1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1RootProcessor.hpp"
  52 #include "gc_implementation/g1/g1StringDedup.hpp"
  53 #include "gc_implementation/g1/g1YCTypes.hpp"
  54 #include "gc_implementation/g1/heapRegion.inline.hpp"
  55 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  56 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  57 #include "gc_implementation/g1/vm_operations_g1.hpp"
  58 #include "gc_implementation/shared/gcHeapSummary.hpp"
  59 #include "gc_implementation/shared/gcTimer.hpp"
  60 #include "gc_implementation/shared/gcTrace.hpp"
  61 #include "gc_implementation/shared/gcTraceTime.hpp"
  62 #include "gc_implementation/shared/isGCActiveMark.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/gcLocker.inline.hpp"
  65 #include "memory/generationSpec.hpp"
  66 #include "memory/iterator.hpp"
  67 #include "memory/referenceProcessor.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 
  74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  75 
  76 // turn it on so that the contents of the young list (scan-only /
  77 // to-be-collected) are printed at "strategic" points before / during
  78 // / after the collection --- this is useful for debugging
  79 #define YOUNG_LIST_VERBOSE 0
  80 // CURRENT STATUS
  81 // This file is under construction.  Search for "FIXME".
  82 
  83 // INVARIANTS/NOTES
  84 //
  85 // All allocation activity covered by the G1CollectedHeap interface is
  86 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  87 // and allocate_new_tlab, which are the "entry" points to the
  88 // allocation code from the rest of the JVM.  (Note that this does not
  89 // apply to TLAB allocation, which is not part of this interface: it
  90 // is done by clients of this interface.)
  91 
  92 // Local to this file.
  93 
  94 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  95   bool _concurrent;
  96 public:
  97   RefineCardTableEntryClosure() : _concurrent(true) { }
  98 
  99   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 100     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 101     // This path is executed by the concurrent refine or mutator threads,
 102     // concurrently, and so we do not care if card_ptr contains references
 103     // that point into the collection set.
 104     assert(!oops_into_cset, "should be");
 105 
 106     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 107       // Caller will actually yield.
 108       return false;
 109     }
 110     // Otherwise, we finished successfully; return true.
 111     return true;
 112   }
 113 
 114   void set_concurrent(bool b) { _concurrent = b; }
 115 };
 116 
 117 
 118 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 119  private:
 120   size_t _num_processed;
 121 
 122  public:
 123   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 124 
 125   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 126     *card_ptr = CardTableModRefBS::dirty_card_val();
 127     _num_processed++;
 128     return true;
 129   }
 130 
 131   size_t num_processed() const { return _num_processed; }
 132 };
 133 
 134 YoungList::YoungList(G1CollectedHeap* g1h) :
 135     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 136     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 137   guarantee(check_list_empty(false), "just making sure...");
 138 }
 139 
 140 void YoungList::push_region(HeapRegion *hr) {
 141   assert(!hr->is_young(), "should not already be young");
 142   assert(hr->get_next_young_region() == NULL, "cause it should!");
 143 
 144   hr->set_next_young_region(_head);
 145   _head = hr;
 146 
 147   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 148   ++_length;
 149 }
 150 
 151 void YoungList::add_survivor_region(HeapRegion* hr) {
 152   assert(hr->is_survivor(), "should be flagged as survivor region");
 153   assert(hr->get_next_young_region() == NULL, "cause it should!");
 154 
 155   hr->set_next_young_region(_survivor_head);
 156   if (_survivor_head == NULL) {
 157     _survivor_tail = hr;
 158   }
 159   _survivor_head = hr;
 160   ++_survivor_length;
 161 }
 162 
 163 void YoungList::empty_list(HeapRegion* list) {
 164   while (list != NULL) {
 165     HeapRegion* next = list->get_next_young_region();
 166     list->set_next_young_region(NULL);
 167     list->uninstall_surv_rate_group();
 168     // This is called before a Full GC and all the non-empty /
 169     // non-humongous regions at the end of the Full GC will end up as
 170     // old anyway.
 171     list->set_old();
 172     list = next;
 173   }
 174 }
 175 
 176 void YoungList::empty_list() {
 177   assert(check_list_well_formed(), "young list should be well formed");
 178 
 179   empty_list(_head);
 180   _head = NULL;
 181   _length = 0;
 182 
 183   empty_list(_survivor_head);
 184   _survivor_head = NULL;
 185   _survivor_tail = NULL;
 186   _survivor_length = 0;
 187 
 188   _last_sampled_rs_lengths = 0;
 189 
 190   assert(check_list_empty(false), "just making sure...");
 191 }
 192 
 193 bool YoungList::check_list_well_formed() {
 194   bool ret = true;
 195 
 196   uint length = 0;
 197   HeapRegion* curr = _head;
 198   HeapRegion* last = NULL;
 199   while (curr != NULL) {
 200     if (!curr->is_young()) {
 201       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 202                              "incorrectly tagged (y: %d, surv: %d)",
 203                              curr->bottom(), curr->end(),
 204                              curr->is_young(), curr->is_survivor());
 205       ret = false;
 206     }
 207     ++length;
 208     last = curr;
 209     curr = curr->get_next_young_region();
 210   }
 211   ret = ret && (length == _length);
 212 
 213   if (!ret) {
 214     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 215     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 216                            length, _length);
 217   }
 218 
 219   return ret;
 220 }
 221 
 222 bool YoungList::check_list_empty(bool check_sample) {
 223   bool ret = true;
 224 
 225   if (_length != 0) {
 226     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 227                   _length);
 228     ret = false;
 229   }
 230   if (check_sample && _last_sampled_rs_lengths != 0) {
 231     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 232     ret = false;
 233   }
 234   if (_head != NULL) {
 235     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 236     ret = false;
 237   }
 238   if (!ret) {
 239     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 240   }
 241 
 242   return ret;
 243 }
 244 
 245 void
 246 YoungList::rs_length_sampling_init() {
 247   _sampled_rs_lengths = 0;
 248   _curr               = _head;
 249 }
 250 
 251 bool
 252 YoungList::rs_length_sampling_more() {
 253   return _curr != NULL;
 254 }
 255 
 256 void
 257 YoungList::rs_length_sampling_next() {
 258   assert( _curr != NULL, "invariant" );
 259   size_t rs_length = _curr->rem_set()->occupied();
 260 
 261   _sampled_rs_lengths += rs_length;
 262 
 263   // The current region may not yet have been added to the
 264   // incremental collection set (it gets added when it is
 265   // retired as the current allocation region).
 266   if (_curr->in_collection_set()) {
 267     // Update the collection set policy information for this region
 268     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 269   }
 270 
 271   _curr = _curr->get_next_young_region();
 272   if (_curr == NULL) {
 273     _last_sampled_rs_lengths = _sampled_rs_lengths;
 274     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 275   }
 276 }
 277 
 278 void
 279 YoungList::reset_auxilary_lists() {
 280   guarantee( is_empty(), "young list should be empty" );
 281   assert(check_list_well_formed(), "young list should be well formed");
 282 
 283   // Add survivor regions to SurvRateGroup.
 284   _g1h->g1_policy()->note_start_adding_survivor_regions();
 285   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 286 
 287   int young_index_in_cset = 0;
 288   for (HeapRegion* curr = _survivor_head;
 289        curr != NULL;
 290        curr = curr->get_next_young_region()) {
 291     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 292 
 293     // The region is a non-empty survivor so let's add it to
 294     // the incremental collection set for the next evacuation
 295     // pause.
 296     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 297     young_index_in_cset += 1;
 298   }
 299   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 300   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 301 
 302   _head   = _survivor_head;
 303   _length = _survivor_length;
 304   if (_survivor_head != NULL) {
 305     assert(_survivor_tail != NULL, "cause it shouldn't be");
 306     assert(_survivor_length > 0, "invariant");
 307     _survivor_tail->set_next_young_region(NULL);
 308   }
 309 
 310   // Don't clear the survivor list handles until the start of
 311   // the next evacuation pause - we need it in order to re-tag
 312   // the survivor regions from this evacuation pause as 'young'
 313   // at the start of the next.
 314 
 315   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 316 
 317   assert(check_list_well_formed(), "young list should be well formed");
 318 }
 319 
 320 void YoungList::print() {
 321   HeapRegion* lists[] = {_head,   _survivor_head};
 322   const char* names[] = {"YOUNG", "SURVIVOR"};
 323 
 324   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 325     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 326     HeapRegion *curr = lists[list];
 327     if (curr == NULL)
 328       gclog_or_tty->print_cr("  empty");
 329     while (curr != NULL) {
 330       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 331                              HR_FORMAT_PARAMS(curr),
 332                              curr->prev_top_at_mark_start(),
 333                              curr->next_top_at_mark_start(),
 334                              curr->age_in_surv_rate_group_cond());
 335       curr = curr->get_next_young_region();
 336     }
 337   }
 338 
 339   gclog_or_tty->cr();
 340 }
 341 
 342 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 343   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 344 }
 345 
 346 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 347   // The from card cache is not the memory that is actually committed. So we cannot
 348   // take advantage of the zero_filled parameter.
 349   reset_from_card_cache(start_idx, num_regions);
 350 }
 351 
 352 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 353 {
 354   // Claim the right to put the region on the dirty cards region list
 355   // by installing a self pointer.
 356   HeapRegion* next = hr->get_next_dirty_cards_region();
 357   if (next == NULL) {
 358     HeapRegion* res = (HeapRegion*)
 359       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 360                           NULL);
 361     if (res == NULL) {
 362       HeapRegion* head;
 363       do {
 364         // Put the region to the dirty cards region list.
 365         head = _dirty_cards_region_list;
 366         next = (HeapRegion*)
 367           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 368         if (next == head) {
 369           assert(hr->get_next_dirty_cards_region() == hr,
 370                  "hr->get_next_dirty_cards_region() != hr");
 371           if (next == NULL) {
 372             // The last region in the list points to itself.
 373             hr->set_next_dirty_cards_region(hr);
 374           } else {
 375             hr->set_next_dirty_cards_region(next);
 376           }
 377         }
 378       } while (next != head);
 379     }
 380   }
 381 }
 382 
 383 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 384 {
 385   HeapRegion* head;
 386   HeapRegion* hr;
 387   do {
 388     head = _dirty_cards_region_list;
 389     if (head == NULL) {
 390       return NULL;
 391     }
 392     HeapRegion* new_head = head->get_next_dirty_cards_region();
 393     if (head == new_head) {
 394       // The last region.
 395       new_head = NULL;
 396     }
 397     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 398                                           head);
 399   } while (hr != head);
 400   assert(hr != NULL, "invariant");
 401   hr->set_next_dirty_cards_region(NULL);
 402   return hr;
 403 }
 404 
 405 // Returns true if the reference points to an object that
 406 // can move in an incremental collection.
 407 bool G1CollectedHeap::is_scavengable(const void* p) {
 408   HeapRegion* hr = heap_region_containing(p);
 409   return !hr->is_humongous();
 410 }
 411 
 412 // Private class members.
 413 
 414 G1CollectedHeap* G1CollectedHeap::_g1h;
 415 
 416 // Private methods.
 417 
 418 HeapRegion*
 419 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 420   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 421   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 422     if (!_secondary_free_list.is_empty()) {
 423       if (G1ConcRegionFreeingVerbose) {
 424         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 425                                "secondary_free_list has %u entries",
 426                                _secondary_free_list.length());
 427       }
 428       // It looks as if there are free regions available on the
 429       // secondary_free_list. Let's move them to the free_list and try
 430       // again to allocate from it.
 431       append_secondary_free_list();
 432 
 433       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 434              "empty we should have moved at least one entry to the free_list");
 435       HeapRegion* res = _hrm.allocate_free_region(is_old);
 436       if (G1ConcRegionFreeingVerbose) {
 437         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 438                                "allocated "HR_FORMAT" from secondary_free_list",
 439                                HR_FORMAT_PARAMS(res));
 440       }
 441       return res;
 442     }
 443 
 444     // Wait here until we get notified either when (a) there are no
 445     // more free regions coming or (b) some regions have been moved on
 446     // the secondary_free_list.
 447     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 448   }
 449 
 450   if (G1ConcRegionFreeingVerbose) {
 451     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 452                            "could not allocate from secondary_free_list");
 453   }
 454   return NULL;
 455 }
 456 
 457 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 458   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 459          "the only time we use this to allocate a humongous region is "
 460          "when we are allocating a single humongous region");
 461 
 462   HeapRegion* res;
 463   if (G1StressConcRegionFreeing) {
 464     if (!_secondary_free_list.is_empty()) {
 465       if (G1ConcRegionFreeingVerbose) {
 466         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 467                                "forced to look at the secondary_free_list");
 468       }
 469       res = new_region_try_secondary_free_list(is_old);
 470       if (res != NULL) {
 471         return res;
 472       }
 473     }
 474   }
 475 
 476   res = _hrm.allocate_free_region(is_old);
 477 
 478   if (res == NULL) {
 479     if (G1ConcRegionFreeingVerbose) {
 480       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 481                              "res == NULL, trying the secondary_free_list");
 482     }
 483     res = new_region_try_secondary_free_list(is_old);
 484   }
 485   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 486     // Currently, only attempts to allocate GC alloc regions set
 487     // do_expand to true. So, we should only reach here during a
 488     // safepoint. If this assumption changes we might have to
 489     // reconsider the use of _expand_heap_after_alloc_failure.
 490     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 491 
 492     ergo_verbose1(ErgoHeapSizing,
 493                   "attempt heap expansion",
 494                   ergo_format_reason("region allocation request failed")
 495                   ergo_format_byte("allocation request"),
 496                   word_size * HeapWordSize);
 497     if (expand(word_size * HeapWordSize)) {
 498       // Given that expand() succeeded in expanding the heap, and we
 499       // always expand the heap by an amount aligned to the heap
 500       // region size, the free list should in theory not be empty.
 501       // In either case allocate_free_region() will check for NULL.
 502       res = _hrm.allocate_free_region(is_old);
 503     } else {
 504       _expand_heap_after_alloc_failure = false;
 505     }
 506   }
 507   return res;
 508 }
 509 
 510 HeapWord*
 511 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 512                                                            uint num_regions,
 513                                                            size_t word_size,
 514                                                            AllocationContext_t context) {
 515   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 516   assert(is_humongous(word_size), "word_size should be humongous");
 517   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 518 
 519   // Index of last region in the series + 1.
 520   uint last = first + num_regions;
 521 
 522   // We need to initialize the region(s) we just discovered. This is
 523   // a bit tricky given that it can happen concurrently with
 524   // refinement threads refining cards on these regions and
 525   // potentially wanting to refine the BOT as they are scanning
 526   // those cards (this can happen shortly after a cleanup; see CR
 527   // 6991377). So we have to set up the region(s) carefully and in
 528   // a specific order.
 529 
 530   // The word size sum of all the regions we will allocate.
 531   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 532   assert(word_size <= word_size_sum, "sanity");
 533 
 534   // This will be the "starts humongous" region.
 535   HeapRegion* first_hr = region_at(first);
 536   // The header of the new object will be placed at the bottom of
 537   // the first region.
 538   HeapWord* new_obj = first_hr->bottom();
 539   // This will be the new end of the first region in the series that
 540   // should also match the end of the last region in the series.
 541   HeapWord* new_end = new_obj + word_size_sum;
 542   // This will be the new top of the first region that will reflect
 543   // this allocation.
 544   HeapWord* new_top = new_obj + word_size;
 545 
 546   // First, we need to zero the header of the space that we will be
 547   // allocating. When we update top further down, some refinement
 548   // threads might try to scan the region. By zeroing the header we
 549   // ensure that any thread that will try to scan the region will
 550   // come across the zero klass word and bail out.
 551   //
 552   // NOTE: It would not have been correct to have used
 553   // CollectedHeap::fill_with_object() and make the space look like
 554   // an int array. The thread that is doing the allocation will
 555   // later update the object header to a potentially different array
 556   // type and, for a very short period of time, the klass and length
 557   // fields will be inconsistent. This could cause a refinement
 558   // thread to calculate the object size incorrectly.
 559   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 560 
 561   // We will set up the first region as "starts humongous". This
 562   // will also update the BOT covering all the regions to reflect
 563   // that there is a single object that starts at the bottom of the
 564   // first region.
 565   first_hr->set_starts_humongous(new_top, new_end);
 566   first_hr->set_allocation_context(context);
 567   // Then, if there are any, we will set up the "continues
 568   // humongous" regions.
 569   HeapRegion* hr = NULL;
 570   for (uint i = first + 1; i < last; ++i) {
 571     hr = region_at(i);
 572     hr->set_continues_humongous(first_hr);
 573     hr->set_allocation_context(context);
 574   }
 575   // If we have "continues humongous" regions (hr != NULL), then the
 576   // end of the last one should match new_end.
 577   assert(hr == NULL || hr->end() == new_end, "sanity");
 578 
 579   // Up to this point no concurrent thread would have been able to
 580   // do any scanning on any region in this series. All the top
 581   // fields still point to bottom, so the intersection between
 582   // [bottom,top] and [card_start,card_end] will be empty. Before we
 583   // update the top fields, we'll do a storestore to make sure that
 584   // no thread sees the update to top before the zeroing of the
 585   // object header and the BOT initialization.
 586   OrderAccess::storestore();
 587 
 588   // Now that the BOT and the object header have been initialized,
 589   // we can update top of the "starts humongous" region.
 590   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 591          "new_top should be in this region");
 592   first_hr->set_top(new_top);
 593   if (_hr_printer.is_active()) {
 594     HeapWord* bottom = first_hr->bottom();
 595     HeapWord* end = first_hr->orig_end();
 596     if ((first + 1) == last) {
 597       // the series has a single humongous region
 598       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 599     } else {
 600       // the series has more than one humongous regions
 601       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 602     }
 603   }
 604 
 605   // Now, we will update the top fields of the "continues humongous"
 606   // regions. The reason we need to do this is that, otherwise,
 607   // these regions would look empty and this will confuse parts of
 608   // G1. For example, the code that looks for a consecutive number
 609   // of empty regions will consider them empty and try to
 610   // re-allocate them. We can extend is_empty() to also include
 611   // !is_continues_humongous(), but it is easier to just update the top
 612   // fields here. The way we set top for all regions (i.e., top ==
 613   // end for all regions but the last one, top == new_top for the
 614   // last one) is actually used when we will free up the humongous
 615   // region in free_humongous_region().
 616   hr = NULL;
 617   for (uint i = first + 1; i < last; ++i) {
 618     hr = region_at(i);
 619     if ((i + 1) == last) {
 620       // last continues humongous region
 621       assert(hr->bottom() < new_top && new_top <= hr->end(),
 622              "new_top should fall on this region");
 623       hr->set_top(new_top);
 624       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 625     } else {
 626       // not last one
 627       assert(new_top > hr->end(), "new_top should be above this region");
 628       hr->set_top(hr->end());
 629       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 630     }
 631   }
 632   // If we have continues humongous regions (hr != NULL), then the
 633   // end of the last one should match new_end and its top should
 634   // match new_top.
 635   assert(hr == NULL ||
 636          (hr->end() == new_end && hr->top() == new_top), "sanity");
 637   check_bitmaps("Humongous Region Allocation", first_hr);
 638 
 639   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 640   _allocator->increase_used(first_hr->used());
 641   _humongous_set.add(first_hr);
 642 
 643   return new_obj;
 644 }
 645 
 646 // If could fit into free regions w/o expansion, try.
 647 // Otherwise, if can expand, do so.
 648 // Otherwise, if using ex regions might help, try with ex given back.
 649 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 650   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 651 
 652   verify_region_sets_optional();
 653 
 654   uint first = G1_NO_HRM_INDEX;
 655   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 656 
 657   if (obj_regions == 1) {
 658     // Only one region to allocate, try to use a fast path by directly allocating
 659     // from the free lists. Do not try to expand here, we will potentially do that
 660     // later.
 661     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 662     if (hr != NULL) {
 663       first = hr->hrm_index();
 664     }
 665   } else {
 666     // We can't allocate humongous regions spanning more than one region while
 667     // cleanupComplete() is running, since some of the regions we find to be
 668     // empty might not yet be added to the free list. It is not straightforward
 669     // to know in which list they are on so that we can remove them. We only
 670     // need to do this if we need to allocate more than one region to satisfy the
 671     // current humongous allocation request. If we are only allocating one region
 672     // we use the one-region region allocation code (see above), that already
 673     // potentially waits for regions from the secondary free list.
 674     wait_while_free_regions_coming();
 675     append_secondary_free_list_if_not_empty_with_lock();
 676 
 677     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 678     // are lucky enough to find some.
 679     first = _hrm.find_contiguous_only_empty(obj_regions);
 680     if (first != G1_NO_HRM_INDEX) {
 681       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 682     }
 683   }
 684 
 685   if (first == G1_NO_HRM_INDEX) {
 686     // Policy: We could not find enough regions for the humongous object in the
 687     // free list. Look through the heap to find a mix of free and uncommitted regions.
 688     // If so, try expansion.
 689     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 690     if (first != G1_NO_HRM_INDEX) {
 691       // We found something. Make sure these regions are committed, i.e. expand
 692       // the heap. Alternatively we could do a defragmentation GC.
 693       ergo_verbose1(ErgoHeapSizing,
 694                     "attempt heap expansion",
 695                     ergo_format_reason("humongous allocation request failed")
 696                     ergo_format_byte("allocation request"),
 697                     word_size * HeapWordSize);
 698 
 699       _hrm.expand_at(first, obj_regions);
 700       g1_policy()->record_new_heap_size(num_regions());
 701 
 702 #ifdef ASSERT
 703       for (uint i = first; i < first + obj_regions; ++i) {
 704         HeapRegion* hr = region_at(i);
 705         assert(hr->is_free(), "sanity");
 706         assert(hr->is_empty(), "sanity");
 707         assert(is_on_master_free_list(hr), "sanity");
 708       }
 709 #endif
 710       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 711     } else {
 712       // Policy: Potentially trigger a defragmentation GC.
 713     }
 714   }
 715 
 716   HeapWord* result = NULL;
 717   if (first != G1_NO_HRM_INDEX) {
 718     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 719                                                        word_size, context);
 720     assert(result != NULL, "it should always return a valid result");
 721 
 722     // A successful humongous object allocation changes the used space
 723     // information of the old generation so we need to recalculate the
 724     // sizes and update the jstat counters here.
 725     g1mm()->update_sizes();
 726   }
 727 
 728   verify_region_sets_optional();
 729 
 730   return result;
 731 }
 732 
 733 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 734   assert_heap_not_locked_and_not_at_safepoint();
 735   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 736 
 737   uint dummy_gc_count_before;
 738   uint dummy_gclocker_retry_count = 0;
 739   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 740 }
 741 
 742 HeapWord*
 743 G1CollectedHeap::mem_allocate(size_t word_size,
 744                               bool*  gc_overhead_limit_was_exceeded) {
 745   assert_heap_not_locked_and_not_at_safepoint();
 746 
 747   // Loop until the allocation is satisfied, or unsatisfied after GC.
 748   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 749     uint gc_count_before;
 750 
 751     HeapWord* result = NULL;
 752     if (!is_humongous(word_size)) {
 753       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 754     } else {
 755       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 756     }
 757     if (result != NULL) {
 758       return result;
 759     }
 760 
 761     // Create the garbage collection operation...
 762     VM_G1CollectForAllocation op(gc_count_before, word_size);
 763     op.set_allocation_context(AllocationContext::current());
 764 
 765     // ...and get the VM thread to execute it.
 766     VMThread::execute(&op);
 767 
 768     if (op.prologue_succeeded() && op.pause_succeeded()) {
 769       // If the operation was successful we'll return the result even
 770       // if it is NULL. If the allocation attempt failed immediately
 771       // after a Full GC, it's unlikely we'll be able to allocate now.
 772       HeapWord* result = op.result();
 773       if (result != NULL && !is_humongous(word_size)) {
 774         // Allocations that take place on VM operations do not do any
 775         // card dirtying and we have to do it here. We only have to do
 776         // this for non-humongous allocations, though.
 777         dirty_young_block(result, word_size);
 778       }
 779       return result;
 780     } else {
 781       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 782         return NULL;
 783       }
 784       assert(op.result() == NULL,
 785              "the result should be NULL if the VM op did not succeed");
 786     }
 787 
 788     // Give a warning if we seem to be looping forever.
 789     if ((QueuedAllocationWarningCount > 0) &&
 790         (try_count % QueuedAllocationWarningCount == 0)) {
 791       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 792     }
 793   }
 794 
 795   ShouldNotReachHere();
 796   return NULL;
 797 }
 798 
 799 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 800                                                    AllocationContext_t context,
 801                                                    uint* gc_count_before_ret,
 802                                                    uint* gclocker_retry_count_ret) {
 803   // Make sure you read the note in attempt_allocation_humongous().
 804 
 805   assert_heap_not_locked_and_not_at_safepoint();
 806   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 807          "be called for humongous allocation requests");
 808 
 809   // We should only get here after the first-level allocation attempt
 810   // (attempt_allocation()) failed to allocate.
 811 
 812   // We will loop until a) we manage to successfully perform the
 813   // allocation or b) we successfully schedule a collection which
 814   // fails to perform the allocation. b) is the only case when we'll
 815   // return NULL.
 816   HeapWord* result = NULL;
 817   for (int try_count = 1; /* we'll return */; try_count += 1) {
 818     bool should_try_gc;
 819     uint gc_count_before;
 820 
 821     {
 822       MutexLockerEx x(Heap_lock);
 823       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 824                                                                                     false /* bot_updates */);
 825       if (result != NULL) {
 826         return result;
 827       }
 828 
 829       // If we reach here, attempt_allocation_locked() above failed to
 830       // allocate a new region. So the mutator alloc region should be NULL.
 831       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 832 
 833       if (GC_locker::is_active_and_needs_gc()) {
 834         if (g1_policy()->can_expand_young_list()) {
 835           // No need for an ergo verbose message here,
 836           // can_expand_young_list() does this when it returns true.
