1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_SHARED_PTRQUEUE_HPP
  26 #define SHARE_GC_SHARED_PTRQUEUE_HPP
  27 
  28 #include "memory/padded.hpp"
  29 #include "utilities/align.hpp"
  30 #include "utilities/debug.hpp"
  31 #include "utilities/lockFreeStack.hpp"
  32 #include "utilities/sizes.hpp"
  33 
  34 class Mutex;
  35 class Monitor;
  36 
  37 // There are various techniques that require threads to be able to log
  38 // addresses.  For example, a generational write barrier might log
  39 // the addresses of modified old-generation objects.  This type supports
  40 // this operation.
  41 
  42 class BufferNode;
  43 class PtrQueueSet;
  44 class PtrQueue {
  45   friend class VMStructs;
  46 
  47   // Noncopyable - not defined.
  48   PtrQueue(const PtrQueue&);
  49   PtrQueue& operator=(const PtrQueue&);
  50 
  51   // The ptr queue set to which this queue belongs.
  52   PtrQueueSet* const _qset;
  53 
  54   // Whether updates should be logged.
  55   bool _active;
  56 
  57   // The (byte) index at which an object was last enqueued.  Starts at
  58   // capacity_in_bytes (indicating an empty buffer) and goes towards zero.
  59   // Value is always pointer-size aligned.
  60   size_t _index;
  61 
  62   // Size of the current buffer, in bytes.
  63   // Value is always pointer-size aligned.
  64   size_t _capacity_in_bytes;
  65 
  66   static const size_t _element_size = sizeof(void*);
  67 
  68   // Get the capacity, in bytes.  The capacity must have been set.
  69   size_t capacity_in_bytes() const {
  70     assert(_capacity_in_bytes > 0, "capacity not set");
  71     return _capacity_in_bytes;
  72   }
  73 
  74   void set_capacity(size_t entries) {
  75     size_t byte_capacity = index_to_byte_index(entries);
  76     assert(_capacity_in_bytes == 0 || _capacity_in_bytes == byte_capacity,
  77            "changing capacity " SIZE_FORMAT " -> " SIZE_FORMAT,
  78            _capacity_in_bytes, byte_capacity);
  79     _capacity_in_bytes = byte_capacity;
  80   }
  81 
  82   static size_t byte_index_to_index(size_t ind) {
  83     assert(is_aligned(ind, _element_size), "precondition");
  84     return ind / _element_size;
  85   }
  86 
  87   static size_t index_to_byte_index(size_t ind) {
  88     return ind * _element_size;
  89   }
  90 
  91 protected:
  92   // The buffer.
  93   void** _buf;
  94 
  95   size_t index() const {
  96     return byte_index_to_index(_index);
  97   }
  98 
  99   void set_index(size_t new_index) {
 100     size_t byte_index = index_to_byte_index(new_index);
 101     assert(byte_index <= capacity_in_bytes(), "precondition");
 102     _index = byte_index;
 103   }
 104 
 105   size_t capacity() const {
 106     return byte_index_to_index(capacity_in_bytes());
 107   }
 108 
 109   PtrQueueSet* qset() { return _qset; }
 110 
 111   // Process queue entries and release resources.
 112   void flush_impl();
 113 
 114   // Initialize this queue to contain a null buffer, and be part of the
 115   // given PtrQueueSet.
 116   PtrQueue(PtrQueueSet* qset, bool active = false);
 117 
 118   // Requires queue flushed.
 119   ~PtrQueue();
 120 
 121 public:
 122 
 123   // Forcibly set empty.
 124   void reset() {
 125     if (_buf != NULL) {
 126       _index = capacity_in_bytes();
 127     }
 128   }
 129 
 130   void enqueue(volatile void* ptr) {
 131     enqueue((void*)(ptr));
 132   }
 133 
 134   // Enqueues the given "obj".
 135   void enqueue(void* ptr) {
 136     if (!_active) return;
 137     else enqueue_known_active(ptr);
 138   }
 139 
 140   // This method is called when we're doing the zero index handling
 141   // and gives a chance to the queues to do any pre-enqueueing
 142   // processing they might want to do on the buffer. It should return
 143   // true if the buffer should be enqueued, or false if enough
 144   // entries were cleared from it so that it can be re-used. It should
 145   // not return false if the buffer is still full (otherwise we can
 146   // get into an infinite loop).
 147   virtual bool should_enqueue_buffer() { return true; }
 148   void handle_zero_index();
 149 
 150   void enqueue_known_active(void* ptr);
 151 
 152   // Return the size of the in-use region.
 153   size_t size() const {
 154     size_t result = 0;
 155     if (_buf != NULL) {
 156       assert(_index <= capacity_in_bytes(), "Invariant");
 157       result = byte_index_to_index(capacity_in_bytes() - _index);
 158     }
 159     return result;
 160   }
 161 
 162   bool is_empty() const {
 163     return _buf == NULL || capacity_in_bytes() == _index;
 164   }
 165 
 166   // Set the "active" property of the queue to "b".  An enqueue to an
 167   // inactive thread is a no-op.  Setting a queue to inactive resets its
 168   // log to the empty state.
 169   void set_active(bool b) {
 170     _active = b;
 171     if (!b && _buf != NULL) {
 172       reset();
 173     } else if (b && _buf != NULL) {
 174       assert(index() == capacity(),
 175              "invariant: queues are empty when activated.");
 176     }
 177   }
 178 
 179   bool is_active() const { return _active; }
 180 
 181   // To support compiler.
 182 
 183 protected:
 184   template<typename Derived>
 185   static ByteSize byte_offset_of_index() {
 186     return byte_offset_of(Derived, _index);
 187   }
 188 
 189   static ByteSize byte_width_of_index() { return in_ByteSize(sizeof(size_t)); }
 190 
 191   template<typename Derived>
 192   static ByteSize byte_offset_of_buf() {
 193     return byte_offset_of(Derived, _buf);
 194   }
 195 
 196   static ByteSize byte_width_of_buf() { return in_ByteSize(_element_size); }
 197 
 198   template<typename Derived>
 199   static ByteSize byte_offset_of_active() {
 200     return byte_offset_of(Derived, _active);
 201   }
 202 
 203   static ByteSize byte_width_of_active() { return in_ByteSize(sizeof(bool)); }
 204 
 205 };
 206 
 207 class BufferNode {
 208   size_t _index;
 209   BufferNode* volatile _next;
 210   void* _buffer[1];             // Pseudo flexible array member.
 211 
 212   BufferNode() : _index(0), _next(NULL) { }
 213   ~BufferNode() { }
 214 
 215   static size_t buffer_offset() {
 216     return offset_of(BufferNode, _buffer);
 217   }
 218 
 219   static BufferNode* volatile* next_ptr(BufferNode& bn) { return &bn._next; }
 220 
 221 AIX_ONLY(public:)               // xlC 12 on AIX doesn't implement C++ DR45.
 222   // Allocate a new BufferNode with the "buffer" having size elements.
 223   static BufferNode* allocate(size_t size);
 224 
 225   // Free a BufferNode.
 226   static void deallocate(BufferNode* node);
 227 
 228 public:
 229   typedef LockFreeStack<BufferNode, &next_ptr> Stack;
 230 
 231   BufferNode* next() const     { return _next;  }
 232   void set_next(BufferNode* n) { _next = n;     }
 233   size_t index() const         { return _index; }
 234   void set_index(size_t i)     { _index = i; }
 235 
 236   // Return the BufferNode containing the buffer, after setting its index.
 237   static BufferNode* make_node_from_buffer(void** buffer, size_t index) {
 238     BufferNode* node =
 239       reinterpret_cast<BufferNode*>(
 240         reinterpret_cast<char*>(buffer) - buffer_offset());
 241     node->set_index(index);
 242     return node;
 243   }
 244 
 245   // Return the buffer for node.
 246   static void** make_buffer_from_node(BufferNode *node) {
 247     // &_buffer[0] might lead to index out of bounds warnings.
 248     return reinterpret_cast<void**>(
 249       reinterpret_cast<char*>(node) + buffer_offset());
 250   }
 251 
 252   class Allocator;              // Free-list based allocator.
 253   class TestSupport;            // Unit test support.
 254 };
 255 
 256 // Allocation is based on a lock-free free list of nodes, linked through
 257 // BufferNode::_next (see BufferNode::Stack).  To solve the ABA problem,
 258 // popping a node from the free list is performed within a GlobalCounter
 259 // critical section, and pushing nodes onto the free list is done after
 260 // a GlobalCounter synchronization associated with the nodes to be pushed.
 261 // This is documented behavior so that other parts of the node life-cycle
 262 // can depend on and make use of it too.
 263 class BufferNode::Allocator {
 264   friend class TestSupport;
 265 
 266   // Since we don't expect many instances, and measured >15% speedup
 267   // on stress gtest, padding seems like a good tradeoff here.
 268 #define DECLARE_PADDED_MEMBER(Id, Type, Name) \
 269   Type Name; DEFINE_PAD_MINUS_SIZE(Id, DEFAULT_CACHE_LINE_SIZE, sizeof(Type))
 270 
 271   const size_t _buffer_size;
 272   char _name[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)]; // Use name as padding.
 273   DECLARE_PADDED_MEMBER(1, Stack, _pending_list);
 274   DECLARE_PADDED_MEMBER(2, Stack, _free_list);
 275   DECLARE_PADDED_MEMBER(3, volatile size_t, _pending_count);
 276   DECLARE_PADDED_MEMBER(4, volatile size_t, _free_count);
 277   DECLARE_PADDED_MEMBER(5, volatile bool, _transfer_lock);
 278 
 279 #undef DECLARE_PADDED_MEMBER
 280 
 281   void delete_list(BufferNode* list);
 282   bool try_transfer_pending();
 283 
 284 public:
 285   Allocator(const char* name, size_t buffer_size);
 286   ~Allocator();
 287 
 288   const char* name() const { return _name; }
 289   size_t buffer_size() const { return _buffer_size; }
 290   size_t free_count() const;
 291   BufferNode* allocate();
 292   void release(BufferNode* node);
 293 
 294   // Deallocate some of the available buffers.  remove_goal is the target
 295   // number to remove.  Returns the number actually deallocated, which may
 296   // be less than the goal if there were fewer available.
 297   size_t reduce_free_list(size_t remove_goal);
 298 };
 299 
 300 // A PtrQueueSet represents resources common to a set of pointer queues.
 301 // In particular, the individual queues allocate buffers from this shared
 302 // set, and return completed buffers to the set.
 303 class PtrQueueSet {
 304   BufferNode::Allocator* _allocator;
 305 
 306   Monitor* _cbl_mon;  // Protects the fields below.
 307   BufferNode* _completed_buffers_head;
 308   BufferNode* _completed_buffers_tail;
 309   size_t _n_completed_buffers;
 310 
 311   size_t _process_completed_buffers_threshold;
 312   volatile bool _process_completed_buffers;
 313 
 314   // If true, notify_all on _cbl_mon when the threshold is reached.
 315   bool _notify_when_complete;
 316 
 317   // Maximum number of elements allowed on completed queue: after that,
 318   // enqueuer does the work itself.
 319   size_t _max_completed_buffers;
 320   size_t _completed_buffers_padding;
 321 
 322   void assert_completed_buffers_list_len_correct_locked() NOT_DEBUG_RETURN;
 323 
 324 protected:
 325   bool _all_active;
 326 
 327   // A mutator thread does the the work of processing a buffer.
 328   // Returns "true" iff the work is complete (and the buffer may be
 329   // deallocated).
 330   virtual bool mut_process_buffer(BufferNode* node) {
 331     ShouldNotReachHere();
 332     return false;
 333   }
 334 
 335   // Create an empty ptr queue set.
 336   PtrQueueSet(bool notify_when_complete = false);
 337   ~PtrQueueSet();
 338 
 339   // Because of init-order concerns, we can't pass these as constructor
 340   // arguments.
 341   void initialize(Monitor* cbl_mon, BufferNode::Allocator* allocator);
 342 
 343   // For (unlocked!) iteration over the completed buffers.
 344   BufferNode* completed_buffers_head() const { return _completed_buffers_head; }
 345 
 346   // Deallocate all of the completed buffers.
 347   void abandon_completed_buffers();
 348 
 349 public:
 350 
 351   // Return the buffer for a BufferNode of size buffer_size().
 352   void** allocate_buffer();
 353 
 354   // Return an empty buffer to the free list.  The node is required
 355   // to have been allocated with a size of buffer_size().
 356   void deallocate_buffer(BufferNode* node);
 357 
 358   // A completed buffer is a buffer the mutator is finished with, and
 359   // is ready to be processed by the collector.  It need not be full.
 360 
 361   // Adds node to the completed buffer list.
 362   void enqueue_completed_buffer(BufferNode* node);
 363 
 364   // If the number of completed buffers is > stop_at, then remove and
 365   // return a completed buffer from the list.  Otherwise, return NULL.
 366   BufferNode* get_completed_buffer(size_t stop_at = 0);
 367 
 368   // To be invoked by the mutator.
 369   bool process_or_enqueue_completed_buffer(BufferNode* node);
 370 
 371   bool process_completed_buffers() { return _process_completed_buffers; }
 372   void set_process_completed_buffers(bool x) { _process_completed_buffers = x; }
 373 
 374   bool is_active() { return _all_active; }
 375 
 376   size_t buffer_size() const {
 377     return _allocator->buffer_size();
 378   }
 379 
 380   // Get/Set the number of completed buffers that triggers log processing.
 381   // Log processing should be done when the number of buffers exceeds the
 382   // threshold.
 383   void set_process_completed_buffers_threshold(size_t sz) {
 384     _process_completed_buffers_threshold = sz;
 385   }
 386   size_t process_completed_buffers_threshold() const {
 387     return _process_completed_buffers_threshold;
 388   }
 389   static const size_t ProcessCompletedBuffersThresholdNever = ~size_t(0);
 390 
 391   size_t completed_buffers_num() const { return _n_completed_buffers; }
 392 
 393   void merge_bufferlists(PtrQueueSet* src);
 394 
 395   void set_max_completed_buffers(size_t m) {
 396     _max_completed_buffers = m;
 397   }
 398   size_t max_completed_buffers() const {
 399     return _max_completed_buffers;
 400   }
 401   static const size_t MaxCompletedBuffersUnlimited = ~size_t(0);
 402 
 403   void set_completed_buffers_padding(size_t padding) {
 404     _completed_buffers_padding = padding;
 405   }
 406   size_t completed_buffers_padding() const {
 407     return _completed_buffers_padding;
 408   }
 409 
 410   // Notify the consumer if the number of buffers crossed the threshold
 411   void notify_if_necessary();
 412 };
 413 
 414 #endif // SHARE_GC_SHARED_PTRQUEUE_HPP