 
4960     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4961   }
4962 
4963   InstanceKlass* claim_next_klass() {
4964     Klass* klass;
4965     do {
4966       klass =_klass_iterator.next_klass();
4967     } while (klass != NULL && !klass->oop_is_instance());
4968 
4969     return (InstanceKlass*)klass;
4970   }
4971 
4972 public:
4973 
4974   void clean_klass(InstanceKlass* ik) {
4975     ik->clean_implementors_list(_is_alive);
4976     ik->clean_method_data(_is_alive);
4977 
4978     // G1 specific cleanup work that has
4979     // been moved here to be done in parallel.
4980     ik->clean_dependent_nmethods();
4981     if (JvmtiExport::has_redefined_a_class()) {
4982       InstanceKlass::purge_previous_versions(ik);
4983     }
4984   }
4985 
4986   void work() {
4987     ResourceMark rm;
4988 
4989     // One worker will clean the subklass/sibling klass tree.
4990     if (claim_clean_klass_tree_task()) {
4991       Klass::clean_subklass_tree(_is_alive);
4992     }
4993 
4994     // All workers will help cleaning the classes,
4995     InstanceKlass* klass;
4996     while ((klass = claim_next_klass()) != NULL) {
4997       clean_klass(klass);
4998     }
4999   }
5000 };
5001 
5002 // To minimize the remark pause times, the tasks below are done in parallel.
5003 class G1ParallelCleaningTask : public AbstractGangTask {
5004 private:
5005   G1StringSymbolTableUnlinkTask _string_symbol_task;
5006   G1CodeCacheUnloadingTask      _code_cache_task;
5007   G1KlassCleaningTask           _klass_cleaning_task;
5008 
5009 public:
5010   // The constructor is run in the VMThread.
5011   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5012       AbstractGangTask("Parallel Cleaning"),
5013       _string_symbol_task(is_alive, process_strings, process_symbols),
5014       _code_cache_task(num_workers, is_alive, unloading_occurred),
5015       _klass_cleaning_task(is_alive) {
5016   }
5017 
5018   void pre_work_verification() {
5019     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5020   }
5021 
5022   void post_work_verification() {
5023     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5024   }
5025 
5026   // The parallel work done by all worker threads.
5027   void work(uint worker_id) {
5028     pre_work_verification();
5029 
5030     // Do first pass of code cache cleaning.
5031     _code_cache_task.work_first_pass(worker_id);
5032 
5033     // Let the threads mark that the first pass is done.
5034     _code_cache_task.barrier_mark(worker_id);
5035 
5036     // Clean the Strings and Symbols.
5037     _string_symbol_task.work(worker_id);
5038 
5039     // Wait for all workers to finish the first code cache cleaning pass.
5040     _code_cache_task.barrier_wait(worker_id);
5041 
5042     // Do the second code cache cleaning work, which realize on
5043     // the liveness information gathered during the first pass.
5044     _code_cache_task.work_second_pass(worker_id);
5045 
5046     // Clean all klasses that were not unloaded.
5047     _klass_cleaning_task.work();
5048 
5049     post_work_verification();
5050   }
5051 };
5052 
5053 
5054 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5055                                         bool process_strings,
5056                                         bool process_symbols,
5057                                         bool class_unloading_occurred) {
5058   uint n_workers = workers()->active_workers();
5059 
5060   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5061                                         n_workers, class_unloading_occurred);
5062   set_par_threads(n_workers);
5063   workers()->run_task(&g1_unlink_task);
5064   set_par_threads(0);
5065 }
5066 
5067 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5068                                                      bool process_strings, bool process_symbols) {
5069   {
5070     uint n_workers = _g1h->workers()->active_workers();
5071     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5072     set_par_threads(n_workers);
5073     workers()->run_task(&g1_unlink_task);
5074     set_par_threads(0);
5075   }
5076 
5077   if (G1StringDedup::is_enabled()) {
5078     G1StringDedup::unlink(is_alive);
5079   }
5080 }
5081 
5082 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5083  private:
5084   DirtyCardQueueSet* _queue;
5085  public:
5086   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5087 
5088   virtual void work(uint worker_id) {
5089     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
5090     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5091 
5092     RedirtyLoggedCardTableEntryClosure cl;
5093     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5094 
5095     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5096   }
5097 };
5098 
5099 void G1CollectedHeap::redirty_logged_cards() {
5100   double redirty_logged_cards_start = os::elapsedTime();
5101 
5102   uint n_workers = _g1h->workers()->active_workers();
5103 
5104   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5105   dirty_card_queue_set().reset_for_par_iteration();
5106   set_par_threads(n_workers);
5107   workers()->run_task(&redirty_task);
5108   set_par_threads(0);
5109 
5110   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5111   dcq.merge_bufferlists(&dirty_card_queue_set());
5112   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5113 
5114   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5115 }
5116 
5117 // Weak Reference Processing support
5118 
5119 // An always "is_alive" closure that is used to preserve referents.
5120 // If the object is non-null then it's alive.  Used in the preservation
5121 // of referent objects that are pointed to by reference objects
5122 // discovered by the CM ref processor.
5123 class G1AlwaysAliveClosure: public BoolObjectClosure {
5124   G1CollectedHeap* _g1;
5125 public:
5126   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5127   bool do_object_b(oop p) {
5128     if (p != NULL) {
5129       return true;
5130     }
5131     return false;
5132   }
5133 };
5134 
5135 bool G1STWIsAliveClosure::do_object_b(oop p) {
5136   // An object is reachable if it is outside the collection set,
5137   // or is inside and copied.
5138   return !_g1->obj_in_cs(p) || p->is_forwarded();
5139 }
5140 
5141 // Non Copying Keep Alive closure
5142 class G1KeepAliveClosure: public OopClosure {
5143   G1CollectedHeap* _g1;
5144 public:
5145   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5146   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5147   void do_oop(oop* p) {
5148     oop obj = *p;
5149     assert(obj != NULL, "the caller should have filtered out NULL values");
5150 
5151     const InCSetState cset_state = _g1->in_cset_state(obj);
5152     if (!cset_state.is_in_cset_or_humongous()) {
5153       return;
5154     }
5155     if (cset_state.is_in_cset()) {
5156       assert( obj->is_forwarded(), "invariant" );
5157       *p = obj->forwardee();
5158     } else {
5159       assert(!obj->is_forwarded(), "invariant" );
5160       assert(cset_state.is_humongous(),
5161              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5162       _g1->set_humongous_is_live(obj);
5163     }
5164   }
5165 };
5166 
5167 // Copying Keep Alive closure - can be called from both
5168 // serial and parallel code as long as different worker
5169 // threads utilize different G1ParScanThreadState instances
5170 // and different queues.
5171 
5172 class G1CopyingKeepAliveClosure: public OopClosure {
5173   G1CollectedHeap*         _g1h;
5174   OopClosure*              _copy_non_heap_obj_cl;
5175   G1ParScanThreadState*    _par_scan_state;
5176 
5177 public:
5178   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5179                             OopClosure* non_heap_obj_cl,
5180                             G1ParScanThreadState* pss):
5181     _g1h(g1h),
5182     _copy_non_heap_obj_cl(non_heap_obj_cl),
5183     _par_scan_state(pss)
5184   {}
5185 
5186   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5187   virtual void do_oop(      oop* p) { do_oop_work(p); }
5188 
5189   template <class T> void do_oop_work(T* p) {
5190     oop obj = oopDesc::load_decode_heap_oop(p);
5191 
5192     if (_g1h->is_in_cset_or_humongous(obj)) {
5193       // If the referent object has been forwarded (either copied
5194       // to a new location or to itself in the event of an
5195       // evacuation failure) then we need to update the reference
5196       // field and, if both reference and referent are in the G1
5197       // heap, update the RSet for the referent.
