1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  26 #define SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  27 
  28 #include "gc/shared/referenceDiscoverer.hpp"
  29 #include "gc/shared/referencePolicy.hpp"
  30 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  31 #include "gc/shared/referenceProcessorStats.hpp"
  32 #include "memory/referenceType.hpp"
  33 #include "oops/instanceRefKlass.hpp"
  34 
  35 class GCTimer;
  36 
  37 // ReferenceProcessor class encapsulates the per-"collector" processing
  38 // of java.lang.Reference objects for GC. The interface is useful for supporting
  39 // a generational abstraction, in particular when there are multiple
  40 // generations that are being independently collected -- possibly
  41 // concurrently and/or incrementally.
  42 // ReferenceProcessor class abstracts away from a generational setting
  43 // by using a closure that determines whether a given reference or referent are
  44 // subject to this ReferenceProcessor's discovery, thus allowing its use in a
  45 // straightforward manner in a general, non-generational, non-contiguous generation
  46 // (or heap) setting.
  47 //
  48 
  49 // forward references
  50 class ReferencePolicy;
  51 class AbstractRefProcTaskExecutor;
  52 
  53 // List of discovered references.
  54 class DiscoveredList {
  55 public:
  56   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  57   inline oop head() const;
  58   HeapWord* adr_head() {
  59     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  60                                (HeapWord*)&_oop_head;
  61   }
  62   inline void set_head(oop o);
  63   inline bool is_empty() const;
  64   size_t length()               { return _len; }
  65   void   set_length(size_t len) { _len = len;  }
  66   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  67   void   dec_length(size_t dec) { _len -= dec; }
  68 private:
  69   // Set value depending on UseCompressedOops. This could be a template class
  70   // but then we have to fix all the instantiations and declarations that use this class.
  71   oop       _oop_head;
  72   narrowOop _compressed_head;
  73   size_t _len;
  74 };
  75 
  76 // Iterator for the list of discovered references.
  77 class DiscoveredListIterator {
  78 private:
  79   DiscoveredList&    _refs_list;
  80   HeapWord*          _prev_discovered_addr;
  81   oop                _prev_discovered;
  82   oop                _current_discovered;
  83   HeapWord*          _current_discovered_addr;
  84   oop                _next_discovered;
  85 
  86   HeapWord*          _referent_addr;
  87   oop                _referent;
  88 
  89   OopClosure*        _keep_alive;
  90   BoolObjectClosure* _is_alive;
  91 
  92   DEBUG_ONLY(
  93   oop                _first_seen; // cyclic linked list check
  94   )
  95 
  96   NOT_PRODUCT(
  97   size_t             _processed;
  98   size_t             _removed;
  99   )
 100 
 101 public:
 102   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 103                                 OopClosure*        keep_alive,
 104                                 BoolObjectClosure* is_alive);
 105 
 106   // End Of List.
 107   inline bool has_next() const { return _current_discovered != NULL; }
 108 
 109   // Get oop to the Reference object.
 110   inline oop obj() const { return _current_discovered; }
 111 
 112   // Get oop to the referent object.
 113   inline oop referent() const { return _referent; }
 114 
 115   // Returns true if referent is alive.
 116   inline bool is_referent_alive() const {
 117     return _is_alive->do_object_b(_referent);
 118   }
 119 
 120   // Loads data for the current reference.
 121   // The "allow_null_referent" argument tells us to allow for the possibility
 122   // of a NULL referent in the discovered Reference object. This typically
 123   // happens in the case of concurrent collectors that may have done the
 124   // discovery concurrently, or interleaved, with mutator execution.
 125   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 126 
 127   // Move to the next discovered reference.
 128   inline void next() {
 129     _prev_discovered_addr = _current_discovered_addr;
 130     _prev_discovered = _current_discovered;
 131     move_to_next();
 132   }
 133 
 134   // Remove the current reference from the list
 135   void remove();
 136 
 137   // Make the referent alive.
 138   inline void make_referent_alive() {
 139     if (UseCompressedOops) {
 140       _keep_alive->do_oop((narrowOop*)_referent_addr);
 141     } else {
 142       _keep_alive->do_oop((oop*)_referent_addr);
 143     }
 144   }
 145 
 146   // Do enqueuing work, i.e. notifying the GC about the changed discovered pointers.
 147   void enqueue();
 148 
 149   // Move enqueued references to the reference pending list.
 150   void complete_enqueue();
 151 
 152   // NULL out referent pointer.
 153   void clear_referent();
 154 
 155   // Statistics
 156   NOT_PRODUCT(
 157   inline size_t processed() const { return _processed; }
 158   inline size_t removed() const   { return _removed; }
 159   )
 160 
 161   inline void move_to_next() {
 162     if (_current_discovered == _next_discovered) {
 163       // End of the list.
 164       _current_discovered = NULL;
 165     } else {
 166       _current_discovered = _next_discovered;
 167     }
 168     assert(_current_discovered != _first_seen, "cyclic ref_list found");
 169     NOT_PRODUCT(_processed++);
 170   }
 171 };
 172 
 173 class ReferenceProcessor : public ReferenceDiscoverer {
 174   size_t total_count(DiscoveredList lists[]) const;
 175 
 176   // The SoftReference master timestamp clock
 177   static jlong _soft_ref_timestamp_clock;
 178 
 179   BoolObjectClosure* _is_subject_to_discovery; // determines whether a given oop is subject
 180                                                // to this ReferenceProcessor's discovery
 181                                                // (and further processing).
 182 
 183   bool        _discovering_refs;        // true when discovery enabled
 184   bool        _discovery_is_atomic;     // if discovery is atomic wrt
 185                                         // other collectors in configuration
 186   bool        _discovery_is_mt;         // true if reference discovery is MT.
 187 
 188   bool        _enqueuing_is_done;       // true if all weak references enqueued
 189   bool        _processing_is_mt;        // true during phases when
 190                                         // reference processing is MT.
 191   uint        _next_id;                 // round-robin mod _num_queues counter in
 192                                         // support of work distribution
 193 
 194   // For collectors that do not keep GC liveness information
 195   // in the object header, this field holds a closure that
 196   // helps the reference processor determine the reachability
 197   // of an oop. It is currently initialized to NULL for all
 198   // collectors except for CMS and G1.
 199   BoolObjectClosure* _is_alive_non_header;
 200 
 201   // Soft ref clearing policies
 202   // . the default policy
 203   static ReferencePolicy*   _default_soft_ref_policy;
 204   // . the "clear all" policy
 205   static ReferencePolicy*   _always_clear_soft_ref_policy;
 206   // . the current policy below is either one of the above
 207   ReferencePolicy*          _current_soft_ref_policy;
 208 
 209   // The discovered ref lists themselves
 210 
 211   // The active MT'ness degree of the queues below
 212   uint            _num_queues;
 213   // The maximum MT'ness degree of the queues below
 214   uint            _max_num_queues;
 215 
 216   // Master array of discovered oops
 217   DiscoveredList* _discovered_refs;
 218 
 219   // Arrays of lists of oops, one per thread (pointers into master array above)
 220   DiscoveredList* _discoveredSoftRefs;
 221   DiscoveredList* _discoveredWeakRefs;
 222   DiscoveredList* _discoveredFinalRefs;
 223   DiscoveredList* _discoveredPhantomRefs;
 224 
 225  public:
 226   static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
 227 
 228   uint num_queues() const                  { return _num_queues; }
 229   uint max_num_queues() const              { return _max_num_queues; }
 230   void set_active_mt_degree(uint v);
 231 
 232   DiscoveredList* discovered_refs()        { return _discovered_refs; }
 233 
 234   ReferencePolicy* setup_policy(bool always_clear) {
 235     _current_soft_ref_policy = always_clear ?
 236       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 237     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 238     return _current_soft_ref_policy;
 239   }
 240 
 241   // Process references with a certain reachability level.
 242   void process_discovered_reflist(DiscoveredList                refs_lists[],
 243                                   ReferencePolicy*              policy,
 244                                   bool                          clear_referent,
 245                                   BoolObjectClosure*            is_alive,
 246                                   OopClosure*                   keep_alive,
 247                                   VoidClosure*                  complete_gc,
 248                                   AbstractRefProcTaskExecutor*  task_executor,
 249                                   ReferenceProcessorPhaseTimes* phase_times);
 250 
 251   // Work methods used by the method process_discovered_reflist
 252   // Phase1: keep alive all those referents that are otherwise
 253   // dead but which must be kept alive by policy (and their closure).
 254   void process_phase1(DiscoveredList&     refs_list,
 255                       ReferencePolicy*    policy,
 256                       BoolObjectClosure*  is_alive,
 257                       OopClosure*         keep_alive,
 258                       VoidClosure*        complete_gc);
 259   // Phase2: remove all those references whose referents are
 260   // reachable.
 261   void process_phase2(DiscoveredList&    refs_list,
 262                       BoolObjectClosure* is_alive,
 263                       OopClosure*        keep_alive,
 264                       VoidClosure*       complete_gc);
 265   // Phase3: process the referents by either clearing them
 266   // or keeping them alive (and their closure), and enqueuing them.
 267   void process_phase3(DiscoveredList&    refs_list,
 268                       bool               clear_referent,
 269                       BoolObjectClosure* is_alive,
 270                       OopClosure*        keep_alive,
 271                       VoidClosure*       complete_gc);
 272 
 273   // "Preclean" all the discovered reference lists by removing references that
 274   // are active (e.g. due to the mutator calling enqueue()) or with NULL or
 275   // strongly reachable referents.
 276   // The first argument is a predicate on an oop that indicates
 277   // its (strong) reachability and the fourth is a closure that
 278   // may be used to incrementalize or abort the precleaning process.
 279   // The caller is responsible for taking care of potential
 280   // interference with concurrent operations on these lists
 281   // (or predicates involved) by other threads.
 282   void preclean_discovered_references(BoolObjectClosure* is_alive,
 283                                       OopClosure*        keep_alive,
 284                                       VoidClosure*       complete_gc,
 285                                       YieldClosure*      yield,
 286                                       GCTimer*           gc_timer);
 287 
 288   // Returns the name of the discovered reference list
 289   // occupying the i / _num_queues slot.
 290   const char* list_name(uint i);
 291 
 292 private:
 293   // "Preclean" the given discovered reference list by removing references with
 294   // the attributes mentioned in preclean_discovered_references().
 295   // Supports both normal and fine grain yielding.
 296   // Returns whether the operation should be aborted.
 297   bool preclean_discovered_reflist(DiscoveredList&    refs_list,
 298                                    BoolObjectClosure* is_alive,
 299                                    OopClosure*        keep_alive,
 300                                    VoidClosure*       complete_gc,
 301                                    YieldClosure*      yield);
 302 
 303   // round-robin mod _num_queues (not: _not_ mod _max_num_queues)
 304   uint next_id() {
 305     uint id = _next_id;
 306     assert(!_discovery_is_mt, "Round robin should only be used in serial discovery");
 307     if (++_next_id == _num_queues) {
 308       _next_id = 0;
 309     }
 310     assert(_next_id < _num_queues, "_next_id %u _num_queues %u _max_num_queues %u", _next_id, _num_queues, _max_num_queues);
 311     return id;
 312   }
 313   DiscoveredList* get_discovered_list(ReferenceType rt);
 314   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
 315                                         HeapWord* discovered_addr);
 316 
 317   void clear_discovered_references(DiscoveredList& refs_list);
 318 
 319   void log_reflist(const char* prefix, DiscoveredList list[], uint num_active_queues);
 320   void log_reflist_counts(DiscoveredList ref_lists[], uint num_active_queues) PRODUCT_RETURN;
 321 
 322   // Balances reference queues.
 323   void balance_queues(DiscoveredList ref_lists[]);
 324 
 325   // Update (advance) the soft ref master clock field.
 326   void update_soft_ref_master_clock();
 327 
 328   bool is_subject_to_discovery(oop const obj) const;
 329 
 330 public:
 331   // Default parameters give you a vanilla reference processor.
 332   ReferenceProcessor(BoolObjectClosure* is_subject_to_discovery,
 333                      bool mt_processing = false, uint mt_processing_degree = 1,
 334                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
 335                      bool atomic_discovery = true,
 336                      BoolObjectClosure* is_alive_non_header = NULL);
 337 
 338   // RefDiscoveryPolicy values
 339   enum DiscoveryPolicy {
 340     ReferenceBasedDiscovery = 0,
 341     ReferentBasedDiscovery  = 1,
 342     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
 343     DiscoveryPolicyMax      = ReferentBasedDiscovery
 344   };
 345 
 346   static void init_statics();
 347 
 348  public:
 349   // get and set "is_alive_non_header" field
 350   BoolObjectClosure* is_alive_non_header() {
 351     return _is_alive_non_header;
 352   }
 353   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
 354     _is_alive_non_header = is_alive_non_header;
 355   }
 356 
 357   BoolObjectClosure* is_subject_to_discovery_closure() const { return _is_subject_to_discovery; }
 358   void set_is_subject_to_discovery_closure(BoolObjectClosure* cl) { _is_subject_to_discovery = cl; }
 359 
 360   // start and stop weak ref discovery
 361   void enable_discovery(bool check_no_refs = true);
 362   void disable_discovery()  { _discovering_refs = false; }
 363   bool discovery_enabled()  { return _discovering_refs;  }
 364 
 365   // whether discovery is atomic wrt other collectors
 366   bool discovery_is_atomic() const { return _discovery_is_atomic; }
 367   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
 368 
 369   // whether discovery is done by multiple threads same-old-timeously
 370   bool discovery_is_mt() const { return _discovery_is_mt; }
 371   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
 372 
 373   // Whether we are in a phase when _processing_ is MT.
 374   bool processing_is_mt() const { return _processing_is_mt; }
 375   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
 376 
 377   // whether all enqueueing of weak references is complete
 378   bool enqueuing_is_done()  { return _enqueuing_is_done; }
 379   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
 380 
 381   // iterate over oops
 382   void weak_oops_do(OopClosure* f);       // weak roots
 383 
 384   void verify_list(DiscoveredList& ref_list);
 385 
 386   // Discover a Reference object, using appropriate discovery criteria
 387   virtual bool discover_reference(oop obj, ReferenceType rt);
 388 
 389   // Has discovered references that need handling
 390   bool has_discovered_references();
 391 
 392   // Process references found during GC (called by the garbage collector)
 393   ReferenceProcessorStats
 394   process_discovered_references(BoolObjectClosure*            is_alive,
 395                                 OopClosure*                   keep_alive,
 396                                 VoidClosure*                  complete_gc,
 397                                 AbstractRefProcTaskExecutor*  task_executor,
 398                                 ReferenceProcessorPhaseTimes* phase_times);
 399 
 400   // If a discovery is in process that is being superceded, abandon it: all
 401   // the discovered lists will be empty, and all the objects on them will
 402   // have NULL discovered fields.  Must be called only at a safepoint.
 403   void abandon_partial_discovery();
 404 
 405   size_t total_reference_count(ReferenceType rt) const;
 406 
 407   // debugging
 408   void verify_no_references_recorded() PRODUCT_RETURN;
 409   void verify_referent(oop obj)        PRODUCT_RETURN;
 410 };
 411 
 412 // A subject-to-discovery closure that uses a single memory span to determine the area that
 413 // is subject to discovery. Useful for collectors which have contiguous generations.
