1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1BarrierSet.hpp"
  27 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc/g1/g1CardTable.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1ConcurrentRefine.hpp"
  31 #include "gc/g1/g1DirtyCardQueue.hpp"
  32 #include "gc/g1/g1FromCardCache.hpp"
  33 #include "gc/g1/g1GCPhaseTimes.hpp"
  34 #include "gc/g1/g1HotCardCache.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1RootClosures.hpp"
  37 #include "gc/g1/g1RemSet.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionManager.inline.hpp"
  40 #include "gc/g1/heapRegionRemSet.hpp"
  41 #include "gc/shared/gcTraceTime.inline.hpp"
  42 #include "gc/shared/suspendibleThreadSet.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "memory/iterator.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "oops/access.inline.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "runtime/os.hpp"
  49 #include "utilities/align.hpp"
  50 #include "utilities/globalDefinitions.hpp"
  51 #include "utilities/stack.inline.hpp"
  52 #include "utilities/ticks.hpp"
  53 
  54 // Collects information about the overall remembered set scan progress during an evacuation.
  55 class G1RemSetScanState : public CHeapObj<mtGC> {
  56 private:
  57   class G1ClearCardTableTask : public AbstractGangTask {
  58     G1CollectedHeap* _g1h;
  59     uint* _dirty_region_list;
  60     size_t _num_dirty_regions;
  61     size_t _chunk_length;
  62 
  63     size_t volatile _cur_dirty_regions;
  64   public:
  65     G1ClearCardTableTask(G1CollectedHeap* g1h,
  66                          uint* dirty_region_list,
  67                          size_t num_dirty_regions,
  68                          size_t chunk_length) :
  69       AbstractGangTask("G1 Clear Card Table Task"),
  70       _g1h(g1h),
  71       _dirty_region_list(dirty_region_list),
  72       _num_dirty_regions(num_dirty_regions),
  73       _chunk_length(chunk_length),
  74       _cur_dirty_regions(0) {
  75 
  76       assert(chunk_length > 0, "must be");
  77     }
  78 
  79     static size_t chunk_size() { return M; }
  80 
  81     void work(uint worker_id) {
  82       while (_cur_dirty_regions < _num_dirty_regions) {
  83         size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length;
  84         size_t max = MIN2(next + _chunk_length, _num_dirty_regions);
  85 
  86         for (size_t i = next; i < max; i++) {
  87           HeapRegion* r = _g1h->region_at(_dirty_region_list[i]);
  88           if (!r->is_survivor()) {
  89             r->clear_cardtable();
  90           }
  91         }
  92       }
  93     }
  94   };
  95 
  96   size_t _max_regions;
  97 
  98   // Scan progress for the remembered set of a single region. Transitions from
  99   // Unclaimed -> Claimed -> Complete.
 100   // At each of the transitions the thread that does the transition needs to perform
 101   // some special action once. This is the reason for the extra "Claimed" state.
 102   typedef jint G1RemsetIterState;
 103 
 104   static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet.
 105   static const G1RemsetIterState Claimed = 1;   // The remembered set is currently being scanned.
 106   static const G1RemsetIterState Complete = 2;  // The remembered set has been completely scanned.
 107 
 108   G1RemsetIterState volatile* _iter_states;
 109   // The current location where the next thread should continue scanning in a region's
 110   // remembered set.
 111   size_t volatile* _iter_claims;
 112 
 113   // Temporary buffer holding the regions we used to store remembered set scan duplicate
 114   // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region)
 115   uint* _dirty_region_buffer;
 116 
 117   typedef jbyte IsDirtyRegionState;
 118   static const IsDirtyRegionState Clean = 0;
 119   static const IsDirtyRegionState Dirty = 1;
 120   // Holds a flag for every region whether it is in the _dirty_region_buffer already
 121   // to avoid duplicates. Uses jbyte since there are no atomic instructions for bools.
 122   IsDirtyRegionState* _in_dirty_region_buffer;
 123   size_t _cur_dirty_region;
 124 
 125   // Creates a snapshot of the current _top values at the start of collection to
 126   // filter out card marks that we do not want to scan.
 127   class G1ResetScanTopClosure : public HeapRegionClosure {
 128   private:
 129     HeapWord** _scan_top;
 130   public:
 131     G1ResetScanTopClosure(HeapWord** scan_top) : _scan_top(scan_top) { }
 132 
 133     virtual bool do_heap_region(HeapRegion* r) {
 134       uint hrm_index = r->hrm_index();
 135       if (!r->in_collection_set() && r->is_old_or_humongous_or_archive() && !r->is_empty()) {
 136         _scan_top[hrm_index] = r->top();
 137       } else {
 138         _scan_top[hrm_index] = NULL;
 139       }
 140       return false;
 141     }
 142   };
 143 
 144   // For each region, contains the maximum top() value to be used during this garbage
 145   // collection. Subsumes common checks like filtering out everything but old and
 146   // humongous regions outside the collection set.
 147   // This is valid because we are not interested in scanning stray remembered set
 148   // entries from free or archive regions.