5198       //
5199       // If the referent has not been forwarded then we have to keep
5200       // it alive by policy. Therefore we have copy the referent.
5201       //
5202       // If the reference field is in the G1 heap then we can push
5203       // on the PSS queue. When the queue is drained (after each
5204       // phase of reference processing) the object and it's followers
5205       // will be copied, the reference field set to point to the
5206       // new location, and the RSet updated. Otherwise we need to
5207       // use the the non-heap or metadata closures directly to copy
5208       // the referent object and update the pointer, while avoiding
5209       // updating the RSet.
5210 
5211       if (_g1h->is_in_g1_reserved(p)) {
5212         _par_scan_state->push_on_queue(p);
5213       } else {
5214         assert(!Metaspace::contains((const void*)p),
5215                err_msg("Unexpectedly found a pointer from metadata: "
5216                               PTR_FORMAT, p));
5217         _copy_non_heap_obj_cl->do_oop(p);
5218       }
5219     }
5220   }
5221 };
5222 
5223 // Serial drain queue closure. Called as the 'complete_gc'
5224 // closure for each discovered list in some of the
5225 // reference processing phases.
5226 
5227 class G1STWDrainQueueClosure: public VoidClosure {
5228 protected:
5229   G1CollectedHeap* _g1h;
5230   G1ParScanThreadState* _par_scan_state;
5231 
5232   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5233 
5234 public:
5235   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5236     _g1h(g1h),
5237     _par_scan_state(pss)
5238   { }
5239 
5240   void do_void() {
5241     G1ParScanThreadState* const pss = par_scan_state();
5242     pss->trim_queue();
5243   }
5244 };
5245 
5246 // Parallel Reference Processing closures
5247 
5248 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5249 // processing during G1 evacuation pauses.
5250 
5251 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5252 private:
5253   G1CollectedHeap*   _g1h;
5254   RefToScanQueueSet* _queues;
5255   FlexibleWorkGang*  _workers;
5256   int                _active_workers;
5257 
5258 public:
5259   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5260                         FlexibleWorkGang* workers,
5261                         RefToScanQueueSet *task_queues,
5262                         int n_workers) :
5263     _g1h(g1h),
5264     _queues(task_queues),
5265     _workers(workers),
5266     _active_workers(n_workers)
5267   {
5268     assert(n_workers > 0, "shouldn't call this otherwise");
5269   }
5270 
5271   // Executes the given task using concurrent marking worker threads.
5272   virtual void execute(ProcessTask& task);
5273   virtual void execute(EnqueueTask& task);
5274 };
5275 
5276 // Gang task for possibly parallel reference processing
5277 
5278 class G1STWRefProcTaskProxy: public AbstractGangTask {
5279   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5280   ProcessTask&     _proc_task;
5281   G1CollectedHeap* _g1h;
5282   RefToScanQueueSet *_task_queues;
5283   ParallelTaskTerminator* _terminator;
5284 
5285 public:
5286   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5287                      G1CollectedHeap* g1h,
5288                      RefToScanQueueSet *task_queues,
5289                      ParallelTaskTerminator* terminator) :
5290     AbstractGangTask("Process reference objects in parallel"),
5291     _proc_task(proc_task),
5292     _g1h(g1h),
5293     _task_queues(task_queues),
5294     _terminator(terminator)
5295   {}
5296 
5297   virtual void work(uint worker_id) {
5298     // The reference processing task executed by a single worker.
5299     ResourceMark rm;
5300     HandleMark   hm;
5301 
5302     G1STWIsAliveClosure is_alive(_g1h);
5303 
5304     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5305     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5306 
5307     pss.set_evac_failure_closure(&evac_failure_cl);
5308 
5309     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5310 
5311     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5312 
5313     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5314 
5315     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5316       // We also need to mark copied objects.
5317       copy_non_heap_cl = &copy_mark_non_heap_cl;
5318     }
5319 
5320     // Keep alive closure.
5321     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5322 
5323     // Complete GC closure
5324     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5325 
5326     // Call the reference processing task's work routine.
5327     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5328 
5329     // Note we cannot assert that the refs array is empty here as not all
5330     // of the processing tasks (specifically phase2 - pp2_work) execute
5331     // the complete_gc closure (which ordinarily would drain the queue) so
5332     // the queue may not be empty.
5333   }
5334 };
5335 
5336 // Driver routine for parallel reference processing.
5337 // Creates an instance of the ref processing gang
5338 // task and has the worker threads execute it.
5339 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5340   assert(_workers != NULL, "Need parallel worker threads.");
5341 
5342   ParallelTaskTerminator terminator(_active_workers, _queues);
5343   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5344 
5345   _g1h->set_par_threads(_active_workers);
5346   _workers->run_task(&proc_task_proxy);
5347   _g1h->set_par_threads(0);
5348 }
5349 
5350 // Gang task for parallel reference enqueueing.
5351 
5352 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5353   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5354   EnqueueTask& _enq_task;
5355 
5356 public:
5357   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5358     AbstractGangTask("Enqueue reference objects in parallel"),
5359     _enq_task(enq_task)
5360   { }
5361 
5362   virtual void work(uint worker_id) {
5363     _enq_task.work(worker_id);
5364   }
5365 };
5366 
5367 // Driver routine for parallel reference enqueueing.
5368 // Creates an instance of the ref enqueueing gang
5369 // task and has the worker threads execute it.
5370 
5371 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5372   assert(_workers != NULL, "Need parallel worker threads.");
5373 
5374   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5375 
5376   _g1h->set_par_threads(_active_workers);
5377   _workers->run_task(&enq_task_proxy);
5378   _g1h->set_par_threads(0);
5379 }
5380 
5381 // End of weak reference support closures
5382 
5383 // Abstract task used to preserve (i.e. copy) any referent objects
5384 // that are in the collection set and are pointed to by reference
5385 // objects discovered by the CM ref processor.
5386 
5387 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5388 protected:
5389   G1CollectedHeap* _g1h;
5390   RefToScanQueueSet      *_queues;
5391   ParallelTaskTerminator _terminator;
5392   uint _n_workers;
5393 
5394 public:
5395   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5396     AbstractGangTask("ParPreserveCMReferents"),
5397     _g1h(g1h),
5398     _queues(task_queues),
5399     _terminator(workers, _queues),
5400     _n_workers(workers)
5401   { }
5402 
5403   void work(uint worker_id) {
5404     ResourceMark rm;
5405     HandleMark   hm;
5406 
5407     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5408     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5409 
5410     pss.set_evac_failure_closure(&evac_failure_cl);
5411 
5412     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5413 
5414     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5415 
5416     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5417 
5418     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5419 
5420     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5421       // We also need to mark copied objects.
5422       copy_non_heap_cl = &copy_mark_non_heap_cl;
5423     }
5424 
5425     // Is alive closure
5426     G1AlwaysAliveClosure always_alive(_g1h);
5427 
5428     // Copying keep alive closure. Applied to referent objects that need
5429     // to be copied.
