/* * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shared/ptrQueue.hpp" #include "memory/allocation.hpp" #include "memory/allocation.inline.hpp" #include "runtime/atomic.hpp" #include "runtime/mutex.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/thread.inline.hpp" #include PtrQueue::PtrQueue(PtrQueueSet* qset, bool permanent, bool active) : _qset(qset), _active(active), _permanent(permanent), _index(0), _capacity_in_bytes(0), _buf(NULL), _lock(NULL) {} PtrQueue::~PtrQueue() { assert(_permanent || (_buf == NULL), "queue must be flushed before delete"); } void PtrQueue::flush_impl() { if (_buf != NULL) { BufferNode* node = BufferNode::make_node_from_buffer(_buf, index()); if (is_empty()) { // No work to do. qset()->deallocate_buffer(node); } else { qset()->enqueue_complete_buffer(node); } _buf = NULL; set_index(0); } } void PtrQueue::enqueue_known_active(void* ptr) { while (_index == 0) { handle_zero_index(); } assert(_buf != NULL, "postcondition"); assert(index() > 0, "postcondition"); assert(index() <= capacity(), "invariant"); _index -= _element_size; _buf[index()] = ptr; } BufferNode* BufferNode::allocate(size_t size) { size_t byte_size = size * sizeof(void*); void* data = NEW_C_HEAP_ARRAY(char, buffer_offset() + byte_size, mtGC); return new (data) BufferNode; } void BufferNode::deallocate(BufferNode* node) { node->~BufferNode(); FREE_C_HEAP_ARRAY(char, node); } BufferNode::Allocator::Allocator(size_t buffer_size, Mutex* lock) : _buffer_size(buffer_size), _lock(lock), _free_list(NULL), _free_count(0) { assert(lock != NULL, "precondition"); } BufferNode::Allocator::~Allocator() { while (_free_list != NULL) { BufferNode* node = _free_list; _free_list = node->next(); BufferNode::deallocate(node); } } size_t BufferNode::Allocator::free_count() const { return Atomic::load(&_free_count); } BufferNode* BufferNode::Allocator::allocate() { BufferNode* node = NULL; { MutexLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); node = _free_list; if (node != NULL) { _free_list = node->next(); --_free_count; node->set_next(NULL); node->set_index(0); return node; } } return BufferNode::allocate(_buffer_size); } void BufferNode::Allocator::release(BufferNode* node) { MutexLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); node->set_next(_free_list); _free_list = node; ++_free_count; } void BufferNode::Allocator::reduce_free_list() { BufferNode* head = NULL; { MutexLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); // For now, delete half. size_t remove = _free_count / 2; if (remove > 0) { head = _free_list; BufferNode* tail = head; BufferNode* prev = NULL; for (size_t i = 0; i < remove; ++i) { assert(tail != NULL, "free list size is wrong"); prev = tail; tail = tail->next(); } assert(prev != NULL, "invariant"); assert(prev->next() == tail, "invariant"); prev->set_next(NULL); _free_list = tail; _free_count -= remove; } } while (head != NULL) { BufferNode* next = head->next(); BufferNode::deallocate(head); head = next; } } PtrQueueSet::PtrQueueSet(bool notify_when_complete) : _allocator(NULL), _cbl_mon(NULL), _completed_buffers_head(NULL), _completed_buffers_tail(NULL), _n_completed_buffers(0), _process_completed_buffers_threshold(ProcessCompletedBuffersThresholdNever), _process_completed(false), _all_active(false), _notify_when_complete(notify_when_complete), _max_completed_buffers(MaxCompletedBuffersUnlimited), _completed_buffers_padding(0) {} PtrQueueSet::~PtrQueueSet() { // There are presently only a couple (derived) instances ever // created, and they are permanent, so no harm currently done by // doing nothing here. } void PtrQueueSet::initialize(Monitor* cbl_mon, BufferNode::Allocator* allocator) { assert(cbl_mon != NULL && allocator != NULL, "Init order issue?"); _cbl_mon = cbl_mon; _allocator = allocator; } void** PtrQueueSet::allocate_buffer() { BufferNode* node = _allocator->allocate(); return BufferNode::make_buffer_from_node(node); } void PtrQueueSet::deallocate_buffer(BufferNode* node) { _allocator->release(node); } void PtrQueue::handle_zero_index() { assert(index() == 0, "precondition"); // This thread records the full buffer and allocates a new one (while // holding the lock if there is one). if (_buf != NULL) { if (!should_enqueue_buffer()) { assert(index() > 0, "the buffer can only be re-used if it's not full"); return; } if (_lock) { assert(_lock->owned_by_self(), "Required."); BufferNode* node = BufferNode::make_node_from_buffer(_buf, index()); _buf = NULL; // clear shared _buf field qset()->enqueue_complete_buffer(node); assert(_buf == NULL, "multiple enqueuers appear to be racing"); } else { BufferNode* node = BufferNode::make_node_from_buffer(_buf, index()); if (qset()->process_or_enqueue_complete_buffer(node)) { // Recycle the buffer. No allocation. assert(_buf == BufferNode::make_buffer_from_node(node), "invariant"); assert(capacity() == qset()->buffer_size(), "invariant"); reset(); return; } } } // Set capacity in case this is the first allocation. set_capacity(qset()->buffer_size()); // Allocate a new buffer. _buf = qset()->allocate_buffer(); reset(); } bool PtrQueueSet::process_or_enqueue_complete_buffer(BufferNode* node) { if (Thread::current()->is_Java_thread()) { // If the number of buffers exceeds the limit, make this Java // thread do the processing itself. We don't lock to access // buffer count or padding; it is fine to be imprecise here. The // add of padding could overflow, which is treated as unlimited. size_t limit = _max_completed_buffers + _completed_buffers_padding; if ((_n_completed_buffers > limit) && (limit >= _max_completed_buffers)) { if (mut_process_buffer(node)) { // Successfully processed; return true to allow buffer reuse. return true; } } } // The buffer will be enqueued. The caller will have to get a new one. enqueue_complete_buffer(node); return false; } void PtrQueueSet::enqueue_complete_buffer(BufferNode* cbn) { MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); cbn->set_next(NULL); if (_completed_buffers_tail == NULL) { assert(_completed_buffers_head == NULL, "Well-formedness"); _completed_buffers_head = cbn; _completed_buffers_tail = cbn; } else { _completed_buffers_tail->set_next(cbn); _completed_buffers_tail = cbn; } _n_completed_buffers++; if (!_process_completed && (_n_completed_buffers > _process_completed_buffers_threshold)) { _process_completed = true; if (_notify_when_complete) { _cbl_mon->notify(); } } DEBUG_ONLY(assert_completed_buffer_list_len_correct_locked()); } size_t PtrQueueSet::completed_buffers_list_length() { size_t n = 0; BufferNode* cbn = _completed_buffers_head; while (cbn != NULL) { n++; cbn = cbn->next(); } return n; } void PtrQueueSet::assert_completed_buffer_list_len_correct() { MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); assert_completed_buffer_list_len_correct_locked(); } void PtrQueueSet::assert_completed_buffer_list_len_correct_locked() { guarantee(completed_buffers_list_length() == _n_completed_buffers, "Completed buffer length is wrong."); } // Merge lists of buffers. Notify the processing threads. // The source queue is emptied as a result. The queues // must share the monitor. void PtrQueueSet::merge_bufferlists(PtrQueueSet *src) { assert(_cbl_mon == src->_cbl_mon, "Should share the same lock"); MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); if (_completed_buffers_tail == NULL) { assert(_completed_buffers_head == NULL, "Well-formedness"); _completed_buffers_head = src->_completed_buffers_head; _completed_buffers_tail = src->_completed_buffers_tail; } else { assert(_completed_buffers_head != NULL, "Well formedness"); if (src->_completed_buffers_head != NULL) { _completed_buffers_tail->set_next(src->_completed_buffers_head); _completed_buffers_tail = src->_completed_buffers_tail; } } _n_completed_buffers += src->_n_completed_buffers; src->_n_completed_buffers = 0; src->_completed_buffers_head = NULL; src->_completed_buffers_tail = NULL; assert(_completed_buffers_head == NULL && _completed_buffers_tail == NULL || _completed_buffers_head != NULL && _completed_buffers_tail != NULL, "Sanity"); } void PtrQueueSet::notify_if_necessary() { MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); if (_n_completed_buffers > _process_completed_buffers_threshold) { _process_completed = true; if (_notify_when_complete) _cbl_mon->notify(); } }