1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "os_linux.inline.hpp"
  32 #include "runtime/handles.inline.hpp"
  33 #include "runtime/os.hpp"
  34 #include "runtime/perfMemory.hpp"
  35 #include "services/memTracker.hpp"
  36 #include "utilities/exceptions.hpp"
  37 
  38 // put OS-includes here
  39 # include <sys/types.h>
  40 # include <sys/mman.h>
  41 # include <errno.h>
  42 # include <stdio.h>
  43 # include <unistd.h>
  44 # include <sys/stat.h>
  45 # include <signal.h>
  46 # include <pwd.h>
  47 
  48 static char* backing_store_file_name = NULL;  // name of the backing store
  49                                               // file, if successfully created.
  50 
  51 // Standard Memory Implementation Details
  52 
  53 // create the PerfData memory region in standard memory.
  54 //
  55 static char* create_standard_memory(size_t size) {
  56 
  57   // allocate an aligned chuck of memory
  58   char* mapAddress = os::reserve_memory(size);
  59 
  60   if (mapAddress == NULL) {
  61     return NULL;
  62   }
  63 
  64   // commit memory
  65   if (!os::commit_memory(mapAddress, size, !ExecMem)) {
  66     if (PrintMiscellaneous && Verbose) {
  67       warning("Could not commit PerfData memory\n");
  68     }
  69     os::release_memory(mapAddress, size);
  70     return NULL;
  71   }
  72 
  73   return mapAddress;
  74 }
  75 
  76 // delete the PerfData memory region
  77 //
  78 static void delete_standard_memory(char* addr, size_t size) {
  79 
  80   // there are no persistent external resources to cleanup for standard
  81   // memory. since DestroyJavaVM does not support unloading of the JVM,
  82   // cleanup of the memory resource is not performed. The memory will be
  83   // reclaimed by the OS upon termination of the process.
  84   //
  85   return;
  86 }
  87 
  88 // save the specified memory region to the given file
  89 //
  90 // Note: this function might be called from signal handler (by os::abort()),
  91 // don't allocate heap memory.
  92 //
  93 static void save_memory_to_file(char* addr, size_t size) {
  94 
  95  const char* destfile = PerfMemory::get_perfdata_file_path();
  96  assert(destfile[0] != '\0', "invalid PerfData file path");
  97 
  98   int result;
  99 
 100   RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
 101               result);;
 102   if (result == OS_ERR) {
 103     if (PrintMiscellaneous && Verbose) {
 104       warning("Could not create Perfdata save file: %s: %s\n",
 105               destfile, os::strerror(errno));
 106     }
 107   } else {
 108     int fd = result;
 109 
 110     for (size_t remaining = size; remaining > 0;) {
 111 
 112       RESTARTABLE(::write(fd, addr, remaining), result);
 113       if (result == OS_ERR) {
 114         if (PrintMiscellaneous && Verbose) {
 115           warning("Could not write Perfdata save file: %s: %s\n",
 116                   destfile, os::strerror(errno));
 117         }
 118         break;
 119       }
 120 
 121       remaining -= (size_t)result;
 122       addr += result;
 123     }
 124 
 125     result = ::close(fd);
 126     if (PrintMiscellaneous && Verbose) {
 127       if (result == OS_ERR) {
 128         warning("Could not close %s: %s\n", destfile, os::strerror(errno));
 129       }
 130     }
 131   }
 132   FREE_C_HEAP_ARRAY(char, destfile);
 133 }
 134 
 135 
 136 // Shared Memory Implementation Details
 137 
 138 // Note: the solaris and linux shared memory implementation uses the mmap
 139 // interface with a backing store file to implement named shared memory.
 140 // Using the file system as the name space for shared memory allows a
 141 // common name space to be supported across a variety of platforms. It
 142 // also provides a name space that Java applications can deal with through
 143 // simple file apis.
 144 //
 145 // The solaris and linux implementations store the backing store file in
 146 // a user specific temporary directory located in the /tmp file system,
 147 // which is always a local file system and is sometimes a RAM based file
 148 // system.
 149 
 150 
 151 // return the user specific temporary directory name.
 152 //
 153 // If containerized process, get dirname of
 154 // /proc/{vmid}/root/tmp/{PERFDATA_NAME_user}
 155 // otherwise /tmp/{PERFDATA_NAME_user}
 156 //
 157 // the caller is expected to free the allocated memory.
 158 //
 159 #define TMP_BUFFER_LEN (4+22)
 160 static char* get_user_tmp_dir(const char* user, int vmid, int nspid) {
 161   char buffer[TMP_BUFFER_LEN];
 162   char* tmpdir = (char *)os::get_temp_directory();
 163   assert(strlen(tmpdir) == 4, "No longer using /tmp - update buffer size");
 164 
 165   if (nspid != -1) {
 166     jio_snprintf(buffer, TMP_BUFFER_LEN, "/proc/%d/root%s", vmid, tmpdir);
 167     tmpdir = buffer;
 168   }
 169 
 170   const char* perfdir = PERFDATA_NAME;
 171   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
 172   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 173 
 174   // construct the path name to user specific tmp directory
 175   snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
 176 
 177   return dirname;
 178 }
 179 
 180 // convert the given file name into a process id. if the file
 181 // does not meet the file naming constraints, return 0.
 182 //
 183 static pid_t filename_to_pid(const char* filename) {
 184 
 185   // a filename that doesn't begin with a digit is not a
 186   // candidate for conversion.
 187   //
 188   if (!isdigit(*filename)) {
 189     return 0;
 190   }
 191 
 192   // check if file name can be converted to an integer without
 193   // any leftover characters.
 194   //
 195   char* remainder = NULL;
 196   errno = 0;
 197   pid_t pid = (pid_t)strtol(filename, &remainder, 10);
 198 
 199   if (errno != 0) {
 200     return 0;
 201   }
 202 
 203   // check for left over characters. If any, then the filename is
 204   // not a candidate for conversion.
 205   //
 206   if (remainder != NULL && *remainder != '\0') {
 207     return 0;
 208   }
 209 
 210   // successful conversion, return the pid
 211   return pid;
 212 }
 213 
 214 
 215 // Check if the given statbuf is considered a secure directory for
 216 // the backing store files. Returns true if the directory is considered
 217 // a secure location. Returns false if the statbuf is a symbolic link or
 218 // if an error occurred.
 219 //
 220 static bool is_statbuf_secure(struct stat *statp) {
 221   if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) {
 222     // The path represents a link or some non-directory file type,
 223     // which is not what we expected. Declare it insecure.
 224     //
 225     return false;
 226   }
 227   // We have an existing directory, check if the permissions are safe.
 228   //
 229   if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) {
 230     // The directory is open for writing and could be subjected
 231     // to a symlink or a hard link attack. Declare it insecure.
 232     //
 233     return false;
 234   }
 235   // If user is not root then see if the uid of the directory matches the effective uid of the process.
 236   uid_t euid = geteuid();
 237   if ((euid != 0) && (statp->st_uid != euid)) {
 238     // The directory was not created by this user, declare it insecure.
 239     //
 240     return false;
 241   }
 242   return true;
 243 }
 244 
 245 
 246 // Check if the given path is considered a secure directory for
 247 // the backing store files. Returns true if the directory exists
 248 // and is considered a secure location. Returns false if the path
 249 // is a symbolic link or if an error occurred.
 250 //
 251 static bool is_directory_secure(const char* path) {
 252   struct stat statbuf;
 253   int result = 0;
 254 
 255   RESTARTABLE(::lstat(path, &statbuf), result);
 256   if (result == OS_ERR) {
 257     return false;
 258   }
 259 
 260   // The path exists, see if it is secure.
 261   return is_statbuf_secure(&statbuf);
 262 }
 263 
 264 
 265 // Check if the given directory file descriptor is considered a secure
 266 // directory for the backing store files. Returns true if the directory
 267 // exists and is considered a secure location. Returns false if the path
 268 // is a symbolic link or if an error occurred.
 269 //
 270 static bool is_dirfd_secure(int dir_fd) {
 271   struct stat statbuf;
 272   int result = 0;
 273 
 274   RESTARTABLE(::fstat(dir_fd, &statbuf), result);
 275   if (result == OS_ERR) {
 276     return false;
 277   }
 278 
 279   // The path exists, now check its mode.
 280   return is_statbuf_secure(&statbuf);
 281 }
 282 
 283 
 284 // Check to make sure fd1 and fd2 are referencing the same file system object.
 285 //
 286 static bool is_same_fsobject(int fd1, int fd2) {
 287   struct stat statbuf1;
 288   struct stat statbuf2;
 289   int result = 0;
 290 
 291   RESTARTABLE(::fstat(fd1, &statbuf1), result);
 292   if (result == OS_ERR) {
 293     return false;
 294   }
 295   RESTARTABLE(::fstat(fd2, &statbuf2), result);
 296   if (result == OS_ERR) {
 297     return false;
 298   }
 299 
 300   if ((statbuf1.st_ino == statbuf2.st_ino) &&
 301       (statbuf1.st_dev == statbuf2.st_dev)) {
 302     return true;
 303   } else {
 304     return false;
 305   }
 306 }
 307 
 308 
 309 // Open the directory of the given path and validate it.
 310 // Return a DIR * of the open directory.
 311 //
 312 static DIR *open_directory_secure(const char* dirname) {
 313   // Open the directory using open() so that it can be verified
 314   // to be secure by calling is_dirfd_secure(), opendir() and then check
 315   // to see if they are the same file system object.  This method does not
 316   // introduce a window of opportunity for the directory to be attacked that
 317   // calling opendir() and is_directory_secure() does.
 318   int result;
 319   DIR *dirp = NULL;
 320   RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result);
 321   if (result == OS_ERR) {
 322     if (PrintMiscellaneous && Verbose) {
 323       if (errno == ELOOP) {
 324         warning("directory %s is a symlink and is not secure\n", dirname);
 325       } else {
 326         warning("could not open directory %s: %s\n", dirname, os::strerror(errno));
 327       }
 328     }
 329     return dirp;
 330   }
 331   int fd = result;
 332 
 333   // Determine if the open directory is secure.
 334   if (!is_dirfd_secure(fd)) {
 335     // The directory is not a secure directory.
 336     os::close(fd);
 337     return dirp;
 338   }
 339 
 340   // Open the directory.
 341   dirp = ::opendir(dirname);
 342   if (dirp == NULL) {
 343     // The directory doesn't exist, close fd and return.
 344     os::close(fd);
 345     return dirp;
 346   }
 347 
 348   // Check to make sure fd and dirp are referencing the same file system object.
 349   if (!is_same_fsobject(fd, dirfd(dirp))) {
 350     // The directory is not secure.
 351     os::close(fd);
 352     os::closedir(dirp);
 353     dirp = NULL;
 354     return dirp;
 355   }
 356 
 357   // Close initial open now that we know directory is secure
 358   os::close(fd);
 359 
 360   return dirp;
 361 }
 362 
 363 // NOTE: The code below uses fchdir(), open() and unlink() because
 364 // fdopendir(), openat() and unlinkat() are not supported on all
 365 // versions.  Once the support for fdopendir(), openat() and unlinkat()
 366 // is available on all supported versions the code can be changed
 367 // to use these functions.
 368 
 369 // Open the directory of the given path, validate it and set the
 370 // current working directory to it.
 371 // Return a DIR * of the open directory and the saved cwd fd.
 372 //
 373 static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) {
 374 
 375   // Open the directory.
 376   DIR* dirp = open_directory_secure(dirname);
 377   if (dirp == NULL) {
 378     // Directory doesn't exist or is insecure, so there is nothing to cleanup.
 379     return dirp;
 380   }
 381   int fd = dirfd(dirp);
 382 
 383   // Open a fd to the cwd and save it off.
 384   int result;
 385   RESTARTABLE(::open(".", O_RDONLY), result);
 386   if (result == OS_ERR) {
 387     *saved_cwd_fd = -1;
 388   } else {
 389     *saved_cwd_fd = result;
 390   }
 391 
 392   // Set the current directory to dirname by using the fd of the directory and
 393   // handle errors, otherwise shared memory files will be created in cwd.
 394   result = fchdir(fd);
 395   if (result == OS_ERR) {
 396     if (PrintMiscellaneous && Verbose) {
 397       warning("could not change to directory %s", dirname);
 398     }
 399     if (*saved_cwd_fd != -1) {
 400       ::close(*saved_cwd_fd);
 401       *saved_cwd_fd = -1;
 402     }
 403     // Close the directory.
 404     os::closedir(dirp);
 405     return NULL;
 406   } else {
 407     return dirp;
 408   }
 409 }
 410 
 411 // Close the directory and restore the current working directory.
 412 //
 413 static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) {
 414 
 415   int result;
 416   // If we have a saved cwd change back to it and close the fd.
 417   if (saved_cwd_fd != -1) {
 418     result = fchdir(saved_cwd_fd);
 419     ::close(saved_cwd_fd);
 420   }
 421 
 422   // Close the directory.
 423   os::closedir(dirp);
 424 }
 425 
 426 // Check if the given file descriptor is considered a secure.
 427 //
 428 static bool is_file_secure(int fd, const char *filename) {
 429 
 430   int result;
 431   struct stat statbuf;
 432 
 433   // Determine if the file is secure.
 434   RESTARTABLE(::fstat(fd, &statbuf), result);
 435   if (result == OS_ERR) {
 436     if (PrintMiscellaneous && Verbose) {
 437       warning("fstat failed on %s: %s\n", filename, os::strerror(errno));
 438     }
 439     return false;
 440   }
 441   if (statbuf.st_nlink > 1) {
 442     // A file with multiple links is not expected.
 443     if (PrintMiscellaneous && Verbose) {
 444       warning("file %s has multiple links\n", filename);
 445     }
 446     return false;
 447   }
 448   return true;
 449 }
 450 
 451 
 452 // return the user name for the given user id
 453 //
 454 // the caller is expected to free the allocated memory.
 455 //
 456 static char* get_user_name(uid_t uid) {
 457 
 458   struct passwd pwent;
 459 
 460   // determine the max pwbuf size from sysconf, and hardcode
 461   // a default if this not available through sysconf.
 462   //
 463   long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 464   if (bufsize == -1)
 465     bufsize = 1024;
 466 
 467   char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 468 
 469   // POSIX interface to getpwuid_r is used on LINUX
 470   struct passwd* p;
 471   int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
 472 
 473   if (result != 0 || p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
 474     if (PrintMiscellaneous && Verbose) {
 475       if (result != 0) {
 476         warning("Could not retrieve passwd entry: %s\n",
 477                 os::strerror(result));
 478       }
 479       else if (p == NULL) {
 480         // this check is added to protect against an observed problem
 481         // with getpwuid_r() on RedHat 9 where getpwuid_r returns 0,
 482         // indicating success, but has p == NULL. This was observed when
 483         // inserting a file descriptor exhaustion fault prior to the call
 484         // getpwuid_r() call. In this case, error is set to the appropriate
 485         // error condition, but this is undocumented behavior. This check
 486         // is safe under any condition, but the use of errno in the output
 487         // message may result in an erroneous message.
 488         // Bug Id 89052 was opened with RedHat.
 489         //
 490         warning("Could not retrieve passwd entry: %s\n",
 491                 os::strerror(errno));
 492       }
 493       else {
 494         warning("Could not determine user name: %s\n",
 495                 p->pw_name == NULL ? "pw_name = NULL" :
 496                                      "pw_name zero length");
 497       }
 498     }
 499     FREE_C_HEAP_ARRAY(char, pwbuf);
 500     return NULL;
 501   }
 502 
 503   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
 504   strcpy(user_name, p->pw_name);
 505 
 506   FREE_C_HEAP_ARRAY(char, pwbuf);
 507   return user_name;
 508 }
 509 
 510 // return the name of the user that owns the process identified by vmid.
 511 //
 512 // This method uses a slow directory search algorithm to find the backing
 513 // store file for the specified vmid and returns the user name, as determined
 514 // by the user name suffix of the hsperfdata_<username> directory name.
 515 //
 516 // the caller is expected to free the allocated memory.
 517 //
 518 // If nspid != -1, look in /proc/{vmid}/root/tmp for directories
 519 // containing nspid, otherwise just look for vmid in /tmp
 520 //
 521 static char* get_user_name_slow(int vmid, int nspid, TRAPS) {
 522 
 523   // short circuit the directory search if the process doesn't even exist.
 524   if (kill(vmid, 0) == OS_ERR) {
 525     if (errno == ESRCH) {
 526       THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
 527                   "Process not found");
 528     }
 529     else /* EPERM */ {
 530       THROW_MSG_0(vmSymbols::java_io_IOException(), os::strerror(errno));
 531     }
 532   }
 533 
 534   // directory search
 535   char* oldest_user = NULL;
 536   time_t oldest_ctime = 0;
 537   char buffer[TMP_BUFFER_LEN];
 538   int searchpid;
 539   char* tmpdirname = (char *)os::get_temp_directory();
 540   assert(strlen(tmpdirname) == 4, "No longer using /tmp - update buffer size");
 541 
 542   if (nspid == -1) {
 543     searchpid = vmid;
 544   }
 545   else {
 546     jio_snprintf(buffer, MAXPATHLEN, "/proc/%d/root%s", vmid, tmpdirname);
 547     tmpdirname = buffer;
 548     searchpid = nspid;
 549   }
 550 
 551   // open the temp directory
 552   DIR* tmpdirp = os::opendir(tmpdirname);
 553 
 554   if (tmpdirp == NULL) {
 555     // Cannot open the directory to get the user name, return.
 556     return NULL;
 557   }
 558 
 559   // for each entry in the directory that matches the pattern hsperfdata_*,
 560   // open the directory and check if the file for the given vmid or nspid exists.
 561   // The file with the expected name and the latest creation date is used
 562   // to determine the user name for the process id.
 563   //
 564   struct dirent* dentry;
 565   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
 566   errno = 0;
 567   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
 568 
 569     // check if the directory entry is a hsperfdata file
 570     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
 571       continue;
 572     }
 573 
 574     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
 575                      strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
 576     strcpy(usrdir_name, tmpdirname);
 577     strcat(usrdir_name, "/");
 578     strcat(usrdir_name, dentry->d_name);
 579 
 580     // open the user directory
 581     DIR* subdirp = open_directory_secure(usrdir_name);
 582 
 583     if (subdirp == NULL) {
 584       FREE_C_HEAP_ARRAY(char, usrdir_name);
 585       continue;
 586     }
 587 
 588     // Since we don't create the backing store files in directories
 589     // pointed to by symbolic links, we also don't follow them when
 590     // looking for the files. We check for a symbolic link after the
 591     // call to opendir in order to eliminate a small window where the
 592     // symlink can be exploited.
 593     //
 594     if (!is_directory_secure(usrdir_name)) {
 595       FREE_C_HEAP_ARRAY(char, usrdir_name);
 596       os::closedir(subdirp);
 597       continue;
 598     }
 599 
 600     struct dirent* udentry;
 601     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
 602     errno = 0;
 603     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
 604 
 605       if (filename_to_pid(udentry->d_name) == searchpid) {
 606         struct stat statbuf;
 607         int result;
 608 
 609         char* filename = NEW_C_HEAP_ARRAY(char,
 610                    strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
 611 
 612         strcpy(filename, usrdir_name);
 613         strcat(filename, "/");
 614         strcat(filename, udentry->d_name);
 615 
 616         // don't follow symbolic links for the file
 617         RESTARTABLE(::lstat(filename, &statbuf), result);
 618         if (result == OS_ERR) {
 619            FREE_C_HEAP_ARRAY(char, filename);
 620            continue;
 621         }
 622 
 623         // skip over files that are not regular files.
 624         if (!S_ISREG(statbuf.st_mode)) {
 625           FREE_C_HEAP_ARRAY(char, filename);
 626           continue;
 627         }
 628 
 629         // compare and save filename with latest creation time
 630         if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
 631 
 632           if (statbuf.st_ctime > oldest_ctime) {
 633             char* user = strchr(dentry->d_name, '_') + 1;
 634 
 635             if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user);
 636             oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
 637 
 638             strcpy(oldest_user, user);
 639             oldest_ctime = statbuf.st_ctime;
 640           }
 641         }
 642 
 643         FREE_C_HEAP_ARRAY(char, filename);
 644       }
 645     }
 646     os::closedir(subdirp);
 647     FREE_C_HEAP_ARRAY(char, udbuf);
 648     FREE_C_HEAP_ARRAY(char, usrdir_name);
 649   }
 650   os::closedir(tmpdirp);
 651   FREE_C_HEAP_ARRAY(char, tdbuf);
 652 
 653   return(oldest_user);
 654 }
 655 
 656 // Determine if the vmid is the parent pid
 657 // for a child in a PID namespace.
 658 // return the namespace pid if so, otherwise -1
 659 static int get_namespace_pid(int vmid) {
 660   char fname[24];
 661   int retpid = -1;
 662 
 663   snprintf(fname, sizeof(fname), "/proc/%d/status", vmid);
 664   FILE *fp = fopen(fname, "r");
 665 
 666   if (fp) {
 667     int pid, nspid;
 668     int ret;
 669     while (!feof(fp)) {
 670       ret = fscanf(fp, "NSpid: %d %d", &pid, &nspid);
 671       if (ret == 1) {
 672         break;
 673       }
 674       if (ret == 2) {
 675         retpid = nspid;
 676         break;
 677       }
 678       for (;;) {
 679         int ch = fgetc(fp);
 680         if (ch == EOF || ch == (int)'\n') break;
 681       }
 682     }
 683     fclose(fp);
 684   }
 685   return retpid;
 686 }
 687 
 688 // return the name of the user that owns the JVM indicated by the given vmid.
 689 //
 690 static char* get_user_name(int vmid, int *nspid, TRAPS) {
 691   char *result = get_user_name_slow(vmid, *nspid, THREAD);
 692 
 693   // If we are examining a container process without PID namespaces enabled
 694   // we need to use /proc/{pid}/root/tmp to find hsperfdata files.
 695   if (result == NULL) {
 696     result = get_user_name_slow(vmid, vmid, THREAD);
 697     // Enable nspid logic going forward
 698     if (result != NULL) *nspid = vmid;
 699   }
 700   return result;
 701 }
 702 
 703 // return the file name of the backing store file for the named
 704 // shared memory region for the given user name and vmid.
 705 //
 706 // the caller is expected to free the allocated memory.
 707 //
 708 static char* get_sharedmem_filename(const char* dirname, int vmid, int nspid) {
 709 
 710   int pid = (nspid == -1) ? vmid : nspid;
 711 
 712   // add 2 for the file separator and a null terminator.
 713   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
 714 
 715   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 716   snprintf(name, nbytes, "%s/%d", dirname, pid);
 717 
 718   return name;
 719 }
 720 
 721 
 722 // remove file
 723 //
 724 // this method removes the file specified by the given path
 725 //
 726 static void remove_file(const char* path) {
 727 
 728   int result;
 729 
 730   // if the file is a directory, the following unlink will fail. since
 731   // we don't expect to find directories in the user temp directory, we
 732   // won't try to handle this situation. even if accidentially or
 733   // maliciously planted, the directory's presence won't hurt anything.
 734   //
 735   RESTARTABLE(::unlink(path), result);
 736   if (PrintMiscellaneous && Verbose && result == OS_ERR) {
 737     if (errno != ENOENT) {
 738       warning("Could not unlink shared memory backing"
 739               " store file %s : %s\n", path, os::strerror(errno));
 740     }
 741   }
 742 }
 743 
 744 
 745 // cleanup stale shared memory resources
 746 //
 747 // This method attempts to remove all stale shared memory files in
 748 // the named user temporary directory. It scans the named directory
 749 // for files matching the pattern ^$[0-9]*$. For each file found, the
 750 // process id is extracted from the file name and a test is run to
 751 // determine if the process is alive. If the process is not alive,
 752 // any stale file resources are removed.
 753 //
 754 static void cleanup_sharedmem_resources(const char* dirname) {
 755 
 756   int saved_cwd_fd;
 757   // open the directory
 758   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
 759   if (dirp == NULL) {
 760     // directory doesn't exist or is insecure, so there is nothing to cleanup
 761     return;
 762   }
 763 
 764   // for each entry in the directory that matches the expected file
 765   // name pattern, determine if the file resources are stale and if
 766   // so, remove the file resources. Note, instrumented HotSpot processes
 767   // for this user may start and/or terminate during this search and
 768   // remove or create new files in this directory. The behavior of this
 769   // loop under these conditions is dependent upon the implementation of
 770   // opendir/readdir.
 771   //
 772   struct dirent* entry;
 773   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
 774 
 775   errno = 0;
 776   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
 777 
 778     pid_t pid = filename_to_pid(entry->d_name);
 779 
 780     if (pid == 0) {
 781 
 782       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
 783         // attempt to remove all unexpected files, except "." and ".."
 784         unlink(entry->d_name);
 785       }
 786 
 787       errno = 0;
 788       continue;
 789     }
 790 
 791     // we now have a file name that converts to a valid integer
 792     // that could represent a process id . if this process id
 793     // matches the current process id or the process is not running,
 794     // then remove the stale file resources.
 795     //
 796     // process liveness is detected by sending signal number 0 to
 797     // the process id (see kill(2)). if kill determines that the
 798     // process does not exist, then the file resources are removed.
 799     // if kill determines that that we don't have permission to
 800     // signal the process, then the file resources are assumed to
 801     // be stale and are removed because the resources for such a
 802     // process should be in a different user specific directory.
 803     //
 804     if ((pid == os::current_process_id()) ||
 805         (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
 806         unlink(entry->d_name);
 807     }
 808     errno = 0;
 809   }
 810 
 811   // close the directory and reset the current working directory
 812   close_directory_secure_cwd(dirp, saved_cwd_fd);
 813 
 814   FREE_C_HEAP_ARRAY(char, dbuf);
 815 }
 816 
 817 // make the user specific temporary directory. Returns true if
 818 // the directory exists and is secure upon return. Returns false
 819 // if the directory exists but is either a symlink, is otherwise
 820 // insecure, or if an error occurred.
 821 //
 822 static bool make_user_tmp_dir(const char* dirname) {
 823 
 824   // create the directory with 0755 permissions. note that the directory
 825   // will be owned by euid::egid, which may not be the same as uid::gid.
 826   //
 827   if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
 828     if (errno == EEXIST) {
 829       // The directory already exists and was probably created by another
 830       // JVM instance. However, this could also be the result of a
 831       // deliberate symlink. Verify that the existing directory is safe.
 832       //
 833       if (!is_directory_secure(dirname)) {
 834         // directory is not secure
 835         if (PrintMiscellaneous && Verbose) {
 836           warning("%s directory is insecure\n", dirname);
 837         }
 838         return false;
 839       }
 840     }
 841     else {
 842       // we encountered some other failure while attempting
 843       // to create the directory
 844       //
 845       if (PrintMiscellaneous && Verbose) {
 846         warning("could not create directory %s: %s\n",
 847                 dirname, os::strerror(errno));
 848       }
 849       return false;
 850     }
 851   }
 852   return true;
 853 }
 854 
 855 // create the shared memory file resources
 856 //
 857 // This method creates the shared memory file with the given size
 858 // This method also creates the user specific temporary directory, if
 859 // it does not yet exist.
 860 //
 861 static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
 862 
 863   // make the user temporary directory
 864   if (!make_user_tmp_dir(dirname)) {
 865     // could not make/find the directory or the found directory
 866     // was not secure
 867     return -1;
 868   }
 869 
 870   int saved_cwd_fd;
 871   // open the directory and set the current working directory to it
 872   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
 873   if (dirp == NULL) {
 874     // Directory doesn't exist or is insecure, so cannot create shared
 875     // memory file.
 876     return -1;
 877   }
 878 
 879   // Open the filename in the current directory.
 880   // Cannot use O_TRUNC here; truncation of an existing file has to happen
 881   // after the is_file_secure() check below.
 882   int result;
 883   RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IREAD|S_IWRITE), result);
 884   if (result == OS_ERR) {
 885     if (PrintMiscellaneous && Verbose) {
 886       if (errno == ELOOP) {
 887         warning("file %s is a symlink and is not secure\n", filename);
 888       } else {
 889         warning("could not create file %s: %s\n", filename, os::strerror(errno));
 890       }
 891     }
 892     // close the directory and reset the current working directory
 893     close_directory_secure_cwd(dirp, saved_cwd_fd);
 894 
 895     return -1;
 896   }
 897   // close the directory and reset the current working directory
 898   close_directory_secure_cwd(dirp, saved_cwd_fd);
 899 
 900   // save the file descriptor
 901   int fd = result;
 902 
 903   // check to see if the file is secure
 904   if (!is_file_secure(fd, filename)) {
 905     ::close(fd);
 906     return -1;
 907   }
 908 
 909   // truncate the file to get rid of any existing data
 910   RESTARTABLE(::ftruncate(fd, (off_t)0), result);
 911   if (result == OS_ERR) {
 912     if (PrintMiscellaneous && Verbose) {
 913       warning("could not truncate shared memory file: %s\n", os::strerror(errno));
 914     }
 915     ::close(fd);
 916     return -1;
 917   }
 918   // set the file size
 919   RESTARTABLE(::ftruncate(fd, (off_t)size), result);
 920   if (result == OS_ERR) {
 921     if (PrintMiscellaneous && Verbose) {
 922       warning("could not set shared memory file size: %s\n", os::strerror(errno));
 923     }
 924     ::close(fd);
 925     return -1;
 926   }
 927 
 928   // Verify that we have enough disk space for this file.
 929   // We'll get random SIGBUS crashes on memory accesses if
 930   // we don't.
 931 
 932   for (size_t seekpos = 0; seekpos < size; seekpos += os::vm_page_size()) {
 933     int zero_int = 0;
 934     result = (int)os::seek_to_file_offset(fd, (jlong)(seekpos));
 935     if (result == -1 ) break;
 936     RESTARTABLE(::write(fd, &zero_int, 1), result);
 937     if (result != 1) {
 938       if (errno == ENOSPC) {
 939         warning("Insufficient space for shared memory file:\n   %s\nTry using the -Djava.io.tmpdir= option to select an alternate temp location.\n", filename);
 940       }
 941       break;
 942     }
 943   }
 944 
 945   if (result != -1) {
 946     return fd;
 947   } else {
 948     ::close(fd);
 949     return -1;
 950   }
 951 }
 952 
 953 // open the shared memory file for the given user and vmid. returns
 954 // the file descriptor for the open file or -1 if the file could not
 955 // be opened.
 956 //
 957 static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
 958 
 959   // open the file
 960   int result;
 961   RESTARTABLE(::open(filename, oflags), result);
 962   if (result == OS_ERR) {
 963     if (errno == ENOENT) {
 964       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
 965                  "Process not found", OS_ERR);
 966     }
 967     else if (errno == EACCES) {
 968       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
 969                  "Permission denied", OS_ERR);
 970     }
 971     else {
 972       THROW_MSG_(vmSymbols::java_io_IOException(),
 973                  os::strerror(errno), OS_ERR);
 974     }
 975   }
 976   int fd = result;
 977 
 978   // check to see if the file is secure
 979   if (!is_file_secure(fd, filename)) {
 980     ::close(fd);
 981     return -1;
 982   }
 983 
 984   return fd;
 985 }
 986 
 987 // create a named shared memory region. returns the address of the
 988 // memory region on success or NULL on failure. A return value of
 989 // NULL will ultimately disable the shared memory feature.
 990 //
 991 // On Linux, the name space for shared memory objects
 992 // is the file system name space.
 993 //
 994 // A monitoring application attaching to a JVM does not need to know
 995 // the file system name of the shared memory object. However, it may
 996 // be convenient for applications to discover the existence of newly
 997 // created and terminating JVMs by watching the file system name space
 998 // for files being created or removed.
 999 //
1000 static char* mmap_create_shared(size_t size) {
1001 
1002   int result;
1003   int fd;
1004   char* mapAddress;
1005 
1006   int vmid = os::current_process_id();
1007 
1008   char* user_name = get_user_name(geteuid());
1009 
1010   if (user_name == NULL)
1011     return NULL;
1012 
1013   char* dirname = get_user_tmp_dir(user_name, vmid, -1);
1014   char* filename = get_sharedmem_filename(dirname, vmid, -1);
1015 
1016   // get the short filename
1017   char* short_filename = strrchr(filename, '/');
1018   if (short_filename == NULL) {
1019     short_filename = filename;
1020   } else {
1021     short_filename++;
1022   }
1023 
1024   // cleanup any stale shared memory files
1025   cleanup_sharedmem_resources(dirname);
1026 
1027   assert(((size > 0) && (size % os::vm_page_size() == 0)),
1028          "unexpected PerfMemory region size");
1029 
1030   fd = create_sharedmem_resources(dirname, short_filename, size);
1031 
1032   FREE_C_HEAP_ARRAY(char, user_name);
1033   FREE_C_HEAP_ARRAY(char, dirname);
1034 
1035   if (fd == -1) {
1036     FREE_C_HEAP_ARRAY(char, filename);
1037     return NULL;
1038   }
1039 
1040   mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
1041 
1042   result = ::close(fd);
1043   assert(result != OS_ERR, "could not close file");
1044 
1045   if (mapAddress == MAP_FAILED) {
1046     if (PrintMiscellaneous && Verbose) {
1047       warning("mmap failed -  %s\n", os::strerror(errno));
1048     }
1049     remove_file(filename);
1050     FREE_C_HEAP_ARRAY(char, filename);
1051     return NULL;
1052   }
1053 
1054   // save the file name for use in delete_shared_memory()
1055   backing_store_file_name = filename;
1056 
1057   // clear the shared memory region
1058   (void)::memset((void*) mapAddress, 0, size);
1059 
1060   // it does not go through os api, the operation has to record from here
1061   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal);
1062 
1063   return mapAddress;
1064 }
1065 
1066 // release a named shared memory region
1067 //
1068 static void unmap_shared(char* addr, size_t bytes) {
1069   os::release_memory(addr, bytes);
1070 }
1071 
1072 // create the PerfData memory region in shared memory.
1073 //
1074 static char* create_shared_memory(size_t size) {
1075 
1076   // create the shared memory region.
1077   return mmap_create_shared(size);
1078 }
1079 
1080 // delete the shared PerfData memory region
1081 //
1082 static void delete_shared_memory(char* addr, size_t size) {
1083 
1084   // cleanup the persistent shared memory resources. since DestroyJavaVM does
1085   // not support unloading of the JVM, unmapping of the memory resource is
1086   // not performed. The memory will be reclaimed by the OS upon termination of
1087   // the process. The backing store file is deleted from the file system.
1088 
1089   assert(!PerfDisableSharedMem, "shouldn't be here");
1090 
1091   if (backing_store_file_name != NULL) {
1092     remove_file(backing_store_file_name);
1093     // Don't.. Free heap memory could deadlock os::abort() if it is called
1094     // from signal handler. OS will reclaim the heap memory.
1095     // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
1096     backing_store_file_name = NULL;
1097   }
1098 }
1099 
1100 // return the size of the file for the given file descriptor
1101 // or 0 if it is not a valid size for a shared memory file
1102 //
1103 static size_t sharedmem_filesize(int fd, TRAPS) {
1104 
1105   struct stat statbuf;
1106   int result;
1107 
1108   RESTARTABLE(::fstat(fd, &statbuf), result);
1109   if (result == OS_ERR) {
1110     if (PrintMiscellaneous && Verbose) {
1111       warning("fstat failed: %s\n", os::strerror(errno));
1112     }
1113     THROW_MSG_0(vmSymbols::java_io_IOException(),
1114                 "Could not determine PerfMemory size");
1115   }
1116 
1117   if ((statbuf.st_size == 0) ||
1118      ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
1119     THROW_MSG_0(vmSymbols::java_lang_Exception(),
1120                 "Invalid PerfMemory size");
1121   }
1122 
1123   return (size_t)statbuf.st_size;
1124 }
1125 
1126 // attach to a named shared memory region.
1127 //
1128 static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
1129 
1130   char* mapAddress;
1131   int result;
1132   int fd;
1133   size_t size = 0;
1134   const char* luser = NULL;
1135 
1136   int mmap_prot;
1137   int file_flags;
1138 
1139   ResourceMark rm;
1140 
1141   // map the high level access mode to the appropriate permission
1142   // constructs for the file and the shared memory mapping.
1143   if (mode == PerfMemory::PERF_MODE_RO) {
1144     mmap_prot = PROT_READ;
1145     file_flags = O_RDONLY | O_NOFOLLOW;
1146   }
1147   else if (mode == PerfMemory::PERF_MODE_RW) {
1148 #ifdef LATER
1149     mmap_prot = PROT_READ | PROT_WRITE;
1150     file_flags = O_RDWR | O_NOFOLLOW;
1151 #else
1152     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1153               "Unsupported access mode");
1154 #endif
1155   }
1156   else {
1157     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1158               "Illegal access mode");
1159   }
1160 
1161   // determine if vmid is for a containerized process
1162   int nspid = get_namespace_pid(vmid);
1163 
1164   if (user == NULL || strlen(user) == 0) {
1165     luser = get_user_name(vmid, &nspid, CHECK);
1166   }
1167   else {
1168     luser = user;
1169   }
1170 
1171   if (luser == NULL) {
1172     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1173               "Could not map vmid to user Name");
1174   }
1175 
1176   char* dirname = get_user_tmp_dir(luser, vmid, nspid);
1177 
1178   // since we don't follow symbolic links when creating the backing
1179   // store file, we don't follow them when attaching either.
1180   //
1181   if (!is_directory_secure(dirname)) {
1182     FREE_C_HEAP_ARRAY(char, dirname);
1183     if (luser != user) {
1184       FREE_C_HEAP_ARRAY(char, luser);
1185     }
1186     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1187               "Process not found");
1188   }
1189 
1190   char* filename = get_sharedmem_filename(dirname, vmid, nspid);
1191 
1192   // copy heap memory to resource memory. the open_sharedmem_file
1193   // method below need to use the filename, but could throw an
1194   // exception. using a resource array prevents the leak that
1195   // would otherwise occur.
1196   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1197   strcpy(rfilename, filename);
1198 
1199   // free the c heap resources that are no longer needed
1200   if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
1201   FREE_C_HEAP_ARRAY(char, dirname);
1202   FREE_C_HEAP_ARRAY(char, filename);
1203 
1204   // open the shared memory file for the give vmid
1205   fd = open_sharedmem_file(rfilename, file_flags, THREAD);
1206 
1207   if (fd == OS_ERR) {
1208     return;
1209   }
1210 
1211   if (HAS_PENDING_EXCEPTION) {
1212     ::close(fd);
1213     return;
1214   }
1215 
1216   if (*sizep == 0) {
1217     size = sharedmem_filesize(fd, CHECK);
1218   } else {
1219     size = *sizep;
1220   }
1221 
1222   assert(size > 0, "unexpected size <= 0");
1223 
1224   mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
1225 
1226   result = ::close(fd);
1227   assert(result != OS_ERR, "could not close file");
1228 
1229   if (mapAddress == MAP_FAILED) {
1230     if (PrintMiscellaneous && Verbose) {
1231       warning("mmap failed: %s\n", os::strerror(errno));
1232     }
1233     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1234               "Could not map PerfMemory");
1235   }
1236 
1237   // it does not go through os api, the operation has to record from here
1238   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal);
1239 
1240   *addr = mapAddress;
1241   *sizep = size;
1242 
1243   log_debug(perf, memops)("mapped " SIZE_FORMAT " bytes for vmid %d at "
1244                           INTPTR_FORMAT, size, vmid, p2i((void*)mapAddress));
1245 }
1246 
1247 // create the PerfData memory region
1248 //
1249 // This method creates the memory region used to store performance
1250 // data for the JVM. The memory may be created in standard or
1251 // shared memory.
1252 //
1253 void PerfMemory::create_memory_region(size_t size) {
1254 
1255   if (PerfDisableSharedMem) {
1256     // do not share the memory for the performance data.
1257     _start = create_standard_memory(size);
1258   }
1259   else {
1260     _start = create_shared_memory(size);
1261     if (_start == NULL) {
1262 
1263       // creation of the shared memory region failed, attempt
1264       // to create a contiguous, non-shared memory region instead.
1265       //
1266       if (PrintMiscellaneous && Verbose) {
1267         warning("Reverting to non-shared PerfMemory region.\n");
1268       }
1269       PerfDisableSharedMem = true;
1270       _start = create_standard_memory(size);
1271     }
1272   }
1273 
1274   if (_start != NULL) _capacity = size;
1275 
1276 }
1277 
1278 // delete the PerfData memory region
1279 //
1280 // This method deletes the memory region used to store performance
1281 // data for the JVM. The memory region indicated by the <address, size>
1282 // tuple will be inaccessible after a call to this method.
1283 //
1284 void PerfMemory::delete_memory_region() {
1285 
1286   assert((start() != NULL && capacity() > 0), "verify proper state");
1287 
1288   // If user specifies PerfDataSaveFile, it will save the performance data
1289   // to the specified file name no matter whether PerfDataSaveToFile is specified
1290   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1291   // -XX:+PerfDataSaveToFile.
1292   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1293     save_memory_to_file(start(), capacity());
1294   }
1295 
1296   if (PerfDisableSharedMem) {
1297     delete_standard_memory(start(), capacity());
1298   }
1299   else {
1300     delete_shared_memory(start(), capacity());
1301   }
1302 }
1303 
1304 // attach to the PerfData memory region for another JVM
1305 //
1306 // This method returns an <address, size> tuple that points to
1307 // a memory buffer that is kept reasonably synchronized with
1308 // the PerfData memory region for the indicated JVM. This
1309 // buffer may be kept in synchronization via shared memory
1310 // or some other mechanism that keeps the buffer updated.
1311 //
1312 // If the JVM chooses not to support the attachability feature,
1313 // this method should throw an UnsupportedOperation exception.
1314 //
1315 // This implementation utilizes named shared memory to map
1316 // the indicated process's PerfData memory region into this JVMs
1317 // address space.
1318 //
1319 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
1320 
1321   if (vmid == 0 || vmid == os::current_process_id()) {
1322      *addrp = start();
1323      *sizep = capacity();
1324      return;
1325   }
1326 
1327   mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
1328 }
1329 
1330 // detach from the PerfData memory region of another JVM
1331 //
1332 // This method detaches the PerfData memory region of another
1333 // JVM, specified as an <address, size> tuple of a buffer
1334 // in this process's address space. This method may perform
1335 // arbitrary actions to accomplish the detachment. The memory
1336 // region specified by <address, size> will be inaccessible after
1337 // a call to this method.
1338 //
1339 // If the JVM chooses not to support the attachability feature,
1340 // this method should throw an UnsupportedOperation exception.
1341 //
1342 // This implementation utilizes named shared memory to detach
1343 // the indicated process's PerfData memory region from this
1344 // process's address space.
1345 //
1346 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1347 
1348   assert(addr != 0, "address sanity check");
1349   assert(bytes > 0, "capacity sanity check");
1350 
1351   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1352     // prevent accidental detachment of this process's PerfMemory region
1353     return;
1354   }
1355 
1356   unmap_shared(addr, bytes);
1357 }