5430     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5431 
5432     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5433 
5434     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5435     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5436 
5437     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5438     // So this must be true - but assert just in case someone decides to
5439     // change the worker ids.
5440     assert(0 <= worker_id && worker_id < limit, "sanity");
5441     assert(!rp->discovery_is_atomic(), "check this code");
5442 
5443     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5444     for (uint idx = worker_id; idx < limit; idx += stride) {
5445       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5446 
5447       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5448       while (iter.has_next()) {
5449         // Since discovery is not atomic for the CM ref processor, we
5450         // can see some null referent objects.
5451         iter.load_ptrs(DEBUG_ONLY(true));
5452         oop ref = iter.obj();
5453 
5454         // This will filter nulls.
5455         if (iter.is_referent_alive()) {
5456           iter.make_referent_alive();
5457         }
5458         iter.move_to_next();
5459       }
5460     }
5461 
5462     // Drain the queue - which may cause stealing
5463     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5464     drain_queue.do_void();
5465     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5466     assert(pss.queue_is_empty(), "should be");
5467   }
5468 };
5469 
5470 // Weak Reference processing during an evacuation pause (part 1).
5471 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5472   double ref_proc_start = os::elapsedTime();
5473 
5474   ReferenceProcessor* rp = _ref_processor_stw;
5475   assert(rp->discovery_enabled(), "should have been enabled");
5476 
5477   // Any reference objects, in the collection set, that were 'discovered'
5478   // by the CM ref processor should have already been copied (either by
5479   // applying the external root copy closure to the discovered lists, or
5480   // by following an RSet entry).
5481   //
5482   // But some of the referents, that are in the collection set, that these
5483   // reference objects point to may not have been copied: the STW ref
5484   // processor would have seen that the reference object had already
5485   // been 'discovered' and would have skipped discovering the reference,
5486   // but would not have treated the reference object as a regular oop.
5487   // As a result the copy closure would not have been applied to the
5488   // referent object.
5489   //
5490   // We need to explicitly copy these referent objects - the references
5491   // will be processed at the end of remarking.
5492   //
5493   // We also need to do this copying before we process the reference
5494   // objects discovered by the STW ref processor in case one of these
5495   // referents points to another object which is also referenced by an
5496   // object discovered by the STW ref processor.
5497 
5498   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5499 
5500   set_par_threads(no_of_gc_workers);
5501   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5502                                                  no_of_gc_workers,
5503                                                  _task_queues);
5504 
5505   workers()->run_task(&keep_cm_referents);
5506 
5507   set_par_threads(0);
5508 
5509   // Closure to test whether a referent is alive.
5510   G1STWIsAliveClosure is_alive(this);
5511 
5512   // Even when parallel reference processing is enabled, the processing
5513   // of JNI refs is serial and performed serially by the current thread
5514   // rather than by a worker. The following PSS will be used for processing
5515   // JNI refs.
5516 
5517   // Use only a single queue for this PSS.
5518   G1ParScanThreadState            pss(this, 0, NULL);
5519 
5520   // We do not embed a reference processor in the copying/scanning
5521   // closures while we're actually processing the discovered
5522   // reference objects.
5523   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5524 
5525   pss.set_evac_failure_closure(&evac_failure_cl);
5526 
5527   assert(pss.queue_is_empty(), "pre-condition");
5528 
5529   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5530 
5531   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5532 
5533   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5534 
5535   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5536     // We also need to mark copied objects.
5537     copy_non_heap_cl = &copy_mark_non_heap_cl;
5538   }
5539 
5540   // Keep alive closure.
5541   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5542 
5543   // Serial Complete GC closure
5544   G1STWDrainQueueClosure drain_queue(this, &pss);
5545 
5546   // Setup the soft refs policy...
5547   rp->setup_policy(false);
5548 
5549   ReferenceProcessorStats stats;
5550   if (!rp->processing_is_mt()) {
5551     // Serial reference processing...
5552     stats = rp->process_discovered_references(&is_alive,
5553                                               &keep_alive,
5554                                               &drain_queue,
5555                                               NULL,
5556                                               _gc_timer_stw,
5557                                               _gc_tracer_stw->gc_id());
5558   } else {
5559     // Parallel reference processing
5560     assert(rp->num_q() == no_of_gc_workers, "sanity");
5561     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5562 
5563     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5564     stats = rp->process_discovered_references(&is_alive,
5565                                               &keep_alive,
5566                                               &drain_queue,
5567                                               &par_task_executor,
5568                                               _gc_timer_stw,
5569                                               _gc_tracer_stw->gc_id());
5570   }
5571 
5572   _gc_tracer_stw->report_gc_reference_stats(stats);
5573 
5574   // We have completed copying any necessary live referent objects.
5575   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5576 
5577   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5578   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5579 }
5580 
5581 // Weak Reference processing during an evacuation pause (part 2).
5582 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5583   double ref_enq_start = os::elapsedTime();
5584 
5585   ReferenceProcessor* rp = _ref_processor_stw;
5586   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5587 
5588   // Now enqueue any remaining on the discovered lists on to
5589   // the pending list.
5590   if (!rp->processing_is_mt()) {
5591     // Serial reference processing...
5592     rp->enqueue_discovered_references();
5593   } else {
5594     // Parallel reference enqueueing
5595 
5596     assert(no_of_gc_workers == workers()->active_workers(),
5597            "Need to reset active workers");
5598     assert(rp->num_q() == no_of_gc_workers, "sanity");
5599     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5600 
5601     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5602     rp->enqueue_discovered_references(&par_task_executor);
5603   }
5604 
5605   rp->verify_no_references_recorded();
5606   assert(!rp->discovery_enabled(), "should have been disabled");
5607 
5608   // FIXME
5609   // CM's reference processing also cleans up the string and symbol tables.
5610   // Should we do that here also? We could, but it is a serial operation
5611   // and could significantly increase the pause time.
5612 
5613   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5614   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5615 }
5616 
5617 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5618   _expand_heap_after_alloc_failure = true;
5619   _evacuation_failed = false;
5620 
5621   // Should G1EvacuationFailureALot be in effect for this GC?
5622   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5623 
5624   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5625 
5626   // Disable the hot card cache.
5627   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5628   hot_card_cache->reset_hot_cache_claimed_index();
5629   hot_card_cache->set_use_cache(false);
5630 
5631   uint n_workers;
5632   n_workers =
5633     AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5634                                    workers()->active_workers(),
5635                                    Threads::number_of_non_daemon_threads());
5636   assert(UseDynamicNumberOfGCThreads ||
5637          n_workers == workers()->total_workers(),
5638          "If not dynamic should be using all the  workers");
5639   workers()->set_active_workers(n_workers);
5640   set_par_threads(n_workers);
5641 
5642   G1ParTask g1_par_task(this, _task_queues);
5643 
5644   init_for_evac_failure(NULL);
5645 
5646   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5647   double start_par_time_sec = os::elapsedTime();
5648   double end_par_time_sec;
5649 
5650   {
5651     StrongRootsScope srs(this);
5652     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5653     if (g1_policy()->during_initial_mark_pause()) {
5654       ClassLoaderDataGraph::clear_claimed_marks();
5655     }
5656 
5657      // The individual threads will set their evac-failure closures.
