/* * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.inline.hpp" #include "memory/resourceArea.hpp" #include "runtime/atomic.hpp" #include "utilities/bitMap.inline.hpp" #include "utilities/copy.hpp" #include "utilities/debug.hpp" STATIC_ASSERT(sizeof(BitMap::bm_word_t) == BytesPerWord); // "Implementation assumption." typedef BitMap::bm_word_t bm_word_t; typedef BitMap::idx_t idx_t; class ResourceBitMapAllocator : StackObj { public: bm_word_t* allocate(idx_t size_in_words) const { return NEW_RESOURCE_ARRAY(bm_word_t, size_in_words); } void free(bm_word_t* map, idx_t size_in_words) const { // Don't free resource allocated arrays. } }; class CHeapBitMapAllocator : StackObj { MEMFLAGS _flags; public: CHeapBitMapAllocator(MEMFLAGS flags) : _flags(flags) {} bm_word_t* allocate(size_t size_in_words) const { return ArrayAllocator::allocate(size_in_words, _flags); } void free(bm_word_t* map, idx_t size_in_words) const { ArrayAllocator::free(map, size_in_words); } }; class ArenaBitMapAllocator : StackObj { Arena* _arena; public: ArenaBitMapAllocator(Arena* arena) : _arena(arena) {} bm_word_t* allocate(idx_t size_in_words) const { return (bm_word_t*)_arena->Amalloc(size_in_words * BytesPerWord); } void free(bm_word_t* map, idx_t size_in_words) const { // ArenaBitMaps currently don't free memory. } }; template BitMap::bm_word_t* BitMap::reallocate(const Allocator& allocator, bm_word_t* old_map, idx_t old_size_in_bits, idx_t new_size_in_bits, bool clear) { size_t old_size_in_words = calc_size_in_words(old_size_in_bits); size_t new_size_in_words = calc_size_in_words(new_size_in_bits); bm_word_t* map = NULL; if (new_size_in_words > 0) { map = allocator.allocate(new_size_in_words); if (old_map != NULL) { Copy::disjoint_words((HeapWord*)old_map, (HeapWord*) map, MIN2(old_size_in_words, new_size_in_words)); } if (clear && new_size_in_words > old_size_in_words) { clear_range_of_words(map, old_size_in_words, new_size_in_words); } } if (old_map != NULL) { allocator.free(old_map, old_size_in_words); } return map; } template bm_word_t* BitMap::allocate(const Allocator& allocator, idx_t size_in_bits, bool clear) { // Reuse reallocate to ensure that the new memory is cleared. return reallocate(allocator, NULL, 0, size_in_bits, clear); } template void BitMap::free(const Allocator& allocator, bm_word_t* map, idx_t size_in_bits) { bm_word_t* ret = reallocate(allocator, map, size_in_bits, 0); assert(ret == NULL, "Reallocate shouldn't have allocated"); } template void BitMap::resize(const Allocator& allocator, idx_t new_size_in_bits, bool clear) { bm_word_t* new_map = reallocate(allocator, map(), size(), new_size_in_bits, clear); update(new_map, new_size_in_bits); } template void BitMap::initialize(const Allocator& allocator, idx_t size_in_bits, bool clear) { assert(map() == NULL, "precondition"); assert(size() == 0, "precondition"); resize(allocator, size_in_bits, clear); } template void BitMap::reinitialize(const Allocator& allocator, idx_t new_size_in_bits, bool clear) { // Remove previous bits - no need to clear resize(allocator, 0, false /* clear */); initialize(allocator, new_size_in_bits, clear); } ResourceBitMap::ResourceBitMap(idx_t size_in_bits) : BitMap(allocate(ResourceBitMapAllocator(), size_in_bits), size_in_bits) { } void ResourceBitMap::resize(idx_t new_size_in_bits) { BitMap::resize(ResourceBitMapAllocator(), new_size_in_bits, true /* clear */); } void ResourceBitMap::initialize(idx_t size_in_bits) { BitMap::initialize(ResourceBitMapAllocator(), size_in_bits, true /* clear */); } void ResourceBitMap::reinitialize(idx_t size_in_bits) { BitMap::reinitialize(ResourceBitMapAllocator(), size_in_bits, true /* clear */); } ArenaBitMap::ArenaBitMap(Arena* arena, idx_t size_in_bits) : BitMap(allocate(ArenaBitMapAllocator(arena), size_in_bits), size_in_bits) { } CHeapBitMap::CHeapBitMap(idx_t size_in_bits, MEMFLAGS flags, bool clear) : BitMap(allocate(CHeapBitMapAllocator(flags), size_in_bits, clear), size_in_bits), _flags(flags) { } CHeapBitMap::~CHeapBitMap() { free(CHeapBitMapAllocator(_flags), map(), size()); } void CHeapBitMap::resize(idx_t new_size_in_bits, bool clear) { BitMap::resize(CHeapBitMapAllocator(_flags), new_size_in_bits, clear); } void CHeapBitMap::initialize(idx_t size_in_bits, bool clear) { BitMap::initialize(CHeapBitMapAllocator(_flags), size_in_bits, clear); } void CHeapBitMap::reinitialize(idx_t size_in_bits, bool clear) { BitMap::reinitialize(CHeapBitMapAllocator(_flags), size_in_bits, clear); } #ifdef ASSERT void BitMap::verify_valid_size(idx_t size_in_bits) { assert(size_in_bits <= max_size_in_bits(), "out of bounds: " SIZE_FORMAT, size_in_bits); } void BitMap::verify_index(idx_t index) const { assert(index < _size, "BitMap index out of bounds"); } void BitMap::verify_range(idx_t beg_index, idx_t end_index) const { assert(beg_index <= end_index, "BitMap range error"); // Note that [0,0) and [size,size) are both valid ranges. assert(end_index <= _size, "BitMap range out of bounds"); } #endif // #ifdef ASSERT void BitMap::pretouch() { os::pretouch_memory(word_addr(0), word_addr(size())); } void BitMap::set_range_within_word(idx_t beg, idx_t end) { // With a valid range (beg <= end), this test ensures that end != 0, as // required by inverted_bit_mask_for_range. Also avoids an unnecessary write. if (beg != end) { bm_word_t mask = inverted_bit_mask_for_range(beg, end); *word_addr(beg) |= ~mask; } } void BitMap::clear_range_within_word(idx_t beg, idx_t end) { // With a valid range (beg <= end), this test ensures that end != 0, as // required by inverted_bit_mask_for_range. Also avoids an unnecessary write. if (beg != end) { bm_word_t mask = inverted_bit_mask_for_range(beg, end); *word_addr(beg) &= mask; } } void BitMap::par_put_range_within_word(idx_t beg, idx_t end, bool value) { assert(value == 0 || value == 1, "0 for clear, 1 for set"); // With a valid range (beg <= end), this test ensures that end != 0, as // required by inverted_bit_mask_for_range. Also avoids an unnecessary write. if (beg != end) { bm_word_t* pw = word_addr(beg); bm_word_t w = *pw; bm_word_t mr = inverted_bit_mask_for_range(beg, end); bm_word_t nw = value ? (w | ~mr) : (w & mr); while (true) { bm_word_t res = Atomic::cmpxchg(nw, pw, w); if (res == w) break; w = res; nw = value ? (w | ~mr) : (w & mr); } } } void BitMap::set_range(idx_t beg, idx_t end) { verify_range(beg, end); idx_t beg_aligned = range_begin_align_up(beg); idx_t end_aligned = range_end_align_down(end); if (beg_aligned < end_aligned) { // The range includes at least one full word. set_range_within_word(beg, beg_aligned); set_range_of_words(word_index(beg_aligned), word_index(end_aligned)); set_range_within_word(end_aligned, end); } else { // The range spans at most 2 partial words. idx_t boundary = MIN2(beg_aligned, end); set_range_within_word(beg, boundary); set_range_within_word(boundary, end); } } void BitMap::clear_range(idx_t beg, idx_t end) { verify_range(beg, end); idx_t beg_aligned = range_begin_align_up(beg); idx_t end_aligned = range_end_align_down(end); if (beg_aligned < end_aligned) { // The range includes at least one full word. clear_range_within_word(beg, beg_aligned); clear_range_of_words(word_index(beg_aligned), word_index(end_aligned)); clear_range_within_word(end_aligned, end); } else { // The range spans at most 2 partial words. idx_t boundary = MIN2(beg_aligned, end); clear_range_within_word(beg, boundary); clear_range_within_word(boundary, end); } } bool BitMap::is_small_aligned_range(idx_t beg_aligned, idx_t end_aligned) { // There is little point to call large version on small ranges. // Need to check carefully, keeping potential idx_t over/underflow in mind, // because beg_aligned > end_aligned can occur when beg and end are in the // same word. // The threshold should be at least one word. STATIC_ASSERT(small_range_words >= 1); return word_index(beg_aligned) + small_range_words >= word_index(end_aligned); } void BitMap::set_large_range(idx_t beg, idx_t end) { verify_range(beg, end); idx_t beg_aligned = range_begin_align_up(beg); idx_t end_aligned = range_end_align_down(end); if (is_small_aligned_range(beg_aligned, end_aligned)) { set_range(beg, end); return; } // The range includes at least one full word. set_range_within_word(beg, beg_aligned); set_large_range_of_words(word_index(beg_aligned), word_index(end_aligned)); set_range_within_word(end_aligned, end); } void BitMap::clear_large_range(idx_t beg, idx_t end) { verify_range(beg, end); idx_t beg_aligned = range_begin_align_up(beg); idx_t end_aligned = range_end_align_down(end); if (is_small_aligned_range(beg_aligned, end_aligned)) { clear_range(beg, end); return; } // The range includes at least one full word. clear_range_within_word(beg, beg_aligned); clear_large_range_of_words(word_index(beg_aligned), word_index(end_aligned)); clear_range_within_word(end_aligned, end); } void BitMap::at_put(idx_t offset, bool value) { if (value) { set_bit(offset); } else { clear_bit(offset); } } // Return true to indicate that this thread changed // the bit, false to indicate that someone else did. // In either case, the requested bit is in the // requested state some time during the period that // this thread is executing this call. More importantly, // if no other thread is executing an action to // change the requested bit to a state other than // the one that this thread is trying to set it to, // then the the bit is in the expected state // at exit from this method. However, rather than // make such a strong assertion here, based on // assuming such constrained use (which though true // today, could change in the future to service some // funky parallel algorithm), we encourage callers // to do such verification, as and when appropriate. bool BitMap::par_at_put(idx_t bit, bool value) { return value ? par_set_bit(bit) : par_clear_bit(bit); } void BitMap::at_put_range(idx_t start_offset, idx_t end_offset, bool value) { if (value) { set_range(start_offset, end_offset); } else { clear_range(start_offset, end_offset); } } void BitMap::par_at_put_range(idx_t beg, idx_t end, bool value) { verify_range(beg, end); idx_t beg_aligned = range_begin_align_up(beg); idx_t end_aligned = range_end_align_down(end); if (beg_aligned < end_aligned) { // The range includes at least one full word. par_put_range_within_word(beg, beg_aligned, value); idx_t beg_full_word = word_index(beg_aligned); idx_t end_full_word = word_index(end_aligned); if (value) { set_range_of_words(beg_full_word, end_full_word); } else { clear_range_of_words(beg_full_word, end_full_word); } par_put_range_within_word(end_aligned, end, value); } else { // The range spans at most 2 partial words. idx_t boundary = MIN2(beg_aligned, end); par_put_range_within_word(beg, boundary, value); par_put_range_within_word(boundary, end, value); } } void BitMap::at_put_large_range(idx_t beg, idx_t end, bool value) { if (value) { set_large_range(beg, end); } else { clear_large_range(beg, end); } } void BitMap::par_at_put_large_range(idx_t beg, idx_t end, bool value) { verify_range(beg, end); idx_t beg_aligned = range_begin_align_up(beg); idx_t end_aligned = range_end_align_down(end); if (is_small_aligned_range(beg_aligned, end_aligned)) { par_at_put_range(beg, end, value); return; } // The range includes at least one full word. par_put_range_within_word(beg, beg_aligned, value); idx_t beg_full_word = word_index(beg_aligned); idx_t end_full_word = word_index(end_aligned); if (value) { set_large_range_of_words(beg_full_word, end_full_word); } else { clear_large_range_of_words(beg_full_word, end_full_word); } par_put_range_within_word(end_aligned, end, value); } inline bm_word_t tail_mask(idx_t tail_bits) { assert(tail_bits != 0, "precondition"); // Works, but shouldn't be called. assert(tail_bits < (idx_t)BitsPerWord, "precondition"); return (bm_word_t(1) << tail_bits) - 1; } // Get the low tail_bits of value, which is the last partial word of a map. inline bm_word_t tail_of_map(bm_word_t value, idx_t tail_bits) { return value & tail_mask(tail_bits); } // Compute the new last word of a map with a non-aligned length. // new_value has the new trailing bits of the map in the low tail_bits. // old_value is the last word of the map, including bits beyond the end. // Returns old_value with the low tail_bits replaced by the corresponding // bits in new_value. inline bm_word_t merge_tail_of_map(bm_word_t new_value, bm_word_t old_value, idx_t tail_bits) { bm_word_t mask = tail_mask(tail_bits); return (new_value & mask) | (old_value & ~mask); } bool BitMap::contains(const BitMap& other) const { assert(size() == other.size(), "must have same size"); const bm_word_t* dest_map = map(); const bm_word_t* other_map = other.map(); idx_t limit = word_index(size()); for (idx_t index = 0; index < limit; ++index) { // false if other bitmap has bits set which are clear in this bitmap. if ((~dest_map[index] & other_map[index]) != 0) return false; } idx_t rest = bit_in_word(size()); // true unless there is a partial-word tail in which the other // bitmap has bits set which are clear in this bitmap. return (rest == 0) || tail_of_map(~dest_map[limit] & other_map[limit], rest) == 0; } bool BitMap::intersects(const BitMap& other) const { assert(size() == other.size(), "must have same size"); const bm_word_t* dest_map = map(); const bm_word_t* other_map = other.map(); idx_t limit = word_index(size()); for (idx_t index = 0; index < limit; ++index) { if ((dest_map[index] & other_map[index]) != 0) return true; } idx_t rest = bit_in_word(size()); // false unless there is a partial-word tail with non-empty intersection. return (rest > 0) && tail_of_map(dest_map[limit] & other_map[limit], rest) != 0; } void BitMap::set_union(const BitMap& other) { assert(size() == other.size(), "must have same size"); bm_word_t* dest_map = map(); const bm_word_t* other_map = other.map(); idx_t limit = word_index(size()); for (idx_t index = 0; index < limit; ++index) { dest_map[index] |= other_map[index]; } idx_t rest = bit_in_word(size()); if (rest > 0) { bm_word_t orig = dest_map[limit]; dest_map[limit] = merge_tail_of_map(orig | other_map[limit], orig, rest); } } void BitMap::set_difference(const BitMap& other) { assert(size() == other.size(), "must have same size"); bm_word_t* dest_map = map(); const bm_word_t* other_map = other.map(); idx_t limit = word_index(size()); for (idx_t index = 0; index < limit; ++index) { dest_map[index] &= ~other_map[index]; } idx_t rest = bit_in_word(size()); if (rest > 0) { bm_word_t orig = dest_map[limit]; dest_map[limit] = merge_tail_of_map(orig & ~other_map[limit], orig, rest); } } void BitMap::set_intersection(const BitMap& other) { assert(size() == other.size(), "must have same size"); bm_word_t* dest_map = map(); const bm_word_t* other_map = other.map(); idx_t limit = word_index(size()); for (idx_t index = 0; index < limit; ++index) { dest_map[index] &= other_map[index]; } idx_t rest = bit_in_word(size()); if (rest > 0) { bm_word_t orig = dest_map[limit]; dest_map[limit] = merge_tail_of_map(orig & other_map[limit], orig, rest); } } bool BitMap::set_union_with_result(const BitMap& other) { assert(size() == other.size(), "must have same size"); bool changed = false; bm_word_t* dest_map = map(); const bm_word_t* other_map = other.map(); idx_t limit = word_index(size()); for (idx_t index = 0; index < limit; ++index) { bm_word_t orig = dest_map[index]; bm_word_t temp = orig | other_map[index]; changed = changed || (temp != orig); dest_map[index] = temp; } idx_t rest = bit_in_word(size()); if (rest > 0) { bm_word_t orig = dest_map[limit]; bm_word_t temp = merge_tail_of_map(orig | other_map[limit], orig, rest); changed = changed || (temp != orig); dest_map[limit] = temp; } return changed; } bool BitMap::set_difference_with_result(const BitMap& other) { assert(size() == other.size(), "must have same size"); bool changed = false; bm_word_t* dest_map = map(); const bm_word_t* other_map = other.map(); idx_t limit = word_index(size()); for (idx_t index = 0; index < limit; ++index) { bm_word_t orig = dest_map[index]; bm_word_t temp = orig & ~other_map[index]; changed = changed || (temp != orig); dest_map[index] = temp; } idx_t rest = bit_in_word(size()); if (rest > 0) { bm_word_t orig = dest_map[limit]; bm_word_t temp = merge_tail_of_map(orig & ~other_map[limit], orig, rest); changed = changed || (temp != orig); dest_map[limit] = temp; } return changed; } bool BitMap::set_intersection_with_result(const BitMap& other) { assert(size() == other.size(), "must have same size"); bool changed = false; bm_word_t* dest_map = map(); const bm_word_t* other_map = other.map(); idx_t limit = word_index(size()); for (idx_t index = 0; index < limit; ++index) { bm_word_t orig = dest_map[index]; bm_word_t temp = orig & other_map[index]; changed = changed || (temp != orig); dest_map[index] = temp; } idx_t rest = bit_in_word(size()); if (rest > 0) { bm_word_t orig = dest_map[limit]; bm_word_t temp = merge_tail_of_map(orig & other_map[limit], orig, rest); changed = changed || (temp != orig); dest_map[limit] = temp; } return changed; } void BitMap::set_from(const BitMap& other) { assert(size() == other.size(), "must have same size"); bm_word_t* dest_map = map(); const bm_word_t* other_map = other.map(); idx_t copy_words = word_index(size()); Copy::disjoint_words((HeapWord*)other_map, (HeapWord*)dest_map, copy_words); idx_t rest = bit_in_word(size()); if (rest > 0) { dest_map[copy_words] = merge_tail_of_map(other_map[copy_words], dest_map[copy_words], rest); } } bool BitMap::is_same(const BitMap& other) const { assert(size() == other.size(), "must have same size"); const bm_word_t* dest_map = map(); const bm_word_t* other_map = other.map(); idx_t limit = word_index(size()); for (idx_t index = 0; index < limit; ++index) { if (dest_map[index] != other_map[index]) return false; } idx_t rest = bit_in_word(size()); return (rest == 0) || (tail_of_map(dest_map[limit] ^ other_map[limit], rest) == 0); } bool BitMap::is_full() const { const bm_word_t* words = map(); idx_t limit = word_index(size()); for (idx_t index = 0; index < limit; ++index) { if (~words[index] != 0) return false; } idx_t rest = bit_in_word(size()); return (rest == 0) || (tail_of_map(~words[limit], rest) == 0); } bool BitMap::is_empty() const { const bm_word_t* words = map(); idx_t limit = word_index(size()); for (idx_t index = 0; index < limit; ++index) { if (words[index] != 0) return false; } idx_t rest = bit_in_word(size()); return (rest == 0) || (tail_of_map(words[limit], rest) == 0); } void BitMap::clear_large() { clear_large_range_of_words(0, size_in_words()); } // Note that if the closure itself modifies the bitmap // then modifications in and to the left of the _bit_ being // currently sampled will not be seen. Note also that the // interval [leftOffset, rightOffset) is right open. bool BitMap::iterate(BitMapClosure* blk, idx_t leftOffset, idx_t rightOffset) { verify_range(leftOffset, rightOffset); idx_t startIndex = word_index(leftOffset); idx_t endIndex = MIN2(word_index(rightOffset) + 1, size_in_words()); for (idx_t index = startIndex, offset = leftOffset; offset < rightOffset && index < endIndex; offset = (++index) << LogBitsPerWord) { idx_t rest = map(index) >> (offset & (BitsPerWord - 1)); for (; offset < rightOffset && rest != 0; offset++) { if (rest & 1) { if (!blk->do_bit(offset)) return false; // resample at each closure application // (see, for instance, CMS bug 4525989) rest = map(index) >> (offset & (BitsPerWord -1)); } rest = rest >> 1; } } return true; } const BitMap::idx_t* BitMap::_pop_count_table = NULL; void BitMap::init_pop_count_table() { if (_pop_count_table == NULL) { BitMap::idx_t *table = NEW_C_HEAP_ARRAY(idx_t, 256, mtInternal); for (uint i = 0; i < 256; i++) { table[i] = num_set_bits(i); } if (!Atomic::replace_if_null(table, &_pop_count_table)) { guarantee(_pop_count_table != NULL, "invariant"); FREE_C_HEAP_ARRAY(idx_t, table); } } } BitMap::idx_t BitMap::num_set_bits(bm_word_t w) { idx_t bits = 0; while (w != 0) { while ((w & 1) == 0) { w >>= 1; } bits++; w >>= 1; } return bits; } BitMap::idx_t BitMap::num_set_bits_from_table(unsigned char c) { assert(_pop_count_table != NULL, "precondition"); return _pop_count_table[c]; } BitMap::idx_t BitMap::count_one_bits() const { init_pop_count_table(); // If necessary. idx_t sum = 0; typedef unsigned char uchar; for (idx_t i = 0; i < size_in_words(); i++) { bm_word_t w = map()[i]; for (size_t j = 0; j < sizeof(bm_word_t); j++) { sum += num_set_bits_from_table(uchar(w & 255)); w >>= 8; } } return sum; } void BitMap::print_on_error(outputStream* st, const char* prefix) const { st->print_cr("%s[" PTR_FORMAT ", " PTR_FORMAT ")", prefix, p2i(map()), p2i((char*)map() + (size() >> LogBitsPerByte))); } void BitMap::write_to(bm_word_t* buffer, size_t buffer_size_in_bytes) const { assert(buffer_size_in_bytes == size_in_bytes(), "must be"); memcpy(buffer, _map, size_in_bytes()); } #ifndef PRODUCT void BitMap::print_on(outputStream* st) const { tty->print("Bitmap(" SIZE_FORMAT "):", size()); for (idx_t index = 0; index < size(); index++) { tty->print("%c", at(index) ? '1' : '0'); } tty->cr(); } #endif