1 /*
   2  * Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1CollectedHeap.inline.hpp"
  27 #include "gc/g1/g1ConcurrentRefine.hpp"
  28 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  29 #include "gc/g1/g1DirtyCardQueue.hpp"
  30 #include "gc/g1/g1RemSet.hpp"
  31 #include "gc/g1/g1RemSetSummary.hpp"
  32 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  33 #include "gc/g1/heapRegion.hpp"
  34 #include "gc/g1/heapRegionRemSet.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "runtime/thread.inline.hpp"
  37 
  38 class GetRSThreadVTimeClosure : public ThreadClosure {
  39 private:
  40   G1RemSetSummary* _summary;
  41   uint _counter;
  42 
  43 public:
  44   GetRSThreadVTimeClosure(G1RemSetSummary * summary) : ThreadClosure(), _summary(summary), _counter(0) {
  45     assert(_summary != NULL, "just checking");
  46   }
  47 
  48   virtual void do_thread(Thread* t) {
  49     G1ConcurrentRefineThread* crt = (G1ConcurrentRefineThread*) t;
  50     _summary->set_rs_thread_vtime(_counter, crt->vtime_accum());
  51     _counter++;
  52   }
  53 };
  54 
  55 void G1RemSetSummary::update() {
  56   _num_conc_refined_cards = _rem_set->num_conc_refined_cards();
  57   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
  58   _num_processed_buf_mutator = dcqs.processed_buffers_mut();
  59   _num_processed_buf_rs_threads = dcqs.processed_buffers_rs_thread();
  60 
  61   _num_coarsenings = HeapRegionRemSet::n_coarsenings();
  62 
  63   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  64   G1ConcurrentRefine* cg1r = g1h->concurrent_refine();
  65   if (_rs_threads_vtimes != NULL) {
  66     GetRSThreadVTimeClosure p(this);
  67     cg1r->threads_do(&p);
  68   }
  69   set_sampling_thread_vtime(g1h->sampling_thread()->vtime_accum());
  70 }
  71 
  72 void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) {
  73   assert(_rs_threads_vtimes != NULL, "just checking");
  74   assert(thread < _num_vtimes, "just checking");
  75   _rs_threads_vtimes[thread] = value;
  76 }
  77 
  78 double G1RemSetSummary::rs_thread_vtime(uint thread) const {
  79   assert(_rs_threads_vtimes != NULL, "just checking");
  80   assert(thread < _num_vtimes, "just checking");
  81   return _rs_threads_vtimes[thread];
  82 }
  83 
  84 G1RemSetSummary::G1RemSetSummary() :
  85   _rem_set(NULL),
  86   _num_conc_refined_cards(0),
  87   _num_processed_buf_mutator(0),
  88   _num_processed_buf_rs_threads(0),
  89   _num_coarsenings(0),
  90   _num_vtimes(G1ConcurrentRefine::max_num_threads()),
  91   _rs_threads_vtimes(NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC)),
  92   _sampling_thread_vtime(0.0f) {
  93 
  94   memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes);
  95 }
  96 
  97 G1RemSetSummary::G1RemSetSummary(G1RemSet* rem_set) :
  98   _rem_set(rem_set),
  99   _num_conc_refined_cards(0),
 100   _num_processed_buf_mutator(0),
 101   _num_processed_buf_rs_threads(0),
 102   _num_coarsenings(0),
 103   _num_vtimes(G1ConcurrentRefine::max_num_threads()),
 104   _rs_threads_vtimes(NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC)),
 105   _sampling_thread_vtime(0.0f) {
 106   update();
 107 }
 108 
 109 G1RemSetSummary::~G1RemSetSummary() {
 110   if (_rs_threads_vtimes) {
 111     FREE_C_HEAP_ARRAY(double, _rs_threads_vtimes);
 112   }
 113 }
 114 
 115 void G1RemSetSummary::set(G1RemSetSummary* other) {
 116   assert(other != NULL, "just checking");
 117   assert(_num_vtimes == other->_num_vtimes, "just checking");
 118 
 119   _num_conc_refined_cards = other->num_conc_refined_cards();