5658      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5659      // These tasks use ShareHeap::_process_strong_tasks
5660      assert(UseDynamicNumberOfGCThreads ||
5661             workers()->active_workers() == workers()->total_workers(),
5662             "If not dynamic should be using all the  workers");
5663     workers()->run_task(&g1_par_task);
5664     end_par_time_sec = os::elapsedTime();
5665 
5666     // Closing the inner scope will execute the destructor
5667     // for the StrongRootsScope object. We record the current
5668     // elapsed time before closing the scope so that time
5669     // taken for the SRS destructor is NOT included in the
5670     // reported parallel time.
5671   }
5672 
5673   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5674 
5675   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5676   phase_times->record_par_time(par_time_ms);
5677 
5678   double code_root_fixup_time_ms =
5679         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5680   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5681 
5682   set_par_threads(0);
5683 
5684   // Process any discovered reference objects - we have
5685   // to do this _before_ we retire the GC alloc regions
5686   // as we may have to copy some 'reachable' referent
5687   // objects (and their reachable sub-graphs) that were
5688   // not copied during the pause.
5689   process_discovered_references(n_workers);
5690 
5691   if (G1StringDedup::is_enabled()) {
5692     double fixup_start = os::elapsedTime();
5693 
5694     G1STWIsAliveClosure is_alive(this);
5695     G1KeepAliveClosure keep_alive(this);
5696     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5697 
5698     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5699     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5700   }
5701 
5702   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5703   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5704 
5705   // Reset and re-enable the hot card cache.
5706   // Note the counts for the cards in the regions in the
5707   // collection set are reset when the collection set is freed.
5708   hot_card_cache->reset_hot_cache();
5709   hot_card_cache->set_use_cache(true);
5710 
5711   purge_code_root_memory();
5712 
5713   finalize_for_evac_failure();
5714 
5715   if (evacuation_failed()) {
5716     remove_self_forwarding_pointers();
5717 
5718     // Reset the G1EvacuationFailureALot counters and flags
5719     // Note: the values are reset only when an actual
5720     // evacuation failure occurs.
5721     NOT_PRODUCT(reset_evacuation_should_fail();)
5722   }
5723 
5724   // Enqueue any remaining references remaining on the STW
5725   // reference processor's discovered lists. We need to do
5726   // this after the card table is cleaned (and verified) as
5727   // the act of enqueueing entries on to the pending list
5728   // will log these updates (and dirty their associated
5729   // cards). We need these updates logged to update any
5730   // RSets.
5731   enqueue_discovered_references(n_workers);
5732 
5733   redirty_logged_cards();
5734   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5735 }
5736 
5737 void G1CollectedHeap::free_region(HeapRegion* hr,
5738                                   FreeRegionList* free_list,
5739                                   bool par,
5740                                   bool locked) {
5741   assert(!hr->is_free(), "the region should not be free");
5742   assert(!hr->is_empty(), "the region should not be empty");
5743   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5744   assert(free_list != NULL, "pre-condition");
5745 
5746   if (G1VerifyBitmaps) {
5747     MemRegion mr(hr->bottom(), hr->end());
5748     concurrent_mark()->clearRangePrevBitmap(mr);
5749   }
5750 
5751   // Clear the card counts for this region.
5752   // Note: we only need to do this if the region is not young
5753   // (since we don't refine cards in young regions).
5754   if (!hr->is_young()) {
5755     _cg1r->hot_card_cache()->reset_card_counts(hr);
5756   }
5757   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5758   free_list->add_ordered(hr);
5759 }
5760 
5761 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5762                                      FreeRegionList* free_list,
5763                                      bool par) {
5764   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5765   assert(free_list != NULL, "pre-condition");
5766 
5767   size_t hr_capacity = hr->capacity();
5768   // We need to read this before we make the region non-humongous,
5769   // otherwise the information will be gone.
5770   uint last_index = hr->last_hc_index();
5771   hr->clear_humongous();
5772   free_region(hr, free_list, par);
5773 
5774   uint i = hr->hrm_index() + 1;
5775   while (i < last_index) {
5776     HeapRegion* curr_hr = region_at(i);
5777     assert(curr_hr->is_continues_humongous(), "invariant");
5778     curr_hr->clear_humongous();
5779     free_region(curr_hr, free_list, par);
5780     i += 1;
5781   }
5782 }
5783 
5784 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5785                                        const HeapRegionSetCount& humongous_regions_removed) {
5786   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5787     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5788     _old_set.bulk_remove(old_regions_removed);
5789     _humongous_set.bulk_remove(humongous_regions_removed);
5790   }
5791 
5792 }
5793 
5794 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5795   assert(list != NULL, "list can't be null");
5796   if (!list->is_empty()) {
5797     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5798     _hrm.insert_list_into_free_list(list);
5799   }
5800 }
5801 
5802 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5803   _allocator->decrease_used(bytes);
5804 }
5805 
5806 class G1ParCleanupCTTask : public AbstractGangTask {
5807   G1SATBCardTableModRefBS* _ct_bs;
5808   G1CollectedHeap* _g1h;
5809   HeapRegion* volatile _su_head;
5810 public:
5811   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5812                      G1CollectedHeap* g1h) :
5813     AbstractGangTask("G1 Par Cleanup CT Task"),
5814     _ct_bs(ct_bs), _g1h(g1h) { }
5815 
5816   void work(uint worker_id) {
5817     HeapRegion* r;
5818     while (r = _g1h->pop_dirty_cards_region()) {
5819       clear_cards(r);
5820     }
5821   }
5822 
5823   void clear_cards(HeapRegion* r) {
5824     // Cards of the survivors should have already been dirtied.
5825     if (!r->is_survivor()) {
5826       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5827     }
5828   }
5829 };
5830 
5831 #ifndef PRODUCT
5832 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5833   G1CollectedHeap* _g1h;
5834   G1SATBCardTableModRefBS* _ct_bs;
5835 public:
5836   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5837     : _g1h(g1h), _ct_bs(ct_bs) { }
5838   virtual bool doHeapRegion(HeapRegion* r) {
5839     if (r->is_survivor()) {
5840       _g1h->verify_dirty_region(r);
5841     } else {
5842       _g1h->verify_not_dirty_region(r);
5843     }
5844     return false;
5845   }
5846 };
5847 
5848 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5849   // All of the region should be clean.
5850   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5851   MemRegion mr(hr->bottom(), hr->end());
5852   ct_bs->verify_not_dirty_region(mr);
5853 }
5854 
5855 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5856   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5857   // dirty allocated blocks as they allocate them. The thread that
5858   // retires each region and replaces it with a new one will do a
5859   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5860   // not dirty that area (one less thing to have to do while holding
5861   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5862   // is dirty.
5863   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5864   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5865   if (hr->is_young()) {
5866     ct_bs->verify_g1_young_region(mr);
5867   } else {
5868     ct_bs->verify_dirty_region(mr);
5869   }
5870 }
5871 
5872 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5873   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5874   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5875     verify_dirty_region(hr);
5876   }
5877 }
5878 
5879 void G1CollectedHeap::verify_dirty_young_regions() {
5880   verify_dirty_young_list(_young_list->first_region());
5881 }
5882 
5883 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5884                                                HeapWord* tams, HeapWord* end) {
5885   guarantee(tams <= end,
5886             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5887   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5888   if (result < end) {
5889     gclog_or_tty->cr();
5890     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5891                            bitmap_name, result);
5892     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5893                            bitmap_name, tams, end);
5894     return false;
5895   }
5896   return true;
5897 }
5898 
5899 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5900   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5901   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5902 
5903   HeapWord* bottom = hr->bottom();
5904   HeapWord* ptams  = hr->prev_top_at_mark_start();
5905   HeapWord* ntams  = hr->next_top_at_mark_start();
5906   HeapWord* end    = hr->end();
5907 
5908   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5909 
5910   bool res_n = true;
5911   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5912   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5913   // if we happen to be in that state.