 837           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 838                                                                                        false /* bot_updates */);
 839           if (result != NULL) {
 840             return result;
 841           }
 842         }
 843         should_try_gc = false;
 844       } else {
 845         // The GCLocker may not be active but the GCLocker initiated
 846         // GC may not yet have been performed (GCLocker::needs_gc()
 847         // returns true). In this case we do not try this GC and
 848         // wait until the GCLocker initiated GC is performed, and
 849         // then retry the allocation.
 850         if (GC_locker::needs_gc()) {
 851           should_try_gc = false;
 852         } else {
 853           // Read the GC count while still holding the Heap_lock.
 854           gc_count_before = total_collections();
 855           should_try_gc = true;
 856         }
 857       }
 858     }
 859 
 860     if (should_try_gc) {
 861       bool succeeded;
 862       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 863                                    GCCause::_g1_inc_collection_pause);
 864       if (result != NULL) {
 865         assert(succeeded, "only way to get back a non-NULL result");
 866         return result;
 867       }
 868 
 869       if (succeeded) {
 870         // If we get here we successfully scheduled a collection which
 871         // failed to allocate. No point in trying to allocate
 872         // further. We'll just return NULL.
 873         MutexLockerEx x(Heap_lock);
 874         *gc_count_before_ret = total_collections();
 875         return NULL;
 876       }
 877     } else {
 878       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 879         MutexLockerEx x(Heap_lock);
 880         *gc_count_before_ret = total_collections();
 881         return NULL;
 882       }
 883       // The GCLocker is either active or the GCLocker initiated
 884       // GC has not yet been performed. Stall until it is and
 885       // then retry the allocation.
 886       GC_locker::stall_until_clear();
 887       (*gclocker_retry_count_ret) += 1;
 888     }
 889 
 890     // We can reach here if we were unsuccessful in scheduling a
 891     // collection (because another thread beat us to it) or if we were
 892     // stalled due to the GC locker. In either can we should retry the
 893     // allocation attempt in case another thread successfully
 894     // performed a collection and reclaimed enough space. We do the
 895     // first attempt (without holding the Heap_lock) here and the
 896     // follow-on attempt will be at the start of the next loop
 897     // iteration (after taking the Heap_lock).
 898     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 899                                                                            false /* bot_updates */);
 900     if (result != NULL) {
 901       return result;
 902     }
 903 
 904     // Give a warning if we seem to be looping forever.
 905     if ((QueuedAllocationWarningCount > 0) &&
 906         (try_count % QueuedAllocationWarningCount == 0)) {
 907       warning("G1CollectedHeap::attempt_allocation_slow() "
 908               "retries %d times", try_count);
 909     }
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 917                                                         uint* gc_count_before_ret,
 918                                                         uint* gclocker_retry_count_ret) {
 919   // The structure of this method has a lot of similarities to
 920   // attempt_allocation_slow(). The reason these two were not merged
 921   // into a single one is that such a method would require several "if
 922   // allocation is not humongous do this, otherwise do that"
 923   // conditional paths which would obscure its flow. In fact, an early
 924   // version of this code did use a unified method which was harder to
 925   // follow and, as a result, it had subtle bugs that were hard to
 926   // track down. So keeping these two methods separate allows each to
 927   // be more readable. It will be good to keep these two in sync as
 928   // much as possible.
 929 
 930   assert_heap_not_locked_and_not_at_safepoint();
 931   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 932          "should only be called for humongous allocations");
 933 
 934   // Humongous objects can exhaust the heap quickly, so we should check if we
 935   // need to start a marking cycle at each humongous object allocation. We do
 936   // the check before we do the actual allocation. The reason for doing it
 937   // before the allocation is that we avoid having to keep track of the newly
 938   // allocated memory while we do a GC.
 939   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 940                                            word_size)) {
 941     collect(GCCause::_g1_humongous_allocation);
 942   }
 943 
 944   // We will loop until a) we manage to successfully perform the
 945   // allocation or b) we successfully schedule a collection which
 946   // fails to perform the allocation. b) is the only case when we'll
 947   // return NULL.
 948   HeapWord* result = NULL;
 949   for (int try_count = 1; /* we'll return */; try_count += 1) {
 950     bool should_try_gc;
 951     uint gc_count_before;
 952 
 953     {
 954       MutexLockerEx x(Heap_lock);
 955 
 956       // Given that humongous objects are not allocated in young
 957       // regions, we'll first try to do the allocation without doing a
 958       // collection hoping that there's enough space in the heap.
 959       result = humongous_obj_allocate(word_size, AllocationContext::current());
 960       if (result != NULL) {
 961         return result;
 962       }
 963 
 964       if (GC_locker::is_active_and_needs_gc()) {
 965         should_try_gc = false;
 966       } else {
 967          // The GCLocker may not be active but the GCLocker initiated
 968         // GC may not yet have been performed (GCLocker::needs_gc()
 969         // returns true). In this case we do not try this GC and
 970         // wait until the GCLocker initiated GC is performed, and
 971         // then retry the allocation.
 972         if (GC_locker::needs_gc()) {
 973           should_try_gc = false;
 974         } else {
 975           // Read the GC count while still holding the Heap_lock.
 976           gc_count_before = total_collections();
 977           should_try_gc = true;
 978         }
 979       }
 980     }
 981 
 982     if (should_try_gc) {
 983       // If we failed to allocate the humongous object, we should try to
 984       // do a collection pause (if we're allowed) in case it reclaims
 985       // enough space for the allocation to succeed after the pause.
 986 
 987       bool succeeded;
 988       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 989                                    GCCause::_g1_humongous_allocation);
 990       if (result != NULL) {
 991         assert(succeeded, "only way to get back a non-NULL result");
 992         return result;
 993       }
 994 
 995       if (succeeded) {
 996         // If we get here we successfully scheduled a collection which
 997         // failed to allocate. No point in trying to allocate
 998         // further. We'll just return NULL.
 999         MutexLockerEx x(Heap_lock);
1000         *gc_count_before_ret = total_collections();
1001         return NULL;
1002       }
1003     } else {
1004       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1005         MutexLockerEx x(Heap_lock);
1006         *gc_count_before_ret = total_collections();
1007         return NULL;
1008       }
1009       // The GCLocker is either active or the GCLocker initiated
1010       // GC has not yet been performed. Stall until it is and
1011       // then retry the allocation.
1012       GC_locker::stall_until_clear();
1013       (*gclocker_retry_count_ret) += 1;
1014     }
1015 
1016     // We can reach here if we were unsuccessful in scheduling a
1017     // collection (because another thread beat us to it) or if we were
1018     // stalled due to the GC locker. In either can we should retry the
1019     // allocation attempt in case another thread successfully
1020     // performed a collection and reclaimed enough space.  Give a
1021     // warning if we seem to be looping forever.
1022 
1023     if ((QueuedAllocationWarningCount > 0) &&
1024         (try_count % QueuedAllocationWarningCount == 0)) {
1025       warning("G1CollectedHeap::attempt_allocation_humongous() "
1026               "retries %d times", try_count);
1027     }
1028   }
1029 
1030   ShouldNotReachHere();
1031   return NULL;
1032 }
1033 
1034 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1035                                                            AllocationContext_t context,
1036                                                            bool expect_null_mutator_alloc_region) {
1037   assert_at_safepoint(true /* should_be_vm_thread */);
1038   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1039                                              !expect_null_mutator_alloc_region,
1040          "the current alloc region was unexpectedly found to be non-NULL");
1041 
1042   if (!is_humongous(word_size)) {
1043     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1044                                                       false /* bot_updates */);
1045   } else {
1046     HeapWord* result = humongous_obj_allocate(word_size, context);
1047     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1048       g1_policy()->set_initiate_conc_mark_if_possible();
1049     }
1050     return result;
1051   }
1052 
1053   ShouldNotReachHere();
1054 }
1055 
1056 class PostMCRemSetClearClosure: public HeapRegionClosure {
1057   G1CollectedHeap* _g1h;
1058   ModRefBarrierSet* _mr_bs;
1059 public:
1060   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1061     _g1h(g1h), _mr_bs(mr_bs) {}
1062 
1063   bool doHeapRegion(HeapRegion* r) {
1064     HeapRegionRemSet* hrrs = r->rem_set();
1065 
1066     if (r->is_continues_humongous()) {
1067       // We'll assert that the strong code root list and RSet is empty
1068       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1069       assert(hrrs->occupied() == 0, "RSet should be empty");
1070       return false;
1071     }
1072 
1073     _g1h->reset_gc_time_stamps(r);
1074     hrrs->clear();
1075     // You might think here that we could clear just the cards
1076     // corresponding to the used region.  But no: if we leave a dirty card
1077     // in a region we might allocate into, then it would prevent that card
1078     // from being enqueued, and cause it to be missed.
1079     // Re: the performance cost: we shouldn't be doing full GC anyway!
1080     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1081 
1082     return false;
1083   }
1084 };
1085 
1086 void G1CollectedHeap::clear_rsets_post_compaction() {
1087   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1088   heap_region_iterate(&rs_clear);
1089 }
1090 
1091 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1092   G1CollectedHeap*   _g1h;
1093   UpdateRSOopClosure _cl;
1094   int                _worker_i;
1095 public:
1096   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1097     _cl(g1->g1_rem_set(), worker_i),
1098     _worker_i(worker_i),
1099     _g1h(g1)
1100   { }
1101 
1102   bool doHeapRegion(HeapRegion* r) {
1103     if (!r->is_continues_humongous()) {
1104       _cl.set_from(r);
1105       r->oop_iterate(&_cl);
1106     }
1107     return false;
1108   }
1109 };
1110 
1111 class ParRebuildRSTask: public AbstractGangTask {
1112   G1CollectedHeap* _g1;
1113   HeapRegionClaimer _hrclaimer;
1114 
1115 public:
1116   ParRebuildRSTask(G1CollectedHeap* g1) :
1117       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1118 
1119   void work(uint worker_id) {
1120     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1121     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1122   }
1123 };
1124 
1125 class PostCompactionPrinterClosure: public HeapRegionClosure {
1126 private:
1127   G1HRPrinter* _hr_printer;
1128 public:
1129   bool doHeapRegion(HeapRegion* hr) {
1130     assert(!hr->is_young(), "not expecting to find young regions");
1131     if (hr->is_free()) {
1132       // We only generate output for non-empty regions.
1133     } else if (hr->is_starts_humongous()) {
1134       if (hr->region_num() == 1) {
1135         // single humongous region
1136         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1137       } else {
1138         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1139       }
1140     } else if (hr->is_continues_humongous()) {
1141       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1142     } else if (hr->is_old()) {
1143       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1144     } else {
1145       ShouldNotReachHere();
1146     }
1147     return false;
1148   }
1149 
1150   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1151     : _hr_printer(hr_printer) { }
1152 };
1153 
1154 void G1CollectedHeap::print_hrm_post_compaction() {
1155   PostCompactionPrinterClosure cl(hr_printer());
1156   heap_region_iterate(&cl);
1157 }
1158 
1159 bool G1CollectedHeap::do_collection(bool explicit_gc,
1160                                     bool clear_all_soft_refs,
1161                                     size_t word_size) {
1162   assert_at_safepoint(true /* should_be_vm_thread */);
1163 
1164   if (GC_locker::check_active_before_gc()) {
1165     return false;
1166   }
1167 
1168   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1169   gc_timer->register_gc_start();
1170 
1171   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1172   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1173 
1174   SvcGCMarker sgcm(SvcGCMarker::FULL);
1175   ResourceMark rm;
1176 
1177   print_heap_before_gc();
1178   trace_heap_before_gc(gc_tracer);
1179 
1180   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1181 
1182   verify_region_sets_optional();
1183 
1184   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1185                            collector_policy()->should_clear_all_soft_refs();
1186 
1187   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1188 
1189   {
1190     IsGCActiveMark x;
1191 
1192     // Timing
1193     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1194     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1195 
1196     {
1197       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1198       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1199       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1200 
1201       g1_policy()->record_full_collection_start();
1202 
1203       // Note: When we have a more flexible GC logging framework that
1204       // allows us to add optional attributes to a GC log record we
1205       // could consider timing and reporting how long we wait in the
1206       // following two methods.
1207       wait_while_free_regions_coming();
1208       // If we start the compaction before the CM threads finish
1209       // scanning the root regions we might trip them over as we'll
1210       // be moving objects / updating references. So let's wait until
1211       // they are done. By telling them to abort, they should complete
1212       // early.
1213       _cm->root_regions()->abort();
1214       _cm->root_regions()->wait_until_scan_finished();
1215       append_secondary_free_list_if_not_empty_with_lock();
1216 
1217       gc_prologue(true);
1218       increment_total_collections(true /* full gc */);
1219       increment_old_marking_cycles_started();
1220 
1221       assert(used() == recalculate_used(), "Should be equal");
1222 
1223       verify_before_gc();
1224 
1225       check_bitmaps("Full GC Start");
1226       pre_full_gc_dump(gc_timer);
1227 
1228       COMPILER2_PRESENT(DerivedPointerTable::clear());
1229 
1230       // Disable discovery and empty the discovered lists
1231       // for the CM ref processor.
1232       ref_processor_cm()->disable_discovery();
1233       ref_processor_cm()->abandon_partial_discovery();
1234       ref_processor_cm()->verify_no_references_recorded();
1235 
1236       // Abandon current iterations of concurrent marking and concurrent
1237       // refinement, if any are in progress. We have to do this before
1238       // wait_until_scan_finished() below.
1239       concurrent_mark()->abort();
1240 
1241       // Make sure we'll choose a new allocation region afterwards.
1242       _allocator->release_mutator_alloc_region();
1243       _allocator->abandon_gc_alloc_regions();
1244       g1_rem_set()->cleanupHRRS();
1245 
1246       // We should call this after we retire any currently active alloc
1247       // regions so that all the ALLOC / RETIRE events are generated
1248       // before the start GC event.
1249       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1250 
1251       // We may have added regions to the current incremental collection
1252       // set between the last GC or pause and now. We need to clear the
1253       // incremental collection set and then start rebuilding it afresh
1254       // after this full GC.
1255       abandon_collection_set(g1_policy()->inc_cset_head());
1256       g1_policy()->clear_incremental_cset();
1257       g1_policy()->stop_incremental_cset_building();
1258 
1259       tear_down_region_sets(false /* free_list_only */);
1260       g1_policy()->set_gcs_are_young(true);
1261 
1262       // See the comments in g1CollectedHeap.hpp and
1263       // G1CollectedHeap::ref_processing_init() about
1264       // how reference processing currently works in G1.
1265 
1266       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1267       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1268 
1269       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1270       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1271 
1272       ref_processor_stw()->enable_discovery();
1273       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1274 
1275       // Do collection work
1276       {
1277         HandleMark hm;  // Discard invalid handles created during gc
1278         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1279       }
1280 
1281       assert(num_free_regions() == 0, "we should not have added any free regions");
1282       rebuild_region_sets(false /* free_list_only */);
1283 
1284       // Enqueue any discovered reference objects that have
1285       // not been removed from the discovered lists.
1286       ref_processor_stw()->enqueue_discovered_references();
1287 
1288       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1289 
1290       MemoryService::track_memory_usage();
1291 
1292       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1293       ref_processor_stw()->verify_no_references_recorded();
1294 
1295       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1296       ClassLoaderDataGraph::purge();
1297       MetaspaceAux::verify_metrics();
1298 
1299       // Note: since we've just done a full GC, concurrent
1300       // marking is no longer active. Therefore we need not
1301       // re-enable reference discovery for the CM ref processor.
1302       // That will be done at the start of the next marking cycle.
1303       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1304       ref_processor_cm()->verify_no_references_recorded();
1305 
1306       reset_gc_time_stamp();
1307       // Since everything potentially moved, we will clear all remembered
1308       // sets, and clear all cards.  Later we will rebuild remembered
1309       // sets. We will also reset the GC time stamps of the regions.
1310       clear_rsets_post_compaction();
1311       check_gc_time_stamps();
1312 
1313       // Resize the heap if necessary.
1314       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1315 
1316       if (_hr_printer.is_active()) {
1317         // We should do this after we potentially resize the heap so
1318         // that all the COMMIT / UNCOMMIT events are generated before
1319         // the end GC event.
1320 
1321         print_hrm_post_compaction();
1322         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1323       }
1324 
1325       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1326       if (hot_card_cache->use_cache()) {
1327         hot_card_cache->reset_card_counts();
1328         hot_card_cache->reset_hot_cache();
1329       }
1330 
1331       // Rebuild remembered sets of all regions.
1332       uint n_workers =
1333         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1334                                                 workers()->active_workers(),
1335                                                 Threads::number_of_non_daemon_threads());
1336       assert(UseDynamicNumberOfGCThreads ||
1337              n_workers == workers()->total_workers(),
1338              "If not dynamic should be using all the  workers");
1339       workers()->set_active_workers(n_workers);
1340       // Set parallel threads in the heap (_n_par_threads) only
1341       // before a parallel phase and always reset it to 0 after
1342       // the phase so that the number of parallel threads does
1343       // no get carried forward to a serial phase where there
1344       // may be code that is "possibly_parallel".
1345       set_par_threads(n_workers);
1346 
1347       ParRebuildRSTask rebuild_rs_task(this);
1348       assert(UseDynamicNumberOfGCThreads ||
1349              workers()->active_workers() == workers()->total_workers(),
1350              "Unless dynamic should use total workers");
1351       // Use the most recent number of  active workers
1352       assert(workers()->active_workers() > 0,
1353              "Active workers not properly set");
1354       set_par_threads(workers()->active_workers());
1355       workers()->run_task(&rebuild_rs_task);
1356       set_par_threads(0);
1357 
1358       // Rebuild the strong code root lists for each region
1359       rebuild_strong_code_roots();
1360 
1361       if (true) { // FIXME
1362         MetaspaceGC::compute_new_size();
1363       }
1364 
1365 #ifdef TRACESPINNING
1366       ParallelTaskTerminator::print_termination_counts();
1367 #endif
1368 
1369       // Discard all rset updates
1370       JavaThread::dirty_card_queue_set().abandon_logs();
1371       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1372 
1373       _young_list->reset_sampled_info();
1374       // At this point there should be no regions in the
1375       // entire heap tagged as young.
1376       assert(check_young_list_empty(true /* check_heap */),
1377              "young list should be empty at this point");
1378 
1379       // Update the number of full collections that have been completed.
1380       increment_old_marking_cycles_completed(false /* concurrent */);
1381 
1382       _hrm.verify_optional();
1383       verify_region_sets_optional();
1384 
1385       verify_after_gc();
1386 
1387       // Clear the previous marking bitmap, if needed for bitmap verification.
1388       // Note we cannot do this when we clear the next marking bitmap in
1389       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1390       // objects marked during a full GC against the previous bitmap.
1391       // But we need to clear it before calling check_bitmaps below since
1392       // the full GC has compacted objects and updated TAMS but not updated
1393       // the prev bitmap.
1394       if (G1VerifyBitmaps) {
1395         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1396       }
1397       check_bitmaps("Full GC End");
1398 
1399       // Start a new incremental collection set for the next pause
1400       assert(g1_policy()->collection_set() == NULL, "must be");
1401       g1_policy()->start_incremental_cset_building();
1402 
1403       clear_cset_fast_test();
1404 
1405       _allocator->init_mutator_alloc_region();
1406 
1407       g1_policy()->record_full_collection_end();
1408 
1409       if (G1Log::fine()) {
1410         g1_policy()->print_heap_transition();
1411       }
1412 
1413       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1414       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1415       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1416       // before any GC notifications are raised.
1417       g1mm()->update_sizes();
1418 
1419       gc_epilogue(true);
1420     }
1421 
1422     if (G1Log::finer()) {
1423       g1_policy()->print_detailed_heap_transition(true /* full */);
1424     }
1425 
1426     print_heap_after_gc();
1427     trace_heap_after_gc(gc_tracer);
1428 
1429     post_full_gc_dump(gc_timer);
1430 
1431     gc_timer->register_gc_end();
1432     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1433   }
1434 
1435   return true;
1436 }
1437 
1438 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1439   // do_collection() will return whether it succeeded in performing
1440   // the GC. Currently, there is no facility on the
1441   // do_full_collection() API to notify the caller than the collection
1442   // did not succeed (e.g., because it was locked out by the GC
1443   // locker). So, right now, we'll ignore the return value.
1444   bool dummy = do_collection(true,                /* explicit_gc */
1445                              clear_all_soft_refs,
1446                              0                    /* word_size */);
1447 }
1448 
1449 // This code is mostly copied from TenuredGeneration.
1450 void
1451 G1CollectedHeap::
1452 resize_if_necessary_after_full_collection(size_t word_size) {
1453   // Include the current allocation, if any, and bytes that will be
1454   // pre-allocated to support collections, as "used".
1455   const size_t used_after_gc = used();
1456   const size_t capacity_after_gc = capacity();
1457   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1458 
1459   // This is enforced in arguments.cpp.
1460   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1461          "otherwise the code below doesn't make sense");
1462 
1463   // We don't have floating point command-line arguments
1464   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1465   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1466   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1467   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1468 
1469   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1470   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1471 
1472   // We have to be careful here as these two calculations can overflow
1473   // 32-bit size_t's.
1474   double used_after_gc_d = (double) used_after_gc;
1475   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1476   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1477 
1478   // Let's make sure that they are both under the max heap size, which
1479   // by default will make them fit into a size_t.
1480   double desired_capacity_upper_bound = (double) max_heap_size;
1481   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1482                                     desired_capacity_upper_bound);
1483   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1484                                     desired_capacity_upper_bound);
1485 
1486   // We can now safely turn them into size_t's.
1487   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1488   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1489 
1490   // This assert only makes sense here, before we adjust them
1491   // with respect to the min and max heap size.
1492   assert(minimum_desired_capacity <= maximum_desired_capacity,
1493          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1494                  "maximum_desired_capacity = "SIZE_FORMAT,
1495                  minimum_desired_capacity, maximum_desired_capacity));
1496 
1497   // Should not be greater than the heap max size. No need to adjust
1498   // it with respect to the heap min size as it's a lower bound (i.e.,
1499   // we'll try to make the capacity larger than it, not smaller).
1500   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1501   // Should not be less than the heap min size. No need to adjust it
1502   // with respect to the heap max size as it's an upper bound (i.e.,
1503   // we'll try to make the capacity smaller than it, not greater).
1504   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1505 
1506   if (capacity_after_gc < minimum_desired_capacity) {
1507     // Don't expand unless it's significant
1508     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1509     ergo_verbose4(ErgoHeapSizing,
1510                   "attempt heap expansion",
1511                   ergo_format_reason("capacity lower than "
1512                                      "min desired capacity after Full GC")
1513                   ergo_format_byte("capacity")
1514                   ergo_format_byte("occupancy")
1515                   ergo_format_byte_perc("min desired capacity"),
1516                   capacity_after_gc, used_after_gc,
1517                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1518     expand(expand_bytes);
1519 
1520     // No expansion, now see if we want to shrink
1521   } else if (capacity_after_gc > maximum_desired_capacity) {
1522     // Capacity too large, compute shrinking size
1523     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1524     ergo_verbose4(ErgoHeapSizing,
1525                   "attempt heap shrinking",
1526                   ergo_format_reason("capacity higher than "
1527                                      "max desired capacity after Full GC")
1528                   ergo_format_byte("capacity")
1529                   ergo_format_byte("occupancy")
1530                   ergo_format_byte_perc("max desired capacity"),
1531                   capacity_after_gc, used_after_gc,
1532                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1533     shrink(shrink_bytes);
1534   }
1535 }
1536 
1537 
1538 HeapWord*
1539 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1540                                            AllocationContext_t context,
1541                                            bool* succeeded) {
1542   assert_at_safepoint(true /* should_be_vm_thread */);
1543 
1544   *succeeded = true;
1545   // Let's attempt the allocation first.
1546   HeapWord* result =
1547     attempt_allocation_at_safepoint(word_size,
1548                                     context,
1549                                     false /* expect_null_mutator_alloc_region */);
1550   if (result != NULL) {
1551     assert(*succeeded, "sanity");
1552     return result;
1553   }
1554 
1555   // In a G1 heap, we're supposed to keep allocation from failing by
1556   // incremental pauses.  Therefore, at least for now, we'll favor
1557   // expansion over collection.  (This might change in the future if we can
1558   // do something smarter than full collection to satisfy a failed alloc.)
1559   result = expand_and_allocate(word_size, context);
1560   if (result != NULL) {
1561     assert(*succeeded, "sanity");
1562     return result;
1563   }
1564 
1565   // Expansion didn't work, we'll try to do a Full GC.
1566   bool gc_succeeded = do_collection(false, /* explicit_gc */
1567                                     false, /* clear_all_soft_refs */
1568                                     word_size);
1569   if (!gc_succeeded) {
1570     *succeeded = false;
1571     return NULL;
1572   }
1573 
1574   // Retry the allocation
1575   result = attempt_allocation_at_safepoint(word_size,
1576                                            context,
1577                                            true /* expect_null_mutator_alloc_region */);
1578   if (result != NULL) {
1579     assert(*succeeded, "sanity");
1580     return result;
1581   }
1582 
1583   // Then, try a Full GC that will collect all soft references.
1584   gc_succeeded = do_collection(false, /* explicit_gc */
1585                                true,  /* clear_all_soft_refs */
1586                                word_size);
1587   if (!gc_succeeded) {
1588     *succeeded = false;
1589     return NULL;
1590   }
1591 
1592   // Retry the allocation once more
1593   result = attempt_allocation_at_safepoint(word_size,
1594                                            context,
1595                                            true /* expect_null_mutator_alloc_region */);
1596   if (result != NULL) {
1597     assert(*succeeded, "sanity");
1598     return result;
1599   }
1600 
1601   assert(!collector_policy()->should_clear_all_soft_refs(),
1602          "Flag should have been handled and cleared prior to this point");
1603 
1604   // What else?  We might try synchronous finalization later.  If the total
1605   // space available is large enough for the allocation, then a more
1606   // complete compaction phase than we've tried so far might be
1607   // appropriate.
1608   assert(*succeeded, "sanity");
1609   return NULL;
1610 }
1611 
1612 // Attempting to expand the heap sufficiently
1613 // to support an allocation of the given "word_size".  If
1614 // successful, perform the allocation and return the address of the
1615 // allocated block, or else "NULL".
1616 
1617 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1618   assert_at_safepoint(true /* should_be_vm_thread */);
1619 
1620   verify_region_sets_optional();
1621 
1622   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1623   ergo_verbose1(ErgoHeapSizing,
1624                 "attempt heap expansion",
1625                 ergo_format_reason("allocation request failed")
1626                 ergo_format_byte("allocation request"),
1627                 word_size * HeapWordSize);
1628   if (expand(expand_bytes)) {
1629     _hrm.verify_optional();
1630     verify_region_sets_optional();
1631     return attempt_allocation_at_safepoint(word_size,
1632                                            context,
1633                                            false /* expect_null_mutator_alloc_region */);
1634   }
1635   return NULL;
1636 }
1637 
1638 bool G1CollectedHeap::expand(size_t expand_bytes) {
1639   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1640   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1641                                        HeapRegion::GrainBytes);
1642   ergo_verbose2(ErgoHeapSizing,
1643                 "expand the heap",
1644                 ergo_format_byte("requested expansion amount")
1645                 ergo_format_byte("attempted expansion amount"),
1646                 expand_bytes, aligned_expand_bytes);
1647 
1648   if (is_maximal_no_gc()) {
1649     ergo_verbose0(ErgoHeapSizing,
1650                       "did not expand the heap",
1651                       ergo_format_reason("heap already fully expanded"));
1652     return false;
1653   }
1654 
1655   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1656   assert(regions_to_expand > 0, "Must expand by at least one region");
1657 
1658   uint expanded_by = _hrm.expand_by(regions_to_expand);
1659 
1660   if (expanded_by > 0) {
1661     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1662     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1663     g1_policy()->record_new_heap_size(num_regions());
1664   } else {
1665     ergo_verbose0(ErgoHeapSizing,
1666                   "did not expand the heap",
1667                   ergo_format_reason("heap expansion operation failed"));
1668     // The expansion of the virtual storage space was unsuccessful.
1669     // Let's see if it was because we ran out of swap.
1670     if (G1ExitOnExpansionFailure &&
1671         _hrm.available() >= regions_to_expand) {
1672       // We had head room...
1673       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1674     }
1675   }
1676   return regions_to_expand > 0;
1677 }
1678 
1679 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1680   size_t aligned_shrink_bytes =
1681     ReservedSpace::page_align_size_down(shrink_bytes);
1682   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1683                                          HeapRegion::GrainBytes);
1684   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1685 
1686   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1687   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1688 
1689   ergo_verbose3(ErgoHeapSizing,
1690                 "shrink the heap",
1691                 ergo_format_byte("requested shrinking amount")
1692                 ergo_format_byte("aligned shrinking amount")
1693                 ergo_format_byte("attempted shrinking amount"),
1694                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1695   if (num_regions_removed > 0) {
1696     g1_policy()->record_new_heap_size(num_regions());
1697   } else {
1698     ergo_verbose0(ErgoHeapSizing,
1699                   "did not shrink the heap",
1700                   ergo_format_reason("heap shrinking operation failed"));
1701   }
1702 }
1703 
1704 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1705   verify_region_sets_optional();
1706 
1707   // We should only reach here at the end of a Full GC which means we
1708   // should not not be holding to any GC alloc regions. The method
1709   // below will make sure of that and do any remaining clean up.
1710   _allocator->abandon_gc_alloc_regions();
1711 
1712   // Instead of tearing down / rebuilding the free lists here, we
1713   // could instead use the remove_all_pending() method on free_list to
1714   // remove only the ones that we need to remove.
1715   tear_down_region_sets(true /* free_list_only */);
1716   shrink_helper(shrink_bytes);
1717   rebuild_region_sets(true /* free_list_only */);
1718 
1719   _hrm.verify_optional();
1720   verify_region_sets_optional();
1721 }
1722 
1723 // Public methods.
1724 
1725 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1726 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1727 #endif // _MSC_VER
1728 
1729 
1730 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1731   CollectedHeap(),
1732   _g1_policy(policy_),
1733   _dirty_card_queue_set(false),
1734   _into_cset_dirty_card_queue_set(false),
1735   _is_alive_closure_cm(this),
1736   _is_alive_closure_stw(this),
1737   _ref_processor_cm(NULL),
1738   _ref_processor_stw(NULL),
1739   _bot_shared(NULL),
1740   _evac_failure_scan_stack(NULL),
1741   _mark_in_progress(false),
1742   _cg1r(NULL),
1743   _g1mm(NULL),
1744   _refine_cte_cl(NULL),
1745   _full_collection(false),
1746   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1747   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1748   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1749   _humongous_reclaim_candidates(),
1750   _has_humongous_reclaim_candidates(false),
1751   _free_regions_coming(false),
1752   _young_list(new YoungList(this)),
1753   _gc_time_stamp(0),
1754   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1755   _old_plab_stats(OldPLABSize, PLABWeight),
1756   _expand_heap_after_alloc_failure(true),
1757   _surviving_young_words(NULL),
1758   _old_marking_cycles_started(0),
1759   _old_marking_cycles_completed(0),
1760   _concurrent_cycle_started(false),
1761   _heap_summary_sent(false),
1762   _in_cset_fast_test(),
1763   _dirty_cards_region_list(NULL),
1764   _worker_cset_start_region(NULL),
1765   _worker_cset_start_region_time_stamp(NULL),
1766   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1767   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1768   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1769   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1770 
1771   _g1h = this;
1772 
1773   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1774                           /* are_GC_task_threads */true,
1775                           /* are_ConcurrentGC_threads */false);
1776   _workers->initialize_workers();
1777 
1778   _allocator = G1Allocator::create_allocator(_g1h);
1779   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1780 
1781   int n_queues = MAX2((int)ParallelGCThreads, 1);
1782   _task_queues = new RefToScanQueueSet(n_queues);
1783 
1784   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1785   assert(n_rem_sets > 0, "Invariant.");
1786 
1787   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1788   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1789   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1790 
1791   for (int i = 0; i < n_queues; i++) {
1792     RefToScanQueue* q = new RefToScanQueue();
1793     q->initialize();
1794     _task_queues->register_queue(i, q);
1795     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1796   }
1797   clear_cset_start_regions();
1798 
1799   // Initialize the G1EvacuationFailureALot counters and flags.
1800   NOT_PRODUCT(reset_evacuation_should_fail();)
1801 
1802   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1803 }
1804 
1805 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1806                                                                  size_t size,
1807                                                                  size_t translation_factor) {
1808   // Allocate a new reserved space, preferring to use large pages.
1809   ReservedSpace rs(size, true);
1810   G1RegionToSpaceMapper* result  =
1811     G1RegionToSpaceMapper::create_mapper(rs,
1812                                          size,
1813                                          rs.alignment(),
1814                                          HeapRegion::GrainBytes,
1815                                          translation_factor,
1816                                          mtGC);
1817   if (TracePageSizes) {
1818     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1819                            description, rs.alignment(), p2i(rs.base()), rs.size(), rs.alignment(), size);
1820   }
1821   return result;
1822 }
1823 
1824 jint G1CollectedHeap::initialize() {
1825   CollectedHeap::pre_initialize();
1826   os::enable_vtime();
1827 
1828   G1Log::init();
1829 
1830   // Necessary to satisfy locking discipline assertions.
1831 
1832   MutexLocker x(Heap_lock);
1833 
1834   // We have to initialize the printer before committing the heap, as
1835   // it will be used then.
1836   _hr_printer.set_active(G1PrintHeapRegions);
1837 
1838   // While there are no constraints in the GC code that HeapWordSize
1839   // be any particular value, there are multiple other areas in the
1840   // system which believe this to be true (e.g. oop->object_size in some
1841   // cases incorrectly returns the size in wordSize units rather than
1842   // HeapWordSize).
1843   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1844 
1845   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1846   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1847   size_t heap_alignment = collector_policy()->heap_alignment();
1848 
1849   // Ensure that the sizes are properly aligned.
1850   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1851   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1852   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1853 
1854   _refine_cte_cl = new RefineCardTableEntryClosure();
1855 
1856   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1857 
1858   // Reserve the maximum.
1859 
1860   // When compressed oops are enabled, the preferred heap base
1861   // is calculated by subtracting the requested size from the
1862   // 32Gb boundary and using the result as the base address for
1863   // heap reservation. If the requested size is not aligned to
1864   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1865   // into the ReservedHeapSpace constructor) then the actual
1866   // base of the reserved heap may end up differing from the
1867   // address that was requested (i.e. the preferred heap base).
1868   // If this happens then we could end up using a non-optimal
1869   // compressed oops mode.
1870 
1871   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1872                                                  heap_alignment);
1873 
1874   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1875 
1876   // Create the barrier set for the entire reserved region.
1877   G1SATBCardTableLoggingModRefBS* bs
1878     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1879   bs->initialize();
1880   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1881   set_barrier_set(bs);
1882 
1883   // Also create a G1 rem set.
1884   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1885 
1886   // Carve out the G1 part of the heap.
1887 
1888   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1889   G1RegionToSpaceMapper* heap_storage =
1890     G1RegionToSpaceMapper::create_mapper(g1_rs,
1891                                          g1_rs.size(),
1892                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1893                                          HeapRegion::GrainBytes,
1894                                          1,
1895                                          mtJavaHeap);
1896   heap_storage->set_mapping_changed_listener(&_listener);
1897 
1898   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1899   G1RegionToSpaceMapper* bot_storage =
1900     create_aux_memory_mapper("Block offset table",
1901                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1902                              G1BlockOffsetSharedArray::N_bytes);
1903 
1904   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1905   G1RegionToSpaceMapper* cardtable_storage =
1906     create_aux_memory_mapper("Card table",
1907                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1908                              G1BlockOffsetSharedArray::N_bytes);
1909 
1910   G1RegionToSpaceMapper* card_counts_storage =
1911     create_aux_memory_mapper("Card counts table",
1912                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1913                              G1BlockOffsetSharedArray::N_bytes);
1914 
1915   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1916   G1RegionToSpaceMapper* prev_bitmap_storage =
1917     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::mark_distance());
1918   G1RegionToSpaceMapper* next_bitmap_storage =
1919     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::mark_distance());
1920 
1921   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1922   g1_barrier_set()->initialize(cardtable_storage);
1923    // Do later initialization work for concurrent refinement.
1924   _cg1r->init(card_counts_storage);
1925 
1926   // 6843694 - ensure that the maximum region index can fit
1927   // in the remembered set structures.
1928   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1929   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1930 
1931   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1932   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1933   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1934             "too many cards per region");
1935 
1936   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1937 
1938   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1939 
1940   _g1h = this;
1941 
1942   _in_cset_fast_test.initialize(
1943     _hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1944   _humongous_reclaim_candidates.initialize(
1945     _hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1946 
1947   // Create the ConcurrentMark data structure and thread.
1948   // (Must do this late, so that "max_regions" is defined.)
1949   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1950   if (_cm == NULL || !_cm->completed_initialization()) {
1951     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1952     return JNI_ENOMEM;
1953   }
1954   _cmThread = _cm->cmThread();
1955 
1956   // Initialize the from_card cache structure of HeapRegionRemSet.
1957   HeapRegionRemSet::init_heap(max_regions());
1958 
1959   // Now expand into the initial heap size.
1960   if (!expand(init_byte_size)) {
1961     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1962     return JNI_ENOMEM;
1963   }
1964 
1965   // Perform any initialization actions delegated to the policy.
1966   g1_policy()->init();
1967 
1968   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1969                                                SATB_Q_FL_lock,
1970                                                G1SATBProcessCompletedThreshold,
1971                                                Shared_SATB_Q_lock);
1972 
1973   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1974                                                 DirtyCardQ_CBL_mon,
1975                                                 DirtyCardQ_FL_lock,
1976                                                 concurrent_g1_refine()->yellow_zone(),
1977                                                 concurrent_g1_refine()->red_zone(),
1978                                                 Shared_DirtyCardQ_lock);
1979 
1980   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1981                                     DirtyCardQ_CBL_mon,
1982                                     DirtyCardQ_FL_lock,
1983                                     -1, // never trigger processing
1984                                     -1, // no limit on length
1985                                     Shared_DirtyCardQ_lock,
1986                                     &JavaThread::dirty_card_queue_set());
1987 
1988   // Initialize the card queue set used to hold cards containing
1989   // references into the collection set.
1990   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
1991                                              DirtyCardQ_CBL_mon,
1992                                              DirtyCardQ_FL_lock,
1993                                              -1, // never trigger processing
1994                                              -1, // no limit on length
1995                                              Shared_DirtyCardQ_lock,
1996                                              &JavaThread::dirty_card_queue_set());
1997 
1998   // Here we allocate the dummy HeapRegion that is required by the
1999   // G1AllocRegion class.
2000   HeapRegion* dummy_region = _hrm.get_dummy_region();
2001 
2002   // We'll re-use the same region whether the alloc region will
2003   // require BOT updates or not and, if it doesn't, then a non-young
2004   // region will complain that it cannot support allocations without
2005   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2006   dummy_region->set_eden();
2007   // Make sure it's full.
2008   dummy_region->set_top(dummy_region->end());
2009   G1AllocRegion::setup(this, dummy_region);
2010 
2011   _allocator->init_mutator_alloc_region();
2012 
2013   // Do create of the monitoring and management support so that
2014   // values in the heap have been properly initialized.
2015   _g1mm = new G1MonitoringSupport(this);
2016 
2017   G1StringDedup::initialize();
2018 
2019   return JNI_OK;
2020 }
2021 
2022 void G1CollectedHeap::stop() {
2023   // Stop all concurrent threads. We do this to make sure these threads
2024   // do not continue to execute and access resources (e.g. gclog_or_tty)
2025   // that are destroyed during shutdown.
2026   _cg1r->stop();
2027   _cmThread->stop();
2028   if (G1StringDedup::is_enabled()) {
2029     G1StringDedup::stop();
2030   }
2031 }
2032 
2033 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2034   return HeapRegion::max_region_size();
2035 }
2036 
2037 void G1CollectedHeap::post_initialize() {
2038   CollectedHeap::post_initialize();
2039   ref_processing_init();
2040 }
2041 
2042 void G1CollectedHeap::ref_processing_init() {
2043   // Reference processing in G1 currently works as follows:
2044   //
2045   // * There are two reference processor instances. One is
2046   //   used to record and process discovered references
2047   //   during concurrent marking; the other is used to
2048   //   record and process references during STW pauses
2049   //   (both full and incremental).
2050   // * Both ref processors need to 'span' the entire heap as
2051   //   the regions in the collection set may be dotted around.
2052   //
2053   // * For the concurrent marking ref processor:
2054   //   * Reference discovery is enabled at initial marking.
2055   //   * Reference discovery is disabled and the discovered
2056   //     references processed etc during remarking.
2057   //   * Reference discovery is MT (see below).
2058   //   * Reference discovery requires a barrier (see below).
2059   //   * Reference processing may or may not be MT
2060   //     (depending on the value of ParallelRefProcEnabled
2061   //     and ParallelGCThreads).
2062   //   * A full GC disables reference discovery by the CM
2063   //     ref processor and abandons any entries on it's
2064   //     discovered lists.
2065   //
2066   // * For the STW processor:
2067   //   * Non MT discovery is enabled at the start of a full GC.
2068   //   * Processing and enqueueing during a full GC is non-MT.
2069   //   * During a full GC, references are processed after marking.
2070   //
2071   //   * Discovery (may or may not be MT) is enabled at the start
2072   //     of an incremental evacuation pause.
2073   //   * References are processed near the end of a STW evacuation pause.
2074   //   * For both types of GC:
2075   //     * Discovery is atomic - i.e. not concurrent.
2076   //     * Reference discovery will not need a barrier.
2077 
2078   MemRegion mr = reserved_region();
2079 
2080   // Concurrent Mark ref processor
2081   _ref_processor_cm =
2082     new ReferenceProcessor(mr,    // span
2083                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2084                                 // mt processing
2085                            (int) ParallelGCThreads,
2086                                 // degree of mt processing
2087                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2088                                 // mt discovery
2089                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2090                                 // degree of mt discovery
2091                            false,
2092                                 // Reference discovery is not atomic
2093                            &_is_alive_closure_cm);
2094                                 // is alive closure
2095                                 // (for efficiency/performance)
2096 
2097   // STW ref processor
2098   _ref_processor_stw =
2099     new ReferenceProcessor(mr,    // span
2100                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2101                                 // mt processing
2102                            MAX2((int)ParallelGCThreads, 1),
2103                                 // degree of mt processing
2104                            (ParallelGCThreads > 1),
2105                                 // mt discovery
2106                            MAX2((int)ParallelGCThreads, 1),
2107                                 // degree of mt discovery
2108                            true,
2109                                 // Reference discovery is atomic
2110                            &_is_alive_closure_stw);
2111                                 // is alive closure
2112                                 // (for efficiency/performance)
2113 }
2114 
2115 size_t G1CollectedHeap::capacity() const {
2116   return _hrm.length() * HeapRegion::GrainBytes;
2117 }
2118 
2119 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2120   assert(!hr->is_continues_humongous(), "pre-condition");
2121   hr->reset_gc_time_stamp();
2122   if (hr->is_starts_humongous()) {
2123     uint first_index = hr->hrm_index() + 1;
2124     uint last_index = hr->last_hc_index();
2125     for (uint i = first_index; i < last_index; i += 1) {
2126       HeapRegion* chr = region_at(i);
2127       assert(chr->is_continues_humongous(), "sanity");
2128       chr->reset_gc_time_stamp();
2129     }
2130   }
2131 }
2132 
2133 #ifndef PRODUCT
2134 
2135 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2136 private:
2137   unsigned _gc_time_stamp;
2138   bool _failures;
2139 
2140 public:
2141   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2142     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2143 
2144   virtual bool doHeapRegion(HeapRegion* hr) {
2145     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2146     if (_gc_time_stamp != region_gc_time_stamp) {
2147       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2148                              "expected %d", HR_FORMAT_PARAMS(hr),
2149                              region_gc_time_stamp, _gc_time_stamp);
2150       _failures = true;
2151     }
2152     return false;
2153   }
2154 
2155   bool failures() { return _failures; }
2156 };
2157 
2158 void G1CollectedHeap::check_gc_time_stamps() {
2159   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2160   heap_region_iterate(&cl);
2161   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2162 }
2163 #endif // PRODUCT
2164 
2165 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2166                                                  DirtyCardQueue* into_cset_dcq,
2167                                                  bool concurrent,
2168                                                  uint worker_i) {
2169   // Clean cards in the hot card cache
2170   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2171   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2172 
2173   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2174   size_t n_completed_buffers = 0;
2175   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2176     n_completed_buffers++;
2177   }
2178   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2179   dcqs.clear_n_completed_buffers();
2180   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2181 }
2182 
2183 
2184 // Computes the sum of the storage used by the various regions.
2185 size_t G1CollectedHeap::used() const {
2186   return _allocator->used();
2187 }
2188 
2189 size_t G1CollectedHeap::used_unlocked() const {
2190   return _allocator->used_unlocked();
2191 }
2192 
2193 class SumUsedClosure: public HeapRegionClosure {
2194   size_t _used;
2195 public:
2196   SumUsedClosure() : _used(0) {}
2197   bool doHeapRegion(HeapRegion* r) {
2198     if (!r->is_continues_humongous()) {
2199       _used += r->used();
2200     }
2201     return false;
2202   }
2203   size_t result() { return _used; }
2204 };
2205 
2206 size_t G1CollectedHeap::recalculate_used() const {
2207   double recalculate_used_start = os::elapsedTime();
2208 
2209   SumUsedClosure blk;
2210   heap_region_iterate(&blk);
2211 
2212   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2213   return blk.result();
2214 }
2215 
2216 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2217   switch (cause) {
2218     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2219     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2220     case GCCause::_g1_humongous_allocation: return true;
2221     case GCCause::_update_allocation_context_stats_inc: return true;
2222     case GCCause::_wb_conc_mark:            return true;
2223     default:                                return false;
2224   }
2225 }
2226 
2227 #ifndef PRODUCT
2228 void G1CollectedHeap::allocate_dummy_regions() {
2229   // Let's fill up most of the region
2230   size_t word_size = HeapRegion::GrainWords - 1024;
2231   // And as a result the region we'll allocate will be humongous.
2232   guarantee(is_humongous(word_size), "sanity");
2233 
2234   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2235     // Let's use the existing mechanism for the allocation
2236     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2237                                                  AllocationContext::system());
2238     if (dummy_obj != NULL) {
2239       MemRegion mr(dummy_obj, word_size);
2240       CollectedHeap::fill_with_object(mr);
2241     } else {
2242       // If we can't allocate once, we probably cannot allocate
2243       // again. Let's get out of the loop.
2244       break;
2245     }
2246   }
2247 }
2248 #endif // !PRODUCT
2249 
2250 void G1CollectedHeap::increment_old_marking_cycles_started() {
2251   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2252     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2253     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2254     _old_marking_cycles_started, _old_marking_cycles_completed));
2255 
2256   _old_marking_cycles_started++;
2257 }
2258 
2259 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2260   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2261 
2262   // We assume that if concurrent == true, then the caller is a
2263   // concurrent thread that was joined the Suspendible Thread
2264   // Set. If there's ever a cheap way to check this, we should add an
2265   // assert here.
2266 
2267   // Given that this method is called at the end of a Full GC or of a
2268   // concurrent cycle, and those can be nested (i.e., a Full GC can
2269   // interrupt a concurrent cycle), the number of full collections
2270   // completed should be either one (in the case where there was no
2271   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2272   // behind the number of full collections started.
2273 
2274   // This is the case for the inner caller, i.e. a Full GC.
2275   assert(concurrent ||
2276          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2277          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2278          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2279                  "is inconsistent with _old_marking_cycles_completed = %u",
2280                  _old_marking_cycles_started, _old_marking_cycles_completed));
2281 
2282   // This is the case for the outer caller, i.e. the concurrent cycle.
2283   assert(!concurrent ||
2284          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2285          err_msg("for outer caller (concurrent cycle): "
2286                  "_old_marking_cycles_started = %u "
2287                  "is inconsistent with _old_marking_cycles_completed = %u",
2288                  _old_marking_cycles_started, _old_marking_cycles_completed));
2289 
2290   _old_marking_cycles_completed += 1;
2291 
2292   // We need to clear the "in_progress" flag in the CM thread before
2293   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2294   // is set) so that if a waiter requests another System.gc() it doesn't
2295   // incorrectly see that a marking cycle is still in progress.
2296   if (concurrent) {
2297     _cmThread->clear_in_progress();
2298   }
2299 
2300   // This notify_all() will ensure that a thread that called
2301   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2302   // and it's waiting for a full GC to finish will be woken up. It is
2303   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2304   FullGCCount_lock->notify_all();
2305 }
2306 
2307 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2308   _concurrent_cycle_started = true;
2309   _gc_timer_cm->register_gc_start(start_time);
2310 
2311   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2312   trace_heap_before_gc(_gc_tracer_cm);
2313 }
2314 
2315 void G1CollectedHeap::register_concurrent_cycle_end() {
2316   if (_concurrent_cycle_started) {
2317     if (_cm->has_aborted()) {
2318       _gc_tracer_cm->report_concurrent_mode_failure();
2319     }
2320 
2321     _gc_timer_cm->register_gc_end();
2322     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2323 
2324     // Clear state variables to prepare for the next concurrent cycle.
2325     _concurrent_cycle_started = false;
2326     _heap_summary_sent = false;
2327   }
2328 }
2329 
2330 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2331   if (_concurrent_cycle_started) {
2332     // This function can be called when:
2333     //  the cleanup pause is run
2334     //  the concurrent cycle is aborted before the cleanup pause.
2335     //  the concurrent cycle is aborted after the cleanup pause,
2336     //   but before the concurrent cycle end has been registered.
2337     // Make sure that we only send the heap information once.
2338     if (!_heap_summary_sent) {
2339       trace_heap_after_gc(_gc_tracer_cm);
2340       _heap_summary_sent = true;
2341     }
2342   }
2343 }
2344 
2345 G1YCType G1CollectedHeap::yc_type() {
2346   bool is_young = g1_policy()->gcs_are_young();
2347   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2348   bool is_during_mark = mark_in_progress();
2349 
2350   if (is_initial_mark) {
2351     return InitialMark;
2352   } else if (is_during_mark) {
2353     return DuringMark;
2354   } else if (is_young) {
2355     return Normal;
2356   } else {
2357     return Mixed;
2358   }
2359 }
2360 
2361 void G1CollectedHeap::collect(GCCause::Cause cause) {
2362   assert_heap_not_locked();
2363 
2364   uint gc_count_before;
2365   uint old_marking_count_before;
2366   uint full_gc_count_before;
2367   bool retry_gc;
2368 
2369   do {
2370     retry_gc = false;
2371 
2372     {
2373       MutexLocker ml(Heap_lock);
2374 
2375       // Read the GC count while holding the Heap_lock
2376       gc_count_before = total_collections();
2377       full_gc_count_before = total_full_collections();
2378       old_marking_count_before = _old_marking_cycles_started;
2379     }
2380 
2381     if (should_do_concurrent_full_gc(cause)) {
2382       // Schedule an initial-mark evacuation pause that will start a
2383       // concurrent cycle. We're setting word_size to 0 which means that
2384       // we are not requesting a post-GC allocation.
2385       VM_G1IncCollectionPause op(gc_count_before,
2386                                  0,     /* word_size */
2387                                  true,  /* should_initiate_conc_mark */
2388                                  g1_policy()->max_pause_time_ms(),
2389                                  cause);
2390       op.set_allocation_context(AllocationContext::current());
2391 
2392       VMThread::execute(&op);
2393       if (!op.pause_succeeded()) {
2394         if (old_marking_count_before == _old_marking_cycles_started) {
2395           retry_gc = op.should_retry_gc();
2396         } else {
2397           // A Full GC happened while we were trying to schedule the
2398           // initial-mark GC. No point in starting a new cycle given
2399           // that the whole heap was collected anyway.
2400         }
2401 
2402         if (retry_gc) {
2403           if (GC_locker::is_active_and_needs_gc()) {
2404             GC_locker::stall_until_clear();
2405           }
2406         }
2407       }
2408     } else {
2409       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2410           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2411 
2412         // Schedule a standard evacuation pause. We're setting word_size
2413         // to 0 which means that we are not requesting a post-GC allocation.
2414         VM_G1IncCollectionPause op(gc_count_before,
2415                                    0,     /* word_size */
2416                                    false, /* should_initiate_conc_mark */
2417                                    g1_policy()->max_pause_time_ms(),
2418                                    cause);
2419         VMThread::execute(&op);
2420       } else {
2421         // Schedule a Full GC.
2422         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2423         VMThread::execute(&op);
2424       }
2425     }
2426   } while (retry_gc);
2427 }
2428 
2429 bool G1CollectedHeap::is_in(const void* p) const {
2430   if (_hrm.reserved().contains(p)) {
2431     // Given that we know that p is in the reserved space,
2432     // heap_region_containing_raw() should successfully
2433     // return the containing region.
2434     HeapRegion* hr = heap_region_containing_raw(p);
2435     return hr->is_in(p);
2436   } else {
2437     return false;
2438   }
2439 }
2440 
2441 #ifdef ASSERT
2442 bool G1CollectedHeap::is_in_exact(const void* p) const {
2443   bool contains = reserved_region().contains(p);
2444   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2445   if (contains && available) {
2446     return true;
2447   } else {
2448     return false;
2449   }
2450 }
2451 #endif
2452 
2453 // Iteration functions.
2454 
2455 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2456 
2457 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2458   ExtendedOopClosure* _cl;
2459 public:
2460   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2461   bool doHeapRegion(HeapRegion* r) {
2462     if (!r->is_continues_humongous()) {
2463       r->oop_iterate(_cl);
2464     }
2465     return false;
2466   }
2467 };
2468 
2469 // Iterates an ObjectClosure over all objects within a HeapRegion.
2470 
2471 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2472   ObjectClosure* _cl;
2473 public:
2474   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2475   bool doHeapRegion(HeapRegion* r) {
2476     if (!r->is_continues_humongous()) {
2477       r->object_iterate(_cl);
2478     }
2479     return false;
2480   }
2481 };
2482 
2483 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2484   IterateObjectClosureRegionClosure blk(cl);
2485   heap_region_iterate(&blk);
2486 }
2487 
2488 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2489   _hrm.iterate(cl);
2490 }
2491 
2492 void
2493 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2494                                          uint worker_id,
2495                                          HeapRegionClaimer *hrclaimer,
2496                                          bool concurrent) const {
2497   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2498 }
2499 
2500 // Clear the cached CSet starting regions and (more importantly)
2501 // the time stamps. Called when we reset the GC time stamp.
2502 void G1CollectedHeap::clear_cset_start_regions() {
2503   assert(_worker_cset_start_region != NULL, "sanity");
2504   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2505 
2506   int n_queues = MAX2((int)ParallelGCThreads, 1);
2507   for (int i = 0; i < n_queues; i++) {
2508     _worker_cset_start_region[i] = NULL;
2509     _worker_cset_start_region_time_stamp[i] = 0;
2510   }
2511 }
2512 
2513 // Given the id of a worker, obtain or calculate a suitable
2514 // starting region for iterating over the current collection set.
2515 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2516   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2517 
2518   HeapRegion* result = NULL;
2519   unsigned gc_time_stamp = get_gc_time_stamp();
2520 
2521   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2522     // Cached starting region for current worker was set
2523     // during the current pause - so it's valid.
2524     // Note: the cached starting heap region may be NULL
2525     // (when the collection set is empty).
2526     result = _worker_cset_start_region[worker_i];
2527     assert(result == NULL || result->in_collection_set(), "sanity");
2528     return result;
2529   }
2530 
2531   // The cached entry was not valid so let's calculate
2532   // a suitable starting heap region for this worker.
2533 
2534   // We want the parallel threads to start their collection
2535   // set iteration at different collection set regions to
2536   // avoid contention.
2537   // If we have:
2538   //          n collection set regions
2539   //          p threads
2540   // Then thread t will start at region floor ((t * n) / p)
2541 
2542   result = g1_policy()->collection_set();
2543   uint cs_size = g1_policy()->cset_region_length();
2544   uint active_workers = workers()->active_workers();
2545   assert(UseDynamicNumberOfGCThreads ||
2546            active_workers == workers()->total_workers(),
2547            "Unless dynamic should use total workers");
2548 
2549   uint end_ind   = (cs_size * worker_i) / active_workers;
2550   uint start_ind = 0;
2551 
2552   if (worker_i > 0 &&
2553       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2554     // Previous workers starting region is valid
2555     // so let's iterate from there
2556     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2557     result = _worker_cset_start_region[worker_i - 1];
2558   }
2559 
2560   for (uint i = start_ind; i < end_ind; i++) {
2561     result = result->next_in_collection_set();
2562   }
2563 
2564   // Note: the calculated starting heap region may be NULL
2565   // (when the collection set is empty).
2566   assert(result == NULL || result->in_collection_set(), "sanity");
2567   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2568          "should be updated only once per pause");
2569   _worker_cset_start_region[worker_i] = result;
2570   OrderAccess::storestore();
2571   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2572   return result;
2573 }
2574 
2575 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2576   HeapRegion* r = g1_policy()->collection_set();
2577   while (r != NULL) {
2578     HeapRegion* next = r->next_in_collection_set();
2579     if (cl->doHeapRegion(r)) {
2580       cl->incomplete();
2581       return;
2582     }
2583     r = next;
2584   }
2585 }
2586 
2587 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2588                                                   HeapRegionClosure *cl) {
2589   if (r == NULL) {
2590     // The CSet is empty so there's nothing to do.
2591     return;
2592   }
2593 
2594   assert(r->in_collection_set(),
2595          "Start region must be a member of the collection set.");
2596   HeapRegion* cur = r;
2597   while (cur != NULL) {
2598     HeapRegion* next = cur->next_in_collection_set();
2599     if (cl->doHeapRegion(cur) && false) {
2600       cl->incomplete();
2601       return;
2602     }
2603     cur = next;
2604   }
2605   cur = g1_policy()->collection_set();
2606   while (cur != r) {
2607     HeapRegion* next = cur->next_in_collection_set();
2608     if (cl->doHeapRegion(cur) && false) {
2609       cl->incomplete();
2610       return;
2611     }
2612     cur = next;
2613   }
2614 }
2615 
2616 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2617   HeapRegion* result = _hrm.next_region_in_heap(from);
2618   while (result != NULL && result->is_humongous()) {
2619     result = _hrm.next_region_in_heap(result);
2620   }
2621   return result;
2622 }
2623 
2624 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2625   HeapRegion* hr = heap_region_containing(addr);
2626   return hr->block_start(addr);
2627 }
2628 
2629 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2630   HeapRegion* hr = heap_region_containing(addr);
2631   return hr->block_size(addr);
2632 }
2633 
2634 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2635   HeapRegion* hr = heap_region_containing(addr);
2636   return hr->block_is_obj(addr);
2637 }
2638 
2639 bool G1CollectedHeap::supports_tlab_allocation() const {
2640   return true;
2641 }
2642 
2643 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2644   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2645 }
2646 
2647 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2648   return young_list()->eden_used_bytes();
2649 }
2650 
2651 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2652 // must be smaller than the humongous object limit.
2653 size_t G1CollectedHeap::max_tlab_size() const {
2654   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2655 }
2656 
2657 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2658   // Return the remaining space in the cur alloc region, but not less than
2659   // the min TLAB size.
2660 
2661   // Also, this value can be at most the humongous object threshold,
2662   // since we can't allow tlabs to grow big enough to accommodate
2663   // humongous objects.
2664 
2665   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2666   size_t max_tlab = max_tlab_size() * wordSize;
2667   if (hr == NULL) {
2668     return max_tlab;
2669   } else {
2670     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2671   }
2672 }
2673 
2674 size_t G1CollectedHeap::max_capacity() const {
2675   return _hrm.reserved().byte_size();
2676 }
2677 
2678 jlong G1CollectedHeap::millis_since_last_gc() {
2679   // assert(false, "NYI");
2680   return 0;
2681 }
2682 
2683 void G1CollectedHeap::prepare_for_verify() {
2684   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2685     ensure_parsability(false);
2686   }
2687   g1_rem_set()->prepare_for_verify();
2688 }
2689 
2690 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2691                                               VerifyOption vo) {
2692   switch (vo) {
2693   case VerifyOption_G1UsePrevMarking:
2694     return hr->obj_allocated_since_prev_marking(obj);
2695   case VerifyOption_G1UseNextMarking:
2696     return hr->obj_allocated_since_next_marking(obj);
2697   case VerifyOption_G1UseMarkWord:
2698     return false;
2699   default:
2700     ShouldNotReachHere();
2701   }
2702   return false; // keep some compilers happy
2703 }
2704 
2705 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2706   switch (vo) {
2707   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2708   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2709   case VerifyOption_G1UseMarkWord:    return NULL;
2710   default:                            ShouldNotReachHere();
2711   }
2712   return NULL; // keep some compilers happy
2713 }
2714 
2715 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2716   switch (vo) {
2717   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2718   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2719   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2720   default:                            ShouldNotReachHere();
2721   }
2722   return false; // keep some compilers happy
2723 }
2724 
2725 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2726   switch (vo) {
2727   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2728   case VerifyOption_G1UseNextMarking: return "NTAMS";
2729   case VerifyOption_G1UseMarkWord:    return "NONE";
2730   default:                            ShouldNotReachHere();
2731   }
2732   return NULL; // keep some compilers happy
2733 }
2734 
2735 class VerifyRootsClosure: public OopClosure {
2736 private:
2737   G1CollectedHeap* _g1h;
2738   VerifyOption     _vo;
2739   bool             _failures;
2740 public:
2741   // _vo == UsePrevMarking -> use "prev" marking information,
2742   // _vo == UseNextMarking -> use "next" marking information,
2743   // _vo == UseMarkWord    -> use mark word from object header.
2744   VerifyRootsClosure(VerifyOption vo) :
2745     _g1h(G1CollectedHeap::heap()),
2746     _vo(vo),
2747     _failures(false) { }
2748 
2749   bool failures() { return _failures; }
2750 
2751   template <class T> void do_oop_nv(T* p) {
2752     T heap_oop = oopDesc::load_heap_oop(p);
2753     if (!oopDesc::is_null(heap_oop)) {
2754       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2755       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2756         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2757                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2758         if (_vo == VerifyOption_G1UseMarkWord) {
2759           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2760         }
2761         obj->print_on(gclog_or_tty);
2762         _failures = true;
2763       }
2764     }
2765   }
2766 
2767   void do_oop(oop* p)       { do_oop_nv(p); }
2768   void do_oop(narrowOop* p) { do_oop_nv(p); }
2769 };
2770 
2771 class G1VerifyCodeRootOopClosure: public OopClosure {
2772   G1CollectedHeap* _g1h;
2773   OopClosure* _root_cl;
2774   nmethod* _nm;
2775   VerifyOption _vo;
2776   bool _failures;
2777 
2778   template <class T> void do_oop_work(T* p) {
2779     // First verify that this root is live
2780     _root_cl->do_oop(p);
2781 
2782     if (!G1VerifyHeapRegionCodeRoots) {
2783       // We're not verifying the code roots attached to heap region.
2784       return;
2785     }
2786 
2787     // Don't check the code roots during marking verification in a full GC
2788     if (_vo == VerifyOption_G1UseMarkWord) {
2789       return;
2790     }
2791 
2792     // Now verify that the current nmethod (which contains p) is
2793     // in the code root list of the heap region containing the
2794     // object referenced by p.
2795 
2796     T heap_oop = oopDesc::load_heap_oop(p);
2797     if (!oopDesc::is_null(heap_oop)) {
2798       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2799 
2800       // Now fetch the region containing the object
2801       HeapRegion* hr = _g1h->heap_region_containing(obj);
2802       HeapRegionRemSet* hrrs = hr->rem_set();
2803       // Verify that the strong code root list for this region
2804       // contains the nmethod
2805       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2806         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2807                               "from nmethod "PTR_FORMAT" not in strong "
2808                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2809                               p, _nm, hr->bottom(), hr->end());
2810         _failures = true;
2811       }
2812     }
2813   }
2814 
2815 public:
2816   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2817     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2818 
2819   void do_oop(oop* p) { do_oop_work(p); }
2820   void do_oop(narrowOop* p) { do_oop_work(p); }
2821 
2822   void set_nmethod(nmethod* nm) { _nm = nm; }
2823   bool failures() { return _failures; }
2824 };
2825 
2826 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2827   G1VerifyCodeRootOopClosure* _oop_cl;
2828 
2829 public:
2830   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2831     _oop_cl(oop_cl) {}
2832 
2833   void do_code_blob(CodeBlob* cb) {
2834     nmethod* nm = cb->as_nmethod_or_null();
2835     if (nm != NULL) {
2836       _oop_cl->set_nmethod(nm);
2837       nm->oops_do(_oop_cl);
2838     }
2839   }
2840 };
2841 
2842 class YoungRefCounterClosure : public OopClosure {
2843   G1CollectedHeap* _g1h;
2844   int              _count;
2845  public:
2846   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2847   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2848   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2849 
2850   int count() { return _count; }
2851   void reset_count() { _count = 0; };
2852 };
2853 
2854 class VerifyKlassClosure: public KlassClosure {
2855   YoungRefCounterClosure _young_ref_counter_closure;
2856   OopClosure *_oop_closure;
2857  public:
2858   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2859   void do_klass(Klass* k) {
2860     k->oops_do(_oop_closure);
2861 
2862     _young_ref_counter_closure.reset_count();
2863     k->oops_do(&_young_ref_counter_closure);
2864     if (_young_ref_counter_closure.count() > 0) {
2865       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2866     }
2867   }
2868 };
2869 
2870 class VerifyLivenessOopClosure: public OopClosure {
2871   G1CollectedHeap* _g1h;
2872   VerifyOption _vo;
2873 public:
2874   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2875     _g1h(g1h), _vo(vo)
2876   { }
2877   void do_oop(narrowOop *p) { do_oop_work(p); }
2878   void do_oop(      oop *p) { do_oop_work(p); }
2879 
2880   template <class T> void do_oop_work(T *p) {
2881     oop obj = oopDesc::load_decode_heap_oop(p);
2882     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2883               "Dead object referenced by a not dead object");
2884   }
2885 };
2886 
2887 class VerifyObjsInRegionClosure: public ObjectClosure {
2888 private:
2889   G1CollectedHeap* _g1h;
2890   size_t _live_bytes;
2891   HeapRegion *_hr;
2892   VerifyOption _vo;
2893 public:
2894   // _vo == UsePrevMarking -> use "prev" marking information,
2895   // _vo == UseNextMarking -> use "next" marking information,
2896   // _vo == UseMarkWord    -> use mark word from object header.
2897   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2898     : _live_bytes(0), _hr(hr), _vo(vo) {
2899     _g1h = G1CollectedHeap::heap();
2900   }
2901   void do_object(oop o) {
2902     VerifyLivenessOopClosure isLive(_g1h, _vo);
2903     assert(o != NULL, "Huh?");
2904     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2905       // If the object is alive according to the mark word,
2906       // then verify that the marking information agrees.
2907       // Note we can't verify the contra-positive of the
2908       // above: if the object is dead (according to the mark
2909       // word), it may not be marked, or may have been marked
2910       // but has since became dead, or may have been allocated
2911       // since the last marking.
2912       if (_vo == VerifyOption_G1UseMarkWord) {
2913         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2914       }
2915 
2916       o->oop_iterate_no_header(&isLive);
2917       if (!_hr->obj_allocated_since_prev_marking(o)) {
2918         size_t obj_size = o->size();    // Make sure we don't overflow
2919         _live_bytes += (obj_size * HeapWordSize);
2920       }
2921     }
2922   }
2923   size_t live_bytes() { return _live_bytes; }
2924 };
2925 
2926 class PrintObjsInRegionClosure : public ObjectClosure {
2927   HeapRegion *_hr;
2928   G1CollectedHeap *_g1;
2929 public:
2930   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2931     _g1 = G1CollectedHeap::heap();
2932   };
2933 
2934   void do_object(oop o) {
2935     if (o != NULL) {
2936       HeapWord *start = (HeapWord *) o;
2937       size_t word_sz = o->size();
2938       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2939                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2940                           (void*) o, word_sz,
2941                           _g1->isMarkedPrev(o),
2942                           _g1->isMarkedNext(o),
2943                           _hr->obj_allocated_since_prev_marking(o));
2944       HeapWord *end = start + word_sz;
2945       HeapWord *cur;
2946       int *val;
2947       for (cur = start; cur < end; cur++) {
2948         val = (int *) cur;
2949         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
2950       }
2951     }
2952   }
2953 };
2954 
2955 class VerifyRegionClosure: public HeapRegionClosure {
2956 private:
2957   bool             _par;
2958   VerifyOption     _vo;
2959   bool             _failures;
2960 public:
2961   // _vo == UsePrevMarking -> use "prev" marking information,
2962   // _vo == UseNextMarking -> use "next" marking information,
2963   // _vo == UseMarkWord    -> use mark word from object header.
2964   VerifyRegionClosure(bool par, VerifyOption vo)
2965     : _par(par),
2966       _vo(vo),
2967       _failures(false) {}
2968 
2969   bool failures() {
2970     return _failures;
2971   }
2972 
2973   bool doHeapRegion(HeapRegion* r) {
2974     if (!r->is_continues_humongous()) {
2975       bool failures = false;
2976       r->verify(_vo, &failures);
2977       if (failures) {
2978         _failures = true;
2979       } else {
2980         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2981         r->object_iterate(&not_dead_yet_cl);
2982         if (_vo != VerifyOption_G1UseNextMarking) {
2983           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2984             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2985                                    "max_live_bytes "SIZE_FORMAT" "
2986                                    "< calculated "SIZE_FORMAT,
2987                                    r->bottom(), r->end(),
2988                                    r->max_live_bytes(),
2989                                  not_dead_yet_cl.live_bytes());
2990             _failures = true;
2991           }
2992         } else {
2993           // When vo == UseNextMarking we cannot currently do a sanity
2994           // check on the live bytes as the calculation has not been
2995           // finalized yet.
2996         }
2997       }
2998     }
2999     return false; // stop the region iteration if we hit a failure
3000   }
3001 };
3002 
3003 // This is the task used for parallel verification of the heap regions
3004 
3005 class G1ParVerifyTask: public AbstractGangTask {
3006 private:
3007   G1CollectedHeap*  _g1h;
3008   VerifyOption      _vo;
3009   bool              _failures;
3010   HeapRegionClaimer _hrclaimer;
3011 
3012 public:
3013   // _vo == UsePrevMarking -> use "prev" marking information,
3014   // _vo == UseNextMarking -> use "next" marking information,
3015   // _vo == UseMarkWord    -> use mark word from object header.
3016   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3017       AbstractGangTask("Parallel verify task"),
3018       _g1h(g1h),
3019       _vo(vo),
3020       _failures(false),
3021       _hrclaimer(g1h->workers()->active_workers()) {}
3022 
3023   bool failures() {
3024     return _failures;
3025   }
3026 
3027   void work(uint worker_id) {
3028     HandleMark hm;
3029     VerifyRegionClosure blk(true, _vo);
3030     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3031     if (blk.failures()) {
3032       _failures = true;
3033     }
3034   }
3035 };
3036 
3037 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3038   if (SafepointSynchronize::is_at_safepoint()) {
3039     assert(Thread::current()->is_VM_thread(),
3040            "Expected to be executed serially by the VM thread at this point");
3041 
3042     if (!silent) { gclog_or_tty->print("Roots "); }
3043     VerifyRootsClosure rootsCl(vo);
3044     VerifyKlassClosure klassCl(this, &rootsCl);
3045     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3046 
3047     // We apply the relevant closures to all the oops in the
3048     // system dictionary, class loader data graph, the string table
3049     // and the nmethods in the code cache.
3050     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3051     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3052 
3053     {
3054       G1RootProcessor root_processor(this);
3055       root_processor.process_all_roots(&rootsCl,
3056                                        &cldCl,
3057                                        &blobsCl);
3058     }
3059 
3060     bool failures = rootsCl.failures() || codeRootsCl.failures();
3061 
3062     if (vo != VerifyOption_G1UseMarkWord) {
3063       // If we're verifying during a full GC then the region sets
3064       // will have been torn down at the start of the GC. Therefore
3065       // verifying the region sets will fail. So we only verify
3066       // the region sets when not in a full GC.
3067       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3068       verify_region_sets();
3069     }
3070 
3071     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3072     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3073 
3074       G1ParVerifyTask task(this, vo);
3075       assert(UseDynamicNumberOfGCThreads ||
3076         workers()->active_workers() == workers()->total_workers(),
3077         "If not dynamic should be using all the workers");
3078       int n_workers = workers()->active_workers();
3079       set_par_threads(n_workers);
3080       workers()->run_task(&task);
3081       set_par_threads(0);
3082       if (task.failures()) {
3083         failures = true;
3084       }
3085 
3086     } else {
3087       VerifyRegionClosure blk(false, vo);
3088       heap_region_iterate(&blk);
3089       if (blk.failures()) {
3090         failures = true;
3091       }
3092     }
3093 
3094     if (G1StringDedup::is_enabled()) {
3095       if (!silent) gclog_or_tty->print("StrDedup ");
3096       G1StringDedup::verify();
3097     }
3098 
3099     if (failures) {
3100       gclog_or_tty->print_cr("Heap:");
3101       // It helps to have the per-region information in the output to
3102       // help us track down what went wrong. This is why we call
3103       // print_extended_on() instead of print_on().
3104       print_extended_on(gclog_or_tty);
3105       gclog_or_tty->cr();
3106 #ifndef PRODUCT
3107       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3108         concurrent_mark()->print_reachable("at-verification-failure",
3109                                            vo, false /* all */);
3110       }
3111 #endif
3112       gclog_or_tty->flush();
3113     }
3114     guarantee(!failures, "there should not have been any failures");
3115   } else {
3116     if (!silent) {
3117       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3118       if (G1StringDedup::is_enabled()) {
3119         gclog_or_tty->print(", StrDedup");
3120       }
3121       gclog_or_tty->print(") ");
3122     }
3123   }
3124 }
3125 
3126 void G1CollectedHeap::verify(bool silent) {
3127   verify(silent, VerifyOption_G1UsePrevMarking);
3128 }
3129 
3130 double G1CollectedHeap::verify(bool guard, const char* msg) {
3131   double verify_time_ms = 0.0;
3132 
3133   if (guard && total_collections() >= VerifyGCStartAt) {
3134     double verify_start = os::elapsedTime();
3135     HandleMark hm;  // Discard invalid handles created during verification
3136     prepare_for_verify();
3137     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3138     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3139   }
3140 
3141   return verify_time_ms;
3142 }
3143 
3144 void G1CollectedHeap::verify_before_gc() {
3145   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3146   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3147 }
3148 
3149 void G1CollectedHeap::verify_after_gc() {
3150   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3151   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3152 }
3153 
3154 class PrintRegionClosure: public HeapRegionClosure {
3155   outputStream* _st;
3156 public:
3157   PrintRegionClosure(outputStream* st) : _st(st) {}
3158   bool doHeapRegion(HeapRegion* r) {
3159     r->print_on(_st);
3160     return false;
3161   }
3162 };
3163 
3164 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3165                                        const HeapRegion* hr,
3166                                        const VerifyOption vo) const {
3167   switch (vo) {
3168   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3169   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3170   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3171   default:                            ShouldNotReachHere();
3172   }
3173   return false; // keep some compilers happy
3174 }
3175 
3176 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3177                                        const VerifyOption vo) const {
3178   switch (vo) {
3179   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3180   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3181   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3182   default:                            ShouldNotReachHere();
3183   }
3184   return false; // keep some compilers happy
3185 }
3186 
3187 void G1CollectedHeap::print_on(outputStream* st) const {
3188   st->print(" %-20s", "garbage-first heap");
3189   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3190             capacity()/K, used_unlocked()/K);
3191   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3192             _hrm.reserved().start(),
3193             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3194             _hrm.reserved().end());
3195   st->cr();
3196   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3197   uint young_regions = _young_list->length();
3198   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3199             (size_t) young_regions * HeapRegion::GrainBytes / K);
3200   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3201   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3202             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3203   st->cr();
3204   MetaspaceAux::print_on(st);
3205 }
3206 
3207 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3208   print_on(st);
3209 
3210   // Print the per-region information.
3211   st->cr();
3212   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3213                "HS=humongous(starts), HC=humongous(continues), "
3214                "CS=collection set, F=free, TS=gc time stamp, "
3215                "PTAMS=previous top-at-mark-start, "
3216                "NTAMS=next top-at-mark-start)");
3217   PrintRegionClosure blk(st);
3218   heap_region_iterate(&blk);
3219 }
3220 
3221 void G1CollectedHeap::print_on_error(outputStream* st) const {
3222   this->CollectedHeap::print_on_error(st);
3223 
3224   if (_cm != NULL) {
3225     st->cr();
3226     _cm->print_on_error(st);
3227   }
3228 }
3229 
3230 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3231   workers()->print_worker_threads_on(st);
3232   _cmThread->print_on(st);
3233   st->cr();
3234   _cm->print_worker_threads_on(st);
3235   _cg1r->print_worker_threads_on(st);
3236   if (G1StringDedup::is_enabled()) {
3237     G1StringDedup::print_worker_threads_on(st);
3238   }
3239 }
3240 
3241 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3242   workers()->threads_do(tc);
3243   tc->do_thread(_cmThread);
3244   _cg1r->threads_do(tc);
3245   if (G1StringDedup::is_enabled()) {
3246     G1StringDedup::threads_do(tc);
3247   }
3248 }
3249 
3250 void G1CollectedHeap::print_tracing_info() const {
3251   // We'll overload this to mean "trace GC pause statistics."
3252   if (TraceYoungGenTime || TraceOldGenTime) {
3253     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3254     // to that.
3255     g1_policy()->print_tracing_info();
3256   }
3257   if (G1SummarizeRSetStats) {
3258     g1_rem_set()->print_summary_info();
3259   }
3260   if (G1SummarizeConcMark) {
3261     concurrent_mark()->print_summary_info();
3262   }
3263   g1_policy()->print_yg_surv_rate_info();
3264 }
3265 
3266 #ifndef PRODUCT
3267 // Helpful for debugging RSet issues.
3268 
3269 class PrintRSetsClosure : public HeapRegionClosure {
3270 private:
3271   const char* _msg;
3272   size_t _occupied_sum;
3273 
3274 public:
3275   bool doHeapRegion(HeapRegion* r) {
3276     HeapRegionRemSet* hrrs = r->rem_set();
3277     size_t occupied = hrrs->occupied();
3278     _occupied_sum += occupied;
3279 
3280     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3281                            HR_FORMAT_PARAMS(r));
3282     if (occupied == 0) {
3283       gclog_or_tty->print_cr("  RSet is empty");
3284     } else {
3285       hrrs->print();
3286     }
3287     gclog_or_tty->print_cr("----------");
3288     return false;
3289   }
3290 
3291   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3292     gclog_or_tty->cr();
3293     gclog_or_tty->print_cr("========================================");
3294     gclog_or_tty->print_cr("%s", msg);
3295     gclog_or_tty->cr();
3296   }
3297 
3298   ~PrintRSetsClosure() {
3299     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3300     gclog_or_tty->print_cr("========================================");
3301     gclog_or_tty->cr();
3302   }
3303 };
3304 
3305 void G1CollectedHeap::print_cset_rsets() {
3306   PrintRSetsClosure cl("Printing CSet RSets");
3307   collection_set_iterate(&cl);
3308 }
3309 
3310 void G1CollectedHeap::print_all_rsets() {
3311   PrintRSetsClosure cl("Printing All RSets");;
3312   heap_region_iterate(&cl);
3313 }
3314 #endif // PRODUCT
3315 
3316 G1CollectedHeap* G1CollectedHeap::heap() {
3317   return _g1h;
3318 }
3319 
3320 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3321   // always_do_update_barrier = false;
3322   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3323   // Fill TLAB's and such
3324   accumulate_statistics_all_tlabs();
3325   ensure_parsability(true);
3326 
3327   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3328       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3329     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3330   }
3331 }
3332 
3333 void G1CollectedHeap::gc_epilogue(bool full) {
3334 
3335   if (G1SummarizeRSetStats &&
3336       (G1SummarizeRSetStatsPeriod > 0) &&
3337       // we are at the end of the GC. Total collections has already been increased.
3338       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3339     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3340   }
3341 
3342   // FIXME: what is this about?
3343   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3344   // is set.
3345   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3346                         "derived pointer present"));
3347   // always_do_update_barrier = true;
3348 
3349   resize_all_tlabs();
3350   allocation_context_stats().update(full);
3351 
3352   // We have just completed a GC. Update the soft reference
3353   // policy with the new heap occupancy
3354   Universe::update_heap_info_at_gc();
3355 }
3356 
3357 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3358                                                uint gc_count_before,
3359                                                bool* succeeded,
3360                                                GCCause::Cause gc_cause) {
3361   assert_heap_not_locked_and_not_at_safepoint();
3362   g1_policy()->record_stop_world_start();
3363   VM_G1IncCollectionPause op(gc_count_before,
3364                              word_size,
3365                              false, /* should_initiate_conc_mark */
3366                              g1_policy()->max_pause_time_ms(),
3367                              gc_cause);
3368 
3369   op.set_allocation_context(AllocationContext::current());
3370   VMThread::execute(&op);
3371 
3372   HeapWord* result = op.result();
3373   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3374   assert(result == NULL || ret_succeeded,
3375          "the result should be NULL if the VM did not succeed");
3376   *succeeded = ret_succeeded;
3377 
3378   assert_heap_not_locked();
3379   return result;
3380 }
3381 
3382 void
3383 G1CollectedHeap::doConcurrentMark() {
3384   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3385   if (!_cmThread->in_progress()) {
3386     _cmThread->set_started();
3387     CGC_lock->notify();
3388   }
3389 }
3390 
3391 size_t G1CollectedHeap::pending_card_num() {
3392   size_t extra_cards = 0;
3393   JavaThread *curr = Threads::first();
3394   while (curr != NULL) {
3395     DirtyCardQueue& dcq = curr->dirty_card_queue();
3396     extra_cards += dcq.size();
3397     curr = curr->next();
3398   }
3399   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3400   size_t buffer_size = dcqs.buffer_size();
3401   size_t buffer_num = dcqs.completed_buffers_num();
3402 
3403   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3404   // in bytes - not the number of 'entries'. We need to convert
3405   // into a number of cards.
3406   return (buffer_size * buffer_num + extra_cards) / oopSize;
3407 }
3408 
3409 size_t G1CollectedHeap::cards_scanned() {
3410   return g1_rem_set()->cardsScanned();
3411 }
3412 
3413 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3414  private:
3415   size_t _total_humongous;
3416   size_t _candidate_humongous;
3417 
3418   DirtyCardQueue _dcq;
3419 
3420   // We don't nominate objects with many remembered set entries, on
3421   // the assumption that such objects are likely still live.
3422   bool is_remset_small(HeapRegion* region) const {
3423     HeapRegionRemSet* const rset = region->rem_set();
3424     return G1EagerReclaimHumongousObjectsWithStaleRefs
3425       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3426       : rset->is_empty();
3427   }
3428 
3429   bool is_typeArray_region(HeapRegion* region) const {
3430     return oop(region->bottom())->is_typeArray();
3431   }
3432 
3433   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3434     assert(region->is_starts_humongous(), "Must start a humongous object");
3435 
3436     // In order to maintain SATB invariants, during concurrent mark
3437     // we should only nominate an object containing references if it
3438     // was allocated after the start of marking, as such an object
3439     // doesn't need to have its references scanned.
3440     //
3441     // Also, we must not reclaim an object that is in the concurrent
3442     // mark stack.  Objects allocated since the start of marking are
3443     // never added to the mark stack.
3444     //
3445     // However, we presently only nominate is_typeArray() objects.
3446     // A humongous object containing references induces remembered
3447     // set entries on other regions.  In order to reclaim such an
3448     // object, those remembered sets would need to be cleaned up.
3449     //
3450     // We also treat is_typeArray() objects specially, allowing them
3451     // to be reclaimed even if allocated before the start of
3452     // concurrent mark.  For this we rely on mark stack insertion to
3453     // exclude is_typeArray() objects, preventing reclaiming an object
3454     // that is in the mark stack.  Frequent allocation and drop of
3455     // large binary blobs is an important use case for eager reclaim,
3456     // and this special handling may reduce needed headroom.
3457 
3458     return is_typeArray_region(region) && is_remset_small(region);
3459   }
3460 
3461  public:
3462   RegisterHumongousWithInCSetFastTestClosure()
3463   : _total_humongous(0),
3464     _candidate_humongous(0),
3465     _dcq(&JavaThread::dirty_card_queue_set()) {
3466   }
3467 
3468   virtual bool doHeapRegion(HeapRegion* r) {
3469     if (!r->is_starts_humongous()) {
3470       return false;
3471     }
3472     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3473 
3474     if (!humongous_region_is_candidate(g1h, r)) {
3475       g1h->remove_humongous_reclaim_candidate(r->hrm_index());
3476     } else {
3477       // Is_candidate already filters out humongous object with large remembered sets.
3478       // If we have a humongous object with a few remembered sets, we simply flush these
3479       // remembered set entries into the DCQS. That will result in automatic
3480       // re-evaluation of their remembered set entries during the following evacuation
3481       // phase.
3482       if (!r->rem_set()->is_empty()) {
3483         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3484                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3485         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3486         HeapRegionRemSetIterator hrrs(r->rem_set());
3487         size_t card_index;
3488         while (hrrs.has_next(card_index)) {
3489           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3490           // The remembered set might contain references to already freed
3491           // regions. Filter out such entries to avoid failing card table
3492           // verification.
3493           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3494             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3495               *card_ptr = CardTableModRefBS::dirty_card_val();
3496               _dcq.enqueue(card_ptr);
3497             }
3498           }
3499         }
3500         r->rem_set()->clear_locked();
3501       }
3502       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3503       uint rindex = r->hrm_index();
3504       g1h->add_humongous_reclaim_candidate(rindex);
3505       g1h->register_humongous_region_with_cset(rindex);
3506       _candidate_humongous++;
3507     }
3508     _total_humongous++;
3509 
3510     return false;
3511   }
3512 
3513   size_t total_humongous() const { return _total_humongous; }
3514   size_t candidate_humongous() const { return _candidate_humongous; }
3515 
3516   void flush_rem_set_entries() { _dcq.flush(); }
3517 };
3518 
3519 void G1CollectedHeap::register_humongous_regions_with_cset() {
3520   if (!G1EagerReclaimHumongousObjects) {
3521     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3522     return;
3523   }
3524   double time = os::elapsed_counter();
3525 
3526   // Collect reclaim candidate information and register candidates with cset.
3527   RegisterHumongousWithInCSetFastTestClosure cl;
3528   heap_region_iterate(&cl);
3529 
3530   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3531   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3532                                                                   cl.total_humongous(),
3533                                                                   cl.candidate_humongous());
3534   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3535 
3536   // Finally flush all remembered set entries to re-check into the global DCQS.
3537   cl.flush_rem_set_entries();
3538 }
3539 
3540 void
3541 G1CollectedHeap::setup_surviving_young_words() {
3542   assert(_surviving_young_words == NULL, "pre-condition");
3543   uint array_length = g1_policy()->young_cset_region_length();
3544   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3545   if (_surviving_young_words == NULL) {
3546     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3547                           "Not enough space for young surv words summary.");
3548   }
3549   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3550 #ifdef ASSERT
3551   for (uint i = 0;  i < array_length; ++i) {
3552     assert( _surviving_young_words[i] == 0, "memset above" );
3553   }
3554 #endif // !ASSERT
3555 }
3556 
3557 void
3558 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3559   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3560   uint array_length = g1_policy()->young_cset_region_length();
3561   for (uint i = 0; i < array_length; ++i) {
3562     _surviving_young_words[i] += surv_young_words[i];
3563   }
3564 }
3565 
3566 void
3567 G1CollectedHeap::cleanup_surviving_young_words() {
3568   guarantee( _surviving_young_words != NULL, "pre-condition" );
3569   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3570   _surviving_young_words = NULL;
3571 }
3572 
3573 #ifdef ASSERT
3574 class VerifyCSetClosure: public HeapRegionClosure {
3575 public:
3576   bool doHeapRegion(HeapRegion* hr) {
3577     // Here we check that the CSet region's RSet is ready for parallel
3578     // iteration. The fields that we'll verify are only manipulated
3579     // when the region is part of a CSet and is collected. Afterwards,
3580     // we reset these fields when we clear the region's RSet (when the
3581     // region is freed) so they are ready when the region is
3582     // re-allocated. The only exception to this is if there's an
3583     // evacuation failure and instead of freeing the region we leave
3584     // it in the heap. In that case, we reset these fields during
3585     // evacuation failure handling.
3586     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3587 
3588     // Here's a good place to add any other checks we'd like to
3589     // perform on CSet regions.
3590     return false;
3591   }
3592 };
3593 #endif // ASSERT
3594 
3595 #if TASKQUEUE_STATS
3596 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3597   st->print_raw_cr("GC Task Stats");
3598   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3599   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3600 }
3601 
3602 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3603   print_taskqueue_stats_hdr(st);
3604 
3605   TaskQueueStats totals;
3606   const int n = workers()->total_workers();
3607   for (int i = 0; i < n; ++i) {
3608     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3609     totals += task_queue(i)->stats;
3610   }
3611   st->print_raw("tot "); totals.print(st); st->cr();
3612 
3613   DEBUG_ONLY(totals.verify());
3614 }
3615 
3616 void G1CollectedHeap::reset_taskqueue_stats() {
3617   const int n = workers()->total_workers();
3618   for (int i = 0; i < n; ++i) {
3619     task_queue(i)->stats.reset();
3620   }
3621 }
3622 #endif // TASKQUEUE_STATS
3623 
3624 void G1CollectedHeap::log_gc_header() {
3625   if (!G1Log::fine()) {
3626     return;
3627   }
3628 
3629   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3630 
3631   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3632     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3633     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3634 
3635   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3636 }
3637 
3638 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3639   if (!G1Log::fine()) {
3640     return;
3641   }
3642 
3643   if (G1Log::finer()) {
3644     if (evacuation_failed()) {
3645       gclog_or_tty->print(" (to-space exhausted)");
3646     }
3647     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3648     g1_policy()->phase_times()->note_gc_end();
3649     g1_policy()->phase_times()->print(pause_time_sec);
3650     g1_policy()->print_detailed_heap_transition();
3651   } else {
3652     if (evacuation_failed()) {
3653       gclog_or_tty->print("--");
3654     }
3655     g1_policy()->print_heap_transition();
3656     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3657   }
3658   gclog_or_tty->flush();
3659 }
3660 
3661 bool
3662 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3663   assert_at_safepoint(true /* should_be_vm_thread */);
3664   guarantee(!is_gc_active(), "collection is not reentrant");
3665 
3666   if (GC_locker::check_active_before_gc()) {
3667     return false;
3668   }
3669 
3670   _gc_timer_stw->register_gc_start();
3671 
3672   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3673 
3674   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3675   ResourceMark rm;
3676 
3677   print_heap_before_gc();
3678   trace_heap_before_gc(_gc_tracer_stw);
3679 
3680   verify_region_sets_optional();
3681   verify_dirty_young_regions();
3682 
3683   // This call will decide whether this pause is an initial-mark
3684   // pause. If it is, during_initial_mark_pause() will return true
3685   // for the duration of this pause.
3686   g1_policy()->decide_on_conc_mark_initiation();
3687 
3688   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3689   assert(!g1_policy()->during_initial_mark_pause() ||
3690           g1_policy()->gcs_are_young(), "sanity");
3691 
3692   // We also do not allow mixed GCs during marking.
3693   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3694 
3695   // Record whether this pause is an initial mark. When the current
3696   // thread has completed its logging output and it's safe to signal
3697   // the CM thread, the flag's value in the policy has been reset.
3698   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3699 
3700   // Inner scope for scope based logging, timers, and stats collection
3701   {
3702     EvacuationInfo evacuation_info;
3703 
3704     if (g1_policy()->during_initial_mark_pause()) {
3705       // We are about to start a marking cycle, so we increment the
3706       // full collection counter.
3707       increment_old_marking_cycles_started();
3708       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3709     }
3710 
3711     _gc_tracer_stw->report_yc_type(yc_type());
3712 
3713     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3714 
3715     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3716                                                                   workers()->active_workers(),
3717                                                                   Threads::number_of_non_daemon_threads());
3718     assert(UseDynamicNumberOfGCThreads ||
3719            active_workers == workers()->total_workers(),
3720            "If not dynamic should be using all the  workers");
3721     workers()->set_active_workers(active_workers);
3722 
3723     double pause_start_sec = os::elapsedTime();
3724     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3725     log_gc_header();
3726 
3727     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3728     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3729 
3730     // If the secondary_free_list is not empty, append it to the
3731     // free_list. No need to wait for the cleanup operation to finish;
3732     // the region allocation code will check the secondary_free_list
3733     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3734     // set, skip this step so that the region allocation code has to
3735     // get entries from the secondary_free_list.
3736     if (!G1StressConcRegionFreeing) {
3737       append_secondary_free_list_if_not_empty_with_lock();
3738     }
3739 
3740     assert(check_young_list_well_formed(), "young list should be well formed");
3741 
3742     // Don't dynamically change the number of GC threads this early.  A value of
3743     // 0 is used to indicate serial work.  When parallel work is done,
3744     // it will be set.
3745 
3746     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3747       IsGCActiveMark x;
3748 
3749       gc_prologue(false);
3750       increment_total_collections(false /* full gc */);
3751       increment_gc_time_stamp();
3752 
3753       verify_before_gc();
3754 
3755       check_bitmaps("GC Start");
3756 
3757       COMPILER2_PRESENT(DerivedPointerTable::clear());
3758 
3759       // Please see comment in g1CollectedHeap.hpp and
3760       // G1CollectedHeap::ref_processing_init() to see how
3761       // reference processing currently works in G1.
3762 
3763       // Enable discovery in the STW reference processor
3764       ref_processor_stw()->enable_discovery();
3765 
3766       {
3767         // We want to temporarily turn off discovery by the
3768         // CM ref processor, if necessary, and turn it back on
3769         // on again later if we do. Using a scoped
3770         // NoRefDiscovery object will do this.
3771         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3772 
3773         // Forget the current alloc region (we might even choose it to be part
3774         // of the collection set!).
3775         _allocator->release_mutator_alloc_region();
3776 
3777         // We should call this after we retire the mutator alloc
3778         // region(s) so that all the ALLOC / RETIRE events are generated
3779         // before the start GC event.
3780         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3781 
3782         // This timing is only used by the ergonomics to handle our pause target.
3783         // It is unclear why this should not include the full pause. We will
3784         // investigate this in CR 7178365.
3785         //
3786         // Preserving the old comment here if that helps the investigation:
3787         //
3788         // The elapsed time induced by the start time below deliberately elides
3789         // the possible verification above.
3790         double sample_start_time_sec = os::elapsedTime();
3791 
3792 #if YOUNG_LIST_VERBOSE
3793         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3794         _young_list->print();
3795         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3796 #endif // YOUNG_LIST_VERBOSE
3797 
3798         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3799 
3800         double scan_wait_start = os::elapsedTime();
3801         // We have to wait until the CM threads finish scanning the
3802         // root regions as it's the only way to ensure that all the
3803         // objects on them have been correctly scanned before we start
3804         // moving them during the GC.
3805         bool waited = _cm->root_regions()->wait_until_scan_finished();
3806         double wait_time_ms = 0.0;
3807         if (waited) {
3808           double scan_wait_end = os::elapsedTime();
3809           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3810         }
3811         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3812 
3813 #if YOUNG_LIST_VERBOSE
3814         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3815         _young_list->print();
3816 #endif // YOUNG_LIST_VERBOSE
3817 
3818         if (g1_policy()->during_initial_mark_pause()) {
3819           concurrent_mark()->checkpointRootsInitialPre();
3820         }
3821 
3822 #if YOUNG_LIST_VERBOSE
3823         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3824         _young_list->print();
3825         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3826 #endif // YOUNG_LIST_VERBOSE
3827 
3828         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3829 
3830         register_humongous_regions_with_cset();
3831 
3832         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3833 
3834         _cm->note_start_of_gc();
3835         // We should not verify the per-thread SATB buffers given that
3836         // we have not filtered them yet (we'll do so during the
3837         // GC). We also call this after finalize_cset() to
3838         // ensure that the CSet has been finalized.
3839         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3840                                  true  /* verify_enqueued_buffers */,
3841                                  false /* verify_thread_buffers */,
3842                                  true  /* verify_fingers */);
3843 
3844         if (_hr_printer.is_active()) {
3845           HeapRegion* hr = g1_policy()->collection_set();
3846           while (hr != NULL) {
3847             _hr_printer.cset(hr);
3848             hr = hr->next_in_collection_set();
3849           }
3850         }
3851 
3852 #ifdef ASSERT
3853         VerifyCSetClosure cl;
3854         collection_set_iterate(&cl);
3855 #endif // ASSERT
3856 
3857         setup_surviving_young_words();
3858 
3859         // Initialize the GC alloc regions.
3860         _allocator->init_gc_alloc_regions(evacuation_info);
3861 
3862         // Actually do the work...
3863         evacuate_collection_set(evacuation_info);
3864 
3865         // We do this to mainly verify the per-thread SATB buffers
3866         // (which have been filtered by now) since we didn't verify
3867         // them earlier. No point in re-checking the stacks / enqueued
3868         // buffers given that the CSet has not changed since last time
3869         // we checked.
3870         _cm->verify_no_cset_oops(false /* verify_stacks */,
3871                                  false /* verify_enqueued_buffers */,
3872                                  true  /* verify_thread_buffers */,
3873                                  true  /* verify_fingers */);
3874 
3875         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3876 
3877         eagerly_reclaim_humongous_regions();
3878 
3879         g1_policy()->clear_collection_set();
3880 
3881         cleanup_surviving_young_words();
3882 
3883         // Start a new incremental collection set for the next pause.
3884         g1_policy()->start_incremental_cset_building();
3885 
3886         clear_cset_fast_test();
3887 
3888         _young_list->reset_sampled_info();
3889 
3890         // Don't check the whole heap at this point as the
3891         // GC alloc regions from this pause have been tagged
3892         // as survivors and moved on to the survivor list.
3893         // Survivor regions will fail the !is_young() check.
3894         assert(check_young_list_empty(false /* check_heap */),
3895           "young list should be empty");
3896 
3897 #if YOUNG_LIST_VERBOSE
3898         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3899         _young_list->print();
3900 #endif // YOUNG_LIST_VERBOSE
3901 
3902         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3903                                              _young_list->first_survivor_region(),
3904                                              _young_list->last_survivor_region());
3905 
3906         _young_list->reset_auxilary_lists();
3907 
3908         if (evacuation_failed()) {
3909           _allocator->set_used(recalculate_used());
3910           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3911           for (uint i = 0; i < n_queues; i++) {
3912             if (_evacuation_failed_info_array[i].has_failed()) {
3913               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3914             }
3915           }
3916         } else {
3917           // The "used" of the the collection set have already been subtracted
3918           // when they were freed.  Add in the bytes evacuated.
3919           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3920         }
3921 
3922         if (g1_policy()->during_initial_mark_pause()) {
3923           // We have to do this before we notify the CM threads that
3924           // they can start working to make sure that all the
3925           // appropriate initialization is done on the CM object.
3926           concurrent_mark()->checkpointRootsInitialPost();
3927           set_marking_started();
3928           // Note that we don't actually trigger the CM thread at
3929           // this point. We do that later when we're sure that
3930           // the current thread has completed its logging output.
3931         }
3932 
3933         allocate_dummy_regions();
3934 
3935 #if YOUNG_LIST_VERBOSE
3936         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3937         _young_list->print();
3938         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3939 #endif // YOUNG_LIST_VERBOSE
3940 
3941         _allocator->init_mutator_alloc_region();
3942 
3943         {
3944           size_t expand_bytes = g1_policy()->expansion_amount();
3945           if (expand_bytes > 0) {
3946             size_t bytes_before = capacity();
3947             // No need for an ergo verbose message here,
3948             // expansion_amount() does this when it returns a value > 0.
3949             if (!expand(expand_bytes)) {
3950               // We failed to expand the heap. Cannot do anything about it.
3951             }
3952           }
3953         }
3954 
3955         // We redo the verification but now wrt to the new CSet which
3956         // has just got initialized after the previous CSet was freed.
3957         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3958                                  true  /* verify_enqueued_buffers */,
3959                                  true  /* verify_thread_buffers */,
3960                                  true  /* verify_fingers */);
3961         _cm->note_end_of_gc();
3962 
3963         // This timing is only used by the ergonomics to handle our pause target.
3964         // It is unclear why this should not include the full pause. We will
3965         // investigate this in CR 7178365.
3966         double sample_end_time_sec = os::elapsedTime();
3967         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3968         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3969 
3970         MemoryService::track_memory_usage();
3971 
3972         // In prepare_for_verify() below we'll need to scan the deferred
3973         // update buffers to bring the RSets up-to-date if
3974         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3975         // the update buffers we'll probably need to scan cards on the
3976         // regions we just allocated to (i.e., the GC alloc
3977         // regions). However, during the last GC we called
3978         // set_saved_mark() on all the GC alloc regions, so card
3979         // scanning might skip the [saved_mark_word()...top()] area of
3980         // those regions (i.e., the area we allocated objects into
3981         // during the last GC). But it shouldn't. Given that
3982         // saved_mark_word() is conditional on whether the GC time stamp
3983         // on the region is current or not, by incrementing the GC time
3984         // stamp here we invalidate all the GC time stamps on all the
3985         // regions and saved_mark_word() will simply return top() for
3986         // all the regions. This is a nicer way of ensuring this rather
3987         // than iterating over the regions and fixing them. In fact, the
3988         // GC time stamp increment here also ensures that
3989         // saved_mark_word() will return top() between pauses, i.e.,
3990         // during concurrent refinement. So we don't need the
3991         // is_gc_active() check to decided which top to use when
3992         // scanning cards (see CR 7039627).
3993         increment_gc_time_stamp();
3994 
3995         verify_after_gc();
3996         check_bitmaps("GC End");
3997 
3998         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3999         ref_processor_stw()->verify_no_references_recorded();
4000 
4001         // CM reference discovery will be re-enabled if necessary.
4002       }
4003 
4004       // We should do this after we potentially expand the heap so
4005       // that all the COMMIT events are generated before the end GC
4006       // event, and after we retire the GC alloc regions so that all
4007       // RETIRE events are generated before the end GC event.
4008       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4009 
4010 #ifdef TRACESPINNING
4011       ParallelTaskTerminator::print_termination_counts();
4012 #endif
4013 
4014       gc_epilogue(false);
4015     }
4016 
4017     // Print the remainder of the GC log output.
4018     log_gc_footer(os::elapsedTime() - pause_start_sec);
4019 
4020     // It is not yet to safe to tell the concurrent mark to
4021     // start as we have some optional output below. We don't want the
4022     // output from the concurrent mark thread interfering with this
4023     // logging output either.
4024 
4025     _hrm.verify_optional();
4026     verify_region_sets_optional();
4027 
4028     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4029     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4030 
4031     print_heap_after_gc();
4032     trace_heap_after_gc(_gc_tracer_stw);
4033 
4034     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4035     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4036     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4037     // before any GC notifications are raised.
4038     g1mm()->update_sizes();
4039 
4040     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4041     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4042     _gc_timer_stw->register_gc_end();
4043     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4044   }
4045   // It should now be safe to tell the concurrent mark thread to start
4046   // without its logging output interfering with the logging output
4047   // that came from the pause.
4048 
4049   if (should_start_conc_mark) {
4050     // CAUTION: after the doConcurrentMark() call below,
4051     // the concurrent marking thread(s) could be running
4052     // concurrently with us. Make sure that anything after
4053     // this point does not assume that we are the only GC thread
4054     // running. Note: of course, the actual marking work will
4055     // not start until the safepoint itself is released in
4056     // SuspendibleThreadSet::desynchronize().
4057     doConcurrentMark();
4058   }
4059 
4060   return true;
4061 }
4062 
4063 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4064   _drain_in_progress = false;
4065   set_evac_failure_closure(cl);
4066   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4067 }
4068 
4069 void G1CollectedHeap::finalize_for_evac_failure() {
4070   assert(_evac_failure_scan_stack != NULL &&
4071          _evac_failure_scan_stack->length() == 0,
4072          "Postcondition");
4073   assert(!_drain_in_progress, "Postcondition");
4074   delete _evac_failure_scan_stack;
4075   _evac_failure_scan_stack = NULL;
4076 }
4077 
4078 void G1CollectedHeap::remove_self_forwarding_pointers() {
4079   double remove_self_forwards_start = os::elapsedTime();
4080 
4081   set_par_threads();
4082   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4083   workers()->run_task(&rsfp_task);
4084   set_par_threads(0);
4085 
4086   // Now restore saved marks, if any.
4087   assert(_objs_with_preserved_marks.size() ==
4088             _preserved_marks_of_objs.size(), "Both or none.");
4089   while (!_objs_with_preserved_marks.is_empty()) {
4090     oop obj = _objs_with_preserved_marks.pop();
4091     markOop m = _preserved_marks_of_objs.pop();
4092     obj->set_mark(m);
4093   }
4094   _objs_with_preserved_marks.clear(true);
4095   _preserved_marks_of_objs.clear(true);
4096 
4097   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4098 }
4099 
4100 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4101   _evac_failure_scan_stack->push(obj);
4102 }
4103 
4104 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4105   assert(_evac_failure_scan_stack != NULL, "precondition");
4106 
4107   while (_evac_failure_scan_stack->length() > 0) {
4108      oop obj = _evac_failure_scan_stack->pop();
4109      _evac_failure_closure->set_region(heap_region_containing(obj));
4110      obj->oop_iterate_backwards(_evac_failure_closure);
4111   }
4112 }
4113 
4114 oop
4115 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4116                                                oop old) {
4117   assert(obj_in_cs(old),
4118          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4119                  (HeapWord*) old));
4120   markOop m = old->mark();
4121   oop forward_ptr = old->forward_to_atomic(old);
4122   if (forward_ptr == NULL) {
4123     // Forward-to-self succeeded.
4124     assert(_par_scan_state != NULL, "par scan state");
4125     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4126     uint queue_num = _par_scan_state->queue_num();
4127 
4128     _evacuation_failed = true;
4129     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4130     if (_evac_failure_closure != cl) {
4131       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4132       assert(!_drain_in_progress,
4133              "Should only be true while someone holds the lock.");
4134       // Set the global evac-failure closure to the current thread's.
4135       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4136       set_evac_failure_closure(cl);
4137       // Now do the common part.
4138       handle_evacuation_failure_common(old, m);
4139       // Reset to NULL.
4140       set_evac_failure_closure(NULL);
4141     } else {
4142       // The lock is already held, and this is recursive.
4143       assert(_drain_in_progress, "This should only be the recursive case.");
4144       handle_evacuation_failure_common(old, m);
4145     }
4146     return old;
4147   } else {
4148     // Forward-to-self failed. Either someone else managed to allocate
4149     // space for this object (old != forward_ptr) or they beat us in
4150     // self-forwarding it (old == forward_ptr).
4151     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4152            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4153                    "should not be in the CSet",
4154                    (HeapWord*) old, (HeapWord*) forward_ptr));
4155     return forward_ptr;
4156   }
4157 }
4158 
4159 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4160   preserve_mark_if_necessary(old, m);
4161 
4162   HeapRegion* r = heap_region_containing(old);
4163   if (!r->evacuation_failed()) {
4164     r->set_evacuation_failed(true);
4165     _hr_printer.evac_failure(r);
4166   }
4167 
4168   push_on_evac_failure_scan_stack(old);
4169 
4170   if (!_drain_in_progress) {
4171     // prevent recursion in copy_to_survivor_space()
4172     _drain_in_progress = true;
4173     drain_evac_failure_scan_stack();
4174     _drain_in_progress = false;
4175   }
4176 }
4177 
4178 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4179   assert(evacuation_failed(), "Oversaving!");
4180   // We want to call the "for_promotion_failure" version only in the
4181   // case of a promotion failure.
4182   if (m->must_be_preserved_for_promotion_failure(obj)) {
4183     _objs_with_preserved_marks.push(obj);
4184     _preserved_marks_of_objs.push(m);
4185   }
4186 }
4187 
4188 void G1ParCopyHelper::mark_object(oop obj) {
4189   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4190 
4191   // We know that the object is not moving so it's safe to read its size.
4192   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4193 }
4194 
4195 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4196   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4197   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4198   assert(from_obj != to_obj, "should not be self-forwarded");
4199 
4200   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4201   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4202 
4203   // The object might be in the process of being copied by another
4204   // worker so we cannot trust that its to-space image is
4205   // well-formed. So we have to read its size from its from-space
4206   // image which we know should not be changing.
4207   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4208 }
4209 
4210 template <class T>
4211 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4212   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4213     _scanned_klass->record_modified_oops();
4214   }
4215 }
4216 
4217 template <G1Barrier barrier, G1Mark do_mark_object>
4218 template <class T>
4219 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4220   T heap_oop = oopDesc::load_heap_oop(p);
4221 
4222   if (oopDesc::is_null(heap_oop)) {
4223     return;
4224   }
4225 
4226   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4227 
4228   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4229 
4230   const InCSetState state = _g1->in_cset_state(obj);
4231   if (state.is_in_cset()) {
4232     oop forwardee;
4233     markOop m = obj->mark();
4234     if (m->is_marked()) {
4235       forwardee = (oop) m->decode_pointer();
4236     } else {
4237       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4238     }
4239     assert(forwardee != NULL, "forwardee should not be NULL");
4240     oopDesc::encode_store_heap_oop(p, forwardee);
4241     if (do_mark_object != G1MarkNone && forwardee != obj) {
4242       // If the object is self-forwarded we don't need to explicitly
4243       // mark it, the evacuation failure protocol will do so.
4244       mark_forwarded_object(obj, forwardee);
4245     }
4246 
4247     if (barrier == G1BarrierKlass) {
4248       do_klass_barrier(p, forwardee);
4249     }
4250   } else {
4251     if (state.is_humongous()) {
4252       _g1->set_humongous_is_live(obj);
4253     }
4254     // The object is not in collection set. If we're a root scanning
4255     // closure during an initial mark pause then attempt to mark the object.
4256     if (do_mark_object == G1MarkFromRoot) {
4257       mark_object(obj);
4258     }
4259   }
4260 
4261   if (barrier == G1BarrierEvac) {
4262     _par_scan_state->update_rs(_from, p, _worker_id);
4263   }
4264 }
4265 
4266 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4267 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4268 
4269 class G1ParEvacuateFollowersClosure : public VoidClosure {
4270 protected:
4271   G1CollectedHeap*              _g1h;
4272   G1ParScanThreadState*         _par_scan_state;
4273   RefToScanQueueSet*            _queues;
4274   ParallelTaskTerminator*       _terminator;
4275 
4276   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4277   RefToScanQueueSet*      queues()         { return _queues; }
4278   ParallelTaskTerminator* terminator()     { return _terminator; }
4279 
4280 public:
4281   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4282                                 G1ParScanThreadState* par_scan_state,
4283                                 RefToScanQueueSet* queues,
4284                                 ParallelTaskTerminator* terminator)
4285     : _g1h(g1h), _par_scan_state(par_scan_state),
4286       _queues(queues), _terminator(terminator) {}
4287 
4288   void do_void();
4289 
4290 private:
4291   inline bool offer_termination();
4292 };
4293 
4294 bool G1ParEvacuateFollowersClosure::offer_termination() {
4295   G1ParScanThreadState* const pss = par_scan_state();
4296   pss->start_term_time();
4297   const bool res = terminator()->offer_termination();
4298   pss->end_term_time();
4299   return res;
4300 }
4301 
4302 void G1ParEvacuateFollowersClosure::do_void() {
4303   G1ParScanThreadState* const pss = par_scan_state();
4304   pss->trim_queue();
4305   do {
4306     pss->steal_and_trim_queue(queues());
4307   } while (!offer_termination());
4308 }
4309 
4310 class G1KlassScanClosure : public KlassClosure {
4311  G1ParCopyHelper* _closure;
4312  bool             _process_only_dirty;
4313  int              _count;
4314  public:
4315   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4316       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4317   void do_klass(Klass* klass) {
4318     // If the klass has not been dirtied we know that there's
4319     // no references into  the young gen and we can skip it.
4320    if (!_process_only_dirty || klass->has_modified_oops()) {
4321       // Clean the klass since we're going to scavenge all the metadata.
4322       klass->clear_modified_oops();
4323 
4324       // Tell the closure that this klass is the Klass to scavenge
4325       // and is the one to dirty if oops are left pointing into the young gen.
4326       _closure->set_scanned_klass(klass);
4327 
4328       klass->oops_do(_closure);
4329 
4330       _closure->set_scanned_klass(NULL);
4331     }
4332     _count++;
4333   }
4334 };
4335 
4336 class G1ParTask : public AbstractGangTask {
4337 protected:
4338   G1CollectedHeap*       _g1h;
4339   RefToScanQueueSet      *_queues;
4340   G1RootProcessor*       _root_processor;
4341   ParallelTaskTerminator _terminator;
4342   uint _n_workers;
4343 
4344   Mutex _stats_lock;
4345   Mutex* stats_lock() { return &_stats_lock; }
4346 
4347 public:
4348   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4349     : AbstractGangTask("G1 collection"),
4350       _g1h(g1h),
4351       _queues(task_queues),
4352       _root_processor(root_processor),
4353       _terminator(0, _queues),
4354       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4355   {}
4356 
4357   RefToScanQueueSet* queues() { return _queues; }
4358 
4359   RefToScanQueue *work_queue(int i) {
4360     return queues()->queue(i);
4361   }
4362 
4363   ParallelTaskTerminator* terminator() { return &_terminator; }
4364 
4365   virtual void set_for_termination(int active_workers) {
4366     _root_processor->set_num_workers(active_workers);
4367     terminator()->reset_for_reuse(active_workers);
4368     _n_workers = active_workers;
4369   }
4370 
4371   // Helps out with CLD processing.
4372   //
4373   // During InitialMark we need to:
4374   // 1) Scavenge all CLDs for the young GC.
4375   // 2) Mark all objects directly reachable from strong CLDs.
4376   template <G1Mark do_mark_object>
4377   class G1CLDClosure : public CLDClosure {
4378     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4379     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4380     G1KlassScanClosure                                _klass_in_cld_closure;
4381     bool                                              _claim;
4382 
4383    public:
4384     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4385                  bool only_young, bool claim)
4386         : _oop_closure(oop_closure),
4387           _oop_in_klass_closure(oop_closure->g1(),
4388                                 oop_closure->pss(),
4389                                 oop_closure->rp()),
4390           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4391           _claim(claim) {
4392 
4393     }
4394 
4395     void do_cld(ClassLoaderData* cld) {
4396       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4397     }
4398   };
4399 
4400   void work(uint worker_id) {
4401     if (worker_id >= _n_workers) return;  // no work needed this round
4402 
4403     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4404 
4405     {
4406       ResourceMark rm;
4407       HandleMark   hm;
4408 
4409       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4410 
4411       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4412       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4413 
4414       pss.set_evac_failure_closure(&evac_failure_cl);
4415 
4416       bool only_young = _g1h->g1_policy()->gcs_are_young();
4417 
4418       // Non-IM young GC.
4419       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4420       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4421                                                                                only_young, // Only process dirty klasses.
4422                                                                                false);     // No need to claim CLDs.
4423       // IM young GC.
4424       //    Strong roots closures.
4425       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4426       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4427                                                                                false, // Process all klasses.
4428                                                                                true); // Need to claim CLDs.
4429       //    Weak roots closures.
4430       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4431       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4432                                                                                     false, // Process all klasses.
4433                                                                                     true); // Need to claim CLDs.
4434 
4435       OopClosure* strong_root_cl;
4436       OopClosure* weak_root_cl;
4437       CLDClosure* strong_cld_cl;
4438       CLDClosure* weak_cld_cl;
4439 
4440       bool trace_metadata = false;
4441 
4442       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4443         // We also need to mark copied objects.
4444         strong_root_cl = &scan_mark_root_cl;
4445         strong_cld_cl  = &scan_mark_cld_cl;
4446         if (ClassUnloadingWithConcurrentMark) {
4447           weak_root_cl = &scan_mark_weak_root_cl;
4448           weak_cld_cl  = &scan_mark_weak_cld_cl;
4449           trace_metadata = true;
4450         } else {
4451           weak_root_cl = &scan_mark_root_cl;
4452           weak_cld_cl  = &scan_mark_cld_cl;
4453         }
4454       } else {
4455         strong_root_cl = &scan_only_root_cl;
4456         weak_root_cl   = &scan_only_root_cl;
4457         strong_cld_cl  = &scan_only_cld_cl;
4458         weak_cld_cl    = &scan_only_cld_cl;
4459       }
4460 
4461       pss.start_strong_roots();
4462 
4463       _root_processor->evacuate_roots(strong_root_cl,
4464                                       weak_root_cl,
4465                                       strong_cld_cl,
4466                                       weak_cld_cl,
4467                                       trace_metadata,
4468                                       worker_id);
4469 
4470       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4471       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4472                                             weak_root_cl,
4473                                             worker_id);
4474       pss.end_strong_roots();
4475 
4476       {
4477         double start = os::elapsedTime();
4478         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4479         evac.do_void();
4480         double elapsed_sec = os::elapsedTime() - start;
4481         double term_sec = pss.term_time();
4482         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4483         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4484         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4485       }
4486       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4487       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4488 
4489       if (PrintTerminationStats) {
4490         MutexLocker x(stats_lock());
4491         pss.print_termination_stats(worker_id);
4492       }
4493 
4494       assert(pss.queue_is_empty(), "should be empty");
4495 
4496       // Close the inner scope so that the ResourceMark and HandleMark
4497       // destructors are executed here and are included as part of the
4498       // "GC Worker Time".
4499     }
4500     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4501   }
4502 };
4503 
4504 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4505 private:
4506   BoolObjectClosure* _is_alive;
4507   int _initial_string_table_size;
4508   int _initial_symbol_table_size;
4509 
4510   bool  _process_strings;
4511   int _strings_processed;
4512   int _strings_removed;
4513 
4514   bool  _process_symbols;
4515   int _symbols_processed;
4516   int _symbols_removed;
4517 
4518 public:
4519   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4520     AbstractGangTask("String/Symbol Unlinking"),
4521     _is_alive(is_alive),
4522     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4523     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4524 
4525     _initial_string_table_size = StringTable::the_table()->table_size();
4526     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4527     if (process_strings) {
4528       StringTable::clear_parallel_claimed_index();
4529     }
4530     if (process_symbols) {
4531       SymbolTable::clear_parallel_claimed_index();
4532     }
4533   }
4534 
4535   ~G1StringSymbolTableUnlinkTask() {
4536     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4537               err_msg("claim value %d after unlink less than initial string table size %d",
4538                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4539     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4540               err_msg("claim value %d after unlink less than initial symbol table size %d",
4541                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4542 
4543     if (G1TraceStringSymbolTableScrubbing) {
4544       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4545                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4546                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4547                              strings_processed(), strings_removed(),
4548                              symbols_processed(), symbols_removed());
4549     }
4550   }
4551 
4552   void work(uint worker_id) {
4553     int strings_processed = 0;
4554     int strings_removed = 0;
4555     int symbols_processed = 0;
4556     int symbols_removed = 0;
4557     if (_process_strings) {
4558       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4559       Atomic::add(strings_processed, &_strings_processed);
4560       Atomic::add(strings_removed, &_strings_removed);
4561     }
4562     if (_process_symbols) {
4563       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4564       Atomic::add(symbols_processed, &_symbols_processed);
4565       Atomic::add(symbols_removed, &_symbols_removed);
4566     }
4567   }
4568 
4569   size_t strings_processed() const { return (size_t)_strings_processed; }
4570   size_t strings_removed()   const { return (size_t)_strings_removed; }
4571 
4572   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4573   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4574 };
4575 
4576 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4577 private:
4578   static Monitor* _lock;
4579 
4580   BoolObjectClosure* const _is_alive;
4581   const bool               _unloading_occurred;
4582   const uint               _num_workers;
4583 
4584   // Variables used to claim nmethods.
4585   nmethod* _first_nmethod;
4586   volatile nmethod* _claimed_nmethod;
4587 
4588   // The list of nmethods that need to be processed by the second pass.
4589   volatile nmethod* _postponed_list;
4590   volatile uint     _num_entered_barrier;
4591 
4592  public:
4593   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4594       _is_alive(is_alive),
4595       _unloading_occurred(unloading_occurred),
4596       _num_workers(num_workers),
4597       _first_nmethod(NULL),
4598       _claimed_nmethod(NULL),
4599       _postponed_list(NULL),
4600       _num_entered_barrier(0)
4601   {
4602     nmethod::increase_unloading_clock();
4603     // Get first alive nmethod
4604     NMethodIterator iter = NMethodIterator();
4605     if(iter.next_alive()) {
4606       _first_nmethod = iter.method();
4607     }
4608     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4609   }
4610 
4611   ~G1CodeCacheUnloadingTask() {
4612     CodeCache::verify_clean_inline_caches();
4613 
4614     CodeCache::set_needs_cache_clean(false);
4615     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4616 
4617     CodeCache::verify_icholder_relocations();
4618   }
4619 
4620  private:
4621   void add_to_postponed_list(nmethod* nm) {
4622       nmethod* old;
4623       do {
4624         old = (nmethod*)_postponed_list;
4625         nm->set_unloading_next(old);
4626       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4627   }
4628 
4629   void clean_nmethod(nmethod* nm) {
4630     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4631 
4632     if (postponed) {
4633       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4634       add_to_postponed_list(nm);
4635     }
4636 
4637     // Mark that this thread has been cleaned/unloaded.
4638     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4639     nm->set_unloading_clock(nmethod::global_unloading_clock());
4640   }
4641 
4642   void clean_nmethod_postponed(nmethod* nm) {
4643     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4644   }
4645 
4646   static const int MaxClaimNmethods = 16;
4647 
4648   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4649     nmethod* first;
4650     NMethodIterator last;
4651 
4652     do {
4653       *num_claimed_nmethods = 0;
4654 
4655       first = (nmethod*)_claimed_nmethod;
4656       last = NMethodIterator(first);
4657 
4658       if (first != NULL) {
4659 
4660         for (int i = 0; i < MaxClaimNmethods; i++) {
4661           if (!last.next_alive()) {
4662             break;
4663           }
4664           claimed_nmethods[i] = last.method();
4665           (*num_claimed_nmethods)++;
4666         }
4667       }
4668 
4669     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4670   }
4671 
4672   nmethod* claim_postponed_nmethod() {
4673     nmethod* claim;
4674     nmethod* next;
4675 
4676     do {
4677       claim = (nmethod*)_postponed_list;
4678       if (claim == NULL) {
4679         return NULL;
4680       }
4681 
4682       next = claim->unloading_next();
4683 
4684     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4685 
4686     return claim;
4687   }
4688 
4689  public:
4690   // Mark that we're done with the first pass of nmethod cleaning.
4691   void barrier_mark(uint worker_id) {
4692     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4693     _num_entered_barrier++;
4694     if (_num_entered_barrier == _num_workers) {
4695       ml.notify_all();
4696     }
4697   }
4698 
4699   // See if we have to wait for the other workers to
4700   // finish their first-pass nmethod cleaning work.
4701   void barrier_wait(uint worker_id) {
4702     if (_num_entered_barrier < _num_workers) {
4703       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4704       while (_num_entered_barrier < _num_workers) {
4705           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4706       }
4707     }
4708   }
4709 
4710   // Cleaning and unloading of nmethods. Some work has to be postponed
4711   // to the second pass, when we know which nmethods survive.
4712   void work_first_pass(uint worker_id) {
4713     // The first nmethods is claimed by the first worker.
4714     if (worker_id == 0 && _first_nmethod != NULL) {
4715       clean_nmethod(_first_nmethod);
4716       _first_nmethod = NULL;
4717     }
4718 
4719     int num_claimed_nmethods;
4720     nmethod* claimed_nmethods[MaxClaimNmethods];
4721 
4722     while (true) {
4723       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4724 
4725       if (num_claimed_nmethods == 0) {
4726         break;
4727       }
4728 
4729       for (int i = 0; i < num_claimed_nmethods; i++) {
4730         clean_nmethod(claimed_nmethods[i]);
4731       }
4732     }
4733   }
4734 
4735   void work_second_pass(uint worker_id) {
4736     nmethod* nm;
4737     // Take care of postponed nmethods.
4738     while ((nm = claim_postponed_nmethod()) != NULL) {
4739       clean_nmethod_postponed(nm);
4740     }
4741   }
4742 };
4743 
4744 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4745 
4746 class G1KlassCleaningTask : public StackObj {
4747   BoolObjectClosure*                      _is_alive;
4748   volatile jint                           _clean_klass_tree_claimed;
4749   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4750 
4751  public:
4752   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4753       _is_alive(is_alive),
4754       _clean_klass_tree_claimed(0),
4755       _klass_iterator() {
4756   }
4757 
4758  private:
4759   bool claim_clean_klass_tree_task() {
4760     if (_clean_klass_tree_claimed) {
4761       return false;
4762     }
4763 
4764     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4765   }
4766 
4767   InstanceKlass* claim_next_klass() {
4768     Klass* klass;
4769     do {
4770       klass =_klass_iterator.next_klass();
4771     } while (klass != NULL && !klass->oop_is_instance());
4772 
4773     return (InstanceKlass*)klass;
4774   }
4775 
4776 public:
4777 
4778   void clean_klass(InstanceKlass* ik) {
4779     ik->clean_implementors_list(_is_alive);
4780     ik->clean_method_data(_is_alive);
4781 
4782     // G1 specific cleanup work that has
4783     // been moved here to be done in parallel.
4784     ik->clean_dependent_nmethods();
4785   }
4786 
4787   void work() {
4788     ResourceMark rm;
4789 
4790     // One worker will clean the subklass/sibling klass tree.
4791     if (claim_clean_klass_tree_task()) {
4792       Klass::clean_subklass_tree(_is_alive);
4793     }
4794 
4795     // All workers will help cleaning the classes,
4796     InstanceKlass* klass;
4797     while ((klass = claim_next_klass()) != NULL) {
4798       clean_klass(klass);
4799     }
4800   }
4801 };
4802 
4803 // To minimize the remark pause times, the tasks below are done in parallel.
4804 class G1ParallelCleaningTask : public AbstractGangTask {
4805 private:
4806   G1StringSymbolTableUnlinkTask _string_symbol_task;
4807   G1CodeCacheUnloadingTask      _code_cache_task;
4808   G1KlassCleaningTask           _klass_cleaning_task;
4809 
4810 public:
4811   // The constructor is run in the VMThread.
4812   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4813       AbstractGangTask("Parallel Cleaning"),
4814       _string_symbol_task(is_alive, process_strings, process_symbols),
4815       _code_cache_task(num_workers, is_alive, unloading_occurred),
4816       _klass_cleaning_task(is_alive) {
4817   }
4818 
4819   // The parallel work done by all worker threads.
4820   void work(uint worker_id) {
4821     // Do first pass of code cache cleaning.
4822     _code_cache_task.work_first_pass(worker_id);
4823 
4824     // Let the threads mark that the first pass is done.
4825     _code_cache_task.barrier_mark(worker_id);
4826 
4827     // Clean the Strings and Symbols.
4828     _string_symbol_task.work(worker_id);
4829 
4830     // Wait for all workers to finish the first code cache cleaning pass.
4831     _code_cache_task.barrier_wait(worker_id);
4832 
4833     // Do the second code cache cleaning work, which realize on
4834     // the liveness information gathered during the first pass.
4835     _code_cache_task.work_second_pass(worker_id);
4836 
4837     // Clean all klasses that were not unloaded.
4838     _klass_cleaning_task.work();
4839   }
4840 };
4841 
4842 
4843 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4844                                         bool process_strings,
4845                                         bool process_symbols,
4846                                         bool class_unloading_occurred) {
4847   uint n_workers = workers()->active_workers();
4848 
4849   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4850                                         n_workers, class_unloading_occurred);
4851   set_par_threads(n_workers);
4852   workers()->run_task(&g1_unlink_task);
4853   set_par_threads(0);
4854 }
4855 
4856 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4857                                                      bool process_strings, bool process_symbols) {
4858   {
4859     uint n_workers = _g1h->workers()->active_workers();
4860     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4861     set_par_threads(n_workers);
4862     workers()->run_task(&g1_unlink_task);
4863     set_par_threads(0);
4864   }
4865 
4866   if (G1StringDedup::is_enabled()) {
4867     G1StringDedup::unlink(is_alive);
4868   }
4869 }
4870 
4871 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4872  private:
4873   DirtyCardQueueSet* _queue;
4874  public:
4875   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4876 
4877   virtual void work(uint worker_id) {
4878     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4879     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4880 
4881     RedirtyLoggedCardTableEntryClosure cl;
4882     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4883 
4884     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4885   }
4886 };
4887 
4888 void G1CollectedHeap::redirty_logged_cards() {
4889   double redirty_logged_cards_start = os::elapsedTime();
4890 
4891   uint n_workers = _g1h->workers()->active_workers();
4892 
4893   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4894   dirty_card_queue_set().reset_for_par_iteration();
4895   set_par_threads(n_workers);
4896   workers()->run_task(&redirty_task);
4897   set_par_threads(0);
4898 
4899   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4900   dcq.merge_bufferlists(&dirty_card_queue_set());
4901   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4902 
4903   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4904 }
4905 
4906 // Weak Reference Processing support
4907 
4908 // An always "is_alive" closure that is used to preserve referents.
4909 // If the object is non-null then it's alive.  Used in the preservation
4910 // of referent objects that are pointed to by reference objects
4911 // discovered by the CM ref processor.
4912 class G1AlwaysAliveClosure: public BoolObjectClosure {
4913   G1CollectedHeap* _g1;
4914 public:
4915   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4916   bool do_object_b(oop p) {
4917     if (p != NULL) {
4918       return true;
4919     }
4920     return false;
4921   }
4922 };
4923 
4924 bool G1STWIsAliveClosure::do_object_b(oop p) {
4925   // An object is reachable if it is outside the collection set,
4926   // or is inside and copied.
4927   return !_g1->obj_in_cs(p) || p->is_forwarded();
4928 }
4929 
4930 // Non Copying Keep Alive closure
4931 class G1KeepAliveClosure: public OopClosure {
4932   G1CollectedHeap* _g1;
4933 public:
4934   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4935   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4936   void do_oop(oop* p) {
4937     oop obj = *p;
4938     assert(obj != NULL, "the caller should have filtered out NULL values");
4939 
4940     const InCSetState cset_state = _g1->in_cset_state(obj);
4941     if (!cset_state.is_in_cset_or_humongous()) {
4942       return;
4943     }
4944     if (cset_state.is_in_cset()) {
4945       assert( obj->is_forwarded(), "invariant" );
4946       *p = obj->forwardee();
4947     } else {
4948       assert(!obj->is_forwarded(), "invariant" );
4949       assert(cset_state.is_humongous(),
4950              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4951       _g1->set_humongous_is_live(obj);
4952     }
4953   }
4954 };
4955 
4956 // Copying Keep Alive closure - can be called from both
4957 // serial and parallel code as long as different worker
4958 // threads utilize different G1ParScanThreadState instances
4959 // and different queues.
4960 
4961 class G1CopyingKeepAliveClosure: public OopClosure {
4962   G1CollectedHeap*         _g1h;
4963   OopClosure*              _copy_non_heap_obj_cl;
4964   G1ParScanThreadState*    _par_scan_state;
4965 
4966 public:
4967   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4968                             OopClosure* non_heap_obj_cl,
4969                             G1ParScanThreadState* pss):
4970     _g1h(g1h),
4971     _copy_non_heap_obj_cl(non_heap_obj_cl),
4972     _par_scan_state(pss)
4973   {}
4974 
4975   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4976   virtual void do_oop(      oop* p) { do_oop_work(p); }
4977 
4978   template <class T> void do_oop_work(T* p) {
4979     oop obj = oopDesc::load_decode_heap_oop(p);
4980 
4981     if (_g1h->is_in_cset_or_humongous(obj)) {
4982       // If the referent object has been forwarded (either copied
4983       // to a new location or to itself in the event of an
4984       // evacuation failure) then we need to update the reference
4985       // field and, if both reference and referent are in the G1
4986       // heap, update the RSet for the referent.
4987       //
4988       // If the referent has not been forwarded then we have to keep
4989       // it alive by policy. Therefore we have copy the referent.
4990       //
4991       // If the reference field is in the G1 heap then we can push
4992       // on the PSS queue. When the queue is drained (after each
4993       // phase of reference processing) the object and it's followers
4994       // will be copied, the reference field set to point to the
4995       // new location, and the RSet updated. Otherwise we need to
4996       // use the the non-heap or metadata closures directly to copy
4997       // the referent object and update the pointer, while avoiding
4998       // updating the RSet.
4999 
5000       if (_g1h->is_in_g1_reserved(p)) {
5001         _par_scan_state->push_on_queue(p);
5002       } else {
5003         assert(!Metaspace::contains((const void*)p),
5004                err_msg("Unexpectedly found a pointer from metadata: "
5005                               PTR_FORMAT, p));
5006         _copy_non_heap_obj_cl->do_oop(p);
5007       }
5008     }
5009   }
5010 };
5011 
5012 // Serial drain queue closure. Called as the 'complete_gc'
5013 // closure for each discovered list in some of the
5014 // reference processing phases.
5015 
5016 class G1STWDrainQueueClosure: public VoidClosure {
5017 protected:
5018   G1CollectedHeap* _g1h;
5019   G1ParScanThreadState* _par_scan_state;
5020 
5021   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5022 
5023 public:
5024   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5025     _g1h(g1h),
5026     _par_scan_state(pss)
5027   { }
5028 
5029   void do_void() {
5030     G1ParScanThreadState* const pss = par_scan_state();
5031     pss->trim_queue();
5032   }
5033 };
5034 
5035 // Parallel Reference Processing closures
5036 
5037 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5038 // processing during G1 evacuation pauses.
5039 
5040 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5041 private:
5042   G1CollectedHeap*   _g1h;
5043   RefToScanQueueSet* _queues;
5044   FlexibleWorkGang*  _workers;
5045   int                _active_workers;
5046 
5047 public:
5048   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5049                         FlexibleWorkGang* workers,
5050                         RefToScanQueueSet *task_queues,
5051                         int n_workers) :
5052     _g1h(g1h),
5053     _queues(task_queues),
5054     _workers(workers),
5055     _active_workers(n_workers)
5056   {
5057     assert(n_workers > 0, "shouldn't call this otherwise");
5058   }
5059 
5060   // Executes the given task using concurrent marking worker threads.
5061   virtual void execute(ProcessTask& task);
5062   virtual void execute(EnqueueTask& task);
5063 };
5064 
5065 // Gang task for possibly parallel reference processing
5066 
5067 class G1STWRefProcTaskProxy: public AbstractGangTask {
5068   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5069   ProcessTask&     _proc_task;
5070   G1CollectedHeap* _g1h;
5071   RefToScanQueueSet *_task_queues;
5072   ParallelTaskTerminator* _terminator;
5073 
5074 public:
5075   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5076                      G1CollectedHeap* g1h,
5077                      RefToScanQueueSet *task_queues,
5078                      ParallelTaskTerminator* terminator) :
5079     AbstractGangTask("Process reference objects in parallel"),
5080     _proc_task(proc_task),
5081     _g1h(g1h),
5082     _task_queues(task_queues),
5083     _terminator(terminator)
5084   {}
5085 
5086   virtual void work(uint worker_id) {
5087     // The reference processing task executed by a single worker.
5088     ResourceMark rm;
5089     HandleMark   hm;
5090 
5091     G1STWIsAliveClosure is_alive(_g1h);
5092 
5093     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5094     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5095 
5096     pss.set_evac_failure_closure(&evac_failure_cl);
5097 
5098     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5099 
5100     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5101 
5102     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5103 
5104     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5105       // We also need to mark copied objects.
5106       copy_non_heap_cl = &copy_mark_non_heap_cl;
5107     }
5108 
5109     // Keep alive closure.
5110     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5111 
5112     // Complete GC closure
5113     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5114 
5115     // Call the reference processing task's work routine.
5116     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5117 
5118     // Note we cannot assert that the refs array is empty here as not all
5119     // of the processing tasks (specifically phase2 - pp2_work) execute
5120     // the complete_gc closure (which ordinarily would drain the queue) so
5121     // the queue may not be empty.
5122   }
5123 };
5124 
5125 // Driver routine for parallel reference processing.
5126 // Creates an instance of the ref processing gang
5127 // task and has the worker threads execute it.
5128 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5129   assert(_workers != NULL, "Need parallel worker threads.");
5130 
5131   ParallelTaskTerminator terminator(_active_workers, _queues);
5132   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5133 
5134   _g1h->set_par_threads(_active_workers);
5135   _workers->run_task(&proc_task_proxy);
5136   _g1h->set_par_threads(0);
5137 }
5138 
5139 // Gang task for parallel reference enqueueing.
5140 
5141 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5142   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5143   EnqueueTask& _enq_task;
5144 
5145 public:
5146   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5147     AbstractGangTask("Enqueue reference objects in parallel"),
5148     _enq_task(enq_task)
5149   { }
5150 
5151   virtual void work(uint worker_id) {
5152     _enq_task.work(worker_id);
5153   }
5154 };
5155 
5156 // Driver routine for parallel reference enqueueing.
5157 // Creates an instance of the ref enqueueing gang
5158 // task and has the worker threads execute it.
5159 
5160 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5161   assert(_workers != NULL, "Need parallel worker threads.");
5162 
5163   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5164 
5165   _g1h->set_par_threads(_active_workers);
5166   _workers->run_task(&enq_task_proxy);
5167   _g1h->set_par_threads(0);
5168 }
5169 
5170 // End of weak reference support closures
5171 
5172 // Abstract task used to preserve (i.e. copy) any referent objects
5173 // that are in the collection set and are pointed to by reference
5174 // objects discovered by the CM ref processor.
5175 
5176 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5177 protected:
5178   G1CollectedHeap* _g1h;
5179   RefToScanQueueSet      *_queues;
5180   ParallelTaskTerminator _terminator;
5181   uint _n_workers;
5182 
5183 public:
5184   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5185     AbstractGangTask("ParPreserveCMReferents"),
5186     _g1h(g1h),
5187     _queues(task_queues),
5188     _terminator(workers, _queues),
5189     _n_workers(workers)
5190   { }
5191 
5192   void work(uint worker_id) {
5193     ResourceMark rm;
5194     HandleMark   hm;
5195 
5196     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5197     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5198 
5199     pss.set_evac_failure_closure(&evac_failure_cl);
5200 
5201     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5202 
5203     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5204 
5205     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5206 
5207     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5208 
5209     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5210       // We also need to mark copied objects.
5211       copy_non_heap_cl = &copy_mark_non_heap_cl;
5212     }
5213 
5214     // Is alive closure
5215     G1AlwaysAliveClosure always_alive(_g1h);
5216 
5217     // Copying keep alive closure. Applied to referent objects that need
5218     // to be copied.
5219     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5220 
5221     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5222 
5223     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5224     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5225 
5226     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5227     // So this must be true - but assert just in case someone decides to
5228     // change the worker ids.
5229     assert(worker_id < limit, "sanity");
5230     assert(!rp->discovery_is_atomic(), "check this code");
5231 
5232     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5233     for (uint idx = worker_id; idx < limit; idx += stride) {
5234       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5235 
5236       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5237       while (iter.has_next()) {
5238         // Since discovery is not atomic for the CM ref processor, we
5239         // can see some null referent objects.
5240         iter.load_ptrs(DEBUG_ONLY(true));
5241         oop ref = iter.obj();
5242 
5243         // This will filter nulls.
5244         if (iter.is_referent_alive()) {
5245           iter.make_referent_alive();
5246         }
5247         iter.move_to_next();
5248       }
5249     }
5250 
5251     // Drain the queue - which may cause stealing
5252     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5253     drain_queue.do_void();
5254     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5255     assert(pss.queue_is_empty(), "should be");
5256   }
5257 };
5258 
5259 // Weak Reference processing during an evacuation pause (part 1).
5260 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5261   double ref_proc_start = os::elapsedTime();
5262 
5263   ReferenceProcessor* rp = _ref_processor_stw;
5264   assert(rp->discovery_enabled(), "should have been enabled");
5265 
5266   // Any reference objects, in the collection set, that were 'discovered'
5267   // by the CM ref processor should have already been copied (either by
5268   // applying the external root copy closure to the discovered lists, or
5269   // by following an RSet entry).
5270   //
5271   // But some of the referents, that are in the collection set, that these
5272   // reference objects point to may not have been copied: the STW ref
5273   // processor would have seen that the reference object had already
5274   // been 'discovered' and would have skipped discovering the reference,
5275   // but would not have treated the reference object as a regular oop.
5276   // As a result the copy closure would not have been applied to the
5277   // referent object.
5278   //
5279   // We need to explicitly copy these referent objects - the references
5280   // will be processed at the end of remarking.
5281   //
5282   // We also need to do this copying before we process the reference
5283   // objects discovered by the STW ref processor in case one of these
5284   // referents points to another object which is also referenced by an
5285   // object discovered by the STW ref processor.
5286 
5287   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5288 
5289   set_par_threads(no_of_gc_workers);
5290   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5291                                                  no_of_gc_workers,
5292                                                  _task_queues);
5293 
5294   workers()->run_task(&keep_cm_referents);
5295 
5296   set_par_threads(0);
5297 
5298   // Closure to test whether a referent is alive.
5299   G1STWIsAliveClosure is_alive(this);
5300 
5301   // Even when parallel reference processing is enabled, the processing
5302   // of JNI refs is serial and performed serially by the current thread
5303   // rather than by a worker. The following PSS will be used for processing
5304   // JNI refs.
5305 
5306   // Use only a single queue for this PSS.
5307   G1ParScanThreadState            pss(this, 0, NULL);
5308 
5309   // We do not embed a reference processor in the copying/scanning
5310   // closures while we're actually processing the discovered
5311   // reference objects.
5312   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5313 
5314   pss.set_evac_failure_closure(&evac_failure_cl);
5315 
5316   assert(pss.queue_is_empty(), "pre-condition");
5317 
5318   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5319 
5320   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5321 
5322   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5323 
5324   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5325     // We also need to mark copied objects.
5326     copy_non_heap_cl = &copy_mark_non_heap_cl;
5327   }
5328 
5329   // Keep alive closure.
5330   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5331 
5332   // Serial Complete GC closure
5333   G1STWDrainQueueClosure drain_queue(this, &pss);
5334 
5335   // Setup the soft refs policy...
5336   rp->setup_policy(false);
5337 
5338   ReferenceProcessorStats stats;
5339   if (!rp->processing_is_mt()) {
5340     // Serial reference processing...
5341     stats = rp->process_discovered_references(&is_alive,
5342                                               &keep_alive,
5343                                               &drain_queue,
5344                                               NULL,
5345                                               _gc_timer_stw,
5346                                               _gc_tracer_stw->gc_id());
5347   } else {
5348     // Parallel reference processing
5349     assert(rp->num_q() == no_of_gc_workers, "sanity");
5350     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5351 
5352     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5353     stats = rp->process_discovered_references(&is_alive,
5354                                               &keep_alive,
5355                                               &drain_queue,
5356                                               &par_task_executor,
5357                                               _gc_timer_stw,
5358                                               _gc_tracer_stw->gc_id());
5359   }
5360 
5361   _gc_tracer_stw->report_gc_reference_stats(stats);
5362 
5363   // We have completed copying any necessary live referent objects.
5364   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5365 
5366   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5367   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5368 }
5369 
5370 // Weak Reference processing during an evacuation pause (part 2).
5371 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5372   double ref_enq_start = os::elapsedTime();
5373 
5374   ReferenceProcessor* rp = _ref_processor_stw;
5375   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5376 
5377   // Now enqueue any remaining on the discovered lists on to
5378   // the pending list.
5379   if (!rp->processing_is_mt()) {
5380     // Serial reference processing...
5381     rp->enqueue_discovered_references();
5382   } else {
5383     // Parallel reference enqueueing
5384 
5385     assert(no_of_gc_workers == workers()->active_workers(),
5386            "Need to reset active workers");
5387     assert(rp->num_q() == no_of_gc_workers, "sanity");
5388     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5389 
5390     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5391     rp->enqueue_discovered_references(&par_task_executor);
5392   }
5393 
5394   rp->verify_no_references_recorded();
5395   assert(!rp->discovery_enabled(), "should have been disabled");
5396 
5397   // FIXME
5398   // CM's reference processing also cleans up the string and symbol tables.
5399   // Should we do that here also? We could, but it is a serial operation
5400   // and could significantly increase the pause time.
5401 
5402   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5403   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5404 }
5405 
5406 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5407   _expand_heap_after_alloc_failure = true;
5408   _evacuation_failed = false;
5409 
5410   // Should G1EvacuationFailureALot be in effect for this GC?
5411   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5412 
5413   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5414 
5415   // Disable the hot card cache.
5416   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5417   hot_card_cache->reset_hot_cache_claimed_index();
5418   hot_card_cache->set_use_cache(false);
5419 
5420   const uint n_workers = workers()->active_workers();
5421   assert(UseDynamicNumberOfGCThreads ||
5422          n_workers == workers()->total_workers(),
5423          "If not dynamic should be using all the  workers");
5424   set_par_threads(n_workers);
5425 
5426 
5427   init_for_evac_failure(NULL);
5428 
5429   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5430   double start_par_time_sec = os::elapsedTime();
5431   double end_par_time_sec;
5432 
5433   {
5434     G1RootProcessor root_processor(this);
5435     G1ParTask g1_par_task(this, _task_queues, &root_processor);
5436     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5437     if (g1_policy()->during_initial_mark_pause()) {
5438       ClassLoaderDataGraph::clear_claimed_marks();
5439     }
5440 
5441      // The individual threads will set their evac-failure closures.
5442      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5443      // These tasks use ShareHeap::_process_strong_tasks
5444      assert(UseDynamicNumberOfGCThreads ||
5445             workers()->active_workers() == workers()->total_workers(),
5446             "If not dynamic should be using all the  workers");
5447     workers()->run_task(&g1_par_task);
5448     end_par_time_sec = os::elapsedTime();
5449 
5450     // Closing the inner scope will execute the destructor
5451     // for the G1RootProcessor object. We record the current
5452     // elapsed time before closing the scope so that time
5453     // taken for the destructor is NOT included in the
5454     // reported parallel time.
5455   }
5456 
5457   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5458 
5459   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5460   phase_times->record_par_time(par_time_ms);
5461 
5462   double code_root_fixup_time_ms =
5463         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5464   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5465 
5466   set_par_threads(0);
5467 
5468   // Process any discovered reference objects - we have
5469   // to do this _before_ we retire the GC alloc regions
5470   // as we may have to copy some 'reachable' referent
5471   // objects (and their reachable sub-graphs) that were
5472   // not copied during the pause.
5473   process_discovered_references(n_workers);
5474 
5475   if (G1StringDedup::is_enabled()) {
5476     double fixup_start = os::elapsedTime();
5477 
5478     G1STWIsAliveClosure is_alive(this);
5479     G1KeepAliveClosure keep_alive(this);
5480     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5481 
5482     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5483     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5484   }
5485 
5486   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5487   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5488 
5489   // Reset and re-enable the hot card cache.
5490   // Note the counts for the cards in the regions in the
5491   // collection set are reset when the collection set is freed.
5492   hot_card_cache->reset_hot_cache();
5493   hot_card_cache->set_use_cache(true);
5494 
5495   purge_code_root_memory();
5496 
5497   finalize_for_evac_failure();
5498 
5499   if (evacuation_failed()) {
5500     remove_self_forwarding_pointers();
5501 
5502     // Reset the G1EvacuationFailureALot counters and flags
5503     // Note: the values are reset only when an actual
5504     // evacuation failure occurs.
5505     NOT_PRODUCT(reset_evacuation_should_fail();)
5506   }
5507 
5508   // Enqueue any remaining references remaining on the STW
5509   // reference processor's discovered lists. We need to do
5510   // this after the card table is cleaned (and verified) as
5511   // the act of enqueueing entries on to the pending list
5512   // will log these updates (and dirty their associated
5513   // cards). We need these updates logged to update any
5514   // RSets.
5515   enqueue_discovered_references(n_workers);
5516 
5517   redirty_logged_cards();
5518   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5519 }
5520 
5521 void G1CollectedHeap::free_region(HeapRegion* hr,
5522                                   FreeRegionList* free_list,
5523                                   bool par,
5524                                   bool locked) {
5525   assert(!hr->is_free(), "the region should not be free");
5526   assert(!hr->is_empty(), "the region should not be empty");
5527   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5528   assert(free_list != NULL, "pre-condition");
5529 
5530   if (G1VerifyBitmaps) {
5531     MemRegion mr(hr->bottom(), hr->end());
5532     concurrent_mark()->clearRangePrevBitmap(mr);
5533   }
5534 
5535   // Clear the card counts for this region.
5536   // Note: we only need to do this if the region is not young
5537   // (since we don't refine cards in young regions).
5538   if (!hr->is_young()) {
5539     _cg1r->hot_card_cache()->reset_card_counts(hr);
5540   }
5541   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5542   free_list->add_ordered(hr);
5543 }
5544 
5545 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5546                                      FreeRegionList* free_list,
5547                                      bool par) {
5548   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5549   assert(free_list != NULL, "pre-condition");
5550 
5551   size_t hr_capacity = hr->capacity();
5552   // We need to read this before we make the region non-humongous,
5553   // otherwise the information will be gone.
5554   uint last_index = hr->last_hc_index();
5555   hr->clear_humongous();
5556   free_region(hr, free_list, par);
5557 
5558   uint i = hr->hrm_index() + 1;
5559   while (i < last_index) {
5560     HeapRegion* curr_hr = region_at(i);
5561     assert(curr_hr->is_continues_humongous(), "invariant");
5562     curr_hr->clear_humongous();
5563     free_region(curr_hr, free_list, par);
5564     i += 1;
5565   }
5566 }
5567 
5568 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5569                                        const HeapRegionSetCount& humongous_regions_removed) {
5570   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5571     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5572     _old_set.bulk_remove(old_regions_removed);
5573     _humongous_set.bulk_remove(humongous_regions_removed);
5574   }
5575 
5576 }
5577 
5578 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5579   assert(list != NULL, "list can't be null");
5580   if (!list->is_empty()) {
5581     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5582     _hrm.insert_list_into_free_list(list);
5583   }
5584 }
5585 
5586 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5587   _allocator->decrease_used(bytes);
5588 }
5589 
5590 class G1ParCleanupCTTask : public AbstractGangTask {
5591   G1SATBCardTableModRefBS* _ct_bs;
5592   G1CollectedHeap* _g1h;
5593   HeapRegion* volatile _su_head;
5594 public:
5595   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5596                      G1CollectedHeap* g1h) :
5597     AbstractGangTask("G1 Par Cleanup CT Task"),
5598     _ct_bs(ct_bs), _g1h(g1h) { }
5599 
5600   void work(uint worker_id) {
5601     HeapRegion* r;
5602     while (r = _g1h->pop_dirty_cards_region()) {
5603       clear_cards(r);
5604     }
5605   }
5606 
5607   void clear_cards(HeapRegion* r) {
5608     // Cards of the survivors should have already been dirtied.
5609     if (!r->is_survivor()) {
5610       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5611     }
5612   }
5613 };
5614 
5615 #ifndef PRODUCT
5616 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5617   G1CollectedHeap* _g1h;
5618   G1SATBCardTableModRefBS* _ct_bs;
5619 public:
5620   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5621     : _g1h(g1h), _ct_bs(ct_bs) { }
5622   virtual bool doHeapRegion(HeapRegion* r) {
5623     if (r->is_survivor()) {
5624       _g1h->verify_dirty_region(r);
5625     } else {
5626       _g1h->verify_not_dirty_region(r);
5627     }
5628     return false;
5629   }
5630 };
5631 
5632 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5633   // All of the region should be clean.
5634   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5635   MemRegion mr(hr->bottom(), hr->end());
5636   ct_bs->verify_not_dirty_region(mr);
5637 }
5638 
5639 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5640   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5641   // dirty allocated blocks as they allocate them. The thread that
5642   // retires each region and replaces it with a new one will do a
5643   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5644   // not dirty that area (one less thing to have to do while holding
5645   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5646   // is dirty.
5647   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5648   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5649   if (hr->is_young()) {
5650     ct_bs->verify_g1_young_region(mr);
5651   } else {
5652     ct_bs->verify_dirty_region(mr);
5653   }
5654 }
5655 
5656 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5657   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5658   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5659     verify_dirty_region(hr);
5660   }
5661 }
5662 
5663 void G1CollectedHeap::verify_dirty_young_regions() {
5664   verify_dirty_young_list(_young_list->first_region());
5665 }
5666 
5667 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5668                                                HeapWord* tams, HeapWord* end) {
5669   guarantee(tams <= end,
5670             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5671   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5672   if (result < end) {
5673     gclog_or_tty->cr();
5674     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5675                            bitmap_name, result);
5676     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5677                            bitmap_name, tams, end);
5678     return false;
5679   }
5680   return true;
5681 }
5682 
5683 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5684   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5685   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5686 
5687   HeapWord* bottom = hr->bottom();
5688   HeapWord* ptams  = hr->prev_top_at_mark_start();
5689   HeapWord* ntams  = hr->next_top_at_mark_start();
5690   HeapWord* end    = hr->end();
5691 
5692   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5693 
5694   bool res_n = true;
5695   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5696   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5697   // if we happen to be in that state.
5698   if (mark_in_progress() || !_cmThread->in_progress()) {
5699     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5700   }
5701   if (!res_p || !res_n) {
5702     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5703                            HR_FORMAT_PARAMS(hr));
5704     gclog_or_tty->print_cr("#### Caller: %s", caller);
5705     return false;
5706   }
5707   return true;
5708 }
5709 
5710 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5711   if (!G1VerifyBitmaps) return;
5712 
5713   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5714 }
5715 
5716 class G1VerifyBitmapClosure : public HeapRegionClosure {
5717 private:
5718   const char* _caller;
5719   G1CollectedHeap* _g1h;
5720   bool _failures;
5721 
5722 public:
5723   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5724     _caller(caller), _g1h(g1h), _failures(false) { }
5725 
5726   bool failures() { return _failures; }
5727 
5728   virtual bool doHeapRegion(HeapRegion* hr) {
5729     if (hr->is_continues_humongous()) return false;
5730 
5731     bool result = _g1h->verify_bitmaps(_caller, hr);
5732     if (!result) {
5733       _failures = true;
5734     }
5735     return false;
5736   }
5737 };
5738 
5739 void G1CollectedHeap::check_bitmaps(const char* caller) {
5740   if (!G1VerifyBitmaps) return;
5741 
5742   G1VerifyBitmapClosure cl(caller, this);
5743   heap_region_iterate(&cl);
5744   guarantee(!cl.failures(), "bitmap verification");
5745 }
5746 
5747 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5748  private:
5749   bool _failures;
5750  public:
5751   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5752 
5753   virtual bool doHeapRegion(HeapRegion* hr) {
5754     uint i = hr->hrm_index();
5755     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5756     if (hr->is_humongous()) {
5757       if (hr->in_collection_set()) {
5758         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5759         _failures = true;
5760         return true;
5761       }
5762       if (cset_state.is_in_cset()) {
5763         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5764         _failures = true;
5765         return true;
5766       }
5767       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5768         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5769         _failures = true;
5770         return true;
5771       }
5772     } else {
5773       if (cset_state.is_humongous()) {
5774         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5775         _failures = true;
5776         return true;
5777       }
5778       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5779         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5780                                hr->in_collection_set(), cset_state.value(), i);
5781         _failures = true;
5782         return true;
5783       }
5784       if (cset_state.is_in_cset()) {
5785         if (hr->is_young() != (cset_state.is_young())) {
5786           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5787                                  hr->is_young(), cset_state.value(), i);
5788           _failures = true;
5789           return true;
5790         }
5791         if (hr->is_old() != (cset_state.is_old())) {
5792           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5793                                  hr->is_old(), cset_state.value(), i);
5794           _failures = true;
5795           return true;
5796         }
5797       }
5798     }
5799     return false;
5800   }
5801 
5802   bool failures() const { return _failures; }
5803 };
5804 
5805 bool G1CollectedHeap::check_cset_fast_test() {
5806   G1CheckCSetFastTableClosure cl;
5807   _hrm.iterate(&cl);
5808   return !cl.failures();
5809 }
5810 #endif // PRODUCT
5811 
5812 void G1CollectedHeap::cleanUpCardTable() {
5813   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5814   double start = os::elapsedTime();
5815 
5816   {
5817     // Iterate over the dirty cards region list.
5818     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5819 
5820     set_par_threads();
5821     workers()->run_task(&cleanup_task);
5822     set_par_threads(0);
5823 #ifndef PRODUCT
5824     if (G1VerifyCTCleanup || VerifyAfterGC) {
5825       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5826       heap_region_iterate(&cleanup_verifier);
5827     }
5828 #endif
5829   }
5830 
5831   double elapsed = os::elapsedTime() - start;
5832   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5833 }
5834 
5835 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5836   size_t pre_used = 0;
5837   FreeRegionList local_free_list("Local List for CSet Freeing");
5838 
5839   double young_time_ms     = 0.0;
5840   double non_young_time_ms = 0.0;
5841 
5842   // Since the collection set is a superset of the the young list,
5843   // all we need to do to clear the young list is clear its
5844   // head and length, and unlink any young regions in the code below
5845   _young_list->clear();
5846 
5847   G1CollectorPolicy* policy = g1_policy();
5848 
5849   double start_sec = os::elapsedTime();
5850   bool non_young = true;
5851 
5852   HeapRegion* cur = cs_head;
5853   int age_bound = -1;
5854   size_t rs_lengths = 0;
5855 
5856   while (cur != NULL) {
5857     assert(!is_on_master_free_list(cur), "sanity");
5858     if (non_young) {
5859       if (cur->is_young()) {
5860         double end_sec = os::elapsedTime();
5861         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5862         non_young_time_ms += elapsed_ms;
5863 
5864         start_sec = os::elapsedTime();
5865         non_young = false;
5866       }
5867     } else {
5868       if (!cur->is_young()) {
5869         double end_sec = os::elapsedTime();
5870         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5871         young_time_ms += elapsed_ms;
5872 
5873         start_sec = os::elapsedTime();
5874         non_young = true;
5875       }
5876     }
5877 
5878     rs_lengths += cur->rem_set()->occupied_locked();
5879 
5880     HeapRegion* next = cur->next_in_collection_set();
5881     assert(cur->in_collection_set(), "bad CS");
5882     cur->set_next_in_collection_set(NULL);
5883     clear_in_cset(cur);
5884 
5885     if (cur->is_young()) {
5886       int index = cur->young_index_in_cset();
5887       assert(index != -1, "invariant");
5888       assert((uint) index < policy->young_cset_region_length(), "invariant");
5889       size_t words_survived = _surviving_young_words[index];
5890       cur->record_surv_words_in_group(words_survived);
5891 
5892       // At this point the we have 'popped' cur from the collection set
5893       // (linked via next_in_collection_set()) but it is still in the
5894       // young list (linked via next_young_region()). Clear the
5895       // _next_young_region field.
5896       cur->set_next_young_region(NULL);
5897     } else {
5898       int index = cur->young_index_in_cset();
5899       assert(index == -1, "invariant");
5900     }
5901 
5902     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5903             (!cur->is_young() && cur->young_index_in_cset() == -1),
5904             "invariant" );
5905 
5906     if (!cur->evacuation_failed()) {
5907       MemRegion used_mr = cur->used_region();
5908 
5909       // And the region is empty.
5910       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5911       pre_used += cur->used();
5912       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5913     } else {
5914       cur->uninstall_surv_rate_group();
5915       if (cur->is_young()) {
5916         cur->set_young_index_in_cset(-1);
5917       }
5918       cur->set_evacuation_failed(false);
5919       // The region is now considered to be old.
5920       cur->set_old();
5921       _old_set.add(cur);
5922       evacuation_info.increment_collectionset_used_after(cur->used());
5923     }
5924     cur = next;
5925   }
5926 
5927   evacuation_info.set_regions_freed(local_free_list.length());
5928   policy->record_max_rs_lengths(rs_lengths);
5929   policy->cset_regions_freed();
5930 
5931   double end_sec = os::elapsedTime();
5932   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5933 
5934   if (non_young) {
5935     non_young_time_ms += elapsed_ms;
5936   } else {
5937     young_time_ms += elapsed_ms;
5938   }
5939 
5940   prepend_to_freelist(&local_free_list);
5941   decrement_summary_bytes(pre_used);
5942   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5943   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5944 }
5945 
5946 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5947  private:
5948   FreeRegionList* _free_region_list;
5949   HeapRegionSet* _proxy_set;
5950   HeapRegionSetCount _humongous_regions_removed;
5951   size_t _freed_bytes;
5952  public:
5953 
5954   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5955     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5956   }
5957 
5958   virtual bool doHeapRegion(HeapRegion* r) {
5959     if (!r->is_starts_humongous()) {
5960       return false;
5961     }
5962 
5963     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5964 
5965     oop obj = (oop)r->bottom();
5966     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5967 
5968     // The following checks whether the humongous object is live are sufficient.
5969     // The main additional check (in addition to having a reference from the roots
5970     // or the young gen) is whether the humongous object has a remembered set entry.
5971     //
5972     // A humongous object cannot be live if there is no remembered set for it
5973     // because:
5974     // - there can be no references from within humongous starts regions referencing
5975     // the object because we never allocate other objects into them.
5976     // (I.e. there are no intra-region references that may be missed by the
5977     // remembered set)
5978     // - as soon there is a remembered set entry to the humongous starts region
5979     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5980     // until the end of a concurrent mark.
5981     //
5982     // It is not required to check whether the object has been found dead by marking
5983     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5984     // all objects allocated during that time are considered live.
5985     // SATB marking is even more conservative than the remembered set.
5986     // So if at this point in the collection there is no remembered set entry,
5987     // nobody has a reference to it.
5988     // At the start of collection we flush all refinement logs, and remembered sets
5989     // are completely up-to-date wrt to references to the humongous object.
5990     //
5991     // Other implementation considerations:
5992     // - never consider object arrays at this time because they would pose
5993     // considerable effort for cleaning up the the remembered sets. This is
5994     // required because stale remembered sets might reference locations that
5995     // are currently allocated into.
5996     uint region_idx = r->hrm_index();
5997     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5998         !r->rem_set()->is_empty()) {
5999 
6000       if (G1TraceEagerReclaimHumongousObjects) {
6001         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6002                                region_idx,
6003                                obj->size()*HeapWordSize,
6004                                r->bottom(),
6005                                r->region_num(),
6006                                r->rem_set()->occupied(),
6007                                r->rem_set()->strong_code_roots_list_length(),
6008                                next_bitmap->isMarked(r->bottom()),
6009                                g1h->is_humongous_reclaim_candidate(region_idx),
6010                                obj->is_typeArray()
6011                               );
6012       }
6013 
6014       return false;
6015     }
6016 
6017     guarantee(obj->is_typeArray(),
6018               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6019                       PTR_FORMAT " is not.",
6020                       r->bottom()));
6021 
6022     if (G1TraceEagerReclaimHumongousObjects) {
6023       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
6024                              region_idx,
6025                              obj->size()*HeapWordSize,
6026                              r->bottom(),
6027                              r->region_num(),
6028                              r->rem_set()->occupied(),
6029                              r->rem_set()->strong_code_roots_list_length(),
6030                              next_bitmap->isMarked(r->bottom()),
6031                              g1h->is_humongous_reclaim_candidate(region_idx),
6032                              obj->is_typeArray()
6033                             );
6034     }
6035     // Need to clear mark bit of the humongous object if already set.
6036     if (next_bitmap->isMarked(r->bottom())) {
6037       next_bitmap->clear(r->bottom());
6038     }
6039     _freed_bytes += r->used();
6040     r->set_containing_set(NULL);
6041     _humongous_regions_removed.increment(1u, r->capacity());
6042     g1h->free_humongous_region(r, _free_region_list, false);
6043 
6044     return false;
6045   }
6046 
6047   HeapRegionSetCount& humongous_free_count() {
6048     return _humongous_regions_removed;
6049   }
6050 
6051   size_t bytes_freed() const {
6052     return _freed_bytes;
6053   }
6054 
6055   size_t humongous_reclaimed() const {
6056     return _humongous_regions_removed.length();
6057   }
6058 };
6059 
6060 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6061   assert_at_safepoint(true);
6062 
6063   if (!G1EagerReclaimHumongousObjects ||
6064       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6065     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6066     return;
6067   }
6068 
6069   double start_time = os::elapsedTime();
6070 
6071   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6072 
6073   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6074   heap_region_iterate(&cl);
6075 
6076   HeapRegionSetCount empty_set;
6077   remove_from_old_sets(empty_set, cl.humongous_free_count());
6078 
6079   G1HRPrinter* hr_printer = _g1h->hr_printer();
6080   if (hr_printer->is_active()) {
6081     FreeRegionListIterator iter(&local_cleanup_list);
6082     while (iter.more_available()) {
6083       HeapRegion* hr = iter.get_next();
6084       hr_printer->cleanup(hr);
6085     }
6086   }
6087 
6088   prepend_to_freelist(&local_cleanup_list);
6089   decrement_summary_bytes(cl.bytes_freed());
6090 
6091   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6092                                                                     cl.humongous_reclaimed());
6093 }
6094 
6095 // This routine is similar to the above but does not record
6096 // any policy statistics or update free lists; we are abandoning
6097 // the current incremental collection set in preparation of a
6098 // full collection. After the full GC we will start to build up
6099 // the incremental collection set again.
6100 // This is only called when we're doing a full collection
6101 // and is immediately followed by the tearing down of the young list.
6102 
6103 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6104   HeapRegion* cur = cs_head;
6105 
6106   while (cur != NULL) {
6107     HeapRegion* next = cur->next_in_collection_set();
6108     assert(cur->in_collection_set(), "bad CS");
6109     cur->set_next_in_collection_set(NULL);
6110     clear_in_cset(cur);
6111     cur->set_young_index_in_cset(-1);
6112     cur = next;
6113   }
6114 }
6115 
6116 void G1CollectedHeap::set_free_regions_coming() {
6117   if (G1ConcRegionFreeingVerbose) {
6118     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6119                            "setting free regions coming");
6120   }
6121 
6122   assert(!free_regions_coming(), "pre-condition");
6123   _free_regions_coming = true;
6124 }
6125 
6126 void G1CollectedHeap::reset_free_regions_coming() {
6127   assert(free_regions_coming(), "pre-condition");
6128 
6129   {
6130     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6131     _free_regions_coming = false;
6132     SecondaryFreeList_lock->notify_all();
6133   }
6134 
6135   if (G1ConcRegionFreeingVerbose) {
6136     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6137                            "reset free regions coming");
6138   }
6139 }
6140 
6141 void G1CollectedHeap::wait_while_free_regions_coming() {
6142   // Most of the time we won't have to wait, so let's do a quick test
6143   // first before we take the lock.
6144   if (!free_regions_coming()) {
6145     return;
6146   }
6147 
6148   if (G1ConcRegionFreeingVerbose) {
6149     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6150                            "waiting for free regions");
6151   }
6152 
6153   {
6154     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6155     while (free_regions_coming()) {
6156       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6157     }
6158   }
6159 
6160   if (G1ConcRegionFreeingVerbose) {
6161     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6162                            "done waiting for free regions");
6163   }
6164 }
6165 
6166 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6167   _young_list->push_region(hr);
6168 }
6169 
6170 class NoYoungRegionsClosure: public HeapRegionClosure {
6171 private:
6172   bool _success;
6173 public:
6174   NoYoungRegionsClosure() : _success(true) { }
6175   bool doHeapRegion(HeapRegion* r) {
6176     if (r->is_young()) {
6177       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6178                              r->bottom(), r->end());
6179       _success = false;
6180     }
6181     return false;
6182   }
6183   bool success() { return _success; }
6184 };
6185 
6186 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6187   bool ret = _young_list->check_list_empty(check_sample);
6188 
6189   if (check_heap) {
6190     NoYoungRegionsClosure closure;
6191     heap_region_iterate(&closure);
6192     ret = ret && closure.success();
6193   }
6194 
6195   return ret;
6196 }
6197 
6198 class TearDownRegionSetsClosure : public HeapRegionClosure {
6199 private:
6200   HeapRegionSet *_old_set;
6201 
6202 public:
6203   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6204 
6205   bool doHeapRegion(HeapRegion* r) {
6206     if (r->is_old()) {
6207       _old_set->remove(r);
6208     } else {
6209       // We ignore free regions, we'll empty the free list afterwards.
6210       // We ignore young regions, we'll empty the young list afterwards.
6211       // We ignore humongous regions, we're not tearing down the
6212       // humongous regions set.
6213       assert(r->is_free() || r->is_young() || r->is_humongous(),
6214              "it cannot be another type");
6215     }
6216     return false;
6217   }
6218 
6219   ~TearDownRegionSetsClosure() {
6220     assert(_old_set->is_empty(), "post-condition");
6221   }
6222 };
6223 
6224 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6225   assert_at_safepoint(true /* should_be_vm_thread */);
6226 
6227   if (!free_list_only) {
6228     TearDownRegionSetsClosure cl(&_old_set);
6229     heap_region_iterate(&cl);
6230 
6231     // Note that emptying the _young_list is postponed and instead done as
6232     // the first step when rebuilding the regions sets again. The reason for
6233     // this is that during a full GC string deduplication needs to know if
6234     // a collected region was young or old when the full GC was initiated.
6235   }
6236   _hrm.remove_all_free_regions();
6237 }
6238 
6239 class RebuildRegionSetsClosure : public HeapRegionClosure {
6240 private:
6241   bool            _free_list_only;
6242   HeapRegionSet*   _old_set;
6243   HeapRegionManager*   _hrm;
6244   size_t          _total_used;
6245 
6246 public:
6247   RebuildRegionSetsClosure(bool free_list_only,
6248                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6249     _free_list_only(free_list_only),
6250     _old_set(old_set), _hrm(hrm), _total_used(0) {
6251     assert(_hrm->num_free_regions() == 0, "pre-condition");
6252     if (!free_list_only) {
6253       assert(_old_set->is_empty(), "pre-condition");
6254     }
6255   }
6256 
6257   bool doHeapRegion(HeapRegion* r) {
6258     if (r->is_continues_humongous()) {
6259       return false;
6260     }
6261 
6262     if (r->is_empty()) {
6263       // Add free regions to the free list
6264       r->set_free();
6265       r->set_allocation_context(AllocationContext::system());
6266       _hrm->insert_into_free_list(r);
6267     } else if (!_free_list_only) {
6268       assert(!r->is_young(), "we should not come across young regions");
6269 
6270       if (r->is_humongous()) {
6271         // We ignore humongous regions, we left the humongous set unchanged
6272       } else {
6273         // Objects that were compacted would have ended up on regions
6274         // that were previously old or free.
6275         assert(r->is_free() || r->is_old(), "invariant");
6276         // We now consider them old, so register as such.
6277         r->set_old();
6278         _old_set->add(r);
6279       }
6280       _total_used += r->used();
6281     }
6282 
6283     return false;
6284   }
6285 
6286   size_t total_used() {
6287     return _total_used;
6288   }
6289 };
6290 
6291 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6292   assert_at_safepoint(true /* should_be_vm_thread */);
6293 
6294   if (!free_list_only) {
6295     _young_list->empty_list();
6296   }
6297 
6298   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6299   heap_region_iterate(&cl);
6300 
6301   if (!free_list_only) {
6302     _allocator->set_used(cl.total_used());
6303   }
6304   assert(_allocator->used_unlocked() == recalculate_used(),
6305          err_msg("inconsistent _allocator->used_unlocked(), "
6306                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6307                  _allocator->used_unlocked(), recalculate_used()));
6308 }
6309 
6310 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6311   _refine_cte_cl->set_concurrent(concurrent);
6312 }
6313 
6314 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6315   HeapRegion* hr = heap_region_containing(p);
6316   return hr->is_in(p);
6317 }
6318 
6319 // Methods for the mutator alloc region
6320 
6321 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6322                                                       bool force) {
6323   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6324   assert(!force || g1_policy()->can_expand_young_list(),
6325          "if force is true we should be able to expand the young list");
6326   bool young_list_full = g1_policy()->is_young_list_full();
6327   if (force || !young_list_full) {
6328     HeapRegion* new_alloc_region = new_region(word_size,
6329                                               false /* is_old */,
6330                                               false /* do_expand */);
6331     if (new_alloc_region != NULL) {
6332       set_region_short_lived_locked(new_alloc_region);
6333       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6334       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6335       return new_alloc_region;
6336     }
6337   }
6338   return NULL;
6339 }
6340 
6341 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6342                                                   size_t allocated_bytes) {
6343   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6344   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6345 
6346   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6347   _allocator->increase_used(allocated_bytes);
6348   _hr_printer.retire(alloc_region);
6349   // We update the eden sizes here, when the region is retired,
6350   // instead of when it's allocated, since this is the point that its
6351   // used space has been recored in _summary_bytes_used.
6352   g1mm()->update_eden_size();
6353 }
6354 
6355 void G1CollectedHeap::set_par_threads() {
6356   // Don't change the number of workers.  Use the value previously set
6357   // in the workgroup.
6358   uint n_workers = workers()->active_workers();
6359   assert(UseDynamicNumberOfGCThreads ||
6360            n_workers == workers()->total_workers(),
6361       "Otherwise should be using the total number of workers");
6362   if (n_workers == 0) {
6363     assert(false, "Should have been set in prior evacuation pause.");
6364     n_workers = ParallelGCThreads;
6365     workers()->set_active_workers(n_workers);
6366   }
6367   set_par_threads(n_workers);
6368 }
6369 
6370 // Methods for the GC alloc regions
6371 
6372 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6373                                                  uint count,
6374                                                  InCSetState dest) {
6375   assert(FreeList_lock->owned_by_self(), "pre-condition");
6376 
6377   if (count < g1_policy()->max_regions(dest)) {
6378     const bool is_survivor = (dest.is_young());
6379     HeapRegion* new_alloc_region = new_region(word_size,
6380                                               !is_survivor,
6381                                               true /* do_expand */);
6382     if (new_alloc_region != NULL) {
6383       // We really only need to do this for old regions given that we
6384       // should never scan survivors. But it doesn't hurt to do it
6385       // for survivors too.
6386       new_alloc_region->record_timestamp();
6387       if (is_survivor) {
6388         new_alloc_region->set_survivor();
6389         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6390         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6391       } else {
6392         new_alloc_region->set_old();
6393         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6394         check_bitmaps("Old Region Allocation", new_alloc_region);
6395       }
6396       bool during_im = g1_policy()->during_initial_mark_pause();
6397       new_alloc_region->note_start_of_copying(during_im);
6398       return new_alloc_region;
6399     }
6400   }
6401   return NULL;
6402 }
6403 
6404 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6405                                              size_t allocated_bytes,
6406                                              InCSetState dest) {
6407   bool during_im = g1_policy()->during_initial_mark_pause();
6408   alloc_region->note_end_of_copying(during_im);
6409   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6410   if (dest.is_young()) {
6411     young_list()->add_survivor_region(alloc_region);
6412   } else {
6413     _old_set.add(alloc_region);
6414   }
6415   _hr_printer.retire(alloc_region);
6416 }
6417 
6418 // Heap region set verification
6419 
6420 class VerifyRegionListsClosure : public HeapRegionClosure {
6421 private:
6422   HeapRegionSet*   _old_set;
6423   HeapRegionSet*   _humongous_set;
6424   HeapRegionManager*   _hrm;
6425 
6426 public:
6427   HeapRegionSetCount _old_count;
6428   HeapRegionSetCount _humongous_count;
6429   HeapRegionSetCount _free_count;
6430 
6431   VerifyRegionListsClosure(HeapRegionSet* old_set,
6432                            HeapRegionSet* humongous_set,
6433                            HeapRegionManager* hrm) :
6434     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6435     _old_count(), _humongous_count(), _free_count(){ }
6436 
6437   bool doHeapRegion(HeapRegion* hr) {
6438     if (hr->is_continues_humongous()) {
6439       return false;
6440     }
6441 
6442     if (hr->is_young()) {
6443       // TODO
6444     } else if (hr->is_starts_humongous()) {
6445       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6446       _humongous_count.increment(1u, hr->capacity());
6447     } else if (hr->is_empty()) {
6448       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6449       _free_count.increment(1u, hr->capacity());
6450     } else if (hr->is_old()) {
6451       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6452       _old_count.increment(1u, hr->capacity());
6453     } else {
6454       ShouldNotReachHere();
6455     }
6456     return false;
6457   }
6458 
6459   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6460     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6461     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6462         old_set->total_capacity_bytes(), _old_count.capacity()));
6463 
6464     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6465     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6466         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6467 
6468     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6469     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6470         free_list->total_capacity_bytes(), _free_count.capacity()));
6471   }
6472 };
6473 
6474 void G1CollectedHeap::verify_region_sets() {
6475   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6476 
6477   // First, check the explicit lists.
6478   _hrm.verify();
6479   {
6480     // Given that a concurrent operation might be adding regions to
6481     // the secondary free list we have to take the lock before
6482     // verifying it.
6483     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6484     _secondary_free_list.verify_list();
6485   }
6486 
6487   // If a concurrent region freeing operation is in progress it will
6488   // be difficult to correctly attributed any free regions we come
6489   // across to the correct free list given that they might belong to
6490   // one of several (free_list, secondary_free_list, any local lists,
6491   // etc.). So, if that's the case we will skip the rest of the
6492   // verification operation. Alternatively, waiting for the concurrent
6493   // operation to complete will have a non-trivial effect on the GC's
6494   // operation (no concurrent operation will last longer than the
6495   // interval between two calls to verification) and it might hide
6496   // any issues that we would like to catch during testing.
6497   if (free_regions_coming()) {
6498     return;
6499   }
6500 
6501   // Make sure we append the secondary_free_list on the free_list so
6502   // that all free regions we will come across can be safely
6503   // attributed to the free_list.
6504   append_secondary_free_list_if_not_empty_with_lock();
6505 
6506   // Finally, make sure that the region accounting in the lists is
6507   // consistent with what we see in the heap.
6508 
6509   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6510   heap_region_iterate(&cl);
6511   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6512 }
6513 
6514 // Optimized nmethod scanning
6515 
6516 class RegisterNMethodOopClosure: public OopClosure {
6517   G1CollectedHeap* _g1h;
6518   nmethod* _nm;
6519 
6520   template <class T> void do_oop_work(T* p) {
6521     T heap_oop = oopDesc::load_heap_oop(p);
6522     if (!oopDesc::is_null(heap_oop)) {
6523       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6524       HeapRegion* hr = _g1h->heap_region_containing(obj);
6525       assert(!hr->is_continues_humongous(),
6526              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6527                      " starting at "HR_FORMAT,
6528                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6529 
6530       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6531       hr->add_strong_code_root_locked(_nm);
6532     }
6533   }
6534 
6535 public:
6536   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6537     _g1h(g1h), _nm(nm) {}
6538 
6539   void do_oop(oop* p)       { do_oop_work(p); }
6540   void do_oop(narrowOop* p) { do_oop_work(p); }
6541 };
6542 
6543 class UnregisterNMethodOopClosure: public OopClosure {
6544   G1CollectedHeap* _g1h;
6545   nmethod* _nm;
6546 
6547   template <class T> void do_oop_work(T* p) {
6548     T heap_oop = oopDesc::load_heap_oop(p);
6549     if (!oopDesc::is_null(heap_oop)) {
6550       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6551       HeapRegion* hr = _g1h->heap_region_containing(obj);
6552       assert(!hr->is_continues_humongous(),
6553              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6554                      " starting at "HR_FORMAT,
6555                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6556 
6557       hr->remove_strong_code_root(_nm);
6558     }
6559   }
6560 
6561 public:
6562   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6563     _g1h(g1h), _nm(nm) {}
6564 
6565   void do_oop(oop* p)       { do_oop_work(p); }
6566   void do_oop(narrowOop* p) { do_oop_work(p); }
6567 };
6568 
6569 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6570   CollectedHeap::register_nmethod(nm);
6571 
6572   guarantee(nm != NULL, "sanity");
6573   RegisterNMethodOopClosure reg_cl(this, nm);
6574   nm->oops_do(&reg_cl);
6575 }
6576 
6577 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6578   CollectedHeap::unregister_nmethod(nm);
6579 
6580   guarantee(nm != NULL, "sanity");
6581   UnregisterNMethodOopClosure reg_cl(this, nm);
6582   nm->oops_do(&reg_cl, true);
6583 }
6584 
6585 void G1CollectedHeap::purge_code_root_memory() {
6586   double purge_start = os::elapsedTime();
6587   G1CodeRootSet::purge();
6588   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6589   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6590 }
6591 
6592 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6593   G1CollectedHeap* _g1h;
6594 
6595 public:
6596   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6597     _g1h(g1h) {}
6598 
6599   void do_code_blob(CodeBlob* cb) {
6600     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6601     if (nm == NULL) {
6602       return;
6603     }
6604 
6605     if (ScavengeRootsInCode) {
6606       _g1h->register_nmethod(nm);
6607     }
6608   }
6609 };
6610 
6611 void G1CollectedHeap::rebuild_strong_code_roots() {
6612   RebuildStrongCodeRootClosure blob_cl(this);
6613   CodeCache::blobs_do(&blob_cl);
6614 }