 149   HeapWord** _scan_top;
 150 public:
 151   G1RemSetScanState() :
 152     _max_regions(0),
 153     _iter_states(NULL),
 154     _iter_claims(NULL),
 155     _dirty_region_buffer(NULL),
 156     _in_dirty_region_buffer(NULL),
 157     _cur_dirty_region(0),
 158     _scan_top(NULL) {
 159   }
 160 
 161   ~G1RemSetScanState() {
 162     if (_iter_states != NULL) {
 163       FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states);
 164     }
 165     if (_iter_claims != NULL) {
 166       FREE_C_HEAP_ARRAY(size_t, _iter_claims);
 167     }
 168     if (_dirty_region_buffer != NULL) {
 169       FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer);
 170     }
 171     if (_in_dirty_region_buffer != NULL) {
 172       FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer);
 173     }
 174     if (_scan_top != NULL) {
 175       FREE_C_HEAP_ARRAY(HeapWord*, _scan_top);
 176     }
 177   }
 178 
 179   void initialize(uint max_regions) {
 180     assert(_iter_states == NULL, "Must not be initialized twice");
 181     assert(_iter_claims == NULL, "Must not be initialized twice");
 182     _max_regions = max_regions;
 183     _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC);
 184     _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 185     _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC);
 186     _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC);
 187     _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC);
 188   }
 189 
 190   void reset() {
 191     for (uint i = 0; i < _max_regions; i++) {
 192       _iter_states[i] = Unclaimed;
 193       _scan_top[i] = NULL;
 194     }
 195 
 196     G1ResetScanTopClosure cl(_scan_top);
 197     G1CollectedHeap::heap()->heap_region_iterate(&cl);
 198 
 199     memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t));
 200     memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState));
 201     _cur_dirty_region = 0;
 202   }
 203 
 204   // Attempt to claim the remembered set of the region for iteration. Returns true
 205   // if this call caused the transition from Unclaimed to Claimed.
 206   inline bool claim_iter(uint region) {
 207     assert(region < _max_regions, "Tried to access invalid region %u", region);
 208     if (_iter_states[region] != Unclaimed) {
 209       return false;
 210     }
 211     G1RemsetIterState res = Atomic::cmpxchg(Claimed, &_iter_states[region], Unclaimed);
 212     return (res == Unclaimed);
 213   }
 214 
 215   // Try to atomically sets the iteration state to "complete". Returns true for the
 216   // thread that caused the transition.
 217   inline bool set_iter_complete(uint region) {
 218     if (iter_is_complete(region)) {
 219       return false;
 220     }
 221     G1RemsetIterState res = Atomic::cmpxchg(Complete, &_iter_states[region], Claimed);
 222     return (res == Claimed);
 223   }
 224 
 225   // Returns true if the region's iteration is complete.
 226   inline bool iter_is_complete(uint region) const {
 227     assert(region < _max_regions, "Tried to access invalid region %u", region);
 228     return _iter_states[region] == Complete;
 229   }
 230 
 231   // The current position within the remembered set of the given region.
 232   inline size_t iter_claimed(uint region) const {
 233     assert(region < _max_regions, "Tried to access invalid region %u", region);
 234     return _iter_claims[region];
 235   }
 236 
 237   // Claim the next block of cards within the remembered set of the region with
 238   // step size.
 239   inline size_t iter_claimed_next(uint region, size_t step) {
 240     return Atomic::add(step, &_iter_claims[region]) - step;
 241   }
 242 
 243   void add_dirty_region(uint region) {
 244     if (_in_dirty_region_buffer[region] == Dirty) {
 245       return;
 246     }
 247 
 248     bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean;
 249     if (marked_as_dirty) {
 250       size_t allocated = Atomic::add(1u, &_cur_dirty_region) - 1;
 251       _dirty_region_buffer[allocated] = region;
 252     }
 253   }
 254 
 255   HeapWord* scan_top(uint region_idx) const {
 256     return _scan_top[region_idx];
 257   }
 258 
 259   // Clear the card table of "dirty" regions.
 260   void clear_card_table(WorkGang* workers) {
 261     if (_cur_dirty_region == 0) {
 262       return;
 263     }
 264 
 265     size_t const num_chunks = align_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size();
 266     uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 267     size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion;
 268 
 269     // Iterate over the dirty cards region list.
 270     G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length);
 271 
 272     log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " "
 273                         "units of work for " SIZE_FORMAT " regions.",
 274                         cl.name(), num_workers, num_chunks, _cur_dirty_region);
 275     workers->run_task(&cl, num_workers);
 276 
 277 #ifndef PRODUCT
 278     G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup();
 279 #endif
 280   }
 281 };
 282 
 283 G1RemSet::G1RemSet(G1CollectedHeap* g1h,
 284                    G1CardTable* ct,
 285                    G1HotCardCache* hot_card_cache) :
 286   _scan_state(new G1RemSetScanState()),
 287   _prev_period_summary(),
 288   _g1h(g1h),
 289   _num_conc_refined_cards(0),
 290   _ct(ct),
 291   _g1p(_g1h->policy()),
 292   _hot_card_cache(hot_card_cache) {
 293 }
 294 
 295 G1RemSet::~G1RemSet() {
 296   if (_scan_state != NULL) {
 297     delete _scan_state;
 298   }
 299 }
 300 
 301 uint G1RemSet::num_par_rem_sets() {