5914   if (mark_in_progress() || !_cmThread->in_progress()) {
5915     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5916   }
5917   if (!res_p || !res_n) {
5918     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5919                            HR_FORMAT_PARAMS(hr));
5920     gclog_or_tty->print_cr("#### Caller: %s", caller);
5921     return false;
5922   }
5923   return true;
5924 }
5925 
5926 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5927   if (!G1VerifyBitmaps) return;
5928 
5929   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5930 }
5931 
5932 class G1VerifyBitmapClosure : public HeapRegionClosure {
5933 private:
5934   const char* _caller;
5935   G1CollectedHeap* _g1h;
5936   bool _failures;
5937 
5938 public:
5939   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5940     _caller(caller), _g1h(g1h), _failures(false) { }
5941 
5942   bool failures() { return _failures; }
5943 
5944   virtual bool doHeapRegion(HeapRegion* hr) {
5945     if (hr->is_continues_humongous()) return false;
5946 
5947     bool result = _g1h->verify_bitmaps(_caller, hr);
5948     if (!result) {
5949       _failures = true;
5950     }
5951     return false;
5952   }
5953 };
5954 
5955 void G1CollectedHeap::check_bitmaps(const char* caller) {
5956   if (!G1VerifyBitmaps) return;
5957 
5958   G1VerifyBitmapClosure cl(caller, this);
5959   heap_region_iterate(&cl);
5960   guarantee(!cl.failures(), "bitmap verification");
5961 }
5962 
5963 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5964  private:
5965   bool _failures;
5966  public:
5967   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5968 
5969   virtual bool doHeapRegion(HeapRegion* hr) {
5970     uint i = hr->hrm_index();
5971     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5972     if (hr->is_humongous()) {
5973       if (hr->in_collection_set()) {
5974         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5975         _failures = true;
5976         return true;
5977       }
5978       if (cset_state.is_in_cset()) {
5979         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5980         _failures = true;
5981         return true;
5982       }
5983       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5984         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5985         _failures = true;
5986         return true;
5987       }
5988     } else {
5989       if (cset_state.is_humongous()) {
5990         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5991         _failures = true;
5992         return true;
5993       }
5994       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5995         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5996                                hr->in_collection_set(), cset_state.value(), i);
5997         _failures = true;
5998         return true;
5999       }
6000       if (cset_state.is_in_cset()) {
6001         if (hr->is_young() != (cset_state.is_young())) {
6002           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
6003                                  hr->is_young(), cset_state.value(), i);
6004           _failures = true;
6005           return true;
6006         }
6007         if (hr->is_old() != (cset_state.is_old())) {
6008           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
6009                                  hr->is_old(), cset_state.value(), i);
6010           _failures = true;
6011           return true;
6012         }
6013       }
6014     }
6015     return false;
6016   }
6017 
6018   bool failures() const { return _failures; }
6019 };
6020 
6021 bool G1CollectedHeap::check_cset_fast_test() {
6022   G1CheckCSetFastTableClosure cl;
6023   _hrm.iterate(&cl);
6024   return !cl.failures();
6025 }
6026 #endif // PRODUCT
6027 
6028 void G1CollectedHeap::cleanUpCardTable() {
6029   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6030   double start = os::elapsedTime();
6031 
6032   {
6033     // Iterate over the dirty cards region list.
6034     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6035 
6036     set_par_threads();
6037     workers()->run_task(&cleanup_task);
6038     set_par_threads(0);
6039 #ifndef PRODUCT
6040     if (G1VerifyCTCleanup || VerifyAfterGC) {
6041       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6042       heap_region_iterate(&cleanup_verifier);
6043     }
6044 #endif
6045   }
6046 
6047   double elapsed = os::elapsedTime() - start;
6048   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6049 }
6050 
6051 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6052   size_t pre_used = 0;
6053   FreeRegionList local_free_list("Local List for CSet Freeing");
6054 
6055   double young_time_ms     = 0.0;
6056   double non_young_time_ms = 0.0;
6057 
6058   // Since the collection set is a superset of the the young list,
6059   // all we need to do to clear the young list is clear its
6060   // head and length, and unlink any young regions in the code below
6061   _young_list->clear();
6062 
6063   G1CollectorPolicy* policy = g1_policy();
6064 
6065   double start_sec = os::elapsedTime();
6066   bool non_young = true;
6067 
6068   HeapRegion* cur = cs_head;
6069   int age_bound = -1;
6070   size_t rs_lengths = 0;
6071 
6072   while (cur != NULL) {
6073     assert(!is_on_master_free_list(cur), "sanity");
6074     if (non_young) {
6075       if (cur->is_young()) {
6076         double end_sec = os::elapsedTime();
6077         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6078         non_young_time_ms += elapsed_ms;
6079 
6080         start_sec = os::elapsedTime();
6081         non_young = false;
6082       }
6083     } else {
6084       if (!cur->is_young()) {
6085         double end_sec = os::elapsedTime();
6086         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6087         young_time_ms += elapsed_ms;
6088 
6089         start_sec = os::elapsedTime();
6090         non_young = true;
6091       }
6092     }
6093 
6094     rs_lengths += cur->rem_set()->occupied_locked();
6095 
6096     HeapRegion* next = cur->next_in_collection_set();
6097     assert(cur->in_collection_set(), "bad CS");
6098     cur->set_next_in_collection_set(NULL);
6099     clear_in_cset(cur);
6100 
6101     if (cur->is_young()) {
6102       int index = cur->young_index_in_cset();
6103       assert(index != -1, "invariant");
6104       assert((uint) index < policy->young_cset_region_length(), "invariant");
6105       size_t words_survived = _surviving_young_words[index];
6106       cur->record_surv_words_in_group(words_survived);
6107 
6108       // At this point the we have 'popped' cur from the collection set
6109       // (linked via next_in_collection_set()) but it is still in the
6110       // young list (linked via next_young_region()). Clear the
6111       // _next_young_region field.
6112       cur->set_next_young_region(NULL);
6113     } else {
6114       int index = cur->young_index_in_cset();
6115       assert(index == -1, "invariant");
6116     }
6117 
6118     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6119             (!cur->is_young() && cur->young_index_in_cset() == -1),
6120             "invariant" );
6121 
6122     if (!cur->evacuation_failed()) {
6123       MemRegion used_mr = cur->used_region();
6124 
6125       // And the region is empty.
6126       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6127       pre_used += cur->used();
6128       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6129     } else {
6130       cur->uninstall_surv_rate_group();
6131       if (cur->is_young()) {
6132         cur->set_young_index_in_cset(-1);
6133       }
6134       cur->set_evacuation_failed(false);
6135       // The region is now considered to be old.
6136       cur->set_old();
6137       _old_set.add(cur);
6138       evacuation_info.increment_collectionset_used_after(cur->used());
6139     }
6140     cur = next;
6141   }
6142 
6143   evacuation_info.set_regions_freed(local_free_list.length());
6144   policy->record_max_rs_lengths(rs_lengths);
6145   policy->cset_regions_freed();
6146 
6147   double end_sec = os::elapsedTime();
6148   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6149 
6150   if (non_young) {
6151     non_young_time_ms += elapsed_ms;
6152   } else {
6153     young_time_ms += elapsed_ms;
6154   }
6155 
6156   prepend_to_freelist(&local_free_list);
6157   decrement_summary_bytes(pre_used);
6158   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6159   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6160 }
6161 
6162 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6163  private:
6164   FreeRegionList* _free_region_list;
6165   HeapRegionSet* _proxy_set;
6166   HeapRegionSetCount _humongous_regions_removed;
6167   size_t _freed_bytes;
6168  public:
6169 
6170   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6171     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6172   }
6173 
6174   virtual bool doHeapRegion(HeapRegion* r) {
6175     if (!r->is_starts_humongous()) {
6176       return false;
6177     }
6178 
6179     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6180 
6181     oop obj = (oop)r->bottom();
6182     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6183 
6184     // The following checks whether the humongous object is live are sufficient.
6185     // The main additional check (in addition to having a reference from the roots
6186     // or the young gen) is whether the humongous object has a remembered set entry.
6187     //
6188     // A humongous object cannot be live if there is no remembered set for it
6189     // because:
6190     // - there can be no references from within humongous starts regions referencing
6191     // the object because we never allocate other objects into them.
6192     // (I.e. there are no intra-region references that may be missed by the
6193     // remembered set)
6194     // - as soon there is a remembered set entry to the humongous starts region
6195     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6196     // until the end of a concurrent mark.
6197     //
6198     // It is not required to check whether the object has been found dead by marking
6199     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6200     // all objects allocated during that time are considered live.
6201     // SATB marking is even more conservative than the remembered set.
6202     // So if at this point in the collection there is no remembered set entry,
6203     // nobody has a reference to it.
6204     // At the start of collection we flush all refinement logs, and remembered sets
6205     // are completely up-to-date wrt to references to the humongous object.
6206     //
6207     // Other implementation considerations:
6208     // - never consider object arrays at this time because they would pose
6209     // considerable effort for cleaning up the the remembered sets. This is
6210     // required because stale remembered sets might reference locations that
6211     // are currently allocated into.
6212     uint region_idx = r->hrm_index();
6213     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6214         !r->rem_set()->is_empty()) {
6215 
6216       if (G1TraceEagerReclaimHumongousObjects) {
6217         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6218                                region_idx,
6219                                obj->size()*HeapWordSize,
6220                                r->bottom(),
6221                                r->region_num(),
6222                                r->rem_set()->occupied(),
6223                                r->rem_set()->strong_code_roots_list_length(),
6224                                next_bitmap->isMarked(r->bottom()),
6225                                g1h->is_humongous_reclaim_candidate(region_idx),
6226                                obj->is_typeArray()
6227                               );
6228       }
6229 
6230       return false;
6231     }
6232 
6233     guarantee(obj->is_typeArray(),
6234               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6235                       PTR_FORMAT " is not.",
6236                       r->bottom()));
6237 
6238     if (G1TraceEagerReclaimHumongousObjects) {
6239       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6240                              region_idx,
6241                              obj->size()*HeapWordSize,
6242                              r->bottom(),
6243                              r->region_num(),
6244                              r->rem_set()->occupied(),
6245                              r->rem_set()->strong_code_roots_list_length(),
6246                              next_bitmap->isMarked(r->bottom()),
6247                              g1h->is_humongous_reclaim_candidate(region_idx),
6248                              obj->is_typeArray()
6249                             );
6250     }
6251     // Need to clear mark bit of the humongous object if already set.
6252     if (next_bitmap->isMarked(r->bottom())) {
6253       next_bitmap->clear(r->bottom());
6254     }
6255     _freed_bytes += r->used();
6256     r->set_containing_set(NULL);
6257     _humongous_regions_removed.increment(1u, r->capacity());
6258     g1h->free_humongous_region(r, _free_region_list, false);
6259 
6260     return false;
6261   }
6262 
6263   HeapRegionSetCount& humongous_free_count() {
6264     return _humongous_regions_removed;
6265   }
6266 
6267   size_t bytes_freed() const {
6268     return _freed_bytes;
6269   }
6270 
6271   size_t humongous_reclaimed() const {
6272     return _humongous_regions_removed.length();
6273   }
6274 };
6275 
6276 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6277   assert_at_safepoint(true);
6278 
6279   if (!G1EagerReclaimHumongousObjects ||
6280       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6281     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6282     return;
6283   }
6284 
6285   double start_time = os::elapsedTime();
6286 
6287   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6288 
6289   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6290   heap_region_iterate(&cl);
6291 
6292   HeapRegionSetCount empty_set;
6293   remove_from_old_sets(empty_set, cl.humongous_free_count());
6294 
6295   G1HRPrinter* hr_printer = _g1h->hr_printer();
6296   if (hr_printer->is_active()) {
6297     FreeRegionListIterator iter(&local_cleanup_list);
6298     while (iter.more_available()) {
6299       HeapRegion* hr = iter.get_next();
6300       hr_printer->cleanup(hr);
6301     }
6302   }
6303 
6304   prepend_to_freelist(&local_cleanup_list);
6305   decrement_summary_bytes(cl.bytes_freed());
6306 
6307   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6308                                                                     cl.humongous_reclaimed());
6309 }
6310 
6311 // This routine is similar to the above but does not record
6312 // any policy statistics or update free lists; we are abandoning
6313 // the current incremental collection set in preparation of a
6314 // full collection. After the full GC we will start to build up
6315 // the incremental collection set again.
6316 // This is only called when we're doing a full collection
6317 // and is immediately followed by the tearing down of the young list.
6318 
6319 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6320   HeapRegion* cur = cs_head;
6321 
6322   while (cur != NULL) {
6323     HeapRegion* next = cur->next_in_collection_set();
6324     assert(cur->in_collection_set(), "bad CS");
6325     cur->set_next_in_collection_set(NULL);
6326     clear_in_cset(cur);
6327     cur->set_young_index_in_cset(-1);
6328     cur = next;
6329   }
6330 }
6331 
6332 void G1CollectedHeap::set_free_regions_coming() {
6333   if (G1ConcRegionFreeingVerbose) {
6334     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6335                            "setting free regions coming");
6336   }
6337 
6338   assert(!free_regions_coming(), "pre-condition");
6339   _free_regions_coming = true;
6340 }
6341 
6342 void G1CollectedHeap::reset_free_regions_coming() {
6343   assert(free_regions_coming(), "pre-condition");
6344 
6345   {
6346     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6347     _free_regions_coming = false;
6348     SecondaryFreeList_lock->notify_all();
6349   }
6350 
6351   if (G1ConcRegionFreeingVerbose) {
6352     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6353                            "reset free regions coming");
6354   }
6355 }
6356 
6357 void G1CollectedHeap::wait_while_free_regions_coming() {
6358   // Most of the time we won't have to wait, so let's do a quick test
6359   // first before we take the lock.
