1 /*
   2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "asm/macroAssembler.hpp"
  29 #include "ci/ciEnv.hpp"
  30 #include "code/nativeInst.hpp"
  31 #include "compiler/disassembler.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "gc/shared/cardTable.hpp"
  34 #include "gc/shared/barrierSetAssembler.hpp"
  35 #include "gc/shared/cardTableBarrierSet.hpp"
  36 #include "gc/shared/collectedHeap.inline.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/accessDecorators.hpp"
  40 #include "oops/klass.inline.hpp"
  41 #include "prims/methodHandles.hpp"
  42 #include "runtime/biasedLocking.hpp"
  43 #include "runtime/interfaceSupport.inline.hpp"
  44 #include "runtime/objectMonitor.hpp"
  45 #include "runtime/os.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "utilities/macros.hpp"
  49 
  50 // Implementation of AddressLiteral
  51 
  52 void AddressLiteral::set_rspec(relocInfo::relocType rtype) {
  53   switch (rtype) {
  54   case relocInfo::oop_type:
  55     // Oops are a special case. Normally they would be their own section
  56     // but in cases like icBuffer they are literals in the code stream that
  57     // we don't have a section for. We use none so that we get a literal address
  58     // which is always patchable.
  59     break;
  60   case relocInfo::external_word_type:
  61     _rspec = external_word_Relocation::spec(_target);
  62     break;
  63   case relocInfo::internal_word_type:
  64     _rspec = internal_word_Relocation::spec(_target);
  65     break;
  66   case relocInfo::opt_virtual_call_type:
  67     _rspec = opt_virtual_call_Relocation::spec();
  68     break;
  69   case relocInfo::static_call_type:
  70     _rspec = static_call_Relocation::spec();
  71     break;
  72   case relocInfo::runtime_call_type:
  73     _rspec = runtime_call_Relocation::spec();
  74     break;
  75   case relocInfo::poll_type:
  76   case relocInfo::poll_return_type:
  77     _rspec = Relocation::spec_simple(rtype);
  78     break;
  79   case relocInfo::none:
  80     break;
  81   default:
  82     ShouldNotReachHere();
  83     break;
  84   }
  85 }
  86 
  87 // Initially added to the Assembler interface as a pure virtual:
  88 //   RegisterConstant delayed_value(..)
  89 // for:
  90 //   6812678 macro assembler needs delayed binding of a few constants (for 6655638)
  91 // this was subsequently modified to its present name and return type
  92 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  93                                                       Register tmp,
  94                                                       int offset) {
  95   ShouldNotReachHere();
  96   return RegisterOrConstant(-1);
  97 }
  98 
  99 
 100 #ifdef AARCH64
 101 // Note: ARM32 version is OS dependent
 102 void MacroAssembler::breakpoint(AsmCondition cond) {
 103   if (cond == al) {
 104     brk();
 105   } else {
 106     Label L;
 107     b(L, inverse(cond));
 108     brk();
 109     bind(L);
 110   }
 111 }
 112 #endif // AARCH64
 113 
 114 
 115 // virtual method calling
 116 void MacroAssembler::lookup_virtual_method(Register recv_klass,
 117                                            Register vtable_index,
 118                                            Register method_result) {
 119   const int base_offset = in_bytes(Klass::vtable_start_offset()) + vtableEntry::method_offset_in_bytes();
 120   assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
 121   add(recv_klass, recv_klass, AsmOperand(vtable_index, lsl, LogBytesPerWord));
 122   ldr(method_result, Address(recv_klass, base_offset));
 123 }
 124 
 125 
 126 // Simplified, combined version, good for typical uses.
 127 // Falls through on failure.
 128 void MacroAssembler::check_klass_subtype(Register sub_klass,
 129                                          Register super_klass,
 130                                          Register temp_reg,
 131                                          Register temp_reg2,
 132                                          Register temp_reg3,
 133                                          Label& L_success) {
 134   Label L_failure;
 135   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, temp_reg2, &L_success, &L_failure, NULL);
 136   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, temp_reg2, temp_reg3, &L_success, NULL);
 137   bind(L_failure);
 138 };
 139 
 140 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
 141                                                    Register super_klass,
 142                                                    Register temp_reg,
 143                                                    Register temp_reg2,
 144                                                    Label* L_success,
 145                                                    Label* L_failure,
 146                                                    Label* L_slow_path) {
 147 
 148   assert_different_registers(sub_klass, super_klass, temp_reg, temp_reg2, noreg);
 149   const Register super_check_offset = temp_reg2;
 150 
 151   Label L_fallthrough;
 152   int label_nulls = 0;
 153   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
 154   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
 155   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
 156   assert(label_nulls <= 1, "at most one NULL in the batch");
 157 
 158   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
 159   int sco_offset = in_bytes(Klass::super_check_offset_offset());
 160   Address super_check_offset_addr(super_klass, sco_offset);
 161 
 162   // If the pointers are equal, we are done (e.g., String[] elements).
 163   // This self-check enables sharing of secondary supertype arrays among
 164   // non-primary types such as array-of-interface.  Otherwise, each such
 165   // type would need its own customized SSA.
 166   // We move this check to the front of the fast path because many
 167   // type checks are in fact trivially successful in this manner,
 168   // so we get a nicely predicted branch right at the start of the check.
 169   cmp(sub_klass, super_klass);
 170   b(*L_success, eq);
 171 
 172   // Check the supertype display:
 173   ldr_u32(super_check_offset, super_check_offset_addr);
 174 
 175   Address super_check_addr(sub_klass, super_check_offset);
 176   ldr(temp_reg, super_check_addr);
 177   cmp(super_klass, temp_reg); // load displayed supertype
 178 
 179   // This check has worked decisively for primary supers.
 180   // Secondary supers are sought in the super_cache ('super_cache_addr').
 181   // (Secondary supers are interfaces and very deeply nested subtypes.)
 182   // This works in the same check above because of a tricky aliasing
 183   // between the super_cache and the primary super display elements.
 184   // (The 'super_check_addr' can address either, as the case requires.)
 185   // Note that the cache is updated below if it does not help us find
 186   // what we need immediately.
 187   // So if it was a primary super, we can just fail immediately.
 188   // Otherwise, it's the slow path for us (no success at this point).
 189 
 190   b(*L_success, eq);
 191   cmp_32(super_check_offset, sc_offset);
 192   if (L_failure == &L_fallthrough) {
 193     b(*L_slow_path, eq);
 194   } else {
 195     b(*L_failure, ne);
 196     if (L_slow_path != &L_fallthrough) {
 197       b(*L_slow_path);
 198     }
 199   }
 200 
 201   bind(L_fallthrough);
 202 }
 203 
 204 
 205 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
 206                                                    Register super_klass,
 207                                                    Register temp_reg,
 208                                                    Register temp2_reg,
 209                                                    Register temp3_reg,
 210                                                    Label* L_success,
 211                                                    Label* L_failure,
 212                                                    bool set_cond_codes) {
 213 #ifdef AARCH64
 214   NOT_IMPLEMENTED();
 215 #else
 216   // Note: if used by code that expects a register to be 0 on success,
 217   // this register must be temp_reg and set_cond_codes must be true
 218 
 219   Register saved_reg = noreg;
 220 
 221   // get additional tmp registers
 222   if (temp3_reg == noreg) {
 223     saved_reg = temp3_reg = LR;
 224     push(saved_reg);
 225   }
 226 
 227   assert(temp2_reg != noreg, "need all the temporary registers");
 228   assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, temp3_reg);
 229 
 230   Register cmp_temp = temp_reg;
 231   Register scan_temp = temp3_reg;
 232   Register count_temp = temp2_reg;
 233 
 234   Label L_fallthrough;
 235   int label_nulls = 0;
 236   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
 237   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
 238   assert(label_nulls <= 1, "at most one NULL in the batch");
 239 
 240   // a couple of useful fields in sub_klass:
 241   int ss_offset = in_bytes(Klass::secondary_supers_offset());
 242   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
 243   Address secondary_supers_addr(sub_klass, ss_offset);
 244   Address super_cache_addr(     sub_klass, sc_offset);
 245 
 246 #ifndef PRODUCT
 247   inc_counter((address)&SharedRuntime::_partial_subtype_ctr, scan_temp, count_temp);
 248 #endif
 249 
 250   // We will consult the secondary-super array.
 251   ldr(scan_temp, Address(sub_klass, ss_offset));
 252 
 253   assert(! UseCompressedOops, "search_key must be the compressed super_klass");
 254   // else search_key is the
 255   Register search_key = super_klass;
 256 
 257   // Load the array length.
 258   ldr(count_temp, Address(scan_temp, Array<Klass*>::length_offset_in_bytes()));
 259   add(scan_temp, scan_temp, Array<Klass*>::base_offset_in_bytes());
 260 
 261   add(count_temp, count_temp, 1);
 262 
 263   Label L_loop, L_setnz_and_fail, L_fail;
 264 
 265   // Top of search loop
 266   bind(L_loop);
 267   // Notes:
 268   //  scan_temp starts at the array elements
 269   //  count_temp is 1+size
 270   subs(count_temp, count_temp, 1);
 271   if ((L_failure != &L_fallthrough) && (! set_cond_codes) && (saved_reg == noreg)) {
 272     // direct jump to L_failure if failed and no cleanup needed
 273     b(*L_failure, eq); // not found and
 274   } else {
 275     b(L_fail, eq); // not found in the array
 276   }
 277 
 278   // Load next super to check
 279   // In the array of super classes elements are pointer sized.
 280   int element_size = wordSize;
 281   ldr(cmp_temp, Address(scan_temp, element_size, post_indexed));
 282 
 283   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
 284   subs(cmp_temp, cmp_temp, search_key);
 285 
 286   // A miss means we are NOT a subtype and need to keep looping
 287   b(L_loop, ne);
 288 
 289   // Falling out the bottom means we found a hit; we ARE a subtype
 290 
 291   // Note: temp_reg/cmp_temp is already 0 and flag Z is set
 292 
 293   // Success.  Cache the super we found and proceed in triumph.
 294   str(super_klass, Address(sub_klass, sc_offset));
 295 
 296   if (saved_reg != noreg) {
 297     // Return success
 298     pop(saved_reg);
 299   }
 300 
 301   b(*L_success);
 302 
 303   bind(L_fail);
 304   // Note1: check "b(*L_failure, eq)" above if adding extra instructions here
 305   if (set_cond_codes) {
 306     movs(temp_reg, sub_klass); // clears Z and sets temp_reg to non-0 if needed
 307   }
 308   if (saved_reg != noreg) {
 309     pop(saved_reg);
 310   }
 311   if (L_failure != &L_fallthrough) {
 312     b(*L_failure);
 313   }
 314 
 315   bind(L_fallthrough);
 316 #endif
 317 }
 318 
 319 // Returns address of receiver parameter, using tmp as base register. tmp and params_count can be the same.
 320 Address MacroAssembler::receiver_argument_address(Register params_base, Register params_count, Register tmp) {
 321   assert_different_registers(params_base, params_count);
 322   add(tmp, params_base, AsmOperand(params_count, lsl, Interpreter::logStackElementSize));
 323   return Address(tmp, -Interpreter::stackElementSize);
 324 }
 325 
 326 
 327 void MacroAssembler::align(int modulus) {
 328   while (offset() % modulus != 0) {
 329     nop();
 330   }
 331 }
 332 
 333 int MacroAssembler::set_last_Java_frame(Register last_java_sp,
 334                                         Register last_java_fp,
 335                                         bool save_last_java_pc,
 336                                         Register tmp) {
 337   int pc_offset;
 338   if (last_java_fp != noreg) {
 339     // optional
 340     str(last_java_fp, Address(Rthread, JavaThread::last_Java_fp_offset()));
 341     _fp_saved = true;
 342   } else {
 343     _fp_saved = false;
 344   }
 345   if (AARCH64_ONLY(true) NOT_AARCH64(save_last_java_pc)) { // optional on 32-bit ARM
 346 #ifdef AARCH64
 347     pc_offset = mov_pc_to(tmp);
 348     str(tmp, Address(Rthread, JavaThread::last_Java_pc_offset()));
 349 #else
 350     str(PC, Address(Rthread, JavaThread::last_Java_pc_offset()));
 351     pc_offset = offset() + VM_Version::stored_pc_adjustment();
 352 #endif
 353     _pc_saved = true;
 354   } else {
 355     _pc_saved = false;
 356     pc_offset = -1;
 357   }
 358   // According to comment in javaFrameAnchorm SP must be saved last, so that other
 359   // entries are valid when SP is set.
 360 
 361   // However, this is probably not a strong constrainst since for instance PC is
 362   // sometimes read from the stack at SP... but is pushed later (by the call). Hence,
 363   // we now write the fields in the expected order but we have not added a StoreStore
 364   // barrier.
 365 
 366   // XXX: if the ordering is really important, PC should always be saved (without forgetting
 367   // to update oop_map offsets) and a StoreStore barrier might be needed.
 368 
 369   if (last_java_sp == noreg) {
 370     last_java_sp = SP; // always saved
 371   }
 372 #ifdef AARCH64
 373   if (last_java_sp == SP) {
 374     mov(tmp, SP);
 375     str(tmp, Address(Rthread, JavaThread::last_Java_sp_offset()));
 376   } else {
 377     str(last_java_sp, Address(Rthread, JavaThread::last_Java_sp_offset()));
 378   }
 379 #else
 380   str(last_java_sp, Address(Rthread, JavaThread::last_Java_sp_offset()));
 381 #endif
 382 
 383   return pc_offset; // for oopmaps
 384 }
 385 
 386 void MacroAssembler::reset_last_Java_frame(Register tmp) {
 387   const Register Rzero = zero_register(tmp);
 388   str(Rzero, Address(Rthread, JavaThread::last_Java_sp_offset()));
 389   if (_fp_saved) {
 390     str(Rzero, Address(Rthread, JavaThread::last_Java_fp_offset()));
 391   }
 392   if (_pc_saved) {
 393     str(Rzero, Address(Rthread, JavaThread::last_Java_pc_offset()));
 394   }
 395 }
 396 
 397 
 398 // Implementation of call_VM versions
 399 
 400 void MacroAssembler::call_VM_leaf_helper(address entry_point, int number_of_arguments) {
 401   assert(number_of_arguments >= 0, "cannot have negative number of arguments");
 402   assert(number_of_arguments <= 4, "cannot have more than 4 arguments");
 403 
 404 #ifndef AARCH64
 405   // Safer to save R9 here since callers may have been written
 406   // assuming R9 survives. This is suboptimal but is not worth
 407   // optimizing for the few platforms where R9 is scratched.
 408   push(RegisterSet(R4) | R9ifScratched);
 409   mov(R4, SP);
 410   bic(SP, SP, StackAlignmentInBytes - 1);
 411 #endif // AARCH64
 412   call(entry_point, relocInfo::runtime_call_type);
 413 #ifndef AARCH64
 414   mov(SP, R4);
 415   pop(RegisterSet(R4) | R9ifScratched);
 416 #endif // AARCH64
 417 }
 418 
 419 
 420 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 421   assert(number_of_arguments >= 0, "cannot have negative number of arguments");
 422   assert(number_of_arguments <= 3, "cannot have more than 3 arguments");
 423 
 424   const Register tmp = Rtemp;
 425   assert_different_registers(oop_result, tmp);
 426 
 427   set_last_Java_frame(SP, FP, true, tmp);
 428 
 429 #ifdef ASSERT
 430   AARCH64_ONLY(if (UseCompressedOops || UseCompressedClassPointers) { verify_heapbase("call_VM_helper: heap base corrupted?"); });
 431 #endif // ASSERT
 432 
 433 #ifndef AARCH64
 434 #if R9_IS_SCRATCHED
 435   // Safer to save R9 here since callers may have been written
 436   // assuming R9 survives. This is suboptimal but is not worth
 437   // optimizing for the few platforms where R9 is scratched.
 438 
 439   // Note: cannot save R9 above the saved SP (some calls expect for
 440   // instance the Java stack top at the saved SP)
 441   // => once saved (with set_last_Java_frame), decrease SP before rounding to
 442   // ensure the slot at SP will be free for R9).
 443   sub(SP, SP, 4);
 444   bic(SP, SP, StackAlignmentInBytes - 1);
 445   str(R9, Address(SP, 0));
 446 #else
 447   bic(SP, SP, StackAlignmentInBytes - 1);
 448 #endif // R9_IS_SCRATCHED
 449 #endif
 450 
 451   mov(R0, Rthread);
 452   call(entry_point, relocInfo::runtime_call_type);
 453 
 454 #ifndef AARCH64
 455 #if R9_IS_SCRATCHED
 456   ldr(R9, Address(SP, 0));
 457 #endif
 458   ldr(SP, Address(Rthread, JavaThread::last_Java_sp_offset()));
 459 #endif
 460 
 461   reset_last_Java_frame(tmp);
 462 
 463   // C++ interp handles this in the interpreter
 464   check_and_handle_popframe();
 465   check_and_handle_earlyret();
 466 
 467   if (check_exceptions) {
 468     // check for pending exceptions
 469     ldr(tmp, Address(Rthread, Thread::pending_exception_offset()));
 470 #ifdef AARCH64
 471     Label L;
 472     cbz(tmp, L);
 473     mov_pc_to(Rexception_pc);
 474     b(StubRoutines::forward_exception_entry());
 475     bind(L);
 476 #else
 477     cmp(tmp, 0);
 478     mov(Rexception_pc, PC, ne);
 479     b(StubRoutines::forward_exception_entry(), ne);
 480 #endif // AARCH64
 481   }
 482 
 483   // get oop result if there is one and reset the value in the thread
 484   if (oop_result->is_valid()) {
 485     get_vm_result(oop_result, tmp);
 486   }
 487 }
 488 
 489 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
 490   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
 491 }
 492 
 493 
 494 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
 495   assert (arg_1 == R1, "fixed register for arg_1");
 496   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
 497 }
 498 
 499 
 500 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
 501   assert (arg_1 == R1, "fixed register for arg_1");
 502   assert (arg_2 == R2, "fixed register for arg_2");
 503   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
 504 }
 505 
 506 
 507 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
 508   assert (arg_1 == R1, "fixed register for arg_1");
 509   assert (arg_2 == R2, "fixed register for arg_2");
 510   assert (arg_3 == R3, "fixed register for arg_3");
 511   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
 512 }
 513 
 514 
 515 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
 516   // Not used on ARM
 517   Unimplemented();
 518 }
 519 
 520 
 521 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
 522   // Not used on ARM
 523   Unimplemented();
 524 }
 525 
 526 
 527 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
 528 // Not used on ARM
 529   Unimplemented();
 530 }
 531 
 532 
 533 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
 534   // Not used on ARM
 535   Unimplemented();
 536 }
 537 
 538 // Raw call, without saving/restoring registers, exception handling, etc.
 539 // Mainly used from various stubs.
 540 void MacroAssembler::call_VM(address entry_point, bool save_R9_if_scratched) {
 541   const Register tmp = Rtemp; // Rtemp free since scratched by call
 542   set_last_Java_frame(SP, FP, true, tmp);
 543 #if R9_IS_SCRATCHED
 544   if (save_R9_if_scratched) {
 545     // Note: Saving also R10 for alignment.
 546     push(RegisterSet(R9, R10));
 547   }
 548 #endif
 549   mov(R0, Rthread);
 550   call(entry_point, relocInfo::runtime_call_type);
 551 #if R9_IS_SCRATCHED
 552   if (save_R9_if_scratched) {
 553     pop(RegisterSet(R9, R10));
 554   }
 555 #endif
 556   reset_last_Java_frame(tmp);
 557 }
 558 
 559 void MacroAssembler::call_VM_leaf(address entry_point) {
 560   call_VM_leaf_helper(entry_point, 0);
 561 }
 562 
 563 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
 564   assert (arg_1 == R0, "fixed register for arg_1");
 565   call_VM_leaf_helper(entry_point, 1);
 566 }
 567 
 568 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
 569   assert (arg_1 == R0, "fixed register for arg_1");
 570   assert (arg_2 == R1, "fixed register for arg_2");
 571   call_VM_leaf_helper(entry_point, 2);
 572 }
 573 
 574 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
 575   assert (arg_1 == R0, "fixed register for arg_1");
 576   assert (arg_2 == R1, "fixed register for arg_2");
 577   assert (arg_3 == R2, "fixed register for arg_3");
 578   call_VM_leaf_helper(entry_point, 3);
 579 }
 580 
 581 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4) {
 582   assert (arg_1 == R0, "fixed register for arg_1");
 583   assert (arg_2 == R1, "fixed register for arg_2");
 584   assert (arg_3 == R2, "fixed register for arg_3");
 585   assert (arg_4 == R3, "fixed register for arg_4");
 586   call_VM_leaf_helper(entry_point, 4);
 587 }
 588 
 589 void MacroAssembler::get_vm_result(Register oop_result, Register tmp) {
 590   assert_different_registers(oop_result, tmp);
 591   ldr(oop_result, Address(Rthread, JavaThread::vm_result_offset()));
 592   str(zero_register(tmp), Address(Rthread, JavaThread::vm_result_offset()));
 593   verify_oop(oop_result);
 594 }
 595 
 596 void MacroAssembler::get_vm_result_2(Register metadata_result, Register tmp) {
 597   assert_different_registers(metadata_result, tmp);
 598   ldr(metadata_result, Address(Rthread, JavaThread::vm_result_2_offset()));
 599   str(zero_register(tmp), Address(Rthread, JavaThread::vm_result_2_offset()));
 600 }
 601 
 602 void MacroAssembler::add_rc(Register dst, Register arg1, RegisterOrConstant arg2) {
 603   if (arg2.is_register()) {
 604     add(dst, arg1, arg2.as_register());
 605   } else {
 606     add(dst, arg1, arg2.as_constant());
 607   }
 608 }
 609 
 610 void MacroAssembler::add_slow(Register rd, Register rn, int c) {
 611 #ifdef AARCH64
 612   if (c == 0) {
 613     if (rd != rn) {
 614       mov(rd, rn);
 615     }
 616     return;
 617   }
 618   if (c < 0) {
 619     sub_slow(rd, rn, -c);
 620     return;
 621   }
 622   if (c > right_n_bits(24)) {
 623     guarantee(rd != rn, "no large add_slow with only one register");
 624     mov_slow(rd, c);
 625     add(rd, rn, rd);
 626   } else {
 627     int lo = c & right_n_bits(12);
 628     int hi = (c >> 12) & right_n_bits(12);
 629     if (lo != 0) {
 630       add(rd, rn, lo, lsl0);
 631     }
 632     if (hi != 0) {
 633       add(rd, (lo == 0) ? rn : rd, hi, lsl12);
 634     }
 635   }
 636 #else
 637   // This function is used in compiler for handling large frame offsets
 638   if ((c < 0) && (((-c) & ~0x3fc) == 0)) {
 639     return sub(rd, rn, (-c));
 640   }
 641   int low = c & 0x3fc;
 642   if (low != 0) {
 643     add(rd, rn, low);
 644     rn = rd;
 645   }
 646   if (c & ~0x3fc) {
 647     assert(AsmOperand::is_rotated_imm(c & ~0x3fc), "unsupported add_slow offset %d", c);
 648     add(rd, rn, c & ~0x3fc);
 649   } else if (rd != rn) {
 650     assert(c == 0, "");
 651     mov(rd, rn); // need to generate at least one move!
 652   }
 653 #endif // AARCH64
 654 }
 655 
 656 void MacroAssembler::sub_slow(Register rd, Register rn, int c) {
 657 #ifdef AARCH64
 658   if (c <= 0) {
 659     add_slow(rd, rn, -c);
 660     return;
 661   }
 662   if (c > right_n_bits(24)) {
 663     guarantee(rd != rn, "no large sub_slow with only one register");
 664     mov_slow(rd, c);
 665     sub(rd, rn, rd);
 666   } else {
 667     int lo = c & right_n_bits(12);
 668     int hi = (c >> 12) & right_n_bits(12);
 669     if (lo != 0) {
 670       sub(rd, rn, lo, lsl0);
 671     }
 672     if (hi != 0) {
 673       sub(rd, (lo == 0) ? rn : rd, hi, lsl12);
 674     }
 675   }
 676 #else
 677   // This function is used in compiler for handling large frame offsets
 678   if ((c < 0) && (((-c) & ~0x3fc) == 0)) {
 679     return add(rd, rn, (-c));
 680   }
 681   int low = c & 0x3fc;
 682   if (low != 0) {
 683     sub(rd, rn, low);
 684     rn = rd;
 685   }
 686   if (c & ~0x3fc) {
 687     assert(AsmOperand::is_rotated_imm(c & ~0x3fc), "unsupported sub_slow offset %d", c);
 688     sub(rd, rn, c & ~0x3fc);
 689   } else if (rd != rn) {
 690     assert(c == 0, "");
 691     mov(rd, rn); // need to generate at least one move!
 692   }
 693 #endif // AARCH64
 694 }
 695 
 696 void MacroAssembler::mov_slow(Register rd, address addr) {
 697   // do *not* call the non relocated mov_related_address
 698   mov_slow(rd, (intptr_t)addr);
 699 }
 700 
 701 void MacroAssembler::mov_slow(Register rd, const char *str) {
 702   mov_slow(rd, (intptr_t)str);
 703 }
 704 
 705 #ifdef AARCH64
 706 
 707 // Common code for mov_slow and instr_count_for_mov_slow.
 708 // Returns number of instructions of mov_slow pattern,
 709 // generating it if non-null MacroAssembler is given.
 710 int MacroAssembler::mov_slow_helper(Register rd, intptr_t c, MacroAssembler* masm) {
 711   // This code pattern is matched in NativeIntruction::is_mov_slow.
 712   // Update it at modifications.
 713 
 714   const intx mask = right_n_bits(16);
 715   // 1 movz instruction
 716   for (int base_shift = 0; base_shift < 64; base_shift += 16) {
 717     if ((c & ~(mask << base_shift)) == 0) {
 718       if (masm != NULL) {
 719         masm->movz(rd, ((uintx)c) >> base_shift, base_shift);
 720       }
 721       return 1;
 722     }
 723   }
 724   // 1 movn instruction
 725   for (int base_shift = 0; base_shift < 64; base_shift += 16) {
 726     if (((~c) & ~(mask << base_shift)) == 0) {
 727       if (masm != NULL) {
 728         masm->movn(rd, ((uintx)(~c)) >> base_shift, base_shift);
 729       }
 730       return 1;
 731     }
 732   }
 733   // 1 orr instruction
 734   {
 735     LogicalImmediate imm(c, false);
 736     if (imm.is_encoded()) {
 737       if (masm != NULL) {
 738         masm->orr(rd, ZR, imm);
 739       }
 740       return 1;
 741     }
 742   }
 743   // 1 movz/movn + up to 3 movk instructions
 744   int zeroes = 0;
 745   int ones = 0;
 746   for (int base_shift = 0; base_shift < 64; base_shift += 16) {
 747     int part = (c >> base_shift) & mask;
 748     if (part == 0) {
 749       ++zeroes;
 750     } else if (part == mask) {
 751       ++ones;
 752     }
 753   }
 754   int def_bits = 0;
 755   if (ones > zeroes) {
 756     def_bits = mask;
 757   }
 758   int inst_count = 0;
 759   for (int base_shift = 0; base_shift < 64; base_shift += 16) {
 760     int part = (c >> base_shift) & mask;
 761     if (part != def_bits) {
 762       if (masm != NULL) {
 763         if (inst_count > 0) {
 764           masm->movk(rd, part, base_shift);
 765         } else {
 766           if (def_bits == 0) {
 767             masm->movz(rd, part, base_shift);
 768           } else {
 769             masm->movn(rd, ~part & mask, base_shift);
 770           }
 771         }
 772       }
 773       inst_count++;
 774     }
 775   }
 776   assert((1 <= inst_count) && (inst_count <= 4), "incorrect number of instructions");
 777   return inst_count;
 778 }
 779 
 780 void MacroAssembler::mov_slow(Register rd, intptr_t c) {
 781 #ifdef ASSERT
 782   int off = offset();
 783 #endif
 784   (void) mov_slow_helper(rd, c, this);
 785   assert(offset() - off == instr_count_for_mov_slow(c) * InstructionSize, "size mismatch");
 786 }
 787 
 788 // Counts instructions generated by mov_slow(rd, c).
 789 int MacroAssembler::instr_count_for_mov_slow(intptr_t c) {
 790   return mov_slow_helper(noreg, c, NULL);
 791 }
 792 
 793 int MacroAssembler::instr_count_for_mov_slow(address c) {
 794   return mov_slow_helper(noreg, (intptr_t)c, NULL);
 795 }
 796 
 797 #else
 798 
 799 void MacroAssembler::mov_slow(Register rd, intptr_t c, AsmCondition cond) {
 800   if (AsmOperand::is_rotated_imm(c)) {
 801     mov(rd, c, cond);
 802   } else if (AsmOperand::is_rotated_imm(~c)) {
 803     mvn(rd, ~c, cond);
 804   } else if (VM_Version::supports_movw()) {
 805     movw(rd, c & 0xffff, cond);
 806     if ((unsigned int)c >> 16) {
 807       movt(rd, (unsigned int)c >> 16, cond);
 808     }
 809   } else {
 810     // Find first non-zero bit
 811     int shift = 0;
 812     while ((c & (3 << shift)) == 0) {
 813       shift += 2;
 814     }
 815     // Put the least significant part of the constant
 816     int mask = 0xff << shift;
 817     mov(rd, c & mask, cond);
 818     // Add up to 3 other parts of the constant;
 819     // each of them can be represented as rotated_imm
 820     if (c & (mask << 8)) {
 821       orr(rd, rd, c & (mask << 8), cond);
 822     }
 823     if (c & (mask << 16)) {
 824       orr(rd, rd, c & (mask << 16), cond);
 825     }
 826     if (c & (mask << 24)) {
 827       orr(rd, rd, c & (mask << 24), cond);
 828     }
 829   }
 830 }
 831 
 832 #endif // AARCH64
 833 
 834 void MacroAssembler::mov_oop(Register rd, jobject o, int oop_index,
 835 #ifdef AARCH64
 836                              bool patchable
 837 #else
 838                              AsmCondition cond
 839 #endif
 840                              ) {
 841 
 842   if (o == NULL) {
 843 #ifdef AARCH64
 844     if (patchable) {
 845       nop();
 846     }
 847     mov(rd, ZR);
 848 #else
 849     mov(rd, 0, cond);
 850 #endif
 851     return;
 852   }
 853 
 854   if (oop_index == 0) {
 855     oop_index = oop_recorder()->allocate_oop_index(o);
 856   }
 857   relocate(oop_Relocation::spec(oop_index));
 858 
 859 #ifdef AARCH64
 860   if (patchable) {
 861     nop();
 862   }
 863   ldr(rd, pc());
 864 #else
 865   if (VM_Version::supports_movw()) {
 866     movw(rd, 0, cond);
 867     movt(rd, 0, cond);
 868   } else {
 869     ldr(rd, Address(PC), cond);
 870     // Extra nop to handle case of large offset of oop placeholder (see NativeMovConstReg::set_data).
 871     nop();
 872   }
 873 #endif
 874 }
 875 
 876 void MacroAssembler::mov_metadata(Register rd, Metadata* o, int metadata_index AARCH64_ONLY_ARG(bool patchable)) {
 877   if (o == NULL) {
 878 #ifdef AARCH64
 879     if (patchable) {
 880       nop();
 881     }
 882 #endif
 883     mov(rd, 0);
 884     return;
 885   }
 886 
 887   if (metadata_index == 0) {
 888     metadata_index = oop_recorder()->allocate_metadata_index(o);
 889   }
 890   relocate(metadata_Relocation::spec(metadata_index));
 891 
 892 #ifdef AARCH64
 893   if (patchable) {
 894     nop();
 895   }
 896 #ifdef COMPILER2
 897   if (!patchable && VM_Version::prefer_moves_over_load_literal()) {
 898     mov_slow(rd, (address)o);
 899     return;
 900   }
 901 #endif
 902   ldr(rd, pc());
 903 #else
 904   if (VM_Version::supports_movw()) {
 905     movw(rd, ((int)o) & 0xffff);
 906     movt(rd, (unsigned int)o >> 16);
 907   } else {
 908     ldr(rd, Address(PC));
 909     // Extra nop to handle case of large offset of metadata placeholder (see NativeMovConstReg::set_data).
 910     nop();
 911   }
 912 #endif // AARCH64
 913 }
 914 
 915 void MacroAssembler::mov_float(FloatRegister fd, jfloat c NOT_AARCH64_ARG(AsmCondition cond)) {
 916   Label skip_constant;
 917   union {
 918     jfloat f;
 919     jint i;
 920   } accessor;
 921   accessor.f = c;
 922 
 923 #ifdef AARCH64
 924   // TODO-AARCH64 - try to optimize loading of float constants with fmov and/or mov_slow
 925   Label L;
 926   ldr_s(fd, target(L));
 927   b(skip_constant);
 928   bind(L);
 929   emit_int32(accessor.i);
 930   bind(skip_constant);
 931 #else
 932   flds(fd, Address(PC), cond);
 933   b(skip_constant);
 934   emit_int32(accessor.i);
 935   bind(skip_constant);
 936 #endif // AARCH64
 937 }
 938 
 939 void MacroAssembler::mov_double(FloatRegister fd, jdouble c NOT_AARCH64_ARG(AsmCondition cond)) {
 940   Label skip_constant;
 941   union {
 942     jdouble d;
 943     jint i[2];
 944   } accessor;
 945   accessor.d = c;
 946 
 947 #ifdef AARCH64
 948   // TODO-AARCH64 - try to optimize loading of double constants with fmov
 949   Label L;
 950   ldr_d(fd, target(L));
 951   b(skip_constant);
 952   align(wordSize);
 953   bind(L);
 954   emit_int32(accessor.i[0]);
 955   emit_int32(accessor.i[1]);
 956   bind(skip_constant);
 957 #else
 958   fldd(fd, Address(PC), cond);
 959   b(skip_constant);
 960   emit_int32(accessor.i[0]);
 961   emit_int32(accessor.i[1]);
 962   bind(skip_constant);
 963 #endif // AARCH64
 964 }
 965 
 966 void MacroAssembler::ldr_global_s32(Register reg, address address_of_global) {
 967   intptr_t addr = (intptr_t) address_of_global;
 968 #ifdef AARCH64
 969   assert((addr & 0x3) == 0, "address should be aligned");
 970 
 971   // FIXME: TODO
 972   if (false && page_reachable_from_cache(address_of_global)) {
 973     assert(false,"TODO: relocate");
 974     //relocate();
 975     adrp(reg, address_of_global);
 976     ldrsw(reg, Address(reg, addr & 0xfff));
 977   } else {
 978     mov_slow(reg, addr & ~0x3fff);
 979     ldrsw(reg, Address(reg, addr & 0x3fff));
 980   }
 981 #else
 982   mov_slow(reg, addr & ~0xfff);
 983   ldr(reg, Address(reg, addr & 0xfff));
 984 #endif
 985 }
 986 
 987 void MacroAssembler::ldr_global_ptr(Register reg, address address_of_global) {
 988 #ifdef AARCH64
 989   intptr_t addr = (intptr_t) address_of_global;
 990   assert ((addr & 0x7) == 0, "address should be aligned");
 991   mov_slow(reg, addr & ~0x7fff);
 992   ldr(reg, Address(reg, addr & 0x7fff));
 993 #else
 994   ldr_global_s32(reg, address_of_global);
 995 #endif
 996 }
 997 
 998 void MacroAssembler::ldrb_global(Register reg, address address_of_global) {
 999   intptr_t addr = (intptr_t) address_of_global;
1000   mov_slow(reg, addr & ~0xfff);
1001   ldrb(reg, Address(reg, addr & 0xfff));
1002 }
1003 
1004 void MacroAssembler::zero_extend(Register rd, Register rn, int bits) {
1005 #ifdef AARCH64
1006   switch (bits) {
1007     case  8: uxtb(rd, rn); break;
1008     case 16: uxth(rd, rn); break;
1009     case 32: mov_w(rd, rn); break;
1010     default: ShouldNotReachHere();
1011   }
1012 #else
1013   if (bits <= 8) {
1014     andr(rd, rn, (1 << bits) - 1);
1015   } else if (bits >= 24) {
1016     bic(rd, rn, -1 << bits);
1017   } else {
1018     mov(rd, AsmOperand(rn, lsl, 32 - bits));
1019     mov(rd, AsmOperand(rd, lsr, 32 - bits));
1020   }
1021 #endif
1022 }
1023 
1024 void MacroAssembler::sign_extend(Register rd, Register rn, int bits) {
1025 #ifdef AARCH64
1026   switch (bits) {
1027     case  8: sxtb(rd, rn); break;
1028     case 16: sxth(rd, rn); break;
1029     case 32: sxtw(rd, rn); break;
1030     default: ShouldNotReachHere();
1031   }
1032 #else
1033   mov(rd, AsmOperand(rn, lsl, 32 - bits));
1034   mov(rd, AsmOperand(rd, asr, 32 - bits));
1035 #endif
1036 }
1037 
1038 #ifndef AARCH64
1039 
1040 void MacroAssembler::long_move(Register rd_lo, Register rd_hi,
1041                                Register rn_lo, Register rn_hi,
1042                                AsmCondition cond) {
1043   if (rd_lo != rn_hi) {
1044     if (rd_lo != rn_lo) { mov(rd_lo, rn_lo, cond); }
1045     if (rd_hi != rn_hi) { mov(rd_hi, rn_hi, cond); }
1046   } else if (rd_hi != rn_lo) {
1047     if (rd_hi != rn_hi) { mov(rd_hi, rn_hi, cond); }
1048     if (rd_lo != rn_lo) { mov(rd_lo, rn_lo, cond); }
1049   } else {
1050     eor(rd_lo, rd_hi, rd_lo, cond);
1051     eor(rd_hi, rd_lo, rd_hi, cond);
1052     eor(rd_lo, rd_hi, rd_lo, cond);
1053   }
1054 }
1055 
1056 void MacroAssembler::long_shift(Register rd_lo, Register rd_hi,
1057                                 Register rn_lo, Register rn_hi,
1058                                 AsmShift shift, Register count) {
1059   Register tmp;
1060   if (rd_lo != rn_lo && rd_lo != rn_hi && rd_lo != count) {
1061     tmp = rd_lo;
1062   } else {
1063     tmp = rd_hi;
1064   }
1065   assert_different_registers(tmp, count, rn_lo, rn_hi);
1066 
1067   subs(tmp, count, 32);
1068   if (shift == lsl) {
1069     assert_different_registers(rd_hi, rn_lo);
1070     assert_different_registers(count, rd_hi);
1071     mov(rd_hi, AsmOperand(rn_lo, shift, tmp), pl);
1072     rsb(tmp, count, 32, mi);
1073     if (rd_hi == rn_hi) {
1074       mov(rd_hi, AsmOperand(rn_hi, lsl, count), mi);
1075       orr(rd_hi, rd_hi, AsmOperand(rn_lo, lsr, tmp), mi);
1076     } else {
1077       mov(rd_hi, AsmOperand(rn_lo, lsr, tmp), mi);
1078       orr(rd_hi, rd_hi, AsmOperand(rn_hi, lsl, count), mi);
1079     }
1080     mov(rd_lo, AsmOperand(rn_lo, shift, count));
1081   } else {
1082     assert_different_registers(rd_lo, rn_hi);
1083     assert_different_registers(rd_lo, count);
1084     mov(rd_lo, AsmOperand(rn_hi, shift, tmp), pl);
1085     rsb(tmp, count, 32, mi);
1086     if (rd_lo == rn_lo) {
1087       mov(rd_lo, AsmOperand(rn_lo, lsr, count), mi);
1088       orr(rd_lo, rd_lo, AsmOperand(rn_hi, lsl, tmp), mi);
1089     } else {
1090       mov(rd_lo, AsmOperand(rn_hi, lsl, tmp), mi);
1091       orr(rd_lo, rd_lo, AsmOperand(rn_lo, lsr, count), mi);
1092     }
1093     mov(rd_hi, AsmOperand(rn_hi, shift, count));
1094   }
1095 }
1096 
1097 void MacroAssembler::long_shift(Register rd_lo, Register rd_hi,
1098                                 Register rn_lo, Register rn_hi,
1099                                 AsmShift shift, int count) {
1100   assert(count != 0 && (count & ~63) == 0, "must be");
1101 
1102   if (shift == lsl) {
1103     assert_different_registers(rd_hi, rn_lo);
1104     if (count >= 32) {
1105       mov(rd_hi, AsmOperand(rn_lo, lsl, count - 32));
1106       mov(rd_lo, 0);
1107     } else {
1108       mov(rd_hi, AsmOperand(rn_hi, lsl, count));
1109       orr(rd_hi, rd_hi, AsmOperand(rn_lo, lsr, 32 - count));
1110       mov(rd_lo, AsmOperand(rn_lo, lsl, count));
1111     }
1112   } else {
1113     assert_different_registers(rd_lo, rn_hi);
1114     if (count >= 32) {
1115       if (count == 32) {
1116         mov(rd_lo, rn_hi);
1117       } else {
1118         mov(rd_lo, AsmOperand(rn_hi, shift, count - 32));
1119       }
1120       if (shift == asr) {
1121         mov(rd_hi, AsmOperand(rn_hi, asr, 0));
1122       } else {
1123         mov(rd_hi, 0);
1124       }
1125     } else {
1126       mov(rd_lo, AsmOperand(rn_lo, lsr, count));
1127       orr(rd_lo, rd_lo, AsmOperand(rn_hi, lsl, 32 - count));
1128       mov(rd_hi, AsmOperand(rn_hi, shift, count));
1129     }
1130   }
1131 }
1132 #endif // !AARCH64
1133 
1134 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
1135   // This code pattern is matched in NativeIntruction::skip_verify_oop.
1136   // Update it at modifications.
1137   if (!VerifyOops) return;
1138 
1139   char buffer[64];
1140 #ifdef COMPILER1
1141   if (CommentedAssembly) {
1142     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
1143     block_comment(buffer);
1144   }
1145 #endif
1146   const char* msg_buffer = NULL;
1147   {
1148     ResourceMark rm;
1149     stringStream ss;
1150     ss.print("%s at offset %d (%s:%d)", s, offset(), file, line);
1151     msg_buffer = code_string(ss.as_string());
1152   }
1153 
1154   save_all_registers();
1155 
1156   if (reg != R2) {
1157       mov(R2, reg);                              // oop to verify
1158   }
1159   mov(R1, SP);                                   // register save area
1160 
1161   Label done;
1162   InlinedString Lmsg(msg_buffer);
1163   ldr_literal(R0, Lmsg);                         // message
1164 
1165   // call indirectly to solve generation ordering problem
1166   ldr_global_ptr(Rtemp, StubRoutines::verify_oop_subroutine_entry_address());
1167   call(Rtemp);
1168 
1169   restore_all_registers();
1170 
1171   b(done);
1172 #ifdef COMPILER2
1173   int off = offset();
1174 #endif
1175   bind_literal(Lmsg);
1176 #ifdef COMPILER2
1177   if (offset() - off == 1 * wordSize) {
1178     // no padding, so insert nop for worst-case sizing
1179     nop();
1180   }
1181 #endif
1182   bind(done);
1183 }
1184 
1185 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
1186   if (!VerifyOops) return;
1187 
1188   const char* msg_buffer = NULL;
1189   {
1190     ResourceMark rm;
1191     stringStream ss;
1192     if ((addr.base() == SP) && (addr.index()==noreg)) {
1193       ss.print("verify_oop_addr SP[%d]: %s", (int)addr.disp(), s);
1194     } else {
1195       ss.print("verify_oop_addr: %s", s);
1196     }
1197     ss.print(" (%s:%d)", file, line);
1198     msg_buffer = code_string(ss.as_string());
1199   }
1200 
1201   int push_size = save_all_registers();
1202 
1203   if (addr.base() == SP) {
1204     // computes an addr that takes into account the push
1205     if (addr.index() != noreg) {
1206       Register new_base = addr.index() == R2 ? R1 : R2; // avoid corrupting the index
1207       add(new_base, SP, push_size);
1208       addr = addr.rebase(new_base);
1209     } else {
1210       addr = addr.plus_disp(push_size);
1211     }
1212   }
1213 
1214   ldr(R2, addr);                                 // oop to verify
1215   mov(R1, SP);                                   // register save area
1216 
1217   Label done;
1218   InlinedString Lmsg(msg_buffer);
1219   ldr_literal(R0, Lmsg);                         // message
1220 
1221   // call indirectly to solve generation ordering problem
1222   ldr_global_ptr(Rtemp, StubRoutines::verify_oop_subroutine_entry_address());
1223   call(Rtemp);
1224 
1225   restore_all_registers();
1226 
1227   b(done);
1228   bind_literal(Lmsg);
1229   bind(done);
1230 }
1231 
1232 void MacroAssembler::null_check(Register reg, Register tmp, int offset) {
1233   if (needs_explicit_null_check(offset)) {
1234 #ifdef AARCH64
1235     ldr(ZR, Address(reg));
1236 #else
1237     assert_different_registers(reg, tmp);
1238     if (tmp == noreg) {
1239       tmp = Rtemp;
1240       assert((! Thread::current()->is_Compiler_thread()) ||
1241              (! (ciEnv::current()->task() == NULL)) ||
1242              (! (ciEnv::current()->comp_level() == CompLevel_full_optimization)),
1243              "Rtemp not available in C2"); // explicit tmp register required
1244       // XXX: could we mark the code buffer as not compatible with C2 ?
1245     }
1246     ldr(tmp, Address(reg));
1247 #endif
1248   }
1249 }
1250 
1251 // Puts address of allocated object into register `obj` and end of allocated object into register `obj_end`.
1252 void MacroAssembler::eden_allocate(Register obj, Register obj_end, Register tmp1, Register tmp2,
1253                                  RegisterOrConstant size_expression, Label& slow_case) {
1254   if (!Universe::heap()->supports_inline_contig_alloc()) {
1255     b(slow_case);
1256     return;
1257   }
1258 
1259   CollectedHeap* ch = Universe::heap();
1260 
1261   const Register top_addr = tmp1;
1262   const Register heap_end = tmp2;
1263 
1264   if (size_expression.is_register()) {
1265     assert_different_registers(obj, obj_end, top_addr, heap_end, size_expression.as_register());
1266   } else {
1267     assert_different_registers(obj, obj_end, top_addr, heap_end);
1268   }
1269 
1270   bool load_const = AARCH64_ONLY(false) NOT_AARCH64(VM_Version::supports_movw() ); // TODO-AARCH64 check performance
1271   if (load_const) {
1272     mov_address(top_addr, (address)Universe::heap()->top_addr(), symbolic_Relocation::eden_top_reference);
1273   } else {
1274     ldr(top_addr, Address(Rthread, JavaThread::heap_top_addr_offset()));
1275   }
1276   // Calculate new heap_top by adding the size of the object
1277   Label retry;
1278   bind(retry);
1279 
1280 #ifdef AARCH64
1281   ldxr(obj, top_addr);
1282 #else
1283   ldr(obj, Address(top_addr));
1284 #endif // AARCH64
1285 
1286   ldr(heap_end, Address(top_addr, (intptr_t)ch->end_addr() - (intptr_t)ch->top_addr()));
1287   add_rc(obj_end, obj, size_expression);
1288   // Check if obj_end wrapped around, i.e., obj_end < obj. If yes, jump to the slow case.
1289   cmp(obj_end, obj);
1290   b(slow_case, lo);
1291   // Update heap_top if allocation succeeded
1292   cmp(obj_end, heap_end);
1293   b(slow_case, hi);
1294 
1295 #ifdef AARCH64
1296   stxr(heap_end/*scratched*/, obj_end, top_addr);
1297   cbnz_w(heap_end, retry);
1298 #else
1299   atomic_cas_bool(obj, obj_end, top_addr, 0, heap_end/*scratched*/);
1300   b(retry, ne);
1301 #endif // AARCH64
1302 }
1303 
1304 // Puts address of allocated object into register `obj` and end of allocated object into register `obj_end`.
1305 void MacroAssembler::tlab_allocate(Register obj, Register obj_end, Register tmp1,
1306                                  RegisterOrConstant size_expression, Label& slow_case) {
1307   const Register tlab_end = tmp1;
1308   assert_different_registers(obj, obj_end, tlab_end);
1309 
1310   ldr(obj, Address(Rthread, JavaThread::tlab_top_offset()));
1311   ldr(tlab_end, Address(Rthread, JavaThread::tlab_end_offset()));
1312   add_rc(obj_end, obj, size_expression);
1313   cmp(obj_end, tlab_end);
1314   b(slow_case, hi);
1315   str(obj_end, Address(Rthread, JavaThread::tlab_top_offset()));
1316 }
1317 
1318 // Fills memory regions [start..end] with zeroes. Clobbers `start` and `tmp` registers.
1319 void MacroAssembler::zero_memory(Register start, Register end, Register tmp) {
1320   Label loop;
1321   const Register ptr = start;
1322 
1323 #ifdef AARCH64
1324   // TODO-AARCH64 - compare performance of 2x word zeroing with simple 1x
1325   const Register size = tmp;
1326   Label remaining, done;
1327 
1328   sub(size, end, start);
1329 
1330 #ifdef ASSERT
1331   { Label L;
1332     tst(size, wordSize - 1);
1333     b(L, eq);
1334     stop("size is not a multiple of wordSize");
1335     bind(L);
1336   }
1337 #endif // ASSERT
1338 
1339   subs(size, size, wordSize);
1340   b(remaining, le);
1341 
1342   // Zero by 2 words per iteration.
1343   bind(loop);
1344   subs(size, size, 2*wordSize);
1345   stp(ZR, ZR, Address(ptr, 2*wordSize, post_indexed));
1346   b(loop, gt);
1347 
1348   bind(remaining);
1349   b(done, ne);
1350   str(ZR, Address(ptr));
1351   bind(done);
1352 #else
1353   mov(tmp, 0);
1354   bind(loop);
1355   cmp(ptr, end);
1356   str(tmp, Address(ptr, wordSize, post_indexed), lo);
1357   b(loop, lo);
1358 #endif // AARCH64
1359 }
1360 
1361 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register tmp) {
1362 #ifdef AARCH64
1363   ldr(tmp, Address(Rthread, in_bytes(JavaThread::allocated_bytes_offset())));
1364   add_rc(tmp, tmp, size_in_bytes);
1365   str(tmp, Address(Rthread, in_bytes(JavaThread::allocated_bytes_offset())));
1366 #else
1367   // Bump total bytes allocated by this thread
1368   Label done;
1369 
1370   // Borrow the Rthread for alloc counter
1371   Register Ralloc = Rthread;
1372   add(Ralloc, Ralloc, in_bytes(JavaThread::allocated_bytes_offset()));
1373   ldr(tmp, Address(Ralloc));
1374   adds(tmp, tmp, size_in_bytes);
1375   str(tmp, Address(Ralloc), cc);
1376   b(done, cc);
1377 
1378   // Increment the high word and store single-copy atomically (that is an unlikely scenario on typical embedded systems as it means >4GB has been allocated)
1379   // To do so ldrd/strd instructions used which require an even-odd pair of registers. Such a request could be difficult to satisfy by
1380   // allocating those registers on a higher level, therefore the routine is ready to allocate a pair itself.
1381   Register low, high;
1382   // Select ether R0/R1 or R2/R3
1383 
1384   if (size_in_bytes.is_register() && (size_in_bytes.as_register() == R0 || size_in_bytes.as_register() == R1)) {
1385     low = R2;
1386     high  = R3;
1387   } else {
1388     low = R0;
1389     high  = R1;
1390   }
1391   push(RegisterSet(low, high));
1392 
1393   ldrd(low, Address(Ralloc));
1394   adds(low, low, size_in_bytes);
1395   adc(high, high, 0);
1396   strd(low, Address(Ralloc));
1397 
1398   pop(RegisterSet(low, high));
1399 
1400   bind(done);
1401 
1402   // Unborrow the Rthread
1403   sub(Rthread, Ralloc, in_bytes(JavaThread::allocated_bytes_offset()));
1404 #endif // AARCH64
1405 }
1406 
1407 void MacroAssembler::arm_stack_overflow_check(int frame_size_in_bytes, Register tmp) {
1408   // Version of AbstractAssembler::generate_stack_overflow_check optimized for ARM
1409   if (UseStackBanging) {
1410     const int page_size = os::vm_page_size();
1411 
1412     sub_slow(tmp, SP, JavaThread::stack_shadow_zone_size());
1413     strb(R0, Address(tmp));
1414 #ifdef AARCH64
1415     for (; frame_size_in_bytes >= page_size; frame_size_in_bytes -= page_size) {
1416       sub(tmp, tmp, page_size);
1417       strb(R0, Address(tmp));
1418     }
1419 #else
1420     for (; frame_size_in_bytes >= page_size; frame_size_in_bytes -= 0xff0) {
1421       strb(R0, Address(tmp, -0xff0, pre_indexed));
1422     }
1423 #endif // AARCH64
1424   }
1425 }
1426 
1427 void MacroAssembler::arm_stack_overflow_check(Register Rsize, Register tmp) {
1428   if (UseStackBanging) {
1429     Label loop;
1430 
1431     mov(tmp, SP);
1432     add_slow(Rsize, Rsize, JavaThread::stack_shadow_zone_size() - os::vm_page_size());
1433 #ifdef AARCH64
1434     sub(tmp, tmp, Rsize);
1435     bind(loop);
1436     subs(Rsize, Rsize, os::vm_page_size());
1437     strb(ZR, Address(tmp, Rsize));
1438 #else
1439     bind(loop);
1440     subs(Rsize, Rsize, 0xff0);
1441     strb(R0, Address(tmp, -0xff0, pre_indexed));
1442 #endif // AARCH64
1443     b(loop, hi);
1444   }
1445 }
1446 
1447 void MacroAssembler::stop(const char* msg) {
1448   // This code pattern is matched in NativeIntruction::is_stop.
1449   // Update it at modifications.
1450 #ifdef COMPILER1
1451   if (CommentedAssembly) {
1452     block_comment("stop");
1453   }
1454 #endif
1455 
1456   InlinedAddress Ldebug(CAST_FROM_FN_PTR(address, MacroAssembler::debug));
1457   InlinedString Lmsg(msg);
1458 
1459   // save all registers for further inspection
1460   save_all_registers();
1461 
1462   ldr_literal(R0, Lmsg);                     // message
1463   mov(R1, SP);                               // register save area
1464 
1465 #ifdef AARCH64
1466   ldr_literal(Rtemp, Ldebug);
1467   br(Rtemp);
1468 #else
1469   ldr_literal(PC, Ldebug);                   // call MacroAssembler::debug
1470 #endif // AARCH64
1471 
1472 #if defined(COMPILER2) && defined(AARCH64)
1473   int off = offset();
1474 #endif
1475   bind_literal(Lmsg);
1476   bind_literal(Ldebug);
1477 #if defined(COMPILER2) && defined(AARCH64)
1478   if (offset() - off == 2 * wordSize) {
1479     // no padding, so insert nop for worst-case sizing
1480     nop();
1481   }
1482 #endif
1483 }
1484 
1485 void MacroAssembler::warn(const char* msg) {
1486 #ifdef COMPILER1
1487   if (CommentedAssembly) {
1488     block_comment("warn");
1489   }
1490 #endif
1491 
1492   InlinedAddress Lwarn(CAST_FROM_FN_PTR(address, warning));
1493   InlinedString Lmsg(msg);
1494   Label done;
1495 
1496   int push_size = save_caller_save_registers();
1497 
1498 #ifdef AARCH64
1499   // TODO-AARCH64 - get rid of extra debug parameters
1500   mov(R1, LR);
1501   mov(R2, FP);
1502   add(R3, SP, push_size);
1503 #endif
1504 
1505   ldr_literal(R0, Lmsg);                    // message
1506   ldr_literal(LR, Lwarn);                   // call warning
1507 
1508   call(LR);
1509 
1510   restore_caller_save_registers();
1511 
1512   b(done);
1513   bind_literal(Lmsg);
1514   bind_literal(Lwarn);
1515   bind(done);
1516 }
1517 
1518 
1519 int MacroAssembler::save_all_registers() {
1520   // This code pattern is matched in NativeIntruction::is_save_all_registers.
1521   // Update it at modifications.
1522 #ifdef AARCH64
1523   const Register tmp = Rtemp;
1524   raw_push(R30, ZR);
1525   for (int i = 28; i >= 0; i -= 2) {
1526       raw_push(as_Register(i), as_Register(i+1));
1527   }
1528   mov_pc_to(tmp);
1529   str(tmp, Address(SP, 31*wordSize));
1530   ldr(tmp, Address(SP, tmp->encoding()*wordSize));
1531   return 32*wordSize;
1532 #else
1533   push(RegisterSet(R0, R12) | RegisterSet(LR) | RegisterSet(PC));
1534   return 15*wordSize;
1535 #endif // AARCH64
1536 }
1537 
1538 void MacroAssembler::restore_all_registers() {
1539 #ifdef AARCH64
1540   for (int i = 0; i <= 28; i += 2) {
1541     raw_pop(as_Register(i), as_Register(i+1));
1542   }
1543   raw_pop(R30, ZR);
1544 #else
1545   pop(RegisterSet(R0, R12) | RegisterSet(LR));   // restore registers
1546   add(SP, SP, wordSize);                         // discard saved PC
1547 #endif // AARCH64
1548 }
1549 
1550 int MacroAssembler::save_caller_save_registers() {
1551 #ifdef AARCH64
1552   for (int i = 0; i <= 16; i += 2) {
1553     raw_push(as_Register(i), as_Register(i+1));
1554   }
1555   raw_push(R18, LR);
1556   return 20*wordSize;
1557 #else
1558 #if R9_IS_SCRATCHED
1559   // Save also R10 to preserve alignment
1560   push(RegisterSet(R0, R3) | RegisterSet(R12) | RegisterSet(LR) | RegisterSet(R9,R10));
1561   return 8*wordSize;
1562 #else
1563   push(RegisterSet(R0, R3) | RegisterSet(R12) | RegisterSet(LR));
1564   return 6*wordSize;
1565 #endif
1566 #endif // AARCH64
1567 }
1568 
1569 void MacroAssembler::restore_caller_save_registers() {
1570 #ifdef AARCH64
1571   raw_pop(R18, LR);
1572   for (int i = 16; i >= 0; i -= 2) {
1573     raw_pop(as_Register(i), as_Register(i+1));
1574   }
1575 #else
1576 #if R9_IS_SCRATCHED
1577   pop(RegisterSet(R0, R3) | RegisterSet(R12) | RegisterSet(LR) | RegisterSet(R9,R10));
1578 #else
1579   pop(RegisterSet(R0, R3) | RegisterSet(R12) | RegisterSet(LR));
1580 #endif
1581 #endif // AARCH64
1582 }
1583 
1584 void MacroAssembler::debug(const char* msg, const intx* registers) {
1585   // In order to get locks to work, we need to fake a in_VM state
1586   JavaThread* thread = JavaThread::current();
1587   thread->set_thread_state(_thread_in_vm);
1588 
1589   if (ShowMessageBoxOnError) {
1590     ttyLocker ttyl;
1591     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1592       BytecodeCounter::print();
1593     }
1594     if (os::message_box(msg, "Execution stopped, print registers?")) {
1595 #ifdef AARCH64
1596       // saved registers: R0-R30, PC
1597       const int nregs = 32;
1598 #else
1599       // saved registers: R0-R12, LR, PC
1600       const int nregs = 15;
1601       const Register regs[nregs] = {R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, PC};
1602 #endif // AARCH64
1603 
1604       for (int i = 0; i < nregs AARCH64_ONLY(-1); i++) {
1605         tty->print_cr("%s = " INTPTR_FORMAT, AARCH64_ONLY(as_Register(i)) NOT_AARCH64(regs[i])->name(), registers[i]);
1606       }
1607 
1608 #ifdef AARCH64
1609       tty->print_cr("pc = " INTPTR_FORMAT, registers[nregs-1]);
1610 #endif // AARCH64
1611 
1612       // derive original SP value from the address of register save area
1613       tty->print_cr("%s = " INTPTR_FORMAT, SP->name(), p2i(&registers[nregs]));
1614     }
1615     BREAKPOINT;
1616   } else {
1617     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
1618   }
1619   assert(false, "DEBUG MESSAGE: %s", msg);
1620   fatal("%s", msg); // returning from MacroAssembler::debug is not supported
1621 }
1622 
1623 void MacroAssembler::unimplemented(const char* what) {
1624   const char* buf = NULL;
1625   {
1626     ResourceMark rm;
1627     stringStream ss;
1628     ss.print("unimplemented: %s", what);
1629     buf = code_string(ss.as_string());
1630   }
1631   stop(buf);
1632 }
1633 
1634 
1635 // Implementation of FixedSizeCodeBlock
1636 
1637 FixedSizeCodeBlock::FixedSizeCodeBlock(MacroAssembler* masm, int size_in_instrs, bool enabled) :
1638 _masm(masm), _start(masm->pc()), _size_in_instrs(size_in_instrs), _enabled(enabled) {
1639 }
1640 
1641 FixedSizeCodeBlock::~FixedSizeCodeBlock() {
1642   if (_enabled) {
1643     address curr_pc = _masm->pc();
1644 
1645     assert(_start < curr_pc, "invalid current pc");
1646     guarantee(curr_pc <= _start + _size_in_instrs * Assembler::InstructionSize, "code block is too long");
1647 
1648     int nops_count = (_start - curr_pc) / Assembler::InstructionSize + _size_in_instrs;
1649     for (int i = 0; i < nops_count; i++) {
1650       _masm->nop();
1651     }
1652   }
1653 }
1654 
1655 #ifdef AARCH64
1656 
1657 // Serializes memory.
1658 // tmp register is not used on AArch64, this parameter is provided solely for better compatibility with 32-bit ARM
1659 void MacroAssembler::membar(Membar_mask_bits order_constraint, Register tmp) {
1660   if (!os::is_MP()) return;
1661 
1662   // TODO-AARCH64 investigate dsb vs dmb effects
1663   if (order_constraint == StoreStore) {
1664     dmb(DMB_st);
1665   } else if ((order_constraint & ~(LoadLoad | LoadStore)) == 0) {
1666     dmb(DMB_ld);
1667   } else {
1668     dmb(DMB_all);
1669   }
1670 }
1671 
1672 #else
1673 
1674 // Serializes memory. Potentially blows flags and reg.
1675 // tmp is a scratch for v6 co-processor write op (could be noreg for other architecure versions)
1676 // preserve_flags takes a longer path in LoadStore case (dmb rather then control dependency) to preserve status flags. Optional.
1677 // load_tgt is an ordered load target in a LoadStore case only, to create dependency between the load operation and conditional branch. Optional.
1678 void MacroAssembler::membar(Membar_mask_bits order_constraint,
1679                             Register tmp,
1680                             bool preserve_flags,
1681                             Register load_tgt) {
1682   if (!os::is_MP()) return;
1683 
1684   if (order_constraint == StoreStore) {
1685     dmb(DMB_st, tmp);
1686   } else if ((order_constraint & StoreLoad)  ||
1687              (order_constraint & LoadLoad)   ||
1688              (order_constraint & StoreStore) ||
1689              (load_tgt == noreg)             ||
1690              preserve_flags) {
1691     dmb(DMB_all, tmp);
1692   } else {
1693     // LoadStore: speculative stores reordeing is prohibited
1694 
1695     // By providing an ordered load target register, we avoid an extra memory load reference
1696     Label not_taken;
1697     bind(not_taken);
1698     cmp(load_tgt, load_tgt);
1699     b(not_taken, ne);
1700   }
1701 }
1702 
1703 #endif // AARCH64
1704 
1705 // If "allow_fallthrough_on_failure" is false, we always branch to "slow_case"
1706 // on failure, so fall-through can only mean success.
1707 // "one_shot" controls whether we loop and retry to mitigate spurious failures.
1708 // This is only needed for C2, which for some reason does not rety,
1709 // while C1/interpreter does.
1710 // TODO: measure if it makes a difference
1711 
1712 void MacroAssembler::cas_for_lock_acquire(Register oldval, Register newval,
1713   Register base, Register tmp, Label &slow_case,
1714   bool allow_fallthrough_on_failure, bool one_shot)
1715 {
1716 
1717   bool fallthrough_is_success = false;
1718 
1719   // ARM Litmus Test example does prefetching here.
1720   // TODO: investigate if it helps performance
1721 
1722   // The last store was to the displaced header, so to prevent
1723   // reordering we must issue a StoreStore or Release barrier before
1724   // the CAS store.
1725 
1726 #ifdef AARCH64
1727 
1728   Register Rscratch = tmp;
1729   Register Roop = base;
1730   Register mark = oldval;
1731   Register Rbox = newval;
1732   Label loop;
1733 
1734   assert(oopDesc::mark_offset_in_bytes() == 0, "must be");
1735 
1736   // Instead of StoreStore here, we use store-release-exclusive below
1737 
1738   bind(loop);
1739 
1740   ldaxr(tmp, base);  // acquire
1741   cmp(tmp, oldval);
1742   b(slow_case, ne);
1743   stlxr(tmp, newval, base); // release
1744   if (one_shot) {
1745     cmp_w(tmp, 0);
1746   } else {
1747     cbnz_w(tmp, loop);
1748     fallthrough_is_success = true;
1749   }
1750 
1751   // MemBarAcquireLock would normally go here, but
1752   // we already do ldaxr+stlxr above, which has
1753   // Sequential Consistency
1754 
1755 #else
1756   membar(MacroAssembler::StoreStore, noreg);
1757 
1758   if (one_shot) {
1759     ldrex(tmp, Address(base, oopDesc::mark_offset_in_bytes()));
1760     cmp(tmp, oldval);
1761     strex(tmp, newval, Address(base, oopDesc::mark_offset_in_bytes()), eq);
1762     cmp(tmp, 0, eq);
1763   } else {
1764     atomic_cas_bool(oldval, newval, base, oopDesc::mark_offset_in_bytes(), tmp);
1765   }
1766 
1767   // MemBarAcquireLock barrier
1768   // According to JSR-133 Cookbook, this should be LoadLoad | LoadStore,
1769   // but that doesn't prevent a load or store from floating up between
1770   // the load and store in the CAS sequence, so play it safe and
1771   // do a full fence.
1772   membar(Membar_mask_bits(LoadLoad | LoadStore | StoreStore | StoreLoad), noreg);
1773 #endif
1774   if (!fallthrough_is_success && !allow_fallthrough_on_failure) {
1775     b(slow_case, ne);
1776   }
1777 }
1778 
1779 void MacroAssembler::cas_for_lock_release(Register oldval, Register newval,
1780   Register base, Register tmp, Label &slow_case,
1781   bool allow_fallthrough_on_failure, bool one_shot)
1782 {
1783 
1784   bool fallthrough_is_success = false;
1785 
1786   assert_different_registers(oldval,newval,base,tmp);
1787 
1788 #ifdef AARCH64
1789   Label loop;
1790 
1791   assert(oopDesc::mark_offset_in_bytes() == 0, "must be");
1792 
1793   bind(loop);
1794   ldxr(tmp, base);
1795   cmp(tmp, oldval);
1796   b(slow_case, ne);
1797   // MemBarReleaseLock barrier
1798   stlxr(tmp, newval, base);
1799   if (one_shot) {
1800     cmp_w(tmp, 0);
1801   } else {
1802     cbnz_w(tmp, loop);
1803     fallthrough_is_success = true;
1804   }
1805 #else
1806   // MemBarReleaseLock barrier
1807   // According to JSR-133 Cookbook, this should be StoreStore | LoadStore,
1808   // but that doesn't prevent a load or store from floating down between
1809   // the load and store in the CAS sequence, so play it safe and
1810   // do a full fence.
1811   membar(Membar_mask_bits(LoadLoad | LoadStore | StoreStore | StoreLoad), tmp);
1812 
1813   if (one_shot) {
1814     ldrex(tmp, Address(base, oopDesc::mark_offset_in_bytes()));
1815     cmp(tmp, oldval);
1816     strex(tmp, newval, Address(base, oopDesc::mark_offset_in_bytes()), eq);
1817     cmp(tmp, 0, eq);
1818   } else {
1819     atomic_cas_bool(oldval, newval, base, oopDesc::mark_offset_in_bytes(), tmp);
1820   }
1821 #endif
1822   if (!fallthrough_is_success && !allow_fallthrough_on_failure) {
1823     b(slow_case, ne);
1824   }
1825 
1826   // ExitEnter
1827   // According to JSR-133 Cookbook, this should be StoreLoad, the same
1828   // barrier that follows volatile store.
1829   // TODO: Should be able to remove on armv8 if volatile loads
1830   // use the load-acquire instruction.
1831   membar(StoreLoad, noreg);
1832 }
1833 
1834 #ifndef PRODUCT
1835 
1836 // Preserves flags and all registers.
1837 // On SMP the updated value might not be visible to external observers without a sychronization barrier
1838 void MacroAssembler::cond_atomic_inc32(AsmCondition cond, int* counter_addr) {
1839   if (counter_addr != NULL) {
1840     InlinedAddress counter_addr_literal((address)counter_addr);
1841     Label done, retry;
1842     if (cond != al) {
1843       b(done, inverse(cond));
1844     }
1845 
1846 #ifdef AARCH64
1847     raw_push(R0, R1);
1848     raw_push(R2, ZR);
1849 
1850     ldr_literal(R0, counter_addr_literal);
1851 
1852     bind(retry);
1853     ldxr_w(R1, R0);
1854     add_w(R1, R1, 1);
1855     stxr_w(R2, R1, R0);
1856     cbnz_w(R2, retry);
1857 
1858     raw_pop(R2, ZR);
1859     raw_pop(R0, R1);
1860 #else
1861     push(RegisterSet(R0, R3) | RegisterSet(Rtemp));
1862     ldr_literal(R0, counter_addr_literal);
1863 
1864     mrs(CPSR, Rtemp);
1865 
1866     bind(retry);
1867     ldr_s32(R1, Address(R0));
1868     add(R2, R1, 1);
1869     atomic_cas_bool(R1, R2, R0, 0, R3);
1870     b(retry, ne);
1871 
1872     msr(CPSR_fsxc, Rtemp);
1873 
1874     pop(RegisterSet(R0, R3) | RegisterSet(Rtemp));
1875 #endif // AARCH64
1876 
1877     b(done);
1878     bind_literal(counter_addr_literal);
1879 
1880     bind(done);
1881   }
1882 }
1883 
1884 #endif // !PRODUCT
1885 
1886 
1887 // Building block for CAS cases of biased locking: makes CAS and records statistics.
1888 // The slow_case label is used to transfer control if CAS fails. Otherwise leaves condition codes set.
1889 void MacroAssembler::biased_locking_enter_with_cas(Register obj_reg, Register old_mark_reg, Register new_mark_reg,
1890                                                  Register tmp, Label& slow_case, int* counter_addr) {
1891 
1892   cas_for_lock_acquire(old_mark_reg, new_mark_reg, obj_reg, tmp, slow_case);
1893 #ifdef ASSERT
1894   breakpoint(ne); // Fallthrough only on success
1895 #endif
1896 #ifndef PRODUCT
1897   if (counter_addr != NULL) {
1898     cond_atomic_inc32(al, counter_addr);
1899   }
1900 #endif // !PRODUCT
1901 }
1902 
1903 int MacroAssembler::biased_locking_enter(Register obj_reg, Register swap_reg, Register tmp_reg,
1904                                          bool swap_reg_contains_mark,
1905                                          Register tmp2,
1906                                          Label& done, Label& slow_case,
1907                                          BiasedLockingCounters* counters) {
1908   // obj_reg must be preserved (at least) if the bias locking fails
1909   // tmp_reg is a temporary register
1910   // swap_reg was used as a temporary but contained a value
1911   //   that was used afterwards in some call pathes. Callers
1912   //   have been fixed so that swap_reg no longer needs to be
1913   //   saved.
1914   // Rtemp in no longer scratched
1915 
1916   assert(UseBiasedLocking, "why call this otherwise?");
1917   assert_different_registers(obj_reg, swap_reg, tmp_reg, tmp2);
1918   guarantee(swap_reg!=tmp_reg, "invariant");
1919   assert(tmp_reg != noreg, "must supply tmp_reg");
1920 
1921 #ifndef PRODUCT
1922   if (PrintBiasedLockingStatistics && (counters == NULL)) {
1923     counters = BiasedLocking::counters();
1924   }
1925 #endif
1926 
1927   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1928   Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1929 
1930   // Biased locking
1931   // See whether the lock is currently biased toward our thread and
1932   // whether the epoch is still valid
1933   // Note that the runtime guarantees sufficient alignment of JavaThread
1934   // pointers to allow age to be placed into low bits
1935   // First check to see whether biasing is even enabled for this object
1936   Label cas_label;
1937 
1938   // The null check applies to the mark loading, if we need to load it.
1939   // If the mark has already been loaded in swap_reg then it has already
1940   // been performed and the offset is irrelevant.
1941   int null_check_offset = offset();
1942   if (!swap_reg_contains_mark) {
1943     ldr(swap_reg, mark_addr);
1944   }
1945 
1946   // On MP platform loads could return 'stale' values in some cases.
1947   // That is acceptable since either CAS or slow case path is taken in the worst case.
1948 
1949   andr(tmp_reg, swap_reg, (uintx)markOopDesc::biased_lock_mask_in_place);
1950   cmp(tmp_reg, markOopDesc::biased_lock_pattern);
1951 
1952   b(cas_label, ne);
1953 
1954   // The bias pattern is present in the object's header. Need to check
1955   // whether the bias owner and the epoch are both still current.
1956   load_klass(tmp_reg, obj_reg);
1957   ldr(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
1958   orr(tmp_reg, tmp_reg, Rthread);
1959   eor(tmp_reg, tmp_reg, swap_reg);
1960 
1961 #ifdef AARCH64
1962   ands(tmp_reg, tmp_reg, ~((uintx) markOopDesc::age_mask_in_place));
1963 #else
1964   bics(tmp_reg, tmp_reg, ((int) markOopDesc::age_mask_in_place));
1965 #endif // AARCH64
1966 
1967 #ifndef PRODUCT
1968   if (counters != NULL) {
1969     cond_atomic_inc32(eq, counters->biased_lock_entry_count_addr());
1970   }
1971 #endif // !PRODUCT
1972 
1973   b(done, eq);
1974 
1975   Label try_revoke_bias;
1976   Label try_rebias;
1977 
1978   // At this point we know that the header has the bias pattern and
1979   // that we are not the bias owner in the current epoch. We need to
1980   // figure out more details about the state of the header in order to
1981   // know what operations can be legally performed on the object's
1982   // header.
1983 
1984   // If the low three bits in the xor result aren't clear, that means
1985   // the prototype header is no longer biased and we have to revoke
1986   // the bias on this object.
1987   tst(tmp_reg, (uintx)markOopDesc::biased_lock_mask_in_place);
1988   b(try_revoke_bias, ne);
1989 
1990   // Biasing is still enabled for this data type. See whether the
1991   // epoch of the current bias is still valid, meaning that the epoch
1992   // bits of the mark word are equal to the epoch bits of the
1993   // prototype header. (Note that the prototype header's epoch bits
1994   // only change at a safepoint.) If not, attempt to rebias the object
1995   // toward the current thread. Note that we must be absolutely sure
1996   // that the current epoch is invalid in order to do this because
1997   // otherwise the manipulations it performs on the mark word are
1998   // illegal.
1999   tst(tmp_reg, (uintx)markOopDesc::epoch_mask_in_place);
2000   b(try_rebias, ne);
2001 
2002   // tmp_reg has the age, epoch and pattern bits cleared
2003   // The remaining (owner) bits are (Thread ^ current_owner)
2004 
2005   // The epoch of the current bias is still valid but we know nothing
2006   // about the owner; it might be set or it might be clear. Try to
2007   // acquire the bias of the object using an atomic operation. If this
2008   // fails we will go in to the runtime to revoke the object's bias.
2009   // Note that we first construct the presumed unbiased header so we
2010   // don't accidentally blow away another thread's valid bias.
2011 
2012   // Note that we know the owner is not ourself. Hence, success can
2013   // only happen when the owner bits is 0
2014 
2015 #ifdef AARCH64
2016   // Bit mask biased_lock + age + epoch is not a valid AArch64 logical immediate, as it has
2017   // cleared bit in the middle (cms bit). So it is loaded with separate instruction.
2018   mov(tmp2, (markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place));
2019   andr(swap_reg, swap_reg, tmp2);
2020 #else
2021   // until the assembler can be made smarter, we need to make some assumptions about the values
2022   // so we can optimize this:
2023   assert((markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place) == 0x1ff, "biased bitmasks changed");
2024 
2025   mov(swap_reg, AsmOperand(swap_reg, lsl, 23));
2026   mov(swap_reg, AsmOperand(swap_reg, lsr, 23)); // markOop with thread bits cleared (for CAS)
2027 #endif // AARCH64
2028 
2029   orr(tmp_reg, swap_reg, Rthread); // new mark
2030 
2031   biased_locking_enter_with_cas(obj_reg, swap_reg, tmp_reg, tmp2, slow_case,
2032         (counters != NULL) ? counters->anonymously_biased_lock_entry_count_addr() : NULL);
2033 
2034   // If the biasing toward our thread failed, this means that
2035   // another thread succeeded in biasing it toward itself and we
2036   // need to revoke that bias. The revocation will occur in the
2037   // interpreter runtime in the slow case.
2038 
2039   b(done);
2040 
2041   bind(try_rebias);
2042 
2043   // At this point we know the epoch has expired, meaning that the
2044   // current "bias owner", if any, is actually invalid. Under these
2045   // circumstances _only_, we are allowed to use the current header's
2046   // value as the comparison value when doing the cas to acquire the
2047   // bias in the current epoch. In other words, we allow transfer of
2048   // the bias from one thread to another directly in this situation.
2049 
2050   // tmp_reg low (not owner) bits are (age: 0 | pattern&epoch: prototype^swap_reg)
2051 
2052   eor(tmp_reg, tmp_reg, swap_reg); // OK except for owner bits (age preserved !)
2053 
2054   // owner bits 'random'. Set them to Rthread.
2055 #ifdef AARCH64
2056   mov(tmp2, (markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place));
2057   andr(tmp_reg, tmp_reg, tmp2);
2058 #else
2059   mov(tmp_reg, AsmOperand(tmp_reg, lsl, 23));
2060   mov(tmp_reg, AsmOperand(tmp_reg, lsr, 23));
2061 #endif // AARCH64
2062 
2063   orr(tmp_reg, tmp_reg, Rthread); // new mark
2064 
2065   biased_locking_enter_with_cas(obj_reg, swap_reg, tmp_reg, tmp2, slow_case,
2066         (counters != NULL) ? counters->rebiased_lock_entry_count_addr() : NULL);
2067 
2068   // If the biasing toward our thread failed, then another thread
2069   // succeeded in biasing it toward itself and we need to revoke that
2070   // bias. The revocation will occur in the runtime in the slow case.
2071 
2072   b(done);
2073 
2074   bind(try_revoke_bias);
2075 
2076   // The prototype mark in the klass doesn't have the bias bit set any
2077   // more, indicating that objects of this data type are not supposed
2078   // to be biased any more. We are going to try to reset the mark of
2079   // this object to the prototype value and fall through to the
2080   // CAS-based locking scheme. Note that if our CAS fails, it means
2081   // that another thread raced us for the privilege of revoking the
2082   // bias of this particular object, so it's okay to continue in the
2083   // normal locking code.
2084 
2085   // tmp_reg low (not owner) bits are (age: 0 | pattern&epoch: prototype^swap_reg)
2086 
2087   eor(tmp_reg, tmp_reg, swap_reg); // OK except for owner bits (age preserved !)
2088 
2089   // owner bits 'random'. Clear them
2090 #ifdef AARCH64
2091   mov(tmp2, (markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place));
2092   andr(tmp_reg, tmp_reg, tmp2);
2093 #else
2094   mov(tmp_reg, AsmOperand(tmp_reg, lsl, 23));
2095   mov(tmp_reg, AsmOperand(tmp_reg, lsr, 23));
2096 #endif // AARCH64
2097 
2098   biased_locking_enter_with_cas(obj_reg, swap_reg, tmp_reg, tmp2, cas_label,
2099         (counters != NULL) ? counters->revoked_lock_entry_count_addr() : NULL);
2100 
2101   // Fall through to the normal CAS-based lock, because no matter what
2102   // the result of the above CAS, some thread must have succeeded in
2103   // removing the bias bit from the object's header.
2104 
2105   bind(cas_label);
2106 
2107   return null_check_offset;
2108 }
2109 
2110 
2111 void MacroAssembler::biased_locking_exit(Register obj_reg, Register tmp_reg, Label& done) {
2112   assert(UseBiasedLocking, "why call this otherwise?");
2113 
2114   // Check for biased locking unlock case, which is a no-op
2115   // Note: we do not have to check the thread ID for two reasons.
2116   // First, the interpreter checks for IllegalMonitorStateException at
2117   // a higher level. Second, if the bias was revoked while we held the
2118   // lock, the object could not be rebiased toward another thread, so
2119   // the bias bit would be clear.
2120   ldr(tmp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2121 
2122   andr(tmp_reg, tmp_reg, (uintx)markOopDesc::biased_lock_mask_in_place);
2123   cmp(tmp_reg, markOopDesc::biased_lock_pattern);
2124   b(done, eq);
2125 }
2126 
2127 
2128 void MacroAssembler::resolve_jobject(Register value,
2129                                      Register tmp1,
2130                                      Register tmp2) {
2131   assert_different_registers(value, tmp1, tmp2);
2132   Label done, not_weak;
2133   cbz(value, done);             // Use NULL as-is.
2134   STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u);
2135   tbz(value, 0, not_weak);      // Test for jweak tag.
2136 
2137   // Resolve jweak.
2138   access_load_at(T_OBJECT, IN_ROOT | ON_PHANTOM_OOP_REF,
2139                  Address(value, -JNIHandles::weak_tag_value), value, tmp1, tmp2, noreg);
2140   b(done);
2141   bind(not_weak);
2142   // Resolve (untagged) jobject.
2143   access_load_at(T_OBJECT, IN_CONCURRENT_ROOT,
2144                  Address(value, 0), value, tmp1, tmp2, noreg);
2145   verify_oop(value);
2146   bind(done);
2147 }
2148 
2149 
2150 //////////////////////////////////////////////////////////////////////////////////
2151 
2152 #ifdef AARCH64
2153 
2154 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) {
2155   switch (size_in_bytes) {
2156     case  8: ldr(dst, src); break;
2157     case  4: is_signed ? ldr_s32(dst, src) : ldr_u32(dst, src); break;
2158     case  2: is_signed ? ldrsh(dst, src) : ldrh(dst, src); break;
2159     case  1: is_signed ? ldrsb(dst, src) : ldrb(dst, src); break;
2160     default: ShouldNotReachHere();
2161   }
2162 }
2163 
2164 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
2165   switch (size_in_bytes) {
2166     case  8: str(src, dst);    break;
2167     case  4: str_32(src, dst); break;
2168     case  2: strh(src, dst);   break;
2169     case  1: strb(src, dst);   break;
2170     default: ShouldNotReachHere();
2171   }
2172 }
2173 
2174 #else
2175 
2176 void MacroAssembler::load_sized_value(Register dst, Address src,
2177                                     size_t size_in_bytes, bool is_signed, AsmCondition cond) {
2178   switch (size_in_bytes) {
2179     case  4: ldr(dst, src, cond); break;
2180     case  2: is_signed ? ldrsh(dst, src, cond) : ldrh(dst, src, cond); break;
2181     case  1: is_signed ? ldrsb(dst, src, cond) : ldrb(dst, src, cond); break;
2182     default: ShouldNotReachHere();
2183   }
2184 }
2185 
2186 
2187 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes, AsmCondition cond) {
2188   switch (size_in_bytes) {
2189     case  4: str(src, dst, cond); break;
2190     case  2: strh(src, dst, cond);   break;
2191     case  1: strb(src, dst, cond);   break;
2192     default: ShouldNotReachHere();
2193   }
2194 }
2195 #endif // AARCH64
2196 
2197 // Look up the method for a megamorphic invokeinterface call.
2198 // The target method is determined by <Rinterf, Rindex>.
2199 // The receiver klass is in Rklass.
2200 // On success, the result will be in method_result, and execution falls through.
2201 // On failure, execution transfers to the given label.
2202 void MacroAssembler::lookup_interface_method(Register Rklass,
2203                                              Register Rintf,
2204                                              RegisterOrConstant itable_index,
2205                                              Register method_result,
2206                                              Register Rscan,
2207                                              Register Rtmp,
2208                                              Label& L_no_such_interface) {
2209 
2210   assert_different_registers(Rklass, Rintf, Rscan, Rtmp);
2211 
2212   const int entry_size = itableOffsetEntry::size() * HeapWordSize;
2213   assert(itableOffsetEntry::interface_offset_in_bytes() == 0, "not added for convenience");
2214 
2215   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2216   const int base = in_bytes(Klass::vtable_start_offset());
2217   const int scale = exact_log2(vtableEntry::size_in_bytes());
2218   ldr_s32(Rtmp, Address(Rklass, Klass::vtable_length_offset())); // Get length of vtable
2219   add(Rscan, Rklass, base);
2220   add(Rscan, Rscan, AsmOperand(Rtmp, lsl, scale));
2221 
2222   // Search through the itable for an interface equal to incoming Rintf
2223   // itable looks like [intface][offset][intface][offset][intface][offset]
2224 
2225   Label loop;
2226   bind(loop);
2227   ldr(Rtmp, Address(Rscan, entry_size, post_indexed));
2228 #ifdef AARCH64
2229   Label found;
2230   cmp(Rtmp, Rintf);
2231   b(found, eq);
2232   cbnz(Rtmp, loop);
2233 #else
2234   cmp(Rtmp, Rintf);  // set ZF and CF if interface is found
2235   cmn(Rtmp, 0, ne);  // check if tmp == 0 and clear CF if it is
2236   b(loop, ne);
2237 #endif // AARCH64
2238 
2239 #ifdef AARCH64
2240   b(L_no_such_interface);
2241   bind(found);
2242 #else
2243   // CF == 0 means we reached the end of itable without finding icklass
2244   b(L_no_such_interface, cc);
2245 #endif // !AARCH64
2246 
2247   if (method_result != noreg) {
2248     // Interface found at previous position of Rscan, now load the method
2249     ldr_s32(Rtmp, Address(Rscan, itableOffsetEntry::offset_offset_in_bytes() - entry_size));
2250     if (itable_index.is_register()) {
2251       add(Rtmp, Rtmp, Rklass); // Add offset to Klass*
2252       assert(itableMethodEntry::size() * HeapWordSize == wordSize, "adjust the scaling in the code below");
2253       assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust the offset in the code below");
2254       ldr(method_result, Address::indexed_ptr(Rtmp, itable_index.as_register()));
2255     } else {
2256       int method_offset = itableMethodEntry::size() * HeapWordSize * itable_index.as_constant() +
2257                           itableMethodEntry::method_offset_in_bytes();
2258       add_slow(method_result, Rklass, method_offset);
2259       ldr(method_result, Address(method_result, Rtmp));
2260     }
2261   }
2262 }
2263 
2264 #ifdef COMPILER2
2265 // TODO: 8 bytes at a time? pre-fetch?
2266 // Compare char[] arrays aligned to 4 bytes.
2267 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
2268                                         Register limit, Register result,
2269                                       Register chr1, Register chr2, Label& Ldone) {
2270   Label Lvector, Lloop;
2271 
2272   // Note: limit contains number of bytes (2*char_elements) != 0.
2273   tst(limit, 0x2); // trailing character ?
2274   b(Lvector, eq);
2275 
2276   // compare the trailing char
2277   sub(limit, limit, sizeof(jchar));
2278   ldrh(chr1, Address(ary1, limit));
2279   ldrh(chr2, Address(ary2, limit));
2280   cmp(chr1, chr2);
2281   mov(result, 0, ne);     // not equal
2282   b(Ldone, ne);
2283 
2284   // only one char ?
2285   tst(limit, limit);
2286   mov(result, 1, eq);
2287   b(Ldone, eq);
2288 
2289   // word by word compare, dont't need alignment check
2290   bind(Lvector);
2291 
2292   // Shift ary1 and ary2 to the end of the arrays, negate limit
2293   add(ary1, limit, ary1);
2294   add(ary2, limit, ary2);
2295   neg(limit, limit);
2296 
2297   bind(Lloop);
2298   ldr_u32(chr1, Address(ary1, limit));
2299   ldr_u32(chr2, Address(ary2, limit));
2300   cmp_32(chr1, chr2);
2301   mov(result, 0, ne);     // not equal
2302   b(Ldone, ne);
2303   adds(limit, limit, 2*sizeof(jchar));
2304   b(Lloop, ne);
2305 
2306   // Caller should set it:
2307   // mov(result_reg, 1);  //equal
2308 }
2309 #endif
2310 
2311 void MacroAssembler::inc_counter(address counter_addr, Register tmpreg1, Register tmpreg2) {
2312   mov_slow(tmpreg1, counter_addr);
2313   ldr_s32(tmpreg2, tmpreg1);
2314   add_32(tmpreg2, tmpreg2, 1);
2315   str_32(tmpreg2, tmpreg1);
2316 }
2317 
2318 void MacroAssembler::floating_cmp(Register dst) {
2319 #ifdef AARCH64
2320   NOT_TESTED();
2321   cset(dst, gt);            // 1 if '>', else 0
2322   csinv(dst, dst, ZR, ge);  // previous value if '>=', else -1
2323 #else
2324   vmrs(dst, FPSCR);
2325   orr(dst, dst, 0x08000000);
2326   eor(dst, dst, AsmOperand(dst, lsl, 3));
2327   mov(dst, AsmOperand(dst, asr, 30));
2328 #endif
2329 }
2330 
2331 void MacroAssembler::restore_default_fp_mode() {
2332 #ifdef AARCH64
2333   msr(SysReg_FPCR, ZR);
2334 #else
2335 #ifndef __SOFTFP__
2336   // Round to Near mode, IEEE compatible, masked exceptions
2337   mov(Rtemp, 0);
2338   vmsr(FPSCR, Rtemp);
2339 #endif // !__SOFTFP__
2340 #endif // AARCH64
2341 }
2342 
2343 #ifndef AARCH64
2344 // 24-bit word range == 26-bit byte range
2345 bool check26(int offset) {
2346   // this could be simplified, but it mimics encoding and decoding
2347   // an actual branch insrtuction
2348   int off1 = offset << 6 >> 8;
2349   int encoded = off1 & ((1<<24)-1);
2350   int decoded = encoded << 8 >> 6;
2351   return offset == decoded;
2352 }
2353 #endif // !AARCH64
2354 
2355 // Perform some slight adjustments so the default 32MB code cache
2356 // is fully reachable.
2357 static inline address first_cache_address() {
2358   return CodeCache::low_bound() + sizeof(HeapBlock::Header);
2359 }
2360 static inline address last_cache_address() {
2361   return CodeCache::high_bound() - Assembler::InstructionSize;
2362 }
2363 
2364 #ifdef AARCH64
2365 // Can we reach target using ADRP?
2366 bool MacroAssembler::page_reachable_from_cache(address target) {
2367   intptr_t cl = (intptr_t)first_cache_address() & ~0xfff;
2368   intptr_t ch = (intptr_t)last_cache_address() & ~0xfff;
2369   intptr_t addr = (intptr_t)target & ~0xfff;
2370 
2371   intptr_t loffset = addr - cl;
2372   intptr_t hoffset = addr - ch;
2373   return is_imm_in_range(loffset >> 12, 21, 0) && is_imm_in_range(hoffset >> 12, 21, 0);
2374 }
2375 #endif
2376 
2377 // Can we reach target using unconditional branch or call from anywhere
2378 // in the code cache (because code can be relocated)?
2379 bool MacroAssembler::_reachable_from_cache(address target) {
2380 #ifdef __thumb__
2381   if ((1 & (intptr_t)target) != 0) {
2382     // Return false to avoid 'b' if we need switching to THUMB mode.
2383     return false;
2384   }
2385 #endif
2386 
2387   address cl = first_cache_address();
2388   address ch = last_cache_address();
2389 
2390   if (ForceUnreachable) {
2391     // Only addresses from CodeCache can be treated as reachable.
2392     if (target < CodeCache::low_bound() || CodeCache::high_bound() < target) {
2393       return false;
2394     }
2395   }
2396 
2397   intptr_t loffset = (intptr_t)target - (intptr_t)cl;
2398   intptr_t hoffset = (intptr_t)target - (intptr_t)ch;
2399 
2400 #ifdef AARCH64
2401   return is_offset_in_range(loffset, 26) && is_offset_in_range(hoffset, 26);
2402 #else
2403   return check26(loffset - 8) && check26(hoffset - 8);
2404 #endif
2405 }
2406 
2407 bool MacroAssembler::reachable_from_cache(address target) {
2408   assert(CodeCache::contains(pc()), "not supported");
2409   return _reachable_from_cache(target);
2410 }
2411 
2412 // Can we reach the entire code cache from anywhere else in the code cache?
2413 bool MacroAssembler::_cache_fully_reachable() {
2414   address cl = first_cache_address();
2415   address ch = last_cache_address();
2416   return _reachable_from_cache(cl) && _reachable_from_cache(ch);
2417 }
2418 
2419 bool MacroAssembler::cache_fully_reachable() {
2420   assert(CodeCache::contains(pc()), "not supported");
2421   return _cache_fully_reachable();
2422 }
2423 
2424 void MacroAssembler::jump(address target, relocInfo::relocType rtype, Register scratch NOT_AARCH64_ARG(AsmCondition cond)) {
2425   assert((rtype == relocInfo::runtime_call_type) || (rtype == relocInfo::none), "not supported");
2426   if (reachable_from_cache(target)) {
2427     relocate(rtype);
2428     b(target NOT_AARCH64_ARG(cond));
2429     return;
2430   }
2431 
2432   // Note: relocate is not needed for the code below,
2433   // encoding targets in absolute format.
2434   if (ignore_non_patchable_relocations()) {
2435     rtype = relocInfo::none;
2436   }
2437 
2438 #ifdef AARCH64
2439   assert (scratch != noreg, "should be specified");
2440   InlinedAddress address_literal(target, rtype);
2441   ldr_literal(scratch, address_literal);
2442   br(scratch);
2443   int off = offset();
2444   bind_literal(address_literal);
2445 #ifdef COMPILER2
2446   if (offset() - off == wordSize) {
2447     // no padding, so insert nop for worst-case sizing
2448     nop();
2449   }
2450 #endif
2451 #else
2452   if (VM_Version::supports_movw() && (scratch != noreg) && (rtype == relocInfo::none)) {
2453     // Note: this version cannot be (atomically) patched
2454     mov_slow(scratch, (intptr_t)target, cond);
2455     bx(scratch, cond);
2456   } else {
2457     Label skip;
2458     InlinedAddress address_literal(target);
2459     if (cond != al) {
2460       b(skip, inverse(cond));
2461     }
2462     relocate(rtype);
2463     ldr_literal(PC, address_literal);
2464     bind_literal(address_literal);
2465     bind(skip);
2466   }
2467 #endif // AARCH64
2468 }
2469 
2470 // Similar to jump except that:
2471 // - near calls are valid only if any destination in the cache is near
2472 // - no movt/movw (not atomically patchable)
2473 void MacroAssembler::patchable_jump(address target, relocInfo::relocType rtype, Register scratch NOT_AARCH64_ARG(AsmCondition cond)) {
2474   assert((rtype == relocInfo::runtime_call_type) || (rtype == relocInfo::none), "not supported");
2475   if (cache_fully_reachable()) {
2476     // Note: this assumes that all possible targets (the initial one
2477     // and the addressed patched to) are all in the code cache.
2478     assert(CodeCache::contains(target), "target might be too far");
2479     relocate(rtype);
2480     b(target NOT_AARCH64_ARG(cond));
2481     return;
2482   }
2483 
2484   // Discard the relocation information if not needed for CacheCompiledCode
2485   // since the next encodings are all in absolute format.
2486   if (ignore_non_patchable_relocations()) {
2487     rtype = relocInfo::none;
2488   }
2489 
2490 #ifdef AARCH64
2491   assert (scratch != noreg, "should be specified");
2492   InlinedAddress address_literal(target);
2493   relocate(rtype);
2494   ldr_literal(scratch, address_literal);
2495   br(scratch);
2496   int off = offset();
2497   bind_literal(address_literal);
2498 #ifdef COMPILER2
2499   if (offset() - off == wordSize) {
2500     // no padding, so insert nop for worst-case sizing
2501     nop();
2502   }
2503 #endif
2504 #else
2505   {
2506     Label skip;
2507     InlinedAddress address_literal(target);
2508     if (cond != al) {
2509       b(skip, inverse(cond));
2510     }
2511     relocate(rtype);
2512     ldr_literal(PC, address_literal);
2513     bind_literal(address_literal);
2514     bind(skip);
2515   }
2516 #endif // AARCH64
2517 }
2518 
2519 void MacroAssembler::call(address target, RelocationHolder rspec NOT_AARCH64_ARG(AsmCondition cond)) {
2520   Register scratch = LR;
2521   assert(rspec.type() == relocInfo::runtime_call_type || rspec.type() == relocInfo::none, "not supported");
2522   if (reachable_from_cache(target)) {
2523     relocate(rspec);
2524     bl(target NOT_AARCH64_ARG(cond));
2525     return;
2526   }
2527 
2528   // Note: relocate is not needed for the code below,
2529   // encoding targets in absolute format.
2530   if (ignore_non_patchable_relocations()) {
2531     // This assumes the information was needed only for relocating the code.
2532     rspec = RelocationHolder::none;
2533   }
2534 
2535 #ifndef AARCH64
2536   if (VM_Version::supports_movw() && (rspec.type() == relocInfo::none)) {
2537     // Note: this version cannot be (atomically) patched
2538     mov_slow(scratch, (intptr_t)target, cond);
2539     blx(scratch, cond);
2540     return;
2541   }
2542 #endif
2543 
2544   {
2545     Label ret_addr;
2546 #ifndef AARCH64
2547     if (cond != al) {
2548       b(ret_addr, inverse(cond));
2549     }
2550 #endif
2551 
2552 
2553 #ifdef AARCH64
2554     // TODO-AARCH64: make more optimal implementation
2555     // [ Keep in sync with MacroAssembler::call_size ]
2556     assert(rspec.type() == relocInfo::none, "call reloc not implemented");
2557     mov_slow(scratch, target);
2558     blr(scratch);
2559 #else
2560     InlinedAddress address_literal(target);
2561     relocate(rspec);
2562     adr(LR, ret_addr);
2563     ldr_literal(PC, address_literal);
2564 
2565     bind_literal(address_literal);
2566     bind(ret_addr);
2567 #endif
2568   }
2569 }
2570 
2571 #if defined(AARCH64) && defined(COMPILER2)
2572 int MacroAssembler::call_size(address target, bool far, bool patchable) {
2573   // FIXME: mov_slow is variable-length
2574   if (!far) return 1; // bl
2575   if (patchable) return 2;  // ldr; blr
2576   return instr_count_for_mov_slow((intptr_t)target) + 1;
2577 }
2578 #endif
2579 
2580 int MacroAssembler::patchable_call(address target, RelocationHolder const& rspec, bool c2) {
2581   assert(rspec.type() == relocInfo::static_call_type ||
2582          rspec.type() == relocInfo::none ||
2583          rspec.type() == relocInfo::opt_virtual_call_type, "not supported");
2584 
2585   // Always generate the relocation information, needed for patching
2586   relocate(rspec); // used by NativeCall::is_call_before()
2587   if (cache_fully_reachable()) {
2588     // Note: this assumes that all possible targets (the initial one
2589     // and the addresses patched to) are all in the code cache.
2590     assert(CodeCache::contains(target), "target might be too far");
2591     bl(target);
2592   } else {
2593 #if defined(AARCH64) && defined(COMPILER2)
2594     if (c2) {
2595       // return address needs to match call_size().
2596       // no need to trash Rtemp
2597       int off = offset();
2598       Label skip_literal;
2599       InlinedAddress address_literal(target);
2600       ldr_literal(LR, address_literal);
2601       blr(LR);
2602       int ret_addr_offset = offset();
2603       assert(offset() - off == call_size(target, true, true) * InstructionSize, "need to fix call_size()");
2604       b(skip_literal);
2605       int off2 = offset();
2606       bind_literal(address_literal);
2607       if (offset() - off2 == wordSize) {
2608         // no padding, so insert nop for worst-case sizing
2609         nop();
2610       }
2611       bind(skip_literal);
2612       return ret_addr_offset;
2613     }
2614 #endif
2615     Label ret_addr;
2616     InlinedAddress address_literal(target);
2617 #ifdef AARCH64
2618     ldr_literal(Rtemp, address_literal);
2619     adr(LR, ret_addr);
2620     br(Rtemp);
2621 #else
2622     adr(LR, ret_addr);
2623     ldr_literal(PC, address_literal);
2624 #endif
2625     bind_literal(address_literal);
2626     bind(ret_addr);
2627   }
2628   return offset();
2629 }
2630 
2631 // ((OopHandle)result).resolve();
2632 void MacroAssembler::resolve_oop_handle(Register result) {
2633   // OopHandle::resolve is an indirection.
2634   ldr(result, Address(result, 0));
2635 }
2636 
2637 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
2638   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2639   ldr(tmp, Address(method, Method::const_offset()));
2640   ldr(tmp, Address(tmp,  ConstMethod::constants_offset()));
2641   ldr(tmp, Address(tmp, ConstantPool::pool_holder_offset_in_bytes()));
2642   ldr(mirror, Address(tmp, mirror_offset));
2643   resolve_oop_handle(mirror);
2644 }
2645 
2646 
2647 ///////////////////////////////////////////////////////////////////////////////
2648 
2649 // Compressed pointers
2650 
2651 #ifdef AARCH64
2652 
2653 void MacroAssembler::load_klass(Register dst_klass, Register src_oop) {
2654   if (UseCompressedClassPointers) {
2655     ldr_w(dst_klass, Address(src_oop, oopDesc::klass_offset_in_bytes()));
2656     decode_klass_not_null(dst_klass);
2657   } else {
2658     ldr(dst_klass, Address(src_oop, oopDesc::klass_offset_in_bytes()));
2659   }
2660 }
2661 
2662 #else
2663 
2664 void MacroAssembler::load_klass(Register dst_klass, Register src_oop, AsmCondition cond) {
2665   ldr(dst_klass, Address(src_oop, oopDesc::klass_offset_in_bytes()), cond);
2666 }
2667 
2668 #endif // AARCH64
2669 
2670 // Blows src_klass.
2671 void MacroAssembler::store_klass(Register src_klass, Register dst_oop) {
2672 #ifdef AARCH64
2673   if (UseCompressedClassPointers) {
2674     assert(src_klass != dst_oop, "not enough registers");
2675     encode_klass_not_null(src_klass);
2676     str_w(src_klass, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
2677     return;
2678   }
2679 #endif // AARCH64
2680   str(src_klass, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
2681 }
2682 
2683 #ifdef AARCH64
2684 
2685 void MacroAssembler::store_klass_gap(Register dst) {
2686   if (UseCompressedClassPointers) {
2687     str_w(ZR, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
2688   }
2689 }
2690 
2691 #endif // AARCH64
2692 
2693 
2694 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, Register tmp2, Register tmp3, DecoratorSet decorators) {
2695   access_load_at(T_OBJECT, IN_HEAP | decorators, src, dst, tmp1, tmp2, tmp3);
2696 }
2697 
2698 // Blows src and flags.
2699 void MacroAssembler::store_heap_oop(Address obj, Register new_val, Register tmp1, Register tmp2, Register tmp3, DecoratorSet decorators) {
2700   access_store_at(T_OBJECT, IN_HEAP | decorators, obj, new_val, tmp1, tmp2, tmp3, false);
2701 }
2702 
2703 void MacroAssembler::store_heap_oop_null(Address obj, Register new_val, Register tmp1, Register tmp2, Register tmp3, DecoratorSet decorators) {
2704   access_store_at(T_OBJECT, IN_HEAP, obj, new_val, tmp1, tmp2, tmp3, true);
2705 }
2706 
2707 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
2708                                     Address src, Register dst, Register tmp1, Register tmp2, Register tmp3) {
2709   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2710   decorators = AccessInternal::decorator_fixup(decorators);
2711   bool as_raw = (decorators & AS_RAW) != 0;
2712   if (as_raw) {
2713     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2, tmp3);
2714   } else {
2715     bs->load_at(this, decorators, type, dst, src, tmp1, tmp2, tmp3);
2716   }
2717 }
2718 
2719 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
2720                                      Address obj, Register new_val, Register tmp1, Register tmp2, Register tmp3, bool is_null) {
2721   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2722   decorators = AccessInternal::decorator_fixup(decorators);
2723   bool as_raw = (decorators & AS_RAW) != 0;
2724   if (as_raw) {
2725     bs->BarrierSetAssembler::store_at(this, decorators, type, obj, new_val, tmp1, tmp2, tmp3, is_null);
2726   } else {
2727     bs->store_at(this, decorators, type, obj, new_val, tmp1, tmp2, tmp3, is_null);
2728   }
2729 }
2730 
2731 
2732 #ifdef AARCH64
2733 
2734 // Algorithm must match oop.inline.hpp encode_heap_oop.