 302   return G1DirtyCardQueueSet::num_par_ids() + G1ConcurrentRefine::max_num_threads() + MAX2(ConcGCThreads, ParallelGCThreads);
 303 }
 304 
 305 void G1RemSet::initialize(size_t capacity, uint max_regions) {
 306   G1FromCardCache::initialize(num_par_rem_sets(), max_regions);
 307   _scan_state->initialize(max_regions);
 308 }
 309 
 310 G1ScanRSForRegionClosure::G1ScanRSForRegionClosure(G1RemSetScanState* scan_state,
 311                                                    G1ScanObjsDuringScanRSClosure* scan_obj_on_card,
 312                                                    G1ParScanThreadState* pss,
 313                                                    G1GCPhaseTimes::GCParPhases phase,
 314                                                    uint worker_i) :
 315   _g1h(G1CollectedHeap::heap()),
 316   _ct(_g1h->card_table()),
 317   _pss(pss),
 318   _scan_objs_on_card_cl(scan_obj_on_card),
 319   _scan_state(scan_state),
 320   _phase(phase),
 321   _worker_i(worker_i),
 322   _cards_scanned(0),
 323   _cards_claimed(0),
 324   _cards_skipped(0),
 325   _rem_set_root_scan_time(),
 326   _rem_set_trim_partially_time(),
 327   _strong_code_root_scan_time(),
 328   _strong_code_trim_partially_time() {
 329 }
 330 
 331 void G1ScanRSForRegionClosure::claim_card(size_t card_index, const uint region_idx_for_card){
 332   _ct->set_card_claimed(card_index);
 333   _scan_state->add_dirty_region(region_idx_for_card);
 334 }
 335 
 336 void G1ScanRSForRegionClosure::scan_card(MemRegion mr, uint region_idx_for_card) {
 337   HeapRegion* const card_region = _g1h->region_at(region_idx_for_card);
 338   assert(!card_region->is_young(), "Should not scan card in young region %u", region_idx_for_card);
 339   card_region->oops_on_card_seq_iterate_careful<true>(mr, _scan_objs_on_card_cl);
 340   _scan_objs_on_card_cl->trim_queue_partially();
 341   _cards_scanned++;
 342 }
 343 
 344 void G1ScanRSForRegionClosure::scan_rem_set_roots(HeapRegion* r) {
 345   EventGCPhaseParallel event;
 346   uint const region_idx = r->hrm_index();
 347 
 348   if (_scan_state->claim_iter(region_idx)) {
 349     // If we ever free the collection set concurrently, we should also
 350     // clear the card table concurrently therefore we won't need to
 351     // add regions of the collection set to the dirty cards region.
 352     _scan_state->add_dirty_region(region_idx);
 353   }
 354 
 355   if (r->rem_set()->cardset_is_empty()) {
 356     return;
 357   }
 358 
 359   // We claim cards in blocks so as to reduce the contention.
 360   size_t const block_size = G1RSetScanBlockSize;
 361 
 362   HeapRegionRemSetIterator iter(r->rem_set());
 363   size_t card_index;
 364 
 365   size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 366   for (size_t current_card = 0; iter.has_next(card_index); current_card++) {
 367     if (current_card >= claimed_card_block + block_size) {
 368       claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 369     }
 370     if (current_card < claimed_card_block) {
 371       _cards_skipped++;
 372       continue;
 373     }
 374     _cards_claimed++;
 375 
 376     HeapWord* const card_start = _g1h->bot()->address_for_index_raw(card_index);
 377     uint const region_idx_for_card = _g1h->addr_to_region(card_start);
 378 
 379 #ifdef ASSERT
 380     HeapRegion* hr = _g1h->region_at_or_null(region_idx_for_card);
 381     assert(hr == NULL || hr->is_in_reserved(card_start),
 382            "Card start " PTR_FORMAT " to scan outside of region %u", p2i(card_start), _g1h->region_at(region_idx_for_card)->hrm_index());
 383 #endif
 384     HeapWord* const top = _scan_state->scan_top(region_idx_for_card);
 385     if (card_start >= top) {
 386       continue;
 387     }
 388 
 389     // If the card is dirty, then G1 will scan it during Update RS.
 390     if (_ct->is_card_claimed(card_index) || _ct->is_card_dirty(card_index)) {
 391       continue;
 392     }
 393 
 394     // We claim lazily (so races are possible but they're benign), which reduces the
 395     // number of duplicate scans (the rsets of the regions in the cset can intersect).
 396     // Claim the card after checking bounds above: the remembered set may contain
 397     // random cards into current survivor, and we would then have an incorrectly
 398     // claimed card in survivor space. Card table clear does not reset the card table
 399     // of survivor space regions.
 400     claim_card(card_index, region_idx_for_card);
 401 
 402     MemRegion const mr(card_start, MIN2(card_start + BOTConstants::N_words, top));
 403 
 404     scan_card(mr, region_idx_for_card);
 405   }
 406   event.commit(GCId::current(), _worker_i, G1GCPhaseTimes::phase_name(_phase));
 407 }
 408 
 409 void G1ScanRSForRegionClosure::scan_strong_code_roots(HeapRegion* r) {
 410   EventGCPhaseParallel event;
 411   // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
 412   // treating the nmethods visited to act as roots for concurrent marking.
 413   // We only want to make sure that the oops in the nmethods are adjusted with regard to the
 414   // objects copied by the current evacuation.
 415   r->strong_code_roots_do(_pss->closures()->weak_codeblobs());
 416   event.commit(GCId::current(), _worker_i, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::CodeRoots));
 417 }
 418 
 419 bool G1ScanRSForRegionClosure::do_heap_region(HeapRegion* r) {
 420   assert(r->in_collection_set(),
 421          "Should only be called on elements of the collection set but region %u is not.",
 422          r->hrm_index());
 423   uint const region_idx = r->hrm_index();
 424 
 425   // Do an early out if we know we are complete.