6360   if (!free_regions_coming()) {
6361     return;
6362   }
6363 
6364   if (G1ConcRegionFreeingVerbose) {
6365     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6366                            "waiting for free regions");
6367   }
6368 
6369   {
6370     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6371     while (free_regions_coming()) {
6372       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6373     }
6374   }
6375 
6376   if (G1ConcRegionFreeingVerbose) {
6377     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6378                            "done waiting for free regions");
6379   }
6380 }
6381 
6382 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6383   assert(heap_lock_held_for_gc(),
6384               "the heap lock should already be held by or for this thread");
6385   _young_list->push_region(hr);
6386 }
6387 
6388 class NoYoungRegionsClosure: public HeapRegionClosure {
6389 private:
6390   bool _success;
6391 public:
6392   NoYoungRegionsClosure() : _success(true) { }
6393   bool doHeapRegion(HeapRegion* r) {
6394     if (r->is_young()) {
6395       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6396                              r->bottom(), r->end());
6397       _success = false;
6398     }
6399     return false;
6400   }
6401   bool success() { return _success; }
6402 };
6403 
6404 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6405   bool ret = _young_list->check_list_empty(check_sample);
6406 
6407   if (check_heap) {
6408     NoYoungRegionsClosure closure;
6409     heap_region_iterate(&closure);
6410     ret = ret && closure.success();
6411   }
6412 
6413   return ret;
6414 }
6415 
6416 class TearDownRegionSetsClosure : public HeapRegionClosure {
6417 private:
6418   HeapRegionSet *_old_set;
6419 
6420 public:
6421   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6422 
6423   bool doHeapRegion(HeapRegion* r) {
6424     if (r->is_old()) {
6425       _old_set->remove(r);
6426     } else {
6427       // We ignore free regions, we'll empty the free list afterwards.
6428       // We ignore young regions, we'll empty the young list afterwards.
6429       // We ignore humongous regions, we're not tearing down the
6430       // humongous regions set.
6431       assert(r->is_free() || r->is_young() || r->is_humongous(),
6432              "it cannot be another type");
6433     }
6434     return false;
6435   }
6436 
6437   ~TearDownRegionSetsClosure() {
6438     assert(_old_set->is_empty(), "post-condition");
6439   }
6440 };
6441 
6442 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6443   assert_at_safepoint(true /* should_be_vm_thread */);
6444 
6445   if (!free_list_only) {
6446     TearDownRegionSetsClosure cl(&_old_set);
6447     heap_region_iterate(&cl);
6448 
6449     // Note that emptying the _young_list is postponed and instead done as
6450     // the first step when rebuilding the regions sets again. The reason for
6451     // this is that during a full GC string deduplication needs to know if
6452     // a collected region was young or old when the full GC was initiated.
6453   }
6454   _hrm.remove_all_free_regions();
6455 }
6456 
6457 class RebuildRegionSetsClosure : public HeapRegionClosure {
6458 private:
6459   bool            _free_list_only;
6460   HeapRegionSet*   _old_set;
6461   HeapRegionManager*   _hrm;
6462   size_t          _total_used;
6463 
6464 public:
6465   RebuildRegionSetsClosure(bool free_list_only,
6466                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6467     _free_list_only(free_list_only),
6468     _old_set(old_set), _hrm(hrm), _total_used(0) {
6469     assert(_hrm->num_free_regions() == 0, "pre-condition");
6470     if (!free_list_only) {
6471       assert(_old_set->is_empty(), "pre-condition");
6472     }
6473   }
6474 
6475   bool doHeapRegion(HeapRegion* r) {
6476     if (r->is_continues_humongous()) {
6477       return false;
6478     }
6479 
6480     if (r->is_empty()) {
6481       // Add free regions to the free list
6482       r->set_free();
6483       r->set_allocation_context(AllocationContext::system());
6484       _hrm->insert_into_free_list(r);
6485     } else if (!_free_list_only) {
6486       assert(!r->is_young(), "we should not come across young regions");
6487 
6488       if (r->is_humongous()) {
6489         // We ignore humongous regions, we left the humongous set unchanged
6490       } else {
6491         // Objects that were compacted would have ended up on regions
6492         // that were previously old or free.
6493         assert(r->is_free() || r->is_old(), "invariant");
6494         // We now consider them old, so register as such.
6495         r->set_old();
6496         _old_set->add(r);
6497       }
6498       _total_used += r->used();
6499     }
6500 
6501     return false;
6502   }
6503 
6504   size_t total_used() {
6505     return _total_used;
6506   }
6507 };
6508 
6509 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6510   assert_at_safepoint(true /* should_be_vm_thread */);
6511 
6512   if (!free_list_only) {
6513     _young_list->empty_list();
6514   }
6515 
6516   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6517   heap_region_iterate(&cl);
6518 
6519   if (!free_list_only) {
6520     _allocator->set_used(cl.total_used());
6521   }
6522   assert(_allocator->used_unlocked() == recalculate_used(),
6523          err_msg("inconsistent _allocator->used_unlocked(), "
6524                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6525                  _allocator->used_unlocked(), recalculate_used()));
6526 }
6527 
6528 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6529   _refine_cte_cl->set_concurrent(concurrent);
6530 }
6531 
6532 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6533   HeapRegion* hr = heap_region_containing(p);
6534   return hr->is_in(p);
6535 }
6536 
6537 // Methods for the mutator alloc region
6538 
6539 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6540                                                       bool force) {
6541   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6542   assert(!force || g1_policy()->can_expand_young_list(),
6543          "if force is true we should be able to expand the young list");
6544   bool young_list_full = g1_policy()->is_young_list_full();
6545   if (force || !young_list_full) {
6546     HeapRegion* new_alloc_region = new_region(word_size,
6547                                               false /* is_old */,
6548                                               false /* do_expand */);
6549     if (new_alloc_region != NULL) {
6550       set_region_short_lived_locked(new_alloc_region);
6551       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6552       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6553       return new_alloc_region;
6554     }
6555   }
6556   return NULL;
6557 }
6558 
6559 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6560                                                   size_t allocated_bytes) {
6561   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6562   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6563 
6564   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6565   _allocator->increase_used(allocated_bytes);
6566   _hr_printer.retire(alloc_region);
6567   // We update the eden sizes here, when the region is retired,
6568   // instead of when it's allocated, since this is the point that its
6569   // used space has been recored in _summary_bytes_used.
6570   g1mm()->update_eden_size();
6571 }
6572 
6573 void G1CollectedHeap::set_par_threads() {
6574   // Don't change the number of workers.  Use the value previously set
6575   // in the workgroup.
6576   uint n_workers = workers()->active_workers();
6577   assert(UseDynamicNumberOfGCThreads ||
6578            n_workers == workers()->total_workers(),
6579       "Otherwise should be using the total number of workers");
6580   if (n_workers == 0) {
6581     assert(false, "Should have been set in prior evacuation pause.");
6582     n_workers = ParallelGCThreads;
6583     workers()->set_active_workers(n_workers);
6584   }
6585   set_par_threads(n_workers);
6586 }
6587 
6588 // Methods for the GC alloc regions
6589 
6590 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6591                                                  uint count,
6592                                                  InCSetState dest) {
6593   assert(FreeList_lock->owned_by_self(), "pre-condition");
6594 
6595   if (count < g1_policy()->max_regions(dest)) {
6596     const bool is_survivor = (dest.is_young());
6597     HeapRegion* new_alloc_region = new_region(word_size,
6598                                               !is_survivor,
6599                                               true /* do_expand */);
6600     if (new_alloc_region != NULL) {
6601       // We really only need to do this for old regions given that we
6602       // should never scan survivors. But it doesn't hurt to do it
6603       // for survivors too.