 414 class SpanSubjectToDiscoveryClosure : public BoolObjectClosure {
 415   MemRegion _span;
 416 
 417 public:
 418   SpanSubjectToDiscoveryClosure() : BoolObjectClosure(), _span() { }
 419   SpanSubjectToDiscoveryClosure(MemRegion span) : BoolObjectClosure(), _span(span) { }
 420 
 421   MemRegion span() const { return _span; }
 422 
 423   void set_span(MemRegion mr) {
 424     _span = mr;
 425   }
 426 
 427   virtual bool do_object_b(oop obj) {
 428     return _span.contains(obj);
 429   }
 430 };
 431 
 432 // A utility class to disable reference discovery in
 433 // the scope which contains it, for given ReferenceProcessor.
 434 class NoRefDiscovery: StackObj {
 435  private:
 436   ReferenceProcessor* _rp;
 437   bool _was_discovering_refs;
 438  public:
 439   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
 440     _was_discovering_refs = _rp->discovery_enabled();
 441     if (_was_discovering_refs) {
 442       _rp->disable_discovery();
 443     }
 444   }
 445 
 446   ~NoRefDiscovery() {
 447     if (_was_discovering_refs) {
 448       _rp->enable_discovery(false /*check_no_refs*/);
 449     }
 450   }
 451 };
 452 
 453 // A utility class to temporarily mutate the subject discovery closure of the
 454 // given ReferenceProcessor in the scope that contains it.
 455 class ReferenceProcessorSubjectToDiscoveryMutator : StackObj {
 456   ReferenceProcessor* _rp;
 457   BoolObjectClosure* _saved_cl;
 458 
 459 public:
 460   ReferenceProcessorSubjectToDiscoveryMutator(ReferenceProcessor* rp, BoolObjectClosure* cl):
 461     _rp(rp) {
 462     _saved_cl = _rp->is_subject_to_discovery_closure();
 463     _rp->set_is_subject_to_discovery_closure(cl);
 464   }
 465 
 466   ~ReferenceProcessorSubjectToDiscoveryMutator() {
 467     _rp->set_is_subject_to_discovery_closure(_saved_cl);
 468   }
 469 };
 470 
 471 // A utility class to temporarily mutate the span of the
 472 // given ReferenceProcessor in the scope that contains it.
 473 class ReferenceProcessorSpanMutator : StackObj {
 474   ReferenceProcessor* _rp;
 475   SpanSubjectToDiscoveryClosure _discoverer;
 476   BoolObjectClosure* _old_discoverer;
 477 
 478 public:
 479   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
 480                                 MemRegion span):
 481     _rp(rp),
 482     _discoverer(span),
 483     _old_discoverer(rp->is_subject_to_discovery_closure()) {
 484 
 485     rp->set_is_subject_to_discovery_closure(&_discoverer);
 486   }
 487 
 488   ~ReferenceProcessorSpanMutator() {
 489     _rp->set_is_subject_to_discovery_closure(_old_discoverer);
 490   }
 491 };
 492 
 493 // A utility class to temporarily change the MT'ness of
 494 // reference discovery for the given ReferenceProcessor
 495 // in the scope that contains it.
 496 class ReferenceProcessorMTDiscoveryMutator: StackObj {
 497  private:
 498   ReferenceProcessor* _rp;
 499   bool                _saved_mt;
 500 
 501  public:
 502   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
 503                                        bool mt):
 504     _rp(rp) {
 505     _saved_mt = _rp->discovery_is_mt();
 506     _rp->set_mt_discovery(mt);
 507   }
 508 
 509   ~ReferenceProcessorMTDiscoveryMutator() {
 510     _rp->set_mt_discovery(_saved_mt);
 511   }
 512 };
 513 
 514 // A utility class to temporarily change the disposition
 515 // of the "is_alive_non_header" closure field of the
 516 // given ReferenceProcessor in the scope that contains it.
 517 class ReferenceProcessorIsAliveMutator: StackObj {
 518  private:
 519   ReferenceProcessor* _rp;
 520   BoolObjectClosure*  _saved_cl;
 521 
 522  public:
 523   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
 524                                    BoolObjectClosure*  cl):
 525     _rp(rp) {
 526     _saved_cl = _rp->is_alive_non_header();
 527     _rp->set_is_alive_non_header(cl);
 528   }
 529 
 530   ~ReferenceProcessorIsAliveMutator() {
 531     _rp->set_is_alive_non_header(_saved_cl);
 532   }
 533 };
 534 
 535 // A utility class to temporarily change the disposition
 536 // of the "discovery_is_atomic" field of the
 537 // given ReferenceProcessor in the scope that contains it.
 538 class ReferenceProcessorAtomicMutator: StackObj {
 539  private:
 540   ReferenceProcessor* _rp;
 541   bool                _saved_atomic_discovery;
 542 
 543  public:
 544   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
 545                                   bool atomic):
 546     _rp(rp) {
 547     _saved_atomic_discovery = _rp->discovery_is_atomic();
 548     _rp->set_atomic_discovery(atomic);
 549   }
 550 
 551   ~ReferenceProcessorAtomicMutator() {
 552     _rp->set_atomic_discovery(_saved_atomic_discovery);
 553   }
 554 };
 555 
 556 
 557 // A utility class to temporarily change the MT processing
 558 // disposition of the given ReferenceProcessor instance
 559 // in the scope that contains it.
 560 class ReferenceProcessorMTProcMutator: StackObj {
 561  private:
 562   ReferenceProcessor* _rp;
 563   bool  _saved_mt;
 564 
 565  public:
 566   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
 567                                   bool mt):
 568     _rp(rp) {
 569     _saved_mt = _rp->processing_is_mt();
 570     _rp->set_mt_processing(mt);
 571   }
 572 
 573   ~ReferenceProcessorMTProcMutator() {
 574     _rp->set_mt_processing(_saved_mt);
 575   }
 576 };
 577 
 578 
 579 // This class is an interface used to implement task execution for the
 580 // reference processing.
 581 class AbstractRefProcTaskExecutor {
 582 public:
 583 
 584   // Abstract tasks to execute.
 585   class ProcessTask;
 586 
 587   // Executes a task using worker threads.
 588   virtual void execute(ProcessTask& task) = 0;
 589 
 590   // Switch to single threaded mode.
 591   virtual void set_single_threaded_mode() { };
 592 };
 593 
 594 // Abstract reference processing task to execute.
 595 class AbstractRefProcTaskExecutor::ProcessTask {
 596 protected:
 597   ProcessTask(ReferenceProcessor&           ref_processor,
 598               DiscoveredList                refs_lists[],
 599               bool                          marks_oops_alive,
 600               ReferenceProcessorPhaseTimes* phase_times)
 601     : _ref_processor(ref_processor),
 602       _refs_lists(refs_lists),
 603       _phase_times(phase_times),
 604       _marks_oops_alive(marks_oops_alive)
 605   { }
 606 
 607 public:
 608   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
 609                     OopClosure& keep_alive,
 610                     VoidClosure& complete_gc) = 0;
 611 
 612   // Returns true if a task marks some oops as alive.
 613   bool marks_oops_alive() const
 614   { return _marks_oops_alive; }
 615 
 616 protected:
 617   ReferenceProcessor&           _ref_processor;
 618   DiscoveredList*               _refs_lists;
 619   ReferenceProcessorPhaseTimes* _phase_times;
 620   const bool                    _marks_oops_alive;
 621 };
 622 
 623 #endif // SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP