1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/macros.hpp"
  29 #include "utilities/compilerWarnings.hpp"
  30 #include "utilities/debug.hpp"
  31 
  32 #include TARGET_COMPILER_HEADER(utilities/globalDefinitions)
  33 // Defaults for macros that might be defined per compiler.
  34 #ifndef NOINLINE
  35 #define NOINLINE
  36 #endif
  37 #ifndef ALWAYSINLINE
  38 #define ALWAYSINLINE inline
  39 #endif
  40 
  41 // This file holds all globally used constants & types, class (forward)
  42 // declarations and a few frequently used utility functions.
  43 
  44 //----------------------------------------------------------------------------------------------------
  45 // Printf-style formatters for fixed- and variable-width types as pointers and
  46 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  47 // doesn't provide appropriate definitions, they should be provided in
  48 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  49 
  50 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  51 
  52 // Format 32-bit quantities.
  53 #define INT32_FORMAT           "%" PRId32
  54 #define UINT32_FORMAT          "%" PRIu32
  55 #define INT32_FORMAT_W(width)  "%" #width PRId32
  56 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  57 
  58 #define PTR32_FORMAT           "0x%08" PRIx32
  59 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
  60 
  61 // Format 64-bit quantities.
  62 #define INT64_FORMAT           "%" PRId64
  63 #define UINT64_FORMAT          "%" PRIu64
  64 #define UINT64_FORMAT_X        "%" PRIx64
  65 #define INT64_FORMAT_W(width)  "%" #width PRId64
  66 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  67 
  68 #define PTR64_FORMAT           "0x%016" PRIx64
  69 
  70 // Format jlong, if necessary
  71 #ifndef JLONG_FORMAT
  72 #define JLONG_FORMAT           INT64_FORMAT
  73 #endif
  74 #ifndef JULONG_FORMAT
  75 #define JULONG_FORMAT          UINT64_FORMAT
  76 #endif
  77 #ifndef JULONG_FORMAT_X
  78 #define JULONG_FORMAT_X        UINT64_FORMAT_X
  79 #endif
  80 
  81 // Format pointers which change size between 32- and 64-bit.
  82 #ifdef  _LP64
  83 #define INTPTR_FORMAT "0x%016" PRIxPTR
  84 #define PTR_FORMAT    "0x%016" PRIxPTR
  85 #else   // !_LP64
  86 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  87 #define PTR_FORMAT    "0x%08"  PRIxPTR
  88 #endif  // _LP64
  89 
  90 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
  91 
  92 #define SSIZE_FORMAT             "%"   PRIdPTR
  93 #define SIZE_FORMAT              "%"   PRIuPTR
  94 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
  95 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
  96 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
  97 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
  98 
  99 #define INTX_FORMAT           "%" PRIdPTR
 100 #define UINTX_FORMAT          "%" PRIuPTR
 101 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 102 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 103 
 104 //----------------------------------------------------------------------------------------------------
 105 // Constants
 106 
 107 const int LogBytesPerShort   = 1;
 108 const int LogBytesPerInt     = 2;
 109 #ifdef _LP64
 110 const int LogBytesPerWord    = 3;
 111 #else
 112 const int LogBytesPerWord    = 2;
 113 #endif
 114 const int LogBytesPerLong    = 3;
 115 
 116 const int BytesPerShort      = 1 << LogBytesPerShort;
 117 const int BytesPerInt        = 1 << LogBytesPerInt;
 118 const int BytesPerWord       = 1 << LogBytesPerWord;
 119 const int BytesPerLong       = 1 << LogBytesPerLong;
 120 
 121 const int LogBitsPerByte     = 3;
 122 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 123 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 124 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 125 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 126 
 127 const int BitsPerByte        = 1 << LogBitsPerByte;
 128 const int BitsPerShort       = 1 << LogBitsPerShort;
 129 const int BitsPerInt         = 1 << LogBitsPerInt;
 130 const int BitsPerWord        = 1 << LogBitsPerWord;
 131 const int BitsPerLong        = 1 << LogBitsPerLong;
 132 
 133 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 134 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 135 
 136 const int WordsPerLong       = 2;       // Number of stack entries for longs
 137 
 138 const int oopSize            = sizeof(char*); // Full-width oop
 139 extern int heapOopSize;                       // Oop within a java object
 140 const int wordSize           = sizeof(char*);
 141 const int longSize           = sizeof(jlong);
 142 const int jintSize           = sizeof(jint);
 143 const int size_tSize         = sizeof(size_t);
 144 
 145 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 146 
 147 extern int LogBytesPerHeapOop;                // Oop within a java object
 148 extern int LogBitsPerHeapOop;
 149 extern int BytesPerHeapOop;
 150 extern int BitsPerHeapOop;
 151 
 152 const int BitsPerJavaInteger = 32;
 153 const int BitsPerJavaLong    = 64;
 154 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 155 
 156 // Size of a char[] needed to represent a jint as a string in decimal.
 157 const int jintAsStringSize = 12;
 158 
 159 // In fact this should be
 160 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 161 // see os::set_memory_serialize_page()
 162 #ifdef _LP64
 163 const int SerializePageShiftCount = 4;
 164 #else
 165 const int SerializePageShiftCount = 3;
 166 #endif
 167 
 168 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 169 // pointer into the heap.  We require that object sizes be measured in
 170 // units of heap words, so that that
 171 //   HeapWord* hw;
 172 //   hw += oop(hw)->foo();
 173 // works, where foo is a method (like size or scavenge) that returns the
 174 // object size.
 175 class HeapWord {
 176   friend class VMStructs;
 177  private:
 178   char* i;
 179 #ifndef PRODUCT
 180  public:
 181   char* value() { return i; }
 182 #endif
 183 };
 184 
 185 // Analogous opaque struct for metadata allocated from
 186 // metaspaces.
 187 class MetaWord {
 188  private:
 189   char* i;
 190 };
 191 
 192 // HeapWordSize must be 2^LogHeapWordSize.
 193 const int HeapWordSize        = sizeof(HeapWord);
 194 #ifdef _LP64
 195 const int LogHeapWordSize     = 3;
 196 #else
 197 const int LogHeapWordSize     = 2;
 198 #endif
 199 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 200 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 201 
 202 // The larger HeapWordSize for 64bit requires larger heaps
 203 // for the same application running in 64bit.  See bug 4967770.
 204 // The minimum alignment to a heap word size is done.  Other
 205 // parts of the memory system may require additional alignment
 206 // and are responsible for those alignments.
 207 #ifdef _LP64
 208 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 209 #else
 210 #define ScaleForWordSize(x) (x)
 211 #endif
 212 
 213 // The minimum number of native machine words necessary to contain "byte_size"
 214 // bytes.
 215 inline size_t heap_word_size(size_t byte_size) {
 216   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 217 }
 218 
 219 //-------------------------------------------
 220 // Constant for jlong (standardized by C++11)
 221 
 222 // Build a 64bit integer constant
 223 #define CONST64(x)  (x ## LL)
 224 #define UCONST64(x) (x ## ULL)
 225 
 226 const jlong min_jlong = CONST64(0x8000000000000000);
 227 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 228 
 229 const size_t K                  = 1024;
 230 const size_t M                  = K*K;
 231 const size_t G                  = M*K;
 232 const size_t HWperKB            = K / sizeof(HeapWord);
 233 
 234 // Constants for converting from a base unit to milli-base units.  For
 235 // example from seconds to milliseconds and microseconds
 236 
 237 const int MILLIUNITS    = 1000;         // milli units per base unit
 238 const int MICROUNITS    = 1000000;      // micro units per base unit
 239 const int NANOUNITS     = 1000000000;   // nano units per base unit
 240 
 241 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 242 const jint  NANOSECS_PER_MILLISEC = 1000000;
 243 
 244 inline const char* proper_unit_for_byte_size(size_t s) {
 245 #ifdef _LP64
 246   if (s >= 10*G) {
 247     return "G";
 248   }
 249 #endif
 250   if (s >= 10*M) {
 251     return "M";
 252   } else if (s >= 10*K) {
 253     return "K";
 254   } else {
 255     return "B";
 256   }
 257 }
 258 
 259 template <class T>
 260 inline T byte_size_in_proper_unit(T s) {
 261 #ifdef _LP64
 262   if (s >= 10*G) {
 263     return (T)(s/G);
 264   }
 265 #endif
 266   if (s >= 10*M) {
 267     return (T)(s/M);
 268   } else if (s >= 10*K) {
 269     return (T)(s/K);
 270   } else {
 271     return s;
 272   }
 273 }
 274 
 275 inline const char* exact_unit_for_byte_size(size_t s) {
 276 #ifdef _LP64
 277   if (s >= G && (s % G) == 0) {
 278     return "G";
 279   }
 280 #endif
 281   if (s >= M && (s % M) == 0) {
 282     return "M";
 283   }
 284   if (s >= K && (s % K) == 0) {
 285     return "K";
 286   }
 287   return "B";
 288 }
 289 
 290 inline size_t byte_size_in_exact_unit(size_t s) {
 291 #ifdef _LP64
 292   if (s >= G && (s % G) == 0) {
 293     return s / G;
 294   }
 295 #endif
 296   if (s >= M && (s % M) == 0) {
 297     return s / M;
 298   }
 299   if (s >= K && (s % K) == 0) {
 300     return s / K;
 301   }
 302   return s;
 303 }
 304 
 305 //----------------------------------------------------------------------------------------------------
 306 // VM type definitions
 307 
 308 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 309 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 310 
 311 typedef intptr_t  intx;
 312 typedef uintptr_t uintx;
 313 
 314 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 315 const intx  max_intx  = (uintx)min_intx - 1;
 316 const uintx max_uintx = (uintx)-1;
 317 
 318 // Table of values:
 319 //      sizeof intx         4               8
 320 // min_intx             0x80000000      0x8000000000000000
 321 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 322 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 323 
 324 typedef unsigned int uint;   NEEDS_CLEANUP
 325 
 326 
 327 //----------------------------------------------------------------------------------------------------
 328 // Java type definitions
 329 
 330 // All kinds of 'plain' byte addresses
 331 typedef   signed char s_char;
 332 typedef unsigned char u_char;
 333 typedef u_char*       address;
 334 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 335                                     // except for some implementations of a C++
 336                                     // linkage pointer to function. Should never
 337                                     // need one of those to be placed in this
 338                                     // type anyway.