 426   if (_scan_state->iter_is_complete(region_idx)) {
 427     return false;
 428   }
 429 
 430   {
 431     G1EvacPhaseWithTrimTimeTracker timer(_pss, _rem_set_root_scan_time, _rem_set_trim_partially_time);
 432     scan_rem_set_roots(r);
 433   }
 434 
 435   if (_scan_state->set_iter_complete(region_idx)) {
 436     G1EvacPhaseWithTrimTimeTracker timer(_pss, _strong_code_root_scan_time, _strong_code_trim_partially_time);
 437     // Scan the strong code root list attached to the current region
 438     scan_strong_code_roots(r);
 439   }
 440   return false;
 441 }
 442 
 443 void G1RemSet::scan_rem_set(G1ParScanThreadState* pss, uint worker_i) {
 444   G1ScanObjsDuringScanRSClosure scan_cl(_g1h, pss);
 445   G1ScanRSForRegionClosure cl(_scan_state, &scan_cl, pss, G1GCPhaseTimes::ScanRS, worker_i);
 446   _g1h->collection_set_iterate_from(&cl, worker_i);
 447 
 448   G1GCPhaseTimes* p = _g1p->phase_times();
 449 
 450   p->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, cl.rem_set_root_scan_time().seconds());
 451   p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_i, cl.rem_set_trim_partially_time().seconds());
 452 
 453   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_scanned(), G1GCPhaseTimes::ScanRSScannedCards);
 454   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_claimed(), G1GCPhaseTimes::ScanRSClaimedCards);
 455   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_skipped(), G1GCPhaseTimes::ScanRSSkippedCards);
 456 
 457   p->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, cl.strong_code_root_scan_time().seconds());
 458   p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_i, cl.strong_code_root_trim_partially_time().seconds());
 459 }
 460 
 461 // Closure used for updating rem sets. Only called during an evacuation pause.
 462 class G1RefineCardClosure: public G1CardTableEntryClosure {
 463   G1RemSet* _g1rs;
 464   G1ScanObjsDuringUpdateRSClosure* _update_rs_cl;
 465 
 466   size_t _cards_scanned;
 467   size_t _cards_skipped;
 468 public:
 469   G1RefineCardClosure(G1CollectedHeap* g1h, G1ScanObjsDuringUpdateRSClosure* update_rs_cl) :
 470     _g1rs(g1h->rem_set()), _update_rs_cl(update_rs_cl), _cards_scanned(0), _cards_skipped(0)
 471   {}
 472 
 473   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 474     // The only time we care about recording cards that
 475     // contain references that point into the collection set
 476     // is during RSet updating within an evacuation pause.
 477     // In this case worker_i should be the id of a GC worker thread.
 478     assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
 479 
 480     bool card_scanned = _g1rs->refine_card_during_gc(card_ptr, _update_rs_cl);
 481 
 482     if (card_scanned) {
 483       _update_rs_cl->trim_queue_partially();
 484       _cards_scanned++;
 485     } else {
 486       _cards_skipped++;
 487     }
 488     return true;
 489   }
 490 
 491   size_t cards_scanned() const { return _cards_scanned; }
 492   size_t cards_skipped() const { return _cards_skipped; }
 493 };
 494 
 495 void G1RemSet::update_rem_set(G1ParScanThreadState* pss, uint worker_i) {
 496   G1GCPhaseTimes* p = _g1p->phase_times();
 497 
 498   // Apply closure to log entries in the HCC.
 499   if (G1HotCardCache::default_use_cache()) {
 500     G1EvacPhaseTimesTracker x(p, pss, G1GCPhaseTimes::ScanHCC, worker_i);
 501 
 502     G1ScanObjsDuringUpdateRSClosure scan_hcc_cl(_g1h, pss);
 503     G1RefineCardClosure refine_card_cl(_g1h, &scan_hcc_cl);
 504     _g1h->iterate_hcc_closure(&refine_card_cl, worker_i);
 505   }
 506 
 507   // Now apply the closure to all remaining log entries.
 508   {
 509     G1EvacPhaseTimesTracker x(p, pss, G1GCPhaseTimes::UpdateRS, worker_i);
 510 
 511     G1ScanObjsDuringUpdateRSClosure update_rs_cl(_g1h, pss);
 512     G1RefineCardClosure refine_card_cl(_g1h, &update_rs_cl);
 513     _g1h->iterate_dirty_card_closure(&refine_card_cl, worker_i);
 514 
 515     p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_scanned(), G1GCPhaseTimes::UpdateRSScannedCards);
 516     p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_skipped(), G1GCPhaseTimes::UpdateRSSkippedCards);
 517   }
 518 }
 519 
 520 void G1RemSet::oops_into_collection_set_do(G1ParScanThreadState* pss, uint worker_i) {
 521   update_rem_set(pss, worker_i);
 522   scan_rem_set(pss, worker_i);;
 523 }
 524 
 525 void G1RemSet::prepare_for_oops_into_collection_set_do() {
 526   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 527   dcqs.concatenate_logs();
 528 
 529   _scan_state->reset();
 530 }
 531 
 532 void G1RemSet::cleanup_after_oops_into_collection_set_do() {
 533   G1GCPhaseTimes* phase_times = _g1h->phase_times();
 534 
 535   // Set all cards back to clean.
