1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_solaris.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_solaris.hpp"
  40 #include "os_solaris.inline.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "runtime/vm_version.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/align.hpp"
  68 #include "utilities/decoder.hpp"
  69 #include "utilities/defaultStream.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <dlfcn.h>
  77 # include <errno.h>
  78 # include <exception>
  79 # include <link.h>
  80 # include <poll.h>
  81 # include <pthread.h>
  82 # include <schedctl.h>
  83 # include <setjmp.h>
  84 # include <signal.h>
  85 # include <stdio.h>
  86 # include <alloca.h>
  87 # include <sys/filio.h>
  88 # include <sys/ipc.h>
  89 # include <sys/lwp.h>
  90 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  91 # include <sys/mman.h>
  92 # include <sys/processor.h>
  93 # include <sys/procset.h>
  94 # include <sys/pset.h>
  95 # include <sys/resource.h>
  96 # include <sys/shm.h>
  97 # include <sys/socket.h>
  98 # include <sys/stat.h>
  99 # include <sys/systeminfo.h>
 100 # include <sys/time.h>
 101 # include <sys/times.h>
 102 # include <sys/types.h>
 103 # include <sys/wait.h>
 104 # include <sys/utsname.h>
 105 # include <thread.h>
 106 # include <unistd.h>
 107 # include <sys/priocntl.h>
 108 # include <sys/rtpriocntl.h>
 109 # include <sys/tspriocntl.h>
 110 # include <sys/iapriocntl.h>
 111 # include <sys/fxpriocntl.h>
 112 # include <sys/loadavg.h>
 113 # include <string.h>
 114 # include <stdio.h>
 115 
 116 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 117 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 118 
 119 #define MAX_PATH (2 * K)
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 
 124 
 125 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 126 // compile on older systems without this header file.
 127 
 128 #ifndef MADV_ACCESS_LWP
 129   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 130 #endif
 131 #ifndef MADV_ACCESS_MANY
 132   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 133 #endif
 134 
 135 #ifndef LGRP_RSRC_CPU
 136   #define LGRP_RSRC_CPU      0       /* CPU resources */
 137 #endif
 138 #ifndef LGRP_RSRC_MEM
 139   #define LGRP_RSRC_MEM      1       /* memory resources */
 140 #endif
 141 
 142 // Values for ThreadPriorityPolicy == 1
 143 int prio_policy1[CriticalPriority+1] = {
 144   -99999,  0, 16,  32,  48,  64,
 145           80, 96, 112, 124, 127, 127 };
 146 
 147 // System parameters used internally
 148 static clock_t clock_tics_per_sec = 100;
 149 
 150 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 151 static bool enabled_extended_FILE_stdio = false;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static bool check_addr0_done = false;
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 159 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 160 
 161 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 162 
 163 os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
 164 
 165 // "default" initializers for missing libc APIs
 166 extern "C" {
 167   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 168   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 169 
 170   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 171   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 172 }
 173 
 174 // "default" initializers for pthread-based synchronization
 175 extern "C" {
 176   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 177   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 178 }
 179 
 180 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 181 
 182 static inline size_t adjust_stack_size(address base, size_t size) {
 183   if ((ssize_t)size < 0) {
 184     // 4759953: Compensate for ridiculous stack size.
 185     size = max_intx;
 186   }
 187   if (size > (size_t)base) {
 188     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 189     size = (size_t)base;
 190   }
 191   return size;
 192 }
 193 
 194 static inline stack_t get_stack_info() {
 195   stack_t st;
 196   int retval = thr_stksegment(&st);
 197   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 198   assert(retval == 0, "incorrect return value from thr_stksegment");
 199   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 200   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 201   return st;
 202 }
 203 
 204 address os::current_stack_base() {
 205   int r = thr_main();
 206   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 207   bool is_primordial_thread = r;
 208 
 209   // Workaround 4352906, avoid calls to thr_stksegment by
 210   // thr_main after the first one (it looks like we trash
 211   // some data, causing the value for ss_sp to be incorrect).
 212   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 213     stack_t st = get_stack_info();
 214     if (is_primordial_thread) {
 215       // cache initial value of stack base
 216       os::Solaris::_main_stack_base = (address)st.ss_sp;
 217     }
 218     return (address)st.ss_sp;
 219   } else {
 220     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 221     return os::Solaris::_main_stack_base;
 222   }
 223 }
 224 
 225 size_t os::current_stack_size() {
 226   size_t size;
 227 
 228   int r = thr_main();
 229   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 230   if (!r) {
 231     size = get_stack_info().ss_size;
 232   } else {
 233     struct rlimit limits;
 234     getrlimit(RLIMIT_STACK, &limits);
 235     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 236   }
 237   // base may not be page aligned
 238   address base = current_stack_base();
 239   address bottom = align_up(base - size, os::vm_page_size());;
 240   return (size_t)(base - bottom);
 241 }
 242 
 243 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 244   return localtime_r(clock, res);
 245 }
 246 
 247 void os::Solaris::try_enable_extended_io() {
 248   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 249 
 250   if (!UseExtendedFileIO) {
 251     return;
 252   }
 253 
 254   enable_extended_FILE_stdio_t enabler =
 255     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 256                                          "enable_extended_FILE_stdio");
 257   if (enabler) {
 258     enabler(-1, -1);
 259   }
 260 }
 261 
 262 static int _processors_online = 0;
 263 
 264 jint os::Solaris::_os_thread_limit = 0;
 265 volatile jint os::Solaris::_os_thread_count = 0;
 266 
 267 julong os::available_memory() {
 268   return Solaris::available_memory();
 269 }
 270 
 271 julong os::Solaris::available_memory() {
 272   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 273 }
 274 
 275 julong os::Solaris::_physical_memory = 0;
 276 
 277 julong os::physical_memory() {
 278   return Solaris::physical_memory();
 279 }
 280 
 281 static hrtime_t first_hrtime = 0;
 282 static const hrtime_t hrtime_hz = 1000*1000*1000;
 283 static volatile hrtime_t max_hrtime = 0;
 284 
 285 
 286 void os::Solaris::initialize_system_info() {
 287   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 288   _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
 289   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 290                                      (julong)sysconf(_SC_PAGESIZE);
 291 }
 292 
 293 int os::active_processor_count() {
 294   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 295   pid_t pid = getpid();
 296   psetid_t pset = PS_NONE;
 297   // Are we running in a processor set or is there any processor set around?
 298   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 299     uint_t pset_cpus;
 300     // Query the number of cpus available to us.
 301     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 302       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 303       _processors_online = pset_cpus;
 304       return pset_cpus;
 305     }
 306   }
 307   // Otherwise return number of online cpus
 308   return online_cpus;
 309 }
 310 
 311 static bool find_processors_in_pset(psetid_t        pset,
 312                                     processorid_t** id_array,
 313                                     uint_t*         id_length) {
 314   bool result = false;
 315   // Find the number of processors in the processor set.
 316   if (pset_info(pset, NULL, id_length, NULL) == 0) {
 317     // Make up an array to hold their ids.
 318     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 319     // Fill in the array with their processor ids.
 320     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
 321       result = true;
 322     }
 323   }
 324   return result;
 325 }
 326 
 327 // Callers of find_processors_online() must tolerate imprecise results --
 328 // the system configuration can change asynchronously because of DR
 329 // or explicit psradm operations.
 330 //
 331 // We also need to take care that the loop (below) terminates as the
 332 // number of processors online can change between the _SC_NPROCESSORS_ONLN
 333 // request and the loop that builds the list of processor ids.   Unfortunately
 334 // there's no reliable way to determine the maximum valid processor id,
 335 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
 336 // man pages, which claim the processor id set is "sparse, but
 337 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
 338 // exit the loop.
 339 //
 340 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
 341 // not available on S8.0.
 342 
 343 static bool find_processors_online(processorid_t** id_array,
 344                                    uint*           id_length) {
 345   const processorid_t MAX_PROCESSOR_ID = 100000;
 346   // Find the number of processors online.
 347   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
 348   // Make up an array to hold their ids.
 349   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 350   // Processors need not be numbered consecutively.
 351   long found = 0;
 352   processorid_t next = 0;
 353   while (found < *id_length && next < MAX_PROCESSOR_ID) {
 354     processor_info_t info;
 355     if (processor_info(next, &info) == 0) {
 356       // NB, PI_NOINTR processors are effectively online ...
 357       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
 358         (*id_array)[found] = next;
 359         found += 1;
 360       }
 361     }
 362     next += 1;
 363   }
 364   if (found < *id_length) {
 365     // The loop above didn't identify the expected number of processors.
 366     // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
 367     // and re-running the loop, above, but there's no guarantee of progress
 368     // if the system configuration is in flux.  Instead, we just return what
 369     // we've got.  Note that in the worst case find_processors_online() could
 370     // return an empty set.  (As a fall-back in the case of the empty set we
 371     // could just return the ID of the current processor).
 372     *id_length = found;
 373   }
 374 
 375   return true;
 376 }
 377 
 378 static bool assign_distribution(processorid_t* id_array,
 379                                 uint           id_length,
 380                                 uint*          distribution,
 381                                 uint           distribution_length) {
 382   // We assume we can assign processorid_t's to uint's.
 383   assert(sizeof(processorid_t) == sizeof(uint),
 384          "can't convert processorid_t to uint");
 385   // Quick check to see if we won't succeed.
 386   if (id_length < distribution_length) {
 387     return false;
 388   }
 389   // Assign processor ids to the distribution.
 390   // Try to shuffle processors to distribute work across boards,
 391   // assuming 4 processors per board.
 392   const uint processors_per_board = ProcessDistributionStride;
 393   // Find the maximum processor id.
 394   processorid_t max_id = 0;
 395   for (uint m = 0; m < id_length; m += 1) {
 396     max_id = MAX2(max_id, id_array[m]);
 397   }
 398   // The next id, to limit loops.
 399   const processorid_t limit_id = max_id + 1;
 400   // Make up markers for available processors.
 401   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
 402   for (uint c = 0; c < limit_id; c += 1) {
 403     available_id[c] = false;
 404   }
 405   for (uint a = 0; a < id_length; a += 1) {
 406     available_id[id_array[a]] = true;
 407   }
 408   // Step by "boards", then by "slot", copying to "assigned".
 409   // NEEDS_CLEANUP: The assignment of processors should be stateful,
 410   //                remembering which processors have been assigned by
 411   //                previous calls, etc., so as to distribute several
 412   //                independent calls of this method.  What we'd like is
 413   //                It would be nice to have an API that let us ask
 414   //                how many processes are bound to a processor,
 415   //                but we don't have that, either.
 416   //                In the short term, "board" is static so that
 417   //                subsequent distributions don't all start at board 0.
 418   static uint board = 0;
 419   uint assigned = 0;
 420   // Until we've found enough processors ....
 421   while (assigned < distribution_length) {
 422     // ... find the next available processor in the board.
 423     for (uint slot = 0; slot < processors_per_board; slot += 1) {
 424       uint try_id = board * processors_per_board + slot;
 425       if ((try_id < limit_id) && (available_id[try_id] == true)) {
 426         distribution[assigned] = try_id;
 427         available_id[try_id] = false;
 428         assigned += 1;
 429         break;
 430       }
 431     }
 432     board += 1;
 433     if (board * processors_per_board + 0 >= limit_id) {
 434       board = 0;
 435     }
 436   }
 437   if (available_id != NULL) {
 438     FREE_C_HEAP_ARRAY(bool, available_id);
 439   }
 440   return true;
 441 }
 442 
 443 void os::set_native_thread_name(const char *name) {
 444   if (Solaris::_pthread_setname_np != NULL) {
 445     // Only the first 31 bytes of 'name' are processed by pthread_setname_np
 446     // but we explicitly copy into a size-limited buffer to avoid any
 447     // possible overflow.
 448     char buf[32];
 449     snprintf(buf, sizeof(buf), "%s", name);
 450     buf[sizeof(buf) - 1] = '\0';
 451     Solaris::_pthread_setname_np(pthread_self(), buf);
 452   }
 453 }
 454 
 455 bool os::distribute_processes(uint length, uint* distribution) {
 456   bool result = false;
 457   // Find the processor id's of all the available CPUs.
 458   processorid_t* id_array  = NULL;
 459   uint           id_length = 0;
 460   // There are some races between querying information and using it,
 461   // since processor sets can change dynamically.
 462   psetid_t pset = PS_NONE;
 463   // Are we running in a processor set?
 464   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
 465     result = find_processors_in_pset(pset, &id_array, &id_length);
 466   } else {
 467     result = find_processors_online(&id_array, &id_length);
 468   }
 469   if (result == true) {
 470     if (id_length >= length) {
 471       result = assign_distribution(id_array, id_length, distribution, length);
 472     } else {
 473       result = false;
 474     }
 475   }
 476   if (id_array != NULL) {
 477     FREE_C_HEAP_ARRAY(processorid_t, id_array);
 478   }
 479   return result;
 480 }
 481 
 482 bool os::bind_to_processor(uint processor_id) {
 483   // We assume that a processorid_t can be stored in a uint.
 484   assert(sizeof(uint) == sizeof(processorid_t),
 485          "can't convert uint to processorid_t");
 486   int bind_result =
 487     processor_bind(P_LWPID,                       // bind LWP.
 488                    P_MYID,                        // bind current LWP.
 489                    (processorid_t) processor_id,  // id.
 490                    NULL);                         // don't return old binding.
 491   return (bind_result == 0);
 492 }
 493 
 494 // Return true if user is running as root.
 495 
 496 bool os::have_special_privileges() {
 497   static bool init = false;
 498   static bool privileges = false;
 499   if (!init) {
 500     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 501     init = true;
 502   }
 503   return privileges;
 504 }
 505 
 506 
 507 void os::init_system_properties_values() {
 508   // The next steps are taken in the product version:
 509   //
 510   // Obtain the JAVA_HOME value from the location of libjvm.so.
 511   // This library should be located at:
 512   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 513   //
 514   // If "/jre/lib/" appears at the right place in the path, then we
 515   // assume libjvm.so is installed in a JDK and we use this path.
 516   //
 517   // Otherwise exit with message: "Could not create the Java virtual machine."
 518   //
 519   // The following extra steps are taken in the debugging version:
 520   //
 521   // If "/jre/lib/" does NOT appear at the right place in the path
 522   // instead of exit check for $JAVA_HOME environment variable.
 523   //
 524   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 525   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 526   // it looks like libjvm.so is installed there
 527   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 528   //
 529   // Otherwise exit.
 530   //
 531   // Important note: if the location of libjvm.so changes this
 532   // code needs to be changed accordingly.
 533 
 534 // Base path of extensions installed on the system.
 535 #define SYS_EXT_DIR     "/usr/jdk/packages"
 536 #define EXTENSIONS_DIR  "/lib/ext"
 537 
 538   // Buffer that fits several sprintfs.
 539   // Note that the space for the colon and the trailing null are provided
 540   // by the nulls included by the sizeof operator.
 541   const size_t bufsize =
 542     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 543          sizeof(SYS_EXT_DIR) + sizeof("/lib/"), // invariant ld_library_path
 544          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 545   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 546 
 547   // sysclasspath, java_home, dll_dir
 548   {
 549     char *pslash;
 550     os::jvm_path(buf, bufsize);
 551 
 552     // Found the full path to libjvm.so.
 553     // Now cut the path to <java_home>/jre if we can.
 554     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 555     pslash = strrchr(buf, '/');
 556     if (pslash != NULL) {
 557       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 558     }
 559     Arguments::set_dll_dir(buf);
 560 
 561     if (pslash != NULL) {
 562       pslash = strrchr(buf, '/');
 563       if (pslash != NULL) {
 564         *pslash = '\0';        // Get rid of /lib.
 565       }
 566     }
 567     Arguments::set_java_home(buf);
 568     set_boot_path('/', ':');
 569   }
 570 
 571   // Where to look for native libraries.
 572   {
 573     // Use dlinfo() to determine the correct java.library.path.
 574     //
 575     // If we're launched by the Java launcher, and the user
 576     // does not set java.library.path explicitly on the commandline,
 577     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 578     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 579     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 580     // /usr/lib), which is exactly what we want.
 581     //
 582     // If the user does set java.library.path, it completely
 583     // overwrites this setting, and always has.
 584     //
 585     // If we're not launched by the Java launcher, we may
 586     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 587     // settings.  Again, dlinfo does exactly what we want.
 588 
 589     Dl_serinfo     info_sz, *info = &info_sz;
 590     Dl_serpath     *path;
 591     char           *library_path;
 592     char           *common_path = buf;
 593 
 594     // Determine search path count and required buffer size.
 595     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 596       FREE_C_HEAP_ARRAY(char, buf);
 597       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 598     }
 599 
 600     // Allocate new buffer and initialize.
 601     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 602     info->dls_size = info_sz.dls_size;
 603     info->dls_cnt = info_sz.dls_cnt;
 604 
 605     // Obtain search path information.
 606     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 607       FREE_C_HEAP_ARRAY(char, buf);
 608       FREE_C_HEAP_ARRAY(char, info);
 609       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 610     }
 611 
 612     path = &info->dls_serpath[0];
 613 
 614     // Note: Due to a legacy implementation, most of the library path
 615     // is set in the launcher. This was to accomodate linking restrictions
 616     // on legacy Solaris implementations (which are no longer supported).
 617     // Eventually, all the library path setting will be done here.
 618     //
 619     // However, to prevent the proliferation of improperly built native
 620     // libraries, the new path component /usr/jdk/packages is added here.
 621 
 622     // Construct the invariant part of ld_library_path.
 623     sprintf(common_path, SYS_EXT_DIR "/lib");
 624 
 625     // Struct size is more than sufficient for the path components obtained
 626     // through the dlinfo() call, so only add additional space for the path
 627     // components explicitly added here.
 628     size_t library_path_size = info->dls_size + strlen(common_path);
 629     library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 630     library_path[0] = '\0';
 631 
 632     // Construct the desired Java library path from the linker's library
 633     // search path.
 634     //
 635     // For compatibility, it is optimal that we insert the additional path
 636     // components specific to the Java VM after those components specified
 637     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 638     // infrastructure.
 639     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 640       strcpy(library_path, common_path);
 641     } else {
 642       int inserted = 0;
 643       int i;
 644       for (i = 0; i < info->dls_cnt; i++, path++) {
 645         uint_t flags = path->dls_flags & LA_SER_MASK;
 646         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 647           strcat(library_path, common_path);
 648           strcat(library_path, os::path_separator());
 649           inserted = 1;
 650         }
 651         strcat(library_path, path->dls_name);
 652         strcat(library_path, os::path_separator());
 653       }
 654       // Eliminate trailing path separator.
 655       library_path[strlen(library_path)-1] = '\0';
 656     }
 657 
 658     // happens before argument parsing - can't use a trace flag
 659     // tty->print_raw("init_system_properties_values: native lib path: ");
 660     // tty->print_raw_cr(library_path);
 661 
 662     // Callee copies into its own buffer.
 663     Arguments::set_library_path(library_path);
 664 
 665     FREE_C_HEAP_ARRAY(char, library_path);
 666     FREE_C_HEAP_ARRAY(char, info);
 667   }
 668 
 669   // Extensions directories.
 670   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 671   Arguments::set_ext_dirs(buf);
 672 
 673   FREE_C_HEAP_ARRAY(char, buf);
 674 
 675 #undef SYS_EXT_DIR
 676 #undef EXTENSIONS_DIR
 677 }
 678 
 679 void os::breakpoint() {
 680   BREAKPOINT;
 681 }
 682 
 683 bool os::obsolete_option(const JavaVMOption *option) {
 684   if (!strncmp(option->optionString, "-Xt", 3)) {
 685     return true;
 686   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
 687     return true;
 688   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
 689     return true;
 690   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
 691     return true;
 692   }
 693   return false;
 694 }
 695 
 696 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
 697   address  stackStart  = (address)thread->stack_base();
 698   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
 699   if (sp < stackStart && sp >= stackEnd) return true;
 700   return false;
 701 }
 702 
 703 extern "C" void breakpoint() {
 704   // use debugger to set breakpoint here
 705 }
 706 
 707 static thread_t main_thread;
 708 
 709 // Thread start routine for all newly created threads
 710 extern "C" void* thread_native_entry(void* thread_addr) {
 711   // Try to randomize the cache line index of hot stack frames.
 712   // This helps when threads of the same stack traces evict each other's
 713   // cache lines. The threads can be either from the same JVM instance, or
 714   // from different JVM instances. The benefit is especially true for
 715   // processors with hyperthreading technology.
 716   static int counter = 0;
 717   int pid = os::current_process_id();
 718   alloca(((pid ^ counter++) & 7) * 128);
 719 
 720   int prio;
 721   Thread* thread = (Thread*)thread_addr;
 722 
 723   thread->initialize_thread_current();
 724 
 725   OSThread* osthr = thread->osthread();
 726 
 727   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 728   thread->_schedctl = (void *) schedctl_init();
 729 
 730   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
 731     os::current_thread_id());
 732 
 733   if (UseNUMA) {
 734     int lgrp_id = os::numa_get_group_id();
 735     if (lgrp_id != -1) {
 736       thread->set_lgrp_id(lgrp_id);
 737     }
 738   }
 739 
 740   // Our priority was set when we were created, and stored in the
 741   // osthread, but couldn't be passed through to our LWP until now.
 742   // So read back the priority and set it again.
 743 
 744   if (osthr->thread_id() != -1) {
 745     if (UseThreadPriorities) {
 746       int prio = osthr->native_priority();
 747       if (ThreadPriorityVerbose) {
 748         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 749                       INTPTR_FORMAT ", setting priority: %d\n",
 750                       osthr->thread_id(), osthr->lwp_id(), prio);
 751       }
 752       os::set_native_priority(thread, prio);
 753     }
 754   } else if (ThreadPriorityVerbose) {
 755     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 756   }
 757 
 758   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 759 
 760   // initialize signal mask for this thread
 761   os::Solaris::hotspot_sigmask(thread);
 762 
 763   thread->run();
 764 
 765   // One less thread is executing
 766   // When the VMThread gets here, the main thread may have already exited
 767   // which frees the CodeHeap containing the Atomic::dec code
 768   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 769     Atomic::dec(&os::Solaris::_os_thread_count);
 770   }
 771 
 772   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 773 
 774   // If a thread has not deleted itself ("delete this") as part of its
 775   // termination sequence, we have to ensure thread-local-storage is
 776   // cleared before we actually terminate. No threads should ever be
 777   // deleted asynchronously with respect to their termination.
 778   if (Thread::current_or_null_safe() != NULL) {
 779     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 780     thread->clear_thread_current();
 781   }
 782 
 783   if (UseDetachedThreads) {
 784     thr_exit(NULL);
 785     ShouldNotReachHere();
 786   }
 787   return NULL;
 788 }
 789 
 790 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 791   // Allocate the OSThread object
 792   OSThread* osthread = new OSThread(NULL, NULL);
 793   if (osthread == NULL) return NULL;
 794 
 795   // Store info on the Solaris thread into the OSThread
 796   osthread->set_thread_id(thread_id);
 797   osthread->set_lwp_id(_lwp_self());
 798   thread->_schedctl = (void *) schedctl_init();
 799 
 800   if (UseNUMA) {
 801     int lgrp_id = os::numa_get_group_id();
 802     if (lgrp_id != -1) {
 803       thread->set_lgrp_id(lgrp_id);
 804     }
 805   }
 806 
 807   if (ThreadPriorityVerbose) {
 808     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 809                   osthread->thread_id(), osthread->lwp_id());
 810   }
 811 
 812   // Initial thread state is INITIALIZED, not SUSPENDED
 813   osthread->set_state(INITIALIZED);
 814 
 815   return osthread;
 816 }
 817 
 818 void os::Solaris::hotspot_sigmask(Thread* thread) {
 819   //Save caller's signal mask
 820   sigset_t sigmask;
 821   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 822   OSThread *osthread = thread->osthread();
 823   osthread->set_caller_sigmask(sigmask);
 824 
 825   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 826   if (!ReduceSignalUsage) {
 827     if (thread->is_VM_thread()) {
 828       // Only the VM thread handles BREAK_SIGNAL ...
 829       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 830     } else {
 831       // ... all other threads block BREAK_SIGNAL
 832       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 833       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 834     }
 835   }
 836 }
 837 
 838 bool os::create_attached_thread(JavaThread* thread) {
 839 #ifdef ASSERT
 840   thread->verify_not_published();
 841 #endif
 842   OSThread* osthread = create_os_thread(thread, thr_self());
 843   if (osthread == NULL) {
 844     return false;
 845   }
 846 
 847   // Initial thread state is RUNNABLE
 848   osthread->set_state(RUNNABLE);
 849   thread->set_osthread(osthread);
 850 
 851   // initialize signal mask for this thread
 852   // and save the caller's signal mask
 853   os::Solaris::hotspot_sigmask(thread);
 854 
 855   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 856     os::current_thread_id());
 857 
 858   return true;
 859 }
 860 
 861 bool os::create_main_thread(JavaThread* thread) {
 862 #ifdef ASSERT
 863   thread->verify_not_published();
 864 #endif
 865   if (_starting_thread == NULL) {
 866     _starting_thread = create_os_thread(thread, main_thread);
 867     if (_starting_thread == NULL) {
 868       return false;
 869     }
 870   }
 871 
 872   // The primodial thread is runnable from the start
 873   _starting_thread->set_state(RUNNABLE);
 874 
 875   thread->set_osthread(_starting_thread);
 876 
 877   // initialize signal mask for this thread
 878   // and save the caller's signal mask
 879   os::Solaris::hotspot_sigmask(thread);
 880 
 881   return true;
 882 }
 883 
 884 // Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
 885 static char* describe_thr_create_attributes(char* buf, size_t buflen,
 886                                             size_t stacksize, long flags) {
 887   stringStream ss(buf, buflen);
 888   ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 889   ss.print("flags: ");
 890   #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
 891   #define ALL(X) \
 892     X(THR_SUSPENDED) \
 893     X(THR_DETACHED) \
 894     X(THR_BOUND) \
 895     X(THR_NEW_LWP) \
 896     X(THR_DAEMON)
 897   ALL(PRINT_FLAG)
 898   #undef ALL
 899   #undef PRINT_FLAG
 900   return buf;
 901 }
 902 
 903 // return default stack size for thr_type
 904 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 905   // default stack size when not specified by caller is 1M (2M for LP64)
 906   size_t s = (BytesPerWord >> 2) * K * K;
 907   return s;
 908 }
 909 
 910 bool os::create_thread(Thread* thread, ThreadType thr_type,
 911                        size_t req_stack_size) {
 912   // Allocate the OSThread object
 913   OSThread* osthread = new OSThread(NULL, NULL);
 914   if (osthread == NULL) {
 915     return false;
 916   }
 917 
 918   if (ThreadPriorityVerbose) {
 919     char *thrtyp;
 920     switch (thr_type) {
 921     case vm_thread:
 922       thrtyp = (char *)"vm";
 923       break;
 924     case cgc_thread:
 925       thrtyp = (char *)"cgc";
 926       break;
 927     case pgc_thread:
 928       thrtyp = (char *)"pgc";
 929       break;
 930     case java_thread:
 931       thrtyp = (char *)"java";
 932       break;
 933     case compiler_thread:
 934       thrtyp = (char *)"compiler";
 935       break;
 936     case watcher_thread:
 937       thrtyp = (char *)"watcher";
 938       break;
 939     default:
 940       thrtyp = (char *)"unknown";
 941       break;
 942     }
 943     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 944   }
 945 
 946   // calculate stack size if it's not specified by caller
 947   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 948 
 949   // Initial state is ALLOCATED but not INITIALIZED
 950   osthread->set_state(ALLOCATED);
 951 
 952   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 953     // We got lots of threads. Check if we still have some address space left.
 954     // Need to be at least 5Mb of unreserved address space. We do check by
 955     // trying to reserve some.
 956     const size_t VirtualMemoryBangSize = 20*K*K;
 957     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 958     if (mem == NULL) {
 959       delete osthread;
 960       return false;
 961     } else {
 962       // Release the memory again
 963       os::release_memory(mem, VirtualMemoryBangSize);
 964     }
 965   }
 966 
 967   // Setup osthread because the child thread may need it.
 968   thread->set_osthread(osthread);
 969 
 970   // Create the Solaris thread
 971   thread_t tid = 0;
 972   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
 973   int      status;
 974 
 975   // Mark that we don't have an lwp or thread id yet.
 976   // In case we attempt to set the priority before the thread starts.
 977   osthread->set_lwp_id(-1);
 978   osthread->set_thread_id(-1);
 979 
 980   status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
 981 
 982   char buf[64];
 983   if (status == 0) {
 984     log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
 985       (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 986   } else {
 987     log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
 988       os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 989   }
 990 
 991   if (status != 0) {
 992     thread->set_osthread(NULL);
 993     // Need to clean up stuff we've allocated so far
 994     delete osthread;
 995     return false;
 996   }
 997 
 998   Atomic::inc(&os::Solaris::_os_thread_count);
 999 
1000   // Store info on the Solaris thread into the OSThread
1001   osthread->set_thread_id(tid);
1002 
1003   // Remember that we created this thread so we can set priority on it
1004   osthread->set_vm_created();
1005 
1006   // Most thread types will set an explicit priority before starting the thread,
1007   // but for those that don't we need a valid value to read back in thread_native_entry.
1008   osthread->set_native_priority(NormPriority);
1009 
1010   // Initial thread state is INITIALIZED, not SUSPENDED
1011   osthread->set_state(INITIALIZED);
1012 
1013   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1014   return true;
1015 }
1016 
1017 debug_only(static bool signal_sets_initialized = false);
1018 static sigset_t unblocked_sigs, vm_sigs;
1019 
1020 bool os::Solaris::is_sig_ignored(int sig) {
1021   struct sigaction oact;
1022   sigaction(sig, (struct sigaction*)NULL, &oact);
1023   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1024                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1025   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1026     return true;
1027   } else {
1028     return false;
1029   }
1030 }
1031 
1032 void os::Solaris::signal_sets_init() {
1033   // Should also have an assertion stating we are still single-threaded.
1034   assert(!signal_sets_initialized, "Already initialized");
1035   // Fill in signals that are necessarily unblocked for all threads in
1036   // the VM. Currently, we unblock the following signals:
1037   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1038   //                         by -Xrs (=ReduceSignalUsage));
1039   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1040   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1041   // the dispositions or masks wrt these signals.
1042   // Programs embedding the VM that want to use the above signals for their
1043   // own purposes must, at this time, use the "-Xrs" option to prevent
1044   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1045   // (See bug 4345157, and other related bugs).
1046   // In reality, though, unblocking these signals is really a nop, since
1047   // these signals are not blocked by default.
1048   sigemptyset(&unblocked_sigs);
1049   sigaddset(&unblocked_sigs, SIGILL);
1050   sigaddset(&unblocked_sigs, SIGSEGV);
1051   sigaddset(&unblocked_sigs, SIGBUS);
1052   sigaddset(&unblocked_sigs, SIGFPE);
1053   sigaddset(&unblocked_sigs, ASYNC_SIGNAL);
1054 
1055   if (!ReduceSignalUsage) {
1056     if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1057       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1058     }
1059     if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1060       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1061     }
1062     if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1063       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1064     }
1065   }
1066   // Fill in signals that are blocked by all but the VM thread.
1067   sigemptyset(&vm_sigs);
1068   if (!ReduceSignalUsage) {
1069     sigaddset(&vm_sigs, BREAK_SIGNAL);
1070   }
1071   debug_only(signal_sets_initialized = true);
1072 
1073   // For diagnostics only used in run_periodic_checks
1074   sigemptyset(&check_signal_done);
1075 }
1076 
1077 // These are signals that are unblocked while a thread is running Java.
1078 // (For some reason, they get blocked by default.)
1079 sigset_t* os::Solaris::unblocked_signals() {
1080   assert(signal_sets_initialized, "Not initialized");
1081   return &unblocked_sigs;
1082 }
1083 
1084 // These are the signals that are blocked while a (non-VM) thread is
1085 // running Java. Only the VM thread handles these signals.
1086 sigset_t* os::Solaris::vm_signals() {
1087   assert(signal_sets_initialized, "Not initialized");
1088   return &vm_sigs;
1089 }
1090 
1091 void _handle_uncaught_cxx_exception() {
1092   VMError::report_and_die("An uncaught C++ exception");
1093 }
1094 
1095 
1096 // First crack at OS-specific initialization, from inside the new thread.
1097 void os::initialize_thread(Thread* thr) {
1098   int r = thr_main();
1099   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1100   if (r) {
1101     JavaThread* jt = (JavaThread *)thr;
1102     assert(jt != NULL, "Sanity check");
1103     size_t stack_size;
1104     address base = jt->stack_base();
1105     if (Arguments::created_by_java_launcher()) {
1106       // Use 2MB to allow for Solaris 7 64 bit mode.
1107       stack_size = JavaThread::stack_size_at_create() == 0
1108         ? 2048*K : JavaThread::stack_size_at_create();
1109 
1110       // There are rare cases when we may have already used more than
1111       // the basic stack size allotment before this method is invoked.
1112       // Attempt to allow for a normally sized java_stack.
1113       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1114       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1115     } else {
1116       // 6269555: If we were not created by a Java launcher, i.e. if we are
1117       // running embedded in a native application, treat the primordial thread
1118       // as much like a native attached thread as possible.  This means using
1119       // the current stack size from thr_stksegment(), unless it is too large
1120       // to reliably setup guard pages.  A reasonable max size is 8MB.
1121       size_t current_size = current_stack_size();
1122       // This should never happen, but just in case....
1123       if (current_size == 0) current_size = 2 * K * K;
1124       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1125     }
1126     address bottom = align_up(base - stack_size, os::vm_page_size());;
1127     stack_size = (size_t)(base - bottom);
1128 
1129     assert(stack_size > 0, "Stack size calculation problem");
1130 
1131     if (stack_size > jt->stack_size()) {
1132 #ifndef PRODUCT
1133       struct rlimit limits;
1134       getrlimit(RLIMIT_STACK, &limits);
1135       size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1136       assert(size >= jt->stack_size(), "Stack size problem in main thread");
1137 #endif
1138       tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1139                     "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1140                     "See limit(1) to increase the stack size limit.",
1141                     stack_size / K, jt->stack_size() / K);
1142       vm_exit(1);
1143     }
1144     assert(jt->stack_size() >= stack_size,
1145            "Attempt to map more stack than was allocated");
1146     jt->set_stack_size(stack_size);
1147   }
1148 
1149   // With the T2 libthread (T1 is no longer supported) threads are always bound
1150   // and we use stackbanging in all cases.
1151 
1152   os::Solaris::init_thread_fpu_state();
1153   std::set_terminate(_handle_uncaught_cxx_exception);
1154 }
1155 
1156 
1157 
1158 // Free Solaris resources related to the OSThread
1159 void os::free_thread(OSThread* osthread) {
1160   assert(osthread != NULL, "os::free_thread but osthread not set");
1161 
1162   // We are told to free resources of the argument thread,
1163   // but we can only really operate on the current thread.
1164   assert(Thread::current()->osthread() == osthread,
1165          "os::free_thread but not current thread");
1166 
1167   // Restore caller's signal mask
1168   sigset_t sigmask = osthread->caller_sigmask();
1169   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1170 
1171   delete osthread;
1172 }
1173 
1174 void os::pd_start_thread(Thread* thread) {
1175   int status = thr_continue(thread->osthread()->thread_id());
1176   assert_status(status == 0, status, "thr_continue failed");
1177 }
1178 
1179 
1180 intx os::current_thread_id() {
1181   return (intx)thr_self();
1182 }
1183 
1184 static pid_t _initial_pid = 0;
1185 
1186 int os::current_process_id() {
1187   return (int)(_initial_pid ? _initial_pid : getpid());
1188 }
1189 
1190 // gethrtime() should be monotonic according to the documentation,
1191 // but some virtualized platforms are known to break this guarantee.
1192 // getTimeNanos() must be guaranteed not to move backwards, so we
1193 // are forced to add a check here.
1194 inline hrtime_t getTimeNanos() {
1195   const hrtime_t now = gethrtime();
1196   const hrtime_t prev = max_hrtime;
1197   if (now <= prev) {
1198     return prev;   // same or retrograde time;
1199   }
1200   const hrtime_t obsv = Atomic::cmpxchg(now, &max_hrtime, prev);
1201   assert(obsv >= prev, "invariant");   // Monotonicity
1202   // If the CAS succeeded then we're done and return "now".
1203   // If the CAS failed and the observed value "obsv" is >= now then
1204   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1205   // some other thread raced this thread and installed a new value, in which case
1206   // we could either (a) retry the entire operation, (b) retry trying to install now
1207   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1208   // we might discard a higher "now" value in deference to a slightly lower but freshly
1209   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1210   // to (a) or (b) -- and greatly reduces coherence traffic.
1211   // We might also condition (c) on the magnitude of the delta between obsv and now.
1212   // Avoiding excessive CAS operations to hot RW locations is critical.
1213   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1214   return (prev == obsv) ? now : obsv;
1215 }
1216 
1217 // Time since start-up in seconds to a fine granularity.
1218 // Used by VMSelfDestructTimer and the MemProfiler.
1219 double os::elapsedTime() {
1220   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1221 }
1222 
1223 jlong os::elapsed_counter() {
1224   return (jlong)(getTimeNanos() - first_hrtime);
1225 }
1226 
1227 jlong os::elapsed_frequency() {
1228   return hrtime_hz;
1229 }
1230 
1231 // Return the real, user, and system times in seconds from an
1232 // arbitrary fixed point in the past.
1233 bool os::getTimesSecs(double* process_real_time,
1234                       double* process_user_time,
1235                       double* process_system_time) {
1236   struct tms ticks;
1237   clock_t real_ticks = times(&ticks);
1238 
1239   if (real_ticks == (clock_t) (-1)) {
1240     return false;
1241   } else {
1242     double ticks_per_second = (double) clock_tics_per_sec;
1243     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1244     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1245     // For consistency return the real time from getTimeNanos()
1246     // converted to seconds.
1247     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1248 
1249     return true;
1250   }
1251 }
1252 
1253 bool os::supports_vtime() { return true; }
1254 bool os::enable_vtime() { return false; }
1255 bool os::vtime_enabled() { return false; }
1256 
1257 double os::elapsedVTime() {
1258   return (double)gethrvtime() / (double)hrtime_hz;
1259 }
1260 
1261 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1262 jlong os::javaTimeMillis() {
1263   timeval t;
1264   if (gettimeofday(&t, NULL) == -1) {
1265     fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1266   }
1267   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1268 }
1269 
1270 // Must return seconds+nanos since Jan 1 1970. This must use the same
1271 // time source as javaTimeMillis and can't use get_nsec_fromepoch as
1272 // we need better than 1ms accuracy
1273 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1274   timeval t;
1275   if (gettimeofday(&t, NULL) == -1) {
1276     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1277   }
1278   seconds = jlong(t.tv_sec);
1279   nanos = jlong(t.tv_usec) * 1000;
1280 }
1281 
1282 
1283 jlong os::javaTimeNanos() {
1284   return (jlong)getTimeNanos();
1285 }
1286 
1287 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1288   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1289   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1290   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1291   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1292 }
1293 
1294 char * os::local_time_string(char *buf, size_t buflen) {
1295   struct tm t;
1296   time_t long_time;
1297   time(&long_time);
1298   localtime_r(&long_time, &t);
1299   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1300                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1301                t.tm_hour, t.tm_min, t.tm_sec);
1302   return buf;
1303 }
1304 
1305 // Note: os::shutdown() might be called very early during initialization, or
1306 // called from signal handler. Before adding something to os::shutdown(), make
1307 // sure it is async-safe and can handle partially initialized VM.
1308 void os::shutdown() {
1309 
1310   // allow PerfMemory to attempt cleanup of any persistent resources
1311   perfMemory_exit();
1312 
1313   // needs to remove object in file system
1314   AttachListener::abort();
1315 
1316   // flush buffered output, finish log files
1317   ostream_abort();
1318 
1319   // Check for abort hook
1320   abort_hook_t abort_hook = Arguments::abort_hook();
1321   if (abort_hook != NULL) {
1322     abort_hook();
1323   }
1324 }
1325 
1326 // Note: os::abort() might be called very early during initialization, or
1327 // called from signal handler. Before adding something to os::abort(), make
1328 // sure it is async-safe and can handle partially initialized VM.
1329 void os::abort(bool dump_core, void* siginfo, const void* context) {
1330   os::shutdown();
1331   if (dump_core) {
1332 #ifndef PRODUCT
1333     fdStream out(defaultStream::output_fd());
1334     out.print_raw("Current thread is ");
1335     char buf[16];
1336     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1337     out.print_raw_cr(buf);
1338     out.print_raw_cr("Dumping core ...");
1339 #endif
1340     ::abort(); // dump core (for debugging)
1341   }
1342 
1343   ::exit(1);
1344 }
1345 
1346 // Die immediately, no exit hook, no abort hook, no cleanup.
1347 void os::die() {
1348   ::abort(); // dump core (for debugging)
1349 }
1350 
1351 // DLL functions
1352 
1353 const char* os::dll_file_extension() { return ".so"; }
1354 
1355 // This must be hard coded because it's the system's temporary
1356 // directory not the java application's temp directory, ala java.io.tmpdir.
1357 const char* os::get_temp_directory() { return "/tmp"; }
1358 
1359 static bool file_exists(const char* filename) {
1360   struct stat statbuf;
1361   if (filename == NULL || strlen(filename) == 0) {
1362     return false;
1363   }
1364   return os::stat(filename, &statbuf) == 0;
1365 }
1366 
1367 bool os::dll_build_name(char* buffer, size_t buflen,
1368                         const char* pname, const char* fname) {
1369   bool retval = false;
1370   const size_t pnamelen = pname ? strlen(pname) : 0;
1371 
1372   // Return error on buffer overflow.
1373   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1374     return retval;
1375   }
1376 
1377   if (pnamelen == 0) {
1378     snprintf(buffer, buflen, "lib%s.so", fname);
1379     retval = true;
1380   } else if (strchr(pname, *os::path_separator()) != NULL) {
1381     int n;
1382     char** pelements = split_path(pname, &n);
1383     if (pelements == NULL) {
1384       return false;
1385     }
1386     for (int i = 0; i < n; i++) {
1387       // really shouldn't be NULL but what the heck, check can't hurt
1388       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1389         continue; // skip the empty path values
1390       }
1391       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1392       if (file_exists(buffer)) {
1393         retval = true;
1394         break;
1395       }
1396     }
1397     // release the storage
1398     for (int i = 0; i < n; i++) {
1399       if (pelements[i] != NULL) {
1400         FREE_C_HEAP_ARRAY(char, pelements[i]);
1401       }
1402     }
1403     if (pelements != NULL) {
1404       FREE_C_HEAP_ARRAY(char*, pelements);
1405     }
1406   } else {
1407     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1408     retval = true;
1409   }
1410   return retval;
1411 }
1412 
1413 // check if addr is inside libjvm.so
1414 bool os::address_is_in_vm(address addr) {
1415   static address libjvm_base_addr;
1416   Dl_info dlinfo;
1417 
1418   if (libjvm_base_addr == NULL) {
1419     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1420       libjvm_base_addr = (address)dlinfo.dli_fbase;
1421     }
1422     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1423   }
1424 
1425   if (dladdr((void *)addr, &dlinfo) != 0) {
1426     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1427   }
1428 
1429   return false;
1430 }
1431 
1432 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1433 static dladdr1_func_type dladdr1_func = NULL;
1434 
1435 bool os::dll_address_to_function_name(address addr, char *buf,
1436                                       int buflen, int * offset,
1437                                       bool demangle) {
1438   // buf is not optional, but offset is optional
1439   assert(buf != NULL, "sanity check");
1440 
1441   Dl_info dlinfo;
1442 
1443   // dladdr1_func was initialized in os::init()
1444   if (dladdr1_func != NULL) {
1445     // yes, we have dladdr1
1446 
1447     // Support for dladdr1 is checked at runtime; it may be
1448     // available even if the vm is built on a machine that does
1449     // not have dladdr1 support.  Make sure there is a value for
1450     // RTLD_DL_SYMENT.
1451 #ifndef RTLD_DL_SYMENT
1452   #define RTLD_DL_SYMENT 1
1453 #endif
1454 #ifdef _LP64
1455     Elf64_Sym * info;
1456 #else
1457     Elf32_Sym * info;
1458 #endif
1459     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1460                      RTLD_DL_SYMENT) != 0) {
1461       // see if we have a matching symbol that covers our address
1462       if (dlinfo.dli_saddr != NULL &&
1463           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1464         if (dlinfo.dli_sname != NULL) {
1465           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1466             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1467           }
1468           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1469           return true;
1470         }
1471       }
1472       // no matching symbol so try for just file info
1473       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1474         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1475                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1476           return true;
1477         }
1478       }
1479     }
1480     buf[0] = '\0';
1481     if (offset != NULL) *offset  = -1;
1482     return false;
1483   }
1484 
1485   // no, only dladdr is available
1486   if (dladdr((void *)addr, &dlinfo) != 0) {
1487     // see if we have a matching symbol
1488     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1489       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1490         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1491       }
1492       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1493       return true;
1494     }
1495     // no matching symbol so try for just file info
1496     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1497       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1498                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1499         return true;
1500       }
1501     }
1502   }
1503   buf[0] = '\0';
1504   if (offset != NULL) *offset  = -1;
1505   return false;
1506 }
1507 
1508 bool os::dll_address_to_library_name(address addr, char* buf,
1509                                      int buflen, int* offset) {
1510   // buf is not optional, but offset is optional
1511   assert(buf != NULL, "sanity check");
1512 
1513   Dl_info dlinfo;
1514 
1515   if (dladdr((void*)addr, &dlinfo) != 0) {
1516     if (dlinfo.dli_fname != NULL) {
1517       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1518     }
1519     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1520       *offset = addr - (address)dlinfo.dli_fbase;
1521     }
1522     return true;
1523   }
1524 
1525   buf[0] = '\0';
1526   if (offset) *offset = -1;
1527   return false;
1528 }
1529 
1530 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1531   Dl_info dli;
1532   // Sanity check?
1533   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1534       dli.dli_fname == NULL) {
1535     return 1;
1536   }
1537 
1538   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1539   if (handle == NULL) {
1540     return 1;
1541   }
1542 
1543   Link_map *map;
1544   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1545   if (map == NULL) {
1546     dlclose(handle);
1547     return 1;
1548   }
1549 
1550   while (map->l_prev != NULL) {
1551     map = map->l_prev;
1552   }
1553 
1554   while (map != NULL) {
1555     // Iterate through all map entries and call callback with fields of interest
1556     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1557       dlclose(handle);
1558       return 1;
1559     }
1560     map = map->l_next;
1561   }
1562 
1563   dlclose(handle);
1564   return 0;
1565 }
1566 
1567 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1568   outputStream * out = (outputStream *) param;
1569   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1570   return 0;
1571 }
1572 
1573 void os::print_dll_info(outputStream * st) {
1574   st->print_cr("Dynamic libraries:"); st->flush();
1575   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1576     st->print_cr("Error: Cannot print dynamic libraries.");
1577   }
1578 }
1579 
1580 // Loads .dll/.so and
1581 // in case of error it checks if .dll/.so was built for the
1582 // same architecture as Hotspot is running on
1583 
1584 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1585   void * result= ::dlopen(filename, RTLD_LAZY);
1586   if (result != NULL) {
1587     // Successful loading
1588     return result;
1589   }
1590 
1591   Elf32_Ehdr elf_head;
1592 
1593   // Read system error message into ebuf
1594   // It may or may not be overwritten below
1595   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1596   ebuf[ebuflen-1]='\0';
1597   int diag_msg_max_length=ebuflen-strlen(ebuf);
1598   char* diag_msg_buf=ebuf+strlen(ebuf);
1599 
1600   if (diag_msg_max_length==0) {
1601     // No more space in ebuf for additional diagnostics message
1602     return NULL;
1603   }
1604 
1605 
1606   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1607 
1608   if (file_descriptor < 0) {
1609     // Can't open library, report dlerror() message
1610     return NULL;
1611   }
1612 
1613   bool failed_to_read_elf_head=
1614     (sizeof(elf_head)!=
1615      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1616 
1617   ::close(file_descriptor);
1618   if (failed_to_read_elf_head) {
1619     // file i/o error - report dlerror() msg
1620     return NULL;
1621   }
1622 
1623   typedef struct {
1624     Elf32_Half  code;         // Actual value as defined in elf.h
1625     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1626     char        elf_class;    // 32 or 64 bit
1627     char        endianess;    // MSB or LSB
1628     char*       name;         // String representation
1629   } arch_t;
1630 
1631   static const arch_t arch_array[]={
1632     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1633     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1634     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1635     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1636     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1637     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1638     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1639     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1640     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1641     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1642   };
1643 
1644 #if  (defined IA32)
1645   static  Elf32_Half running_arch_code=EM_386;
1646 #elif   (defined AMD64)
1647   static  Elf32_Half running_arch_code=EM_X86_64;
1648 #elif  (defined IA64)
1649   static  Elf32_Half running_arch_code=EM_IA_64;
1650 #elif  (defined __sparc) && (defined _LP64)
1651   static  Elf32_Half running_arch_code=EM_SPARCV9;
1652 #elif  (defined __sparc) && (!defined _LP64)
1653   static  Elf32_Half running_arch_code=EM_SPARC;
1654 #elif  (defined __powerpc64__)
1655   static  Elf32_Half running_arch_code=EM_PPC64;
1656 #elif  (defined __powerpc__)
1657   static  Elf32_Half running_arch_code=EM_PPC;
1658 #elif (defined ARM)
1659   static  Elf32_Half running_arch_code=EM_ARM;
1660 #else
1661   #error Method os::dll_load requires that one of following is defined:\
1662        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1663 #endif
1664 
1665   // Identify compatability class for VM's architecture and library's architecture
1666   // Obtain string descriptions for architectures
1667 
1668   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1669   int running_arch_index=-1;
1670 
1671   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1672     if (running_arch_code == arch_array[i].code) {
1673       running_arch_index    = i;
1674     }
1675     if (lib_arch.code == arch_array[i].code) {
1676       lib_arch.compat_class = arch_array[i].compat_class;
1677       lib_arch.name         = arch_array[i].name;
1678     }
1679   }
1680 
1681   assert(running_arch_index != -1,
1682          "Didn't find running architecture code (running_arch_code) in arch_array");
1683   if (running_arch_index == -1) {
1684     // Even though running architecture detection failed
1685     // we may still continue with reporting dlerror() message
1686     return NULL;
1687   }
1688 
1689   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1690     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1691     return NULL;
1692   }
1693 
1694   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1695     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1696     return NULL;
1697   }
1698 
1699   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1700     if (lib_arch.name!=NULL) {
1701       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1702                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1703                  lib_arch.name, arch_array[running_arch_index].name);
1704     } else {
1705       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1706                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1707                  lib_arch.code,
1708                  arch_array[running_arch_index].name);
1709     }
1710   }
1711 
1712   return NULL;
1713 }
1714 
1715 void* os::dll_lookup(void* handle, const char* name) {
1716   return dlsym(handle, name);
1717 }
1718 
1719 void* os::get_default_process_handle() {
1720   return (void*)::dlopen(NULL, RTLD_LAZY);
1721 }
1722 
1723 int os::stat(const char *path, struct stat *sbuf) {
1724   char pathbuf[MAX_PATH];
1725   if (strlen(path) > MAX_PATH - 1) {
1726     errno = ENAMETOOLONG;
1727     return -1;
1728   }
1729   os::native_path(strcpy(pathbuf, path));
1730   return ::stat(pathbuf, sbuf);
1731 }
1732 
1733 static inline time_t get_mtime(const char* filename) {
1734   struct stat st;
1735   int ret = os::stat(filename, &st);
1736   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1737   return st.st_mtime;
1738 }
1739 
1740 int os::compare_file_modified_times(const char* file1, const char* file2) {
1741   time_t t1 = get_mtime(file1);
1742   time_t t2 = get_mtime(file2);
1743   return t1 - t2;
1744 }
1745 
1746 static bool _print_ascii_file(const char* filename, outputStream* st) {
1747   int fd = ::open(filename, O_RDONLY);
1748   if (fd == -1) {
1749     return false;
1750   }
1751 
1752   char buf[32];
1753   int bytes;
1754   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1755     st->print_raw(buf, bytes);
1756   }
1757 
1758   ::close(fd);
1759 
1760   return true;
1761 }
1762 
1763 void os::print_os_info_brief(outputStream* st) {
1764   os::Solaris::print_distro_info(st);
1765 
1766   os::Posix::print_uname_info(st);
1767 
1768   os::Solaris::print_libversion_info(st);
1769 }
1770 
1771 void os::print_os_info(outputStream* st) {
1772   st->print("OS:");
1773 
1774   os::Solaris::print_distro_info(st);
1775 
1776   os::Posix::print_uname_info(st);
1777 
1778   os::Solaris::print_libversion_info(st);
1779 
1780   os::Posix::print_rlimit_info(st);
1781 
1782   os::Posix::print_load_average(st);
1783 }
1784 
1785 void os::Solaris::print_distro_info(outputStream* st) {
1786   if (!_print_ascii_file("/etc/release", st)) {
1787     st->print("Solaris");
1788   }
1789   st->cr();
1790 }
1791 
1792 void os::get_summary_os_info(char* buf, size_t buflen) {
1793   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1794   FILE* fp = fopen("/etc/release", "r");
1795   if (fp != NULL) {
1796     char tmp[256];
1797     // Only get the first line and chop out everything but the os name.
1798     if (fgets(tmp, sizeof(tmp), fp)) {
1799       char* ptr = tmp;
1800       // skip past whitespace characters
1801       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1802       if (*ptr != '\0') {
1803         char* nl = strchr(ptr, '\n');
1804         if (nl != NULL) *nl = '\0';
1805         strncpy(buf, ptr, buflen);
1806       }
1807     }
1808     fclose(fp);
1809   }
1810 }
1811 
1812 void os::Solaris::print_libversion_info(outputStream* st) {
1813   st->print("  (T2 libthread)");
1814   st->cr();
1815 }
1816 
1817 static bool check_addr0(outputStream* st) {
1818   jboolean status = false;
1819   const int read_chunk = 200;
1820   int ret = 0;
1821   int nmap = 0;
1822   int fd = ::open("/proc/self/map",O_RDONLY);
1823   if (fd >= 0) {
1824     prmap_t *p = NULL;
1825     char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1826     if (NULL == mbuff) {
1827       ::close(fd);
1828       return status;
1829     }
1830     while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1831       //check if read() has not read partial data
1832       if( 0 != ret % sizeof(prmap_t)){
1833         break;
1834       }
1835       nmap = ret / sizeof(prmap_t);
1836       p = (prmap_t *)mbuff;
1837       for(int i = 0; i < nmap; i++){
1838         if (p->pr_vaddr == 0x0) {
1839           st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1840           st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1841           st->print("Access: ");
1842           st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1843           st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1844           st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1845           st->cr();
1846           status = true;
1847         }
1848         p++;
1849       }
1850     }
1851     free(mbuff);
1852     ::close(fd);
1853   }
1854   return status;
1855 }
1856 
1857 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1858   // Get MHz with system call. We don't seem to already have this.
1859   processor_info_t stats;
1860   processorid_t id = getcpuid();
1861   int clock = 0;
1862   if (processor_info(id, &stats) != -1) {
1863     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1864   }
1865 #ifdef AMD64
1866   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1867 #else
1868   // must be sparc
1869   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1870 #endif
1871 }
1872 
1873 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1874   // Nothing to do for now.
1875 }
1876 
1877 void os::print_memory_info(outputStream* st) {
1878   st->print("Memory:");
1879   st->print(" %dk page", os::vm_page_size()>>10);
1880   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1881   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1882   st->cr();
1883   (void) check_addr0(st);
1884 }
1885 
1886 // Moved from whole group, because we need them here for diagnostic
1887 // prints.
1888 static int Maxsignum = 0;
1889 static int *ourSigFlags = NULL;
1890 
1891 int os::Solaris::get_our_sigflags(int sig) {
1892   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1893   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1894   return ourSigFlags[sig];
1895 }
1896 
1897 void os::Solaris::set_our_sigflags(int sig, int flags) {
1898   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1899   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1900   ourSigFlags[sig] = flags;
1901 }
1902 
1903 
1904 static const char* get_signal_handler_name(address handler,
1905                                            char* buf, int buflen) {
1906   int offset;
1907   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1908   if (found) {
1909     // skip directory names
1910     const char *p1, *p2;
1911     p1 = buf;
1912     size_t len = strlen(os::file_separator());
1913     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1914     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1915   } else {
1916     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1917   }
1918   return buf;
1919 }
1920 
1921 static void print_signal_handler(outputStream* st, int sig,
1922                                  char* buf, size_t buflen) {
1923   struct sigaction sa;
1924 
1925   sigaction(sig, NULL, &sa);
1926 
1927   st->print("%s: ", os::exception_name(sig, buf, buflen));
1928 
1929   address handler = (sa.sa_flags & SA_SIGINFO)
1930                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1931                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
1932 
1933   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1934     st->print("SIG_DFL");
1935   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1936     st->print("SIG_IGN");
1937   } else {
1938     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1939   }
1940 
1941   st->print(", sa_mask[0]=");
1942   os::Posix::print_signal_set_short(st, &sa.sa_mask);
1943 
1944   address rh = VMError::get_resetted_sighandler(sig);
1945   // May be, handler was resetted by VMError?
1946   if (rh != NULL) {
1947     handler = rh;
1948     sa.sa_flags = VMError::get_resetted_sigflags(sig);
1949   }
1950 
1951   st->print(", sa_flags=");
1952   os::Posix::print_sa_flags(st, sa.sa_flags);
1953 
1954   // Check: is it our handler?
1955   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1956     // It is our signal handler
1957     // check for flags
1958     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1959       st->print(
1960                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1961                 os::Solaris::get_our_sigflags(sig));
1962     }
1963   }
1964   st->cr();
1965 }
1966 
1967 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1968   st->print_cr("Signal Handlers:");
1969   print_signal_handler(st, SIGSEGV, buf, buflen);
1970   print_signal_handler(st, SIGBUS , buf, buflen);
1971   print_signal_handler(st, SIGFPE , buf, buflen);
1972   print_signal_handler(st, SIGPIPE, buf, buflen);
1973   print_signal_handler(st, SIGXFSZ, buf, buflen);
1974   print_signal_handler(st, SIGILL , buf, buflen);
1975   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
1976   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1977   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
1978   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1979   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
1980 }
1981 
1982 static char saved_jvm_path[MAXPATHLEN] = { 0 };
1983 
1984 // Find the full path to the current module, libjvm.so
1985 void os::jvm_path(char *buf, jint buflen) {
1986   // Error checking.
1987   if (buflen < MAXPATHLEN) {
1988     assert(false, "must use a large-enough buffer");
1989     buf[0] = '\0';
1990     return;
1991   }
1992   // Lazy resolve the path to current module.
1993   if (saved_jvm_path[0] != 0) {
1994     strcpy(buf, saved_jvm_path);
1995     return;
1996   }
1997 
1998   Dl_info dlinfo;
1999   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2000   assert(ret != 0, "cannot locate libjvm");
2001   if (ret != 0 && dlinfo.dli_fname != NULL) {
2002     if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
2003       return;
2004     }
2005   } else {
2006     buf[0] = '\0';
2007     return;
2008   }
2009 
2010   if (Arguments::sun_java_launcher_is_altjvm()) {
2011     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2012     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2013     // If "/jre/lib/" appears at the right place in the string, then
2014     // assume we are installed in a JDK and we're done.  Otherwise, check
2015     // for a JAVA_HOME environment variable and fix up the path so it
2016     // looks like libjvm.so is installed there (append a fake suffix
2017     // hotspot/libjvm.so).
2018     const char *p = buf + strlen(buf) - 1;
2019     for (int count = 0; p > buf && count < 5; ++count) {
2020       for (--p; p > buf && *p != '/'; --p)
2021         /* empty */ ;
2022     }
2023 
2024     if (strncmp(p, "/jre/lib/", 9) != 0) {
2025       // Look for JAVA_HOME in the environment.
2026       char* java_home_var = ::getenv("JAVA_HOME");
2027       if (java_home_var != NULL && java_home_var[0] != 0) {
2028         char* jrelib_p;
2029         int   len;
2030 
2031         // Check the current module name "libjvm.so".
2032         p = strrchr(buf, '/');
2033         assert(strstr(p, "/libjvm") == p, "invalid library name");
2034 
2035         if (os::Posix::realpath(java_home_var, buf, buflen) == NULL) {
2036           return;
2037         }
2038         // determine if this is a legacy image or modules image
2039         // modules image doesn't have "jre" subdirectory
2040         len = strlen(buf);
2041         assert(len < buflen, "Ran out of buffer space");
2042         jrelib_p = buf + len;
2043         snprintf(jrelib_p, buflen-len, "/jre/lib");
2044         if (0 != access(buf, F_OK)) {
2045           snprintf(jrelib_p, buflen-len, "/lib");
2046         }
2047 
2048         if (0 == access(buf, F_OK)) {
2049           // Use current module name "libjvm.so"
2050           len = strlen(buf);
2051           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2052         } else {
2053           // Go back to path of .so
2054           if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
2055             return;
2056           }
2057         }
2058       }
2059     }
2060   }
2061 
2062   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2063   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2064 }
2065 
2066 
2067 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2068   // no prefix required, not even "_"
2069 }
2070 
2071 
2072 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2073   // no suffix required
2074 }
2075 
2076 // This method is a copy of JDK's sysGetLastErrorString
2077 // from src/solaris/hpi/src/system_md.c
2078 
2079 size_t os::lasterror(char *buf, size_t len) {
2080   if (errno == 0)  return 0;
2081 
2082   const char *s = os::strerror(errno);
2083   size_t n = ::strlen(s);
2084   if (n >= len) {
2085     n = len - 1;
2086   }
2087   ::strncpy(buf, s, n);
2088   buf[n] = '\0';
2089   return n;
2090 }
2091 
2092 
2093 // sun.misc.Signal
2094 
2095 extern "C" {
2096   static void UserHandler(int sig, void *siginfo, void *context) {
2097     // Ctrl-C is pressed during error reporting, likely because the error
2098     // handler fails to abort. Let VM die immediately.
2099     if (sig == SIGINT && VMError::is_error_reported()) {
2100       os::die();
2101     }
2102 
2103     os::signal_notify(sig);
2104     // We do not need to reinstate the signal handler each time...
2105   }
2106 }
2107 
2108 void* os::user_handler() {
2109   return CAST_FROM_FN_PTR(void*, UserHandler);
2110 }
2111 
2112 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2113   struct timespec ts;
2114   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2115 
2116   return ts;
2117 }
2118 
2119 extern "C" {
2120   typedef void (*sa_handler_t)(int);
2121   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2122 }
2123 
2124 void* os::signal(int signal_number, void* handler) {
2125   struct sigaction sigAct, oldSigAct;
2126   sigfillset(&(sigAct.sa_mask));
2127   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2128   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2129 
2130   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2131     // -1 means registration failed
2132     return (void *)-1;
2133   }
2134 
2135   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2136 }
2137 
2138 void os::signal_raise(int signal_number) {
2139   raise(signal_number);
2140 }
2141 
2142 // The following code is moved from os.cpp for making this
2143 // code platform specific, which it is by its very nature.
2144 
2145 // a counter for each possible signal value
2146 static int Sigexit = 0;
2147 static jint *pending_signals = NULL;
2148 static int *preinstalled_sigs = NULL;
2149 static struct sigaction *chainedsigactions = NULL;
2150 static sema_t sig_sem;
2151 typedef int (*version_getting_t)();
2152 version_getting_t os::Solaris::get_libjsig_version = NULL;
2153 
2154 int os::sigexitnum_pd() {
2155   assert(Sigexit > 0, "signal memory not yet initialized");
2156   return Sigexit;
2157 }
2158 
2159 void os::Solaris::init_signal_mem() {
2160   // Initialize signal structures
2161   Maxsignum = SIGRTMAX;
2162   Sigexit = Maxsignum+1;
2163   assert(Maxsignum >0, "Unable to obtain max signal number");
2164 
2165   // pending_signals has one int per signal
2166   // The additional signal is for SIGEXIT - exit signal to signal_thread
2167   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2168   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2169 
2170   if (UseSignalChaining) {
2171     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2172                                                    * (Maxsignum + 1), mtInternal);
2173     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2174     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2175     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2176   }
2177   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2178   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2179 }
2180 
2181 void os::signal_init_pd() {
2182   int ret;
2183 
2184   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2185   assert(ret == 0, "sema_init() failed");
2186 }
2187 
2188 void os::signal_notify(int signal_number) {
2189   int ret;
2190 
2191   Atomic::inc(&pending_signals[signal_number]);
2192   ret = ::sema_post(&sig_sem);
2193   assert(ret == 0, "sema_post() failed");
2194 }
2195 
2196 static int check_pending_signals(bool wait_for_signal) {
2197   int ret;
2198   while (true) {
2199     for (int i = 0; i < Sigexit + 1; i++) {
2200       jint n = pending_signals[i];
2201       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2202         return i;
2203       }
2204     }
2205     if (!wait_for_signal) {
2206       return -1;
2207     }
2208     JavaThread *thread = JavaThread::current();
2209     ThreadBlockInVM tbivm(thread);
2210 
2211     bool threadIsSuspended;
2212     do {
2213       thread->set_suspend_equivalent();
2214       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2215       while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2216         ;
2217       assert(ret == 0, "sema_wait() failed");
2218 
2219       // were we externally suspended while we were waiting?
2220       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2221       if (threadIsSuspended) {
2222         // The semaphore has been incremented, but while we were waiting
2223         // another thread suspended us. We don't want to continue running
2224         // while suspended because that would surprise the thread that
2225         // suspended us.
2226         ret = ::sema_post(&sig_sem);
2227         assert(ret == 0, "sema_post() failed");
2228 
2229         thread->java_suspend_self();
2230       }
2231     } while (threadIsSuspended);
2232   }
2233 }
2234 
2235 int os::signal_lookup() {
2236   return check_pending_signals(false);
2237 }
2238 
2239 int os::signal_wait() {
2240   return check_pending_signals(true);
2241 }
2242 
2243 ////////////////////////////////////////////////////////////////////////////////
2244 // Virtual Memory
2245 
2246 static int page_size = -1;
2247 
2248 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2249 // clear this var if support is not available.
2250 static bool has_map_align = true;
2251 
2252 int os::vm_page_size() {
2253   assert(page_size != -1, "must call os::init");
2254   return page_size;
2255 }
2256 
2257 // Solaris allocates memory by pages.
2258 int os::vm_allocation_granularity() {
2259   assert(page_size != -1, "must call os::init");
2260   return page_size;
2261 }
2262 
2263 static bool recoverable_mmap_error(int err) {
2264   // See if the error is one we can let the caller handle. This
2265   // list of errno values comes from the Solaris mmap(2) man page.
2266   switch (err) {
2267   case EBADF:
2268   case EINVAL:
2269   case ENOTSUP:
2270     // let the caller deal with these errors
2271     return true;
2272 
2273   default:
2274     // Any remaining errors on this OS can cause our reserved mapping
2275     // to be lost. That can cause confusion where different data
2276     // structures think they have the same memory mapped. The worst
2277     // scenario is if both the VM and a library think they have the
2278     // same memory mapped.
2279     return false;
2280   }
2281 }
2282 
2283 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2284                                     int err) {
2285   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2286           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2287           os::strerror(err), err);
2288 }
2289 
2290 static void warn_fail_commit_memory(char* addr, size_t bytes,
2291                                     size_t alignment_hint, bool exec,
2292                                     int err) {
2293   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2294           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2295           alignment_hint, exec, os::strerror(err), err);
2296 }
2297 
2298 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2299   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2300   size_t size = bytes;
2301   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2302   if (res != NULL) {
2303     if (UseNUMAInterleaving) {
2304       numa_make_global(addr, bytes);
2305     }
2306     return 0;
2307   }
2308 
2309   int err = errno;  // save errno from mmap() call in mmap_chunk()
2310 
2311   if (!recoverable_mmap_error(err)) {
2312     warn_fail_commit_memory(addr, bytes, exec, err);
2313     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2314   }
2315 
2316   return err;
2317 }
2318 
2319 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2320   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2321 }
2322 
2323 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2324                                   const char* mesg) {
2325   assert(mesg != NULL, "mesg must be specified");
2326   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2327   if (err != 0) {
2328     // the caller wants all commit errors to exit with the specified mesg:
2329     warn_fail_commit_memory(addr, bytes, exec, err);
2330     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2331   }
2332 }
2333 
2334 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2335   assert(is_aligned(alignment, (size_t) vm_page_size()),
2336          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2337          alignment, (size_t) vm_page_size());
2338 
2339   for (int i = 0; _page_sizes[i] != 0; i++) {
2340     if (is_aligned(alignment, _page_sizes[i])) {
2341       return _page_sizes[i];
2342     }
2343   }
2344 
2345   return (size_t) vm_page_size();
2346 }
2347 
2348 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2349                                     size_t alignment_hint, bool exec) {
2350   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2351   if (err == 0 && UseLargePages && alignment_hint > 0) {
2352     assert(is_aligned(bytes, alignment_hint),
2353            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2354 
2355     // The syscall memcntl requires an exact page size (see man memcntl for details).
2356     size_t page_size = page_size_for_alignment(alignment_hint);
2357     if (page_size > (size_t) vm_page_size()) {
2358       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2359     }
2360   }
2361   return err;
2362 }
2363 
2364 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2365                           bool exec) {
2366   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2367 }
2368 
2369 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2370                                   size_t alignment_hint, bool exec,
2371                                   const char* mesg) {
2372   assert(mesg != NULL, "mesg must be specified");
2373   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2374   if (err != 0) {
2375     // the caller wants all commit errors to exit with the specified mesg:
2376     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2377     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2378   }
2379 }
2380 
2381 // Uncommit the pages in a specified region.
2382 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2383   if (madvise(addr, bytes, MADV_FREE) < 0) {
2384     debug_only(warning("MADV_FREE failed."));
2385     return;
2386   }
2387 }
2388 
2389 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2390   return os::commit_memory(addr, size, !ExecMem);
2391 }
2392 
2393 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2394   return os::uncommit_memory(addr, size);
2395 }
2396 
2397 // Change the page size in a given range.
2398 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2399   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2400   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2401   if (UseLargePages) {
2402     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2403     if (page_size > (size_t) vm_page_size()) {
2404       Solaris::setup_large_pages(addr, bytes, page_size);
2405     }
2406   }
2407 }
2408 
2409 // Tell the OS to make the range local to the first-touching LWP
2410 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2411   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2412   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2413     debug_only(warning("MADV_ACCESS_LWP failed."));
2414   }
2415 }
2416 
2417 // Tell the OS that this range would be accessed from different LWPs.
2418 void os::numa_make_global(char *addr, size_t bytes) {
2419   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2420   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2421     debug_only(warning("MADV_ACCESS_MANY failed."));
2422   }
2423 }
2424 
2425 // Get the number of the locality groups.
2426 size_t os::numa_get_groups_num() {
2427   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2428   return n != -1 ? n : 1;
2429 }
2430 
2431 // Get a list of leaf locality groups. A leaf lgroup is group that
2432 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2433 // board. An LWP is assigned to one of these groups upon creation.
2434 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2435   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2436     ids[0] = 0;
2437     return 1;
2438   }
2439   int result_size = 0, top = 1, bottom = 0, cur = 0;
2440   for (int k = 0; k < size; k++) {
2441     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2442                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2443     if (r == -1) {
2444       ids[0] = 0;
2445       return 1;
2446     }
2447     if (!r) {
2448       // That's a leaf node.
2449       assert(bottom <= cur, "Sanity check");
2450       // Check if the node has memory
2451       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2452                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2453         ids[bottom++] = ids[cur];
2454       }
2455     }
2456     top += r;
2457     cur++;
2458   }
2459   if (bottom == 0) {
2460     // Handle a situation, when the OS reports no memory available.
2461     // Assume UMA architecture.
2462     ids[0] = 0;
2463     return 1;
2464   }
2465   return bottom;
2466 }
2467 
2468 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2469 bool os::numa_topology_changed() {
2470   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2471   if (is_stale != -1 && is_stale) {
2472     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2473     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2474     assert(c != 0, "Failure to initialize LGRP API");
2475     Solaris::set_lgrp_cookie(c);
2476     return true;
2477   }
2478   return false;
2479 }
2480 
2481 // Get the group id of the current LWP.
2482 int os::numa_get_group_id() {
2483   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2484   if (lgrp_id == -1) {
2485     return 0;
2486   }
2487   const int size = os::numa_get_groups_num();
2488   int *ids = (int*)alloca(size * sizeof(int));
2489 
2490   // Get the ids of all lgroups with memory; r is the count.
2491   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2492                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2493   if (r <= 0) {
2494     return 0;
2495   }
2496   return ids[os::random() % r];
2497 }
2498 
2499 // Request information about the page.
2500 bool os::get_page_info(char *start, page_info* info) {
2501   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2502   uint64_t addr = (uintptr_t)start;
2503   uint64_t outdata[2];
2504   uint_t validity = 0;
2505 
2506   if (meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2507     return false;
2508   }
2509 
2510   info->size = 0;
2511   info->lgrp_id = -1;
2512 
2513   if ((validity & 1) != 0) {
2514     if ((validity & 2) != 0) {
2515       info->lgrp_id = outdata[0];
2516     }
2517     if ((validity & 4) != 0) {
2518       info->size = outdata[1];
2519     }
2520     return true;
2521   }
2522   return false;
2523 }
2524 
2525 // Scan the pages from start to end until a page different than
2526 // the one described in the info parameter is encountered.
2527 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2528                      page_info* page_found) {
2529   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2530   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2531   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2532   uint_t validity[MAX_MEMINFO_CNT];
2533 
2534   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2535   uint64_t p = (uint64_t)start;
2536   while (p < (uint64_t)end) {
2537     addrs[0] = p;
2538     size_t addrs_count = 1;
2539     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2540       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2541       addrs_count++;
2542     }
2543 
2544     if (meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2545       return NULL;
2546     }
2547 
2548     size_t i = 0;
2549     for (; i < addrs_count; i++) {
2550       if ((validity[i] & 1) != 0) {
2551         if ((validity[i] & 4) != 0) {
2552           if (outdata[types * i + 1] != page_expected->size) {
2553             break;
2554           }
2555         } else if (page_expected->size != 0) {
2556           break;
2557         }
2558 
2559         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2560           if (outdata[types * i] != page_expected->lgrp_id) {
2561             break;
2562           }
2563         }
2564       } else {
2565         return NULL;
2566       }
2567     }
2568 
2569     if (i < addrs_count) {
2570       if ((validity[i] & 2) != 0) {
2571         page_found->lgrp_id = outdata[types * i];
2572       } else {
2573         page_found->lgrp_id = -1;
2574       }
2575       if ((validity[i] & 4) != 0) {
2576         page_found->size = outdata[types * i + 1];
2577       } else {
2578         page_found->size = 0;
2579       }
2580       return (char*)addrs[i];
2581     }
2582 
2583     p = addrs[addrs_count - 1] + page_size;
2584   }
2585   return end;
2586 }
2587 
2588 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2589   size_t size = bytes;
2590   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2591   // uncommitted page. Otherwise, the read/write might succeed if we
2592   // have enough swap space to back the physical page.
2593   return
2594     NULL != Solaris::mmap_chunk(addr, size,
2595                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2596                                 PROT_NONE);
2597 }
2598 
2599 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2600   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2601 
2602   if (b == MAP_FAILED) {
2603     return NULL;
2604   }
2605   return b;
2606 }
2607 
2608 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2609                              size_t alignment_hint, bool fixed) {
2610   char* addr = requested_addr;
2611   int flags = MAP_PRIVATE | MAP_NORESERVE;
2612 
2613   assert(!(fixed && (alignment_hint > 0)),
2614          "alignment hint meaningless with fixed mmap");
2615 
2616   if (fixed) {
2617     flags |= MAP_FIXED;
2618   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2619     flags |= MAP_ALIGN;
2620     addr = (char*) alignment_hint;
2621   }
2622 
2623   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2624   // uncommitted page. Otherwise, the read/write might succeed if we
2625   // have enough swap space to back the physical page.
2626   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2627 }
2628 
2629 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2630                             size_t alignment_hint) {
2631   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2632                                   (requested_addr != NULL));
2633 
2634   guarantee(requested_addr == NULL || requested_addr == addr,
2635             "OS failed to return requested mmap address.");
2636   return addr;
2637 }
2638 
2639 // Reserve memory at an arbitrary address, only if that area is
2640 // available (and not reserved for something else).
2641 
2642 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2643   const int max_tries = 10;
2644   char* base[max_tries];
2645   size_t size[max_tries];
2646 
2647   // Solaris adds a gap between mmap'ed regions.  The size of the gap
2648   // is dependent on the requested size and the MMU.  Our initial gap
2649   // value here is just a guess and will be corrected later.
2650   bool had_top_overlap = false;
2651   bool have_adjusted_gap = false;
2652   size_t gap = 0x400000;
2653 
2654   // Assert only that the size is a multiple of the page size, since
2655   // that's all that mmap requires, and since that's all we really know
2656   // about at this low abstraction level.  If we need higher alignment,
2657   // we can either pass an alignment to this method or verify alignment
2658   // in one of the methods further up the call chain.  See bug 5044738.
2659   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2660 
2661   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2662   // Give it a try, if the kernel honors the hint we can return immediately.
2663   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2664 
2665   volatile int err = errno;
2666   if (addr == requested_addr) {
2667     return addr;
2668   } else if (addr != NULL) {
2669     pd_unmap_memory(addr, bytes);
2670   }
2671 
2672   if (log_is_enabled(Warning, os)) {
2673     char buf[256];
2674     buf[0] = '\0';
2675     if (addr == NULL) {
2676       jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2677     }
2678     log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2679             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2680             "%s", bytes, requested_addr, addr, buf);
2681   }
2682 
2683   // Address hint method didn't work.  Fall back to the old method.
2684   // In theory, once SNV becomes our oldest supported platform, this
2685   // code will no longer be needed.
2686   //
2687   // Repeatedly allocate blocks until the block is allocated at the
2688   // right spot. Give up after max_tries.
2689   int i;
2690   for (i = 0; i < max_tries; ++i) {
2691     base[i] = reserve_memory(bytes);
2692 
2693     if (base[i] != NULL) {
2694       // Is this the block we wanted?
2695       if (base[i] == requested_addr) {
2696         size[i] = bytes;
2697         break;
2698       }
2699 
2700       // check that the gap value is right
2701       if (had_top_overlap && !have_adjusted_gap) {
2702         size_t actual_gap = base[i-1] - base[i] - bytes;
2703         if (gap != actual_gap) {
2704           // adjust the gap value and retry the last 2 allocations
2705           assert(i > 0, "gap adjustment code problem");
2706           have_adjusted_gap = true;  // adjust the gap only once, just in case
2707           gap = actual_gap;
2708           log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2709           unmap_memory(base[i], bytes);
2710           unmap_memory(base[i-1], size[i-1]);
2711           i-=2;
2712           continue;
2713         }
2714       }
2715 
2716       // Does this overlap the block we wanted? Give back the overlapped
2717       // parts and try again.
2718       //
2719       // There is still a bug in this code: if top_overlap == bytes,
2720       // the overlap is offset from requested region by the value of gap.
2721       // In this case giving back the overlapped part will not work,
2722       // because we'll give back the entire block at base[i] and
2723       // therefore the subsequent allocation will not generate a new gap.
2724       // This could be fixed with a new algorithm that used larger
2725       // or variable size chunks to find the requested region -
2726       // but such a change would introduce additional complications.
2727       // It's rare enough that the planets align for this bug,
2728       // so we'll just wait for a fix for 6204603/5003415 which
2729       // will provide a mmap flag to allow us to avoid this business.
2730 
2731       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2732       if (top_overlap >= 0 && top_overlap < bytes) {
2733         had_top_overlap = true;
2734         unmap_memory(base[i], top_overlap);
2735         base[i] += top_overlap;
2736         size[i] = bytes - top_overlap;
2737       } else {
2738         size_t bottom_overlap = base[i] + bytes - requested_addr;
2739         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2740           if (bottom_overlap == 0) {
2741             log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2742           }
2743           unmap_memory(requested_addr, bottom_overlap);
2744           size[i] = bytes - bottom_overlap;
2745         } else {
2746           size[i] = bytes;
2747         }
2748       }
2749     }
2750   }
2751 
2752   // Give back the unused reserved pieces.
2753 
2754   for (int j = 0; j < i; ++j) {
2755     if (base[j] != NULL) {
2756       unmap_memory(base[j], size[j]);
2757     }
2758   }
2759 
2760   return (i < max_tries) ? requested_addr : NULL;
2761 }
2762 
2763 bool os::pd_release_memory(char* addr, size_t bytes) {
2764   size_t size = bytes;
2765   return munmap(addr, size) == 0;
2766 }
2767 
2768 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2769   assert(addr == (char*)align_down((uintptr_t)addr, os::vm_page_size()),
2770          "addr must be page aligned");
2771   int retVal = mprotect(addr, bytes, prot);
2772   return retVal == 0;
2773 }
2774 
2775 // Protect memory (Used to pass readonly pages through
2776 // JNI GetArray<type>Elements with empty arrays.)
2777 // Also, used for serialization page and for compressed oops null pointer
2778 // checking.
2779 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2780                         bool is_committed) {
2781   unsigned int p = 0;
2782   switch (prot) {
2783   case MEM_PROT_NONE: p = PROT_NONE; break;
2784   case MEM_PROT_READ: p = PROT_READ; break;
2785   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2786   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2787   default:
2788     ShouldNotReachHere();
2789   }
2790   // is_committed is unused.
2791   return solaris_mprotect(addr, bytes, p);
2792 }
2793 
2794 // guard_memory and unguard_memory only happens within stack guard pages.
2795 // Since ISM pertains only to the heap, guard and unguard memory should not
2796 /// happen with an ISM region.
2797 bool os::guard_memory(char* addr, size_t bytes) {
2798   return solaris_mprotect(addr, bytes, PROT_NONE);
2799 }
2800 
2801 bool os::unguard_memory(char* addr, size_t bytes) {
2802   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2803 }
2804 
2805 // Large page support
2806 static size_t _large_page_size = 0;
2807 
2808 // Insertion sort for small arrays (descending order).
2809 static void insertion_sort_descending(size_t* array, int len) {
2810   for (int i = 0; i < len; i++) {
2811     size_t val = array[i];
2812     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2813       size_t tmp = array[key];
2814       array[key] = array[key - 1];
2815       array[key - 1] = tmp;
2816     }
2817   }
2818 }
2819 
2820 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2821   const unsigned int usable_count = VM_Version::page_size_count();
2822   if (usable_count == 1) {
2823     return false;
2824   }
2825 
2826   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2827   // build platform, getpagesizes() (without the '2') can be called directly.
2828   typedef int (*gps_t)(size_t[], int);
2829   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2830   if (gps_func == NULL) {
2831     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2832     if (gps_func == NULL) {
2833       if (warn) {
2834         warning("MPSS is not supported by the operating system.");
2835       }
2836       return false;
2837     }
2838   }
2839 
2840   // Fill the array of page sizes.
2841   int n = (*gps_func)(_page_sizes, page_sizes_max);
2842   assert(n > 0, "Solaris bug?");
2843 
2844   if (n == page_sizes_max) {
2845     // Add a sentinel value (necessary only if the array was completely filled
2846     // since it is static (zeroed at initialization)).
2847     _page_sizes[--n] = 0;
2848     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2849   }
2850   assert(_page_sizes[n] == 0, "missing sentinel");
2851   trace_page_sizes("available page sizes", _page_sizes, n);
2852 
2853   if (n == 1) return false;     // Only one page size available.
2854 
2855   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2856   // select up to usable_count elements.  First sort the array, find the first
2857   // acceptable value, then copy the usable sizes to the top of the array and
2858   // trim the rest.  Make sure to include the default page size :-).
2859   //
2860   // A better policy could get rid of the 4M limit by taking the sizes of the
2861   // important VM memory regions (java heap and possibly the code cache) into
2862   // account.
2863   insertion_sort_descending(_page_sizes, n);
2864   const size_t size_limit =
2865     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2866   int beg;
2867   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2868   const int end = MIN2((int)usable_count, n) - 1;
2869   for (int cur = 0; cur < end; ++cur, ++beg) {
2870     _page_sizes[cur] = _page_sizes[beg];
2871   }
2872   _page_sizes[end] = vm_page_size();
2873   _page_sizes[end + 1] = 0;
2874 
2875   if (_page_sizes[end] > _page_sizes[end - 1]) {
2876     // Default page size is not the smallest; sort again.
2877     insertion_sort_descending(_page_sizes, end + 1);
2878   }
2879   *page_size = _page_sizes[0];
2880 
2881   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2882   return true;
2883 }
2884 
2885 void os::large_page_init() {
2886   if (UseLargePages) {
2887     // print a warning if any large page related flag is specified on command line
2888     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2889                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2890 
2891     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2892   }
2893 }
2894 
2895 bool os::Solaris::is_valid_page_size(size_t bytes) {
2896   for (int i = 0; _page_sizes[i] != 0; i++) {
2897     if (_page_sizes[i] == bytes) {
2898       return true;
2899     }
2900   }
2901   return false;
2902 }
2903 
2904 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2905   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2906   assert(is_aligned((void*) start, align),
2907          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2908   assert(is_aligned(bytes, align),
2909          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2910 
2911   // Signal to OS that we want large pages for addresses
2912   // from addr, addr + bytes
2913   struct memcntl_mha mpss_struct;
2914   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2915   mpss_struct.mha_pagesize = align;
2916   mpss_struct.mha_flags = 0;
2917   // Upon successful completion, memcntl() returns 0
2918   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2919     debug_only(warning("Attempt to use MPSS failed."));
2920     return false;
2921   }
2922   return true;
2923 }
2924 
2925 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2926   fatal("os::reserve_memory_special should not be called on Solaris.");
2927   return NULL;
2928 }
2929 
2930 bool os::release_memory_special(char* base, size_t bytes) {
2931   fatal("os::release_memory_special should not be called on Solaris.");
2932   return false;
2933 }
2934 
2935 size_t os::large_page_size() {
2936   return _large_page_size;
2937 }
2938 
2939 // MPSS allows application to commit large page memory on demand; with ISM
2940 // the entire memory region must be allocated as shared memory.
2941 bool os::can_commit_large_page_memory() {
2942   return true;
2943 }
2944 
2945 bool os::can_execute_large_page_memory() {
2946   return true;
2947 }
2948 
2949 // Read calls from inside the vm need to perform state transitions
2950 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2951   size_t res;
2952   JavaThread* thread = (JavaThread*)Thread::current();
2953   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2954   ThreadBlockInVM tbiv(thread);
2955   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
2956   return res;
2957 }
2958 
2959 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2960   size_t res;
2961   JavaThread* thread = (JavaThread*)Thread::current();
2962   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2963   ThreadBlockInVM tbiv(thread);
2964   RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
2965   return res;
2966 }
2967 
2968 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
2969   size_t res;
2970   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
2971          "Assumed _thread_in_native");
2972   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
2973   return res;
2974 }
2975 
2976 void os::naked_short_sleep(jlong ms) {
2977   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2978 
2979   // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
2980   // Solaris requires -lrt for this.
2981   usleep((ms * 1000));
2982 
2983   return;
2984 }
2985 
2986 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2987 void os::infinite_sleep() {
2988   while (true) {    // sleep forever ...
2989     ::sleep(100);   // ... 100 seconds at a time
2990   }
2991 }
2992 
2993 // Used to convert frequent JVM_Yield() to nops
2994 bool os::dont_yield() {
2995   if (DontYieldALot) {
2996     static hrtime_t last_time = 0;
2997     hrtime_t diff = getTimeNanos() - last_time;
2998 
2999     if (diff < DontYieldALotInterval * 1000000) {
3000       return true;
3001     }
3002 
3003     last_time += diff;
3004 
3005     return false;
3006   } else {
3007     return false;
3008   }
3009 }
3010 
3011 // Note that yield semantics are defined by the scheduling class to which
3012 // the thread currently belongs.  Typically, yield will _not yield to
3013 // other equal or higher priority threads that reside on the dispatch queues
3014 // of other CPUs.
3015 
3016 void os::naked_yield() {
3017   thr_yield();
3018 }
3019 
3020 // Interface for setting lwp priorities.  We are using T2 libthread,
3021 // which forces the use of bound threads, so all of our threads will
3022 // be assigned to real lwp's.  Using the thr_setprio function is
3023 // meaningless in this mode so we must adjust the real lwp's priority.
3024 // The routines below implement the getting and setting of lwp priorities.
3025 //
3026 // Note: There are three priority scales used on Solaris.  Java priotities
3027 //       which range from 1 to 10, libthread "thr_setprio" scale which range
3028 //       from 0 to 127, and the current scheduling class of the process we
3029 //       are running in.  This is typically from -60 to +60.
3030 //       The setting of the lwp priorities in done after a call to thr_setprio
3031 //       so Java priorities are mapped to libthread priorities and we map from
3032 //       the latter to lwp priorities.  We don't keep priorities stored in
3033 //       Java priorities since some of our worker threads want to set priorities
3034 //       higher than all Java threads.
3035 //
3036 // For related information:
3037 // (1)  man -s 2 priocntl
3038 // (2)  man -s 4 priocntl
3039 // (3)  man dispadmin
3040 // =    librt.so
3041 // =    libthread/common/rtsched.c - thrp_setlwpprio().
3042 // =    ps -cL <pid> ... to validate priority.
3043 // =    sched_get_priority_min and _max
3044 //              pthread_create
3045 //              sched_setparam
3046 //              pthread_setschedparam
3047 //
3048 // Assumptions:
3049 // +    We assume that all threads in the process belong to the same
3050 //              scheduling class.   IE. an homogenous process.
3051 // +    Must be root or in IA group to change change "interactive" attribute.
3052 //              Priocntl() will fail silently.  The only indication of failure is when
3053 //              we read-back the value and notice that it hasn't changed.
3054 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
3055 // +    For RT, change timeslice as well.  Invariant:
3056 //              constant "priority integral"
3057 //              Konst == TimeSlice * (60-Priority)
3058 //              Given a priority, compute appropriate timeslice.
3059 // +    Higher numerical values have higher priority.
3060 
3061 // sched class attributes
3062 typedef struct {
3063   int   schedPolicy;              // classID
3064   int   maxPrio;
3065   int   minPrio;
3066 } SchedInfo;
3067 
3068 
3069 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3070 
3071 #ifdef ASSERT
3072 static int  ReadBackValidate = 1;
3073 #endif
3074 static int  myClass     = 0;
3075 static int  myMin       = 0;
3076 static int  myMax       = 0;
3077 static int  myCur       = 0;
3078 static bool priocntl_enable = false;
3079 
3080 static const int criticalPrio = FXCriticalPriority;
3081 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3082 
3083 
3084 // lwp_priocntl_init
3085 //
3086 // Try to determine the priority scale for our process.
3087 //
3088 // Return errno or 0 if OK.
3089 //
3090 static int lwp_priocntl_init() {
3091   int rslt;
3092   pcinfo_t ClassInfo;
3093   pcparms_t ParmInfo;
3094   int i;
3095 
3096   if (!UseThreadPriorities) return 0;
3097 
3098   // If ThreadPriorityPolicy is 1, switch tables
3099   if (ThreadPriorityPolicy == 1) {
3100     for (i = 0; i < CriticalPriority+1; i++)
3101       os::java_to_os_priority[i] = prio_policy1[i];
3102   }
3103   if (UseCriticalJavaThreadPriority) {
3104     // MaxPriority always maps to the FX scheduling class and criticalPrio.
3105     // See set_native_priority() and set_lwp_class_and_priority().
3106     // Save original MaxPriority mapping in case attempt to
3107     // use critical priority fails.
3108     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3109     // Set negative to distinguish from other priorities
3110     os::java_to_os_priority[MaxPriority] = -criticalPrio;
3111   }
3112 
3113   // Get IDs for a set of well-known scheduling classes.
3114   // TODO-FIXME: GETCLINFO returns the current # of classes in the
3115   // the system.  We should have a loop that iterates over the
3116   // classID values, which are known to be "small" integers.
3117 
3118   strcpy(ClassInfo.pc_clname, "TS");
3119   ClassInfo.pc_cid = -1;
3120   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3121   if (rslt < 0) return errno;
3122   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3123   tsLimits.schedPolicy = ClassInfo.pc_cid;
3124   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3125   tsLimits.minPrio = -tsLimits.maxPrio;
3126 
3127   strcpy(ClassInfo.pc_clname, "IA");
3128   ClassInfo.pc_cid = -1;
3129   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3130   if (rslt < 0) return errno;
3131   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3132   iaLimits.schedPolicy = ClassInfo.pc_cid;
3133   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3134   iaLimits.minPrio = -iaLimits.maxPrio;
3135 
3136   strcpy(ClassInfo.pc_clname, "RT");
3137   ClassInfo.pc_cid = -1;
3138   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3139   if (rslt < 0) return errno;
3140   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3141   rtLimits.schedPolicy = ClassInfo.pc_cid;
3142   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3143   rtLimits.minPrio = 0;
3144 
3145   strcpy(ClassInfo.pc_clname, "FX");
3146   ClassInfo.pc_cid = -1;
3147   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3148   if (rslt < 0) return errno;
3149   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3150   fxLimits.schedPolicy = ClassInfo.pc_cid;
3151   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3152   fxLimits.minPrio = 0;
3153 
3154   // Query our "current" scheduling class.
3155   // This will normally be IA, TS or, rarely, FX or RT.
3156   memset(&ParmInfo, 0, sizeof(ParmInfo));
3157   ParmInfo.pc_cid = PC_CLNULL;
3158   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3159   if (rslt < 0) return errno;
3160   myClass = ParmInfo.pc_cid;
3161 
3162   // We now know our scheduling classId, get specific information
3163   // about the class.
3164   ClassInfo.pc_cid = myClass;
3165   ClassInfo.pc_clname[0] = 0;
3166   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3167   if (rslt < 0) return errno;
3168 
3169   if (ThreadPriorityVerbose) {
3170     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3171   }
3172 
3173   memset(&ParmInfo, 0, sizeof(pcparms_t));
3174   ParmInfo.pc_cid = PC_CLNULL;
3175   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3176   if (rslt < 0) return errno;
3177 
3178   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3179     myMin = rtLimits.minPrio;
3180     myMax = rtLimits.maxPrio;
3181   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3182     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3183     myMin = iaLimits.minPrio;
3184     myMax = iaLimits.maxPrio;
3185     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3186   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3187     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3188     myMin = tsLimits.minPrio;
3189     myMax = tsLimits.maxPrio;
3190     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3191   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3192     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3193     myMin = fxLimits.minPrio;
3194     myMax = fxLimits.maxPrio;
3195     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3196   } else {
3197     // No clue - punt
3198     if (ThreadPriorityVerbose) {
3199       tty->print_cr("Unknown scheduling class: %s ... \n",
3200                     ClassInfo.pc_clname);
3201     }
3202     return EINVAL;      // no clue, punt
3203   }
3204 
3205   if (ThreadPriorityVerbose) {
3206     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3207   }
3208 
3209   priocntl_enable = true;  // Enable changing priorities
3210   return 0;
3211 }
3212 
3213 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3214 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3215 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3216 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3217 
3218 
3219 // scale_to_lwp_priority
3220 //
3221 // Convert from the libthread "thr_setprio" scale to our current
3222 // lwp scheduling class scale.
3223 //
3224 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3225   int v;
3226 
3227   if (x == 127) return rMax;            // avoid round-down
3228   v = (((x*(rMax-rMin)))/128)+rMin;
3229   return v;
3230 }
3231 
3232 
3233 // set_lwp_class_and_priority
3234 int set_lwp_class_and_priority(int ThreadID, int lwpid,
3235                                int newPrio, int new_class, bool scale) {
3236   int rslt;
3237   int Actual, Expected, prv;
3238   pcparms_t ParmInfo;                   // for GET-SET
3239 #ifdef ASSERT
3240   pcparms_t ReadBack;                   // for readback
3241 #endif
3242 
3243   // Set priority via PC_GETPARMS, update, PC_SETPARMS
3244   // Query current values.
3245   // TODO: accelerate this by eliminating the PC_GETPARMS call.
3246   // Cache "pcparms_t" in global ParmCache.
3247   // TODO: elide set-to-same-value
3248 
3249   // If something went wrong on init, don't change priorities.
3250   if (!priocntl_enable) {
3251     if (ThreadPriorityVerbose) {
3252       tty->print_cr("Trying to set priority but init failed, ignoring");
3253     }
3254     return EINVAL;
3255   }
3256 
3257   // If lwp hasn't started yet, just return
3258   // the _start routine will call us again.
3259   if (lwpid <= 0) {
3260     if (ThreadPriorityVerbose) {
3261       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3262                     INTPTR_FORMAT " to %d, lwpid not set",
3263                     ThreadID, newPrio);
3264     }
3265     return 0;
3266   }
3267 
3268   if (ThreadPriorityVerbose) {
3269     tty->print_cr ("set_lwp_class_and_priority("
3270                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3271                    ThreadID, lwpid, newPrio);
3272   }
3273 
3274   memset(&ParmInfo, 0, sizeof(pcparms_t));
3275   ParmInfo.pc_cid = PC_CLNULL;
3276   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3277   if (rslt < 0) return errno;
3278 
3279   int cur_class = ParmInfo.pc_cid;
3280   ParmInfo.pc_cid = (id_t)new_class;
3281 
3282   if (new_class == rtLimits.schedPolicy) {
3283     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3284     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3285                                                        rtLimits.maxPrio, newPrio)
3286                                : newPrio;
3287     rtInfo->rt_tqsecs  = RT_NOCHANGE;
3288     rtInfo->rt_tqnsecs = RT_NOCHANGE;
3289     if (ThreadPriorityVerbose) {
3290       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3291     }
3292   } else if (new_class == iaLimits.schedPolicy) {
3293     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3294     int maxClamped     = MIN2(iaLimits.maxPrio,
3295                               cur_class == new_class
3296                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3297     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3298                                                        maxClamped, newPrio)
3299                                : newPrio;
3300     iaInfo->ia_uprilim = cur_class == new_class
3301                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3302     iaInfo->ia_mode    = IA_NOCHANGE;
3303     if (ThreadPriorityVerbose) {
3304       tty->print_cr("IA: [%d...%d] %d->%d\n",
3305                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3306     }
3307   } else if (new_class == tsLimits.schedPolicy) {
3308     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3309     int maxClamped     = MIN2(tsLimits.maxPrio,
3310                               cur_class == new_class
3311                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3312     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3313                                                        maxClamped, newPrio)
3314                                : newPrio;
3315     tsInfo->ts_uprilim = cur_class == new_class
3316                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3317     if (ThreadPriorityVerbose) {
3318       tty->print_cr("TS: [%d...%d] %d->%d\n",
3319                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3320     }
3321   } else if (new_class == fxLimits.schedPolicy) {
3322     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3323     int maxClamped     = MIN2(fxLimits.maxPrio,
3324                               cur_class == new_class
3325                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3326     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3327                                                        maxClamped, newPrio)
3328                                : newPrio;
3329     fxInfo->fx_uprilim = cur_class == new_class
3330                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3331     fxInfo->fx_tqsecs  = FX_NOCHANGE;
3332     fxInfo->fx_tqnsecs = FX_NOCHANGE;
3333     if (ThreadPriorityVerbose) {
3334       tty->print_cr("FX: [%d...%d] %d->%d\n",
3335                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3336     }
3337   } else {
3338     if (ThreadPriorityVerbose) {
3339       tty->print_cr("Unknown new scheduling class %d\n", new_class);
3340     }
3341     return EINVAL;    // no clue, punt
3342   }
3343 
3344   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3345   if (ThreadPriorityVerbose && rslt) {
3346     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3347   }
3348   if (rslt < 0) return errno;
3349 
3350 #ifdef ASSERT
3351   // Sanity check: read back what we just attempted to set.
3352   // In theory it could have changed in the interim ...
3353   //
3354   // The priocntl system call is tricky.
3355   // Sometimes it'll validate the priority value argument and
3356   // return EINVAL if unhappy.  At other times it fails silently.
3357   // Readbacks are prudent.
3358 
3359   if (!ReadBackValidate) return 0;
3360 
3361   memset(&ReadBack, 0, sizeof(pcparms_t));
3362   ReadBack.pc_cid = PC_CLNULL;
3363   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3364   assert(rslt >= 0, "priocntl failed");
3365   Actual = Expected = 0xBAD;
3366   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3367   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3368     Actual   = RTPRI(ReadBack)->rt_pri;
3369     Expected = RTPRI(ParmInfo)->rt_pri;
3370   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3371     Actual   = IAPRI(ReadBack)->ia_upri;
3372     Expected = IAPRI(ParmInfo)->ia_upri;
3373   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3374     Actual   = TSPRI(ReadBack)->ts_upri;
3375     Expected = TSPRI(ParmInfo)->ts_upri;
3376   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3377     Actual   = FXPRI(ReadBack)->fx_upri;
3378     Expected = FXPRI(ParmInfo)->fx_upri;
3379   } else {
3380     if (ThreadPriorityVerbose) {
3381       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3382                     ParmInfo.pc_cid);
3383     }
3384   }
3385 
3386   if (Actual != Expected) {
3387     if (ThreadPriorityVerbose) {
3388       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3389                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3390     }
3391   }
3392 #endif
3393 
3394   return 0;
3395 }
3396 
3397 // Solaris only gives access to 128 real priorities at a time,
3398 // so we expand Java's ten to fill this range.  This would be better
3399 // if we dynamically adjusted relative priorities.
3400 //
3401 // The ThreadPriorityPolicy option allows us to select 2 different
3402 // priority scales.
3403 //
3404 // ThreadPriorityPolicy=0
3405 // Since the Solaris' default priority is MaximumPriority, we do not
3406 // set a priority lower than Max unless a priority lower than
3407 // NormPriority is requested.
3408 //
3409 // ThreadPriorityPolicy=1
3410 // This mode causes the priority table to get filled with
3411 // linear values.  NormPriority get's mapped to 50% of the
3412 // Maximum priority an so on.  This will cause VM threads
3413 // to get unfair treatment against other Solaris processes
3414 // which do not explicitly alter their thread priorities.
3415 
3416 int os::java_to_os_priority[CriticalPriority + 1] = {
3417   -99999,         // 0 Entry should never be used
3418 
3419   0,              // 1 MinPriority
3420   32,             // 2
3421   64,             // 3
3422 
3423   96,             // 4
3424   127,            // 5 NormPriority
3425   127,            // 6
3426 
3427   127,            // 7
3428   127,            // 8
3429   127,            // 9 NearMaxPriority
3430 
3431   127,            // 10 MaxPriority
3432 
3433   -criticalPrio   // 11 CriticalPriority
3434 };
3435 
3436 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3437   OSThread* osthread = thread->osthread();
3438 
3439   // Save requested priority in case the thread hasn't been started
3440   osthread->set_native_priority(newpri);
3441 
3442   // Check for critical priority request
3443   bool fxcritical = false;
3444   if (newpri == -criticalPrio) {
3445     fxcritical = true;
3446     newpri = criticalPrio;
3447   }
3448 
3449   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3450   if (!UseThreadPriorities) return OS_OK;
3451 
3452   int status = 0;
3453 
3454   if (!fxcritical) {
3455     // Use thr_setprio only if we have a priority that thr_setprio understands
3456     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3457   }
3458 
3459   int lwp_status =
3460           set_lwp_class_and_priority(osthread->thread_id(),
3461                                      osthread->lwp_id(),
3462                                      newpri,
3463                                      fxcritical ? fxLimits.schedPolicy : myClass,
3464                                      !fxcritical);
3465   if (lwp_status != 0 && fxcritical) {
3466     // Try again, this time without changing the scheduling class
3467     newpri = java_MaxPriority_to_os_priority;
3468     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3469                                             osthread->lwp_id(),
3470                                             newpri, myClass, false);
3471   }
3472   status |= lwp_status;
3473   return (status == 0) ? OS_OK : OS_ERR;
3474 }
3475 
3476 
3477 OSReturn os::get_native_priority(const Thread* const thread,
3478                                  int *priority_ptr) {
3479   int p;
3480   if (!UseThreadPriorities) {
3481     *priority_ptr = NormalPriority;
3482     return OS_OK;
3483   }
3484   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3485   if (status != 0) {
3486     return OS_ERR;
3487   }
3488   *priority_ptr = p;
3489   return OS_OK;
3490 }
3491 
3492 
3493 // Hint to the underlying OS that a task switch would not be good.
3494 // Void return because it's a hint and can fail.
3495 void os::hint_no_preempt() {
3496   schedctl_start(schedctl_init());
3497 }
3498 
3499 static void resume_clear_context(OSThread *osthread) {
3500   osthread->set_ucontext(NULL);
3501 }
3502 
3503 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3504   osthread->set_ucontext(context);
3505 }
3506 
3507 static PosixSemaphore sr_semaphore;
3508 
3509 void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3510   // Save and restore errno to avoid confusing native code with EINTR
3511   // after sigsuspend.
3512   int old_errno = errno;
3513 
3514   OSThread* osthread = thread->osthread();
3515   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3516 
3517   os::SuspendResume::State current = osthread->sr.state();
3518   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3519     suspend_save_context(osthread, uc);
3520 
3521     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3522     os::SuspendResume::State state = osthread->sr.suspended();
3523     if (state == os::SuspendResume::SR_SUSPENDED) {
3524       sigset_t suspend_set;  // signals for sigsuspend()
3525 
3526       // get current set of blocked signals and unblock resume signal
3527       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3528       sigdelset(&suspend_set, ASYNC_SIGNAL);
3529 
3530       sr_semaphore.signal();
3531       // wait here until we are resumed
3532       while (1) {
3533         sigsuspend(&suspend_set);
3534 
3535         os::SuspendResume::State result = osthread->sr.running();
3536         if (result == os::SuspendResume::SR_RUNNING) {
3537           sr_semaphore.signal();
3538           break;
3539         }
3540       }
3541 
3542     } else if (state == os::SuspendResume::SR_RUNNING) {
3543       // request was cancelled, continue
3544     } else {
3545       ShouldNotReachHere();
3546     }
3547 
3548     resume_clear_context(osthread);
3549   } else if (current == os::SuspendResume::SR_RUNNING) {
3550     // request was cancelled, continue
3551   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3552     // ignore
3553   } else {
3554     // ignore
3555   }
3556 
3557   errno = old_errno;
3558 }
3559 
3560 void os::print_statistics() {
3561 }
3562 
3563 bool os::message_box(const char* title, const char* message) {
3564   int i;
3565   fdStream err(defaultStream::error_fd());
3566   for (i = 0; i < 78; i++) err.print_raw("=");
3567   err.cr();
3568   err.print_raw_cr(title);
3569   for (i = 0; i < 78; i++) err.print_raw("-");
3570   err.cr();
3571   err.print_raw_cr(message);
3572   for (i = 0; i < 78; i++) err.print_raw("=");
3573   err.cr();
3574 
3575   char buf[16];
3576   // Prevent process from exiting upon "read error" without consuming all CPU
3577   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3578 
3579   return buf[0] == 'y' || buf[0] == 'Y';
3580 }
3581 
3582 static int sr_notify(OSThread* osthread) {
3583   int status = thr_kill(osthread->thread_id(), ASYNC_SIGNAL);
3584   assert_status(status == 0, status, "thr_kill");
3585   return status;
3586 }
3587 
3588 // "Randomly" selected value for how long we want to spin
3589 // before bailing out on suspending a thread, also how often
3590 // we send a signal to a thread we want to resume
3591 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3592 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3593 
3594 static bool do_suspend(OSThread* osthread) {
3595   assert(osthread->sr.is_running(), "thread should be running");
3596   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3597 
3598   // mark as suspended and send signal
3599   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3600     // failed to switch, state wasn't running?
3601     ShouldNotReachHere();
3602     return false;
3603   }
3604 
3605   if (sr_notify(osthread) != 0) {
3606     ShouldNotReachHere();
3607   }
3608 
3609   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3610   while (true) {
3611     if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3612       break;
3613     } else {
3614       // timeout
3615       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3616       if (cancelled == os::SuspendResume::SR_RUNNING) {
3617         return false;
3618       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3619         // make sure that we consume the signal on the semaphore as well
3620         sr_semaphore.wait();
3621         break;
3622       } else {
3623         ShouldNotReachHere();
3624         return false;
3625       }
3626     }
3627   }
3628 
3629   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3630   return true;
3631 }
3632 
3633 static void do_resume(OSThread* osthread) {
3634   assert(osthread->sr.is_suspended(), "thread should be suspended");
3635   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3636 
3637   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3638     // failed to switch to WAKEUP_REQUEST
3639     ShouldNotReachHere();
3640     return;
3641   }
3642 
3643   while (true) {
3644     if (sr_notify(osthread) == 0) {
3645       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3646         if (osthread->sr.is_running()) {
3647           return;
3648         }
3649       }
3650     } else {
3651       ShouldNotReachHere();
3652     }
3653   }
3654 
3655   guarantee(osthread->sr.is_running(), "Must be running!");
3656 }
3657 
3658 void os::SuspendedThreadTask::internal_do_task() {
3659   if (do_suspend(_thread->osthread())) {
3660     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3661     do_task(context);
3662     do_resume(_thread->osthread());
3663   }
3664 }
3665 
3666 class PcFetcher : public os::SuspendedThreadTask {
3667  public:
3668   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3669   ExtendedPC result();
3670  protected:
3671   void do_task(const os::SuspendedThreadTaskContext& context);
3672  private:
3673   ExtendedPC _epc;
3674 };
3675 
3676 ExtendedPC PcFetcher::result() {
3677   guarantee(is_done(), "task is not done yet.");
3678   return _epc;
3679 }
3680 
3681 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3682   Thread* thread = context.thread();
3683   OSThread* osthread = thread->osthread();
3684   if (osthread->ucontext() != NULL) {
3685     _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3686   } else {
3687     // NULL context is unexpected, double-check this is the VMThread
3688     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3689   }
3690 }
3691 
3692 // A lightweight implementation that does not suspend the target thread and
3693 // thus returns only a hint. Used for profiling only!
3694 ExtendedPC os::get_thread_pc(Thread* thread) {
3695   // Make sure that it is called by the watcher and the Threads lock is owned.
3696   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3697   // For now, is only used to profile the VM Thread
3698   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3699   PcFetcher fetcher(thread);
3700   fetcher.run();
3701   return fetcher.result();
3702 }
3703 
3704 
3705 // This does not do anything on Solaris. This is basically a hook for being
3706 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3707 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3708                               const methodHandle& method, JavaCallArguments* args,
3709                               Thread* thread) {
3710   f(value, method, args, thread);
3711 }
3712 
3713 // This routine may be used by user applications as a "hook" to catch signals.
3714 // The user-defined signal handler must pass unrecognized signals to this
3715 // routine, and if it returns true (non-zero), then the signal handler must
3716 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3717 // routine will never retun false (zero), but instead will execute a VM panic
3718 // routine kill the process.
3719 //
3720 // If this routine returns false, it is OK to call it again.  This allows
3721 // the user-defined signal handler to perform checks either before or after
3722 // the VM performs its own checks.  Naturally, the user code would be making
3723 // a serious error if it tried to handle an exception (such as a null check
3724 // or breakpoint) that the VM was generating for its own correct operation.
3725 //
3726 // This routine may recognize any of the following kinds of signals:
3727 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3728 // ASYNC_SIGNAL.
3729 // It should be consulted by handlers for any of those signals.
3730 //
3731 // The caller of this routine must pass in the three arguments supplied
3732 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3733 // field of the structure passed to sigaction().  This routine assumes that
3734 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3735 //
3736 // Note that the VM will print warnings if it detects conflicting signal
3737 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3738 //
3739 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3740                                                    siginfo_t* siginfo,
3741                                                    void* ucontext,
3742                                                    int abort_if_unrecognized);
3743 
3744 
3745 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3746   int orig_errno = errno;  // Preserve errno value over signal handler.
3747   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3748   errno = orig_errno;
3749 }
3750 
3751 // This boolean allows users to forward their own non-matching signals
3752 // to JVM_handle_solaris_signal, harmlessly.
3753 bool os::Solaris::signal_handlers_are_installed = false;
3754 
3755 // For signal-chaining
3756 bool os::Solaris::libjsig_is_loaded = false;
3757 typedef struct sigaction *(*get_signal_t)(int);
3758 get_signal_t os::Solaris::get_signal_action = NULL;
3759 
3760 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3761   struct sigaction *actp = NULL;
3762 
3763   if ((libjsig_is_loaded)  && (sig <= Maxsignum)) {
3764     // Retrieve the old signal handler from libjsig
3765     actp = (*get_signal_action)(sig);
3766   }
3767   if (actp == NULL) {
3768     // Retrieve the preinstalled signal handler from jvm
3769     actp = get_preinstalled_handler(sig);
3770   }
3771 
3772   return actp;
3773 }
3774 
3775 static bool call_chained_handler(struct sigaction *actp, int sig,
3776                                  siginfo_t *siginfo, void *context) {
3777   // Call the old signal handler
3778   if (actp->sa_handler == SIG_DFL) {
3779     // It's more reasonable to let jvm treat it as an unexpected exception
3780     // instead of taking the default action.
3781     return false;
3782   } else if (actp->sa_handler != SIG_IGN) {
3783     if ((actp->sa_flags & SA_NODEFER) == 0) {
3784       // automaticlly block the signal
3785       sigaddset(&(actp->sa_mask), sig);
3786     }
3787 
3788     sa_handler_t hand;
3789     sa_sigaction_t sa;
3790     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3791     // retrieve the chained handler
3792     if (siginfo_flag_set) {
3793       sa = actp->sa_sigaction;
3794     } else {
3795       hand = actp->sa_handler;
3796     }
3797 
3798     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3799       actp->sa_handler = SIG_DFL;
3800     }
3801 
3802     // try to honor the signal mask
3803     sigset_t oset;
3804     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3805 
3806     // call into the chained handler
3807     if (siginfo_flag_set) {
3808       (*sa)(sig, siginfo, context);
3809     } else {
3810       (*hand)(sig);
3811     }
3812 
3813     // restore the signal mask
3814     pthread_sigmask(SIG_SETMASK, &oset, 0);
3815   }
3816   // Tell jvm's signal handler the signal is taken care of.
3817   return true;
3818 }
3819 
3820 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3821   bool chained = false;
3822   // signal-chaining
3823   if (UseSignalChaining) {
3824     struct sigaction *actp = get_chained_signal_action(sig);
3825     if (actp != NULL) {
3826       chained = call_chained_handler(actp, sig, siginfo, context);
3827     }
3828   }
3829   return chained;
3830 }
3831 
3832 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3833   assert((chainedsigactions != (struct sigaction *)NULL) &&
3834          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3835   if (preinstalled_sigs[sig] != 0) {
3836     return &chainedsigactions[sig];
3837   }
3838   return NULL;
3839 }
3840 
3841 void os::Solaris::save_preinstalled_handler(int sig,
3842                                             struct sigaction& oldAct) {
3843   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3844   assert((chainedsigactions != (struct sigaction *)NULL) &&
3845          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3846   chainedsigactions[sig] = oldAct;
3847   preinstalled_sigs[sig] = 1;
3848 }
3849 
3850 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3851                                      bool oktochain) {
3852   // Check for overwrite.
3853   struct sigaction oldAct;
3854   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3855   void* oldhand =
3856       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3857                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3858   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3859       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3860       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3861     if (AllowUserSignalHandlers || !set_installed) {
3862       // Do not overwrite; user takes responsibility to forward to us.
3863       return;
3864     } else if (UseSignalChaining) {
3865       if (oktochain) {
3866         // save the old handler in jvm
3867         save_preinstalled_handler(sig, oldAct);
3868       } else {
3869         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3870       }
3871       // libjsig also interposes the sigaction() call below and saves the
3872       // old sigaction on it own.
3873     } else {
3874       fatal("Encountered unexpected pre-existing sigaction handler "
3875             "%#lx for signal %d.", (long)oldhand, sig);
3876     }
3877   }
3878 
3879   struct sigaction sigAct;
3880   sigfillset(&(sigAct.sa_mask));
3881   sigAct.sa_handler = SIG_DFL;
3882 
3883   sigAct.sa_sigaction = signalHandler;
3884   // Handle SIGSEGV on alternate signal stack if
3885   // not using stack banging
3886   if (!UseStackBanging && sig == SIGSEGV) {
3887     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3888   } else {
3889     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3890   }
3891   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3892 
3893   sigaction(sig, &sigAct, &oldAct);
3894 
3895   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3896                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3897   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3898 }
3899 
3900 
3901 #define DO_SIGNAL_CHECK(sig)                      \
3902   do {                                            \
3903     if (!sigismember(&check_signal_done, sig)) {  \
3904       os::Solaris::check_signal_handler(sig);     \
3905     }                                             \
3906   } while (0)
3907 
3908 // This method is a periodic task to check for misbehaving JNI applications
3909 // under CheckJNI, we can add any periodic checks here
3910 
3911 void os::run_periodic_checks() {
3912   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3913   // thereby preventing a NULL checks.
3914   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3915 
3916   if (check_signals == false) return;
3917 
3918   // SEGV and BUS if overridden could potentially prevent
3919   // generation of hs*.log in the event of a crash, debugging
3920   // such a case can be very challenging, so we absolutely
3921   // check for the following for a good measure:
3922   DO_SIGNAL_CHECK(SIGSEGV);
3923   DO_SIGNAL_CHECK(SIGILL);
3924   DO_SIGNAL_CHECK(SIGFPE);
3925   DO_SIGNAL_CHECK(SIGBUS);
3926   DO_SIGNAL_CHECK(SIGPIPE);
3927   DO_SIGNAL_CHECK(SIGXFSZ);
3928   DO_SIGNAL_CHECK(ASYNC_SIGNAL);
3929 
3930   // ReduceSignalUsage allows the user to override these handlers
3931   // see comments at the very top and jvm_solaris.h
3932   if (!ReduceSignalUsage) {
3933     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3934     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3935     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3936     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3937   }
3938 }
3939 
3940 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3941 
3942 static os_sigaction_t os_sigaction = NULL;
3943 
3944 void os::Solaris::check_signal_handler(int sig) {
3945   char buf[O_BUFLEN];
3946   address jvmHandler = NULL;
3947 
3948   struct sigaction act;
3949   if (os_sigaction == NULL) {
3950     // only trust the default sigaction, in case it has been interposed
3951     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3952     if (os_sigaction == NULL) return;
3953   }
3954 
3955   os_sigaction(sig, (struct sigaction*)NULL, &act);
3956 
3957   address thisHandler = (act.sa_flags & SA_SIGINFO)
3958     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3959     : CAST_FROM_FN_PTR(address, act.sa_handler);
3960 
3961 
3962   switch (sig) {
3963   case SIGSEGV:
3964   case SIGBUS:
3965   case SIGFPE:
3966   case SIGPIPE:
3967   case SIGXFSZ:
3968   case SIGILL:
3969   case ASYNC_SIGNAL:
3970     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
3971     break;
3972 
3973   case SHUTDOWN1_SIGNAL:
3974   case SHUTDOWN2_SIGNAL:
3975   case SHUTDOWN3_SIGNAL:
3976   case BREAK_SIGNAL:
3977     jvmHandler = (address)user_handler();
3978     break;
3979 
3980   default:
3981       return;
3982   }
3983 
3984   if (thisHandler != jvmHandler) {
3985     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3986     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3987     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3988     // No need to check this sig any longer
3989     sigaddset(&check_signal_done, sig);
3990     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3991     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3992       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3993                     exception_name(sig, buf, O_BUFLEN));
3994     }
3995   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
3996     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3997     tty->print("expected:");
3998     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
3999     tty->cr();
4000     tty->print("  found:");
4001     os::Posix::print_sa_flags(tty, act.sa_flags);
4002     tty->cr();
4003     // No need to check this sig any longer
4004     sigaddset(&check_signal_done, sig);
4005   }
4006 
4007   // Print all the signal handler state
4008   if (sigismember(&check_signal_done, sig)) {
4009     print_signal_handlers(tty, buf, O_BUFLEN);
4010   }
4011 
4012 }
4013 
4014 void os::Solaris::install_signal_handlers() {
4015   signal_handlers_are_installed = true;
4016 
4017   // signal-chaining
4018   typedef void (*signal_setting_t)();
4019   signal_setting_t begin_signal_setting = NULL;
4020   signal_setting_t end_signal_setting = NULL;
4021   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4022                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4023   if (begin_signal_setting != NULL) {
4024     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4025                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4026     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4027                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4028     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4029                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4030     libjsig_is_loaded = true;
4031     if (os::Solaris::get_libjsig_version != NULL) {
4032       int libjsigversion =  (*os::Solaris::get_libjsig_version)();
4033       assert(libjsigversion == JSIG_VERSION_1_4_1, "libjsig version mismatch");
4034     }
4035     assert(UseSignalChaining, "should enable signal-chaining");
4036   }
4037   if (libjsig_is_loaded) {
4038     // Tell libjsig jvm is setting signal handlers
4039     (*begin_signal_setting)();
4040   }
4041 
4042   set_signal_handler(SIGSEGV, true, true);
4043   set_signal_handler(SIGPIPE, true, true);
4044   set_signal_handler(SIGXFSZ, true, true);
4045   set_signal_handler(SIGBUS, true, true);
4046   set_signal_handler(SIGILL, true, true);
4047   set_signal_handler(SIGFPE, true, true);
4048   set_signal_handler(ASYNC_SIGNAL, true, true);
4049 
4050   if (libjsig_is_loaded) {
4051     // Tell libjsig jvm finishes setting signal handlers
4052     (*end_signal_setting)();
4053   }
4054 
4055   // We don't activate signal checker if libjsig is in place, we trust ourselves
4056   // and if UserSignalHandler is installed all bets are off.
4057   // Log that signal checking is off only if -verbose:jni is specified.
4058   if (CheckJNICalls) {
4059     if (libjsig_is_loaded) {
4060       if (PrintJNIResolving) {
4061         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4062       }
4063       check_signals = false;
4064     }
4065     if (AllowUserSignalHandlers) {
4066       if (PrintJNIResolving) {
4067         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4068       }
4069       check_signals = false;
4070     }
4071   }
4072 }
4073 
4074 
4075 void report_error(const char* file_name, int line_no, const char* title,
4076                   const char* format, ...);
4077 
4078 // (Static) wrappers for the liblgrp API
4079 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4080 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4081 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4082 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4083 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4084 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4085 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4086 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4087 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4088 
4089 static address resolve_symbol_lazy(const char* name) {
4090   address addr = (address) dlsym(RTLD_DEFAULT, name);
4091   if (addr == NULL) {
4092     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4093     addr = (address) dlsym(RTLD_NEXT, name);
4094   }
4095   return addr;
4096 }
4097 
4098 static address resolve_symbol(const char* name) {
4099   address addr = resolve_symbol_lazy(name);
4100   if (addr == NULL) {
4101     fatal(dlerror());
4102   }
4103   return addr;
4104 }
4105 
4106 void os::Solaris::libthread_init() {
4107   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4108 
4109   lwp_priocntl_init();
4110 
4111   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4112   if (func == NULL) {
4113     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4114     // Guarantee that this VM is running on an new enough OS (5.6 or
4115     // later) that it will have a new enough libthread.so.
4116     guarantee(func != NULL, "libthread.so is too old.");
4117   }
4118 
4119   int size;
4120   void (*handler_info_func)(address *, int *);
4121   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4122   handler_info_func(&handler_start, &size);
4123   handler_end = handler_start + size;
4124 }
4125 
4126 
4127 int_fnP_mutex_tP os::Solaris::_mutex_lock;
4128 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4129 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4130 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4131 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4132 int os::Solaris::_mutex_scope = USYNC_THREAD;
4133 
4134 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4135 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4136 int_fnP_cond_tP os::Solaris::_cond_signal;
4137 int_fnP_cond_tP os::Solaris::_cond_broadcast;
4138 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4139 int_fnP_cond_tP os::Solaris::_cond_destroy;
4140 int os::Solaris::_cond_scope = USYNC_THREAD;
4141 
4142 void os::Solaris::synchronization_init() {
4143   if (UseLWPSynchronization) {
4144     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4145     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4146     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4147     os::Solaris::set_mutex_init(lwp_mutex_init);
4148     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4149     os::Solaris::set_mutex_scope(USYNC_THREAD);
4150 
4151     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4152     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4153     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4154     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4155     os::Solaris::set_cond_init(lwp_cond_init);
4156     os::Solaris::set_cond_destroy(lwp_cond_destroy);
4157     os::Solaris::set_cond_scope(USYNC_THREAD);
4158   } else {
4159     os::Solaris::set_mutex_scope(USYNC_THREAD);
4160     os::Solaris::set_cond_scope(USYNC_THREAD);
4161 
4162     if (UsePthreads) {
4163       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4164       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4165       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4166       os::Solaris::set_mutex_init(pthread_mutex_default_init);
4167       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4168 
4169       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4170       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4171       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4172       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4173       os::Solaris::set_cond_init(pthread_cond_default_init);
4174       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4175     } else {
4176       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4177       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4178       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4179       os::Solaris::set_mutex_init(::mutex_init);
4180       os::Solaris::set_mutex_destroy(::mutex_destroy);
4181 
4182       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4183       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4184       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4185       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4186       os::Solaris::set_cond_init(::cond_init);
4187       os::Solaris::set_cond_destroy(::cond_destroy);
4188     }
4189   }
4190 }
4191 
4192 bool os::Solaris::liblgrp_init() {
4193   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4194   if (handle != NULL) {
4195     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4196     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4197     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4198     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4199     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4200     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4201     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4202     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4203                                                       dlsym(handle, "lgrp_cookie_stale")));
4204 
4205     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4206     set_lgrp_cookie(c);
4207     return true;
4208   }
4209   return false;
4210 }
4211 
4212 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4213 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4214 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4215 
4216 void init_pset_getloadavg_ptr(void) {
4217   pset_getloadavg_ptr =
4218     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4219   if (pset_getloadavg_ptr == NULL) {
4220     log_warning(os)("pset_getloadavg function not found");
4221   }
4222 }
4223 
4224 int os::Solaris::_dev_zero_fd = -1;
4225 
4226 // this is called _before_ the global arguments have been parsed
4227 void os::init(void) {
4228   _initial_pid = getpid();
4229 
4230   max_hrtime = first_hrtime = gethrtime();
4231 
4232   init_random(1234567);
4233 
4234   page_size = sysconf(_SC_PAGESIZE);
4235   if (page_size == -1) {
4236     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4237   }
4238   init_page_sizes((size_t) page_size);
4239 
4240   Solaris::initialize_system_info();
4241 
4242   int fd = ::open("/dev/zero", O_RDWR);
4243   if (fd < 0) {
4244     fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4245   } else {
4246     Solaris::set_dev_zero_fd(fd);
4247 
4248     // Close on exec, child won't inherit.
4249     fcntl(fd, F_SETFD, FD_CLOEXEC);
4250   }
4251 
4252   clock_tics_per_sec = CLK_TCK;
4253 
4254   // check if dladdr1() exists; dladdr1 can provide more information than
4255   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4256   // and is available on linker patches for 5.7 and 5.8.
4257   // libdl.so must have been loaded, this call is just an entry lookup
4258   void * hdl = dlopen("libdl.so", RTLD_NOW);
4259   if (hdl) {
4260     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4261   }
4262 
4263   // (Solaris only) this switches to calls that actually do locking.
4264   ThreadCritical::initialize();
4265 
4266   main_thread = thr_self();
4267 
4268   // dynamic lookup of functions that may not be available in our lowest
4269   // supported Solaris release
4270   void * handle = dlopen("libc.so.1", RTLD_LAZY);
4271   if (handle != NULL) {
4272     Solaris::_pthread_setname_np =  // from 11.3
4273         (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4274   }
4275 }
4276 
4277 // To install functions for atexit system call
4278 extern "C" {
4279   static void perfMemory_exit_helper() {
4280     perfMemory_exit();
4281   }
4282 }
4283 
4284 // this is called _after_ the global arguments have been parsed
4285 jint os::init_2(void) {
4286   // try to enable extended file IO ASAP, see 6431278
4287   os::Solaris::try_enable_extended_io();
4288 
4289   // Allocate a single page and mark it as readable for safepoint polling.  Also
4290   // use this first mmap call to check support for MAP_ALIGN.
4291   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4292                                                       page_size,
4293                                                       MAP_PRIVATE | MAP_ALIGN,
4294                                                       PROT_READ);
4295   if (polling_page == NULL) {
4296     has_map_align = false;
4297     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4298                                                 PROT_READ);
4299   }
4300 
4301   os::set_polling_page(polling_page);
4302   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4303 
4304   if (!UseMembar) {
4305     address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4306     guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4307     os::set_memory_serialize_page(mem_serialize_page);
4308     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4309   }
4310 
4311   // Check and sets minimum stack sizes against command line options
4312   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4313     return JNI_ERR;
4314   }
4315 
4316   Solaris::libthread_init();
4317 
4318   if (UseNUMA) {
4319     if (!Solaris::liblgrp_init()) {
4320       UseNUMA = false;
4321     } else {
4322       size_t lgrp_limit = os::numa_get_groups_num();
4323       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4324       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4325       FREE_C_HEAP_ARRAY(int, lgrp_ids);
4326       if (lgrp_num < 2) {
4327         // There's only one locality group, disable NUMA.
4328         UseNUMA = false;
4329       }
4330     }
4331     if (!UseNUMA && ForceNUMA) {
4332       UseNUMA = true;
4333     }
4334   }
4335 
4336   Solaris::signal_sets_init();
4337   Solaris::init_signal_mem();
4338   Solaris::install_signal_handlers();
4339 
4340   // initialize synchronization primitives to use either thread or
4341   // lwp synchronization (controlled by UseLWPSynchronization)
4342   Solaris::synchronization_init();
4343 
4344   if (MaxFDLimit) {
4345     // set the number of file descriptors to max. print out error
4346     // if getrlimit/setrlimit fails but continue regardless.
4347     struct rlimit nbr_files;
4348     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4349     if (status != 0) {
4350       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4351     } else {
4352       nbr_files.rlim_cur = nbr_files.rlim_max;
4353       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4354       if (status != 0) {
4355         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4356       }
4357     }
4358   }
4359 
4360   // Calculate theoretical max. size of Threads to guard gainst
4361   // artifical out-of-memory situations, where all available address-
4362   // space has been reserved by thread stacks. Default stack size is 1Mb.
4363   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4364     JavaThread::stack_size_at_create() : (1*K*K);
4365   assert(pre_thread_stack_size != 0, "Must have a stack");
4366   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4367   // we should start doing Virtual Memory banging. Currently when the threads will
4368   // have used all but 200Mb of space.
4369   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4370   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4371 
4372   // at-exit methods are called in the reverse order of their registration.
4373   // In Solaris 7 and earlier, atexit functions are called on return from
4374   // main or as a result of a call to exit(3C). There can be only 32 of
4375   // these functions registered and atexit() does not set errno. In Solaris
4376   // 8 and later, there is no limit to the number of functions registered
4377   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4378   // functions are called upon dlclose(3DL) in addition to return from main
4379   // and exit(3C).
4380 
4381   if (PerfAllowAtExitRegistration) {
4382     // only register atexit functions if PerfAllowAtExitRegistration is set.
4383     // atexit functions can be delayed until process exit time, which
4384     // can be problematic for embedded VM situations. Embedded VMs should
4385     // call DestroyJavaVM() to assure that VM resources are released.
4386 
4387     // note: perfMemory_exit_helper atexit function may be removed in
4388     // the future if the appropriate cleanup code can be added to the
4389     // VM_Exit VMOperation's doit method.
4390     if (atexit(perfMemory_exit_helper) != 0) {
4391       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4392     }
4393   }
4394 
4395   // Init pset_loadavg function pointer
4396   init_pset_getloadavg_ptr();
4397 
4398   return JNI_OK;
4399 }
4400 
4401 // Mark the polling page as unreadable
4402 void os::make_polling_page_unreadable(void) {
4403   if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4404     fatal("Could not disable polling page");
4405   }
4406 }
4407 
4408 // Mark the polling page as readable
4409 void os::make_polling_page_readable(void) {
4410   if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4411     fatal("Could not enable polling page");
4412   }
4413 }
4414 
4415 // Is a (classpath) directory empty?
4416 bool os::dir_is_empty(const char* path) {
4417   DIR *dir = NULL;
4418   struct dirent *ptr;
4419 
4420   dir = opendir(path);
4421   if (dir == NULL) return true;
4422 
4423   // Scan the directory
4424   bool result = true;
4425   char buf[sizeof(struct dirent) + MAX_PATH];
4426   struct dirent *dbuf = (struct dirent *) buf;
4427   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4428     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4429       result = false;
4430     }
4431   }
4432   closedir(dir);
4433   return result;
4434 }
4435 
4436 // This code originates from JDK's sysOpen and open64_w
4437 // from src/solaris/hpi/src/system_md.c
4438 
4439 int os::open(const char *path, int oflag, int mode) {
4440   if (strlen(path) > MAX_PATH - 1) {
4441     errno = ENAMETOOLONG;
4442     return -1;
4443   }
4444   int fd;
4445 
4446   fd = ::open64(path, oflag, mode);
4447   if (fd == -1) return -1;
4448 
4449   // If the open succeeded, the file might still be a directory
4450   {
4451     struct stat64 buf64;
4452     int ret = ::fstat64(fd, &buf64);
4453     int st_mode = buf64.st_mode;
4454 
4455     if (ret != -1) {
4456       if ((st_mode & S_IFMT) == S_IFDIR) {
4457         errno = EISDIR;
4458         ::close(fd);
4459         return -1;
4460       }
4461     } else {
4462       ::close(fd);
4463       return -1;
4464     }
4465   }
4466 
4467   // 32-bit Solaris systems suffer from:
4468   //
4469   // - an historical default soft limit of 256 per-process file
4470   //   descriptors that is too low for many Java programs.
4471   //
4472   // - a design flaw where file descriptors created using stdio
4473   //   fopen must be less than 256, _even_ when the first limit above
4474   //   has been raised.  This can cause calls to fopen (but not calls to
4475   //   open, for example) to fail mysteriously, perhaps in 3rd party
4476   //   native code (although the JDK itself uses fopen).  One can hardly
4477   //   criticize them for using this most standard of all functions.
4478   //
4479   // We attempt to make everything work anyways by:
4480   //
4481   // - raising the soft limit on per-process file descriptors beyond
4482   //   256
4483   //
4484   // - As of Solaris 10u4, we can request that Solaris raise the 256
4485   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4486   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4487   //
4488   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4489   //   workaround the bug by remapping non-stdio file descriptors below
4490   //   256 to ones beyond 256, which is done below.
4491   //
4492   // See:
4493   // 1085341: 32-bit stdio routines should support file descriptors >255
4494   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4495   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4496   //          enable_extended_FILE_stdio() in VM initialisation
4497   // Giri Mandalika's blog
4498   // http://technopark02.blogspot.com/2005_05_01_archive.html
4499   //
4500 #ifndef  _LP64
4501   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4502     int newfd = ::fcntl(fd, F_DUPFD, 256);
4503     if (newfd != -1) {
4504       ::close(fd);
4505       fd = newfd;
4506     }
4507   }
4508 #endif // 32-bit Solaris
4509 
4510   // All file descriptors that are opened in the JVM and not
4511   // specifically destined for a subprocess should have the
4512   // close-on-exec flag set.  If we don't set it, then careless 3rd
4513   // party native code might fork and exec without closing all
4514   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4515   // UNIXProcess.c), and this in turn might:
4516   //
4517   // - cause end-of-file to fail to be detected on some file
4518   //   descriptors, resulting in mysterious hangs, or
4519   //
4520   // - might cause an fopen in the subprocess to fail on a system
4521   //   suffering from bug 1085341.
4522   //
4523   // (Yes, the default setting of the close-on-exec flag is a Unix
4524   // design flaw)
4525   //
4526   // See:
4527   // 1085341: 32-bit stdio routines should support file descriptors >255
4528   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4529   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4530   //
4531 #ifdef FD_CLOEXEC
4532   {
4533     int flags = ::fcntl(fd, F_GETFD);
4534     if (flags != -1) {
4535       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4536     }
4537   }
4538 #endif
4539 
4540   return fd;
4541 }
4542 
4543 // create binary file, rewriting existing file if required
4544 int os::create_binary_file(const char* path, bool rewrite_existing) {
4545   int oflags = O_WRONLY | O_CREAT;
4546   if (!rewrite_existing) {
4547     oflags |= O_EXCL;
4548   }
4549   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4550 }
4551 
4552 // return current position of file pointer
4553 jlong os::current_file_offset(int fd) {
4554   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4555 }
4556 
4557 // move file pointer to the specified offset
4558 jlong os::seek_to_file_offset(int fd, jlong offset) {
4559   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4560 }
4561 
4562 jlong os::lseek(int fd, jlong offset, int whence) {
4563   return (jlong) ::lseek64(fd, offset, whence);
4564 }
4565 
4566 char * os::native_path(char *path) {
4567   return path;
4568 }
4569 
4570 int os::ftruncate(int fd, jlong length) {
4571   return ::ftruncate64(fd, length);
4572 }
4573 
4574 int os::fsync(int fd)  {
4575   RESTARTABLE_RETURN_INT(::fsync(fd));
4576 }
4577 
4578 int os::available(int fd, jlong *bytes) {
4579   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4580          "Assumed _thread_in_native");
4581   jlong cur, end;
4582   int mode;
4583   struct stat64 buf64;
4584 
4585   if (::fstat64(fd, &buf64) >= 0) {
4586     mode = buf64.st_mode;
4587     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4588       int n,ioctl_return;
4589 
4590       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4591       if (ioctl_return>= 0) {
4592         *bytes = n;
4593         return 1;
4594       }
4595     }
4596   }
4597   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4598     return 0;
4599   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4600     return 0;
4601   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4602     return 0;
4603   }
4604   *bytes = end - cur;
4605   return 1;
4606 }
4607 
4608 // Map a block of memory.
4609 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4610                         char *addr, size_t bytes, bool read_only,
4611                         bool allow_exec) {
4612   int prot;
4613   int flags;
4614 
4615   if (read_only) {
4616     prot = PROT_READ;
4617     flags = MAP_SHARED;
4618   } else {
4619     prot = PROT_READ | PROT_WRITE;
4620     flags = MAP_PRIVATE;
4621   }
4622 
4623   if (allow_exec) {
4624     prot |= PROT_EXEC;
4625   }
4626 
4627   if (addr != NULL) {
4628     flags |= MAP_FIXED;
4629   }
4630 
4631   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4632                                      fd, file_offset);
4633   if (mapped_address == MAP_FAILED) {
4634     return NULL;
4635   }
4636   return mapped_address;
4637 }
4638 
4639 
4640 // Remap a block of memory.
4641 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4642                           char *addr, size_t bytes, bool read_only,
4643                           bool allow_exec) {
4644   // same as map_memory() on this OS
4645   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4646                         allow_exec);
4647 }
4648 
4649 
4650 // Unmap a block of memory.
4651 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4652   return munmap(addr, bytes) == 0;
4653 }
4654 
4655 void os::pause() {
4656   char filename[MAX_PATH];
4657   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4658     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4659   } else {
4660     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4661   }
4662 
4663   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4664   if (fd != -1) {
4665     struct stat buf;
4666     ::close(fd);
4667     while (::stat(filename, &buf) == 0) {
4668       (void)::poll(NULL, 0, 100);
4669     }
4670   } else {
4671     jio_fprintf(stderr,
4672                 "Could not open pause file '%s', continuing immediately.\n", filename);
4673   }
4674 }
4675 
4676 #ifndef PRODUCT
4677 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4678 // Turn this on if you need to trace synch operations.
4679 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4680 // and call record_synch_enable and record_synch_disable
4681 // around the computation of interest.
4682 
4683 void record_synch(char* name, bool returning);  // defined below
4684 
4685 class RecordSynch {
4686   char* _name;
4687  public:
4688   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4689   ~RecordSynch()                       { record_synch(_name, true); }
4690 };
4691 
4692 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4693 extern "C" ret name params {                                    \
4694   typedef ret name##_t params;                                  \
4695   static name##_t* implem = NULL;                               \
4696   static int callcount = 0;                                     \
4697   if (implem == NULL) {                                         \
4698     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4699     if (implem == NULL)  fatal(dlerror());                      \
4700   }                                                             \
4701   ++callcount;                                                  \
4702   RecordSynch _rs(#name);                                       \
4703   inner;                                                        \
4704   return implem args;                                           \
4705 }
4706 // in dbx, examine callcounts this way:
4707 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4708 
4709 #define CHECK_POINTER_OK(p) \
4710   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4711 #define CHECK_MU \
4712   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4713 #define CHECK_CV \
4714   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4715 #define CHECK_P(p) \
4716   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4717 
4718 #define CHECK_MUTEX(mutex_op) \
4719   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4720 
4721 CHECK_MUTEX(   mutex_lock)
4722 CHECK_MUTEX(  _mutex_lock)
4723 CHECK_MUTEX( mutex_unlock)
4724 CHECK_MUTEX(_mutex_unlock)
4725 CHECK_MUTEX( mutex_trylock)
4726 CHECK_MUTEX(_mutex_trylock)
4727 
4728 #define CHECK_COND(cond_op) \
4729   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4730 
4731 CHECK_COND( cond_wait);
4732 CHECK_COND(_cond_wait);
4733 CHECK_COND(_cond_wait_cancel);
4734 
4735 #define CHECK_COND2(cond_op) \
4736   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4737 
4738 CHECK_COND2( cond_timedwait);
4739 CHECK_COND2(_cond_timedwait);
4740 CHECK_COND2(_cond_timedwait_cancel);
4741 
4742 // do the _lwp_* versions too
4743 #define mutex_t lwp_mutex_t
4744 #define cond_t  lwp_cond_t
4745 CHECK_MUTEX(  _lwp_mutex_lock)
4746 CHECK_MUTEX(  _lwp_mutex_unlock)
4747 CHECK_MUTEX(  _lwp_mutex_trylock)
4748 CHECK_MUTEX( __lwp_mutex_lock)
4749 CHECK_MUTEX( __lwp_mutex_unlock)
4750 CHECK_MUTEX( __lwp_mutex_trylock)
4751 CHECK_MUTEX(___lwp_mutex_lock)
4752 CHECK_MUTEX(___lwp_mutex_unlock)
4753 
4754 CHECK_COND(  _lwp_cond_wait);
4755 CHECK_COND( __lwp_cond_wait);
4756 CHECK_COND(___lwp_cond_wait);
4757 
4758 CHECK_COND2(  _lwp_cond_timedwait);
4759 CHECK_COND2( __lwp_cond_timedwait);
4760 #undef mutex_t
4761 #undef cond_t
4762 
4763 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4764 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4765 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4766 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4767 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4768 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4769 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4770 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4771 
4772 
4773 // recording machinery:
4774 
4775 enum { RECORD_SYNCH_LIMIT = 200 };
4776 char* record_synch_name[RECORD_SYNCH_LIMIT];
4777 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4778 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4779 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4780 int record_synch_count = 0;
4781 bool record_synch_enabled = false;
4782 
4783 // in dbx, examine recorded data this way:
4784 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4785 
4786 void record_synch(char* name, bool returning) {
4787   if (record_synch_enabled) {
4788     if (record_synch_count < RECORD_SYNCH_LIMIT) {
4789       record_synch_name[record_synch_count] = name;
4790       record_synch_returning[record_synch_count] = returning;
4791       record_synch_thread[record_synch_count] = thr_self();
4792       record_synch_arg0ptr[record_synch_count] = &name;
4793       record_synch_count++;
4794     }
4795     // put more checking code here:
4796     // ...
4797   }
4798 }
4799 
4800 void record_synch_enable() {
4801   // start collecting trace data, if not already doing so
4802   if (!record_synch_enabled)  record_synch_count = 0;
4803   record_synch_enabled = true;
4804 }
4805 
4806 void record_synch_disable() {
4807   // stop collecting trace data
4808   record_synch_enabled = false;
4809 }
4810 
4811 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4812 #endif // PRODUCT
4813 
4814 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4815 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4816                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4817 
4818 
4819 // JVMTI & JVM monitoring and management support
4820 // The thread_cpu_time() and current_thread_cpu_time() are only
4821 // supported if is_thread_cpu_time_supported() returns true.
4822 // They are not supported on Solaris T1.
4823 
4824 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4825 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4826 // of a thread.
4827 //
4828 // current_thread_cpu_time() and thread_cpu_time(Thread *)
4829 // returns the fast estimate available on the platform.
4830 
4831 // hrtime_t gethrvtime() return value includes
4832 // user time but does not include system time
4833 jlong os::current_thread_cpu_time() {
4834   return (jlong) gethrvtime();
4835 }
4836 
4837 jlong os::thread_cpu_time(Thread *thread) {
4838   // return user level CPU time only to be consistent with
4839   // what current_thread_cpu_time returns.
4840   // thread_cpu_time_info() must be changed if this changes
4841   return os::thread_cpu_time(thread, false /* user time only */);
4842 }
4843 
4844 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4845   if (user_sys_cpu_time) {
4846     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4847   } else {
4848     return os::current_thread_cpu_time();
4849   }
4850 }
4851 
4852 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4853   char proc_name[64];
4854   int count;
4855   prusage_t prusage;
4856   jlong lwp_time;
4857   int fd;
4858 
4859   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
4860           getpid(),
4861           thread->osthread()->lwp_id());
4862   fd = ::open(proc_name, O_RDONLY);
4863   if (fd == -1) return -1;
4864 
4865   do {
4866     count = ::pread(fd,
4867                     (void *)&prusage.pr_utime,
4868                     thr_time_size,
4869                     thr_time_off);
4870   } while (count < 0 && errno == EINTR);
4871   ::close(fd);
4872   if (count < 0) return -1;
4873 
4874   if (user_sys_cpu_time) {
4875     // user + system CPU time
4876     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
4877                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
4878                  (jlong)prusage.pr_stime.tv_nsec +
4879                  (jlong)prusage.pr_utime.tv_nsec;
4880   } else {
4881     // user level CPU time only
4882     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
4883                 (jlong)prusage.pr_utime.tv_nsec;
4884   }
4885 
4886   return (lwp_time);
4887 }
4888 
4889 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4890   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4891   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4892   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4893   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4894 }
4895 
4896 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4897   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4898   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4899   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4900   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4901 }
4902 
4903 bool os::is_thread_cpu_time_supported() {
4904   return true;
4905 }
4906 
4907 // System loadavg support.  Returns -1 if load average cannot be obtained.
4908 // Return the load average for our processor set if the primitive exists
4909 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
4910 int os::loadavg(double loadavg[], int nelem) {
4911   if (pset_getloadavg_ptr != NULL) {
4912     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
4913   } else {
4914     return ::getloadavg(loadavg, nelem);
4915   }
4916 }
4917 
4918 //---------------------------------------------------------------------------------
4919 
4920 bool os::find(address addr, outputStream* st) {
4921   Dl_info dlinfo;
4922   memset(&dlinfo, 0, sizeof(dlinfo));
4923   if (dladdr(addr, &dlinfo) != 0) {
4924     st->print(PTR_FORMAT ": ", addr);
4925     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4926       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
4927     } else if (dlinfo.dli_fbase != NULL) {
4928       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
4929     } else {
4930       st->print("<absolute address>");
4931     }
4932     if (dlinfo.dli_fname != NULL) {
4933       st->print(" in %s", dlinfo.dli_fname);
4934     }
4935     if (dlinfo.dli_fbase != NULL) {
4936       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4937     }
4938     st->cr();
4939 
4940     if (Verbose) {
4941       // decode some bytes around the PC
4942       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4943       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4944       address       lowest = (address) dlinfo.dli_sname;
4945       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4946       if (begin < lowest)  begin = lowest;
4947       Dl_info dlinfo2;
4948       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4949           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4950         end = (address) dlinfo2.dli_saddr;
4951       }
4952       Disassembler::decode(begin, end, st);
4953     }
4954     return true;
4955   }
4956   return false;
4957 }
4958 
4959 // Following function has been added to support HotSparc's libjvm.so running
4960 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
4961 // src/solaris/hpi/native_threads in the EVM codebase.
4962 //
4963 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
4964 // libraries and should thus be removed. We will leave it behind for a while
4965 // until we no longer want to able to run on top of 1.3.0 Solaris production
4966 // JDK. See 4341971.
4967 
4968 #define STACK_SLACK 0x800
4969 
4970 extern "C" {
4971   intptr_t sysThreadAvailableStackWithSlack() {
4972     stack_t st;
4973     intptr_t retval, stack_top;
4974     retval = thr_stksegment(&st);
4975     assert(retval == 0, "incorrect return value from thr_stksegment");
4976     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
4977     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
4978     stack_top=(intptr_t)st.ss_sp-st.ss_size;
4979     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
4980   }
4981 }
4982 
4983 // ObjectMonitor park-unpark infrastructure ...
4984 //
4985 // We implement Solaris and Linux PlatformEvents with the
4986 // obvious condvar-mutex-flag triple.
4987 // Another alternative that works quite well is pipes:
4988 // Each PlatformEvent consists of a pipe-pair.
4989 // The thread associated with the PlatformEvent
4990 // calls park(), which reads from the input end of the pipe.
4991 // Unpark() writes into the other end of the pipe.
4992 // The write-side of the pipe must be set NDELAY.
4993 // Unfortunately pipes consume a large # of handles.
4994 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
4995 // Using pipes for the 1st few threads might be workable, however.
4996 //
4997 // park() is permitted to return spuriously.
4998 // Callers of park() should wrap the call to park() in
4999 // an appropriate loop.  A litmus test for the correct
5000 // usage of park is the following: if park() were modified
5001 // to immediately return 0 your code should still work,
5002 // albeit degenerating to a spin loop.
5003 //
5004 // In a sense, park()-unpark() just provides more polite spinning
5005 // and polling with the key difference over naive spinning being
5006 // that a parked thread needs to be explicitly unparked() in order
5007 // to wake up and to poll the underlying condition.
5008 //
5009 // Assumption:
5010 //    Only one parker can exist on an event, which is why we allocate
5011 //    them per-thread. Multiple unparkers can coexist.
5012 //
5013 // _Event transitions in park()
5014 //   -1 => -1 : illegal
5015 //    1 =>  0 : pass - return immediately
5016 //    0 => -1 : block; then set _Event to 0 before returning
5017 //
5018 // _Event transitions in unpark()
5019 //    0 => 1 : just return
5020 //    1 => 1 : just return
5021 //   -1 => either 0 or 1; must signal target thread
5022 //         That is, we can safely transition _Event from -1 to either
5023 //         0 or 1.
5024 //
5025 // _Event serves as a restricted-range semaphore.
5026 //   -1 : thread is blocked, i.e. there is a waiter
5027 //    0 : neutral: thread is running or ready,
5028 //        could have been signaled after a wait started
5029 //    1 : signaled - thread is running or ready
5030 //
5031 // Another possible encoding of _Event would be with
5032 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5033 //
5034 // TODO-FIXME: add DTRACE probes for:
5035 // 1.   Tx parks
5036 // 2.   Ty unparks Tx
5037 // 3.   Tx resumes from park
5038 
5039 
5040 // value determined through experimentation
5041 #define ROUNDINGFIX 11
5042 
5043 // utility to compute the abstime argument to timedwait.
5044 // TODO-FIXME: switch from compute_abstime() to unpackTime().
5045 
5046 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5047   // millis is the relative timeout time
5048   // abstime will be the absolute timeout time
5049   if (millis < 0)  millis = 0;
5050   struct timeval now;
5051   int status = gettimeofday(&now, NULL);
5052   assert(status == 0, "gettimeofday");
5053   jlong seconds = millis / 1000;
5054   jlong max_wait_period;
5055 
5056   if (UseLWPSynchronization) {
5057     // forward port of fix for 4275818 (not sleeping long enough)
5058     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5059     // _lwp_cond_timedwait() used a round_down algorithm rather
5060     // than a round_up. For millis less than our roundfactor
5061     // it rounded down to 0 which doesn't meet the spec.
5062     // For millis > roundfactor we may return a bit sooner, but
5063     // since we can not accurately identify the patch level and
5064     // this has already been fixed in Solaris 9 and 8 we will
5065     // leave it alone rather than always rounding down.
5066 
5067     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5068     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5069     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5070     max_wait_period = 21000000;
5071   } else {
5072     max_wait_period = 50000000;
5073   }
5074   millis %= 1000;
5075   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5076     seconds = max_wait_period;
5077   }
5078   abstime->tv_sec = now.tv_sec  + seconds;
5079   long       usec = now.tv_usec + millis * 1000;
5080   if (usec >= 1000000) {
5081     abstime->tv_sec += 1;
5082     usec -= 1000000;
5083   }
5084   abstime->tv_nsec = usec * 1000;
5085   return abstime;
5086 }
5087 
5088 void os::PlatformEvent::park() {           // AKA: down()
5089   // Transitions for _Event:
5090   //   -1 => -1 : illegal
5091   //    1 =>  0 : pass - return immediately
5092   //    0 => -1 : block; then set _Event to 0 before returning
5093 
5094   // Invariant: Only the thread associated with the Event/PlatformEvent
5095   // may call park().
5096   assert(_nParked == 0, "invariant");
5097 
5098   int v;
5099   for (;;) {
5100     v = _Event;
5101     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5102   }
5103   guarantee(v >= 0, "invariant");
5104   if (v == 0) {
5105     // Do this the hard way by blocking ...
5106     // See http://monaco.sfbay/detail.jsf?cr=5094058.
5107     int status = os::Solaris::mutex_lock(_mutex);
5108     assert_status(status == 0, status, "mutex_lock");
5109     guarantee(_nParked == 0, "invariant");
5110     ++_nParked;
5111     while (_Event < 0) {
5112       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5113       // Treat this the same as if the wait was interrupted
5114       // With usr/lib/lwp going to kernel, always handle ETIME
5115       status = os::Solaris::cond_wait(_cond, _mutex);
5116       if (status == ETIME) status = EINTR;
5117       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5118     }
5119     --_nParked;
5120     _Event = 0;
5121     status = os::Solaris::mutex_unlock(_mutex);
5122     assert_status(status == 0, status, "mutex_unlock");
5123     // Paranoia to ensure our locked and lock-free paths interact
5124     // correctly with each other.
5125     OrderAccess::fence();
5126   }
5127 }
5128 
5129 int os::PlatformEvent::park(jlong millis) {
5130   // Transitions for _Event:
5131   //   -1 => -1 : illegal
5132   //    1 =>  0 : pass - return immediately
5133   //    0 => -1 : block; then set _Event to 0 before returning
5134 
5135   guarantee(_nParked == 0, "invariant");
5136   int v;
5137   for (;;) {
5138     v = _Event;
5139     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5140   }
5141   guarantee(v >= 0, "invariant");
5142   if (v != 0) return OS_OK;
5143 
5144   int ret = OS_TIMEOUT;
5145   timestruc_t abst;
5146   compute_abstime(&abst, millis);
5147 
5148   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5149   int status = os::Solaris::mutex_lock(_mutex);
5150   assert_status(status == 0, status, "mutex_lock");
5151   guarantee(_nParked == 0, "invariant");
5152   ++_nParked;
5153   while (_Event < 0) {
5154     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5155     assert_status(status == 0 || status == EINTR ||
5156                   status == ETIME || status == ETIMEDOUT,
5157                   status, "cond_timedwait");
5158     if (!FilterSpuriousWakeups) break;                // previous semantics
5159     if (status == ETIME || status == ETIMEDOUT) break;
5160     // We consume and ignore EINTR and spurious wakeups.
5161   }
5162   --_nParked;
5163   if (_Event >= 0) ret = OS_OK;
5164   _Event = 0;
5165   status = os::Solaris::mutex_unlock(_mutex);
5166   assert_status(status == 0, status, "mutex_unlock");
5167   // Paranoia to ensure our locked and lock-free paths interact
5168   // correctly with each other.
5169   OrderAccess::fence();
5170   return ret;
5171 }
5172 
5173 void os::PlatformEvent::unpark() {
5174   // Transitions for _Event:
5175   //    0 => 1 : just return
5176   //    1 => 1 : just return
5177   //   -1 => either 0 or 1; must signal target thread
5178   //         That is, we can safely transition _Event from -1 to either
5179   //         0 or 1.
5180   // See also: "Semaphores in Plan 9" by Mullender & Cox
5181   //
5182   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5183   // that it will take two back-to-back park() calls for the owning
5184   // thread to block. This has the benefit of forcing a spurious return
5185   // from the first park() call after an unpark() call which will help
5186   // shake out uses of park() and unpark() without condition variables.
5187 
5188   if (Atomic::xchg(1, &_Event) >= 0) return;
5189 
5190   // If the thread associated with the event was parked, wake it.
5191   // Wait for the thread assoc with the PlatformEvent to vacate.
5192   int status = os::Solaris::mutex_lock(_mutex);
5193   assert_status(status == 0, status, "mutex_lock");
5194   int AnyWaiters = _nParked;
5195   status = os::Solaris::mutex_unlock(_mutex);
5196   assert_status(status == 0, status, "mutex_unlock");
5197   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5198   if (AnyWaiters != 0) {
5199     // Note that we signal() *after* dropping the lock for "immortal" Events.
5200     // This is safe and avoids a common class of  futile wakeups.  In rare
5201     // circumstances this can cause a thread to return prematurely from
5202     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5203     // will simply re-test the condition and re-park itself.
5204     // This provides particular benefit if the underlying platform does not
5205     // provide wait morphing.
5206     status = os::Solaris::cond_signal(_cond);
5207     assert_status(status == 0, status, "cond_signal");
5208   }
5209 }
5210 
5211 // JSR166
5212 // -------------------------------------------------------
5213 
5214 // The solaris and linux implementations of park/unpark are fairly
5215 // conservative for now, but can be improved. They currently use a
5216 // mutex/condvar pair, plus _counter.
5217 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
5218 // sets count to 1 and signals condvar.  Only one thread ever waits
5219 // on the condvar. Contention seen when trying to park implies that someone
5220 // is unparking you, so don't wait. And spurious returns are fine, so there
5221 // is no need to track notifications.
5222 
5223 #define MAX_SECS 100000000
5224 
5225 // This code is common to linux and solaris and will be moved to a
5226 // common place in dolphin.
5227 //
5228 // The passed in time value is either a relative time in nanoseconds
5229 // or an absolute time in milliseconds. Either way it has to be unpacked
5230 // into suitable seconds and nanoseconds components and stored in the
5231 // given timespec structure.
5232 // Given time is a 64-bit value and the time_t used in the timespec is only
5233 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5234 // overflow if times way in the future are given. Further on Solaris versions
5235 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5236 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5237 // As it will be 28 years before "now + 100000000" will overflow we can
5238 // ignore overflow and just impose a hard-limit on seconds using the value
5239 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5240 // years from "now".
5241 //
5242 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5243   assert(time > 0, "convertTime");
5244 
5245   struct timeval now;
5246   int status = gettimeofday(&now, NULL);
5247   assert(status == 0, "gettimeofday");
5248 
5249   time_t max_secs = now.tv_sec + MAX_SECS;
5250 
5251   if (isAbsolute) {
5252     jlong secs = time / 1000;
5253     if (secs > max_secs) {
5254       absTime->tv_sec = max_secs;
5255     } else {
5256       absTime->tv_sec = secs;
5257     }
5258     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5259   } else {
5260     jlong secs = time / NANOSECS_PER_SEC;
5261     if (secs >= MAX_SECS) {
5262       absTime->tv_sec = max_secs;
5263       absTime->tv_nsec = 0;
5264     } else {
5265       absTime->tv_sec = now.tv_sec + secs;
5266       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5267       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5268         absTime->tv_nsec -= NANOSECS_PER_SEC;
5269         ++absTime->tv_sec; // note: this must be <= max_secs
5270       }
5271     }
5272   }
5273   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5274   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5275   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5276   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5277 }
5278 
5279 void Parker::park(bool isAbsolute, jlong time) {
5280   // Ideally we'd do something useful while spinning, such
5281   // as calling unpackTime().
5282 
5283   // Optional fast-path check:
5284   // Return immediately if a permit is available.
5285   // We depend on Atomic::xchg() having full barrier semantics
5286   // since we are doing a lock-free update to _counter.
5287   if (Atomic::xchg(0, &_counter) > 0) return;
5288 
5289   // Optional fast-exit: Check interrupt before trying to wait
5290   Thread* thread = Thread::current();
5291   assert(thread->is_Java_thread(), "Must be JavaThread");
5292   JavaThread *jt = (JavaThread *)thread;
5293   if (Thread::is_interrupted(thread, false)) {
5294     return;
5295   }
5296 
5297   // First, demultiplex/decode time arguments
5298   timespec absTime;
5299   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5300     return;
5301   }
5302   if (time > 0) {
5303     // Warning: this code might be exposed to the old Solaris time
5304     // round-down bugs.  Grep "roundingFix" for details.
5305     unpackTime(&absTime, isAbsolute, time);
5306   }
5307 
5308   // Enter safepoint region
5309   // Beware of deadlocks such as 6317397.
5310   // The per-thread Parker:: _mutex is a classic leaf-lock.
5311   // In particular a thread must never block on the Threads_lock while
5312   // holding the Parker:: mutex.  If safepoints are pending both the
5313   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5314   ThreadBlockInVM tbivm(jt);
5315 
5316   // Don't wait if cannot get lock since interference arises from
5317   // unblocking.  Also. check interrupt before trying wait
5318   if (Thread::is_interrupted(thread, false) ||
5319       os::Solaris::mutex_trylock(_mutex) != 0) {
5320     return;
5321   }
5322 
5323   int status;
5324 
5325   if (_counter > 0)  { // no wait needed
5326     _counter = 0;
5327     status = os::Solaris::mutex_unlock(_mutex);
5328     assert(status == 0, "invariant");
5329     // Paranoia to ensure our locked and lock-free paths interact
5330     // correctly with each other and Java-level accesses.
5331     OrderAccess::fence();
5332     return;
5333   }
5334 
5335   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5336   jt->set_suspend_equivalent();
5337   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5338 
5339   // Do this the hard way by blocking ...
5340   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5341   if (time == 0) {
5342     status = os::Solaris::cond_wait(_cond, _mutex);
5343   } else {
5344     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5345   }
5346   // Note that an untimed cond_wait() can sometimes return ETIME on older
5347   // versions of the Solaris.
5348   assert_status(status == 0 || status == EINTR ||
5349                 status == ETIME || status == ETIMEDOUT,
5350                 status, "cond_timedwait");
5351 
5352   _counter = 0;
5353   status = os::Solaris::mutex_unlock(_mutex);
5354   assert_status(status == 0, status, "mutex_unlock");
5355   // Paranoia to ensure our locked and lock-free paths interact
5356   // correctly with each other and Java-level accesses.
5357   OrderAccess::fence();
5358 
5359   // If externally suspended while waiting, re-suspend
5360   if (jt->handle_special_suspend_equivalent_condition()) {
5361     jt->java_suspend_self();
5362   }
5363 }
5364 
5365 void Parker::unpark() {
5366   int status = os::Solaris::mutex_lock(_mutex);
5367   assert(status == 0, "invariant");
5368   const int s = _counter;
5369   _counter = 1;
5370   status = os::Solaris::mutex_unlock(_mutex);
5371   assert(status == 0, "invariant");
5372 
5373   if (s < 1) {
5374     status = os::Solaris::cond_signal(_cond);
5375     assert(status == 0, "invariant");
5376   }
5377 }
5378 
5379 extern char** environ;
5380 
5381 // Run the specified command in a separate process. Return its exit value,
5382 // or -1 on failure (e.g. can't fork a new process).
5383 // Unlike system(), this function can be called from signal handler. It
5384 // doesn't block SIGINT et al.
5385 int os::fork_and_exec(char* cmd) {
5386   char * argv[4];
5387   argv[0] = (char *)"sh";
5388   argv[1] = (char *)"-c";
5389   argv[2] = cmd;
5390   argv[3] = NULL;
5391 
5392   // fork is async-safe, fork1 is not so can't use in signal handler
5393   pid_t pid;
5394   Thread* t = Thread::current_or_null_safe();
5395   if (t != NULL && t->is_inside_signal_handler()) {
5396     pid = fork();
5397   } else {
5398     pid = fork1();
5399   }
5400 
5401   if (pid < 0) {
5402     // fork failed
5403     warning("fork failed: %s", os::strerror(errno));
5404     return -1;
5405 
5406   } else if (pid == 0) {
5407     // child process
5408 
5409     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5410     execve("/usr/bin/sh", argv, environ);
5411 
5412     // execve failed
5413     _exit(-1);
5414 
5415   } else  {
5416     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5417     // care about the actual exit code, for now.
5418 
5419     int status;
5420 
5421     // Wait for the child process to exit.  This returns immediately if
5422     // the child has already exited. */
5423     while (waitpid(pid, &status, 0) < 0) {
5424       switch (errno) {
5425       case ECHILD: return 0;
5426       case EINTR: break;
5427       default: return -1;
5428       }
5429     }
5430 
5431     if (WIFEXITED(status)) {
5432       // The child exited normally; get its exit code.
5433       return WEXITSTATUS(status);
5434     } else if (WIFSIGNALED(status)) {
5435       // The child exited because of a signal
5436       // The best value to return is 0x80 + signal number,
5437       // because that is what all Unix shells do, and because
5438       // it allows callers to distinguish between process exit and
5439       // process death by signal.
5440       return 0x80 + WTERMSIG(status);
5441     } else {
5442       // Unknown exit code; pass it through
5443       return status;
5444     }
5445   }
5446 }
5447 
5448 // is_headless_jre()
5449 //
5450 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5451 // in order to report if we are running in a headless jre
5452 //
5453 // Since JDK8 xawt/libmawt.so was moved into the same directory
5454 // as libawt.so, and renamed libawt_xawt.so
5455 //
5456 bool os::is_headless_jre() {
5457   struct stat statbuf;
5458   char buf[MAXPATHLEN];
5459   char libmawtpath[MAXPATHLEN];
5460   const char *xawtstr  = "/xawt/libmawt.so";
5461   const char *new_xawtstr = "/libawt_xawt.so";
5462   char *p;
5463 
5464   // Get path to libjvm.so
5465   os::jvm_path(buf, sizeof(buf));
5466 
5467   // Get rid of libjvm.so
5468   p = strrchr(buf, '/');
5469   if (p == NULL) {
5470     return false;
5471   } else {
5472     *p = '\0';
5473   }
5474 
5475   // Get rid of client or server
5476   p = strrchr(buf, '/');
5477   if (p == NULL) {
5478     return false;
5479   } else {
5480     *p = '\0';
5481   }
5482 
5483   // check xawt/libmawt.so
5484   strcpy(libmawtpath, buf);
5485   strcat(libmawtpath, xawtstr);
5486   if (::stat(libmawtpath, &statbuf) == 0) return false;
5487 
5488   // check libawt_xawt.so
5489   strcpy(libmawtpath, buf);
5490   strcat(libmawtpath, new_xawtstr);
5491   if (::stat(libmawtpath, &statbuf) == 0) return false;
5492 
5493   return true;
5494 }
5495 
5496 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5497   size_t res;
5498   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5499   return res;
5500 }
5501 
5502 int os::close(int fd) {
5503   return ::close(fd);
5504 }
5505 
5506 int os::socket_close(int fd) {
5507   return ::close(fd);
5508 }
5509 
5510 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5511   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5512          "Assumed _thread_in_native");
5513   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5514 }
5515 
5516 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5517   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5518          "Assumed _thread_in_native");
5519   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5520 }
5521 
5522 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5523   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5524 }
5525 
5526 // As both poll and select can be interrupted by signals, we have to be
5527 // prepared to restart the system call after updating the timeout, unless
5528 // a poll() is done with timeout == -1, in which case we repeat with this
5529 // "wait forever" value.
5530 
5531 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5532   int _result;
5533   _result = ::connect(fd, him, len);
5534 
5535   // On Solaris, when a connect() call is interrupted, the connection
5536   // can be established asynchronously (see 6343810). Subsequent calls
5537   // to connect() must check the errno value which has the semantic
5538   // described below (copied from the connect() man page). Handling
5539   // of asynchronously established connections is required for both
5540   // blocking and non-blocking sockets.
5541   //     EINTR            The  connection  attempt  was   interrupted
5542   //                      before  any data arrived by the delivery of
5543   //                      a signal. The connection, however, will  be
5544   //                      established asynchronously.
5545   //
5546   //     EINPROGRESS      The socket is non-blocking, and the connec-
5547   //                      tion  cannot  be completed immediately.
5548   //
5549   //     EALREADY         The socket is non-blocking,  and a previous
5550   //                      connection  attempt  has  not yet been com-
5551   //                      pleted.
5552   //
5553   //     EISCONN          The socket is already connected.
5554   if (_result == OS_ERR && errno == EINTR) {
5555     // restarting a connect() changes its errno semantics
5556     RESTARTABLE(::connect(fd, him, len), _result);
5557     // undo these changes
5558     if (_result == OS_ERR) {
5559       if (errno == EALREADY) {
5560         errno = EINPROGRESS; // fall through
5561       } else if (errno == EISCONN) {
5562         errno = 0;
5563         return OS_OK;
5564       }
5565     }
5566   }
5567   return _result;
5568 }
5569 
5570 // Get the default path to the core file
5571 // Returns the length of the string
5572 int os::get_core_path(char* buffer, size_t bufferSize) {
5573   const char* p = get_current_directory(buffer, bufferSize);
5574 
5575   if (p == NULL) {
5576     assert(p != NULL, "failed to get current directory");
5577     return 0;
5578   }
5579 
5580   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5581                                               p, current_process_id());
5582 
5583   return strlen(buffer);
5584 }
5585 
5586 #ifndef PRODUCT
5587 void TestReserveMemorySpecial_test() {
5588   // No tests available for this platform
5589 }
5590 #endif
5591 
5592 bool os::start_debugging(char *buf, int buflen) {
5593   int len = (int)strlen(buf);
5594   char *p = &buf[len];
5595 
5596   jio_snprintf(p, buflen-len,
5597                "\n\n"
5598                "Do you want to debug the problem?\n\n"
5599                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5600                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5601                "Otherwise, press RETURN to abort...",
5602                os::current_process_id(), os::current_thread_id());
5603 
5604   bool yes = os::message_box("Unexpected Error", buf);
5605 
5606   if (yes) {
5607     // yes, user asked VM to launch debugger
5608     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5609 
5610     os::fork_and_exec(buf);
5611     yes = false;
5612   }
5613   return yes;
5614 }