/* * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_UTILITIES_BITMAP_INLINE_HPP #define SHARE_UTILITIES_BITMAP_INLINE_HPP #include "runtime/atomic.hpp" #include "runtime/orderAccess.hpp" #include "utilities/align.hpp" #include "utilities/bitMap.hpp" #include "utilities/count_trailing_zeros.hpp" inline void BitMap::set_bit(idx_t bit) { verify_index(bit); *word_addr(bit) |= bit_mask(bit); } inline void BitMap::clear_bit(idx_t bit) { verify_index(bit); *word_addr(bit) &= ~bit_mask(bit); } inline const BitMap::bm_word_t BitMap::load_word_ordered(const volatile bm_word_t* const addr, atomic_memory_order memory_order) { if (memory_order == memory_order_relaxed || memory_order == memory_order_release) { return Atomic::load(addr); } else { assert(memory_order == memory_order_acq_rel || memory_order == memory_order_acquire || memory_order == memory_order_conservative, "unexpected memory ordering"); return Atomic::load_acquire(addr); } } inline bool BitMap::par_at(idx_t index, atomic_memory_order memory_order) const { verify_index(index); assert(memory_order == memory_order_acquire || memory_order == memory_order_relaxed, "unexpected memory ordering"); const volatile bm_word_t* const addr = word_addr(index); return (load_word_ordered(addr, memory_order) & bit_mask(index)) != 0; } inline bool BitMap::par_set_bit(idx_t bit, atomic_memory_order memory_order) { verify_index(bit); volatile bm_word_t* const addr = word_addr(bit); const bm_word_t mask = bit_mask(bit); bm_word_t old_val = load_word_ordered(addr, memory_order); do { const bm_word_t new_val = old_val | mask; if (new_val == old_val) { return false; // Someone else beat us to it. } const bm_word_t cur_val = Atomic::cmpxchg(addr, old_val, new_val, memory_order); if (cur_val == old_val) { return true; // Success. } old_val = cur_val; // The value changed, try again. } while (true); } inline bool BitMap::par_clear_bit(idx_t bit, atomic_memory_order memory_order) { verify_index(bit); volatile bm_word_t* const addr = word_addr(bit); const bm_word_t mask = ~bit_mask(bit); bm_word_t old_val = load_word_ordered(addr, memory_order); do { const bm_word_t new_val = old_val & mask; if (new_val == old_val) { return false; // Someone else beat us to it. } const bm_word_t cur_val = Atomic::cmpxchg(addr, old_val, new_val, memory_order); if (cur_val == old_val) { return true; // Success. } old_val = cur_val; // The value changed, try again. } while (true); } inline void BitMap::set_range(idx_t beg, idx_t end, RangeSizeHint hint) { if (hint == small_range && end - beg == 1) { set_bit(beg); } else { if (hint == large_range) { set_large_range(beg, end); } else { set_range(beg, end); } } } inline void BitMap::clear_range(idx_t beg, idx_t end, RangeSizeHint hint) { if (end - beg == 1) { clear_bit(beg); } else { if (hint == large_range) { clear_large_range(beg, end); } else { clear_range(beg, end); } } } inline void BitMap::par_set_range(idx_t beg, idx_t end, RangeSizeHint hint) { if (hint == small_range && end - beg == 1) { par_at_put(beg, true); } else { if (hint == large_range) { par_at_put_large_range(beg, end, true); } else { par_at_put_range(beg, end, true); } } } inline void BitMap::set_range_of_words(idx_t beg, idx_t end) { bm_word_t* map = _map; for (idx_t i = beg; i < end; ++i) map[i] = ~(bm_word_t)0; } inline void BitMap::clear_range_of_words(bm_word_t* map, idx_t beg, idx_t end) { for (idx_t i = beg; i < end; ++i) map[i] = 0; } inline void BitMap::clear_range_of_words(idx_t beg, idx_t end) { clear_range_of_words(_map, beg, end); } inline void BitMap::clear() { clear_range_of_words(0, size_in_words()); } inline void BitMap::par_clear_range(idx_t beg, idx_t end, RangeSizeHint hint) { if (hint == small_range && end - beg == 1) { par_at_put(beg, false); } else { if (hint == large_range) { par_at_put_large_range(beg, end, false); } else { par_at_put_range(beg, end, false); } } } template inline BitMap::idx_t BitMap::get_next_bit_impl(idx_t l_index, idx_t r_index) const { STATIC_ASSERT(flip == find_ones_flip || flip == find_zeros_flip); verify_range(l_index, r_index); assert(!aligned_right || is_aligned(r_index, BitsPerWord), "r_index not aligned"); // The first word often contains an interesting bit, either due to // density or because of features of the calling algorithm. So it's // important to examine that first word with a minimum of fuss, // minimizing setup time for later words that will be wasted if the // first word is indeed interesting. // The benefit from aligned_right being true is relatively small. // It saves an operation in the setup for the word search loop. // It also eliminates the range check on the final result. // However, callers often have a comparison with r_index, and // inlining often allows the two comparisons to be combined; it is // important when !aligned_right that return paths either return // r_index or a value dominated by a comparison with r_index. // aligned_right is still helpful when the caller doesn't have a // range check because features of the calling algorithm guarantee // an interesting bit will be present. if (l_index < r_index) { // Get the word containing l_index, and shift out low bits. idx_t index = to_words_align_down(l_index); bm_word_t cword = (map(index) ^ flip) >> bit_in_word(l_index); if ((cword & 1) != 0) { // The first bit is similarly often interesting. When it matters // (density or features of the calling algorithm make it likely // the first bit is set), going straight to the next clause compares // poorly with doing this check first; count_trailing_zeros can be // relatively expensive, plus there is the additional range check. // But when the first bit isn't set, the cost of having tested for // it is relatively small compared to the rest of the search. return l_index; } else if (cword != 0) { // Flipped and shifted first word is non-zero. idx_t result = l_index + count_trailing_zeros(cword); if (aligned_right || (result < r_index)) return result; // Result is beyond range bound; return r_index. } else { // Flipped and shifted first word is zero. Word search through // aligned up r_index for a non-zero flipped word. idx_t limit = aligned_right ? to_words_align_down(r_index) // Miniscule savings when aligned. : to_words_align_up(r_index); while (++index < limit) { cword = map(index) ^ flip; if (cword != 0) { idx_t result = bit_index(index) + count_trailing_zeros(cword); if (aligned_right || (result < r_index)) return result; // Result is beyond range bound; return r_index. assert((index + 1) == limit, "invariant"); break; } } // No bits in range; return r_index. } } return r_index; } inline BitMap::idx_t BitMap::get_next_one_offset(idx_t l_offset, idx_t r_offset) const { return get_next_bit_impl(l_offset, r_offset); } inline BitMap::idx_t BitMap::get_next_zero_offset(idx_t l_offset, idx_t r_offset) const { return get_next_bit_impl(l_offset, r_offset); } inline BitMap::idx_t BitMap::get_next_one_offset_aligned_right(idx_t l_offset, idx_t r_offset) const { return get_next_bit_impl(l_offset, r_offset); } // Returns a bit mask for a range of bits [beg, end) within a single word. Each // bit in the mask is 0 if the bit is in the range, 1 if not in the range. The // returned mask can be used directly to clear the range, or inverted to set the // range. Note: end must not be 0. inline BitMap::bm_word_t BitMap::inverted_bit_mask_for_range(idx_t beg, idx_t end) const { assert(end != 0, "does not work when end == 0"); assert(beg == end || to_words_align_down(beg) == to_words_align_down(end - 1), "must be a single-word range"); bm_word_t mask = bit_mask(beg) - 1; // low (right) bits if (bit_in_word(end) != 0) { mask |= ~(bit_mask(end) - 1); // high (left) bits } return mask; } inline void BitMap::set_large_range_of_words(idx_t beg, idx_t end) { assert(beg <= end, "underflow"); memset(_map + beg, ~(unsigned char)0, (end - beg) * sizeof(bm_word_t)); } inline void BitMap::clear_large_range_of_words(idx_t beg, idx_t end) { assert(beg <= end, "underflow"); memset(_map + beg, 0, (end - beg) * sizeof(bm_word_t)); } inline bool BitMap2D::is_valid_index(idx_t slot_index, idx_t bit_within_slot_index) { verify_bit_within_slot_index(bit_within_slot_index); return (bit_index(slot_index, bit_within_slot_index) < size_in_bits()); } inline bool BitMap2D::at(idx_t slot_index, idx_t bit_within_slot_index) const { verify_bit_within_slot_index(bit_within_slot_index); return _map.at(bit_index(slot_index, bit_within_slot_index)); } inline void BitMap2D::set_bit(idx_t slot_index, idx_t bit_within_slot_index) { verify_bit_within_slot_index(bit_within_slot_index); _map.set_bit(bit_index(slot_index, bit_within_slot_index)); } inline void BitMap2D::clear_bit(idx_t slot_index, idx_t bit_within_slot_index) { verify_bit_within_slot_index(bit_within_slot_index); _map.clear_bit(bit_index(slot_index, bit_within_slot_index)); } inline void BitMap2D::at_put(idx_t slot_index, idx_t bit_within_slot_index, bool value) { verify_bit_within_slot_index(bit_within_slot_index); _map.at_put(bit_index(slot_index, bit_within_slot_index), value); } inline void BitMap2D::at_put_grow(idx_t slot_index, idx_t bit_within_slot_index, bool value) { verify_bit_within_slot_index(bit_within_slot_index); idx_t bit = bit_index(slot_index, bit_within_slot_index); if (bit >= _map.size()) { _map.resize(2 * MAX2(_map.size(), bit)); } _map.at_put(bit, value); } #endif // SHARE_UTILITIES_BITMAP_INLINE_HPP