 536   double start = os::elapsedTime();
 537   _scan_state->clear_card_table(_g1h->workers());
 538   phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0);
 539 }
 540 
 541 inline void check_card_ptr(jbyte* card_ptr, G1CardTable* ct) {
 542 #ifdef ASSERT
 543   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 544   assert(g1h->is_in_exact(ct->addr_for(card_ptr)),
 545          "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap",
 546          p2i(card_ptr),
 547          ct->index_for(ct->addr_for(card_ptr)),
 548          p2i(ct->addr_for(card_ptr)),
 549          g1h->addr_to_region(ct->addr_for(card_ptr)));
 550 #endif
 551 }
 552 
 553 void G1RemSet::refine_card_concurrently(jbyte* card_ptr,
 554                                         uint worker_i) {
 555   assert(!_g1h->is_gc_active(), "Only call concurrently");
 556 
 557   // Construct the region representing the card.
 558   HeapWord* start = _ct->addr_for(card_ptr);
 559   // And find the region containing it.
 560   HeapRegion* r = _g1h->heap_region_containing_or_null(start);
 561 
 562   // If this is a (stale) card into an uncommitted region, exit.
 563   if (r == NULL) {
 564     return;
 565   }
 566 
 567   check_card_ptr(card_ptr, _ct);
 568 
 569   // If the card is no longer dirty, nothing to do.
 570   if (*card_ptr != G1CardTable::dirty_card_val()) {
 571     return;
 572   }
 573 
 574   // This check is needed for some uncommon cases where we should
 575   // ignore the card.
 576   //
 577   // The region could be young.  Cards for young regions are
 578   // distinctly marked (set to g1_young_gen), so the post-barrier will
 579   // filter them out.  However, that marking is performed
 580   // concurrently.  A write to a young object could occur before the
 581   // card has been marked young, slipping past the filter.
 582   //
 583   // The card could be stale, because the region has been freed since
 584   // the card was recorded. In this case the region type could be
 585   // anything.  If (still) free or (reallocated) young, just ignore
 586   // it.  If (reallocated) old or humongous, the later card trimming
 587   // and additional checks in iteration may detect staleness.  At
 588   // worst, we end up processing a stale card unnecessarily.
 589   //
 590   // In the normal (non-stale) case, the synchronization between the
 591   // enqueueing of the card and processing it here will have ensured
 592   // we see the up-to-date region type here.
 593   if (!r->is_old_or_humongous_or_archive()) {
 594     return;
 595   }
 596 
 597   // The result from the hot card cache insert call is either:
 598   //   * pointer to the current card
 599   //     (implying that the current card is not 'hot'),
 600   //   * null
 601   //     (meaning we had inserted the card ptr into the "hot" card cache,
 602   //     which had some headroom),
 603   //   * a pointer to a "hot" card that was evicted from the "hot" cache.
 604   //
 605 
 606   if (_hot_card_cache->use_cache()) {
 607     assert(!SafepointSynchronize::is_at_safepoint(), "sanity");
 608 
 609     const jbyte* orig_card_ptr = card_ptr;
 610     card_ptr = _hot_card_cache->insert(card_ptr);
 611     if (card_ptr == NULL) {
 612       // There was no eviction. Nothing to do.
 613       return;
 614     } else if (card_ptr != orig_card_ptr) {
 615       // Original card was inserted and an old card was evicted.
 616       start = _ct->addr_for(card_ptr);
 617       r = _g1h->heap_region_containing(start);
 618 
 619       // Check whether the region formerly in the cache should be
 620       // ignored, as discussed earlier for the original card.  The
 621       // region could have been freed while in the cache.
 622       if (!r->is_old_or_humongous_or_archive()) {
 623         return;
 624       }
 625     } // Else we still have the original card.
 626   }
 627 
 628   // Trim the region designated by the card to what's been allocated
 629   // in the region.  The card could be stale, or the card could cover
 630   // (part of) an object at the end of the allocated space and extend
 631   // beyond the end of allocation.
 632 
 633   // Non-humongous objects are only allocated in the old-gen during
 634   // GC, so if region is old then top is stable.  Humongous object
 635   // allocation sets top last; if top has not yet been set, this is
 636   // a stale card and we'll end up with an empty intersection.  If
 637   // this is not a stale card, the synchronization between the
 638   // enqueuing of the card and processing it here will have ensured
 639   // we see the up-to-date top here.
 640   HeapWord* scan_limit = r->top();
 641 
 642   if (scan_limit <= start) {
 643     // If the trimmed region is empty, the card must be stale.
 644     return;
 645   }
 646 
 647   // Okay to clean and process the card now.  There are still some
 648   // stale card cases that may be detected by iteration and dealt with
 649   // as iteration failure.
 650   *const_cast<volatile jbyte*>(card_ptr) = G1CardTable::clean_card_val();
 651 
 652   // This fence serves two purposes.  First, the card must be cleaned
 653   // before processing the contents.  Second, we can't proceed with
 654   // processing until after the read of top, for synchronization with
 655   // possibly concurrent humongous object allocation.  It's okay that
 656   // reading top and reading type were racy wrto each other.  We need
 657   // both set, in any order, to proceed.
 658   OrderAccess::fence();
 659 
 660   // Don't use addr_for(card_ptr + 1) which can ask for
 661   // a card beyond the heap.
 662   HeapWord* end = start + G1CardTable::card_size_in_words;
 663   MemRegion dirty_region(start, MIN2(scan_limit, end));
 664   assert(!dirty_region.is_empty(), "sanity");
 665 
 666   G1ConcurrentRefineOopClosure conc_refine_cl(_g1h, worker_i);
 667 
 668   bool card_processed =
 669     r->oops_on_card_seq_iterate_careful<false>(dirty_region, &conc_refine_cl);
 670 
 671   // If unable to process the card then we encountered an unparsable
 672   // part of the heap (e.g. a partially allocated object) while
 673   // processing a stale card.  Despite the card being stale, redirty
 674   // and re-enqueue, because we've already cleaned the card.  Without
 675   // this we could incorrectly discard a non-stale card.
 676   if (!card_processed) {
 677     // The card might have gotten re-dirtied and re-enqueued while we
 678     // worked.  (In fact, it's pretty likely.)
 679     if (*card_ptr != G1CardTable::dirty_card_val()) {
 680       *card_ptr = G1CardTable::dirty_card_val();
 681       MutexLockerEx x(Shared_DirtyCardQ_lock,
 682                       Mutex::_no_safepoint_check_flag);
 683       G1DirtyCardQueue* sdcq =
 684         G1BarrierSet::dirty_card_queue_set().shared_dirty_card_queue();
 685       sdcq->enqueue(card_ptr);
 686     }
 687   } else {
 688     _num_conc_refined_cards++; // Unsynchronized update, only used for logging.
 689   }
 690 }
 691 
 692 bool G1RemSet::refine_card_during_gc(jbyte* card_ptr,
 693                                      G1ScanObjsDuringUpdateRSClosure* update_rs_cl) {
 694   assert(_g1h->is_gc_active(), "Only call during GC");
 695 
 696   // Construct the region representing the card.
 697   HeapWord* card_start = _ct->addr_for(card_ptr);
 698   // And find the region containing it.
 699   uint const card_region_idx = _g1h->addr_to_region(card_start);
 700 
 701   HeapWord* scan_limit = _scan_state->scan_top(card_region_idx);
 702   if (scan_limit == NULL) {
 703     // This is a card into an uncommitted region. We need to bail out early as we
 704     // should not access the corresponding card table entry.
 705     return false;
 706   }
 707 
 708   check_card_ptr(card_ptr, _ct);
 709 
 710   // If the card is no longer dirty, nothing to do. This covers cards that were already
 711   // scanned as parts of the remembered sets.
 712   if (*card_ptr != G1CardTable::dirty_card_val()) {
 713     return false;
 714   }
 715 
 716   // We claim lazily (so races are possible but they're benign), which reduces the
 717   // number of potential duplicate scans (multiple threads may enqueue the same card twice).
 718   *card_ptr = G1CardTable::clean_card_val() | G1CardTable::claimed_card_val();
 719 
 720   _scan_state->add_dirty_region(card_region_idx);
 721   if (scan_limit <= card_start) {
 722     // If the card starts above the area in the region containing objects to scan, skip it.
 723     return false;
 724   }
 725 
 726   // Don't use addr_for(card_ptr + 1) which can ask for
 727   // a card beyond the heap.
 728   HeapWord* card_end = card_start + G1CardTable::card_size_in_words;
 729   MemRegion dirty_region(card_start, MIN2(scan_limit, card_end));
 730   assert(!dirty_region.is_empty(), "sanity");
 731 
 732   HeapRegion* const card_region = _g1h->region_at(card_region_idx);
 733   assert(!card_region->is_young(), "Should not scan card in young region %u", card_region_idx);
 734   bool card_processed = card_region->oops_on_card_seq_iterate_careful<true>(dirty_region, update_rs_cl);
 735   assert(card_processed, "must be");
 736   return true;
 737 }
 738 
 739 void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) {
 740   if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) &&
 741       (period_count % G1SummarizeRSetStatsPeriod == 0)) {
 742 
 743     G1RemSetSummary current(this);
 744     _prev_period_summary.subtract_from(&current);
 745 
 746     Log(gc, remset) log;
 747     log.trace("%s", header);
 748     ResourceMark rm;
 749     LogStream ls(log.trace());
 750     _prev_period_summary.print_on(&ls);
 751 
 752     _prev_period_summary.set(&current);
 753   }
 754 }
 755 
 756 void G1RemSet::print_summary_info() {
 757   Log(gc, remset, exit) log;
 758   if (log.is_trace()) {
 759     log.trace(" Cumulative RS summary");
 760     G1RemSetSummary current(this);
 761     ResourceMark rm;
 762     LogStream ls(log.trace());
 763     current.print_on(&ls);
 764   }
 765 }
 766 
 767 class G1RebuildRemSetTask: public AbstractGangTask {
 768   // Aggregate the counting data that was constructed concurrently
 769   // with marking.
 770   class G1RebuildRemSetHeapRegionClosure : public HeapRegionClosure {
 771     G1ConcurrentMark* _cm;
 772     G1RebuildRemSetClosure _update_cl;
 773 
 774     // Applies _update_cl to the references of the given object, limiting objArrays
 775     // to the given MemRegion. Returns the amount of words actually scanned.
 776     size_t scan_for_references(oop const obj, MemRegion mr) {
 777       size_t const obj_size = obj->size();
 778       // All non-objArrays and objArrays completely within the mr
 779       // can be scanned without passing the mr.
 780       if (!obj->is_objArray() || mr.contains(MemRegion((HeapWord*)obj, obj_size))) {
 781         obj->oop_iterate(&_update_cl);
 782         return obj_size;
 783       }
 784       // This path is for objArrays crossing the given MemRegion. Only scan the
 785       // area within the MemRegion.
 786       obj->oop_iterate(&_update_cl, mr);
 787       return mr.intersection(MemRegion((HeapWord*)obj, obj_size)).word_size();
 788     }
 789 
 790     // A humongous object is live (with respect to the scanning) either
 791     // a) it is marked on the bitmap as such
 792     // b) its TARS is larger than TAMS, i.e. has been allocated during marking.
 793     bool is_humongous_live(oop const humongous_obj, const G1CMBitMap* const bitmap, HeapWord* tams, HeapWord* tars) const {
 794       return bitmap->is_marked(humongous_obj) || (tars > tams);
 795     }
 796 
 797     // Iterator over the live objects within the given MemRegion.
 798     class LiveObjIterator : public StackObj {
 799       const G1CMBitMap* const _bitmap;
 800       const HeapWord* _tams;
 801       const MemRegion _mr;
 802       HeapWord* _current;
 803 
 804       bool is_below_tams() const {
 805         return _current < _tams;
 806       }
 807 
 808       bool is_live(HeapWord* obj) const {
 809         return !is_below_tams() || _bitmap->is_marked(obj);
 810       }
 811 
 812       HeapWord* bitmap_limit() const {
 813         return MIN2(const_cast<HeapWord*>(_tams), _mr.end());
 814       }
 815 
 816       void move_if_below_tams() {
 817         if (is_below_tams() && has_next()) {
 818           _current = _bitmap->get_next_marked_addr(_current, bitmap_limit());
 819         }
 820       }
 821     public:
 822       LiveObjIterator(const G1CMBitMap* const bitmap, const HeapWord* tams, const MemRegion mr, HeapWord* first_oop_into_mr) :
 823           _bitmap(bitmap),
 824           _tams(tams),
 825           _mr(mr),
 826           _current(first_oop_into_mr) {
 827 
 828         assert(_current <= _mr.start(),
 829                "First oop " PTR_FORMAT " should extend into mr [" PTR_FORMAT ", " PTR_FORMAT ")",
 830                p2i(first_oop_into_mr), p2i(mr.start()), p2i(mr.end()));
 831 
 832         // Step to the next live object within the MemRegion if needed.
 833         if (is_live(_current)) {
 834           // Non-objArrays were scanned by the previous part of that region.
 835           if (_current < mr.start() && !oop(_current)->is_objArray()) {
 836             _current += oop(_current)->size();
 837             // We might have positioned _current on a non-live object. Reposition to the next
 838             // live one if needed.
 839             move_if_below_tams();
 840           }
 841         } else {
 842           // The object at _current can only be dead if below TAMS, so we can use the bitmap.
 843           // immediately.
 844           _current = _bitmap->get_next_marked_addr(_current, bitmap_limit());
 845           assert(_current == _mr.end() || is_live(_current),
 846                  "Current " PTR_FORMAT " should be live (%s) or beyond the end of the MemRegion (" PTR_FORMAT ")",
 847                  p2i(_current), BOOL_TO_STR(is_live(_current)), p2i(_mr.end()));
 848         }
 849       }
 850 
 851       void move_to_next() {
 852         _current += next()->size();
 853         move_if_below_tams();
 854       }
 855 
 856       oop next() const {
 857         oop result = oop(_current);
 858         assert(is_live(_current),
 859                "Object " PTR_FORMAT " must be live TAMS " PTR_FORMAT " below %d mr " PTR_FORMAT " " PTR_FORMAT " outside %d",
 860                p2i(_current), p2i(_tams), _tams > _current, p2i(_mr.start()), p2i(_mr.end()), _mr.contains(result));
 861         return result;
 862       }
 863 
 864       bool has_next() const {
 865         return _current < _mr.end();
 866       }
 867     };
 868 
 869     // Rebuild remembered sets in the part of the region specified by mr and hr.
 870     // Objects between the bottom of the region and the TAMS are checked for liveness
 871     // using the given bitmap. Objects between TAMS and TARS are assumed to be live.
 872     // Returns the number of live words between bottom and TAMS.
 873     size_t rebuild_rem_set_in_region(const G1CMBitMap* const bitmap,
 874                                      HeapWord* const top_at_mark_start,
 875                                      HeapWord* const top_at_rebuild_start,
 876                                      HeapRegion* hr,
 877                                      MemRegion mr) {
 878       size_t marked_words = 0;
 879 
 880       if (hr->is_humongous()) {
 881         oop const humongous_obj = oop(hr->humongous_start_region()->bottom());
 882         if (is_humongous_live(humongous_obj, bitmap, top_at_mark_start, top_at_rebuild_start)) {
 883           // We need to scan both [bottom, TAMS) and [TAMS, top_at_rebuild_start);
 884           // however in case of humongous objects it is sufficient to scan the encompassing
 885           // area (top_at_rebuild_start is always larger or equal to TAMS) as one of the
 886           // two areas will be zero sized. I.e. TAMS is either
 887           // the same as bottom or top(_at_rebuild_start). There is no way TAMS has a different
 888           // value: this would mean that TAMS points somewhere into the object.
 889           assert(hr->top() == top_at_mark_start || hr->top() == top_at_rebuild_start,
 890                  "More than one object in the humongous region?");
 891           humongous_obj->oop_iterate(&_update_cl, mr);
 892           return top_at_mark_start != hr->bottom() ? mr.intersection(MemRegion((HeapWord*)humongous_obj, humongous_obj->size())).byte_size() : 0;
 893         } else {
 894           return 0;
 895         }
 896       }
 897 
 898       for (LiveObjIterator it(bitmap, top_at_mark_start, mr, hr->block_start(mr.start())); it.has_next(); it.move_to_next()) {
 899         oop obj = it.next();
 900         size_t scanned_size = scan_for_references(obj, mr);
 901         if ((HeapWord*)obj < top_at_mark_start) {
 902           marked_words += scanned_size;
 903         }
 904       }
 905 
 906       return marked_words * HeapWordSize;
 907     }
 908 public:
 909   G1RebuildRemSetHeapRegionClosure(G1CollectedHeap* g1h,
 910                                    G1ConcurrentMark* cm,
 911                                    uint worker_id) :
 912     HeapRegionClosure(),
 913     _cm(cm),
 914     _update_cl(g1h, worker_id) { }
 915 
 916     bool do_heap_region(HeapRegion* hr) {
 917       if (_cm->has_aborted()) {
 918         return true;
 919       }
 920 
 921       uint const region_idx = hr->hrm_index();
 922       DEBUG_ONLY(HeapWord* const top_at_rebuild_start_check = _cm->top_at_rebuild_start(region_idx);)
 923       assert(top_at_rebuild_start_check == NULL ||
 924              top_at_rebuild_start_check > hr->bottom(),
 925              "A TARS (" PTR_FORMAT ") == bottom() (" PTR_FORMAT ") indicates the old region %u is empty (%s)",
 926              p2i(top_at_rebuild_start_check), p2i(hr->bottom()),  region_idx, hr->get_type_str());
 927 
 928       size_t total_marked_bytes = 0;
 929       size_t const chunk_size_in_words = G1RebuildRemSetChunkSize / HeapWordSize;
 930 
 931       HeapWord* const top_at_mark_start = hr->prev_top_at_mark_start();
 932 
 933       HeapWord* cur = hr->bottom();
 934       while (cur < hr->end()) {
 935         // After every iteration (yield point) we need to check whether the region's
 936         // TARS changed due to e.g. eager reclaim.
 937         HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);
 938         if (top_at_rebuild_start == NULL) {
 939           return false;
 940         }
 941 
 942         MemRegion next_chunk = MemRegion(hr->bottom(), top_at_rebuild_start).intersection(MemRegion(cur, chunk_size_in_words));
 943         if (next_chunk.is_empty()) {
 944           break;
 945         }
 946 
 947         const Ticks start = Ticks::now();
 948         size_t marked_bytes = rebuild_rem_set_in_region(_cm->prev_mark_bitmap(),
 949                                                         top_at_mark_start,
 950                                                         top_at_rebuild_start,
 951                                                         hr,
 952                                                         next_chunk);
 953         Tickspan time = Ticks::now() - start;
 954 
 955         log_trace(gc, remset, tracking)("Rebuilt region %u "
 956                                         "live " SIZE_FORMAT " "
 957                                         "time %.3fms "
 958                                         "marked bytes " SIZE_FORMAT " "
 959                                         "bot " PTR_FORMAT " "
 960                                         "TAMS " PTR_FORMAT " "
 961                                         "TARS " PTR_FORMAT,
 962                                         region_idx,
 963                                         _cm->liveness(region_idx) * HeapWordSize,
 964                                         time.seconds() * 1000.0,
 965                                         marked_bytes,
 966                                         p2i(hr->bottom()),
 967                                         p2i(top_at_mark_start),
 968                                         p2i(top_at_rebuild_start));
 969 
 970         if (marked_bytes > 0) {
 971           total_marked_bytes += marked_bytes;
 972         }
 973         cur += chunk_size_in_words;
 974 
 975         _cm->do_yield_check();
 976         if (_cm->has_aborted()) {
 977           return true;
 978         }
 979       }
 980       // In the final iteration of the loop the region might have been eagerly reclaimed.
 981       // Simply filter out those regions. We can not just use region type because there
 982       // might have already been new allocations into these regions.
 983       DEBUG_ONLY(HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);)
 984       assert(top_at_rebuild_start == NULL ||
 985              total_marked_bytes == hr->marked_bytes(),
 986              "Marked bytes " SIZE_FORMAT " for region %u (%s) in [bottom, TAMS) do not match calculated marked bytes " SIZE_FORMAT " "
 987              "(" PTR_FORMAT " " PTR_FORMAT " " PTR_FORMAT ")",
 988              total_marked_bytes, hr->hrm_index(), hr->get_type_str(), hr->marked_bytes(),
 989              p2i(hr->bottom()), p2i(top_at_mark_start), p2i(top_at_rebuild_start));
 990        // Abort state may have changed after the yield check.
 991       return _cm->has_aborted();
 992     }
 993   };
 994 
 995   HeapRegionClaimer _hr_claimer;
 996   G1ConcurrentMark* _cm;
 997 
 998   uint _worker_id_offset;
 999 public:
1000   G1RebuildRemSetTask(G1ConcurrentMark* cm,
1001                       uint n_workers,
1002                       uint worker_id_offset) :
1003       AbstractGangTask("G1 Rebuild Remembered Set"),
1004       _hr_claimer(n_workers),
1005       _cm(cm),
1006       _worker_id_offset(worker_id_offset) {
1007   }
1008 
1009   void work(uint worker_id) {
1010     SuspendibleThreadSetJoiner sts_join;
1011 
1012     G1CollectedHeap* g1h = G1CollectedHeap::heap();
1013 
1014     G1RebuildRemSetHeapRegionClosure cl(g1h, _cm, _worker_id_offset + worker_id);
1015     g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hr_claimer, worker_id);
1016   }
1017 };
1018 
1019 void G1RemSet::rebuild_rem_set(G1ConcurrentMark* cm,
1020                                WorkGang* workers,
1021                                uint worker_id_offset) {
1022   uint num_workers = workers->active_workers();
1023 
1024   G1RebuildRemSetTask cl(cm,
1025                          num_workers,
1026                          worker_id_offset);
1027   workers->run_task(&cl, num_workers);
1028 }