1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "gc/g1/concurrentMarkThread.inline.hpp"
  28 #include "gc/g1/g1Analytics.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  31 #include "gc/g1/g1MMUTracker.hpp"
  32 #include "gc/g1/g1Policy.hpp"
  33 #include "gc/g1/suspendibleThreadSet.hpp"
  34 #include "gc/g1/vm_operations_g1.hpp"
  35 #include "gc/shared/concurrentGCPhaseManager.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcTrace.hpp"
  38 #include "gc/shared/gcTraceTime.inline.hpp"
  39 #include "logging/log.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "runtime/vmThread.hpp"
  42 
  43 // ======= Concurrent Mark Thread ========
  44 
  45 // Check order in EXPAND_CURRENT_PHASES
  46 STATIC_ASSERT(ConcurrentGCPhaseManager::UNCONSTRAINED_PHASE <
  47               ConcurrentGCPhaseManager::IDLE_PHASE);
  48 #define EXPAND_CONCURRENT_PHASES(expander)                              \
  49   expander(ANY, = ConcurrentGCPhaseManager::UNCONSTRAINED_PHASE, NULL)  \
  50   expander(IDLE, = ConcurrentGCPhaseManager::IDLE_PHASE, NULL)          \
  51   expander(CONCURRENT_CYCLE,, "Concurrent Cycle")                       \
  52   expander(CLEAR_CLAIMED_MARKS,, "Concurrent Clear Claimed Marks")      \
  53   expander(SCAN_ROOT_REGIONS,, "Concurrent Scan Root Regions")          \
  54   expander(CONCURRENT_MARK,, "Concurrent Mark")                         \
  55   expander(MARK_FROM_ROOTS,, "Concurrent Mark From Roots")              \
  56   expander(BEFORE_REMARK,, NULL)                                        \
  57   expander(CREATE_LIVE_DATA,, "Concurrent Create Live Data")            \
  58   expander(COMPLETE_CLEANUP,, "Concurrent Complete Cleanup")            \
  59   expander(CLEANUP_FOR_NEXT_MARK,, "Concurrent Cleanup for Next Mark")  \
  60   /* */
  61 
  62 class G1ConcurrentPhase : public AllStatic {
  63 public:
  64   enum {
  65 #define CONCURRENT_PHASE_ENUM(tag, value, ignore_title) tag value,
  66     EXPAND_CONCURRENT_PHASES(CONCURRENT_PHASE_ENUM)
  67 #undef CONCURRENT_PHASE_ENUM
  68     PHASE_ID_LIMIT
  69   };
  70 };
  71 
  72 // The CM thread is created when the G1 garbage collector is used
  73 
  74 ConcurrentMarkThread::ConcurrentMarkThread(G1ConcurrentMark* cm) :
  75   ConcurrentGCThread(),
  76   _cm(cm),
  77   _state(Idle),
  78   _requested_phase(G1ConcurrentPhase::ANY),
  79   _phase_manager(NULL),
  80   _vtime_accum(0.0),
  81   _vtime_mark_accum(0.0) {
  82 
  83   set_name("G1 Main Marker");
  84   create_and_start();
  85 }
  86 
  87 class CMCheckpointRootsFinalClosure: public VoidClosure {
  88 
  89   G1ConcurrentMark* _cm;
  90 public:
  91 
  92   CMCheckpointRootsFinalClosure(G1ConcurrentMark* cm) :
  93     _cm(cm) {}
  94 
  95   void do_void(){
  96     _cm->checkpointRootsFinal(false); // !clear_all_soft_refs
  97   }
  98 };
  99 
 100 class CMCleanUp: public VoidClosure {
 101   G1ConcurrentMark* _cm;
 102 public:
 103 
 104   CMCleanUp(G1ConcurrentMark* cm) :
 105     _cm(cm) {}
 106 
 107   void do_void(){
 108     _cm->cleanup();
 109   }
 110 };
 111 
 112 // Marking pauses can be scheduled flexibly, so we might delay marking to meet MMU.
 113 void ConcurrentMarkThread::delay_to_keep_mmu(G1Policy* g1_policy, bool remark) {
 114   const G1Analytics* analytics = g1_policy->analytics();
 115   if (g1_policy->adaptive_young_list_length()) {
 116     double now = os::elapsedTime();
 117     double prediction_ms = remark ? analytics->predict_remark_time_ms()
 118                                   : analytics->predict_cleanup_time_ms();
 119     G1MMUTracker *mmu_tracker = g1_policy->mmu_tracker();
 120     jlong sleep_time_ms = mmu_tracker->when_ms(now, prediction_ms);
 121     os::sleep(this, sleep_time_ms, false);
 122   }
 123 }
 124 
 125 class G1ConcPhaseTimer : public GCTraceConcTimeImpl<LogLevel::Info, LOG_TAGS(gc, marking)> {
 126   G1ConcurrentMark* _cm;
 127 
 128  public:
 129   G1ConcPhaseTimer(G1ConcurrentMark* cm, const char* title) :
 130      GCTraceConcTimeImpl<LogLevel::Info,  LogTag::_gc, LogTag::_marking>(title),
 131      _cm(cm) {
 132     _cm->gc_timer_cm()->register_gc_concurrent_start(title);
 133   }
 134 
 135   ~G1ConcPhaseTimer() {
 136     _cm->gc_timer_cm()->register_gc_concurrent_end();
 137   }
 138 };
 139 
 140 // Returns the phase number for name, or a negative value if unknown.
 141 static int lookup_concurrent_phase(const char* name) {
 142   static const char* const names[] = {
 143 #define CONCURRENT_PHASE_NAME(tag, ignore_value, ignore_title) XSTR(tag),
 144     EXPAND_CONCURRENT_PHASES(CONCURRENT_PHASE_NAME)
 145 #undef CONCURRENT_PHASE_NAME
 146   };
 147   // Verify dense enum assumption.
 148   STATIC_ASSERT(G1ConcurrentPhase::PHASE_ID_LIMIT == ARRAY_SIZE(names));
 149 
 150   for (uint i = 0; i < ARRAY_SIZE(names); ++i) {
 151     if (strcmp(name, names[i]) == 0) {
 152       return static_cast<int>(i);
 153     }
 154   }
 155   return -1;
 156 }
 157 
 158 // The phase must be valid and must have a title.
 159 static const char* lookup_concurrent_phase_title(int phase) {
 160   static const char* const titles[] = {
 161 #define CONCURRENT_PHASE_TITLE(ignore_tag, ignore_value, title) title,
 162     EXPAND_CONCURRENT_PHASES(CONCURRENT_PHASE_TITLE)
 163 #undef CONCURRENT_PHASE_TITLE
 164   };
 165   // Verify dense enum assumption.
 166   STATIC_ASSERT(G1ConcurrentPhase::PHASE_ID_LIMIT == ARRAY_SIZE(titles));
 167 
 168   assert(0 <= phase, "precondition");
 169   assert((uint)phase < ARRAY_SIZE(titles), "precondition");
 170   const char* title = titles[phase];
 171   assert(title != NULL, "precondition");
 172   return title;
 173 }
 174 
 175 // Combine phase management and timing into one convenient utility.
 176 class G1ConcPhase : StackObj {
 177   G1ConcurrentMark* _cm;
 178   ConcurrentGCPhaseManager _manager;
 179   G1ConcPhaseTimer _timer;
 180 
 181 public:
 182   G1ConcPhase(int phase, ConcurrentMarkThread* thread) :
 183     _cm(thread->cm()),
 184     _manager(phase, thread->phase_manager()),
 185     _timer(_cm, lookup_concurrent_phase_title(phase))
 186   { }
 187 
 188   ~G1ConcPhase() {
 189     // Deactivate the manager if marking aborted, to avoid blocking on
 190     // phase exit when the phase has been requested.
 191     if (_cm->has_aborted()) {
 192       _manager.deactivate();
 193     }
 194   }
 195 };
 196 
 197 bool ConcurrentMarkThread::request_concurrent_phase(const char* phase_name) {
 198   int phase = lookup_concurrent_phase(phase_name);
 199   if (phase < 0) return false;
 200 
 201   while (!ConcurrentGCPhaseManager::wait_for_phase(phase,
 202                                                    &_phase_manager,
 203                                                    &_requested_phase)) {
 204     assert(phase != G1ConcurrentPhase::ANY, "Wait for ANY phase must succeed");
 205     if ((phase != G1ConcurrentPhase::IDLE) && !during_cycle()) {
 206       // If idle and the goal is !idle, start a collection.
 207       G1CollectedHeap::heap()->collect(GCCause::_wb_conc_mark);
 208     }
 209   }
 210   return true;
 211 }
 212 
 213 void ConcurrentMarkThread::run_service() {
 214   _vtime_start = os::elapsedVTime();
 215 
 216   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 217   G1Policy* g1_policy = g1h->g1_policy();
 218 
 219   ConcurrentGCPhaseManager cpmanager(G1ConcurrentPhase::IDLE,
 220                                      &_phase_manager,
 221                                      &_requested_phase);
 222 
 223   while (!should_terminate()) {
 224     // wait until started is set.
 225     sleepBeforeNextCycle();
 226     if (should_terminate()) {
 227       break;
 228     }
 229 
 230     cpmanager.set_phase(G1ConcurrentPhase::CONCURRENT_CYCLE, false /* force */);
 231 
 232     GCIdMark gc_id_mark;
 233 
 234     cm()->concurrent_cycle_start();
 235 
 236     assert(GCId::current() != GCId::undefined(), "GC id should have been set up by the initial mark GC.");
 237 
 238     GCTraceConcTime(Info, gc) tt("Concurrent Cycle");
 239     {
 240       ResourceMark rm;
 241       HandleMark   hm;
 242       double cycle_start = os::elapsedVTime();
 243 
 244       {
 245         G1ConcPhase p(G1ConcurrentPhase::CLEAR_CLAIMED_MARKS, this);
 246         ClassLoaderDataGraph::clear_claimed_marks();
 247       }
 248 
 249       // We have to ensure that we finish scanning the root regions
 250       // before the next GC takes place. To ensure this we have to
 251       // make sure that we do not join the STS until the root regions
 252       // have been scanned. If we did then it's possible that a
 253       // subsequent GC could block us from joining the STS and proceed
 254       // without the root regions have been scanned which would be a
 255       // correctness issue.
 256 
 257       {
 258         G1ConcPhase p(G1ConcurrentPhase::SCAN_ROOT_REGIONS, this);
 259         _cm->scan_root_regions();
 260       }
 261 
 262       // It would be nice to use the G1ConcPhase class here but
 263       // the "end" logging is inside the loop and not at the end of
 264       // a scope. Mimicking the same log output instead.
 265       {
 266         ConcurrentGCPhaseManager cm_cpmanager(G1ConcurrentPhase::CONCURRENT_MARK,
 267                                               phase_manager());
 268         jlong mark_start = os::elapsed_counter();
 269         const char* cm_title =
 270           lookup_concurrent_phase_title(G1ConcurrentPhase::CONCURRENT_MARK);
 271         log_info(gc, marking)("%s (%.3fs)",
 272                               cm_title,
 273                               TimeHelper::counter_to_seconds(mark_start));
 274         for (uint iter = 1; !cm()->has_aborted(); ++iter) {
 275           // Concurrent marking.
 276           {
 277             G1ConcPhase p(G1ConcurrentPhase::MARK_FROM_ROOTS, this);
 278             _cm->mark_from_roots();
 279           }
 280           if (cm()->has_aborted()) break;
 281 
 282           // Provide a control point after mark_from_roots.
 283           {
 284             ConcurrentGCPhaseManager pre_remark(G1ConcurrentPhase::BEFORE_REMARK,
 285                                                 &cm_cpmanager);
 286           }
 287           if (cm()->has_aborted()) break;
 288 
 289           // Delay remark pause for MMU.
 290           double mark_end_time = os::elapsedVTime();
 291           jlong mark_end = os::elapsed_counter();
 292           _vtime_mark_accum += (mark_end_time - cycle_start);
 293           delay_to_keep_mmu(g1_policy, true /* remark */);
 294           if (cm()->has_aborted()) break;
 295 
 296           // Pause Remark.
 297           log_info(gc, marking)("%s (%.3fs, %.3fs) %.3fms",
 298                                 cm_title,
 299                                 TimeHelper::counter_to_seconds(mark_start),
 300                                 TimeHelper::counter_to_seconds(mark_end),
 301                                 TimeHelper::counter_to_millis(mark_end - mark_start));
 302 
 303           CMCheckpointRootsFinalClosure final_cl(_cm);
 304           VM_CGC_Operation op(&final_cl, "Pause Remark");
 305           VMThread::execute(&op);
 306           if (cm()->has_aborted()) {
 307             break;
 308           } else if (!cm()->restart_for_overflow()) {
 309             break;              // Exit loop if no restart requested.
 310           } else {
 311             // Loop to restart for overflow.
 312             log_info(gc, marking)("%s Restart for Mark Stack Overflow (iteration #%u)",
 313                                   cm_title, iter);
 314           }
 315         }
 316       }
 317 
 318       if (!cm()->has_aborted()) {
 319         G1ConcPhase p(G1ConcurrentPhase::CREATE_LIVE_DATA, this);
 320         cm()->create_live_data();
 321       }
 322 
 323       double end_time = os::elapsedVTime();
 324       // Update the total virtual time before doing this, since it will try
 325       // to measure it to get the vtime for this marking.  We purposely
 326       // neglect the presumably-short "completeCleanup" phase here.
 327       _vtime_accum = (end_time - _vtime_start);
 328 
 329       if (!cm()->has_aborted()) {
 330         delay_to_keep_mmu(g1_policy, false /* cleanup */);
 331 
 332         CMCleanUp cl_cl(_cm);
 333         VM_CGC_Operation op(&cl_cl, "Pause Cleanup");
 334         VMThread::execute(&op);
 335       } else {
 336         // We don't want to update the marking status if a GC pause
 337         // is already underway.
 338         SuspendibleThreadSetJoiner sts_join;
 339         g1h->collector_state()->set_mark_in_progress(false);
 340       }
 341 
 342       // Check if cleanup set the free_regions_coming flag. If it
 343       // hasn't, we can just skip the next step.
 344       if (g1h->free_regions_coming()) {
 345         // The following will finish freeing up any regions that we
 346         // found to be empty during cleanup. We'll do this part
 347         // without joining the suspendible set. If an evacuation pause
 348         // takes place, then we would carry on freeing regions in
 349         // case they are needed by the pause. If a Full GC takes
 350         // place, it would wait for us to process the regions
 351         // reclaimed by cleanup.
 352 
 353         // Now do the concurrent cleanup operation.
 354         G1ConcPhase p(G1ConcurrentPhase::COMPLETE_CLEANUP, this);
 355         _cm->complete_cleanup();
 356 
 357         // Notify anyone who's waiting that there are no more free
 358         // regions coming. We have to do this before we join the STS
 359         // (in fact, we should not attempt to join the STS in the
 360         // interval between finishing the cleanup pause and clearing
 361         // the free_regions_coming flag) otherwise we might deadlock:
 362         // a GC worker could be blocked waiting for the notification
 363         // whereas this thread will be blocked for the pause to finish
 364         // while it's trying to join the STS, which is conditional on
 365         // the GC workers finishing.
 366         g1h->reset_free_regions_coming();
 367       }
 368       guarantee(cm()->cleanup_list_is_empty(),
 369                 "at this point there should be no regions on the cleanup list");
 370 
 371       // There is a tricky race before recording that the concurrent
 372       // cleanup has completed and a potential Full GC starting around
 373       // the same time. We want to make sure that the Full GC calls
 374       // abort() on concurrent mark after
 375       // record_concurrent_mark_cleanup_completed(), since abort() is
 376       // the method that will reset the concurrent mark state. If we
 377       // end up calling record_concurrent_mark_cleanup_completed()
 378       // after abort() then we might incorrectly undo some of the work
 379       // abort() did. Checking the has_aborted() flag after joining
 380       // the STS allows the correct ordering of the two methods. There
 381       // are two scenarios:
 382       //
 383       // a) If we reach here before the Full GC, the fact that we have
 384       // joined the STS means that the Full GC cannot start until we
 385       // leave the STS, so record_concurrent_mark_cleanup_completed()
 386       // will complete before abort() is called.
 387       //
 388       // b) If we reach here during the Full GC, we'll be held up from
 389       // joining the STS until the Full GC is done, which means that
 390       // abort() will have completed and has_aborted() will return
 391       // true to prevent us from calling
 392       // record_concurrent_mark_cleanup_completed() (and, in fact, it's
 393       // not needed any more as the concurrent mark state has been
 394       // already reset).
 395       {
 396         SuspendibleThreadSetJoiner sts_join;
 397         if (!cm()->has_aborted()) {
 398           g1_policy->record_concurrent_mark_cleanup_completed();
 399         } else {
 400           log_info(gc, marking)("Concurrent Mark Abort");
 401         }
 402       }
 403 
 404       // We now want to allow clearing of the marking bitmap to be
 405       // suspended by a collection pause.
 406       // We may have aborted just before the remark. Do not bother clearing the
 407       // bitmap then, as it has been done during mark abort.
 408       if (!cm()->has_aborted()) {
 409         G1ConcPhase p(G1ConcurrentPhase::CLEANUP_FOR_NEXT_MARK, this);
 410         _cm->cleanup_for_next_mark();
 411       } else {
 412         assert(!G1VerifyBitmaps || _cm->nextMarkBitmapIsClear(), "Next mark bitmap must be clear");
 413       }
 414     }
 415 
 416     // Update the number of full collections that have been
 417     // completed. This will also notify the FullGCCount_lock in case a
 418     // Java thread is waiting for a full GC to happen (e.g., it
 419     // called System.gc() with +ExplicitGCInvokesConcurrent).
 420     {
 421       SuspendibleThreadSetJoiner sts_join;
 422       g1h->increment_old_marking_cycles_completed(true /* concurrent */);
 423 
 424       cm()->concurrent_cycle_end();
 425     }
 426 
 427     cpmanager.set_phase(G1ConcurrentPhase::IDLE, cm()->has_aborted() /* force */);
 428   }
 429   _cm->root_regions()->cancel_scan();
 430 }
 431 
 432 void ConcurrentMarkThread::stop_service() {
 433   MutexLockerEx ml(CGC_lock, Mutex::_no_safepoint_check_flag);
 434   CGC_lock->notify_all();
 435 }
 436 
 437 void ConcurrentMarkThread::sleepBeforeNextCycle() {
 438   // We join here because we don't want to do the "shouldConcurrentMark()"
 439   // below while the world is otherwise stopped.
 440   assert(!in_progress(), "should have been cleared");
 441 
 442   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
 443   while (!started() && !should_terminate()) {
 444     CGC_lock->wait(Mutex::_no_safepoint_check_flag);
 445   }
 446 
 447   if (started()) {
 448     set_in_progress();
 449   }
 450 }