1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_BLOCKOFFSETTABLE_HPP
  26 #define SHARE_VM_GC_SHARED_BLOCKOFFSETTABLE_HPP
  27 
  28 #include "gc/shared/memset_with_concurrent_readers.hpp"
  29 #include "memory/memRegion.hpp"
  30 #include "memory/virtualspace.hpp"
  31 #include "runtime/globals.hpp"
  32 #include "utilities/globalDefinitions.hpp"
  33 #include "utilities/macros.hpp"
  34 
  35 // The CollectedHeap type requires subtypes to implement a method
  36 // "block_start".  For some subtypes, notably generational
  37 // systems using card-table-based write barriers, the efficiency of this
  38 // operation may be important.  Implementations of the "BlockOffsetArray"
  39 // class may be useful in providing such efficient implementations.
  40 //
  41 // BlockOffsetTable (abstract)
  42 //   - BlockOffsetArray (abstract)
  43 //     - BlockOffsetArrayNonContigSpace
  44 //     - BlockOffsetArrayContigSpace
  45 //
  46 
  47 class ContiguousSpace;
  48 
  49 //////////////////////////////////////////////////////////////////////////
  50 // The BlockOffsetTable "interface"
  51 //////////////////////////////////////////////////////////////////////////
  52 class BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
  53   friend class VMStructs;
  54 protected:
  55   // These members describe the region covered by the table.
  56 
  57   // The space this table is covering.
  58   HeapWord* _bottom;    // == reserved.start
  59   HeapWord* _end;       // End of currently allocated region.
  60 
  61 public:
  62   // Initialize the table to cover the given space.
  63   // The contents of the initial table are undefined.
  64   BlockOffsetTable(HeapWord* bottom, HeapWord* end):
  65     _bottom(bottom), _end(end) {
  66     assert(_bottom <= _end, "arguments out of order");
  67   }
  68 
  69   // Note that the committed size of the covered space may have changed,
  70   // so the table size might also wish to change.
  71   virtual void resize(size_t new_word_size) = 0;
  72 
  73   virtual void set_bottom(HeapWord* new_bottom) {
  74     assert(new_bottom <= _end, "new_bottom > _end");
  75     _bottom = new_bottom;
  76     resize(pointer_delta(_end, _bottom));
  77   }
  78 
  79   // Requires "addr" to be contained by a block, and returns the address of
  80   // the start of that block.
  81   virtual HeapWord* block_start_unsafe(const void* addr) const = 0;
  82 
  83   // Returns the address of the start of the block containing "addr", or
  84   // else "null" if it is covered by no block.
  85   HeapWord* block_start(const void* addr) const;
  86 };
  87 
  88 //////////////////////////////////////////////////////////////////////////
  89 // One implementation of "BlockOffsetTable," the BlockOffsetArray,
  90 // divides the covered region into "N"-word subregions (where
  91 // "N" = 2^"LogN".  An array with an entry for each such subregion
  92 // indicates how far back one must go to find the start of the
  93 // chunk that includes the first word of the subregion.
  94 //
  95 // Each BlockOffsetArray is owned by a Space.  However, the actual array
  96 // may be shared by several BlockOffsetArrays; this is useful
  97 // when a single resizable area (such as a generation) is divided up into
  98 // several spaces in which contiguous allocation takes place.  (Consider,
  99 // for example, the garbage-first generation.)
 100 
 101 // Here is the shared array type.
 102 //////////////////////////////////////////////////////////////////////////
 103 // BlockOffsetSharedArray
 104 //////////////////////////////////////////////////////////////////////////
 105 class BlockOffsetSharedArray: public CHeapObj<mtGC> {
 106   friend class BlockOffsetArray;
 107   friend class BlockOffsetArrayNonContigSpace;
 108   friend class BlockOffsetArrayContigSpace;
 109   friend class VMStructs;
 110 
 111  private:
 112   enum SomePrivateConstants {
 113     LogN = 9,
 114     LogN_words = LogN - LogHeapWordSize,
 115     N_bytes = 1 << LogN,
 116     N_words = 1 << LogN_words
 117   };
 118 
 119   bool _init_to_zero;
 120 
 121   // The reserved region covered by the shared array.
 122   MemRegion _reserved;
 123 
 124   // End of the current committed region.
 125   HeapWord* _end;
 126 
 127   // Array for keeping offsets for retrieving object start fast given an
 128   // address.
 129   VirtualSpace _vs;
 130   u_char* _offset_array;          // byte array keeping backwards offsets
 131 
 132   void fill_range(size_t start, size_t num_cards, u_char offset) {
 133     void* start_ptr = &_offset_array[start];
 134 #if INCLUDE_ALL_GCS
 135     // If collector is concurrent, special handling may be needed.
 136     assert(!UseG1GC, "Shouldn't be here when using G1");
 137     if (UseConcMarkSweepGC) {
 138       memset_with_concurrent_readers(start_ptr, offset, num_cards);
 139       return;
 140     }
 141 #endif // INCLUDE_ALL_GCS
 142     memset(start_ptr, offset, num_cards);
 143   }
 144 
 145  protected:
 146   // Bounds checking accessors:
 147   // For performance these have to devolve to array accesses in product builds.
 148   u_char offset_array(size_t index) const {
 149     assert(index < _vs.committed_size(), "index out of range");
 150     return _offset_array[index];
 151   }
 152   // An assertion-checking helper method for the set_offset_array() methods below.
 153   void check_reducing_assertion(bool reducing);
 154 
 155   void set_offset_array(size_t index, u_char offset, bool reducing = false) {
 156     check_reducing_assertion(reducing);
 157     assert(index < _vs.committed_size(), "index out of range");
 158     assert(!reducing || _offset_array[index] >= offset, "Not reducing");
 159     _offset_array[index] = offset;
 160   }
 161 
 162   void set_offset_array(size_t index, HeapWord* high, HeapWord* low, bool reducing = false) {
 163     check_reducing_assertion(reducing);
 164     assert(index < _vs.committed_size(), "index out of range");
 165     assert(high >= low, "addresses out of order");
 166     assert(pointer_delta(high, low) <= N_words, "offset too large");
 167     assert(!reducing || _offset_array[index] >=  (u_char)pointer_delta(high, low),
 168            "Not reducing");
 169     _offset_array[index] = (u_char)pointer_delta(high, low);
 170   }
 171 
 172   void set_offset_array(HeapWord* left, HeapWord* right, u_char offset, bool reducing = false) {
 173     check_reducing_assertion(reducing);
 174     assert(index_for(right - 1) < _vs.committed_size(),
 175            "right address out of range");
 176     assert(left  < right, "Heap addresses out of order");
 177     size_t num_cards = pointer_delta(right, left) >> LogN_words;
 178 
 179     fill_range(index_for(left), num_cards, offset);
 180   }
 181 
 182   void set_offset_array(size_t left, size_t right, u_char offset, bool reducing = false) {
 183     check_reducing_assertion(reducing);
 184     assert(right < _vs.committed_size(), "right address out of range");
 185     assert(left  <= right, "indexes out of order");
 186     size_t num_cards = right - left + 1;
 187 
 188     fill_range(left, num_cards, offset);
 189   }
 190 
 191   void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
 192     assert(index < _vs.committed_size(), "index out of range");
 193     assert(high >= low, "addresses out of order");
 194     assert(pointer_delta(high, low) <= N_words, "offset too large");
 195     assert(_offset_array[index] == pointer_delta(high, low),
 196            "Wrong offset");
 197   }
 198 
 199   bool is_card_boundary(HeapWord* p) const;
 200 
 201   // Return the number of slots needed for an offset array
 202   // that covers mem_region_words words.
 203   // We always add an extra slot because if an object
 204   // ends on a card boundary we put a 0 in the next
 205   // offset array slot, so we want that slot always
 206   // to be reserved.
 207 
 208   size_t compute_size(size_t mem_region_words) {
 209     size_t number_of_slots = (mem_region_words / N_words) + 1;
 210     return ReservedSpace::allocation_align_size_up(number_of_slots);
 211   }
 212 
 213 public:
 214   // Initialize the table to cover from "base" to (at least)
 215   // "base + init_word_size".  In the future, the table may be expanded
 216   // (see "resize" below) up to the size of "_reserved" (which must be at
 217   // least "init_word_size".)  The contents of the initial table are
 218   // undefined; it is the responsibility of the constituent
 219   // BlockOffsetTable(s) to initialize cards.
 220   BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
 221 
 222   // Notes a change in the committed size of the region covered by the
 223   // table.  The "new_word_size" may not be larger than the size of the
 224   // reserved region this table covers.
 225   void resize(size_t new_word_size);
 226 
 227   void set_bottom(HeapWord* new_bottom);
 228 
 229   // Whether entries should be initialized to zero. Used currently only for
 230   // error checking.
 231   void set_init_to_zero(bool val) { _init_to_zero = val; }
 232   bool init_to_zero() { return _init_to_zero; }
 233 
 234   // Updates all the BlockOffsetArray's sharing this shared array to
 235   // reflect the current "top"'s of their spaces.
 236   void update_offset_arrays();   // Not yet implemented!
 237 
 238   // Return the appropriate index into "_offset_array" for "p".
 239   size_t index_for(const void* p) const;
 240 
 241   // Return the address indicating the start of the region corresponding to
 242   // "index" in "_offset_array".
 243   HeapWord* address_for_index(size_t index) const;
 244 };
 245 
 246 //////////////////////////////////////////////////////////////////////////
 247 // The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray.
 248 //////////////////////////////////////////////////////////////////////////
 249 class BlockOffsetArray: public BlockOffsetTable {
 250   friend class VMStructs;
 251   friend class G1BlockOffsetArray; // temp. until we restructure and cleanup
 252  protected:
 253   // The following enums are used by do_block_internal() below
 254   enum Action {
 255     Action_single,      // BOT records a single block (see single_block())
 256     Action_mark,        // BOT marks the start of a block (see mark_block())
 257     Action_check        // Check that BOT records block correctly
 258                         // (see verify_single_block()).
 259   };
 260 
 261   enum SomePrivateConstants {
 262     N_words = BlockOffsetSharedArray::N_words,
 263     LogN    = BlockOffsetSharedArray::LogN,
 264     // entries "e" of at least N_words mean "go back by Base^(e-N_words)."
 265     // All entries are less than "N_words + N_powers".
 266     LogBase = 4,
 267     Base = (1 << LogBase),
 268     N_powers = 14
 269   };
 270 
 271   static size_t power_to_cards_back(uint i) {
 272     return (size_t)1 << (LogBase * i);
 273   }
 274   static size_t power_to_words_back(uint i) {
 275     return power_to_cards_back(i) * N_words;
 276   }
 277   static size_t entry_to_cards_back(u_char entry) {
 278     assert(entry >= N_words, "Precondition");
 279     return power_to_cards_back(entry - N_words);
 280   }
 281   static size_t entry_to_words_back(u_char entry) {
 282     assert(entry >= N_words, "Precondition");
 283     return power_to_words_back(entry - N_words);
 284   }
 285 
 286   // The shared array, which is shared with other BlockOffsetArray's
 287   // corresponding to different spaces within a generation or span of
 288   // memory.
 289   BlockOffsetSharedArray* _array;
 290 
 291   // The space that owns this subregion.
 292   Space* _sp;
 293 
 294   // If true, array entries are initialized to 0; otherwise, they are
 295   // initialized to point backwards to the beginning of the covered region.
 296   bool _init_to_zero;
 297 
 298   // An assertion-checking helper method for the set_remainder*() methods below.
 299   void check_reducing_assertion(bool reducing) { _array->check_reducing_assertion(reducing); }
 300 
 301   // Sets the entries
 302   // corresponding to the cards starting at "start" and ending at "end"
 303   // to point back to the card before "start": the interval [start, end)
 304   // is right-open. The last parameter, reducing, indicates whether the
 305   // updates to individual entries always reduce the entry from a higher
 306   // to a lower value. (For example this would hold true during a temporal
 307   // regime during which only block splits were updating the BOT.
 308   void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing = false);
 309   // Same as above, except that the args here are a card _index_ interval
 310   // that is closed: [start_index, end_index]
 311   void set_remainder_to_point_to_start_incl(size_t start, size_t end, bool reducing = false);
 312 
 313   // A helper function for BOT adjustment/verification work
 314   void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action, bool reducing = false);
 315 
 316  public:
 317   // The space may not have its bottom and top set yet, which is why the
 318   // region is passed as a parameter.  If "init_to_zero" is true, the
 319   // elements of the array are initialized to zero.  Otherwise, they are
 320   // initialized to point backwards to the beginning.
 321   BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr,
 322                    bool init_to_zero_);
 323 
 324   // Note: this ought to be part of the constructor, but that would require
 325   // "this" to be passed as a parameter to a member constructor for
 326   // the containing concrete subtype of Space.
 327   // This would be legal C++, but MS VC++ doesn't allow it.
 328   void set_space(Space* sp) { _sp = sp; }
 329 
 330   // Resets the covered region to the given "mr".
 331   void set_region(MemRegion mr) {
 332     _bottom = mr.start();
 333     _end = mr.end();
 334   }
 335 
 336   // Note that the committed size of the covered space may have changed,
 337   // so the table size might also wish to change.
 338   virtual void resize(size_t new_word_size) {
 339     HeapWord* new_end = _bottom + new_word_size;
 340     if (_end < new_end && !init_to_zero()) {
 341       // verify that the old and new boundaries are also card boundaries
 342       assert(_array->is_card_boundary(_end),
 343              "_end not a card boundary");
 344       assert(_array->is_card_boundary(new_end),
 345              "new _end would not be a card boundary");
 346       // set all the newly added cards
 347       _array->set_offset_array(_end, new_end, N_words);
 348     }
 349     _end = new_end;  // update _end
 350   }
 351 
 352   // Adjust the BOT to show that it has a single block in the
 353   // range [blk_start, blk_start + size). All necessary BOT
 354   // cards are adjusted, but _unallocated_block isn't.
 355   void single_block(HeapWord* blk_start, HeapWord* blk_end);
 356   void single_block(HeapWord* blk, size_t size) {
 357     single_block(blk, blk + size);
 358   }
 359 
 360   // When the alloc_block() call returns, the block offset table should
 361   // have enough information such that any subsequent block_start() call
 362   // with an argument equal to an address that is within the range
 363   // [blk_start, blk_end) would return the value blk_start, provided
 364   // there have been no calls in between that reset this information
 365   // (e.g. see BlockOffsetArrayNonContigSpace::single_block() call
 366   // for an appropriate range covering the said interval).
 367   // These methods expect to be called with [blk_start, blk_end)
 368   // representing a block of memory in the heap.
 369   virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
 370   void alloc_block(HeapWord* blk, size_t size) {
 371     alloc_block(blk, blk + size);
 372   }
 373 
 374   // If true, initialize array slots with no allocated blocks to zero.
 375   // Otherwise, make them point back to the front.
 376   bool init_to_zero() { return _init_to_zero; }
 377   // Corresponding setter
 378   void set_init_to_zero(bool val) {
 379     _init_to_zero = val;
 380     assert(_array != NULL, "_array should be non-NULL");
 381     _array->set_init_to_zero(val);
 382   }
 383 
 384   // Debugging
 385   // Return the index of the last entry in the "active" region.
 386   virtual size_t last_active_index() const = 0;
 387   // Verify the block offset table
 388   void verify() const;
 389   void check_all_cards(size_t left_card, size_t right_card) const;
 390 };
 391 
 392 ////////////////////////////////////////////////////////////////////////////
 393 // A subtype of BlockOffsetArray that takes advantage of the fact
 394 // that its underlying space is a NonContiguousSpace, so that some
 395 // specialized interfaces can be made available for spaces that
 396 // manipulate the table.
 397 ////////////////////////////////////////////////////////////////////////////
 398 class BlockOffsetArrayNonContigSpace: public BlockOffsetArray {
 399   friend class VMStructs;
 400  private:
 401   // The portion [_unallocated_block, _sp.end()) of the space that
 402   // is a single block known not to contain any objects.
 403   // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
 404   HeapWord* _unallocated_block;
 405 
 406  public:
 407   BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
 408     BlockOffsetArray(array, mr, false),
 409     _unallocated_block(_bottom) { }
 410 
 411   // Accessor
 412   HeapWord* unallocated_block() const {
 413     assert(BlockOffsetArrayUseUnallocatedBlock,
 414            "_unallocated_block is not being maintained");
 415     return _unallocated_block;
 416   }
 417 
 418   void set_unallocated_block(HeapWord* block) {
 419     assert(BlockOffsetArrayUseUnallocatedBlock,
 420            "_unallocated_block is not being maintained");
 421     assert(block >= _bottom && block <= _end, "out of range");
 422     _unallocated_block = block;
 423   }
 424 
 425   // These methods expect to be called with [blk_start, blk_end)
 426   // representing a block of memory in the heap.
 427   void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
 428   void alloc_block(HeapWord* blk, size_t size) {
 429     alloc_block(blk, blk + size);
 430   }
 431 
 432   // The following methods are useful and optimized for a
 433   // non-contiguous space.
 434 
 435   // Given a block [blk_start, blk_start + full_blk_size), and
 436   // a left_blk_size < full_blk_size, adjust the BOT to show two
 437   // blocks [blk_start, blk_start + left_blk_size) and
 438   // [blk_start + left_blk_size, blk_start + full_blk_size).
 439   // It is assumed (and verified in the non-product VM) that the
 440   // BOT was correct for the original block.
 441   void split_block(HeapWord* blk_start, size_t full_blk_size,
 442                            size_t left_blk_size);
 443 
 444   // Adjust BOT to show that it has a block in the range
 445   // [blk_start, blk_start + size). Only the first card
 446   // of BOT is touched. It is assumed (and verified in the
 447   // non-product VM) that the remaining cards of the block
 448   // are correct.
 449   void mark_block(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false);
 450   void mark_block(HeapWord* blk, size_t size, bool reducing = false) {
 451     mark_block(blk, blk + size, reducing);
 452   }
 453 
 454   // Adjust _unallocated_block to indicate that a particular
 455   // block has been newly allocated or freed. It is assumed (and
 456   // verified in the non-product VM) that the BOT is correct for
 457   // the given block.
 458   void allocated(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false) {
 459     // Verify that the BOT shows [blk, blk + blk_size) to be one block.
 460     verify_single_block(blk_start, blk_end);
 461     if (BlockOffsetArrayUseUnallocatedBlock) {
 462       _unallocated_block = MAX2(_unallocated_block, blk_end);
 463     }
 464   }
 465 
 466   void allocated(HeapWord* blk, size_t size, bool reducing = false) {
 467     allocated(blk, blk + size, reducing);
 468   }
 469 
 470   void freed(HeapWord* blk_start, HeapWord* blk_end);
 471   void freed(HeapWord* blk, size_t size);
 472 
 473   HeapWord* block_start_unsafe(const void* addr) const;
 474 
 475   // Requires "addr" to be the start of a card and returns the
 476   // start of the block that contains the given address.
 477   HeapWord* block_start_careful(const void* addr) const;
 478 
 479   // Verification & debugging: ensure that the offset table reflects
 480   // the fact that the block [blk_start, blk_end) or [blk, blk + size)
 481   // is a single block of storage. NOTE: can't const this because of
 482   // call to non-const do_block_internal() below.
 483   void verify_single_block(HeapWord* blk_start, HeapWord* blk_end)
 484     PRODUCT_RETURN;
 485   void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN;
 486 
 487   // Verify that the given block is before _unallocated_block
 488   void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end)
 489     const PRODUCT_RETURN;
 490   void verify_not_unallocated(HeapWord* blk, size_t size)
 491     const PRODUCT_RETURN;
 492 
 493   // Debugging support
 494   virtual size_t last_active_index() const;
 495 };
 496 
 497 ////////////////////////////////////////////////////////////////////////////
 498 // A subtype of BlockOffsetArray that takes advantage of the fact
 499 // that its underlying space is a ContiguousSpace, so that its "active"
 500 // region can be more efficiently tracked (than for a non-contiguous space).
 501 ////////////////////////////////////////////////////////////////////////////
 502 class BlockOffsetArrayContigSpace: public BlockOffsetArray {
 503   friend class VMStructs;
 504  private:
 505   // allocation boundary at which offset array must be updated
 506   HeapWord* _next_offset_threshold;
 507   size_t    _next_offset_index;      // index corresponding to that boundary
 508 
 509   // Work function when allocation start crosses threshold.
 510   void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end);
 511 
 512  public:
 513   BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
 514     BlockOffsetArray(array, mr, true) {
 515     _next_offset_threshold = NULL;
 516     _next_offset_index = 0;
 517   }
 518 
 519   void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); }
 520 
 521   // Initialize the threshold for an empty heap.
 522   HeapWord* initialize_threshold();
 523   // Zero out the entry for _bottom (offset will be zero)
 524   void      zero_bottom_entry();
 525 
 526   // Return the next threshold, the point at which the table should be
 527   // updated.
 528   HeapWord* threshold() const { return _next_offset_threshold; }
 529 
 530   // In general, these methods expect to be called with
 531   // [blk_start, blk_end) representing a block of memory in the heap.
 532   // In this implementation, however, we are OK even if blk_start and/or
 533   // blk_end are NULL because NULL is represented as 0, and thus
 534   // never exceeds the "_next_offset_threshold".
 535   void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
 536     if (blk_end > _next_offset_threshold) {
 537       alloc_block_work(blk_start, blk_end);
 538     }
 539   }
 540   void alloc_block(HeapWord* blk, size_t size) {
 541     alloc_block(blk, blk + size);
 542   }
 543 
 544   HeapWord* block_start_unsafe(const void* addr) const;
 545 
 546   // Debugging support
 547   virtual size_t last_active_index() const;
 548 };
 549 
 550 #endif // SHARE_VM_GC_SHARED_BLOCKOFFSETTABLE_HPP