6604       new_alloc_region->record_timestamp();
6605       if (is_survivor) {
6606         new_alloc_region->set_survivor();
6607         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6608         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6609       } else {
6610         new_alloc_region->set_old();
6611         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6612         check_bitmaps("Old Region Allocation", new_alloc_region);
6613       }
6614       bool during_im = g1_policy()->during_initial_mark_pause();
6615       new_alloc_region->note_start_of_copying(during_im);
6616       return new_alloc_region;
6617     }
6618   }
6619   return NULL;
6620 }
6621 
6622 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6623                                              size_t allocated_bytes,
6624                                              InCSetState dest) {
6625   bool during_im = g1_policy()->during_initial_mark_pause();
6626   alloc_region->note_end_of_copying(during_im);
6627   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6628   if (dest.is_young()) {
6629     young_list()->add_survivor_region(alloc_region);
6630   } else {
6631     _old_set.add(alloc_region);
6632   }
6633   _hr_printer.retire(alloc_region);
6634 }
6635 
6636 // Heap region set verification
6637 
6638 class VerifyRegionListsClosure : public HeapRegionClosure {
6639 private:
6640   HeapRegionSet*   _old_set;
6641   HeapRegionSet*   _humongous_set;
6642   HeapRegionManager*   _hrm;
6643 
6644 public:
6645   HeapRegionSetCount _old_count;
6646   HeapRegionSetCount _humongous_count;
6647   HeapRegionSetCount _free_count;
6648 
6649   VerifyRegionListsClosure(HeapRegionSet* old_set,
6650                            HeapRegionSet* humongous_set,
6651                            HeapRegionManager* hrm) :
6652     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6653     _old_count(), _humongous_count(), _free_count(){ }
6654 
6655   bool doHeapRegion(HeapRegion* hr) {
6656     if (hr->is_continues_humongous()) {
6657       return false;
6658     }
6659 
6660     if (hr->is_young()) {
6661       // TODO
6662     } else if (hr->is_starts_humongous()) {
6663       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6664       _humongous_count.increment(1u, hr->capacity());
6665     } else if (hr->is_empty()) {
6666       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6667       _free_count.increment(1u, hr->capacity());
6668     } else if (hr->is_old()) {
6669       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6670       _old_count.increment(1u, hr->capacity());
6671     } else {
6672       ShouldNotReachHere();
6673     }
6674     return false;
6675   }
6676 
6677   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6678     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6679     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6680         old_set->total_capacity_bytes(), _old_count.capacity()));
6681 
6682     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6683     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6684         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6685 
6686     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6687     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6688         free_list->total_capacity_bytes(), _free_count.capacity()));
6689   }
6690 };
6691 
6692 void G1CollectedHeap::verify_region_sets() {
6693   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6694 
6695   // First, check the explicit lists.
6696   _hrm.verify();
6697   {
6698     // Given that a concurrent operation might be adding regions to
6699     // the secondary free list we have to take the lock before
6700     // verifying it.
6701     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6702     _secondary_free_list.verify_list();
6703   }
6704 
6705   // If a concurrent region freeing operation is in progress it will
6706   // be difficult to correctly attributed any free regions we come
6707   // across to the correct free list given that they might belong to
6708   // one of several (free_list, secondary_free_list, any local lists,
6709   // etc.). So, if that's the case we will skip the rest of the
6710   // verification operation. Alternatively, waiting for the concurrent
6711   // operation to complete will have a non-trivial effect on the GC's
6712   // operation (no concurrent operation will last longer than the
6713   // interval between two calls to verification) and it might hide
6714   // any issues that we would like to catch during testing.
6715   if (free_regions_coming()) {
6716     return;
6717   }
6718 
6719   // Make sure we append the secondary_free_list on the free_list so
6720   // that all free regions we will come across can be safely
6721   // attributed to the free_list.
6722   append_secondary_free_list_if_not_empty_with_lock();
6723 
6724   // Finally, make sure that the region accounting in the lists is
6725   // consistent with what we see in the heap.
6726 
6727   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6728   heap_region_iterate(&cl);
6729   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6730 }
6731 
6732 // Optimized nmethod scanning
6733 
6734 class RegisterNMethodOopClosure: public OopClosure {
6735   G1CollectedHeap* _g1h;
6736   nmethod* _nm;
6737 
6738   template <class T> void do_oop_work(T* p) {
6739     T heap_oop = oopDesc::load_heap_oop(p);
6740     if (!oopDesc::is_null(heap_oop)) {
6741       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6742       HeapRegion* hr = _g1h->heap_region_containing(obj);
6743       assert(!hr->is_continues_humongous(),
6744              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6745                      " starting at "HR_FORMAT,
6746                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6747 
6748       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6749       hr->add_strong_code_root_locked(_nm);
6750     }
6751   }
6752 
6753 public:
6754   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6755     _g1h(g1h), _nm(nm) {}
6756 
6757   void do_oop(oop* p)       { do_oop_work(p); }
6758   void do_oop(narrowOop* p) { do_oop_work(p); }
6759 };
6760 
6761 class UnregisterNMethodOopClosure: public OopClosure {
6762   G1CollectedHeap* _g1h;
6763   nmethod* _nm;
6764 
6765   template <class T> void do_oop_work(T* p) {
6766     T heap_oop = oopDesc::load_heap_oop(p);
6767     if (!oopDesc::is_null(heap_oop)) {
6768       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6769       HeapRegion* hr = _g1h->heap_region_containing(obj);
6770       assert(!hr->is_continues_humongous(),
6771              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6772                      " starting at "HR_FORMAT,
6773                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6774 
6775       hr->remove_strong_code_root(_nm);
6776     }
6777   }
6778 
6779 public:
6780   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6781     _g1h(g1h), _nm(nm) {}
6782 
6783   void do_oop(oop* p)       { do_oop_work(p); }
6784   void do_oop(narrowOop* p) { do_oop_work(p); }
6785 };
6786 
6787 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6788   CollectedHeap::register_nmethod(nm);
6789 
6790   guarantee(nm != NULL, "sanity");
6791   RegisterNMethodOopClosure reg_cl(this, nm);
6792   nm->oops_do(&reg_cl);
6793 }
6794 
6795 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6796   CollectedHeap::unregister_nmethod(nm);
6797 
6798   guarantee(nm != NULL, "sanity");
6799   UnregisterNMethodOopClosure reg_cl(this, nm);
6800   nm->oops_do(&reg_cl, true);
6801 }
6802 
6803 void G1CollectedHeap::purge_code_root_memory() {
6804   double purge_start = os::elapsedTime();
6805   G1CodeRootSet::purge();
6806   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6807   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6808 }
6809 
6810 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6811   G1CollectedHeap* _g1h;
6812 
6813 public:
6814   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6815     _g1h(g1h) {}
6816 
6817   void do_code_blob(CodeBlob* cb) {
6818     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6819     if (nm == NULL) {
6820       return;
6821     }
6822 
6823     if (ScavengeRootsInCode) {
6824       _g1h->register_nmethod(nm);
6825     }
6826   }
6827 };
6828 
6829 void G1CollectedHeap::rebuild_strong_code_roots() {
6830   RebuildStrongCodeRootClosure blob_cl(this);
6831   CodeCache::blobs_do(&blob_cl);
6832 }