1 /*
   2  * Copyright (c) 2012, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "memory/allocation.inline.hpp"
  28 #include "os_aix.inline.hpp"
  29 #include "runtime/os.hpp"
  30 #include "runtime/os_perf.hpp"
  31 
  32 #include CPU_HEADER(vm_version_ext)
  33 
  34 #include <stdio.h>
  35 #include <stdarg.h>
  36 #include <unistd.h>
  37 #include <errno.h>
  38 #include <string.h>
  39 #include <sys/resource.h>
  40 #include <sys/types.h>
  41 #include <sys/stat.h>
  42 #include <dirent.h>
  43 #include <stdlib.h>
  44 #include <dlfcn.h>
  45 #include <pthread.h>
  46 #include <limits.h>
  47 
  48 /**
  49    /proc/[number]/stat
  50               Status information about the process.  This is used by ps(1).  It is defined in /usr/src/linux/fs/proc/array.c.
  51 
  52               The fields, in order, with their proper scanf(3) format specifiers, are:
  53 
  54               1. pid %d The process id.
  55 
  56               2. comm %s
  57                      The filename of the executable, in parentheses.  This is visible whether or not the executable is swapped out.
  58 
  59               3. state %c
  60                      One  character  from  the  string "RSDZTW" where R is running, S is sleeping in an interruptible wait, D is waiting in uninterruptible disk
  61                      sleep, Z is zombie, T is traced or stopped (on a signal), and W is paging.
  62 
  63               4. ppid %d
  64                      The PID of the parent.
  65 
  66               5. pgrp %d
  67                      The process group ID of the process.
  68 
  69               6. session %d
  70                      The session ID of the process.
  71 
  72               7. tty_nr %d
  73                      The tty the process uses.
  74 
  75               8. tpgid %d
  76                      The process group ID of the process which currently owns the tty that the process is connected to.
  77 
  78               9. flags %lu
  79                      The flags of the process.  The math bit is decimal 4, and the traced bit is decimal 10.
  80 
  81               10. minflt %lu
  82                      The number of minor faults the process has made which have not required loading a memory page from disk.
  83 
  84               11. cminflt %lu
  85                      The number of minor faults that the process's waited-for children have made.
  86 
  87               12. majflt %lu
  88                      The number of major faults the process has made which have required loading a memory page from disk.
  89 
  90               13. cmajflt %lu
  91                      The number of major faults that the process's waited-for children have made.
  92 
  93               14. utime %lu
  94                      The number of jiffies that this process has been scheduled in user mode.
  95 
  96               15. stime %lu
  97                      The number of jiffies that this process has been scheduled in kernel mode.
  98 
  99               16. cutime %ld
 100                      The number of jiffies that this process's waited-for children have been scheduled in user mode. (See also times(2).)
 101 
 102               17. cstime %ld
 103                      The number of jiffies that this process' waited-for children have been scheduled in kernel mode.
 104 
 105               18. priority %ld
 106                      The standard nice value, plus fifteen.  The value is never negative in the kernel.
 107 
 108               19. nice %ld
 109                      The nice value ranges from 19 (nicest) to -19 (not nice to others).
 110 
 111               20. 0 %ld  This value is hard coded to 0 as a placeholder for a removed field.
 112 
 113               21. itrealvalue %ld
 114                      The time in jiffies before the next SIGALRM is sent to the process due to an interval timer.
 115 
 116               22. starttime %lu
 117                      The time in jiffies the process started after system boot.
 118 
 119               23. vsize %lu
 120                      Virtual memory size in bytes.
 121 
 122               24. rss %ld
 123                      Resident Set Size: number of pages the process has in real memory, minus 3 for administrative purposes. This is just the pages which  count
 124                      towards text, data, or stack space.  This does not include pages which have not been demand-loaded in, or which are swapped out.
 125 
 126               25. rlim %lu
 127                      Current limit in bytes on the rss of the process (usually 4294967295 on i386).
 128 
 129               26. startcode %lu
 130                      The address above which program text can run.
 131 
 132               27. endcode %lu
 133                      The address below which program text can run.
 134 
 135               28. startstack %lu
 136                      The address of the start of the stack.
 137 
 138               29. kstkesp %lu
 139                      The current value of esp (stack pointer), as found in the kernel stack page for the process.
 140 
 141               30. kstkeip %lu
 142                      The current EIP (instruction pointer).
 143 
 144               31. signal %lu
 145                      The bitmap of pending signals (usually 0).
 146 
 147               32. blocked %lu
 148                      The bitmap of blocked signals (usually 0, 2 for shells).
 149 
 150               33. sigignore %lu
 151                      The bitmap of ignored signals.
 152 
 153               34. sigcatch %lu
 154                      The bitmap of catched signals.
 155 
 156               35. wchan %lu
 157                      This  is the "channel" in which the process is waiting.  It is the address of a system call, and can be looked up in a namelist if you need
 158                      a textual name.  (If you have an up-to-date /etc/psdatabase, then try ps -l to see the WCHAN field in action.)
 159 
 160               36. nswap %lu
 161                      Number of pages swapped - not maintained.
 162 
 163               37. cnswap %lu
 164                      Cumulative nswap for child processes.
 165 
 166               38. exit_signal %d
 167                      Signal to be sent to parent when we die.
 168 
 169               39. processor %d
 170                      CPU number last executed on.
 171 
 172 
 173 
 174  ///// SSCANF FORMAT STRING. Copy and use.
 175 
 176 field:        1  2  3  4  5  6  7  8  9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38 39
 177 format:       %d %s %c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %d %d
 178 
 179 
 180 */
 181 
 182 /**
 183  * For platforms that have them, when declaring
 184  * a printf-style function,
 185  *   formatSpec is the parameter number (starting at 1)
 186  *       that is the format argument ("%d pid %s")
 187  *   params is the parameter number where the actual args to
 188  *       the format starts. If the args are in a va_list, this
 189  *       should be 0.
 190  */
 191 #ifndef PRINTF_ARGS
 192 #  define PRINTF_ARGS(formatSpec,  params) ATTRIBUTE_PRINTF(formatSpec, params)
 193 #endif
 194 
 195 #ifndef SCANF_ARGS
 196 #  define SCANF_ARGS(formatSpec,   params) ATTRIBUTE_SCANF(formatSpec, params)
 197 #endif
 198 
 199 #ifndef _PRINTFMT_
 200 #  define _PRINTFMT_
 201 #endif
 202 
 203 #ifndef _SCANFMT_
 204 #  define _SCANFMT_
 205 #endif
 206 
 207 
 208 struct CPUPerfTicks {
 209   uint64_t  used;
 210   uint64_t  usedKernel;
 211   uint64_t  total;
 212 };
 213 
 214 typedef enum {
 215   CPU_LOAD_VM_ONLY,
 216   CPU_LOAD_GLOBAL,
 217 } CpuLoadTarget;
 218 
 219 enum {
 220   UNDETECTED,
 221   UNDETECTABLE,
 222   LINUX26_NPTL,
 223   BAREMETAL
 224 };
 225 
 226 struct CPUPerfCounters {
 227   int   nProcs;
 228   CPUPerfTicks jvmTicks;
 229   CPUPerfTicks* cpus;
 230 };
 231 
 232 static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target);
 233 
 234 /** reads /proc/<pid>/stat data, with some checks and some skips.
 235  *  Ensure that 'fmt' does _NOT_ contain the first two "%d %s"
 236  */
 237 static int SCANF_ARGS(2, 0) vread_statdata(const char* procfile, _SCANFMT_ const char* fmt, va_list args) {
 238   FILE*f;
 239   int n;
 240   char buf[2048];
 241 
 242   if ((f = fopen(procfile, "r")) == NULL) {
 243     return -1;
 244   }
 245 
 246   if ((n = fread(buf, 1, sizeof(buf), f)) != -1) {
 247     char *tmp;
 248 
 249     buf[n-1] = '\0';
 250     /** skip through pid and exec name. */
 251     if ((tmp = strrchr(buf, ')')) != NULL) {
 252       // skip the ')' and the following space
 253       // but check that buffer is long enough
 254       tmp += 2;
 255       if (tmp < buf + n) {
 256         n = vsscanf(tmp, fmt, args);
 257       }
 258     }
 259   }
 260 
 261   fclose(f);
 262 
 263   return n;
 264 }
 265 
 266 static int SCANF_ARGS(2, 3) read_statdata(const char* procfile, _SCANFMT_ const char* fmt, ...) {
 267   int   n;
 268   va_list args;
 269 
 270   va_start(args, fmt);
 271   n = vread_statdata(procfile, fmt, args);
 272   va_end(args);
 273   return n;
 274 }
 275 
 276 static FILE* open_statfile(void) {
 277   FILE *f;
 278 
 279   if ((f = fopen("/proc/stat", "r")) == NULL) {
 280     static int haveWarned = 0;
 281     if (!haveWarned) {
 282       haveWarned = 1;
 283     }
 284   }
 285   return f;
 286 }
 287 
 288 static void
 289 next_line(FILE *f) {
 290   int c;
 291   do {
 292     c = fgetc(f);
 293   } while (c != '\n' && c != EOF);
 294 }
 295 
 296 /**
 297  * Return the total number of ticks since the system was booted.
 298  * If the usedTicks parameter is not NULL, it will be filled with
 299  * the number of ticks spent on actual processes (user, system or
 300  * nice processes) since system boot. Note that this is the total number
 301  * of "executed" ticks on _all_ CPU:s, that is on a n-way system it is
 302  * n times the number of ticks that has passed in clock time.
 303  *
 304  * Returns a negative value if the reading of the ticks failed.
 305  */
 306 static OSReturn get_total_ticks(int which_logical_cpu, CPUPerfTicks* pticks) {
 307   FILE*         fh;
 308   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 309   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 310   int           logical_cpu = -1;
 311   const int     expected_assign_count = (-1 == which_logical_cpu) ? 4 : 5;
 312   int           n;
 313 
 314   if ((fh = open_statfile()) == NULL) {
 315     return OS_ERR;
 316   }
 317   if (-1 == which_logical_cpu) {
 318     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 319             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT,
 320             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 321             &iowTicks, &irqTicks, &sirqTicks);
 322   } else {
 323     // Move to next line
 324     next_line(fh);
 325 
 326     // find the line for requested cpu faster to just iterate linefeeds?
 327     for (int i = 0; i < which_logical_cpu; i++) {
 328       next_line(fh);
 329     }
 330 
 331     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 332                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT,
 333                &logical_cpu, &userTicks, &niceTicks,
 334                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks);
 335   }
 336 
 337   fclose(fh);
 338   if (n < expected_assign_count || logical_cpu != which_logical_cpu) {
 339 #ifdef DEBUG_LINUX_PROC_STAT
 340     vm_fprintf(stderr, "[stat] read failed");
 341 #endif
 342     return OS_ERR;
 343   }
 344 
 345 #ifdef DEBUG_LINUX_PROC_STAT
 346   vm_fprintf(stderr, "[stat] read "
 347           UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 348           UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " \n",
 349           userTicks, niceTicks, systemTicks, idleTicks,
 350           iowTicks, irqTicks, sirqTicks);
 351 #endif
 352 
 353   pticks->used       = userTicks + niceTicks;
 354   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 355   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 356                        iowTicks + irqTicks + sirqTicks;
 357 
 358   return OS_OK;
 359 }
 360 
 361 
 362 static int get_systemtype(void) {
 363   static int procEntriesType = UNDETECTED;
 364   DIR *taskDir;
 365 
 366   if (procEntriesType != UNDETECTED) {
 367     return procEntriesType;
 368   }
 369 
 370   // Check whether we have a task subdirectory
 371   if ((taskDir = opendir("/proc/self/task")) == NULL) {
 372     procEntriesType = UNDETECTABLE;
 373   } else {
 374     // The task subdirectory exists; we're on a Linux >= 2.6 system
 375     closedir(taskDir);
 376     procEntriesType = LINUX26_NPTL;
 377   }
 378 
 379   return procEntriesType;
 380 }
 381 
 382 /** read user and system ticks from a named procfile, assumed to be in 'stat' format then. */
 383 static int read_ticks(const char* procfile, uint64_t* userTicks, uint64_t* systemTicks) {
 384   return read_statdata(procfile, "%*c %*d %*d %*d %*d %*d %*u %*u %*u %*u %*u " UINT64_FORMAT " " UINT64_FORMAT,
 385     userTicks, systemTicks);
 386 }
 387 
 388 /**
 389  * Return the number of ticks spent in any of the processes belonging
 390  * to the JVM on any CPU.
 391  */
 392 static OSReturn get_jvm_ticks(CPUPerfTicks* pticks) {
 393   uint64_t userTicks;
 394   uint64_t systemTicks;
 395 
 396   if (get_systemtype() != LINUX26_NPTL) {
 397     return OS_ERR;
 398   }
 399 
 400   if (read_ticks("/proc/self/stat", &userTicks, &systemTicks) != 2) {
 401     return OS_ERR;
 402   }
 403 
 404   // get the total
 405   if (get_total_ticks(-1, pticks) != OS_OK) {
 406     return OS_ERR;
 407   }
 408 
 409   pticks->used       = userTicks;
 410   pticks->usedKernel = systemTicks;
 411 
 412   return OS_OK;
 413 }
 414 
 415 /**
 416  * Return the load of the CPU as a double. 1.0 means the CPU process uses all
 417  * available time for user or system processes, 0.0 means the CPU uses all time
 418  * being idle.
 419  *
 420  * Returns a negative value if there is a problem in determining the CPU load.
 421  */
 422 static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target) {
 423   uint64_t udiff, kdiff, tdiff;
 424   CPUPerfTicks* pticks;
 425   CPUPerfTicks  tmp;
 426   double user_load;
 427 
 428   *pkernelLoad = 0.0;
 429 
 430   if (target == CPU_LOAD_VM_ONLY) {
 431     pticks = &counters->jvmTicks;
 432   } else if (-1 == which_logical_cpu) {
 433     pticks = &counters->cpus[counters->nProcs];
 434   } else {
 435     pticks = &counters->cpus[which_logical_cpu];
 436   }
 437 
 438   tmp = *pticks;
 439 
 440   if (target == CPU_LOAD_VM_ONLY) {
 441     if (get_jvm_ticks(pticks) != OS_OK) {
 442       return -1.0;
 443     }
 444   } else if (get_total_ticks(which_logical_cpu, pticks) != OS_OK) {
 445     return -1.0;
 446   }
 447 
 448   // seems like we sometimes end up with less kernel ticks when
 449   // reading /proc/self/stat a second time, timing issue between cpus?
 450   if (pticks->usedKernel < tmp.usedKernel) {
 451     kdiff = 0;
 452   } else {
 453     kdiff = pticks->usedKernel - tmp.usedKernel;
 454   }
 455   tdiff = pticks->total - tmp.total;
 456   udiff = pticks->used - tmp.used;
 457 
 458   if (tdiff == 0) {
 459     return 0.0;
 460   } else if (tdiff < (udiff + kdiff)) {
 461     tdiff = udiff + kdiff;
 462   }
 463   *pkernelLoad = (kdiff / (double)tdiff);
 464   // BUG9044876, normalize return values to sane values
 465   *pkernelLoad = MAX2<double>(*pkernelLoad, 0.0);
 466   *pkernelLoad = MIN2<double>(*pkernelLoad, 1.0);
 467 
 468   user_load = (udiff / (double)tdiff);
 469   user_load = MAX2<double>(user_load, 0.0);
 470   user_load = MIN2<double>(user_load, 1.0);
 471 
 472   return user_load;
 473 }
 474 
 475 static int SCANF_ARGS(1, 2) parse_stat(_SCANFMT_ const char* fmt, ...) {
 476   FILE *f;
 477   va_list args;
 478 
 479   va_start(args, fmt);
 480 
 481   if ((f = open_statfile()) == NULL) {
 482     va_end(args);
 483     return OS_ERR;
 484   }
 485   for (;;) {
 486     char line[80];
 487     if (fgets(line, sizeof(line), f) != NULL) {
 488       if (vsscanf(line, fmt, args) == 1) {
 489         fclose(f);
 490         va_end(args);
 491         return OS_OK;
 492       }
 493     } else {
 494         fclose(f);
 495         va_end(args);
 496         return OS_ERR;
 497     }
 498   }
 499 }
 500 
 501 static int get_noof_context_switches(uint64_t* switches) {
 502   return parse_stat("ctxt " UINT64_FORMAT "\n", switches);
 503 }
 504 
 505 /** returns boot time in _seconds_ since epoch */
 506 static int get_boot_time(uint64_t* time) {
 507   return parse_stat("btime " UINT64_FORMAT "\n", time);
 508 }
 509 
 510 static int perf_context_switch_rate(double* rate) {
 511   static pthread_mutex_t contextSwitchLock = PTHREAD_MUTEX_INITIALIZER;
 512   static uint64_t      lastTime;
 513   static uint64_t      lastSwitches;
 514   static double        lastRate;
 515 
 516   uint64_t lt = 0;
 517   int res = 0;
 518 
 519   if (lastTime == 0) {
 520     uint64_t tmp;
 521     if (get_boot_time(&tmp) < 0) {
 522       return OS_ERR;
 523     }
 524     lt = tmp * 1000;
 525   }
 526 
 527   res = OS_OK;
 528 
 529   pthread_mutex_lock(&contextSwitchLock);
 530   {
 531 
 532     uint64_t sw;
 533     s8 t, d;
 534 
 535     if (lastTime == 0) {
 536       lastTime = lt;
 537     }
 538 
 539     t = os::javaTimeMillis();
 540     d = t - lastTime;
 541 
 542     if (d == 0) {
 543       *rate = lastRate;
 544     } else if (!get_noof_context_switches(&sw)) {
 545       *rate      = ( (double)(sw - lastSwitches) / d ) * 1000;
 546       lastRate     = *rate;
 547       lastSwitches = sw;
 548       lastTime     = t;
 549     } else {
 550       *rate = 0;
 551       res   = OS_ERR;
 552     }
 553     if (*rate <= 0) {
 554       *rate = 0;
 555       lastRate = 0;
 556     }
 557   }
 558   pthread_mutex_unlock(&contextSwitchLock);
 559 
 560   return res;
 561 }
 562 
 563 class CPUPerformanceInterface::CPUPerformance : public CHeapObj<mtInternal> {
 564   friend class CPUPerformanceInterface;
 565  private:
 566   CPUPerfCounters _counters;
 567 
 568   int cpu_load(int which_logical_cpu, double* cpu_load);
 569   int context_switch_rate(double* rate);
 570   int cpu_load_total_process(double* cpu_load);
 571   int cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad);
 572 
 573  public:
 574   CPUPerformance();
 575   bool initialize();
 576   ~CPUPerformance();
 577 };
 578 
 579 CPUPerformanceInterface::CPUPerformance::CPUPerformance() {
 580   _counters.nProcs = os::active_processor_count();
 581   _counters.cpus = NULL;
 582 }
 583 
 584 bool CPUPerformanceInterface::CPUPerformance::initialize() {
 585   size_t tick_array_size = (_counters.nProcs +1) * sizeof(CPUPerfTicks);
 586   _counters.cpus = (CPUPerfTicks*)NEW_C_HEAP_ARRAY(char, tick_array_size, mtInternal);
 587   if (NULL == _counters.cpus) {
 588     return false;
 589   }
 590   memset(_counters.cpus, 0, tick_array_size);
 591 
 592   // For the CPU load total
 593   get_total_ticks(-1, &_counters.cpus[_counters.nProcs]);
 594 
 595   // For each CPU
 596   for (int i = 0; i < _counters.nProcs; i++) {
 597     get_total_ticks(i, &_counters.cpus[i]);
 598   }
 599   // For JVM load
 600   get_jvm_ticks(&_counters.jvmTicks);
 601 
 602   // initialize context switch system
 603   // the double is only for init
 604   double init_ctx_switch_rate;
 605   perf_context_switch_rate(&init_ctx_switch_rate);
 606 
 607   return true;
 608 }
 609 
 610 CPUPerformanceInterface::CPUPerformance::~CPUPerformance() {
 611   if (_counters.cpus != NULL) {
 612     FREE_C_HEAP_ARRAY(char, _counters.cpus);
 613   }
 614 }
 615 
 616 int CPUPerformanceInterface::CPUPerformance::cpu_load(int which_logical_cpu, double* cpu_load) {
 617   double u, s;
 618   u = get_cpu_load(which_logical_cpu, &_counters, &s, CPU_LOAD_GLOBAL);
 619   if (u < 0) {
 620     *cpu_load = 0.0;
 621     return OS_ERR;
 622   }
 623   // Cap total systemload to 1.0
 624   *cpu_load = MIN2<double>((u + s), 1.0);
 625   return OS_OK;
 626 }
 627 
 628 int CPUPerformanceInterface::CPUPerformance::cpu_load_total_process(double* cpu_load) {
 629   double u, s;
 630   u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
 631   if (u < 0) {
 632     *cpu_load = 0.0;
 633     return OS_ERR;
 634   }
 635   *cpu_load = u + s;
 636   return OS_OK;
 637 }
 638 
 639 int CPUPerformanceInterface::CPUPerformance::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) {
 640   double u, s, t;
 641 
 642   assert(pjvmUserLoad != NULL, "pjvmUserLoad not inited");
 643   assert(pjvmKernelLoad != NULL, "pjvmKernelLoad not inited");
 644   assert(psystemTotalLoad != NULL, "psystemTotalLoad not inited");
 645 
 646   u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
 647   if (u < 0) {
 648     *pjvmUserLoad = 0.0;
 649     *pjvmKernelLoad = 0.0;
 650     *psystemTotalLoad = 0.0;
 651     return OS_ERR;
 652   }
 653 
 654   cpu_load(-1, &t);
 655   // clamp at user+system and 1.0
 656   if (u + s > t) {
 657     t = MIN2<double>(u + s, 1.0);
 658   }
 659 
 660   *pjvmUserLoad = u;
 661   *pjvmKernelLoad = s;
 662   *psystemTotalLoad = t;
 663 
 664   return OS_OK;
 665 }
 666 
 667 int CPUPerformanceInterface::CPUPerformance::context_switch_rate(double* rate) {
 668   return perf_context_switch_rate(rate);
 669 }
 670 
 671 CPUPerformanceInterface::CPUPerformanceInterface() {
 672   _impl = NULL;
 673 }
 674 
 675 bool CPUPerformanceInterface::initialize() {
 676   _impl = new CPUPerformanceInterface::CPUPerformance();
 677   return NULL == _impl ? false : _impl->initialize();
 678 }
 679 
 680 CPUPerformanceInterface::~CPUPerformanceInterface() {
 681   if (_impl != NULL) {
 682     delete _impl;
 683   }
 684 }
 685 
 686 int CPUPerformanceInterface::cpu_load(int which_logical_cpu, double* cpu_load) const {
 687   return _impl->cpu_load(which_logical_cpu, cpu_load);
 688 }
 689 
 690 int CPUPerformanceInterface::cpu_load_total_process(double* cpu_load) const {
 691   return _impl->cpu_load_total_process(cpu_load);
 692 }
 693 
 694 int CPUPerformanceInterface::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) const {
 695   return _impl->cpu_loads_process(pjvmUserLoad, pjvmKernelLoad, psystemTotalLoad);
 696 }
 697 
 698 int CPUPerformanceInterface::context_switch_rate(double* rate) const {
 699   return _impl->context_switch_rate(rate);
 700 }
 701 
 702 class SystemProcessInterface::SystemProcesses : public CHeapObj<mtInternal> {
 703   friend class SystemProcessInterface;
 704  private:
 705   class ProcessIterator : public CHeapObj<mtInternal> {
 706     friend class SystemProcessInterface::SystemProcesses;
 707    private:
 708     DIR*           _dir;
 709     struct dirent* _entry;
 710     bool           _valid;
 711     char           _exeName[PATH_MAX];
 712     char           _exePath[PATH_MAX];
 713 
 714     ProcessIterator();
 715     ~ProcessIterator();
 716     bool initialize();
 717 
 718     bool is_valid() const { return _valid; }
 719     bool is_valid_entry(struct dirent* entry) const;
 720     bool is_dir(const char* name) const;
 721     int  fsize(const char* name, uint64_t& size) const;
 722 
 723     char* allocate_string(const char* str) const;
 724     void  get_exe_name();
 725     char* get_exe_path();
 726     char* get_cmdline();
 727 
 728     int current(SystemProcess* process_info);
 729     int next_process();
 730   };
 731 
 732   ProcessIterator* _iterator;
 733   SystemProcesses();
 734   bool initialize();
 735   ~SystemProcesses();
 736 
 737   //information about system processes
 738   int system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const;
 739 };
 740 
 741 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_dir(const char* name) const {
 742   struct stat mystat;
 743   int ret_val = 0;
 744 
 745   ret_val = stat(name, &mystat);
 746   if (ret_val < 0) {
 747     return false;
 748   }
 749   ret_val = S_ISDIR(mystat.st_mode);
 750   return ret_val > 0;
 751 }
 752 
 753 int SystemProcessInterface::SystemProcesses::ProcessIterator::fsize(const char* name, uint64_t& size) const {
 754   assert(name != NULL, "name pointer is NULL!");
 755   size = 0;
 756   struct stat fbuf;
 757 
 758   if (stat(name, &fbuf) < 0) {
 759     return OS_ERR;
 760   }
 761   size = fbuf.st_size;
 762   return OS_OK;
 763 }
 764 
 765 // if it has a numeric name, is a directory and has a 'stat' file in it
 766 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_valid_entry(struct dirent* entry) const {
 767   char buffer[PATH_MAX];
 768   uint64_t size = 0;
 769 
 770   if (atoi(entry->d_name) != 0) {
 771     jio_snprintf(buffer, PATH_MAX, "/proc/%s", entry->d_name);
 772     buffer[PATH_MAX - 1] = '\0';
 773 
 774     if (is_dir(buffer)) {
 775       jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", entry->d_name);
 776       buffer[PATH_MAX - 1] = '\0';
 777       if (fsize(buffer, size) != OS_ERR) {
 778         return true;
 779       }
 780     }
 781   }
 782   return false;
 783 }
 784 
 785 // get exe-name from /proc/<pid>/stat
 786 void SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_name() {
 787   FILE* fp;
 788   char  buffer[PATH_MAX];
 789 
 790   jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", _entry->d_name);
 791   buffer[PATH_MAX - 1] = '\0';
 792   if ((fp = fopen(buffer, "r")) != NULL) {
 793     if (fgets(buffer, PATH_MAX, fp) != NULL) {
 794       char* start, *end;
 795       // exe-name is between the first pair of ( and )
 796       start = strchr(buffer, '(');
 797       if (start != NULL && start[1] != '\0') {
 798         start++;
 799         end = strrchr(start, ')');
 800         if (end != NULL) {
 801           size_t len;
 802           len = MIN2<size_t>(end - start, sizeof(_exeName) - 1);
 803           memcpy(_exeName, start, len);
 804           _exeName[len] = '\0';
 805         }
 806       }
 807     }
 808     fclose(fp);
 809   }
 810 }
 811 
 812 // get command line from /proc/<pid>/cmdline
 813 char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_cmdline() {
 814   FILE* fp;
 815   char  buffer[PATH_MAX];
 816   char* cmdline = NULL;
 817 
 818   jio_snprintf(buffer, PATH_MAX, "/proc/%s/cmdline", _entry->d_name);
 819   buffer[PATH_MAX - 1] = '\0';
 820   if ((fp = fopen(buffer, "r")) != NULL) {
 821     size_t size = 0;
 822     char   dummy;
 823 
 824     // find out how long the file is (stat always returns 0)
 825     while (fread(&dummy, 1, 1, fp) == 1) {
 826       size++;
 827     }
 828     if (size > 0) {
 829       cmdline = NEW_C_HEAP_ARRAY(char, size + 1, mtInternal);
 830       if (cmdline != NULL) {
 831         cmdline[0] = '\0';
 832         if (fseek(fp, 0, SEEK_SET) == 0) {
 833           if (fread(cmdline, 1, size, fp) == size) {
 834             // the file has the arguments separated by '\0',
 835             // so we translate '\0' to ' '
 836             for (size_t i = 0; i < size; i++) {
 837               if (cmdline[i] == '\0') {
 838                 cmdline[i] = ' ';
 839               }
 840             }
 841             cmdline[size] = '\0';
 842           }
 843         }
 844       }
 845     }
 846     fclose(fp);
 847   }
 848   return cmdline;
 849 }
 850 
 851 // get full path to exe from /proc/<pid>/exe symlink
 852 char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_path() {
 853   char buffer[PATH_MAX];
 854 
 855   jio_snprintf(buffer, PATH_MAX, "/proc/%s/exe", _entry->d_name);
 856   buffer[PATH_MAX - 1] = '\0';
 857   return realpath(buffer, _exePath);
 858 }
 859 
 860 char* SystemProcessInterface::SystemProcesses::ProcessIterator::allocate_string(const char* str) const {
 861   if (str != NULL) {
 862     size_t len = strlen(str);
 863     char* tmp = NEW_C_HEAP_ARRAY(char, len+1, mtInternal);
 864     strncpy(tmp, str, len);
 865     tmp[len] = '\0';
 866     return tmp;
 867   }
 868   return NULL;
 869 }
 870 
 871 int SystemProcessInterface::SystemProcesses::ProcessIterator::current(SystemProcess* process_info) {
 872   if (!is_valid()) {
 873     return OS_ERR;
 874   }
 875 
 876   process_info->set_pid(atoi(_entry->d_name));
 877 
 878   get_exe_name();
 879   process_info->set_name(allocate_string(_exeName));
 880 
 881   if (get_exe_path() != NULL) {
 882      process_info->set_path(allocate_string(_exePath));
 883   }
 884 
 885   char* cmdline = NULL;
 886   cmdline = get_cmdline();
 887   if (cmdline != NULL) {
 888     process_info->set_command_line(allocate_string(cmdline));
 889     FREE_C_HEAP_ARRAY(char, cmdline);
 890   }
 891 
 892   return OS_OK;
 893 }
 894 
 895 int SystemProcessInterface::SystemProcesses::ProcessIterator::next_process() {
 896   struct dirent* entry;
 897 
 898   if (!is_valid()) {
 899     return OS_ERR;
 900   }
 901 
 902   do {
 903       entry = os::readdir(_dir, _entry);
 904     if (entry == NULL) {
 905       // error
 906       _valid = false;
 907       return OS_ERR;
 908     }
 909     if (_entry == NULL) {
 910       // reached end
 911       _valid = false;
 912       return OS_ERR;
 913     }
 914   } while(!is_valid_entry(_entry));
 915 
 916   _valid = true;
 917   return OS_OK;
 918 }
 919 
 920 SystemProcessInterface::SystemProcesses::ProcessIterator::ProcessIterator() {
 921   _dir = NULL;
 922   _entry = NULL;
 923   _valid = false;
 924 }
 925 
 926 bool SystemProcessInterface::SystemProcesses::ProcessIterator::initialize() {
 927   // Not yet implemented.
 928   return false;
 929 }
 930 
 931 SystemProcessInterface::SystemProcesses::ProcessIterator::~ProcessIterator() {
 932   if (_entry != NULL) {
 933     FREE_C_HEAP_ARRAY(char, _entry);
 934   }
 935   if (_dir != NULL) {
 936     closedir(_dir);
 937   }
 938 }
 939 
 940 SystemProcessInterface::SystemProcesses::SystemProcesses() {
 941   _iterator = NULL;
 942 }
 943 
 944 bool SystemProcessInterface::SystemProcesses::initialize() {
 945   _iterator = new SystemProcessInterface::SystemProcesses::ProcessIterator();
 946   return NULL == _iterator ? false : _iterator->initialize();
 947 }
 948 
 949 SystemProcessInterface::SystemProcesses::~SystemProcesses() {
 950   if (_iterator != NULL) {
 951     delete _iterator;
 952   }
 953 }
 954 
 955 int SystemProcessInterface::SystemProcesses::system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const {
 956   assert(system_processes != NULL, "system_processes pointer is NULL!");
 957   assert(no_of_sys_processes != NULL, "system_processes counter pointers is NULL!");
 958   assert(_iterator != NULL, "iterator is NULL!");
 959 
 960   // initialize pointers
 961   *no_of_sys_processes = 0;
 962   *system_processes = NULL;
 963 
 964   while (_iterator->is_valid()) {
 965     SystemProcess* tmp = new SystemProcess();
 966     _iterator->current(tmp);
 967 
 968     //if already existing head
 969     if (*system_processes != NULL) {
 970       //move "first to second"
 971       tmp->set_next(*system_processes);
 972     }
 973     // new head
 974     *system_processes = tmp;
 975     // increment
 976     (*no_of_sys_processes)++;
 977     // step forward
 978     _iterator->next_process();
 979   }
 980   return OS_OK;
 981 }
 982 
 983 int SystemProcessInterface::system_processes(SystemProcess** system_procs, int* no_of_sys_processes) const {
 984   return _impl->system_processes(system_procs, no_of_sys_processes);
 985 }
 986 
 987 SystemProcessInterface::SystemProcessInterface() {
 988   _impl = NULL;
 989 }
 990 
 991 bool SystemProcessInterface::initialize() {
 992   _impl = new SystemProcessInterface::SystemProcesses();
 993   return NULL == _impl ? false : _impl->initialize();
 994 }
 995 
 996 SystemProcessInterface::~SystemProcessInterface() {
 997   if (_impl != NULL) {
 998     delete _impl;
 999   }
1000 }
1001 
1002 CPUInformationInterface::CPUInformationInterface() {
1003   _cpu_info = NULL;
1004 }
1005 
1006 bool CPUInformationInterface::initialize() {
1007   _cpu_info = new CPUInformation();
1008   if (NULL == _cpu_info) {
1009     return false;
1010   }
1011   _cpu_info->set_number_of_hardware_threads(VM_Version_Ext::number_of_threads());
1012   _cpu_info->set_number_of_cores(VM_Version_Ext::number_of_cores());
1013   _cpu_info->set_number_of_sockets(VM_Version_Ext::number_of_sockets());
1014   _cpu_info->set_cpu_name(VM_Version_Ext::cpu_name());
1015   _cpu_info->set_cpu_description(VM_Version_Ext::cpu_description());
1016 
1017   return true;
1018 }
1019 
1020 CPUInformationInterface::~CPUInformationInterface() {
1021   if (_cpu_info != NULL) {
1022     if (_cpu_info->cpu_name() != NULL) {
1023       const char* cpu_name = _cpu_info->cpu_name();
1024       FREE_C_HEAP_ARRAY(char, cpu_name);
1025       _cpu_info->set_cpu_name(NULL);
1026     }
1027     if (_cpu_info->cpu_description() != NULL) {
1028        const char* cpu_desc = _cpu_info->cpu_description();
1029        FREE_C_HEAP_ARRAY(char, cpu_desc);
1030       _cpu_info->set_cpu_description(NULL);
1031     }
1032     delete _cpu_info;
1033   }
1034 }
1035 
1036 int CPUInformationInterface::cpu_information(CPUInformation& cpu_info) {
1037   if (_cpu_info == NULL) {
1038     return OS_ERR;
1039   }
1040 
1041   cpu_info = *_cpu_info; // shallow copy assignment
1042   return OS_OK;
1043 }
1044 
1045 class NetworkPerformanceInterface::NetworkPerformance : public CHeapObj<mtInternal> {
1046   friend class NetworkPerformanceInterface;
1047  private:
1048   NetworkPerformance();
1049   NetworkPerformance(const NetworkPerformance& rhs); // no impl
1050   NetworkPerformance& operator=(const NetworkPerformance& rhs); // no impl
1051   bool initialize();
1052   ~NetworkPerformance();
1053   int network_utilization(NetworkInterface** network_interfaces) const;
1054 };
1055 
1056 NetworkPerformanceInterface::NetworkPerformance::NetworkPerformance() {
1057 
1058 }
1059 
1060 bool NetworkPerformanceInterface::NetworkPerformance::initialize() {
1061   return true;
1062 }
1063 
1064 NetworkPerformanceInterface::NetworkPerformance::~NetworkPerformance() {
1065 }
1066 
1067 int NetworkPerformanceInterface::NetworkPerformance::network_utilization(NetworkInterface** network_interfaces) const
1068 {
1069   return FUNCTIONALITY_NOT_IMPLEMENTED;
1070 }
1071 
1072 NetworkPerformanceInterface::NetworkPerformanceInterface() {
1073   _impl = NULL;
1074 }
1075 
1076 NetworkPerformanceInterface::~NetworkPerformanceInterface() {
1077   if (_impl != NULL) {
1078     delete _impl;
1079   }
1080 }
1081 
1082 bool NetworkPerformanceInterface::initialize() {
1083   _impl = new NetworkPerformanceInterface::NetworkPerformance();
1084   return _impl != NULL && _impl->initialize();
1085 }
1086 
1087 int NetworkPerformanceInterface::network_utilization(NetworkInterface** network_interfaces) const {
1088   return _impl->network_utilization(network_interfaces);
1089 }