1 /*
   2  * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/markOop.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/atomic.hpp"
  32 #include "runtime/handles.inline.hpp"
  33 #include "runtime/interfaceSupport.hpp"
  34 #include "runtime/mutexLocker.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/objectMonitor.inline.hpp"
  37 #include "runtime/orderAccess.inline.hpp"
  38 #include "runtime/osThread.hpp"
  39 #include "runtime/safepointMechanism.inline.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "runtime/thread.inline.hpp"
  42 #include "services/threadService.hpp"
  43 #include "trace/tracing.hpp"
  44 #include "trace/traceMacros.hpp"
  45 #include "utilities/dtrace.hpp"
  46 #include "utilities/macros.hpp"
  47 #include "utilities/preserveException.hpp"
  48 
  49 #ifdef DTRACE_ENABLED
  50 
  51 // Only bother with this argument setup if dtrace is available
  52 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  53 
  54 
  55 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  56   char* bytes = NULL;                                                      \
  57   int len = 0;                                                             \
  58   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  59   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  60   if (klassname != NULL) {                                                 \
  61     bytes = (char*)klassname->bytes();                                     \
  62     len = klassname->utf8_length();                                        \
  63   }
  64 
  65 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  66   {                                                                        \
  67     if (DTraceMonitorProbes) {                                             \
  68       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  69       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  70                            (monitor), bytes, len, (millis));               \
  71     }                                                                      \
  72   }
  73 
  74 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  75 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  76 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  77 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  78 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  79 
  80 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  81   {                                                                        \
  82     if (DTraceMonitorProbes) {                                             \
  83       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  84       HOTSPOT_MONITOR_##probe(jtid,                                        \
  85                               (uintptr_t)(monitor), bytes, len);           \
  86     }                                                                      \
  87   }
  88 
  89 #else //  ndef DTRACE_ENABLED
  90 
  91 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  92 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  93 
  94 #endif // ndef DTRACE_ENABLED
  95 
  96 // Tunables ...
  97 // The knob* variables are effectively final.  Once set they should
  98 // never be modified hence.  Consider using __read_mostly with GCC.
  99 
 100 int ObjectMonitor::Knob_ExitRelease = 0;
 101 int ObjectMonitor::Knob_Verbose     = 0;
 102 int ObjectMonitor::Knob_VerifyInUse = 0;
 103 int ObjectMonitor::Knob_VerifyMatch = 0;
 104 int ObjectMonitor::Knob_SpinLimit   = 5000;    // derived by an external tool -
 105 static int Knob_LogSpins            = 0;       // enable jvmstat tally for spins
 106 static int Knob_HandOff             = 0;
 107 static int Knob_ReportSettings      = 0;
 108 
 109 static int Knob_SpinBase            = 0;       // Floor AKA SpinMin
 110 static int Knob_SpinBackOff         = 0;       // spin-loop backoff
 111 static int Knob_CASPenalty          = -1;      // Penalty for failed CAS
 112 static int Knob_OXPenalty           = -1;      // Penalty for observed _owner change
 113 static int Knob_SpinSetSucc         = 1;       // spinners set the _succ field
 114 static int Knob_SpinEarly           = 1;
 115 static int Knob_SuccEnabled         = 1;       // futile wake throttling
 116 static int Knob_SuccRestrict        = 0;       // Limit successors + spinners to at-most-one
 117 static int Knob_MaxSpinners         = -1;      // Should be a function of # CPUs
 118 static int Knob_Bonus               = 100;     // spin success bonus
 119 static int Knob_BonusB              = 100;     // spin success bonus
 120 static int Knob_Penalty             = 200;     // spin failure penalty
 121 static int Knob_Poverty             = 1000;
 122 static int Knob_SpinAfterFutile     = 1;       // Spin after returning from park()
 123 static int Knob_FixedSpin           = 0;
 124 static int Knob_OState              = 3;       // Spinner checks thread state of _owner
 125 static int Knob_UsePause            = 1;
 126 static int Knob_ExitPolicy          = 0;
 127 static int Knob_PreSpin             = 10;      // 20-100 likely better
 128 static int Knob_ResetEvent          = 0;
 129 static int BackOffMask              = 0;
 130 
 131 static int Knob_FastHSSEC           = 0;
 132 static int Knob_MoveNotifyee        = 2;       // notify() - disposition of notifyee
 133 static int Knob_QMode               = 0;       // EntryList-cxq policy - queue discipline
 134 static volatile int InitDone        = 0;
 135 
 136 // -----------------------------------------------------------------------------
 137 // Theory of operations -- Monitors lists, thread residency, etc:
 138 //
 139 // * A thread acquires ownership of a monitor by successfully
 140 //   CAS()ing the _owner field from null to non-null.
 141 //
 142 // * Invariant: A thread appears on at most one monitor list --
 143 //   cxq, EntryList or WaitSet -- at any one time.
 144 //
 145 // * Contending threads "push" themselves onto the cxq with CAS
 146 //   and then spin/park.
 147 //
 148 // * After a contending thread eventually acquires the lock it must
 149 //   dequeue itself from either the EntryList or the cxq.
 150 //
 151 // * The exiting thread identifies and unparks an "heir presumptive"
 152 //   tentative successor thread on the EntryList.  Critically, the
 153 //   exiting thread doesn't unlink the successor thread from the EntryList.
 154 //   After having been unparked, the wakee will recontend for ownership of
 155 //   the monitor.   The successor (wakee) will either acquire the lock or
 156 //   re-park itself.
 157 //
 158 //   Succession is provided for by a policy of competitive handoff.
 159 //   The exiting thread does _not_ grant or pass ownership to the
 160 //   successor thread.  (This is also referred to as "handoff" succession").
 161 //   Instead the exiting thread releases ownership and possibly wakes
 162 //   a successor, so the successor can (re)compete for ownership of the lock.
 163 //   If the EntryList is empty but the cxq is populated the exiting
 164 //   thread will drain the cxq into the EntryList.  It does so by
 165 //   by detaching the cxq (installing null with CAS) and folding
 166 //   the threads from the cxq into the EntryList.  The EntryList is
 167 //   doubly linked, while the cxq is singly linked because of the
 168 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 169 //
 170 // * Concurrency invariants:
 171 //
 172 //   -- only the monitor owner may access or mutate the EntryList.
 173 //      The mutex property of the monitor itself protects the EntryList
 174 //      from concurrent interference.
 175 //   -- Only the monitor owner may detach the cxq.
 176 //
 177 // * The monitor entry list operations avoid locks, but strictly speaking
 178 //   they're not lock-free.  Enter is lock-free, exit is not.
 179 //   For a description of 'Methods and apparatus providing non-blocking access
 180 //   to a resource,' see U.S. Pat. No. 7844973.
 181 //
 182 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 183 //   detaching thread.  This mechanism is immune from the ABA corruption.
 184 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 185 //
 186 // * Taken together, the cxq and the EntryList constitute or form a
 187 //   single logical queue of threads stalled trying to acquire the lock.
 188 //   We use two distinct lists to improve the odds of a constant-time
 189 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 190 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 191 //   A key desideratum is to minimize queue & monitor metadata manipulation
 192 //   that occurs while holding the monitor lock -- that is, we want to
 193 //   minimize monitor lock holds times.  Note that even a small amount of
 194 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 195 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 196 //   locks and monitor metadata.
 197 //
 198 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 199 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 200 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 201 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 202 //
 203 //   The EntryList is ordered by the prevailing queue discipline and
 204 //   can be organized in any convenient fashion, such as a doubly-linked list or
 205 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 206 //   to operate in constant-time.  If we need a priority queue then something akin
 207 //   to Solaris' sleepq would work nicely.  Viz.,
 208 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 209 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 210 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 211 //   EntryList accordingly.
 212 //
 213 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 214 //   somewhat similar to an elevator-scan.
 215 //
 216 // * The monitor synchronization subsystem avoids the use of native
 217 //   synchronization primitives except for the narrow platform-specific
 218 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 219 //   the semantics of park-unpark.  Put another way, this monitor implementation
 220 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 221 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 222 //   underlying OS manages the READY<->RUN transitions.
 223 //
 224 // * Waiting threads reside on the WaitSet list -- wait() puts
 225 //   the caller onto the WaitSet.
 226 //
 227 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 228 //   either the EntryList or cxq.  Subsequent exit() operations will
 229 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 230 //   it's likely the notifyee would simply impale itself on the lock held
 231 //   by the notifier.
 232 //
 233 // * An interesting alternative is to encode cxq as (List,LockByte) where
 234 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 235 //   variable, like _recursions, in the scheme.  The threads or Events that form
 236 //   the list would have to be aligned in 256-byte addresses.  A thread would
 237 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 238 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 239 //   Note that is is *not* word-tearing, but it does presume that full-word
 240 //   CAS operations are coherent with intermix with STB operations.  That's true
 241 //   on most common processors.
 242 //
 243 // * See also http://blogs.sun.com/dave
 244 
 245 
 246 void* ObjectMonitor::operator new (size_t size) throw() {
 247   return AllocateHeap(size, mtInternal);
 248 }
 249 void* ObjectMonitor::operator new[] (size_t size) throw() {
 250   return operator new (size);
 251 }
 252 void ObjectMonitor::operator delete(void* p) {
 253   FreeHeap(p);
 254 }
 255 void ObjectMonitor::operator delete[] (void *p) {
 256   operator delete(p);
 257 }
 258 
 259 // -----------------------------------------------------------------------------
 260 // Enter support
 261 
 262 void ObjectMonitor::enter(TRAPS) {
 263   // The following code is ordered to check the most common cases first
 264   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 265   Thread * const Self = THREAD;
 266 
 267   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 268   if (cur == NULL) {
 269     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 270     assert(_recursions == 0, "invariant");
 271     assert(_owner == Self, "invariant");
 272     return;
 273   }
 274 
 275   if (cur == Self) {
 276     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 277     _recursions++;
 278     return;
 279   }
 280 
 281   if (Self->is_lock_owned ((address)cur)) {
 282     assert(_recursions == 0, "internal state error");
 283     _recursions = 1;
 284     // Commute owner from a thread-specific on-stack BasicLockObject address to
 285     // a full-fledged "Thread *".
 286     _owner = Self;
 287     return;
 288   }
 289 
 290   // We've encountered genuine contention.
 291   assert(Self->_Stalled == 0, "invariant");
 292   Self->_Stalled = intptr_t(this);
 293 
 294   // Try one round of spinning *before* enqueueing Self
 295   // and before going through the awkward and expensive state
 296   // transitions.  The following spin is strictly optional ...
 297   // Note that if we acquire the monitor from an initial spin
 298   // we forgo posting JVMTI events and firing DTRACE probes.
 299   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 300     assert(_owner == Self, "invariant");
 301     assert(_recursions == 0, "invariant");
 302     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 303     Self->_Stalled = 0;
 304     return;
 305   }
 306 
 307   assert(_owner != Self, "invariant");
 308   assert(_succ != Self, "invariant");
 309   assert(Self->is_Java_thread(), "invariant");
 310   JavaThread * jt = (JavaThread *) Self;
 311   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 312   assert(jt->thread_state() != _thread_blocked, "invariant");
 313   assert(this->object() != NULL, "invariant");
 314   assert(_count >= 0, "invariant");
 315 
 316   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 317   // Ensure the object-monitor relationship remains stable while there's contention.
 318   Atomic::inc(&_count);
 319 
 320   EventJavaMonitorEnter event;
 321 
 322   { // Change java thread status to indicate blocked on monitor enter.
 323     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 324 
 325     Self->set_current_pending_monitor(this);
 326 
 327     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 328     if (JvmtiExport::should_post_monitor_contended_enter()) {
 329       JvmtiExport::post_monitor_contended_enter(jt, this);
 330 
 331       // The current thread does not yet own the monitor and does not
 332       // yet appear on any queues that would get it made the successor.
 333       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 334       // handler cannot accidentally consume an unpark() meant for the
 335       // ParkEvent associated with this ObjectMonitor.
 336     }
 337 
 338     OSThreadContendState osts(Self->osthread());
 339     ThreadBlockInVM tbivm(jt);
 340 
 341     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 342     for (;;) {
 343       jt->set_suspend_equivalent();
 344       // cleared by handle_special_suspend_equivalent_condition()
 345       // or java_suspend_self()
 346 
 347       EnterI(THREAD);
 348 
 349       if (!ExitSuspendEquivalent(jt)) break;
 350 
 351       // We have acquired the contended monitor, but while we were
 352       // waiting another thread suspended us. We don't want to enter
 353       // the monitor while suspended because that would surprise the
 354       // thread that suspended us.
 355       //
 356       _recursions = 0;
 357       _succ = NULL;
 358       exit(false, Self);
 359 
 360       jt->java_suspend_self();
 361     }
 362     Self->set_current_pending_monitor(NULL);
 363 
 364     // We cleared the pending monitor info since we've just gotten past
 365     // the enter-check-for-suspend dance and we now own the monitor free
 366     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 367     // destructor can go to a safepoint at the end of this block. If we
 368     // do a thread dump during that safepoint, then this thread will show
 369     // as having "-locked" the monitor, but the OS and java.lang.Thread
 370     // states will still report that the thread is blocked trying to
 371     // acquire it.
 372   }
 373 
 374   Atomic::dec(&_count);
 375   assert(_count >= 0, "invariant");
 376   Self->_Stalled = 0;
 377 
 378   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 379   assert(_recursions == 0, "invariant");
 380   assert(_owner == Self, "invariant");
 381   assert(_succ != Self, "invariant");
 382   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 383 
 384   // The thread -- now the owner -- is back in vm mode.
 385   // Report the glorious news via TI,DTrace and jvmstat.
 386   // The probe effect is non-trivial.  All the reportage occurs
 387   // while we hold the monitor, increasing the length of the critical
 388   // section.  Amdahl's parallel speedup law comes vividly into play.
 389   //
 390   // Another option might be to aggregate the events (thread local or
 391   // per-monitor aggregation) and defer reporting until a more opportune
 392   // time -- such as next time some thread encounters contention but has
 393   // yet to acquire the lock.  While spinning that thread could
 394   // spinning we could increment JVMStat counters, etc.
 395 
 396   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 397   if (JvmtiExport::should_post_monitor_contended_entered()) {
 398     JvmtiExport::post_monitor_contended_entered(jt, this);
 399 
 400     // The current thread already owns the monitor and is not going to
 401     // call park() for the remainder of the monitor enter protocol. So
 402     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 403     // event handler consumed an unpark() issued by the thread that
 404     // just exited the monitor.
 405   }
 406 
 407   if (event.should_commit()) {
 408     event.set_monitorClass(((oop)this->object())->klass());
 409     event.set_previousOwner((TYPE_THREAD)_previous_owner_tid);
 410     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
 411     event.commit();
 412   }
 413 
 414   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 415 }
 416 
 417 
 418 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 419 // Callers must compensate as needed.
 420 
 421 int ObjectMonitor::TryLock(Thread * Self) {
 422   void * own = _owner;
 423   if (own != NULL) return 0;
 424   if (Atomic::cmpxchg(Self, &_owner, (void*)NULL) == NULL) {
 425     // Either guarantee _recursions == 0 or set _recursions = 0.
 426     assert(_recursions == 0, "invariant");
 427     assert(_owner == Self, "invariant");
 428     return 1;
 429   }
 430   // The lock had been free momentarily, but we lost the race to the lock.
 431   // Interference -- the CAS failed.
 432   // We can either return -1 or retry.
 433   // Retry doesn't make as much sense because the lock was just acquired.
 434   return -1;
 435 }
 436 
 437 #define MAX_RECHECK_INTERVAL 1000
 438 
 439 void ObjectMonitor::EnterI(TRAPS) {
 440   Thread * const Self = THREAD;
 441   assert(Self->is_Java_thread(), "invariant");
 442   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 443 
 444   // Try the lock - TATAS
 445   if (TryLock (Self) > 0) {
 446     assert(_succ != Self, "invariant");
 447     assert(_owner == Self, "invariant");
 448     assert(_Responsible != Self, "invariant");
 449     return;
 450   }
 451 
 452   DeferredInitialize();
 453 
 454   // We try one round of spinning *before* enqueueing Self.
 455   //
 456   // If the _owner is ready but OFFPROC we could use a YieldTo()
 457   // operation to donate the remainder of this thread's quantum
 458   // to the owner.  This has subtle but beneficial affinity
 459   // effects.
 460 
 461   if (TrySpin (Self) > 0) {
 462     assert(_owner == Self, "invariant");
 463     assert(_succ != Self, "invariant");
 464     assert(_Responsible != Self, "invariant");
 465     return;
 466   }
 467 
 468   // The Spin failed -- Enqueue and park the thread ...
 469   assert(_succ != Self, "invariant");
 470   assert(_owner != Self, "invariant");
 471   assert(_Responsible != Self, "invariant");
 472 
 473   // Enqueue "Self" on ObjectMonitor's _cxq.
 474   //
 475   // Node acts as a proxy for Self.
 476   // As an aside, if were to ever rewrite the synchronization code mostly
 477   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 478   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 479   // as well as eliminate a subset of ABA issues.
 480   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 481 
 482   ObjectWaiter node(Self);
 483   Self->_ParkEvent->reset();
 484   node._prev   = (ObjectWaiter *) 0xBAD;
 485   node.TState  = ObjectWaiter::TS_CXQ;
 486 
 487   // Push "Self" onto the front of the _cxq.
 488   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 489   // Note that spinning tends to reduce the rate at which threads
 490   // enqueue and dequeue on EntryList|cxq.
 491   ObjectWaiter * nxt;
 492   for (;;) {
 493     node._next = nxt = _cxq;
 494     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 495 
 496     // Interference - the CAS failed because _cxq changed.  Just retry.
 497     // As an optional optimization we retry the lock.
 498     if (TryLock (Self) > 0) {
 499       assert(_succ != Self, "invariant");
 500       assert(_owner == Self, "invariant");
 501       assert(_Responsible != Self, "invariant");
 502       return;
 503     }
 504   }
 505 
 506   // Check for cxq|EntryList edge transition to non-null.  This indicates
 507   // the onset of contention.  While contention persists exiting threads
 508   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 509   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 510   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 511   // arrange for one of the contending thread to use a timed park() operations
 512   // to detect and recover from the race.  (Stranding is form of progress failure
 513   // where the monitor is unlocked but all the contending threads remain parked).
 514   // That is, at least one of the contended threads will periodically poll _owner.
 515   // One of the contending threads will become the designated "Responsible" thread.
 516   // The Responsible thread uses a timed park instead of a normal indefinite park
 517   // operation -- it periodically wakes and checks for and recovers from potential
 518   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 519   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 520   // be responsible for a monitor.
 521   //
 522   // Currently, one of the contended threads takes on the added role of "Responsible".
 523   // A viable alternative would be to use a dedicated "stranding checker" thread
 524   // that periodically iterated over all the threads (or active monitors) and unparked
 525   // successors where there was risk of stranding.  This would help eliminate the
 526   // timer scalability issues we see on some platforms as we'd only have one thread
 527   // -- the checker -- parked on a timer.
 528 
 529   if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 530     // Try to assume the role of responsible thread for the monitor.
 531     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 532     Atomic::cmpxchg(Self, &_Responsible, (Thread*)NULL);
 533   }
 534 
 535   // The lock might have been released while this thread was occupied queueing
 536   // itself onto _cxq.  To close the race and avoid "stranding" and
 537   // progress-liveness failure we must resample-retry _owner before parking.
 538   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 539   // In this case the ST-MEMBAR is accomplished with CAS().
 540   //
 541   // TODO: Defer all thread state transitions until park-time.
 542   // Since state transitions are heavy and inefficient we'd like
 543   // to defer the state transitions until absolutely necessary,
 544   // and in doing so avoid some transitions ...
 545 
 546   TEVENT(Inflated enter - Contention);
 547   int nWakeups = 0;
 548   int recheckInterval = 1;
 549 
 550   for (;;) {
 551 
 552     if (TryLock(Self) > 0) break;
 553     assert(_owner != Self, "invariant");
 554 
 555     if ((SyncFlags & 2) && _Responsible == NULL) {
 556       Atomic::cmpxchg(Self, &_Responsible, (Thread*)NULL);
 557     }
 558 
 559     // park self
 560     if (_Responsible == Self || (SyncFlags & 1)) {
 561       TEVENT(Inflated enter - park TIMED);
 562       Self->_ParkEvent->park((jlong) recheckInterval);
 563       // Increase the recheckInterval, but clamp the value.
 564       recheckInterval *= 8;
 565       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 566         recheckInterval = MAX_RECHECK_INTERVAL;
 567       }
 568     } else {
 569       TEVENT(Inflated enter - park UNTIMED);
 570       Self->_ParkEvent->park();
 571     }
 572 
 573     if (TryLock(Self) > 0) break;
 574 
 575     // The lock is still contested.
 576     // Keep a tally of the # of futile wakeups.
 577     // Note that the counter is not protected by a lock or updated by atomics.
 578     // That is by design - we trade "lossy" counters which are exposed to
 579     // races during updates for a lower probe effect.
 580     TEVENT(Inflated enter - Futile wakeup);
 581     // This PerfData object can be used in parallel with a safepoint.
 582     // See the work around in PerfDataManager::destroy().
 583     OM_PERFDATA_OP(FutileWakeups, inc());
 584     ++nWakeups;
 585 
 586     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 587     // We can defer clearing _succ until after the spin completes
 588     // TrySpin() must tolerate being called with _succ == Self.
 589     // Try yet another round of adaptive spinning.
 590     if ((Knob_SpinAfterFutile & 1) && TrySpin(Self) > 0) break;
 591 
 592     // We can find that we were unpark()ed and redesignated _succ while
 593     // we were spinning.  That's harmless.  If we iterate and call park(),
 594     // park() will consume the event and return immediately and we'll
 595     // just spin again.  This pattern can repeat, leaving _succ to simply
 596     // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 597     // Alternately, we can sample fired() here, and if set, forgo spinning
 598     // in the next iteration.
 599 
 600     if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 601       Self->_ParkEvent->reset();
 602       OrderAccess::fence();
 603     }
 604     if (_succ == Self) _succ = NULL;
 605 
 606     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 607     OrderAccess::fence();
 608   }
 609 
 610   // Egress :
 611   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 612   // Normally we'll find Self on the EntryList .
 613   // From the perspective of the lock owner (this thread), the
 614   // EntryList is stable and cxq is prepend-only.
 615   // The head of cxq is volatile but the interior is stable.
 616   // In addition, Self.TState is stable.
 617 
 618   assert(_owner == Self, "invariant");
 619   assert(object() != NULL, "invariant");
 620   // I'd like to write:
 621   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 622   // but as we're at a safepoint that's not safe.
 623 
 624   UnlinkAfterAcquire(Self, &node);
 625   if (_succ == Self) _succ = NULL;
 626 
 627   assert(_succ != Self, "invariant");
 628   if (_Responsible == Self) {
 629     _Responsible = NULL;
 630     OrderAccess::fence(); // Dekker pivot-point
 631 
 632     // We may leave threads on cxq|EntryList without a designated
 633     // "Responsible" thread.  This is benign.  When this thread subsequently
 634     // exits the monitor it can "see" such preexisting "old" threads --
 635     // threads that arrived on the cxq|EntryList before the fence, above --
 636     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 637     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 638     // non-null and elect a new "Responsible" timer thread.
 639     //
 640     // This thread executes:
 641     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 642     //    LD cxq|EntryList               (in subsequent exit)
 643     //
 644     // Entering threads in the slow/contended path execute:
 645     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 646     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 647     //
 648     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 649     // exit operation from floating above the ST Responsible=null.
 650   }
 651 
 652   // We've acquired ownership with CAS().
 653   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 654   // But since the CAS() this thread may have also stored into _succ,
 655   // EntryList, cxq or Responsible.  These meta-data updates must be
 656   // visible __before this thread subsequently drops the lock.
 657   // Consider what could occur if we didn't enforce this constraint --
 658   // STs to monitor meta-data and user-data could reorder with (become
 659   // visible after) the ST in exit that drops ownership of the lock.
 660   // Some other thread could then acquire the lock, but observe inconsistent
 661   // or old monitor meta-data and heap data.  That violates the JMM.
 662   // To that end, the 1-0 exit() operation must have at least STST|LDST
 663   // "release" barrier semantics.  Specifically, there must be at least a
 664   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 665   // the lock.   The barrier ensures that changes to monitor meta-data and data
 666   // protected by the lock will be visible before we release the lock, and
 667   // therefore before some other thread (CPU) has a chance to acquire the lock.
 668   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 669   //
 670   // Critically, any prior STs to _succ or EntryList must be visible before
 671   // the ST of null into _owner in the *subsequent* (following) corresponding
 672   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 673   // execute a serializing instruction.
 674 
 675   if (SyncFlags & 8) {
 676     OrderAccess::fence();
 677   }
 678   return;
 679 }
 680 
 681 // ReenterI() is a specialized inline form of the latter half of the
 682 // contended slow-path from EnterI().  We use ReenterI() only for
 683 // monitor reentry in wait().
 684 //
 685 // In the future we should reconcile EnterI() and ReenterI(), adding
 686 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 687 // loop accordingly.
 688 
 689 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 690   assert(Self != NULL, "invariant");
 691   assert(SelfNode != NULL, "invariant");
 692   assert(SelfNode->_thread == Self, "invariant");
 693   assert(_waiters > 0, "invariant");
 694   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 695   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 696   JavaThread * jt = (JavaThread *) Self;
 697 
 698   int nWakeups = 0;
 699   for (;;) {
 700     ObjectWaiter::TStates v = SelfNode->TState;
 701     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 702     assert(_owner != Self, "invariant");
 703 
 704     if (TryLock(Self) > 0) break;
 705     if (TrySpin(Self) > 0) break;
 706 
 707     TEVENT(Wait Reentry - parking);
 708 
 709     // State transition wrappers around park() ...
 710     // ReenterI() wisely defers state transitions until
 711     // it's clear we must park the thread.
 712     {
 713       OSThreadContendState osts(Self->osthread());
 714       ThreadBlockInVM tbivm(jt);
 715 
 716       // cleared by handle_special_suspend_equivalent_condition()
 717       // or java_suspend_self()
 718       jt->set_suspend_equivalent();
 719       if (SyncFlags & 1) {
 720         Self->_ParkEvent->park((jlong)MAX_RECHECK_INTERVAL);
 721       } else {
 722         Self->_ParkEvent->park();
 723       }
 724 
 725       // were we externally suspended while we were waiting?
 726       for (;;) {
 727         if (!ExitSuspendEquivalent(jt)) break;
 728         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 729         jt->java_suspend_self();
 730         jt->set_suspend_equivalent();
 731       }
 732     }
 733 
 734     // Try again, but just so we distinguish between futile wakeups and
 735     // successful wakeups.  The following test isn't algorithmically
 736     // necessary, but it helps us maintain sensible statistics.
 737     if (TryLock(Self) > 0) break;
 738 
 739     // The lock is still contested.
 740     // Keep a tally of the # of futile wakeups.
 741     // Note that the counter is not protected by a lock or updated by atomics.
 742     // That is by design - we trade "lossy" counters which are exposed to
 743     // races during updates for a lower probe effect.
 744     TEVENT(Wait Reentry - futile wakeup);
 745     ++nWakeups;
 746 
 747     // Assuming this is not a spurious wakeup we'll normally
 748     // find that _succ == Self.
 749     if (_succ == Self) _succ = NULL;
 750 
 751     // Invariant: after clearing _succ a contending thread
 752     // *must* retry  _owner before parking.
 753     OrderAccess::fence();
 754 
 755     // This PerfData object can be used in parallel with a safepoint.
 756     // See the work around in PerfDataManager::destroy().
 757     OM_PERFDATA_OP(FutileWakeups, inc());
 758   }
 759 
 760   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 761   // Normally we'll find Self on the EntryList.
 762   // Unlinking from the EntryList is constant-time and atomic-free.
 763   // From the perspective of the lock owner (this thread), the
 764   // EntryList is stable and cxq is prepend-only.
 765   // The head of cxq is volatile but the interior is stable.
 766   // In addition, Self.TState is stable.
 767 
 768   assert(_owner == Self, "invariant");
 769   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 770   UnlinkAfterAcquire(Self, SelfNode);
 771   if (_succ == Self) _succ = NULL;
 772   assert(_succ != Self, "invariant");
 773   SelfNode->TState = ObjectWaiter::TS_RUN;
 774   OrderAccess::fence();      // see comments at the end of EnterI()
 775 }
 776 
 777 // By convention we unlink a contending thread from EntryList|cxq immediately
 778 // after the thread acquires the lock in ::enter().  Equally, we could defer
 779 // unlinking the thread until ::exit()-time.
 780 
 781 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 782   assert(_owner == Self, "invariant");
 783   assert(SelfNode->_thread == Self, "invariant");
 784 
 785   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 786     // Normal case: remove Self from the DLL EntryList .
 787     // This is a constant-time operation.
 788     ObjectWaiter * nxt = SelfNode->_next;
 789     ObjectWaiter * prv = SelfNode->_prev;
 790     if (nxt != NULL) nxt->_prev = prv;
 791     if (prv != NULL) prv->_next = nxt;
 792     if (SelfNode == _EntryList) _EntryList = nxt;
 793     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 794     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 795     TEVENT(Unlink from EntryList);
 796   } else {
 797     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 798     // Inopportune interleaving -- Self is still on the cxq.
 799     // This usually means the enqueue of self raced an exiting thread.
 800     // Normally we'll find Self near the front of the cxq, so
 801     // dequeueing is typically fast.  If needbe we can accelerate
 802     // this with some MCS/CHL-like bidirectional list hints and advisory
 803     // back-links so dequeueing from the interior will normally operate
 804     // in constant-time.
 805     // Dequeue Self from either the head (with CAS) or from the interior
 806     // with a linear-time scan and normal non-atomic memory operations.
 807     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 808     // and then unlink Self from EntryList.  We have to drain eventually,
 809     // so it might as well be now.
 810 
 811     ObjectWaiter * v = _cxq;
 812     assert(v != NULL, "invariant");
 813     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 814       // The CAS above can fail from interference IFF a "RAT" arrived.
 815       // In that case Self must be in the interior and can no longer be
 816       // at the head of cxq.
 817       if (v == SelfNode) {
 818         assert(_cxq != v, "invariant");
 819         v = _cxq;          // CAS above failed - start scan at head of list
 820       }
 821       ObjectWaiter * p;
 822       ObjectWaiter * q = NULL;
 823       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 824         q = p;
 825         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 826       }
 827       assert(v != SelfNode, "invariant");
 828       assert(p == SelfNode, "Node not found on cxq");
 829       assert(p != _cxq, "invariant");
 830       assert(q != NULL, "invariant");
 831       assert(q->_next == p, "invariant");
 832       q->_next = p->_next;
 833     }
 834     TEVENT(Unlink from cxq);
 835   }
 836 
 837 #ifdef ASSERT
 838   // Diagnostic hygiene ...
 839   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 840   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 841   SelfNode->TState = ObjectWaiter::TS_RUN;
 842 #endif
 843 }
 844 
 845 // -----------------------------------------------------------------------------
 846 // Exit support
 847 //
 848 // exit()
 849 // ~~~~~~
 850 // Note that the collector can't reclaim the objectMonitor or deflate
 851 // the object out from underneath the thread calling ::exit() as the
 852 // thread calling ::exit() never transitions to a stable state.
 853 // This inhibits GC, which in turn inhibits asynchronous (and
 854 // inopportune) reclamation of "this".
 855 //
 856 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 857 // There's one exception to the claim above, however.  EnterI() can call
 858 // exit() to drop a lock if the acquirer has been externally suspended.
 859 // In that case exit() is called with _thread_state as _thread_blocked,
 860 // but the monitor's _count field is > 0, which inhibits reclamation.
 861 //
 862 // 1-0 exit
 863 // ~~~~~~~~
 864 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 865 // the fast-path operators have been optimized so the common ::exit()
 866 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 867 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 868 // greatly improves latency -- MEMBAR and CAS having considerable local
 869 // latency on modern processors -- but at the cost of "stranding".  Absent the
 870 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 871 // ::enter() path, resulting in the entering thread being stranding
 872 // and a progress-liveness failure.   Stranding is extremely rare.
 873 // We use timers (timed park operations) & periodic polling to detect
 874 // and recover from stranding.  Potentially stranded threads periodically
 875 // wake up and poll the lock.  See the usage of the _Responsible variable.
 876 //
 877 // The CAS() in enter provides for safety and exclusion, while the CAS or
 878 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 879 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 880 // We detect and recover from stranding with timers.
 881 //
 882 // If a thread transiently strands it'll park until (a) another
 883 // thread acquires the lock and then drops the lock, at which time the
 884 // exiting thread will notice and unpark the stranded thread, or, (b)
 885 // the timer expires.  If the lock is high traffic then the stranding latency
 886 // will be low due to (a).  If the lock is low traffic then the odds of
 887 // stranding are lower, although the worst-case stranding latency
 888 // is longer.  Critically, we don't want to put excessive load in the
 889 // platform's timer subsystem.  We want to minimize both the timer injection
 890 // rate (timers created/sec) as well as the number of timers active at
 891 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 892 // the integral of the # of active timers at any instant over time).
 893 // Both impinge on OS scalability.  Given that, at most one thread parked on
 894 // a monitor will use a timer.
 895 //
 896 // There is also the risk of a futile wake-up. If we drop the lock
 897 // another thread can reacquire the lock immediately, and we can
 898 // then wake a thread unnecessarily. This is benign, and we've
 899 // structured the code so the windows are short and the frequency
 900 // of such futile wakups is low.
 901 
 902 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 903   Thread * const Self = THREAD;
 904   if (THREAD != _owner) {
 905     if (THREAD->is_lock_owned((address) _owner)) {
 906       // Transmute _owner from a BasicLock pointer to a Thread address.
 907       // We don't need to hold _mutex for this transition.
 908       // Non-null to Non-null is safe as long as all readers can
 909       // tolerate either flavor.
 910       assert(_recursions == 0, "invariant");
 911       _owner = THREAD;
 912       _recursions = 0;
 913     } else {
 914       // Apparent unbalanced locking ...
 915       // Naively we'd like to throw IllegalMonitorStateException.
 916       // As a practical matter we can neither allocate nor throw an
 917       // exception as ::exit() can be called from leaf routines.
 918       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 919       // Upon deeper reflection, however, in a properly run JVM the only
 920       // way we should encounter this situation is in the presence of
 921       // unbalanced JNI locking. TODO: CheckJNICalls.
 922       // See also: CR4414101
 923       TEVENT(Exit - Throw IMSX);
 924       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 925       return;
 926     }
 927   }
 928 
 929   if (_recursions != 0) {
 930     _recursions--;        // this is simple recursive enter
 931     TEVENT(Inflated exit - recursive);
 932     return;
 933   }
 934 
 935   // Invariant: after setting Responsible=null an thread must execute
 936   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 937   if ((SyncFlags & 4) == 0) {
 938     _Responsible = NULL;
 939   }
 940 
 941 #if INCLUDE_TRACE
 942   // get the owner's thread id for the MonitorEnter event
 943   // if it is enabled and the thread isn't suspended
 944   if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
 945     _previous_owner_tid = THREAD_TRACE_ID(Self);
 946   }
 947 #endif
 948 
 949   for (;;) {
 950     assert(THREAD == _owner, "invariant");
 951 
 952     if (Knob_ExitPolicy == 0) {
 953       // release semantics: prior loads and stores from within the critical section
 954       // must not float (reorder) past the following store that drops the lock.
 955       // On SPARC that requires MEMBAR #loadstore|#storestore.
 956       // But of course in TSO #loadstore|#storestore is not required.
 957       // I'd like to write one of the following:
 958       // A.  OrderAccess::release() ; _owner = NULL
 959       // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 960       // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 961       // store into a _dummy variable.  That store is not needed, but can result
 962       // in massive wasteful coherency traffic on classic SMP systems.
 963       // Instead, I use release_store(), which is implemented as just a simple
 964       // ST on x64, x86 and SPARC.
 965       OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 966       OrderAccess::storeload();                        // See if we need to wake a successor
 967       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 968         TEVENT(Inflated exit - simple egress);
 969         return;
 970       }
 971       TEVENT(Inflated exit - complex egress);
 972       // Other threads are blocked trying to acquire the lock.
 973 
 974       // Normally the exiting thread is responsible for ensuring succession,
 975       // but if other successors are ready or other entering threads are spinning
 976       // then this thread can simply store NULL into _owner and exit without
 977       // waking a successor.  The existence of spinners or ready successors
 978       // guarantees proper succession (liveness).  Responsibility passes to the
 979       // ready or running successors.  The exiting thread delegates the duty.
 980       // More precisely, if a successor already exists this thread is absolved
 981       // of the responsibility of waking (unparking) one.
 982       //
 983       // The _succ variable is critical to reducing futile wakeup frequency.
 984       // _succ identifies the "heir presumptive" thread that has been made
 985       // ready (unparked) but that has not yet run.  We need only one such
 986       // successor thread to guarantee progress.
 987       // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 988       // section 3.3 "Futile Wakeup Throttling" for details.
 989       //
 990       // Note that spinners in Enter() also set _succ non-null.
 991       // In the current implementation spinners opportunistically set
 992       // _succ so that exiting threads might avoid waking a successor.
 993       // Another less appealing alternative would be for the exiting thread
 994       // to drop the lock and then spin briefly to see if a spinner managed
 995       // to acquire the lock.  If so, the exiting thread could exit
 996       // immediately without waking a successor, otherwise the exiting
 997       // thread would need to dequeue and wake a successor.
 998       // (Note that we'd need to make the post-drop spin short, but no
 999       // shorter than the worst-case round-trip cache-line migration time.
1000       // The dropped lock needs to become visible to the spinner, and then
1001       // the acquisition of the lock by the spinner must become visible to
1002       // the exiting thread).
1003 
1004       // It appears that an heir-presumptive (successor) must be made ready.
1005       // Only the current lock owner can manipulate the EntryList or
1006       // drain _cxq, so we need to reacquire the lock.  If we fail
1007       // to reacquire the lock the responsibility for ensuring succession
1008       // falls to the new owner.
1009       //
1010       if (Atomic::cmpxchg(THREAD, &_owner, (void*)NULL) != NULL) {
1011         return;
1012       }
1013       TEVENT(Exit - Reacquired);
1014     } else {
1015       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1016         OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
1017         OrderAccess::storeload();
1018         // Ratify the previously observed values.
1019         if (_cxq == NULL || _succ != NULL) {
1020           TEVENT(Inflated exit - simple egress);
1021           return;
1022         }
1023 
1024         // inopportune interleaving -- the exiting thread (this thread)
1025         // in the fast-exit path raced an entering thread in the slow-enter
1026         // path.
1027         // We have two choices:
1028         // A.  Try to reacquire the lock.
1029         //     If the CAS() fails return immediately, otherwise
1030         //     we either restart/rerun the exit operation, or simply
1031         //     fall-through into the code below which wakes a successor.
1032         // B.  If the elements forming the EntryList|cxq are TSM
1033         //     we could simply unpark() the lead thread and return
1034         //     without having set _succ.
1035         if (Atomic::cmpxchg(THREAD, &_owner, (void*)NULL) != NULL) {
1036           TEVENT(Inflated exit - reacquired succeeded);
1037           return;
1038         }
1039         TEVENT(Inflated exit - reacquired failed);
1040       } else {
1041         TEVENT(Inflated exit - complex egress);
1042       }
1043     }
1044 
1045     guarantee(_owner == THREAD, "invariant");
1046 
1047     ObjectWaiter * w = NULL;
1048     int QMode = Knob_QMode;
1049 
1050     if (QMode == 2 && _cxq != NULL) {
1051       // QMode == 2 : cxq has precedence over EntryList.
1052       // Try to directly wake a successor from the cxq.
1053       // If successful, the successor will need to unlink itself from cxq.
1054       w = _cxq;
1055       assert(w != NULL, "invariant");
1056       assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
1057       ExitEpilog(Self, w);
1058       return;
1059     }
1060 
1061     if (QMode == 3 && _cxq != NULL) {
1062       // Aggressively drain cxq into EntryList at the first opportunity.
1063       // This policy ensure that recently-run threads live at the head of EntryList.
1064       // Drain _cxq into EntryList - bulk transfer.
1065       // First, detach _cxq.
1066       // The following loop is tantamount to: w = swap(&cxq, NULL)
1067       w = _cxq;
1068       for (;;) {
1069         assert(w != NULL, "Invariant");
1070         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1071         if (u == w) break;
1072         w = u;
1073       }
1074       assert(w != NULL, "invariant");
1075 
1076       ObjectWaiter * q = NULL;
1077       ObjectWaiter * p;
1078       for (p = w; p != NULL; p = p->_next) {
1079         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1080         p->TState = ObjectWaiter::TS_ENTER;
1081         p->_prev = q;
1082         q = p;
1083       }
1084 
1085       // Append the RATs to the EntryList
1086       // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1087       ObjectWaiter * Tail;
1088       for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL;
1089            Tail = Tail->_next)
1090         /* empty */;
1091       if (Tail == NULL) {
1092         _EntryList = w;
1093       } else {
1094         Tail->_next = w;
1095         w->_prev = Tail;
1096       }
1097 
1098       // Fall thru into code that tries to wake a successor from EntryList
1099     }
1100 
1101     if (QMode == 4 && _cxq != NULL) {
1102       // Aggressively drain cxq into EntryList at the first opportunity.
1103       // This policy ensure that recently-run threads live at the head of EntryList.
1104 
1105       // Drain _cxq into EntryList - bulk transfer.
1106       // First, detach _cxq.
1107       // The following loop is tantamount to: w = swap(&cxq, NULL)
1108       w = _cxq;
1109       for (;;) {
1110         assert(w != NULL, "Invariant");
1111         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1112         if (u == w) break;
1113         w = u;
1114       }
1115       assert(w != NULL, "invariant");
1116 
1117       ObjectWaiter * q = NULL;
1118       ObjectWaiter * p;
1119       for (p = w; p != NULL; p = p->_next) {
1120         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1121         p->TState = ObjectWaiter::TS_ENTER;
1122         p->_prev = q;
1123         q = p;
1124       }
1125 
1126       // Prepend the RATs to the EntryList
1127       if (_EntryList != NULL) {
1128         q->_next = _EntryList;
1129         _EntryList->_prev = q;
1130       }
1131       _EntryList = w;
1132 
1133       // Fall thru into code that tries to wake a successor from EntryList
1134     }
1135 
1136     w = _EntryList;
1137     if (w != NULL) {
1138       // I'd like to write: guarantee (w->_thread != Self).
1139       // But in practice an exiting thread may find itself on the EntryList.
1140       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1141       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1142       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1143       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1144       // release the lock "O".  T2 resumes immediately after the ST of null into
1145       // _owner, above.  T2 notices that the EntryList is populated, so it
1146       // reacquires the lock and then finds itself on the EntryList.
1147       // Given all that, we have to tolerate the circumstance where "w" is
1148       // associated with Self.
1149       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1150       ExitEpilog(Self, w);
1151       return;
1152     }
1153 
1154     // If we find that both _cxq and EntryList are null then just
1155     // re-run the exit protocol from the top.
1156     w = _cxq;
1157     if (w == NULL) continue;
1158 
1159     // Drain _cxq into EntryList - bulk transfer.
1160     // First, detach _cxq.
1161     // The following loop is tantamount to: w = swap(&cxq, NULL)
1162     for (;;) {
1163       assert(w != NULL, "Invariant");
1164       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1165       if (u == w) break;
1166       w = u;
1167     }
1168     TEVENT(Inflated exit - drain cxq into EntryList);
1169 
1170     assert(w != NULL, "invariant");
1171     assert(_EntryList == NULL, "invariant");
1172 
1173     // Convert the LIFO SLL anchored by _cxq into a DLL.
1174     // The list reorganization step operates in O(LENGTH(w)) time.
1175     // It's critical that this step operate quickly as
1176     // "Self" still holds the outer-lock, restricting parallelism
1177     // and effectively lengthening the critical section.
1178     // Invariant: s chases t chases u.
1179     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1180     // we have faster access to the tail.
1181 
1182     if (QMode == 1) {
1183       // QMode == 1 : drain cxq to EntryList, reversing order
1184       // We also reverse the order of the list.
1185       ObjectWaiter * s = NULL;
1186       ObjectWaiter * t = w;
1187       ObjectWaiter * u = NULL;
1188       while (t != NULL) {
1189         guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1190         t->TState = ObjectWaiter::TS_ENTER;
1191         u = t->_next;
1192         t->_prev = u;
1193         t->_next = s;
1194         s = t;
1195         t = u;
1196       }
1197       _EntryList  = s;
1198       assert(s != NULL, "invariant");
1199     } else {
1200       // QMode == 0 or QMode == 2
1201       _EntryList = w;
1202       ObjectWaiter * q = NULL;
1203       ObjectWaiter * p;
1204       for (p = w; p != NULL; p = p->_next) {
1205         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1206         p->TState = ObjectWaiter::TS_ENTER;
1207         p->_prev = q;
1208         q = p;
1209       }
1210     }
1211 
1212     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1213     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1214 
1215     // See if we can abdicate to a spinner instead of waking a thread.
1216     // A primary goal of the implementation is to reduce the
1217     // context-switch rate.
1218     if (_succ != NULL) continue;
1219 
1220     w = _EntryList;
1221     if (w != NULL) {
1222       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1223       ExitEpilog(Self, w);
1224       return;
1225     }
1226   }
1227 }
1228 
1229 // ExitSuspendEquivalent:
1230 // A faster alternate to handle_special_suspend_equivalent_condition()
1231 //
1232 // handle_special_suspend_equivalent_condition() unconditionally
1233 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1234 // operations have high latency.  Note that in ::enter() we call HSSEC
1235 // while holding the monitor, so we effectively lengthen the critical sections.
1236 //
1237 // There are a number of possible solutions:
1238 //
1239 // A.  To ameliorate the problem we might also defer state transitions
1240 //     to as late as possible -- just prior to parking.
1241 //     Given that, we'd call HSSEC after having returned from park(),
1242 //     but before attempting to acquire the monitor.  This is only a
1243 //     partial solution.  It avoids calling HSSEC while holding the
1244 //     monitor (good), but it still increases successor reacquisition latency --
1245 //     the interval between unparking a successor and the time the successor
1246 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1247 //     If we use this technique we can also avoid EnterI()-exit() loop
1248 //     in ::enter() where we iteratively drop the lock and then attempt
1249 //     to reacquire it after suspending.
1250 //
1251 // B.  In the future we might fold all the suspend bits into a
1252 //     composite per-thread suspend flag and then update it with CAS().
1253 //     Alternately, a Dekker-like mechanism with multiple variables
1254 //     would suffice:
1255 //       ST Self->_suspend_equivalent = false
1256 //       MEMBAR
1257 //       LD Self_>_suspend_flags
1258 //
1259 // UPDATE 2007-10-6: since I've replaced the native Mutex/Monitor subsystem
1260 // with a more efficient implementation, the need to use "FastHSSEC" has
1261 // decreased. - Dave
1262 
1263 
1264 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1265   const int Mode = Knob_FastHSSEC;
1266   if (Mode && !jSelf->is_external_suspend()) {
1267     assert(jSelf->is_suspend_equivalent(), "invariant");
1268     jSelf->clear_suspend_equivalent();
1269     if (2 == Mode) OrderAccess::storeload();
1270     if (!jSelf->is_external_suspend()) return false;
1271     // We raced a suspension -- fall thru into the slow path
1272     TEVENT(ExitSuspendEquivalent - raced);
1273     jSelf->set_suspend_equivalent();
1274   }
1275   return jSelf->handle_special_suspend_equivalent_condition();
1276 }
1277 
1278 
1279 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1280   assert(_owner == Self, "invariant");
1281 
1282   // Exit protocol:
1283   // 1. ST _succ = wakee
1284   // 2. membar #loadstore|#storestore;
1285   // 2. ST _owner = NULL
1286   // 3. unpark(wakee)
1287 
1288   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL;
1289   ParkEvent * Trigger = Wakee->_event;
1290 
1291   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1292   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1293   // out-of-scope (non-extant).
1294   Wakee  = NULL;
1295 
1296   // Drop the lock
1297   OrderAccess::release_store(&_owner, (void*)NULL);
1298   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1299 
1300   if (SafepointMechanism::poll(Self)) {
1301     TEVENT(unpark before SAFEPOINT);
1302   }
1303 
1304   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1305   Trigger->unpark();
1306 
1307   // Maintain stats and report events to JVMTI
1308   OM_PERFDATA_OP(Parks, inc());
1309 }
1310 
1311 
1312 // -----------------------------------------------------------------------------
1313 // Class Loader deadlock handling.
1314 //
1315 // complete_exit exits a lock returning recursion count
1316 // complete_exit/reenter operate as a wait without waiting
1317 // complete_exit requires an inflated monitor
1318 // The _owner field is not always the Thread addr even with an
1319 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1320 // thread due to contention.
1321 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1322   Thread * const Self = THREAD;
1323   assert(Self->is_Java_thread(), "Must be Java thread!");
1324   JavaThread *jt = (JavaThread *)THREAD;
1325 
1326   DeferredInitialize();
1327 
1328   if (THREAD != _owner) {
1329     if (THREAD->is_lock_owned ((address)_owner)) {
1330       assert(_recursions == 0, "internal state error");
1331       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1332       _recursions = 0;
1333     }
1334   }
1335 
1336   guarantee(Self == _owner, "complete_exit not owner");
1337   intptr_t save = _recursions; // record the old recursion count
1338   _recursions = 0;        // set the recursion level to be 0
1339   exit(true, Self);           // exit the monitor
1340   guarantee(_owner != Self, "invariant");
1341   return save;
1342 }
1343 
1344 // reenter() enters a lock and sets recursion count
1345 // complete_exit/reenter operate as a wait without waiting
1346 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1347   Thread * const Self = THREAD;
1348   assert(Self->is_Java_thread(), "Must be Java thread!");
1349   JavaThread *jt = (JavaThread *)THREAD;
1350 
1351   guarantee(_owner != Self, "reenter already owner");
1352   enter(THREAD);       // enter the monitor
1353   guarantee(_recursions == 0, "reenter recursion");
1354   _recursions = recursions;
1355   return;
1356 }
1357 
1358 
1359 // -----------------------------------------------------------------------------
1360 // A macro is used below because there may already be a pending
1361 // exception which should not abort the execution of the routines
1362 // which use this (which is why we don't put this into check_slow and
1363 // call it with a CHECK argument).
1364 
1365 #define CHECK_OWNER()                                                       \
1366   do {                                                                      \
1367     if (THREAD != _owner) {                                                 \
1368       if (THREAD->is_lock_owned((address) _owner)) {                        \
1369         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1370         _recursions = 0;                                                    \
1371       } else {                                                              \
1372         TEVENT(Throw IMSX);                                                 \
1373         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1374       }                                                                     \
1375     }                                                                       \
1376   } while (false)
1377 
1378 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1379 // TODO-FIXME: remove check_slow() -- it's likely dead.
1380 
1381 void ObjectMonitor::check_slow(TRAPS) {
1382   TEVENT(check_slow - throw IMSX);
1383   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1384   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1385 }
1386 
1387 static int Adjust(volatile int * adr, int dx) {
1388   int v;
1389   for (v = *adr; Atomic::cmpxchg(v + dx, adr, v) != v; v = *adr) /* empty */;
1390   return v;
1391 }
1392 
1393 // helper method for posting a monitor wait event
1394 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1395                                             jlong notifier_tid,
1396                                             jlong timeout,
1397                                             bool timedout) {
1398   assert(event != NULL, "invariant");
1399   event->set_monitorClass(((oop)this->object())->klass());
1400   event->set_timeout(timeout);
1401   event->set_address((TYPE_ADDRESS)this->object_addr());
1402   event->set_notifier(notifier_tid);
1403   event->set_timedOut(timedout);
1404   event->commit();
1405 }
1406 
1407 // -----------------------------------------------------------------------------
1408 // Wait/Notify/NotifyAll
1409 //
1410 // Note: a subset of changes to ObjectMonitor::wait()
1411 // will need to be replicated in complete_exit
1412 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1413   Thread * const Self = THREAD;
1414   assert(Self->is_Java_thread(), "Must be Java thread!");
1415   JavaThread *jt = (JavaThread *)THREAD;
1416 
1417   DeferredInitialize();
1418 
1419   // Throw IMSX or IEX.
1420   CHECK_OWNER();
1421 
1422   EventJavaMonitorWait event;
1423 
1424   // check for a pending interrupt
1425   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1426     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1427     if (JvmtiExport::should_post_monitor_waited()) {
1428       // Note: 'false' parameter is passed here because the
1429       // wait was not timed out due to thread interrupt.
1430       JvmtiExport::post_monitor_waited(jt, this, false);
1431 
1432       // In this short circuit of the monitor wait protocol, the
1433       // current thread never drops ownership of the monitor and
1434       // never gets added to the wait queue so the current thread
1435       // cannot be made the successor. This means that the
1436       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1437       // consume an unpark() meant for the ParkEvent associated with
1438       // this ObjectMonitor.
1439     }
1440     if (event.should_commit()) {
1441       post_monitor_wait_event(&event, 0, millis, false);
1442     }
1443     TEVENT(Wait - Throw IEX);
1444     THROW(vmSymbols::java_lang_InterruptedException());
1445     return;
1446   }
1447 
1448   TEVENT(Wait);
1449 
1450   assert(Self->_Stalled == 0, "invariant");
1451   Self->_Stalled = intptr_t(this);
1452   jt->set_current_waiting_monitor(this);
1453 
1454   // create a node to be put into the queue
1455   // Critically, after we reset() the event but prior to park(), we must check
1456   // for a pending interrupt.
1457   ObjectWaiter node(Self);
1458   node.TState = ObjectWaiter::TS_WAIT;
1459   Self->_ParkEvent->reset();
1460   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1461 
1462   // Enter the waiting queue, which is a circular doubly linked list in this case
1463   // but it could be a priority queue or any data structure.
1464   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1465   // by the the owner of the monitor *except* in the case where park()
1466   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1467   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1468 
1469   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1470   AddWaiter(&node);
1471   Thread::SpinRelease(&_WaitSetLock);
1472 
1473   if ((SyncFlags & 4) == 0) {
1474     _Responsible = NULL;
1475   }
1476   intptr_t save = _recursions; // record the old recursion count
1477   _waiters++;                  // increment the number of waiters
1478   _recursions = 0;             // set the recursion level to be 1
1479   exit(true, Self);                    // exit the monitor
1480   guarantee(_owner != Self, "invariant");
1481 
1482   // The thread is on the WaitSet list - now park() it.
1483   // On MP systems it's conceivable that a brief spin before we park
1484   // could be profitable.
1485   //
1486   // TODO-FIXME: change the following logic to a loop of the form
1487   //   while (!timeout && !interrupted && _notified == 0) park()
1488 
1489   int ret = OS_OK;
1490   int WasNotified = 0;
1491   { // State transition wrappers
1492     OSThread* osthread = Self->osthread();
1493     OSThreadWaitState osts(osthread, true);
1494     {
1495       ThreadBlockInVM tbivm(jt);
1496       // Thread is in thread_blocked state and oop access is unsafe.
1497       jt->set_suspend_equivalent();
1498 
1499       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1500         // Intentionally empty
1501       } else if (node._notified == 0) {
1502         if (millis <= 0) {
1503           Self->_ParkEvent->park();
1504         } else {
1505           ret = Self->_ParkEvent->park(millis);
1506         }
1507       }
1508 
1509       // were we externally suspended while we were waiting?
1510       if (ExitSuspendEquivalent (jt)) {
1511         // TODO-FIXME: add -- if succ == Self then succ = null.
1512         jt->java_suspend_self();
1513       }
1514 
1515     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1516 
1517     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1518     // from the WaitSet to the EntryList.
1519     // See if we need to remove Node from the WaitSet.
1520     // We use double-checked locking to avoid grabbing _WaitSetLock
1521     // if the thread is not on the wait queue.
1522     //
1523     // Note that we don't need a fence before the fetch of TState.
1524     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1525     // written by the is thread. (perhaps the fetch might even be satisfied
1526     // by a look-aside into the processor's own store buffer, although given
1527     // the length of the code path between the prior ST and this load that's
1528     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1529     // then we'll acquire the lock and then re-fetch a fresh TState value.
1530     // That is, we fail toward safety.
1531 
1532     if (node.TState == ObjectWaiter::TS_WAIT) {
1533       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1534       if (node.TState == ObjectWaiter::TS_WAIT) {
1535         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1536         assert(node._notified == 0, "invariant");
1537         node.TState = ObjectWaiter::TS_RUN;
1538       }
1539       Thread::SpinRelease(&_WaitSetLock);
1540     }
1541 
1542     // The thread is now either on off-list (TS_RUN),
1543     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1544     // The Node's TState variable is stable from the perspective of this thread.
1545     // No other threads will asynchronously modify TState.
1546     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1547     OrderAccess::loadload();
1548     if (_succ == Self) _succ = NULL;
1549     WasNotified = node._notified;
1550 
1551     // Reentry phase -- reacquire the monitor.
1552     // re-enter contended monitor after object.wait().
1553     // retain OBJECT_WAIT state until re-enter successfully completes
1554     // Thread state is thread_in_vm and oop access is again safe,
1555     // although the raw address of the object may have changed.
1556     // (Don't cache naked oops over safepoints, of course).
1557 
1558     // post monitor waited event. Note that this is past-tense, we are done waiting.
1559     if (JvmtiExport::should_post_monitor_waited()) {
1560       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1561 
1562       if (node._notified != 0 && _succ == Self) {
1563         // In this part of the monitor wait-notify-reenter protocol it
1564         // is possible (and normal) for another thread to do a fastpath
1565         // monitor enter-exit while this thread is still trying to get
1566         // to the reenter portion of the protocol.
1567         //
1568         // The ObjectMonitor was notified and the current thread is
1569         // the successor which also means that an unpark() has already
1570         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1571         // consume the unpark() that was done when the successor was
1572         // set because the same ParkEvent is shared between Java
1573         // monitors and JVM/TI RawMonitors (for now).
1574         //
1575         // We redo the unpark() to ensure forward progress, i.e., we
1576         // don't want all pending threads hanging (parked) with none
1577         // entering the unlocked monitor.
1578         node._event->unpark();
1579       }
1580     }
1581 
1582     if (event.should_commit()) {
1583       post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1584     }
1585 
1586     OrderAccess::fence();
1587 
1588     assert(Self->_Stalled != 0, "invariant");
1589     Self->_Stalled = 0;
1590 
1591     assert(_owner != Self, "invariant");
1592     ObjectWaiter::TStates v = node.TState;
1593     if (v == ObjectWaiter::TS_RUN) {
1594       enter(Self);
1595     } else {
1596       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1597       ReenterI(Self, &node);
1598       node.wait_reenter_end(this);
1599     }
1600 
1601     // Self has reacquired the lock.
1602     // Lifecycle - the node representing Self must not appear on any queues.
1603     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1604     // want residual elements associated with this thread left on any lists.
1605     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1606     assert(_owner == Self, "invariant");
1607     assert(_succ != Self, "invariant");
1608   } // OSThreadWaitState()
1609 
1610   jt->set_current_waiting_monitor(NULL);
1611 
1612   guarantee(_recursions == 0, "invariant");
1613   _recursions = save;     // restore the old recursion count
1614   _waiters--;             // decrement the number of waiters
1615 
1616   // Verify a few postconditions
1617   assert(_owner == Self, "invariant");
1618   assert(_succ != Self, "invariant");
1619   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1620 
1621   if (SyncFlags & 32) {
1622     OrderAccess::fence();
1623   }
1624 
1625   // check if the notification happened
1626   if (!WasNotified) {
1627     // no, it could be timeout or Thread.interrupt() or both
1628     // check for interrupt event, otherwise it is timeout
1629     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1630       TEVENT(Wait - throw IEX from epilog);
1631       THROW(vmSymbols::java_lang_InterruptedException());
1632     }
1633   }
1634 
1635   // NOTE: Spurious wake up will be consider as timeout.
1636   // Monitor notify has precedence over thread interrupt.
1637 }
1638 
1639 
1640 // Consider:
1641 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1642 // then instead of transferring a thread from the WaitSet to the EntryList
1643 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1644 
1645 void ObjectMonitor::INotify(Thread * Self) {
1646   const int policy = Knob_MoveNotifyee;
1647 
1648   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1649   ObjectWaiter * iterator = DequeueWaiter();
1650   if (iterator != NULL) {
1651     TEVENT(Notify1 - Transfer);
1652     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1653     guarantee(iterator->_notified == 0, "invariant");
1654     // Disposition - what might we do with iterator ?
1655     // a.  add it directly to the EntryList - either tail (policy == 1)
1656     //     or head (policy == 0).
1657     // b.  push it onto the front of the _cxq (policy == 2).
1658     // For now we use (b).
1659     if (policy != 4) {
1660       iterator->TState = ObjectWaiter::TS_ENTER;
1661     }
1662     iterator->_notified = 1;
1663     iterator->_notifier_tid = THREAD_TRACE_ID(Self);
1664 
1665     ObjectWaiter * list = _EntryList;
1666     if (list != NULL) {
1667       assert(list->_prev == NULL, "invariant");
1668       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1669       assert(list != iterator, "invariant");
1670     }
1671 
1672     if (policy == 0) {       // prepend to EntryList
1673       if (list == NULL) {
1674         iterator->_next = iterator->_prev = NULL;
1675         _EntryList = iterator;
1676       } else {
1677         list->_prev = iterator;
1678         iterator->_next = list;
1679         iterator->_prev = NULL;
1680         _EntryList = iterator;
1681       }
1682     } else if (policy == 1) {      // append to EntryList
1683       if (list == NULL) {
1684         iterator->_next = iterator->_prev = NULL;
1685         _EntryList = iterator;
1686       } else {
1687         // CONSIDER:  finding the tail currently requires a linear-time walk of
1688         // the EntryList.  We can make tail access constant-time by converting to
1689         // a CDLL instead of using our current DLL.
1690         ObjectWaiter * tail;
1691         for (tail = list; tail->_next != NULL; tail = tail->_next) {}
1692         assert(tail != NULL && tail->_next == NULL, "invariant");
1693         tail->_next = iterator;
1694         iterator->_prev = tail;
1695         iterator->_next = NULL;
1696       }
1697     } else if (policy == 2) {      // prepend to cxq
1698       if (list == NULL) {
1699         iterator->_next = iterator->_prev = NULL;
1700         _EntryList = iterator;
1701       } else {
1702         iterator->TState = ObjectWaiter::TS_CXQ;
1703         for (;;) {
1704           ObjectWaiter * front = _cxq;
1705           iterator->_next = front;
1706           if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1707             break;
1708           }
1709         }
1710       }
1711     } else if (policy == 3) {      // append to cxq
1712       iterator->TState = ObjectWaiter::TS_CXQ;
1713       for (;;) {
1714         ObjectWaiter * tail = _cxq;
1715         if (tail == NULL) {
1716           iterator->_next = NULL;
1717           if (Atomic::cmpxchg(iterator, &_cxq, (ObjectWaiter*)NULL) == NULL) {
1718             break;
1719           }
1720         } else {
1721           while (tail->_next != NULL) tail = tail->_next;
1722           tail->_next = iterator;
1723           iterator->_prev = tail;
1724           iterator->_next = NULL;
1725           break;
1726         }
1727       }
1728     } else {
1729       ParkEvent * ev = iterator->_event;
1730       iterator->TState = ObjectWaiter::TS_RUN;
1731       OrderAccess::fence();
1732       ev->unpark();
1733     }
1734 
1735     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1736     // move the add-to-EntryList operation, above, outside the critical section
1737     // protected by _WaitSetLock.  In practice that's not useful.  With the
1738     // exception of  wait() timeouts and interrupts the monitor owner
1739     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1740     // on _WaitSetLock so it's not profitable to reduce the length of the
1741     // critical section.
1742 
1743     if (policy < 4) {
1744       iterator->wait_reenter_begin(this);
1745     }
1746   }
1747   Thread::SpinRelease(&_WaitSetLock);
1748 }
1749 
1750 // Consider: a not-uncommon synchronization bug is to use notify() when
1751 // notifyAll() is more appropriate, potentially resulting in stranded
1752 // threads; this is one example of a lost wakeup. A useful diagnostic
1753 // option is to force all notify() operations to behave as notifyAll().
1754 //
1755 // Note: We can also detect many such problems with a "minimum wait".
1756 // When the "minimum wait" is set to a small non-zero timeout value
1757 // and the program does not hang whereas it did absent "minimum wait",
1758 // that suggests a lost wakeup bug. The '-XX:SyncFlags=1' option uses
1759 // a "minimum wait" for all park() operations; see the recheckInterval
1760 // variable and MAX_RECHECK_INTERVAL.
1761 
1762 void ObjectMonitor::notify(TRAPS) {
1763   CHECK_OWNER();
1764   if (_WaitSet == NULL) {
1765     TEVENT(Empty-Notify);
1766     return;
1767   }
1768   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1769   INotify(THREAD);
1770   OM_PERFDATA_OP(Notifications, inc(1));
1771 }
1772 
1773 
1774 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1775 // from the waitset to the EntryList. This could be done more efficiently with a
1776 // single bulk transfer but in practice it's not time-critical. Beware too,
1777 // that in prepend-mode we invert the order of the waiters. Let's say that the
1778 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1779 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1780 
1781 void ObjectMonitor::notifyAll(TRAPS) {
1782   CHECK_OWNER();
1783   if (_WaitSet == NULL) {
1784     TEVENT(Empty-NotifyAll);
1785     return;
1786   }
1787 
1788   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1789   int tally = 0;
1790   while (_WaitSet != NULL) {
1791     tally++;
1792     INotify(THREAD);
1793   }
1794 
1795   OM_PERFDATA_OP(Notifications, inc(tally));
1796 }
1797 
1798 // -----------------------------------------------------------------------------
1799 // Adaptive Spinning Support
1800 //
1801 // Adaptive spin-then-block - rational spinning
1802 //
1803 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1804 // algorithm.  On high order SMP systems it would be better to start with
1805 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1806 // a contending thread could enqueue itself on the cxq and then spin locally
1807 // on a thread-specific variable such as its ParkEvent._Event flag.
1808 // That's left as an exercise for the reader.  Note that global spinning is
1809 // not problematic on Niagara, as the L2 cache serves the interconnect and
1810 // has both low latency and massive bandwidth.
1811 //
1812 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1813 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1814 // (duration) or we can fix the count at approximately the duration of
1815 // a context switch and vary the frequency.   Of course we could also
1816 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1817 // For a description of 'Adaptive spin-then-block mutual exclusion in
1818 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1819 //
1820 // This implementation varies the duration "D", where D varies with
1821 // the success rate of recent spin attempts. (D is capped at approximately
1822 // length of a round-trip context switch).  The success rate for recent
1823 // spin attempts is a good predictor of the success rate of future spin
1824 // attempts.  The mechanism adapts automatically to varying critical
1825 // section length (lock modality), system load and degree of parallelism.
1826 // D is maintained per-monitor in _SpinDuration and is initialized
1827 // optimistically.  Spin frequency is fixed at 100%.
1828 //
1829 // Note that _SpinDuration is volatile, but we update it without locks
1830 // or atomics.  The code is designed so that _SpinDuration stays within
1831 // a reasonable range even in the presence of races.  The arithmetic
1832 // operations on _SpinDuration are closed over the domain of legal values,
1833 // so at worst a race will install and older but still legal value.
1834 // At the very worst this introduces some apparent non-determinism.
1835 // We might spin when we shouldn't or vice-versa, but since the spin
1836 // count are relatively short, even in the worst case, the effect is harmless.
1837 //
1838 // Care must be taken that a low "D" value does not become an
1839 // an absorbing state.  Transient spinning failures -- when spinning
1840 // is overall profitable -- should not cause the system to converge
1841 // on low "D" values.  We want spinning to be stable and predictable
1842 // and fairly responsive to change and at the same time we don't want
1843 // it to oscillate, become metastable, be "too" non-deterministic,
1844 // or converge on or enter undesirable stable absorbing states.
1845 //
1846 // We implement a feedback-based control system -- using past behavior
1847 // to predict future behavior.  We face two issues: (a) if the
1848 // input signal is random then the spin predictor won't provide optimal
1849 // results, and (b) if the signal frequency is too high then the control
1850 // system, which has some natural response lag, will "chase" the signal.
1851 // (b) can arise from multimodal lock hold times.  Transient preemption
1852 // can also result in apparent bimodal lock hold times.
1853 // Although sub-optimal, neither condition is particularly harmful, as
1854 // in the worst-case we'll spin when we shouldn't or vice-versa.
1855 // The maximum spin duration is rather short so the failure modes aren't bad.
1856 // To be conservative, I've tuned the gain in system to bias toward
1857 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1858 // "rings" or oscillates between spinning and not spinning.  This happens
1859 // when spinning is just on the cusp of profitability, however, so the
1860 // situation is not dire.  The state is benign -- there's no need to add
1861 // hysteresis control to damp the transition rate between spinning and
1862 // not spinning.
1863 
1864 // Spinning: Fixed frequency (100%), vary duration
1865 int ObjectMonitor::TrySpin(Thread * Self) {
1866   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1867   int ctr = Knob_FixedSpin;
1868   if (ctr != 0) {
1869     while (--ctr >= 0) {
1870       if (TryLock(Self) > 0) return 1;
1871       SpinPause();
1872     }
1873     return 0;
1874   }
1875 
1876   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1877     if (TryLock(Self) > 0) {
1878       // Increase _SpinDuration ...
1879       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1880       // Raising _SpurDuration to the poverty line is key.
1881       int x = _SpinDuration;
1882       if (x < Knob_SpinLimit) {
1883         if (x < Knob_Poverty) x = Knob_Poverty;
1884         _SpinDuration = x + Knob_BonusB;
1885       }
1886       return 1;
1887     }
1888     SpinPause();
1889   }
1890 
1891   // Admission control - verify preconditions for spinning
1892   //
1893   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1894   // becoming an absorbing state.  Put another way, we spin briefly to
1895   // sample, just in case the system load, parallelism, contention, or lock
1896   // modality changed.
1897   //
1898   // Consider the following alternative:
1899   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1900   // spin attempt.  "Periodically" might mean after a tally of
1901   // the # of failed spin attempts (or iterations) reaches some threshold.
1902   // This takes us into the realm of 1-out-of-N spinning, where we
1903   // hold the duration constant but vary the frequency.
1904 
1905   ctr = _SpinDuration;
1906   if (ctr < Knob_SpinBase) ctr = Knob_SpinBase;
1907   if (ctr <= 0) return 0;
1908 
1909   if (Knob_SuccRestrict && _succ != NULL) return 0;
1910   if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1911     TEVENT(Spin abort - notrunnable [TOP]);
1912     return 0;
1913   }
1914 
1915   int MaxSpin = Knob_MaxSpinners;
1916   if (MaxSpin >= 0) {
1917     if (_Spinner > MaxSpin) {
1918       TEVENT(Spin abort -- too many spinners);
1919       return 0;
1920     }
1921     // Slightly racy, but benign ...
1922     Adjust(&_Spinner, 1);
1923   }
1924 
1925   // We're good to spin ... spin ingress.
1926   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1927   // when preparing to LD...CAS _owner, etc and the CAS is likely
1928   // to succeed.
1929   int hits    = 0;
1930   int msk     = 0;
1931   int caspty  = Knob_CASPenalty;
1932   int oxpty   = Knob_OXPenalty;
1933   int sss     = Knob_SpinSetSucc;
1934   if (sss && _succ == NULL) _succ = Self;
1935   Thread * prv = NULL;
1936 
1937   // There are three ways to exit the following loop:
1938   // 1.  A successful spin where this thread has acquired the lock.
1939   // 2.  Spin failure with prejudice
1940   // 3.  Spin failure without prejudice
1941 
1942   while (--ctr >= 0) {
1943 
1944     // Periodic polling -- Check for pending GC
1945     // Threads may spin while they're unsafe.
1946     // We don't want spinning threads to delay the JVM from reaching
1947     // a stop-the-world safepoint or to steal cycles from GC.
1948     // If we detect a pending safepoint we abort in order that
1949     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1950     // this thread, if safe, doesn't steal cycles from GC.
1951     // This is in keeping with the "no loitering in runtime" rule.
1952     // We periodically check to see if there's a safepoint pending.
1953     if ((ctr & 0xFF) == 0) {
1954       if (SafepointMechanism::poll(Self)) {
1955         TEVENT(Spin: safepoint);
1956         goto Abort;           // abrupt spin egress
1957       }
1958       if (Knob_UsePause & 1) SpinPause();
1959     }
1960 
1961     if (Knob_UsePause & 2) SpinPause();
1962 
1963     // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
1964     // This is useful on classic SMP systems, but is of less utility on
1965     // N1-style CMT platforms.
1966     //
1967     // Trade-off: lock acquisition latency vs coherency bandwidth.
1968     // Lock hold times are typically short.  A histogram
1969     // of successful spin attempts shows that we usually acquire
1970     // the lock early in the spin.  That suggests we want to
1971     // sample _owner frequently in the early phase of the spin,
1972     // but then back-off and sample less frequently as the spin
1973     // progresses.  The back-off makes a good citizen on SMP big
1974     // SMP systems.  Oversampling _owner can consume excessive
1975     // coherency bandwidth.  Relatedly, if we _oversample _owner we
1976     // can inadvertently interfere with the the ST m->owner=null.
1977     // executed by the lock owner.
1978     if (ctr & msk) continue;
1979     ++hits;
1980     if ((hits & 0xF) == 0) {
1981       // The 0xF, above, corresponds to the exponent.
1982       // Consider: (msk+1)|msk
1983       msk = ((msk << 2)|3) & BackOffMask;
1984     }
1985 
1986     // Probe _owner with TATAS
1987     // If this thread observes the monitor transition or flicker
1988     // from locked to unlocked to locked, then the odds that this
1989     // thread will acquire the lock in this spin attempt go down
1990     // considerably.  The same argument applies if the CAS fails
1991     // or if we observe _owner change from one non-null value to
1992     // another non-null value.   In such cases we might abort
1993     // the spin without prejudice or apply a "penalty" to the
1994     // spin count-down variable "ctr", reducing it by 100, say.
1995 
1996     Thread * ox = (Thread *) _owner;
1997     if (ox == NULL) {
1998       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1999       if (ox == NULL) {
2000         // The CAS succeeded -- this thread acquired ownership
2001         // Take care of some bookkeeping to exit spin state.
2002         if (sss && _succ == Self) {
2003           _succ = NULL;
2004         }
2005         if (MaxSpin > 0) Adjust(&_Spinner, -1);
2006 
2007         // Increase _SpinDuration :
2008         // The spin was successful (profitable) so we tend toward
2009         // longer spin attempts in the future.
2010         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2011         // If we acquired the lock early in the spin cycle it
2012         // makes sense to increase _SpinDuration proportionally.
2013         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2014         int x = _SpinDuration;
2015         if (x < Knob_SpinLimit) {
2016           if (x < Knob_Poverty) x = Knob_Poverty;
2017           _SpinDuration = x + Knob_Bonus;
2018         }
2019         return 1;
2020       }
2021 
2022       // The CAS failed ... we can take any of the following actions:
2023       // * penalize: ctr -= Knob_CASPenalty
2024       // * exit spin with prejudice -- goto Abort;
2025       // * exit spin without prejudice.
2026       // * Since CAS is high-latency, retry again immediately.
2027       prv = ox;
2028       TEVENT(Spin: cas failed);
2029       if (caspty == -2) break;
2030       if (caspty == -1) goto Abort;
2031       ctr -= caspty;
2032       continue;
2033     }
2034 
2035     // Did lock ownership change hands ?
2036     if (ox != prv && prv != NULL) {
2037       TEVENT(spin: Owner changed)
2038       if (oxpty == -2) break;
2039       if (oxpty == -1) goto Abort;
2040       ctr -= oxpty;
2041     }
2042     prv = ox;
2043 
2044     // Abort the spin if the owner is not executing.
2045     // The owner must be executing in order to drop the lock.
2046     // Spinning while the owner is OFFPROC is idiocy.
2047     // Consider: ctr -= RunnablePenalty ;
2048     if (Knob_OState && NotRunnable (Self, ox)) {
2049       TEVENT(Spin abort - notrunnable);
2050       goto Abort;
2051     }
2052     if (sss && _succ == NULL) _succ = Self;
2053   }
2054 
2055   // Spin failed with prejudice -- reduce _SpinDuration.
2056   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2057   // AIMD is globally stable.
2058   TEVENT(Spin failure);
2059   {
2060     int x = _SpinDuration;
2061     if (x > 0) {
2062       // Consider an AIMD scheme like: x -= (x >> 3) + 100
2063       // This is globally sample and tends to damp the response.
2064       x -= Knob_Penalty;
2065       if (x < 0) x = 0;
2066       _SpinDuration = x;
2067     }
2068   }
2069 
2070  Abort:
2071   if (MaxSpin >= 0) Adjust(&_Spinner, -1);
2072   if (sss && _succ == Self) {
2073     _succ = NULL;
2074     // Invariant: after setting succ=null a contending thread
2075     // must recheck-retry _owner before parking.  This usually happens
2076     // in the normal usage of TrySpin(), but it's safest
2077     // to make TrySpin() as foolproof as possible.
2078     OrderAccess::fence();
2079     if (TryLock(Self) > 0) return 1;
2080   }
2081   return 0;
2082 }
2083 
2084 // NotRunnable() -- informed spinning
2085 //
2086 // Don't bother spinning if the owner is not eligible to drop the lock.
2087 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2088 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2089 // The thread must be runnable in order to drop the lock in timely fashion.
2090 // If the _owner is not runnable then spinning will not likely be
2091 // successful (profitable).
2092 //
2093 // Beware -- the thread referenced by _owner could have died
2094 // so a simply fetch from _owner->_thread_state might trap.
2095 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2096 // Because of the lifecycle issues the schedctl and _thread_state values
2097 // observed by NotRunnable() might be garbage.  NotRunnable must
2098 // tolerate this and consider the observed _thread_state value
2099 // as advisory.
2100 //
2101 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2102 // a thread pointer.
2103 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2104 // with the LSB of _owner.  Another option would be to probablistically probe
2105 // the putative _owner->TypeTag value.
2106 //
2107 // Checking _thread_state isn't perfect.  Even if the thread is
2108 // in_java it might be blocked on a page-fault or have been preempted
2109 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2110 // with schedctl.sc_state gives us a good picture of what the
2111 // thread is doing, however.
2112 //
2113 // TODO: check schedctl.sc_state.
2114 // We'll need to use SafeFetch32() to read from the schedctl block.
2115 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2116 //
2117 // The return value from NotRunnable() is *advisory* -- the
2118 // result is based on sampling and is not necessarily coherent.
2119 // The caller must tolerate false-negative and false-positive errors.
2120 // Spinning, in general, is probabilistic anyway.
2121 
2122 
2123 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
2124   // Check ox->TypeTag == 2BAD.
2125   if (ox == NULL) return 0;
2126 
2127   // Avoid transitive spinning ...
2128   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2129   // Immediately after T1 acquires L it's possible that T2, also
2130   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2131   // This occurs transiently after T1 acquired L but before
2132   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2133   // its spin in this circumstance.
2134   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2135 
2136   if (BlockedOn == 1) return 1;
2137   if (BlockedOn != 0) {
2138     return BlockedOn != intptr_t(this) && _owner == ox;
2139   }
2140 
2141   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
2142   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
2143   // consider also: jst != _thread_in_Java -- but that's overspecific.
2144   return jst == _thread_blocked || jst == _thread_in_native;
2145 }
2146 
2147 
2148 // -----------------------------------------------------------------------------
2149 // WaitSet management ...
2150 
2151 ObjectWaiter::ObjectWaiter(Thread* thread) {
2152   _next     = NULL;
2153   _prev     = NULL;
2154   _notified = 0;
2155   _notifier_tid = 0;
2156   TState    = TS_RUN;
2157   _thread   = thread;
2158   _event    = thread->_ParkEvent;
2159   _active   = false;
2160   assert(_event != NULL, "invariant");
2161 }
2162 
2163 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2164   JavaThread *jt = (JavaThread *)this->_thread;
2165   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2166 }
2167 
2168 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2169   JavaThread *jt = (JavaThread *)this->_thread;
2170   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2171 }
2172 
2173 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2174   assert(node != NULL, "should not add NULL node");
2175   assert(node->_prev == NULL, "node already in list");
2176   assert(node->_next == NULL, "node already in list");
2177   // put node at end of queue (circular doubly linked list)
2178   if (_WaitSet == NULL) {
2179     _WaitSet = node;
2180     node->_prev = node;
2181     node->_next = node;
2182   } else {
2183     ObjectWaiter* head = _WaitSet;
2184     ObjectWaiter* tail = head->_prev;
2185     assert(tail->_next == head, "invariant check");
2186     tail->_next = node;
2187     head->_prev = node;
2188     node->_next = head;
2189     node->_prev = tail;
2190   }
2191 }
2192 
2193 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2194   // dequeue the very first waiter
2195   ObjectWaiter* waiter = _WaitSet;
2196   if (waiter) {
2197     DequeueSpecificWaiter(waiter);
2198   }
2199   return waiter;
2200 }
2201 
2202 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2203   assert(node != NULL, "should not dequeue NULL node");
2204   assert(node->_prev != NULL, "node already removed from list");
2205   assert(node->_next != NULL, "node already removed from list");
2206   // when the waiter has woken up because of interrupt,
2207   // timeout or other spurious wake-up, dequeue the
2208   // waiter from waiting list
2209   ObjectWaiter* next = node->_next;
2210   if (next == node) {
2211     assert(node->_prev == node, "invariant check");
2212     _WaitSet = NULL;
2213   } else {
2214     ObjectWaiter* prev = node->_prev;
2215     assert(prev->_next == node, "invariant check");
2216     assert(next->_prev == node, "invariant check");
2217     next->_prev = prev;
2218     prev->_next = next;
2219     if (_WaitSet == node) {
2220       _WaitSet = next;
2221     }
2222   }
2223   node->_next = NULL;
2224   node->_prev = NULL;
2225 }
2226 
2227 // -----------------------------------------------------------------------------
2228 // PerfData support
2229 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2230 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2231 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2232 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL;
2233 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2234 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL;
2235 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL;
2236 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL;
2237 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL;
2238 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL;
2239 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL;
2240 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL;
2241 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL;
2242 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL;
2243 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL;
2244 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2245 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2246 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2247 
2248 // One-shot global initialization for the sync subsystem.
2249 // We could also defer initialization and initialize on-demand
2250 // the first time we call inflate().  Initialization would
2251 // be protected - like so many things - by the MonitorCache_lock.
2252 
2253 void ObjectMonitor::Initialize() {
2254   static int InitializationCompleted = 0;
2255   assert(InitializationCompleted == 0, "invariant");
2256   InitializationCompleted = 1;
2257   if (UsePerfData) {
2258     EXCEPTION_MARK;
2259 #define NEWPERFCOUNTER(n)                                                \
2260   {                                                                      \
2261     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2262                                         CHECK);                          \
2263   }
2264 #define NEWPERFVARIABLE(n)                                                \
2265   {                                                                       \
2266     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2267                                          CHECK);                          \
2268   }
2269     NEWPERFCOUNTER(_sync_Inflations);
2270     NEWPERFCOUNTER(_sync_Deflations);
2271     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2272     NEWPERFCOUNTER(_sync_FutileWakeups);
2273     NEWPERFCOUNTER(_sync_Parks);
2274     NEWPERFCOUNTER(_sync_EmptyNotifications);
2275     NEWPERFCOUNTER(_sync_Notifications);
2276     NEWPERFCOUNTER(_sync_SlowEnter);
2277     NEWPERFCOUNTER(_sync_SlowExit);
2278     NEWPERFCOUNTER(_sync_SlowNotify);
2279     NEWPERFCOUNTER(_sync_SlowNotifyAll);
2280     NEWPERFCOUNTER(_sync_FailedSpins);
2281     NEWPERFCOUNTER(_sync_SuccessfulSpins);
2282     NEWPERFCOUNTER(_sync_PrivateA);
2283     NEWPERFCOUNTER(_sync_PrivateB);
2284     NEWPERFCOUNTER(_sync_MonInCirculation);
2285     NEWPERFCOUNTER(_sync_MonScavenged);
2286     NEWPERFVARIABLE(_sync_MonExtant);
2287 #undef NEWPERFCOUNTER
2288 #undef NEWPERFVARIABLE
2289   }
2290 }
2291 
2292 static char * kvGet(char * kvList, const char * Key) {
2293   if (kvList == NULL) return NULL;
2294   size_t n = strlen(Key);
2295   char * Search;
2296   for (Search = kvList; *Search; Search += strlen(Search) + 1) {
2297     if (strncmp (Search, Key, n) == 0) {
2298       if (Search[n] == '=') return Search + n + 1;
2299       if (Search[n] == 0)   return(char *) "1";
2300     }
2301   }
2302   return NULL;
2303 }
2304 
2305 static int kvGetInt(char * kvList, const char * Key, int Default) {
2306   char * v = kvGet(kvList, Key);
2307   int rslt = v ? ::strtol(v, NULL, 0) : Default;
2308   if (Knob_ReportSettings && v != NULL) {
2309     tty->print_cr("INFO: SyncKnob: %s %d(%d)", Key, rslt, Default) ;
2310     tty->flush();
2311   }
2312   return rslt;
2313 }
2314 
2315 void ObjectMonitor::DeferredInitialize() {
2316   if (InitDone > 0) return;
2317   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2318     while (InitDone != 1) /* empty */;
2319     return;
2320   }
2321 
2322   // One-shot global initialization ...
2323   // The initialization is idempotent, so we don't need locks.
2324   // In the future consider doing this via os::init_2().
2325   // SyncKnobs consist of <Key>=<Value> pairs in the style
2326   // of environment variables.  Start by converting ':' to NUL.
2327 
2328   if (SyncKnobs == NULL) SyncKnobs = "";
2329 
2330   size_t sz = strlen(SyncKnobs);
2331   char * knobs = (char *) malloc(sz + 2);
2332   if (knobs == NULL) {
2333     vm_exit_out_of_memory(sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs");
2334     guarantee(0, "invariant");
2335   }
2336   strcpy(knobs, SyncKnobs);
2337   knobs[sz+1] = 0;
2338   for (char * p = knobs; *p; p++) {
2339     if (*p == ':') *p = 0;
2340   }
2341 
2342   #define SETKNOB(x) { Knob_##x = kvGetInt(knobs, #x, Knob_##x); }
2343   SETKNOB(ReportSettings);
2344   SETKNOB(ExitRelease);
2345   SETKNOB(Verbose);
2346   SETKNOB(VerifyInUse);
2347   SETKNOB(VerifyMatch);
2348   SETKNOB(FixedSpin);
2349   SETKNOB(SpinLimit);
2350   SETKNOB(SpinBase);
2351   SETKNOB(SpinBackOff);
2352   SETKNOB(CASPenalty);
2353   SETKNOB(OXPenalty);
2354   SETKNOB(LogSpins);
2355   SETKNOB(SpinSetSucc);
2356   SETKNOB(SuccEnabled);
2357   SETKNOB(SuccRestrict);
2358   SETKNOB(Penalty);
2359   SETKNOB(Bonus);
2360   SETKNOB(BonusB);
2361   SETKNOB(Poverty);
2362   SETKNOB(SpinAfterFutile);
2363   SETKNOB(UsePause);
2364   SETKNOB(SpinEarly);
2365   SETKNOB(OState);
2366   SETKNOB(MaxSpinners);
2367   SETKNOB(PreSpin);
2368   SETKNOB(ExitPolicy);
2369   SETKNOB(QMode);
2370   SETKNOB(ResetEvent);
2371   SETKNOB(MoveNotifyee);
2372   SETKNOB(FastHSSEC);
2373   #undef SETKNOB
2374 
2375   if (Knob_Verbose) {
2376     sanity_checks();
2377   }
2378 
2379   if (os::is_MP()) {
2380     BackOffMask = (1 << Knob_SpinBackOff) - 1;
2381     if (Knob_ReportSettings) {
2382       tty->print_cr("INFO: BackOffMask=0x%X", BackOffMask);
2383     }
2384     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2385   } else {
2386     Knob_SpinLimit = 0;
2387     Knob_SpinBase  = 0;
2388     Knob_PreSpin   = 0;
2389     Knob_FixedSpin = -1;
2390   }
2391 
2392   if (Knob_LogSpins == 0) {
2393     ObjectMonitor::_sync_FailedSpins = NULL;
2394   }
2395 
2396   free(knobs);
2397   OrderAccess::fence();
2398   InitDone = 1;
2399 }
2400 
2401 void ObjectMonitor::sanity_checks() {
2402   int error_cnt = 0;
2403   int warning_cnt = 0;
2404   bool verbose = Knob_Verbose != 0 NOT_PRODUCT(|| VerboseInternalVMTests);
2405 
2406   if (verbose) {
2407     tty->print_cr("INFO: sizeof(ObjectMonitor)=" SIZE_FORMAT,
2408                   sizeof(ObjectMonitor));
2409     tty->print_cr("INFO: sizeof(PaddedEnd<ObjectMonitor>)=" SIZE_FORMAT,
2410                   sizeof(PaddedEnd<ObjectMonitor>));
2411   }
2412 
2413   uint cache_line_size = VM_Version::L1_data_cache_line_size();
2414   if (verbose) {
2415     tty->print_cr("INFO: L1_data_cache_line_size=%u", cache_line_size);
2416   }
2417 
2418   ObjectMonitor dummy;
2419   u_char *addr_begin  = (u_char*)&dummy;
2420   u_char *addr_header = (u_char*)&dummy._header;
2421   u_char *addr_owner  = (u_char*)&dummy._owner;
2422 
2423   uint offset_header = (uint)(addr_header - addr_begin);
2424   if (verbose) tty->print_cr("INFO: offset(_header)=%u", offset_header);
2425 
2426   uint offset_owner = (uint)(addr_owner - addr_begin);
2427   if (verbose) tty->print_cr("INFO: offset(_owner)=%u", offset_owner);
2428 
2429   if ((uint)(addr_header - addr_begin) != 0) {
2430     tty->print_cr("ERROR: offset(_header) must be zero (0).");
2431     error_cnt++;
2432   }
2433 
2434   if (cache_line_size != 0) {
2435     // We were able to determine the L1 data cache line size so
2436     // do some cache line specific sanity checks
2437 
2438     if ((offset_owner - offset_header) < cache_line_size) {
2439       tty->print_cr("WARNING: the _header and _owner fields are closer "
2440                     "than a cache line which permits false sharing.");
2441       warning_cnt++;
2442     }
2443 
2444     if ((sizeof(PaddedEnd<ObjectMonitor>) % cache_line_size) != 0) {
2445       tty->print_cr("WARNING: PaddedEnd<ObjectMonitor> size is not a "
2446                     "multiple of a cache line which permits false sharing.");
2447       warning_cnt++;
2448     }
2449   }
2450 
2451   ObjectSynchronizer::sanity_checks(verbose, cache_line_size, &error_cnt,
2452                                     &warning_cnt);
2453 
2454   if (verbose || error_cnt != 0 || warning_cnt != 0) {
2455     tty->print_cr("INFO: error_cnt=%d", error_cnt);
2456     tty->print_cr("INFO: warning_cnt=%d", warning_cnt);
2457   }
2458 
2459   guarantee(error_cnt == 0,
2460             "Fatal error(s) found in ObjectMonitor::sanity_checks()");
2461 }
2462 
2463 #ifndef PRODUCT
2464 void ObjectMonitor_test() {
2465   ObjectMonitor::sanity_checks();
2466 }
2467 #endif