 120 
 121   _num_processed_buf_mutator = other->num_processed_buf_mutator();
 122   _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads();
 123 
 124   _num_coarsenings = other->_num_coarsenings;
 125 
 126   memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes);
 127 
 128   set_sampling_thread_vtime(other->sampling_thread_vtime());
 129 }
 130 
 131 void G1RemSetSummary::subtract_from(G1RemSetSummary* other) {
 132   assert(other != NULL, "just checking");
 133   assert(_num_vtimes == other->_num_vtimes, "just checking");
 134 
 135   _num_conc_refined_cards = other->num_conc_refined_cards() - _num_conc_refined_cards;
 136 
 137   _num_processed_buf_mutator = other->num_processed_buf_mutator() - _num_processed_buf_mutator;
 138   _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads() - _num_processed_buf_rs_threads;
 139 
 140   _num_coarsenings = other->num_coarsenings() - _num_coarsenings;
 141 
 142   for (uint i = 0; i < _num_vtimes; i++) {
 143     set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i));
 144   }
 145 
 146   _sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime;
 147 }
 148 
 149 class RegionTypeCounter {
 150 private:
 151   const char* _name;
 152 
 153   size_t _rs_mem_size;
 154   size_t _cards_occupied;
 155   size_t _amount;
 156 
 157   size_t _code_root_mem_size;
 158   size_t _code_root_elems;
 159 
 160   double rs_mem_size_percent_of(size_t total) {
 161     return percent_of(_rs_mem_size, total);
 162   }
 163 
 164   double cards_occupied_percent_of(size_t total) {
 165     return percent_of(_cards_occupied, total);
 166   }
 167 
 168   double code_root_mem_size_percent_of(size_t total) {
 169     return percent_of(_code_root_mem_size, total);
 170   }
 171 
 172   double code_root_elems_percent_of(size_t total) {
 173     return percent_of(_code_root_elems, total);
 174   }
 175 
 176   size_t amount() const { return _amount; }
 177 
 178 public:
 179 
 180   RegionTypeCounter(const char* name) : _name(name), _rs_mem_size(0), _cards_occupied(0),
 181     _amount(0), _code_root_mem_size(0), _code_root_elems(0) { }
 182 
 183   void add(size_t rs_mem_size, size_t cards_occupied, size_t code_root_mem_size,
 184     size_t code_root_elems) {
 185     _rs_mem_size += rs_mem_size;
 186     _cards_occupied += cards_occupied;
 187     _code_root_mem_size += code_root_mem_size;
 188     _code_root_elems += code_root_elems;
 189     _amount++;
 190   }
 191 
 192   size_t rs_mem_size() const { return _rs_mem_size; }
 193   size_t cards_occupied() const { return _cards_occupied; }
 194 
 195   size_t code_root_mem_size() const { return _code_root_mem_size; }
 196   size_t code_root_elems() const { return _code_root_elems; }
 197 
 198   void print_rs_mem_info_on(outputStream * out, size_t total) {
 199     out->print_cr("    " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions",
 200         byte_size_in_proper_unit(rs_mem_size()),
 201         proper_unit_for_byte_size(rs_mem_size()),
 202         rs_mem_size_percent_of(total), amount(), _name);
 203   }
 204 
 205   void print_cards_occupied_info_on(outputStream * out, size_t total) {
 206     out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) entries by " SIZE_FORMAT " %s regions",
 207         cards_occupied(), cards_occupied_percent_of(total), amount(), _name);
 208   }
 209 
 210   void print_code_root_mem_info_on(outputStream * out, size_t total) {
 211     out->print_cr("    " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions",
 212         byte_size_in_proper_unit(code_root_mem_size()),
 213         proper_unit_for_byte_size(code_root_mem_size()),
 214         code_root_mem_size_percent_of(total), amount(), _name);
 215   }
 216 
 217   void print_code_root_elems_info_on(outputStream * out, size_t total) {
 218     out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) elements by " SIZE_FORMAT " %s regions",
 219         code_root_elems(), code_root_elems_percent_of(total), amount(), _name);
 220   }
 221 };
 222 
 223 
 224 class HRRSStatsIter: public HeapRegionClosure {
 225 private:
 226   RegionTypeCounter _young;
 227   RegionTypeCounter _humongous;
 228   RegionTypeCounter _free;
 229   RegionTypeCounter _old;
 230   RegionTypeCounter _archive;
 231   RegionTypeCounter _all;
 232 
 233   size_t _max_rs_mem_sz;
 234   HeapRegion* _max_rs_mem_sz_region;
 235 
 236   size_t total_rs_mem_sz() const            { return _all.rs_mem_size(); }
 237   size_t total_cards_occupied() const       { return _all.cards_occupied(); }
 238 
 239   size_t max_rs_mem_sz() const              { return _max_rs_mem_sz; }
 240   HeapRegion* max_rs_mem_sz_region() const  { return _max_rs_mem_sz_region; }
 241 
 242   size_t _max_code_root_mem_sz;
 243   HeapRegion* _max_code_root_mem_sz_region;
 244 
 245   size_t total_code_root_mem_sz() const     { return _all.code_root_mem_size(); }
 246   size_t total_code_root_elems() const      { return _all.code_root_elems(); }
 247 
 248   size_t max_code_root_mem_sz() const       { return _max_code_root_mem_sz; }
 249   HeapRegion* max_code_root_mem_sz_region() const { return _max_code_root_mem_sz_region; }
 250 
 251 public:
 252   HRRSStatsIter() : _young("Young"), _humongous("Humongous"),
 253     _free("Free"), _old("Old"), _archive("Archive"), _all("All"),
 254     _max_rs_mem_sz(0), _max_rs_mem_sz_region(NULL),
 255     _max_code_root_mem_sz(0), _max_code_root_mem_sz_region(NULL)
 256   {}
 257 
 258   bool do_heap_region(HeapRegion* r) {
 259     HeapRegionRemSet* hrrs = r->rem_set();
 260 
 261     // HeapRegionRemSet::mem_size() includes the
 262     // size of the strong code roots
 263     size_t rs_mem_sz = hrrs->mem_size();
 264     if (rs_mem_sz > _max_rs_mem_sz) {
 265       _max_rs_mem_sz = rs_mem_sz;
 266       _max_rs_mem_sz_region = r;
 267     }
 268     size_t occupied_cards = hrrs->occupied();
 269     size_t code_root_mem_sz = hrrs->strong_code_roots_mem_size();
 270     if (code_root_mem_sz > max_code_root_mem_sz()) {
 271       _max_code_root_mem_sz = code_root_mem_sz;
 272       _max_code_root_mem_sz_region = r;
 273     }
 274     size_t code_root_elems = hrrs->strong_code_roots_list_length();
 275 
 276     RegionTypeCounter* current = NULL;
 277     if (r->is_free()) {
 278       current = &_free;
 279     } else if (r->is_young()) {
 280       current = &_young;
 281     } else if (r->is_humongous()) {
 282       current = &_humongous;
 283     } else if (r->is_old()) {
 284       current = &_old;
 285     } else if (r->is_archive()) {
 286       current = &_archive;
 287     } else {
 288       ShouldNotReachHere();
 289     }
 290     current->add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems);
 291     _all.add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems);
 292 
 293     return false;
 294   }
 295 
 296   void print_summary_on(outputStream* out) {
 297     RegionTypeCounter* counters[] = { &_young, &_humongous, &_free, &_old, &_archive, NULL };
 298 
 299     out->print_cr(" Current rem set statistics");
 300     out->print_cr("  Total per region rem sets sizes = " SIZE_FORMAT "%s."
 301                   " Max = " SIZE_FORMAT "%s.",
 302                   byte_size_in_proper_unit(total_rs_mem_sz()),
 303                   proper_unit_for_byte_size(total_rs_mem_sz()),
 304                   byte_size_in_proper_unit(max_rs_mem_sz()),
 305                   proper_unit_for_byte_size(max_rs_mem_sz()));
 306     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
 307       (*current)->print_rs_mem_info_on(out, total_rs_mem_sz());
 308     }
 309 
 310     out->print_cr("   Static structures = " SIZE_FORMAT "%s,"
 311                   " free_lists = " SIZE_FORMAT "%s.",
 312                   byte_size_in_proper_unit(HeapRegionRemSet::static_mem_size()),
 313                   proper_unit_for_byte_size(HeapRegionRemSet::static_mem_size()),
 314                   byte_size_in_proper_unit(HeapRegionRemSet::fl_mem_size()),
 315                   proper_unit_for_byte_size(HeapRegionRemSet::fl_mem_size()));
 316 
 317     out->print_cr("    " SIZE_FORMAT " occupied cards represented.",
 318                   total_cards_occupied());
 319     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
 320       (*current)->print_cards_occupied_info_on(out, total_cards_occupied());
 321     }
 322 
 323     // Largest sized rem set region statistics
 324     HeapRegionRemSet* rem_set = max_rs_mem_sz_region()->rem_set();
 325     out->print_cr("    Region with largest rem set = " HR_FORMAT ", "
 326                   "size = " SIZE_FORMAT "%s, occupied = " SIZE_FORMAT "%s.",
 327                   HR_FORMAT_PARAMS(max_rs_mem_sz_region()),
 328                   byte_size_in_proper_unit(rem_set->mem_size()),
 329                   proper_unit_for_byte_size(rem_set->mem_size()),
 330                   byte_size_in_proper_unit(rem_set->occupied()),
 331                   proper_unit_for_byte_size(rem_set->occupied()));
 332     // Strong code root statistics
 333     HeapRegionRemSet* max_code_root_rem_set = max_code_root_mem_sz_region()->rem_set();
 334     out->print_cr("  Total heap region code root sets sizes = " SIZE_FORMAT "%s."
 335                   "  Max = " SIZE_FORMAT "%s.",
 336                   byte_size_in_proper_unit(total_code_root_mem_sz()),
 337                   proper_unit_for_byte_size(total_code_root_mem_sz()),
 338                   byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()),
 339                   proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size()));
 340     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
 341       (*current)->print_code_root_mem_info_on(out, total_code_root_mem_sz());
 342     }
 343 
 344     out->print_cr("    " SIZE_FORMAT " code roots represented.",
 345                   total_code_root_elems());
 346     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
 347       (*current)->print_code_root_elems_info_on(out, total_code_root_elems());
 348     }
 349 
 350     out->print_cr("    Region with largest amount of code roots = " HR_FORMAT ", "
 351                   "size = " SIZE_FORMAT "%s, num_elems = " SIZE_FORMAT ".",
 352                   HR_FORMAT_PARAMS(max_code_root_mem_sz_region()),
 353                   byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()),
 354                   proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size()),
 355                   max_code_root_rem_set->strong_code_roots_list_length());
 356   }
 357 };
 358 
 359 void G1RemSetSummary::print_on(outputStream* out) {
 360   out->print_cr(" Recent concurrent refinement statistics");
 361   out->print_cr("  Processed " SIZE_FORMAT " cards concurrently", num_conc_refined_cards());
 362   out->print_cr("  Of " SIZE_FORMAT " completed buffers:", num_processed_buf_total());
 363   out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) by concurrent RS threads.",
 364                 num_processed_buf_total(),
 365                 percent_of(num_processed_buf_rs_threads(), num_processed_buf_total()));
 366   out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) by mutator threads.",
 367                 num_processed_buf_mutator(),
 368                 percent_of(num_processed_buf_mutator(), num_processed_buf_total()));
 369   out->print_cr("  Did " SIZE_FORMAT " coarsenings.", num_coarsenings());
 370   out->print_cr("  Concurrent RS threads times (s)");
 371   out->print("     ");
 372   for (uint i = 0; i < _num_vtimes; i++) {
 373     out->print("    %5.2f", rs_thread_vtime(i));
 374   }
 375   out->cr();
 376   out->print_cr("  Concurrent sampling threads times (s)");
 377   out->print_cr("         %5.2f", sampling_thread_vtime());
 378 
 379   HRRSStatsIter blk;
 380   G1CollectedHeap::heap()->heap_region_iterate(&blk);
 381   blk.print_summary_on(out);
 382 }