2735 void MacroAssembler::encode_heap_oop(Register dst, Register src) {
2736   // This code pattern is matched in NativeIntruction::skip_encode_heap_oop.
2737   // Update it at modifications.
2738   assert (UseCompressedOops, "must be compressed");
2739   assert (Universe::heap() != NULL, "java heap should be initialized");
2740 #ifdef ASSERT
2741   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
2742 #endif
2743   verify_oop(src);
2744   if (Universe::narrow_oop_base() == NULL) {
2745     if (Universe::narrow_oop_shift() != 0) {
2746       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
2747       _lsr(dst, src, Universe::narrow_oop_shift());
2748     } else if (dst != src) {
2749       mov(dst, src);
2750     }
2751   } else {
2752     tst(src, src);
2753     csel(dst, Rheap_base, src, eq);
2754     sub(dst, dst, Rheap_base);
2755     if (Universe::narrow_oop_shift() != 0) {
2756       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
2757       _lsr(dst, dst, Universe::narrow_oop_shift());
2758     }
2759   }
2760 }
2761 
2762 // Same algorithm as oop.inline.hpp decode_heap_oop.
2763 void MacroAssembler::decode_heap_oop(Register dst, Register src) {
2764 #ifdef ASSERT
2765   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
2766 #endif
2767   assert(Universe::narrow_oop_shift() == 0 || LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
2768   if (Universe::narrow_oop_base() != NULL) {
2769     tst(src, src);
2770     add(dst, Rheap_base, AsmOperand(src, lsl, Universe::narrow_oop_shift()));
2771     csel(dst, dst, ZR, ne);
2772   } else {
2773     _lsl(dst, src, Universe::narrow_oop_shift());
2774   }
2775   verify_oop(dst);
2776 }
2777 
2778 #ifdef COMPILER2
2779 // Algorithm must match oop.inline.hpp encode_heap_oop.
2780 // Must preserve condition codes, or C2 encodeHeapOop_not_null rule
2781 // must be changed.
2782 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
2783   assert (UseCompressedOops, "must be compressed");
2784   assert (Universe::heap() != NULL, "java heap should be initialized");
2785 #ifdef ASSERT
2786   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
2787 #endif
2788   verify_oop(src);
2789   if (Universe::narrow_oop_base() == NULL) {
2790     if (Universe::narrow_oop_shift() != 0) {
2791       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
2792       _lsr(dst, src, Universe::narrow_oop_shift());
2793     } else if (dst != src) {
2794           mov(dst, src);
2795     }
2796   } else {
2797     sub(dst, src, Rheap_base);
2798     if (Universe::narrow_oop_shift() != 0) {
2799       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
2800       _lsr(dst, dst, Universe::narrow_oop_shift());
2801     }
2802   }
2803 }
2804 
2805 // Same algorithm as oops.inline.hpp decode_heap_oop.
2806 // Must preserve condition codes, or C2 decodeHeapOop_not_null rule
2807 // must be changed.
2808 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
2809 #ifdef ASSERT
2810   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
2811 #endif
2812   assert(Universe::narrow_oop_shift() == 0 || LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
2813   if (Universe::narrow_oop_base() != NULL) {
2814     add(dst, Rheap_base, AsmOperand(src, lsl, Universe::narrow_oop_shift()));
2815   } else {
2816     _lsl(dst, src, Universe::narrow_oop_shift());
2817   }
2818   verify_oop(dst);
2819 }
2820 
2821 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
2822   assert(UseCompressedClassPointers, "should only be used for compressed header");
2823   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
2824   int klass_index = oop_recorder()->find_index(k);
2825   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
2826 
2827   // Relocation with special format (see relocInfo_arm.hpp).
2828   relocate(rspec);
2829   narrowKlass encoded_k = Klass::encode_klass(k);
2830   movz(dst, encoded_k & 0xffff, 0);
2831   movk(dst, (encoded_k >> 16) & 0xffff, 16);
2832 }
2833 
2834 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
2835   assert(UseCompressedOops, "should only be used for compressed header");
2836   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
2837   int oop_index = oop_recorder()->find_index(obj);
2838   RelocationHolder rspec = oop_Relocation::spec(oop_index);
2839 
2840   relocate(rspec);
2841   movz(dst, 0xffff, 0);
2842   movk(dst, 0xffff, 16);
2843 }
2844 
2845 #endif // COMPILER2
2846 // Must preserve condition codes, or C2 encodeKlass_not_null rule
2847 // must be changed.
2848 void MacroAssembler::encode_klass_not_null(Register r) {
2849   if (Universe::narrow_klass_base() != NULL) {
2850     // Use Rheap_base as a scratch register in which to temporarily load the narrow_klass_base.
2851     assert(r != Rheap_base, "Encoding a klass in Rheap_base");
2852     mov_slow(Rheap_base, Universe::narrow_klass_base());
2853     sub(r, r, Rheap_base);
2854   }
2855   if (Universe::narrow_klass_shift() != 0) {
2856     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
2857     _lsr(r, r, Universe::narrow_klass_shift());
2858   }
2859   if (Universe::narrow_klass_base() != NULL) {
2860     reinit_heapbase();
2861   }
2862 }
2863 
2864 // Must preserve condition codes, or C2 encodeKlass_not_null rule
2865 // must be changed.
2866 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
2867   if (dst == src) {
2868     encode_klass_not_null(src);
2869     return;
2870   }
2871   if (Universe::narrow_klass_base() != NULL) {
2872     mov_slow(dst, (int64_t)Universe::narrow_klass_base());
2873     sub(dst, src, dst);
2874     if (Universe::narrow_klass_shift() != 0) {
2875       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
2876       _lsr(dst, dst, Universe::narrow_klass_shift());
2877     }
2878   } else {
2879     if (Universe::narrow_klass_shift() != 0) {
2880       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
2881       _lsr(dst, src, Universe::narrow_klass_shift());
2882     } else {
2883       mov(dst, src);
2884     }
2885   }
2886 }
2887 
2888 // Function instr_count_for_decode_klass_not_null() counts the instructions
2889 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
2890 // when (Universe::heap() != NULL).  Hence, if the instructions they
2891 // generate change, then this method needs to be updated.
2892 int MacroAssembler::instr_count_for_decode_klass_not_null() {
2893   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
2894   assert(Universe::heap() != NULL, "java heap should be initialized");
2895   if (Universe::narrow_klass_base() != NULL) {
2896     return instr_count_for_mov_slow(Universe::narrow_klass_base()) + // mov_slow
2897       1 +                                                                 // add
2898       instr_count_for_mov_slow(Universe::narrow_ptrs_base());   // reinit_heapbase() = mov_slow
2899   } else {
2900     if (Universe::narrow_klass_shift() != 0) {
2901       return 1;
2902     }
2903   }
2904   return 0;
2905 }
2906 
2907 // Must preserve condition codes, or C2 decodeKlass_not_null rule
2908 // must be changed.
2909 void MacroAssembler::decode_klass_not_null(Register r) {
2910   int off = offset();
2911   assert(UseCompressedClassPointers, "should only be used for compressed headers");
2912   assert(Universe::heap() != NULL, "java heap should be initialized");
2913   assert(r != Rheap_base, "Decoding a klass in Rheap_base");
2914   // Cannot assert, instr_count_for_decode_klass_not_null() counts instructions.
2915   // Also do not verify_oop as this is called by verify_oop.
2916   if (Universe::narrow_klass_base() != NULL) {
2917     // Use Rheap_base as a scratch register in which to temporarily load the narrow_klass_base.
2918     mov_slow(Rheap_base, Universe::narrow_klass_base());
2919     add(r, Rheap_base, AsmOperand(r, lsl, Universe::narrow_klass_shift()));
2920     reinit_heapbase();
2921   } else {
2922     if (Universe::narrow_klass_shift() != 0) {
2923       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
2924       _lsl(r, r, Universe::narrow_klass_shift());
2925     }
2926   }
2927   assert((offset() - off) == (instr_count_for_decode_klass_not_null() * InstructionSize), "need to fix instr_count_for_decode_klass_not_null");
2928 }
2929 
2930 // Must preserve condition codes, or C2 decodeKlass_not_null rule
2931 // must be changed.
2932 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
2933   if (src == dst) {
2934     decode_klass_not_null(src);
2935     return;
2936   }
2937 
2938   assert(UseCompressedClassPointers, "should only be used for compressed headers");
2939   assert(Universe::heap() != NULL, "java heap should be initialized");
2940   assert(src != Rheap_base, "Decoding a klass in Rheap_base");
2941   assert(dst != Rheap_base, "Decoding a klass into Rheap_base");
2942   // Also do not verify_oop as this is called by verify_oop.
2943   if (Universe::narrow_klass_base() != NULL) {
2944     mov_slow(dst, Universe::narrow_klass_base());
2945     add(dst, dst, AsmOperand(src, lsl, Universe::narrow_klass_shift()));
2946   } else {
2947     _lsl(dst, src, Universe::narrow_klass_shift());
2948   }
2949 }
2950 
2951 
2952 void MacroAssembler::reinit_heapbase() {
2953   if (UseCompressedOops || UseCompressedClassPointers) {
2954     if (Universe::heap() != NULL) {
2955       mov_slow(Rheap_base, Universe::narrow_ptrs_base());
2956     } else {
2957       ldr_global_ptr(Rheap_base, (address)Universe::narrow_ptrs_base_addr());
2958     }
2959   }
2960 }
2961 
2962 #ifdef ASSERT
2963 void MacroAssembler::verify_heapbase(const char* msg) {
2964   // This code pattern is matched in NativeIntruction::skip_verify_heapbase.
2965   // Update it at modifications.
2966   assert (UseCompressedOops, "should be compressed");
2967   assert (Universe::heap() != NULL, "java heap should be initialized");
2968   if (CheckCompressedOops) {
2969     Label ok;
2970     str(Rthread, Address(Rthread, in_bytes(JavaThread::in_top_frame_unsafe_section_offset())));
2971     raw_push(Rtemp, ZR);
2972     mrs(Rtemp, Assembler::SysReg_NZCV);
2973     str(Rtemp, Address(SP, 1 * wordSize));
2974     mov_slow(Rtemp, Universe::narrow_ptrs_base());
2975     cmp(Rheap_base, Rtemp);
2976     b(ok, eq);
2977     stop(msg);
2978     bind(ok);
2979     ldr(Rtemp, Address(SP, 1 * wordSize));
2980     msr(Assembler::SysReg_NZCV, Rtemp);
2981     raw_pop(Rtemp, ZR);
2982     str(ZR, Address(Rthread, in_bytes(JavaThread::in_top_frame_unsafe_section_offset())));
2983   }
2984 }
2985 #endif // ASSERT
2986 
2987 #endif // AARCH64
2988 
2989 #ifdef COMPILER2
2990 void MacroAssembler::fast_lock(Register Roop, Register Rbox, Register Rscratch, Register Rscratch2 AARCH64_ONLY_ARG(Register Rscratch3))
2991 {
2992   assert(VM_Version::supports_ldrex(), "unsupported, yet?");
2993 
2994   Register Rmark      = Rscratch2;
2995 
2996   assert(Roop != Rscratch, "");
2997   assert(Roop != Rmark, "");
2998   assert(Rbox != Rscratch, "");
2999   assert(Rbox != Rmark, "");
3000 
3001   Label fast_lock, done;
3002 
3003   if (UseBiasedLocking && !UseOptoBiasInlining) {
3004     Label failed;
3005 #ifdef AARCH64
3006     biased_locking_enter(Roop, Rmark, Rscratch, false, Rscratch3, done, failed);
3007 #else
3008     biased_locking_enter(Roop, Rmark, Rscratch, false, noreg, done, failed);
3009 #endif
3010     bind(failed);
3011   }
3012 
3013   ldr(Rmark, Address(Roop, oopDesc::mark_offset_in_bytes()));
3014   tst(Rmark, markOopDesc::unlocked_value);
3015   b(fast_lock, ne);
3016 
3017   // Check for recursive lock
3018   // See comments in InterpreterMacroAssembler::lock_object for
3019   // explanations on the fast recursive locking check.
3020 #ifdef AARCH64
3021   intptr_t mask = ((intptr_t)3) - ((intptr_t)os::vm_page_size());
3022   Assembler::LogicalImmediate imm(mask, false);
3023   mov(Rscratch, SP);
3024   sub(Rscratch, Rmark, Rscratch);
3025   ands(Rscratch, Rscratch, imm);
3026   b(done, ne); // exit with failure
3027   str(Rscratch, Address(Rbox, BasicLock::displaced_header_offset_in_bytes())); // set to zero
3028   b(done);
3029 
3030 #else
3031   // -1- test low 2 bits
3032   movs(Rscratch, AsmOperand(Rmark, lsl, 30));
3033   // -2- test (hdr - SP) if the low two bits are 0
3034   sub(Rscratch, Rmark, SP, eq);
3035   movs(Rscratch, AsmOperand(Rscratch, lsr, exact_log2(os::vm_page_size())), eq);
3036   // If still 'eq' then recursive locking OK
3037   str(Rscratch, Address(Rbox, BasicLock::displaced_header_offset_in_bytes()), eq); // set to zero
3038   b(done);
3039 #endif
3040 
3041   bind(fast_lock);
3042   str(Rmark, Address(Rbox, BasicLock::displaced_header_offset_in_bytes()));
3043 
3044   bool allow_fallthrough_on_failure = true;
3045   bool one_shot = true;
3046   cas_for_lock_acquire(Rmark, Rbox, Roop, Rscratch, done, allow_fallthrough_on_failure, one_shot);
3047 
3048   bind(done);
3049 
3050 }
3051 
3052 void MacroAssembler::fast_unlock(Register Roop, Register Rbox, Register Rscratch, Register Rscratch2  AARCH64_ONLY_ARG(Register Rscratch3))
3053 {
3054   assert(VM_Version::supports_ldrex(), "unsupported, yet?");
3055 
3056   Register Rmark      = Rscratch2;
3057 
3058   assert(Roop != Rscratch, "");
3059   assert(Roop != Rmark, "");
3060   assert(Rbox != Rscratch, "");
3061   assert(Rbox != Rmark, "");
3062 
3063   Label done;
3064 
3065   if (UseBiasedLocking && !UseOptoBiasInlining) {
3066     biased_locking_exit(Roop, Rscratch, done);
3067   }
3068 
3069   ldr(Rmark, Address(Rbox, BasicLock::displaced_header_offset_in_bytes()));
3070   // If hdr is NULL, we've got recursive locking and there's nothing more to do
3071   cmp(Rmark, 0);
3072   b(done, eq);
3073 
3074   // Restore the object header
3075   bool allow_fallthrough_on_failure = true;
3076   bool one_shot = true;
3077   cas_for_lock_release(Rmark, Rbox, Roop, Rscratch, done, allow_fallthrough_on_failure, one_shot);
3078 
3079   bind(done);
3080 
3081 }
3082 #endif // COMPILER2