 339 
 340 //  Utility functions to "portably" (?) bit twiddle pointers
 341 //  Where portable means keep ANSI C++ compilers quiet
 342 
 343 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 344 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 345 
 346 //  Utility functions to "portably" make cast to/from function pointers.
 347 
 348 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 349 inline address_word  castable_address(address x)              { return address_word(x) ; }
 350 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 351 
 352 // Pointer subtraction.
 353 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 354 // the range we might need to find differences from one end of the heap
 355 // to the other.
 356 // A typical use might be:
 357 //     if (pointer_delta(end(), top()) >= size) {
 358 //       // enough room for an object of size
 359 //       ...
 360 // and then additions like
 361 //       ... top() + size ...
 362 // are safe because we know that top() is at least size below end().
 363 inline size_t pointer_delta(const volatile void* left,
 364                             const volatile void* right,
 365                             size_t element_size) {
 366   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 367 }
 368 
 369 // A version specialized for HeapWord*'s.
 370 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 371   return pointer_delta(left, right, sizeof(HeapWord));
 372 }
 373 // A version specialized for MetaWord*'s.
 374 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 375   return pointer_delta(left, right, sizeof(MetaWord));
 376 }
 377 
 378 //
 379 // ANSI C++ does not allow casting from one pointer type to a function pointer
 380 // directly without at best a warning. This macro accomplishes it silently
 381 // In every case that is present at this point the value be cast is a pointer
 382 // to a C linkage function. In some case the type used for the cast reflects
 383 // that linkage and a picky compiler would not complain. In other cases because
 384 // there is no convenient place to place a typedef with extern C linkage (i.e
 385 // a platform dependent header file) it doesn't. At this point no compiler seems
 386 // picky enough to catch these instances (which are few). It is possible that
 387 // using templates could fix these for all cases. This use of templates is likely
 388 // so far from the middle of the road that it is likely to be problematic in
 389 // many C++ compilers.
 390 //
 391 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 392 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 393 
 394 // Unsigned byte types for os and stream.hpp
 395 
 396 // Unsigned one, two, four and eigth byte quantities used for describing
 397 // the .class file format. See JVM book chapter 4.
 398 
 399 typedef jubyte  u1;
 400 typedef jushort u2;
 401 typedef juint   u4;
 402 typedef julong  u8;
 403 
 404 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 405 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 406 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 407 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 408 
 409 typedef jbyte  s1;
 410 typedef jshort s2;
 411 typedef jint   s4;
 412 typedef jlong  s8;
 413 
 414 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 415 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 416 const jshort min_jshort = -(1 << 15);    // smallest jshort
 417 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 418 
 419 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 420 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 421 
 422 //----------------------------------------------------------------------------------------------------
 423 // JVM spec restrictions
 424 
 425 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 426 
 427 // Default ProtectionDomainCacheSize values
 428 
 429 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 430 
 431 //----------------------------------------------------------------------------------------------------
 432 // Default and minimum StringTableSize values
 433 
 434 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 435 const int minimumStringTableSize = 1009;
 436 
 437 const int defaultSymbolTableSize = 20011;
 438 const int minimumSymbolTableSize = 1009;
 439 
 440 
 441 //----------------------------------------------------------------------------------------------------
 442 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 443 //
 444 // Determines whether on-the-fly class replacement and frame popping are enabled.
 445 
 446 #define HOTSWAP
 447 
 448 //----------------------------------------------------------------------------------------------------
 449 // Object alignment, in units of HeapWords.
 450 //
 451 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 452 // reference fields can be naturally aligned.
 453 
 454 extern int MinObjAlignment;
 455 extern int MinObjAlignmentInBytes;
 456 extern int MinObjAlignmentInBytesMask;
 457 
 458 extern int LogMinObjAlignment;
 459 extern int LogMinObjAlignmentInBytes;
 460 
 461 const int LogKlassAlignmentInBytes = 3;
 462 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 463 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 464 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 465 
 466 // Maximal size of heap where unscaled compression can be used. Also upper bound
 467 // for heap placement: 4GB.
 468 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 469 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 470 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 471 extern uint64_t OopEncodingHeapMax;
 472 
 473 // Maximal size of compressed class space. Above this limit compression is not possible.
 474 // Also upper bound for placement of zero based class space. (Class space is further limited
 475 // to be < 3G, see arguments.cpp.)
 476 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 477 
 478 // Machine dependent stuff
 479 
 480 // The maximum size of the code cache.  Can be overridden by targets.
 481 #define CODE_CACHE_SIZE_LIMIT (2*G)
 482 // Allow targets to reduce the default size of the code cache.
 483 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 484 
 485 #include CPU_HEADER(globalDefinitions)
 486 
 487 // To assure the IRIW property on processors that are not multiple copy
 488 // atomic, sync instructions must be issued between volatile reads to
 489 // assure their ordering, instead of after volatile stores.
 490 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 491 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 492 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 493 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 494 #else
 495 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 496 #endif
 497 
 498 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 499 // Note: this value must be a power of 2
 500 
 501 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 502 
 503 // Signed variants of alignment helpers.  There are two versions of each, a macro
 504 // for use in places like enum definitions that require compile-time constant
 505 // expressions and a function for all other places so as to get type checking.
 506 
 507 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 508 
 509 inline bool is_size_aligned(size_t size, size_t alignment) {
 510   return align_size_up_(size, alignment) == size;
 511 }
 512 
 513 inline bool is_ptr_aligned(const void* ptr, size_t alignment) {
 514   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 515 }
 516 
 517 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 518   return align_size_up_(size, alignment);
 519 }
 520 
 521 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 522 
 523 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 524   return align_size_down_(size, alignment);
 525 }
 526 
 527 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 528 
 529 inline void* align_ptr_up(const void* ptr, size_t alignment) {
 530   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 531 }
 532 
 533 inline void* align_ptr_down(void* ptr, size_t alignment) {
 534   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 535 }
 536 
 537 inline volatile void* align_ptr_down(volatile void* ptr, size_t alignment) {
 538   return (volatile void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 539 }
 540 
 541 // Align metaspace objects by rounding up to natural word boundary
 542 
 543 inline intptr_t align_metadata_size(intptr_t size) {
 544   return align_size_up(size, 1);
 545 }
 546 
 547 // Align objects in the Java Heap by rounding up their size, in HeapWord units.
 548 // Since the size is given in words this is somewhat of a nop, but
 549 // distinguishes it from align_object_size.
 550 inline intptr_t align_object_size(intptr_t size) {
 551   return align_size_up(size, MinObjAlignment);
 552 }
 553 
 554 inline bool is_object_aligned(intptr_t addr) {
 555   return addr == align_object_size(addr);
 556 }
 557 
 558 // Pad out certain offsets to jlong alignment, in HeapWord units.
 559 
 560 inline intptr_t align_object_offset(intptr_t offset) {
 561   return align_size_up(offset, HeapWordsPerLong);
 562 }
 563 
 564 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 565 
 566 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 567   size_t aligned_size = align_size_down_(size, alignment);
 568   return aligned_size > 0 ? aligned_size : alignment;
 569 }
 570 
 571 // Clamp an address to be within a specific page
 572 // 1. If addr is on the page it is returned as is
 573 // 2. If addr is above the page_address the start of the *next* page will be returned
 574 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 575 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 576   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 577     // address is in the specified page, just return it as is
 578     return addr;
 579   } else if (addr > page_address) {
 580     // address is above specified page, return start of next page
 581     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 582   } else {
 583     // address is below specified page, return start of page
 584     return (address)align_size_down(intptr_t(page_address), page_size);
 585   }
 586 }
 587 
 588 
 589 // The expected size in bytes of a cache line, used to pad data structures.
 590 #ifndef DEFAULT_CACHE_LINE_SIZE
 591   #define DEFAULT_CACHE_LINE_SIZE 64
 592 #endif
 593 
 594 
 595 //----------------------------------------------------------------------------------------------------
 596 // Utility macros for compilers
 597 // used to silence compiler warnings
 598 
 599 #define Unused_Variable(var) var
 600 
 601 
 602 //----------------------------------------------------------------------------------------------------
 603 // Miscellaneous
 604 
 605 // 6302670 Eliminate Hotspot __fabsf dependency
 606 // All fabs() callers should call this function instead, which will implicitly
 607 // convert the operand to double, avoiding a dependency on __fabsf which
 608 // doesn't exist in early versions of Solaris 8.
 609 inline double fabsd(double value) {
 610   return fabs(value);
 611 }
 612 
 613 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 614 // is zero, return 0.0.
 615 template<typename T>
 616 inline double percent_of(T numerator, T denominator) {
 617   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 618 }
 619 
 620 //----------------------------------------------------------------------------------------------------
 621 // Special casts
 622 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 623 typedef union {
 624   jfloat f;
 625   jint i;
 626 } FloatIntConv;
 627 
 628 typedef union {
 629   jdouble d;
 630   jlong l;
 631   julong ul;
 632 } DoubleLongConv;
 633 
 634 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 635 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 636 
 637 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 638 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 639 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 640 
 641 inline jint low (jlong value)                    { return jint(value); }
 642 inline jint high(jlong value)                    { return jint(value >> 32); }
 643 
 644 // the fancy casts are a hopefully portable way
 645 // to do unsigned 32 to 64 bit type conversion
 646 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 647                                                    *value |= (jlong)(julong)(juint)low; }
 648 
 649 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 650                                                    *value |= (jlong)high       << 32; }
 651 
 652 inline jlong jlong_from(jint h, jint l) {
 653   jlong result = 0; // initialization to avoid warning
 654   set_high(&result, h);
 655   set_low(&result,  l);
 656   return result;
 657 }
 658 
 659 union jlong_accessor {
 660   jint  words[2];
 661   jlong long_value;
 662 };
 663 
 664 void basic_types_init(); // cannot define here; uses assert
 665 
 666 
 667 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 668 enum BasicType {
 669   T_BOOLEAN     =  4,
 670   T_CHAR        =  5,
 671   T_FLOAT       =  6,
 672   T_DOUBLE      =  7,
 673   T_BYTE        =  8,
 674   T_SHORT       =  9,
 675   T_INT         = 10,
 676   T_LONG        = 11,
 677   T_OBJECT      = 12,
 678   T_ARRAY       = 13,
 679   T_VOID        = 14,
 680   T_ADDRESS     = 15,
 681   T_NARROWOOP   = 16,
 682   T_METADATA    = 17,
 683   T_NARROWKLASS = 18,
 684   T_CONFLICT    = 19, // for stack value type with conflicting contents
 685   T_ILLEGAL     = 99
 686 };
 687 
 688 inline bool is_java_primitive(BasicType t) {
 689   return T_BOOLEAN <= t && t <= T_LONG;
 690 }
 691 
 692 inline bool is_subword_type(BasicType t) {
 693   // these guys are processed exactly like T_INT in calling sequences:
 694   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 695 }
 696 
 697 inline bool is_signed_subword_type(BasicType t) {
 698   return (t == T_BYTE || t == T_SHORT);
 699 }
 700 
 701 // Convert a char from a classfile signature to a BasicType
 702 inline BasicType char2type(char c) {
 703   switch( c ) {
 704   case 'B': return T_BYTE;
 705   case 'C': return T_CHAR;
 706   case 'D': return T_DOUBLE;
 707   case 'F': return T_FLOAT;
 708   case 'I': return T_INT;
 709   case 'J': return T_LONG;
 710   case 'S': return T_SHORT;
 711   case 'Z': return T_BOOLEAN;
 712   case 'V': return T_VOID;
 713   case 'L': return T_OBJECT;
 714   case '[': return T_ARRAY;
 715   }
 716   return T_ILLEGAL;
 717 }
 718 
 719 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 720 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 721 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 722 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 723 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 724 extern BasicType name2type(const char* name);
 725 
 726 // Auxiliary math routines
 727 // least common multiple
 728 extern size_t lcm(size_t a, size_t b);
 729 
 730 
 731 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 732 enum BasicTypeSize {
 733   T_BOOLEAN_size     = 1,
 734   T_CHAR_size        = 1,
 735   T_FLOAT_size       = 1,
 736   T_DOUBLE_size      = 2,
 737   T_BYTE_size        = 1,
 738   T_SHORT_size       = 1,
 739   T_INT_size         = 1,
 740   T_LONG_size        = 2,
 741   T_OBJECT_size      = 1,
 742   T_ARRAY_size       = 1,
 743   T_NARROWOOP_size   = 1,
 744   T_NARROWKLASS_size = 1,
 745   T_VOID_size        = 0
 746 };
 747 
 748 
 749 // maps a BasicType to its instance field storage type:
 750 // all sub-word integral types are widened to T_INT
 751 extern BasicType type2field[T_CONFLICT+1];
 752 extern BasicType type2wfield[T_CONFLICT+1];
 753 
 754 
 755 // size in bytes
 756 enum ArrayElementSize {
 757   T_BOOLEAN_aelem_bytes     = 1,
 758   T_CHAR_aelem_bytes        = 2,
 759   T_FLOAT_aelem_bytes       = 4,
 760   T_DOUBLE_aelem_bytes      = 8,
 761   T_BYTE_aelem_bytes        = 1,
 762   T_SHORT_aelem_bytes       = 2,
 763   T_INT_aelem_bytes         = 4,
 764   T_LONG_aelem_bytes        = 8,
 765 #ifdef _LP64
 766   T_OBJECT_aelem_bytes      = 8,
 767   T_ARRAY_aelem_bytes       = 8,
 768 #else
 769   T_OBJECT_aelem_bytes      = 4,
 770   T_ARRAY_aelem_bytes       = 4,
 771 #endif
 772   T_NARROWOOP_aelem_bytes   = 4,
 773   T_NARROWKLASS_aelem_bytes = 4,
 774   T_VOID_aelem_bytes        = 0
 775 };
 776 
 777 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 778 #ifdef ASSERT
 779 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 780 #else
 781 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 782 #endif
 783 
 784 
 785 // JavaValue serves as a container for arbitrary Java values.
 786 
 787 class JavaValue {
 788 
 789  public:
 790   typedef union JavaCallValue {
 791     jfloat   f;
 792     jdouble  d;
 793     jint     i;
 794     jlong    l;
 795     jobject  h;
 796   } JavaCallValue;
 797 
 798  private:
 799   BasicType _type;
 800   JavaCallValue _value;
 801 
 802  public:
 803   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 804 
 805   JavaValue(jfloat value) {
 806     _type    = T_FLOAT;
 807     _value.f = value;
 808   }
 809 
 810   JavaValue(jdouble value) {
 811     _type    = T_DOUBLE;
 812     _value.d = value;
 813   }
 814 
 815  jfloat get_jfloat() const { return _value.f; }
 816  jdouble get_jdouble() const { return _value.d; }
 817  jint get_jint() const { return _value.i; }
 818  jlong get_jlong() const { return _value.l; }
 819  jobject get_jobject() const { return _value.h; }
 820  JavaCallValue* get_value_addr() { return &_value; }
 821  BasicType get_type() const { return _type; }
 822 
 823  void set_jfloat(jfloat f) { _value.f = f;}
 824  void set_jdouble(jdouble d) { _value.d = d;}
 825  void set_jint(jint i) { _value.i = i;}
 826  void set_jlong(jlong l) { _value.l = l;}
 827  void set_jobject(jobject h) { _value.h = h;}
 828  void set_type(BasicType t) { _type = t; }
 829 
 830  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 831  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 832  jchar get_jchar() const { return (jchar) (_value.i);}
 833  jshort get_jshort() const { return (jshort) (_value.i);}
 834 
 835 };
 836 
 837 
 838 #define STACK_BIAS      0
 839 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 840 // in order to extend the reach of the stack pointer.
 841 #if defined(SPARC) && defined(_LP64)
 842 #undef STACK_BIAS
 843 #define STACK_BIAS      0x7ff
 844 #endif
 845 
 846 
 847 // TosState describes the top-of-stack state before and after the execution of
 848 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 849 // registers. The TosState corresponds to the 'machine representation' of this cached
 850 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 851 // as well as a 5th state in case the top-of-stack value is actually on the top
 852 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 853 // state when it comes to machine representation but is used separately for (oop)
 854 // type specific operations (e.g. verification code).
 855 
 856 enum TosState {         // describes the tos cache contents
 857   btos = 0,             // byte, bool tos cached
 858   ztos = 1,             // byte, bool tos cached
 859   ctos = 2,             // char tos cached
 860   stos = 3,             // short tos cached
 861   itos = 4,             // int tos cached
 862   ltos = 5,             // long tos cached
 863   ftos = 6,             // float tos cached
 864   dtos = 7,             // double tos cached
 865   atos = 8,             // object cached
 866   vtos = 9,             // tos not cached
 867   number_of_states,
 868   ilgl                  // illegal state: should not occur
 869 };
 870 
 871 
 872 inline TosState as_TosState(BasicType type) {
 873   switch (type) {
 874     case T_BYTE   : return btos;
 875     case T_BOOLEAN: return ztos;
 876     case T_CHAR   : return ctos;
 877     case T_SHORT  : return stos;
 878     case T_INT    : return itos;
 879     case T_LONG   : return ltos;
 880     case T_FLOAT  : return ftos;
 881     case T_DOUBLE : return dtos;
 882     case T_VOID   : return vtos;
 883     case T_ARRAY  : // fall through
 884     case T_OBJECT : return atos;
 885   }
 886   return ilgl;
 887 }
 888 
 889 inline BasicType as_BasicType(TosState state) {
 890   switch (state) {
 891     case btos : return T_BYTE;
 892     case ztos : return T_BOOLEAN;
 893     case ctos : return T_CHAR;
 894     case stos : return T_SHORT;
 895     case itos : return T_INT;
 896     case ltos : return T_LONG;
 897     case ftos : return T_FLOAT;
 898     case dtos : return T_DOUBLE;
 899     case atos : return T_OBJECT;
 900     case vtos : return T_VOID;
 901   }
 902   return T_ILLEGAL;
 903 }
 904 
 905 
 906 // Helper function to convert BasicType info into TosState
 907 // Note: Cannot define here as it uses global constant at the time being.
 908 TosState as_TosState(BasicType type);
 909 
 910 
 911 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 912 // information is needed by the safepoint code.
 913 //
 914 // There are 4 essential states:
 915 //
 916 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 917 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 918 //  _thread_in_vm       : Executing in the vm
 919 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 920 //
 921 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 922 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 923 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 924 //
 925 // Given a state, the xxxx_trans state can always be found by adding 1.
 926 //
 927 enum JavaThreadState {
 928   _thread_uninitialized     =  0, // should never happen (missing initialization)
 929   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 930   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 931   _thread_in_native         =  4, // running in native code
 932   _thread_in_native_trans   =  5, // corresponding transition state
 933   _thread_in_vm             =  6, // running in VM
 934   _thread_in_vm_trans       =  7, // corresponding transition state
 935   _thread_in_Java           =  8, // running in Java or in stub code
 936   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 937   _thread_blocked           = 10, // blocked in vm
 938   _thread_blocked_trans     = 11, // corresponding transition state
 939   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 940 };
 941 
 942 
 943 
 944 //----------------------------------------------------------------------------------------------------
 945 // 'Forward' declarations of frequently used classes
 946 // (in order to reduce interface dependencies & reduce
 947 // number of unnecessary compilations after changes)
 948 
 949 class ClassFileStream;
 950 
 951 class Event;
 952 
 953 class Thread;
 954 class  VMThread;
 955 class  JavaThread;
 956 class Threads;
 957 
 958 class VM_Operation;
 959 class VMOperationQueue;
 960 
 961 class CodeBlob;
 962 class  CompiledMethod;
 963 class   nmethod;
 964 class RuntimeBlob;
 965 class  OSRAdapter;
 966 class  I2CAdapter;
 967 class  C2IAdapter;
 968 class CompiledIC;
 969 class relocInfo;
 970 class ScopeDesc;
 971 class PcDesc;
 972 
 973 class Recompiler;
 974 class Recompilee;
 975 class RecompilationPolicy;
 976 class RFrame;
 977 class  CompiledRFrame;
 978 class  InterpretedRFrame;
 979 
 980 class vframe;
 981 class   javaVFrame;
 982 class     interpretedVFrame;
 983 class     compiledVFrame;
 984 class     deoptimizedVFrame;
 985 class   externalVFrame;
 986 class     entryVFrame;
 987 
 988 class RegisterMap;
 989 
 990 class Mutex;
 991 class Monitor;
 992 class BasicLock;
 993 class BasicObjectLock;
 994 
 995 class PeriodicTask;
 996 
 997 class JavaCallWrapper;
 998 
 999 class   oopDesc;
1000 class   metaDataOopDesc;
1001 
1002 class NativeCall;
1003 
1004 class zone;
1005 
1006 class StubQueue;
1007 
1008 class outputStream;
1009 
1010 class ResourceArea;
1011 
1012 class DebugInformationRecorder;
1013 class ScopeValue;
1014 class CompressedStream;
1015 class   DebugInfoReadStream;
1016 class   DebugInfoWriteStream;
1017 class LocationValue;
1018 class ConstantValue;
1019 class IllegalValue;
1020 
1021 class PrivilegedElement;
1022 class MonitorArray;
1023 
1024 class MonitorInfo;
1025 
1026 class OffsetClosure;
1027 class OopMapCache;
1028 class InterpreterOopMap;
1029 class OopMapCacheEntry;
1030 class OSThread;
1031 
1032 typedef int (*OSThreadStartFunc)(void*);
1033 
1034 class Space;
1035 
1036 class JavaValue;
1037 class methodHandle;
1038 class JavaCallArguments;
1039 
1040 // Basic support for errors.
1041 extern void basic_fatal(const char* msg);
1042 
1043 //----------------------------------------------------------------------------------------------------
1044 // Special constants for debugging
1045 
1046 const jint     badInt           = -3;                       // generic "bad int" value
1047 const long     badAddressVal    = -2;                       // generic "bad address" value
1048 const long     badOopVal        = -1;                       // generic "bad oop" value
1049 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1050 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1051 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1052 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1053 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1054 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
1055 const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1056 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1057 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1058 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1059 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1060 
1061 
1062 // (These must be implemented as #defines because C++ compilers are
1063 // not obligated to inline non-integral constants!)
1064 #define       badAddress        ((address)::badAddressVal)
1065 #define       badOop            (cast_to_oop(::badOopVal))
1066 #define       badHeapWord       (::badHeapWordVal)
1067 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1068 
1069 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1070 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1071 
1072 //----------------------------------------------------------------------------------------------------
1073 // Utility functions for bitfield manipulations
1074 
1075 const intptr_t AllBits    = ~0; // all bits set in a word
1076 const intptr_t NoBits     =  0; // no bits set in a word
1077 const jlong    NoLongBits =  0; // no bits set in a long
1078 const intptr_t OneBit     =  1; // only right_most bit set in a word
1079 
1080 // get a word with the n.th or the right-most or left-most n bits set
1081 // (note: #define used only so that they can be used in enum constant definitions)
1082 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1083 #define right_n_bits(n)   (nth_bit(n) - 1)
1084 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
1085 
1086 // bit-operations using a mask m
1087 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1088 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1089 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1090 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1091 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1092 
1093 // bit-operations using the n.th bit
1094 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1095 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1096 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1097 
1098 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1099 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1100   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1101 }
1102 
1103 
1104 //----------------------------------------------------------------------------------------------------
1105 // Utility functions for integers
1106 
1107 // Avoid use of global min/max macros which may cause unwanted double
1108 // evaluation of arguments.
1109 #ifdef max
1110 #undef max
1111 #endif
1112 
1113 #ifdef min
1114 #undef min
1115 #endif
1116 
1117 #define max(a,b) Do_not_use_max_use_MAX2_instead
1118 #define min(a,b) Do_not_use_min_use_MIN2_instead
1119 
1120 // It is necessary to use templates here. Having normal overloaded
1121 // functions does not work because it is necessary to provide both 32-
1122 // and 64-bit overloaded functions, which does not work, and having
1123 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1124 // will be even more error-prone than macros.
1125 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1126 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1127 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1128 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1129 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1130 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1131 
1132 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1133 
1134 // true if x is a power of 2, false otherwise
1135 inline bool is_power_of_2(intptr_t x) {
1136   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1137 }
1138 
1139 // long version of is_power_of_2
1140 inline bool is_power_of_2_long(jlong x) {
1141   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1142 }
1143 
1144 // Returns largest i such that 2^i <= x.
1145 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1146 // If x == 0, the function returns -1.
1147 inline int log2_intptr(intptr_t x) {
1148   int i = -1;
1149   uintptr_t p = 1;
1150   while (p != 0 && p <= (uintptr_t)x) {
1151     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1152     i++; p *= 2;
1153   }
1154   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1155   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1156   return i;
1157 }
1158 
1159 //* largest i such that 2^i <= x
1160 //  A negative value of 'x' will return '63'
1161 inline int log2_long(jlong x) {
1162   int i = -1;
1163   julong p =  1;
1164   while (p != 0 && p <= (julong)x) {
1165     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1166     i++; p *= 2;
1167   }
1168   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1169   // (if p = 0 then overflow occurred and i = 63)
1170   return i;
1171 }
1172 
1173 //* the argument must be exactly a power of 2
1174 inline int exact_log2(intptr_t x) {
1175   assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
1176   return log2_intptr(x);
1177 }
1178 
1179 //* the argument must be exactly a power of 2
1180 inline int exact_log2_long(jlong x) {
1181   assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
1182   return log2_long(x);
1183 }
1184 
1185 
1186 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1187 inline intptr_t round_to(intptr_t x, uintx s) {
1188   assert(is_power_of_2(s), "s must be a power of 2: " UINTX_FORMAT, s);
1189   const uintx m = s - 1;
1190   return mask_bits(x + m, ~m);
1191 }
1192 
1193 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1194 inline intptr_t round_down(intptr_t x, uintx s) {
1195   assert(is_power_of_2(s), "s must be a power of 2: " UINTX_FORMAT, s);
1196   const uintx m = s - 1;
1197   return mask_bits(x, ~m);
1198 }
1199 
1200 
1201 inline bool is_odd (intx x) { return x & 1;      }
1202 inline bool is_even(intx x) { return !is_odd(x); }
1203 
1204 // "to" should be greater than "from."
1205 inline intx byte_size(void* from, void* to) {
1206   return (address)to - (address)from;
1207 }
1208 
1209 //----------------------------------------------------------------------------------------------------
1210 // Avoid non-portable casts with these routines (DEPRECATED)
1211 
1212 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1213 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1214 
1215 // Given sequence of four bytes, build into a 32-bit word
1216 // following the conventions used in class files.
1217 // On the 386, this could be realized with a simple address cast.
1218 //
1219 
1220 // This routine takes eight bytes:
1221 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1222   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1223        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1224        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1225        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1226        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1227        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1228        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1229        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1230 }
1231 
1232 // This routine takes four bytes:
1233 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1234   return  (( u4(c1) << 24 )  &  0xff000000)
1235        |  (( u4(c2) << 16 )  &  0x00ff0000)
1236        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1237        |  (( u4(c4) <<  0 )  &  0x000000ff);
1238 }
1239 
1240 // And this one works if the four bytes are contiguous in memory:
1241 inline u4 build_u4_from( u1* p ) {
1242   return  build_u4_from( p[0], p[1], p[2], p[3] );
1243 }
1244 
1245 // Ditto for two-byte ints:
1246 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1247   return  u2((( u2(c1) <<  8 )  &  0xff00)
1248           |  (( u2(c2) <<  0 )  &  0x00ff));
1249 }
1250 
1251 // And this one works if the two bytes are contiguous in memory:
1252 inline u2 build_u2_from( u1* p ) {
1253   return  build_u2_from( p[0], p[1] );
1254 }
1255 
1256 // Ditto for floats:
1257 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1258   u4 u = build_u4_from( c1, c2, c3, c4 );
1259   return  *(jfloat*)&u;
1260 }
1261 
1262 inline jfloat build_float_from( u1* p ) {
1263   u4 u = build_u4_from( p );
1264   return  *(jfloat*)&u;
1265 }
1266 
1267 
1268 // now (64-bit) longs
1269 
1270 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1271   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1272        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1273        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1274        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1275        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1276        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1277        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1278        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1279 }
1280 
1281 inline jlong build_long_from( u1* p ) {
1282   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1283 }
1284 
1285 
1286 // Doubles, too!
1287 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1288   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1289   return  *(jdouble*)&u;
1290 }
1291 
1292 inline jdouble build_double_from( u1* p ) {
1293   jlong u = build_long_from( p );
1294   return  *(jdouble*)&u;
1295 }
1296 
1297 
1298 // Portable routines to go the other way:
1299 
1300 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1301   c1 = u1(x >> 8);
1302   c2 = u1(x);
1303 }
1304 
1305 inline void explode_short_to( u2 x, u1* p ) {
1306   explode_short_to( x, p[0], p[1]);
1307 }
1308 
1309 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1310   c1 = u1(x >> 24);
1311   c2 = u1(x >> 16);
1312   c3 = u1(x >>  8);
1313   c4 = u1(x);
1314 }
1315 
1316 inline void explode_int_to( u4 x, u1* p ) {
1317   explode_int_to( x, p[0], p[1], p[2], p[3]);
1318 }
1319 
1320 
1321 // Pack and extract shorts to/from ints:
1322 
1323 inline int extract_low_short_from_int(jint x) {
1324   return x & 0xffff;
1325 }
1326 
1327 inline int extract_high_short_from_int(jint x) {
1328   return (x >> 16) & 0xffff;
1329 }
1330 
1331 inline int build_int_from_shorts( jushort low, jushort high ) {
1332   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1333 }
1334 
1335 // Convert pointer to intptr_t, for use in printing pointers.
1336 inline intptr_t p2i(const void * p) {
1337   return (intptr_t) p;
1338 }
1339 
1340 // swap a & b
1341 template<class T> static void swap(T& a, T& b) {
1342   T tmp = a;
1343   a = b;
1344   b = tmp;
1345 }
1346 
1347 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1348 
1349 //----------------------------------------------------------------------------------------------------
1350 // Sum and product which can never overflow: they wrap, just like the
1351 // Java operations.  Note that we don't intend these to be used for
1352 // general-purpose arithmetic: their purpose is to emulate Java
1353 // operations.
1354 
1355 // The goal of this code to avoid undefined or implementation-defined
1356 // behavior.  The use of an lvalue to reference cast is explicitly
1357 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1358 // 15 in C++03]
1359 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1360 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1361   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1362   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1363   return reinterpret_cast<TYPE&>(ures);                 \
1364 }
1365 
1366 JAVA_INTEGER_OP(+, java_add, jint, juint)
1367 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1368 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1369 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1370 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1371 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1372 
1373 #undef JAVA_INTEGER_OP
1374 
1375 // Dereference vptr
1376 // All C++ compilers that we know of have the vtbl pointer in the first
1377 // word.  If there are exceptions, this function needs to be made compiler
1378 // specific.
1379 static inline void* dereference_vptr(const void* addr) {
1380   return *(void**)addr;
1381 }
1382 
1383 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP