/* * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_G1_G1BLOCKOFFSETTABLE_INLINE_HPP #define SHARE_VM_GC_G1_G1BLOCKOFFSETTABLE_INLINE_HPP #include "gc/g1/g1BlockOffsetTable.hpp" #include "gc/g1/heapRegion.hpp" #include "gc/shared/memset_with_concurrent_readers.hpp" #include "gc/shared/space.hpp" inline HeapWord* G1BlockOffsetTablePart::block_start(const void* addr) { if (addr >= _space->bottom() && addr < _space->end()) { HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1); return forward_to_block_containing_addr(q, addr); } else { return NULL; } } inline HeapWord* G1BlockOffsetTablePart::block_start_const(const void* addr) const { if (addr >= _space->bottom() && addr < _space->end()) { HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1); HeapWord* n = q + block_size(q); return forward_to_block_containing_addr_const(q, n, addr); } else { return NULL; } } u_char G1BlockOffsetTable::offset_array(size_t index) const { check_index(index, "index out of range"); return _offset_array[index]; } void G1BlockOffsetTable::set_offset_array(size_t index, u_char offset) { check_index(index, "index out of range"); set_offset_array_raw(index, offset); } void G1BlockOffsetTable::set_offset_array(size_t index, HeapWord* high, HeapWord* low) { check_index(index, "index out of range"); assert(high >= low, "addresses out of order"); size_t offset = pointer_delta(high, low); check_offset(offset, "offset too large"); set_offset_array(index, (u_char)offset); } void G1BlockOffsetTable::set_offset_array(size_t left, size_t right, u_char offset) { check_index(right, "right index out of range"); assert(left <= right, "indexes out of order"); size_t num_cards = right - left + 1; memset_with_concurrent_readers(&_offset_array[left], offset, num_cards); } // Variant of index_for that does not check the index for validity. inline size_t G1BlockOffsetTable::index_for_raw(const void* p) const { return pointer_delta((char*)p, _reserved.start(), sizeof(char)) >> BOTConstants::LogN; } inline size_t G1BlockOffsetTable::index_for(const void* p) const { char* pc = (char*)p; assert(pc >= (char*)_reserved.start() && pc < (char*)_reserved.end(), "p (" PTR_FORMAT ") not in reserved [" PTR_FORMAT ", " PTR_FORMAT ")", p2i(p), p2i(_reserved.start()), p2i(_reserved.end())); size_t result = index_for_raw(p); check_index(result, "bad index from address"); return result; } inline HeapWord* G1BlockOffsetTable::address_for_index(size_t index) const { check_index(index, "index out of range"); HeapWord* result = address_for_index_raw(index); assert(result >= _reserved.start() && result < _reserved.end(), "bad address from index result " PTR_FORMAT " _reserved.start() " PTR_FORMAT " _reserved.end() " PTR_FORMAT, p2i(result), p2i(_reserved.start()), p2i(_reserved.end())); return result; } inline size_t G1BlockOffsetTablePart::block_size(const HeapWord* p) const { return _space->block_size(p); } inline HeapWord* G1BlockOffsetTablePart::block_at_or_preceding(const void* addr, bool has_max_index, size_t max_index) const { assert(_bot->offset_array(0) == 0, "objects can't cross covered areas"); size_t index = _bot->index_for(addr); // We must make sure that the offset table entry we use is valid. If // "addr" is past the end, start at the last known one and go forward. if (has_max_index) { index = MIN2(index, max_index); } HeapWord* q = _bot->address_for_index(index); uint offset = _bot->offset_array(index); // Extend u_char to uint. while (offset >= BOTConstants::N_words) { // The excess of the offset from N_words indicates a power of Base // to go back by. size_t n_cards_back = BOTConstants::entry_to_cards_back(offset); q -= (BOTConstants::N_words * n_cards_back); index -= n_cards_back; offset = _bot->offset_array(index); } assert(offset < BOTConstants::N_words, "offset too large"); q -= offset; return q; } inline HeapWord* G1BlockOffsetTablePart::forward_to_block_containing_addr_const(HeapWord* q, HeapWord* n, const void* addr) const { if (addr >= _space->top()) return _space->top(); while (n <= addr) { q = n; oop obj = oop(q); if (obj->klass_or_null_acquire() == NULL) { return q; } n += block_size(q); } assert(q <= n, "wrong order for q and addr"); assert(addr < n, "wrong order for addr and n"); return q; } inline HeapWord* G1BlockOffsetTablePart::forward_to_block_containing_addr(HeapWord* q, const void* addr) { if (oop(q)->klass_or_null_acquire() == NULL) { return q; } HeapWord* n = q + block_size(q); // In the normal case, where the query "addr" is a card boundary, and the // offset table chunks are the same size as cards, the block starting at // "q" will contain addr, so the test below will fail, and we'll fall // through quickly. if (n <= addr) { q = forward_to_block_containing_addr_slow(q, n, addr); } assert(q <= addr, "wrong order for current and arg"); return q; } #endif // SHARE_VM_GC_G1_G1BLOCKOFFSETTABLE_INLINE_HPP