1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  33 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  34 #include "gc_implementation/g1/g1Log.hpp"
  35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  36 #include "gc_implementation/g1/g1RemSet.hpp"
  37 #include "gc_implementation/g1/heapRegion.inline.hpp"
  38 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  39 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  40 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  41 #include "gc_implementation/shared/vmGCOperations.hpp"
  42 #include "gc_implementation/shared/gcTimer.hpp"
  43 #include "gc_implementation/shared/gcTrace.hpp"
  44 #include "gc_implementation/shared/gcTraceTime.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/genOopClosures.inline.hpp"
  47 #include "memory/referencePolicy.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/prefetch.inline.hpp"
  53 #include "services/memTracker.hpp"
  54 
  55 // Concurrent marking bit map wrapper
  56 
  57 CMBitMapRO::CMBitMapRO(int shifter) :
  58   _bm(),
  59   _shifter(shifter) {
  60   _bmStartWord = 0;
  61   _bmWordSize = 0;
  62 }
  63 
  64 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  65                                                const HeapWord* limit) const {
  66   // First we must round addr *up* to a possible object boundary.
  67   addr = (HeapWord*)align_size_up((intptr_t)addr,
  68                                   HeapWordSize << _shifter);
  69   size_t addrOffset = heapWordToOffset(addr);
  70   if (limit == NULL) {
  71     limit = _bmStartWord + _bmWordSize;
  72   }
  73   size_t limitOffset = heapWordToOffset(limit);
  74   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  75   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  76   assert(nextAddr >= addr, "get_next_one postcondition");
  77   assert(nextAddr == limit || isMarked(nextAddr),
  78          "get_next_one postcondition");
  79   return nextAddr;
  80 }
  81 
  82 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  83                                                  const HeapWord* limit) const {
  84   size_t addrOffset = heapWordToOffset(addr);
  85   if (limit == NULL) {
  86     limit = _bmStartWord + _bmWordSize;
  87   }
  88   size_t limitOffset = heapWordToOffset(limit);
  89   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  90   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  91   assert(nextAddr >= addr, "get_next_one postcondition");
  92   assert(nextAddr == limit || !isMarked(nextAddr),
  93          "get_next_one postcondition");
  94   return nextAddr;
  95 }
  96 
  97 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  98   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  99   return (int) (diff >> _shifter);
 100 }
 101 
 102 #ifndef PRODUCT
 103 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 104   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 105   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 106          "size inconsistency");
 107   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 108          _bmWordSize  == heap_rs.word_size();
 109 }
 110 #endif
 111 
 112 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 113   _bm.print_on_error(st, prefix);
 114 }
 115 
 116 size_t CMBitMap::compute_size(size_t heap_size) {
 117   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 118 }
 119 
 120 size_t CMBitMap::mark_distance() {
 121   return MinObjAlignmentInBytes * BitsPerByte;
 122 }
 123 
 124 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 125   _bmStartWord = heap.start();
 126   _bmWordSize = heap.word_size();
 127 
 128   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 129   _bm.set_size(_bmWordSize >> _shifter);
 130 
 131   storage->set_mapping_changed_listener(&_listener);
 132 }
 133 
 134 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 135   if (zero_filled) {
 136     return;
 137   }
 138   // We need to clear the bitmap on commit, removing any existing information.
 139   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 140   _bm->clearRange(mr);
 141 }
 142 
 143 // Closure used for clearing the given mark bitmap.
 144 class ClearBitmapHRClosure : public HeapRegionClosure {
 145  private:
 146   ConcurrentMark* _cm;
 147   CMBitMap* _bitmap;
 148   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 149  public:
 150   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 151     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 152   }
 153 
 154   virtual bool doHeapRegion(HeapRegion* r) {
 155     size_t const chunk_size_in_words = M / HeapWordSize;
 156 
 157     HeapWord* cur = r->bottom();
 158     HeapWord* const end = r->end();
 159 
 160     while (cur < end) {
 161       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 162       _bitmap->clearRange(mr);
 163 
 164       cur += chunk_size_in_words;
 165 
 166       // Abort iteration if after yielding the marking has been aborted.
 167       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 168         return true;
 169       }
 170       // Repeat the asserts from before the start of the closure. We will do them
 171       // as asserts here to minimize their overhead on the product. However, we
 172       // will have them as guarantees at the beginning / end of the bitmap
 173       // clearing to get some checking in the product.
 174       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 175       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
 176     }
 177 
 178     return false;
 179   }
 180 };
 181 
 182 void CMBitMap::clearAll() {
 183   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 184   G1CollectedHeap::heap()->heap_region_iterate(&cl);
 185   guarantee(cl.complete(), "Must have completed iteration.");
 186   return;
 187 }
 188 
 189 void CMBitMap::markRange(MemRegion mr) {
 190   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 191   assert(!mr.is_empty(), "unexpected empty region");
 192   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 193           ((HeapWord *) mr.end())),
 194          "markRange memory region end is not card aligned");
 195   // convert address range into offset range
 196   _bm.at_put_range(heapWordToOffset(mr.start()),
 197                    heapWordToOffset(mr.end()), true);
 198 }
 199 
 200 void CMBitMap::clearRange(MemRegion mr) {
 201   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 202   assert(!mr.is_empty(), "unexpected empty region");
 203   // convert address range into offset range
 204   _bm.at_put_range(heapWordToOffset(mr.start()),
 205                    heapWordToOffset(mr.end()), false);
 206 }
 207 
 208 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 209                                             HeapWord* end_addr) {
 210   HeapWord* start = getNextMarkedWordAddress(addr);
 211   start = MIN2(start, end_addr);
 212   HeapWord* end   = getNextUnmarkedWordAddress(start);
 213   end = MIN2(end, end_addr);
 214   assert(start <= end, "Consistency check");
 215   MemRegion mr(start, end);
 216   if (!mr.is_empty()) {
 217     clearRange(mr);
 218   }
 219   return mr;
 220 }
 221 
 222 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 223   _base(NULL), _cm(cm)
 224 #ifdef ASSERT
 225   , _drain_in_progress(false)
 226   , _drain_in_progress_yields(false)
 227 #endif
 228 {}
 229 
 230 bool CMMarkStack::allocate(size_t capacity) {
 231   // allocate a stack of the requisite depth
 232   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 233   if (!rs.is_reserved()) {
 234     warning("ConcurrentMark MarkStack allocation failure");
 235     return false;
 236   }
 237   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 238   if (!_virtual_space.initialize(rs, rs.size())) {
 239     warning("ConcurrentMark MarkStack backing store failure");
 240     // Release the virtual memory reserved for the marking stack
 241     rs.release();
 242     return false;
 243   }
 244   assert(_virtual_space.committed_size() == rs.size(),
 245          "Didn't reserve backing store for all of ConcurrentMark stack?");
 246   _base = (oop*) _virtual_space.low();
 247   setEmpty();
 248   _capacity = (jint) capacity;
 249   _saved_index = -1;
 250   _should_expand = false;
 251   NOT_PRODUCT(_max_depth = 0);
 252   return true;
 253 }
 254 
 255 void CMMarkStack::expand() {
 256   // Called, during remark, if we've overflown the marking stack during marking.
 257   assert(isEmpty(), "stack should been emptied while handling overflow");
 258   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 259   // Clear expansion flag
 260   _should_expand = false;
 261   if (_capacity == (jint) MarkStackSizeMax) {
 262     if (PrintGCDetails && Verbose) {
 263       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 264     }
 265     return;
 266   }
 267   // Double capacity if possible
 268   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 269   // Do not give up existing stack until we have managed to
 270   // get the double capacity that we desired.
 271   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 272                                                            sizeof(oop)));
 273   if (rs.is_reserved()) {
 274     // Release the backing store associated with old stack
 275     _virtual_space.release();
 276     // Reinitialize virtual space for new stack
 277     if (!_virtual_space.initialize(rs, rs.size())) {
 278       fatal("Not enough swap for expanded marking stack capacity");
 279     }
 280     _base = (oop*)(_virtual_space.low());
 281     _index = 0;
 282     _capacity = new_capacity;
 283   } else {
 284     if (PrintGCDetails && Verbose) {
 285       // Failed to double capacity, continue;
 286       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 287                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 288                           _capacity / K, new_capacity / K);
 289     }
 290   }
 291 }
 292 
 293 void CMMarkStack::set_should_expand() {
 294   // If we're resetting the marking state because of an
 295   // marking stack overflow, record that we should, if
 296   // possible, expand the stack.
 297   _should_expand = _cm->has_overflown();
 298 }
 299 
 300 CMMarkStack::~CMMarkStack() {
 301   if (_base != NULL) {
 302     _base = NULL;
 303     _virtual_space.release();
 304   }
 305 }
 306 
 307 void CMMarkStack::par_push(oop ptr) {
 308   while (true) {
 309     if (isFull()) {
 310       _overflow = true;
 311       return;
 312     }
 313     // Otherwise...
 314     jint index = _index;
 315     jint next_index = index+1;
 316     jint res = Atomic::cmpxchg(next_index, &_index, index);
 317     if (res == index) {
 318       _base[index] = ptr;
 319       // Note that we don't maintain this atomically.  We could, but it
 320       // doesn't seem necessary.
 321       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 322       return;
 323     }
 324     // Otherwise, we need to try again.
 325   }
 326 }
 327 
 328 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 329   while (true) {
 330     if (isFull()) {
 331       _overflow = true;
 332       return;
 333     }
 334     // Otherwise...
 335     jint index = _index;
 336     jint next_index = index + n;
 337     if (next_index > _capacity) {
 338       _overflow = true;
 339       return;
 340     }
 341     jint res = Atomic::cmpxchg(next_index, &_index, index);
 342     if (res == index) {
 343       for (int i = 0; i < n; i++) {
 344         int  ind = index + i;
 345         assert(ind < _capacity, "By overflow test above.");
 346         _base[ind] = ptr_arr[i];
 347       }
 348       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 349       return;
 350     }
 351     // Otherwise, we need to try again.
 352   }
 353 }
 354 
 355 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 356   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 357   jint start = _index;
 358   jint next_index = start + n;
 359   if (next_index > _capacity) {
 360     _overflow = true;
 361     return;
 362   }
 363   // Otherwise.
 364   _index = next_index;
 365   for (int i = 0; i < n; i++) {
 366     int ind = start + i;
 367     assert(ind < _capacity, "By overflow test above.");
 368     _base[ind] = ptr_arr[i];
 369   }
 370   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 371 }
 372 
 373 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 374   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 375   jint index = _index;
 376   if (index == 0) {
 377     *n = 0;
 378     return false;
 379   } else {
 380     int k = MIN2(max, index);
 381     jint  new_ind = index - k;
 382     for (int j = 0; j < k; j++) {
 383       ptr_arr[j] = _base[new_ind + j];
 384     }
 385     _index = new_ind;
 386     *n = k;
 387     return true;
 388   }
 389 }
 390 
 391 template<class OopClosureClass>
 392 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 393   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 394          || SafepointSynchronize::is_at_safepoint(),
 395          "Drain recursion must be yield-safe.");
 396   bool res = true;
 397   debug_only(_drain_in_progress = true);
 398   debug_only(_drain_in_progress_yields = yield_after);
 399   while (!isEmpty()) {
 400     oop newOop = pop();
 401     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 402     assert(newOop->is_oop(), "Expected an oop");
 403     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 404            "only grey objects on this stack");
 405     newOop->oop_iterate(cl);
 406     if (yield_after && _cm->do_yield_check()) {
 407       res = false;
 408       break;
 409     }
 410   }
 411   debug_only(_drain_in_progress = false);
 412   return res;
 413 }
 414 
 415 void CMMarkStack::note_start_of_gc() {
 416   assert(_saved_index == -1,
 417          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 418   _saved_index = _index;
 419 }
 420 
 421 void CMMarkStack::note_end_of_gc() {
 422   // This is intentionally a guarantee, instead of an assert. If we
 423   // accidentally add something to the mark stack during GC, it
 424   // will be a correctness issue so it's better if we crash. we'll
 425   // only check this once per GC anyway, so it won't be a performance
 426   // issue in any way.
 427   guarantee(_saved_index == _index,
 428             err_msg("saved index: %d index: %d", _saved_index, _index));
 429   _saved_index = -1;
 430 }
 431 
 432 void CMMarkStack::oops_do(OopClosure* f) {
 433   assert(_saved_index == _index,
 434          err_msg("saved index: %d index: %d", _saved_index, _index));
 435   for (int i = 0; i < _index; i += 1) {
 436     f->do_oop(&_base[i]);
 437   }
 438 }
 439 
 440 CMRootRegions::CMRootRegions() :
 441   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 442   _should_abort(false),  _next_survivor(NULL) { }
 443 
 444 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 445   _young_list = g1h->young_list();
 446   _cm = cm;
 447 }
 448 
 449 void CMRootRegions::prepare_for_scan() {
 450   assert(!scan_in_progress(), "pre-condition");
 451 
 452   // Currently, only survivors can be root regions.
 453   assert(_next_survivor == NULL, "pre-condition");
 454   _next_survivor = _young_list->first_survivor_region();
 455   _scan_in_progress = (_next_survivor != NULL);
 456   _should_abort = false;
 457 }
 458 
 459 HeapRegion* CMRootRegions::claim_next() {
 460   if (_should_abort) {
 461     // If someone has set the should_abort flag, we return NULL to
 462     // force the caller to bail out of their loop.
 463     return NULL;
 464   }
 465 
 466   // Currently, only survivors can be root regions.
 467   HeapRegion* res = _next_survivor;
 468   if (res != NULL) {
 469     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 470     // Read it again in case it changed while we were waiting for the lock.
 471     res = _next_survivor;
 472     if (res != NULL) {
 473       if (res == _young_list->last_survivor_region()) {
 474         // We just claimed the last survivor so store NULL to indicate
 475         // that we're done.
 476         _next_survivor = NULL;
 477       } else {
 478         _next_survivor = res->get_next_young_region();
 479       }
 480     } else {
 481       // Someone else claimed the last survivor while we were trying
 482       // to take the lock so nothing else to do.
 483     }
 484   }
 485   assert(res == NULL || res->is_survivor(), "post-condition");
 486 
 487   return res;
 488 }
 489 
 490 void CMRootRegions::scan_finished() {
 491   assert(scan_in_progress(), "pre-condition");
 492 
 493   // Currently, only survivors can be root regions.
 494   if (!_should_abort) {
 495     assert(_next_survivor == NULL, "we should have claimed all survivors");
 496   }
 497   _next_survivor = NULL;
 498 
 499   {
 500     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 501     _scan_in_progress = false;
 502     RootRegionScan_lock->notify_all();
 503   }
 504 }
 505 
 506 bool CMRootRegions::wait_until_scan_finished() {
 507   if (!scan_in_progress()) return false;
 508 
 509   {
 510     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 511     while (scan_in_progress()) {
 512       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 513     }
 514   }
 515   return true;
 516 }
 517 
 518 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 519 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 520 #endif // _MSC_VER
 521 
 522 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 523   return MAX2((n_par_threads + 2) / 4, 1U);
 524 }
 525 
 526 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 527   _g1h(g1h),
 528   _markBitMap1(),
 529   _markBitMap2(),
 530   _parallel_marking_threads(0),
 531   _max_parallel_marking_threads(0),
 532   _sleep_factor(0.0),
 533   _marking_task_overhead(1.0),
 534   _cleanup_sleep_factor(0.0),
 535   _cleanup_task_overhead(1.0),
 536   _cleanup_list("Cleanup List"),
 537   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 538   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 539             CardTableModRefBS::card_shift,
 540             false /* in_resource_area*/),
 541 
 542   _prevMarkBitMap(&_markBitMap1),
 543   _nextMarkBitMap(&_markBitMap2),
 544 
 545   _markStack(this),
 546   // _finger set in set_non_marking_state
 547 
 548   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 549   // _active_tasks set in set_non_marking_state
 550   // _tasks set inside the constructor
 551   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 552   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 553 
 554   _has_overflown(false),
 555   _concurrent(false),
 556   _has_aborted(false),
 557   _aborted_gc_id(GCId::undefined()),
 558   _restart_for_overflow(false),
 559   _concurrent_marking_in_progress(false),
 560 
 561   // _verbose_level set below
 562 
 563   _init_times(),
 564   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 565   _cleanup_times(),
 566   _total_counting_time(0.0),
 567   _total_rs_scrub_time(0.0),
 568 
 569   _parallel_workers(NULL),
 570 
 571   _count_card_bitmaps(NULL),
 572   _count_marked_bytes(NULL),
 573   _completed_initialization(false) {
 574   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 575   if (verbose_level < no_verbose) {
 576     verbose_level = no_verbose;
 577   }
 578   if (verbose_level > high_verbose) {
 579     verbose_level = high_verbose;
 580   }
 581   _verbose_level = verbose_level;
 582 
 583   if (verbose_low()) {
 584     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 585                            "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 586   }
 587 
 588   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 589   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 590 
 591   // Create & start a ConcurrentMark thread.
 592   _cmThread = new ConcurrentMarkThread(this);
 593   assert(cmThread() != NULL, "CM Thread should have been created");
 594   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 595   if (_cmThread->osthread() == NULL) {
 596       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 597   }
 598 
 599   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 600   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 601   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 602 
 603   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 604   satb_qs.set_buffer_size(G1SATBBufferSize);
 605 
 606   _root_regions.init(_g1h, this);
 607 
 608   if (ConcGCThreads > ParallelGCThreads) {
 609     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 610             "than ParallelGCThreads (" UINTX_FORMAT ").",
 611             ConcGCThreads, ParallelGCThreads);
 612     return;
 613   }
 614   if (ParallelGCThreads == 0) {
 615     // if we are not running with any parallel GC threads we will not
 616     // spawn any marking threads either
 617     _parallel_marking_threads =       0;
 618     _max_parallel_marking_threads =   0;
 619     _sleep_factor             =     0.0;
 620     _marking_task_overhead    =     1.0;
 621   } else {
 622     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 623       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 624       // if both are set
 625       _sleep_factor             = 0.0;
 626       _marking_task_overhead    = 1.0;
 627     } else if (G1MarkingOverheadPercent > 0) {
 628       // We will calculate the number of parallel marking threads based
 629       // on a target overhead with respect to the soft real-time goal
 630       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 631       double overall_cm_overhead =
 632         (double) MaxGCPauseMillis * marking_overhead /
 633         (double) GCPauseIntervalMillis;
 634       double cpu_ratio = 1.0 / (double) os::processor_count();
 635       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 636       double marking_task_overhead =
 637         overall_cm_overhead / marking_thread_num *
 638                                                 (double) os::processor_count();
 639       double sleep_factor =
 640                          (1.0 - marking_task_overhead) / marking_task_overhead;
 641 
 642       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 643       _sleep_factor             = sleep_factor;
 644       _marking_task_overhead    = marking_task_overhead;
 645     } else {
 646       // Calculate the number of parallel marking threads by scaling
 647       // the number of parallel GC threads.
 648       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 649       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 650       _sleep_factor             = 0.0;
 651       _marking_task_overhead    = 1.0;
 652     }
 653 
 654     assert(ConcGCThreads > 0, "Should have been set");
 655     _parallel_marking_threads = (uint) ConcGCThreads;
 656     _max_parallel_marking_threads = _parallel_marking_threads;
 657 
 658     if (parallel_marking_threads() > 1) {
 659       _cleanup_task_overhead = 1.0;
 660     } else {
 661       _cleanup_task_overhead = marking_task_overhead();
 662     }
 663     _cleanup_sleep_factor =
 664                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 665 
 666 #if 0
 667     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 668     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 669     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 670     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 671     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 672 #endif
 673 
 674     guarantee(parallel_marking_threads() > 0, "peace of mind");
 675     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 676          _max_parallel_marking_threads, false, true);
 677     if (_parallel_workers == NULL) {
 678       vm_exit_during_initialization("Failed necessary allocation.");
 679     } else {
 680       _parallel_workers->initialize_workers();
 681     }
 682   }
 683 
 684   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 685     uintx mark_stack_size =
 686       MIN2(MarkStackSizeMax,
 687           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 688     // Verify that the calculated value for MarkStackSize is in range.
 689     // It would be nice to use the private utility routine from Arguments.
 690     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 691       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
 692               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 693               mark_stack_size, (uintx) 1, MarkStackSizeMax);
 694       return;
 695     }
 696     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
 697   } else {
 698     // Verify MarkStackSize is in range.
 699     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 700       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 701         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 702           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
 703                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 704                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
 705           return;
 706         }
 707       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 708         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 709           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
 710                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
 711                   MarkStackSize, MarkStackSizeMax);
 712           return;
 713         }
 714       }
 715     }
 716   }
 717 
 718   if (!_markStack.allocate(MarkStackSize)) {
 719     warning("Failed to allocate CM marking stack");
 720     return;
 721   }
 722 
 723   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 724   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 725 
 726   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 727   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 728 
 729   BitMap::idx_t card_bm_size = _card_bm.size();
 730 
 731   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 732   _active_tasks = _max_worker_id;
 733 
 734   size_t max_regions = (size_t) _g1h->max_regions();
 735   for (uint i = 0; i < _max_worker_id; ++i) {
 736     CMTaskQueue* task_queue = new CMTaskQueue();
 737     task_queue->initialize();
 738     _task_queues->register_queue(i, task_queue);
 739 
 740     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 741     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 742 
 743     _tasks[i] = new CMTask(i, this,
 744                            _count_marked_bytes[i],
 745                            &_count_card_bitmaps[i],
 746                            task_queue, _task_queues);
 747 
 748     _accum_task_vtime[i] = 0.0;
 749   }
 750 
 751   // Calculate the card number for the bottom of the heap. Used
 752   // in biasing indexes into the accounting card bitmaps.
 753   _heap_bottom_card_num =
 754     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 755                                 CardTableModRefBS::card_shift);
 756 
 757   // Clear all the liveness counting data
 758   clear_all_count_data();
 759 
 760   // so that the call below can read a sensible value
 761   _heap_start = g1h->reserved_region().start();
 762   set_non_marking_state();
 763   _completed_initialization = true;
 764 }
 765 
 766 void ConcurrentMark::reset() {
 767   // Starting values for these two. This should be called in a STW
 768   // phase.
 769   MemRegion reserved = _g1h->g1_reserved();
 770   _heap_start = reserved.start();
 771   _heap_end   = reserved.end();
 772 
 773   // Separated the asserts so that we know which one fires.
 774   assert(_heap_start != NULL, "heap bounds should look ok");
 775   assert(_heap_end != NULL, "heap bounds should look ok");
 776   assert(_heap_start < _heap_end, "heap bounds should look ok");
 777 
 778   // Reset all the marking data structures and any necessary flags
 779   reset_marking_state();
 780 
 781   if (verbose_low()) {
 782     gclog_or_tty->print_cr("[global] resetting");
 783   }
 784 
 785   // We do reset all of them, since different phases will use
 786   // different number of active threads. So, it's easiest to have all
 787   // of them ready.
 788   for (uint i = 0; i < _max_worker_id; ++i) {
 789     _tasks[i]->reset(_nextMarkBitMap);
 790   }
 791 
 792   // we need this to make sure that the flag is on during the evac
 793   // pause with initial mark piggy-backed
 794   set_concurrent_marking_in_progress();
 795 }
 796 
 797 
 798 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 799   _markStack.set_should_expand();
 800   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 801   if (clear_overflow) {
 802     clear_has_overflown();
 803   } else {
 804     assert(has_overflown(), "pre-condition");
 805   }
 806   _finger = _heap_start;
 807 
 808   for (uint i = 0; i < _max_worker_id; ++i) {
 809     CMTaskQueue* queue = _task_queues->queue(i);
 810     queue->set_empty();
 811   }
 812 }
 813 
 814 void ConcurrentMark::set_concurrency(uint active_tasks) {
 815   assert(active_tasks <= _max_worker_id, "we should not have more");
 816 
 817   _active_tasks = active_tasks;
 818   // Need to update the three data structures below according to the
 819   // number of active threads for this phase.
 820   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 821   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 822   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 823 }
 824 
 825 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 826   set_concurrency(active_tasks);
 827 
 828   _concurrent = concurrent;
 829   // We propagate this to all tasks, not just the active ones.
 830   for (uint i = 0; i < _max_worker_id; ++i)
 831     _tasks[i]->set_concurrent(concurrent);
 832 
 833   if (concurrent) {
 834     set_concurrent_marking_in_progress();
 835   } else {
 836     // We currently assume that the concurrent flag has been set to
 837     // false before we start remark. At this point we should also be
 838     // in a STW phase.
 839     assert(!concurrent_marking_in_progress(), "invariant");
 840     assert(out_of_regions(),
 841            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 842                    p2i(_finger), p2i(_heap_end)));
 843   }
 844 }
 845 
 846 void ConcurrentMark::set_non_marking_state() {
 847   // We set the global marking state to some default values when we're
 848   // not doing marking.
 849   reset_marking_state();
 850   _active_tasks = 0;
 851   clear_concurrent_marking_in_progress();
 852 }
 853 
 854 ConcurrentMark::~ConcurrentMark() {
 855   // The ConcurrentMark instance is never freed.
 856   ShouldNotReachHere();
 857 }
 858 
 859 void ConcurrentMark::clearNextBitmap() {
 860   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 861 
 862   // Make sure that the concurrent mark thread looks to still be in
 863   // the current cycle.
 864   guarantee(cmThread()->during_cycle(), "invariant");
 865 
 866   // We are finishing up the current cycle by clearing the next
 867   // marking bitmap and getting it ready for the next cycle. During
 868   // this time no other cycle can start. So, let's make sure that this
 869   // is the case.
 870   guarantee(!g1h->mark_in_progress(), "invariant");
 871 
 872   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 873   g1h->heap_region_iterate(&cl);
 874 
 875   // Clear the liveness counting data. If the marking has been aborted, the abort()
 876   // call already did that.
 877   if (cl.complete()) {
 878     clear_all_count_data();
 879   }
 880 
 881   // Repeat the asserts from above.
 882   guarantee(cmThread()->during_cycle(), "invariant");
 883   guarantee(!g1h->mark_in_progress(), "invariant");
 884 }
 885 
 886 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 887   CMBitMap* _bitmap;
 888   bool _error;
 889  public:
 890   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 891   }
 892 
 893   virtual bool doHeapRegion(HeapRegion* r) {
 894     // This closure can be called concurrently to the mutator, so we must make sure
 895     // that the result of the getNextMarkedWordAddress() call is compared to the
 896     // value passed to it as limit to detect any found bits.
 897     // We can use the region's orig_end() for the limit and the comparison value
 898     // as it always contains the "real" end of the region that never changes and
 899     // has no side effects.
 900     // Due to the latter, there can also be no problem with the compiler generating
 901     // reloads of the orig_end() call.
 902     HeapWord* end = r->orig_end();
 903     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 904   }
 905 };
 906 
 907 bool ConcurrentMark::nextMarkBitmapIsClear() {
 908   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 909   _g1h->heap_region_iterate(&cl);
 910   return cl.complete();
 911 }
 912 
 913 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 914 public:
 915   bool doHeapRegion(HeapRegion* r) {
 916     if (!r->continuesHumongous()) {
 917       r->note_start_of_marking();
 918     }
 919     return false;
 920   }
 921 };
 922 
 923 void ConcurrentMark::checkpointRootsInitialPre() {
 924   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 925   G1CollectorPolicy* g1p = g1h->g1_policy();
 926 
 927   _has_aborted = false;
 928 
 929 #ifndef PRODUCT
 930   if (G1PrintReachableAtInitialMark) {
 931     print_reachable("at-cycle-start",
 932                     VerifyOption_G1UsePrevMarking, true /* all */);
 933   }
 934 #endif
 935 
 936   // Initialise marking structures. This has to be done in a STW phase.
 937   reset();
 938 
 939   // For each region note start of marking.
 940   NoteStartOfMarkHRClosure startcl;
 941   g1h->heap_region_iterate(&startcl);
 942 }
 943 
 944 
 945 void ConcurrentMark::checkpointRootsInitialPost() {
 946   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 947 
 948   // If we force an overflow during remark, the remark operation will
 949   // actually abort and we'll restart concurrent marking. If we always
 950   // force an oveflow during remark we'll never actually complete the
 951   // marking phase. So, we initilize this here, at the start of the
 952   // cycle, so that at the remaining overflow number will decrease at
 953   // every remark and we'll eventually not need to cause one.
 954   force_overflow_stw()->init();
 955 
 956   // Start Concurrent Marking weak-reference discovery.
 957   ReferenceProcessor* rp = g1h->ref_processor_cm();
 958   // enable ("weak") refs discovery
 959   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 960   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 961 
 962   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 963   // This is the start of  the marking cycle, we're expected all
 964   // threads to have SATB queues with active set to false.
 965   satb_mq_set.set_active_all_threads(true, /* new active value */
 966                                      false /* expected_active */);
 967 
 968   _root_regions.prepare_for_scan();
 969 
 970   // update_g1_committed() will be called at the end of an evac pause
 971   // when marking is on. So, it's also called at the end of the
 972   // initial-mark pause to update the heap end, if the heap expands
 973   // during it. No need to call it here.
 974 }
 975 
 976 /*
 977  * Notice that in the next two methods, we actually leave the STS
 978  * during the barrier sync and join it immediately afterwards. If we
 979  * do not do this, the following deadlock can occur: one thread could
 980  * be in the barrier sync code, waiting for the other thread to also
 981  * sync up, whereas another one could be trying to yield, while also
 982  * waiting for the other threads to sync up too.
 983  *
 984  * Note, however, that this code is also used during remark and in
 985  * this case we should not attempt to leave / enter the STS, otherwise
 986  * we'll either hit an asseert (debug / fastdebug) or deadlock
 987  * (product). So we should only leave / enter the STS if we are
 988  * operating concurrently.
 989  *
 990  * Because the thread that does the sync barrier has left the STS, it
 991  * is possible to be suspended for a Full GC or an evacuation pause
 992  * could occur. This is actually safe, since the entering the sync
 993  * barrier is one of the last things do_marking_step() does, and it
 994  * doesn't manipulate any data structures afterwards.
 995  */
 996 
 997 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 998   if (verbose_low()) {
 999     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
1000   }
1001 
1002   if (concurrent()) {
1003     SuspendibleThreadSet::leave();
1004   }
1005 
1006   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
1007 
1008   if (concurrent()) {
1009     SuspendibleThreadSet::join();
1010   }
1011   // at this point everyone should have synced up and not be doing any
1012   // more work
1013 
1014   if (verbose_low()) {
1015     if (barrier_aborted) {
1016       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
1017     } else {
1018       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
1019     }
1020   }
1021 
1022   if (barrier_aborted) {
1023     // If the barrier aborted we ignore the overflow condition and
1024     // just abort the whole marking phase as quickly as possible.
1025     return;
1026   }
1027 
1028   // If we're executing the concurrent phase of marking, reset the marking
1029   // state; otherwise the marking state is reset after reference processing,
1030   // during the remark pause.
1031   // If we reset here as a result of an overflow during the remark we will
1032   // see assertion failures from any subsequent set_concurrency_and_phase()
1033   // calls.
1034   if (concurrent()) {
1035     // let the task associated with with worker 0 do this
1036     if (worker_id == 0) {
1037       // task 0 is responsible for clearing the global data structures
1038       // We should be here because of an overflow. During STW we should
1039       // not clear the overflow flag since we rely on it being true when
1040       // we exit this method to abort the pause and restart concurent
1041       // marking.
1042       reset_marking_state(true /* clear_overflow */);
1043       force_overflow()->update();
1044 
1045       if (G1Log::fine()) {
1046         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1047         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1048       }
1049     }
1050   }
1051 
1052   // after this, each task should reset its own data structures then
1053   // then go into the second barrier
1054 }
1055 
1056 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1057   if (verbose_low()) {
1058     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1059   }
1060 
1061   if (concurrent()) {
1062     SuspendibleThreadSet::leave();
1063   }
1064 
1065   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
1066 
1067   if (concurrent()) {
1068     SuspendibleThreadSet::join();
1069   }
1070   // at this point everything should be re-initialized and ready to go
1071 
1072   if (verbose_low()) {
1073     if (barrier_aborted) {
1074       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1075     } else {
1076       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1077     }
1078   }
1079 }
1080 
1081 #ifndef PRODUCT
1082 void ForceOverflowSettings::init() {
1083   _num_remaining = G1ConcMarkForceOverflow;
1084   _force = false;
1085   update();
1086 }
1087 
1088 void ForceOverflowSettings::update() {
1089   if (_num_remaining > 0) {
1090     _num_remaining -= 1;
1091     _force = true;
1092   } else {
1093     _force = false;
1094   }
1095 }
1096 
1097 bool ForceOverflowSettings::should_force() {
1098   if (_force) {
1099     _force = false;
1100     return true;
1101   } else {
1102     return false;
1103   }
1104 }
1105 #endif // !PRODUCT
1106 
1107 class CMConcurrentMarkingTask: public AbstractGangTask {
1108 private:
1109   ConcurrentMark*       _cm;
1110   ConcurrentMarkThread* _cmt;
1111 
1112 public:
1113   void work(uint worker_id) {
1114     assert(Thread::current()->is_ConcurrentGC_thread(),
1115            "this should only be done by a conc GC thread");
1116     ResourceMark rm;
1117 
1118     double start_vtime = os::elapsedVTime();
1119 
1120     SuspendibleThreadSet::join();
1121 
1122     assert(worker_id < _cm->active_tasks(), "invariant");
1123     CMTask* the_task = _cm->task(worker_id);
1124     the_task->record_start_time();
1125     if (!_cm->has_aborted()) {
1126       do {
1127         double start_vtime_sec = os::elapsedVTime();
1128         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1129 
1130         the_task->do_marking_step(mark_step_duration_ms,
1131                                   true  /* do_termination */,
1132                                   false /* is_serial*/);
1133 
1134         double end_vtime_sec = os::elapsedVTime();
1135         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1136         _cm->clear_has_overflown();
1137 
1138         _cm->do_yield_check(worker_id);
1139 
1140         jlong sleep_time_ms;
1141         if (!_cm->has_aborted() && the_task->has_aborted()) {
1142           sleep_time_ms =
1143             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1144           SuspendibleThreadSet::leave();
1145           os::sleep(Thread::current(), sleep_time_ms, false);
1146           SuspendibleThreadSet::join();
1147         }
1148       } while (!_cm->has_aborted() && the_task->has_aborted());
1149     }
1150     the_task->record_end_time();
1151     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1152 
1153     SuspendibleThreadSet::leave();
1154 
1155     double end_vtime = os::elapsedVTime();
1156     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1157   }
1158 
1159   CMConcurrentMarkingTask(ConcurrentMark* cm,
1160                           ConcurrentMarkThread* cmt) :
1161       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1162 
1163   ~CMConcurrentMarkingTask() { }
1164 };
1165 
1166 // Calculates the number of active workers for a concurrent
1167 // phase.
1168 uint ConcurrentMark::calc_parallel_marking_threads() {
1169   if (G1CollectedHeap::use_parallel_gc_threads()) {
1170     uint n_conc_workers = 0;
1171     if (!UseDynamicNumberOfGCThreads ||
1172         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1173          !ForceDynamicNumberOfGCThreads)) {
1174       n_conc_workers = max_parallel_marking_threads();
1175     } else {
1176       n_conc_workers =
1177         AdaptiveSizePolicy::calc_default_active_workers(
1178                                      max_parallel_marking_threads(),
1179                                      1, /* Minimum workers */
1180                                      parallel_marking_threads(),
1181                                      Threads::number_of_non_daemon_threads());
1182       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1183       // that scaling has already gone into "_max_parallel_marking_threads".
1184     }
1185     assert(n_conc_workers > 0, "Always need at least 1");
1186     return n_conc_workers;
1187   }
1188   // If we are not running with any parallel GC threads we will not
1189   // have spawned any marking threads either. Hence the number of
1190   // concurrent workers should be 0.
1191   return 0;
1192 }
1193 
1194 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1195   // Currently, only survivors can be root regions.
1196   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1197   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1198 
1199   const uintx interval = PrefetchScanIntervalInBytes;
1200   HeapWord* curr = hr->bottom();
1201   const HeapWord* end = hr->top();
1202   while (curr < end) {
1203     Prefetch::read(curr, interval);
1204     oop obj = oop(curr);
1205     int size = obj->oop_iterate(&cl);
1206     assert(size == obj->size(), "sanity");
1207     curr += size;
1208   }
1209 }
1210 
1211 class CMRootRegionScanTask : public AbstractGangTask {
1212 private:
1213   ConcurrentMark* _cm;
1214 
1215 public:
1216   CMRootRegionScanTask(ConcurrentMark* cm) :
1217     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1218 
1219   void work(uint worker_id) {
1220     assert(Thread::current()->is_ConcurrentGC_thread(),
1221            "this should only be done by a conc GC thread");
1222 
1223     CMRootRegions* root_regions = _cm->root_regions();
1224     HeapRegion* hr = root_regions->claim_next();
1225     while (hr != NULL) {
1226       _cm->scanRootRegion(hr, worker_id);
1227       hr = root_regions->claim_next();
1228     }
1229   }
1230 };
1231 
1232 void ConcurrentMark::scanRootRegions() {
1233   // Start of concurrent marking.
1234   ClassLoaderDataGraph::clear_claimed_marks();
1235 
1236   // scan_in_progress() will have been set to true only if there was
1237   // at least one root region to scan. So, if it's false, we
1238   // should not attempt to do any further work.
1239   if (root_regions()->scan_in_progress()) {
1240     _parallel_marking_threads = calc_parallel_marking_threads();
1241     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1242            "Maximum number of marking threads exceeded");
1243     uint active_workers = MAX2(1U, parallel_marking_threads());
1244 
1245     CMRootRegionScanTask task(this);
1246     if (use_parallel_marking_threads()) {
1247       _parallel_workers->set_active_workers((int) active_workers);
1248       _parallel_workers->run_task(&task);
1249     } else {
1250       task.work(0);
1251     }
1252 
1253     // It's possible that has_aborted() is true here without actually
1254     // aborting the survivor scan earlier. This is OK as it's
1255     // mainly used for sanity checking.
1256     root_regions()->scan_finished();
1257   }
1258 }
1259 
1260 void ConcurrentMark::markFromRoots() {
1261   // we might be tempted to assert that:
1262   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1263   //        "inconsistent argument?");
1264   // However that wouldn't be right, because it's possible that
1265   // a safepoint is indeed in progress as a younger generation
1266   // stop-the-world GC happens even as we mark in this generation.
1267 
1268   _restart_for_overflow = false;
1269   force_overflow_conc()->init();
1270 
1271   // _g1h has _n_par_threads
1272   _parallel_marking_threads = calc_parallel_marking_threads();
1273   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1274     "Maximum number of marking threads exceeded");
1275 
1276   uint active_workers = MAX2(1U, parallel_marking_threads());
1277 
1278   // Parallel task terminator is set in "set_concurrency_and_phase()"
1279   set_concurrency_and_phase(active_workers, true /* concurrent */);
1280 
1281   CMConcurrentMarkingTask markingTask(this, cmThread());
1282   if (use_parallel_marking_threads()) {
1283     _parallel_workers->set_active_workers((int)active_workers);
1284     // Don't set _n_par_threads because it affects MT in process_roots()
1285     // and the decisions on that MT processing is made elsewhere.
1286     assert(_parallel_workers->active_workers() > 0, "Should have been set");
1287     _parallel_workers->run_task(&markingTask);
1288   } else {
1289     markingTask.work(0);
1290   }
1291   print_stats();
1292 }
1293 
1294 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1295   // world is stopped at this checkpoint
1296   assert(SafepointSynchronize::is_at_safepoint(),
1297          "world should be stopped");
1298 
1299   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1300 
1301   // If a full collection has happened, we shouldn't do this.
1302   if (has_aborted()) {
1303     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1304     return;
1305   }
1306 
1307   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1308 
1309   if (VerifyDuringGC) {
1310     HandleMark hm;  // handle scope
1311     Universe::heap()->prepare_for_verify();
1312     Universe::verify(VerifyOption_G1UsePrevMarking,
1313                      " VerifyDuringGC:(before)");
1314   }
1315   g1h->check_bitmaps("Remark Start");
1316 
1317   G1CollectorPolicy* g1p = g1h->g1_policy();
1318   g1p->record_concurrent_mark_remark_start();
1319 
1320   double start = os::elapsedTime();
1321 
1322   checkpointRootsFinalWork();
1323 
1324   double mark_work_end = os::elapsedTime();
1325 
1326   weakRefsWork(clear_all_soft_refs);
1327 
1328   if (has_overflown()) {
1329     // Oops.  We overflowed.  Restart concurrent marking.
1330     _restart_for_overflow = true;
1331     if (G1TraceMarkStackOverflow) {
1332       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1333     }
1334 
1335     // Verify the heap w.r.t. the previous marking bitmap.
1336     if (VerifyDuringGC) {
1337       HandleMark hm;  // handle scope
1338       Universe::heap()->prepare_for_verify();
1339       Universe::verify(VerifyOption_G1UsePrevMarking,
1340                        " VerifyDuringGC:(overflow)");
1341     }
1342 
1343     // Clear the marking state because we will be restarting
1344     // marking due to overflowing the global mark stack.
1345     reset_marking_state();
1346   } else {
1347     // Aggregate the per-task counting data that we have accumulated
1348     // while marking.
1349     aggregate_count_data();
1350 
1351     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1352     // We're done with marking.
1353     // This is the end of  the marking cycle, we're expected all
1354     // threads to have SATB queues with active set to true.
1355     satb_mq_set.set_active_all_threads(false, /* new active value */
1356                                        true /* expected_active */);
1357 
1358     if (VerifyDuringGC) {
1359       HandleMark hm;  // handle scope
1360       Universe::heap()->prepare_for_verify();
1361       Universe::verify(VerifyOption_G1UseNextMarking,
1362                        " VerifyDuringGC:(after)");
1363     }
1364     g1h->check_bitmaps("Remark End");
1365     assert(!restart_for_overflow(), "sanity");
1366     // Completely reset the marking state since marking completed
1367     set_non_marking_state();
1368   }
1369 
1370   // Expand the marking stack, if we have to and if we can.
1371   if (_markStack.should_expand()) {
1372     _markStack.expand();
1373   }
1374 
1375   // Statistics
1376   double now = os::elapsedTime();
1377   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1378   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1379   _remark_times.add((now - start) * 1000.0);
1380 
1381   g1p->record_concurrent_mark_remark_end();
1382 
1383   G1CMIsAliveClosure is_alive(g1h);
1384   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1385 }
1386 
1387 // Base class of the closures that finalize and verify the
1388 // liveness counting data.
1389 class CMCountDataClosureBase: public HeapRegionClosure {
1390 protected:
1391   G1CollectedHeap* _g1h;
1392   ConcurrentMark* _cm;
1393   CardTableModRefBS* _ct_bs;
1394 
1395   BitMap* _region_bm;
1396   BitMap* _card_bm;
1397 
1398   // Takes a region that's not empty (i.e., it has at least one
1399   // live object in it and sets its corresponding bit on the region
1400   // bitmap to 1. If the region is "starts humongous" it will also set
1401   // to 1 the bits on the region bitmap that correspond to its
1402   // associated "continues humongous" regions.
1403   void set_bit_for_region(HeapRegion* hr) {
1404     assert(!hr->continuesHumongous(), "should have filtered those out");
1405 
1406     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1407     if (!hr->startsHumongous()) {
1408       // Normal (non-humongous) case: just set the bit.
1409       _region_bm->par_at_put(index, true);
1410     } else {
1411       // Starts humongous case: calculate how many regions are part of
1412       // this humongous region and then set the bit range.
1413       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1414       _region_bm->par_at_put_range(index, end_index, true);
1415     }
1416   }
1417 
1418 public:
1419   CMCountDataClosureBase(G1CollectedHeap* g1h,
1420                          BitMap* region_bm, BitMap* card_bm):
1421     _g1h(g1h), _cm(g1h->concurrent_mark()),
1422     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
1423     _region_bm(region_bm), _card_bm(card_bm) { }
1424 };
1425 
1426 // Closure that calculates the # live objects per region. Used
1427 // for verification purposes during the cleanup pause.
1428 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1429   CMBitMapRO* _bm;
1430   size_t _region_marked_bytes;
1431 
1432 public:
1433   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1434                          BitMap* region_bm, BitMap* card_bm) :
1435     CMCountDataClosureBase(g1h, region_bm, card_bm),
1436     _bm(bm), _region_marked_bytes(0) { }
1437 
1438   bool doHeapRegion(HeapRegion* hr) {
1439 
1440     if (hr->continuesHumongous()) {
1441       // We will ignore these here and process them when their
1442       // associated "starts humongous" region is processed (see
1443       // set_bit_for_heap_region()). Note that we cannot rely on their
1444       // associated "starts humongous" region to have their bit set to
1445       // 1 since, due to the region chunking in the parallel region
1446       // iteration, a "continues humongous" region might be visited
1447       // before its associated "starts humongous".
1448       return false;
1449     }
1450 
1451     HeapWord* ntams = hr->next_top_at_mark_start();
1452     HeapWord* start = hr->bottom();
1453 
1454     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1455            err_msg("Preconditions not met - "
1456                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1457                    p2i(start), p2i(ntams), p2i(hr->end())));
1458 
1459     // Find the first marked object at or after "start".
1460     start = _bm->getNextMarkedWordAddress(start, ntams);
1461 
1462     size_t marked_bytes = 0;
1463 
1464     while (start < ntams) {
1465       oop obj = oop(start);
1466       int obj_sz = obj->size();
1467       HeapWord* obj_end = start + obj_sz;
1468 
1469       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1470       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1471 
1472       // Note: if we're looking at the last region in heap - obj_end
1473       // could be actually just beyond the end of the heap; end_idx
1474       // will then correspond to a (non-existent) card that is also
1475       // just beyond the heap.
1476       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1477         // end of object is not card aligned - increment to cover
1478         // all the cards spanned by the object
1479         end_idx += 1;
1480       }
1481 
1482       // Set the bits in the card BM for the cards spanned by this object.
1483       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1484 
1485       // Add the size of this object to the number of marked bytes.
1486       marked_bytes += (size_t)obj_sz * HeapWordSize;
1487 
1488       // Find the next marked object after this one.
1489       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1490     }
1491 
1492     // Mark the allocated-since-marking portion...
1493     HeapWord* top = hr->top();
1494     if (ntams < top) {
1495       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1496       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1497 
1498       // Note: if we're looking at the last region in heap - top
1499       // could be actually just beyond the end of the heap; end_idx
1500       // will then correspond to a (non-existent) card that is also
1501       // just beyond the heap.
1502       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1503         // end of object is not card aligned - increment to cover
1504         // all the cards spanned by the object
1505         end_idx += 1;
1506       }
1507       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1508 
1509       // This definitely means the region has live objects.
1510       set_bit_for_region(hr);
1511     }
1512 
1513     // Update the live region bitmap.
1514     if (marked_bytes > 0) {
1515       set_bit_for_region(hr);
1516     }
1517 
1518     // Set the marked bytes for the current region so that
1519     // it can be queried by a calling verificiation routine
1520     _region_marked_bytes = marked_bytes;
1521 
1522     return false;
1523   }
1524 
1525   size_t region_marked_bytes() const { return _region_marked_bytes; }
1526 };
1527 
1528 // Heap region closure used for verifying the counting data
1529 // that was accumulated concurrently and aggregated during
1530 // the remark pause. This closure is applied to the heap
1531 // regions during the STW cleanup pause.
1532 
1533 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1534   G1CollectedHeap* _g1h;
1535   ConcurrentMark* _cm;
1536   CalcLiveObjectsClosure _calc_cl;
1537   BitMap* _region_bm;   // Region BM to be verified
1538   BitMap* _card_bm;     // Card BM to be verified
1539   bool _verbose;        // verbose output?
1540 
1541   BitMap* _exp_region_bm; // Expected Region BM values
1542   BitMap* _exp_card_bm;   // Expected card BM values
1543 
1544   int _failures;
1545 
1546 public:
1547   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1548                                 BitMap* region_bm,
1549                                 BitMap* card_bm,
1550                                 BitMap* exp_region_bm,
1551                                 BitMap* exp_card_bm,
1552                                 bool verbose) :
1553     _g1h(g1h), _cm(g1h->concurrent_mark()),
1554     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1555     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1556     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1557     _failures(0) { }
1558 
1559   int failures() const { return _failures; }
1560 
1561   bool doHeapRegion(HeapRegion* hr) {
1562     if (hr->continuesHumongous()) {
1563       // We will ignore these here and process them when their
1564       // associated "starts humongous" region is processed (see
1565       // set_bit_for_heap_region()). Note that we cannot rely on their
1566       // associated "starts humongous" region to have their bit set to
1567       // 1 since, due to the region chunking in the parallel region
1568       // iteration, a "continues humongous" region might be visited
1569       // before its associated "starts humongous".
1570       return false;
1571     }
1572 
1573     int failures = 0;
1574 
1575     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1576     // this region and set the corresponding bits in the expected region
1577     // and card bitmaps.
1578     bool res = _calc_cl.doHeapRegion(hr);
1579     assert(res == false, "should be continuing");
1580 
1581     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1582                     Mutex::_no_safepoint_check_flag);
1583 
1584     // Verify the marked bytes for this region.
1585     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1586     size_t act_marked_bytes = hr->next_marked_bytes();
1587 
1588     // We're not OK if expected marked bytes > actual marked bytes. It means
1589     // we have missed accounting some objects during the actual marking.
1590     if (exp_marked_bytes > act_marked_bytes) {
1591       if (_verbose) {
1592         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1593                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1594                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1595       }
1596       failures += 1;
1597     }
1598 
1599     // Verify the bit, for this region, in the actual and expected
1600     // (which was just calculated) region bit maps.
1601     // We're not OK if the bit in the calculated expected region
1602     // bitmap is set and the bit in the actual region bitmap is not.
1603     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1604 
1605     bool expected = _exp_region_bm->at(index);
1606     bool actual = _region_bm->at(index);
1607     if (expected && !actual) {
1608       if (_verbose) {
1609         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1610                                "expected: %s, actual: %s",
1611                                hr->hrm_index(),
1612                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1613       }
1614       failures += 1;
1615     }
1616 
1617     // Verify that the card bit maps for the cards spanned by the current
1618     // region match. We have an error if we have a set bit in the expected
1619     // bit map and the corresponding bit in the actual bitmap is not set.
1620 
1621     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1622     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1623 
1624     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1625       expected = _exp_card_bm->at(i);
1626       actual = _card_bm->at(i);
1627 
1628       if (expected && !actual) {
1629         if (_verbose) {
1630           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1631                                  "expected: %s, actual: %s",
1632                                  hr->hrm_index(), i,
1633                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1634         }
1635         failures += 1;
1636       }
1637     }
1638 
1639     if (failures > 0 && _verbose)  {
1640       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1641                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1642                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1643                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1644     }
1645 
1646     _failures += failures;
1647 
1648     // We could stop iteration over the heap when we
1649     // find the first violating region by returning true.
1650     return false;
1651   }
1652 };
1653 
1654 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1655 protected:
1656   G1CollectedHeap* _g1h;
1657   ConcurrentMark* _cm;
1658   BitMap* _actual_region_bm;
1659   BitMap* _actual_card_bm;
1660 
1661   uint    _n_workers;
1662 
1663   BitMap* _expected_region_bm;
1664   BitMap* _expected_card_bm;
1665 
1666   int  _failures;
1667   bool _verbose;
1668 
1669 public:
1670   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1671                             BitMap* region_bm, BitMap* card_bm,
1672                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1673     : AbstractGangTask("G1 verify final counting"),
1674       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1675       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1676       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1677       _failures(0), _verbose(false),
1678       _n_workers(0) {
1679     assert(VerifyDuringGC, "don't call this otherwise");
1680 
1681     // Use the value already set as the number of active threads
1682     // in the call to run_task().
1683     if (G1CollectedHeap::use_parallel_gc_threads()) {
1684       assert( _g1h->workers()->active_workers() > 0,
1685         "Should have been previously set");
1686       _n_workers = _g1h->workers()->active_workers();
1687     } else {
1688       _n_workers = 1;
1689     }
1690 
1691     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1692     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1693 
1694     _verbose = _cm->verbose_medium();
1695   }
1696 
1697   void work(uint worker_id) {
1698     assert(worker_id < _n_workers, "invariant");
1699 
1700     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1701                                             _actual_region_bm, _actual_card_bm,
1702                                             _expected_region_bm,
1703                                             _expected_card_bm,
1704                                             _verbose);
1705 
1706     if (G1CollectedHeap::use_parallel_gc_threads()) {
1707       _g1h->heap_region_par_iterate_chunked(&verify_cl,
1708                                             worker_id,
1709                                             _n_workers,
1710                                             HeapRegion::VerifyCountClaimValue);
1711     } else {
1712       _g1h->heap_region_iterate(&verify_cl);
1713     }
1714 
1715     Atomic::add(verify_cl.failures(), &_failures);
1716   }
1717 
1718   int failures() const { return _failures; }
1719 };
1720 
1721 // Closure that finalizes the liveness counting data.
1722 // Used during the cleanup pause.
1723 // Sets the bits corresponding to the interval [NTAMS, top]
1724 // (which contains the implicitly live objects) in the
1725 // card liveness bitmap. Also sets the bit for each region,
1726 // containing live data, in the region liveness bitmap.
1727 
1728 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1729  public:
1730   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1731                               BitMap* region_bm,
1732                               BitMap* card_bm) :
1733     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1734 
1735   bool doHeapRegion(HeapRegion* hr) {
1736 
1737     if (hr->continuesHumongous()) {
1738       // We will ignore these here and process them when their
1739       // associated "starts humongous" region is processed (see
1740       // set_bit_for_heap_region()). Note that we cannot rely on their
1741       // associated "starts humongous" region to have their bit set to
1742       // 1 since, due to the region chunking in the parallel region
1743       // iteration, a "continues humongous" region might be visited
1744       // before its associated "starts humongous".
1745       return false;
1746     }
1747 
1748     HeapWord* ntams = hr->next_top_at_mark_start();
1749     HeapWord* top   = hr->top();
1750 
1751     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1752 
1753     // Mark the allocated-since-marking portion...
1754     if (ntams < top) {
1755       // This definitely means the region has live objects.
1756       set_bit_for_region(hr);
1757 
1758       // Now set the bits in the card bitmap for [ntams, top)
1759       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1760       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1761 
1762       // Note: if we're looking at the last region in heap - top
1763       // could be actually just beyond the end of the heap; end_idx
1764       // will then correspond to a (non-existent) card that is also
1765       // just beyond the heap.
1766       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1767         // end of object is not card aligned - increment to cover
1768         // all the cards spanned by the object
1769         end_idx += 1;
1770       }
1771 
1772       assert(end_idx <= _card_bm->size(),
1773              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1774                      end_idx, _card_bm->size()));
1775       assert(start_idx < _card_bm->size(),
1776              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1777                      start_idx, _card_bm->size()));
1778 
1779       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1780     }
1781 
1782     // Set the bit for the region if it contains live data
1783     if (hr->next_marked_bytes() > 0) {
1784       set_bit_for_region(hr);
1785     }
1786 
1787     return false;
1788   }
1789 };
1790 
1791 class G1ParFinalCountTask: public AbstractGangTask {
1792 protected:
1793   G1CollectedHeap* _g1h;
1794   ConcurrentMark* _cm;
1795   BitMap* _actual_region_bm;
1796   BitMap* _actual_card_bm;
1797 
1798   uint    _n_workers;
1799 
1800 public:
1801   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1802     : AbstractGangTask("G1 final counting"),
1803       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1804       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1805       _n_workers(0) {
1806     // Use the value already set as the number of active threads
1807     // in the call to run_task().
1808     if (G1CollectedHeap::use_parallel_gc_threads()) {
1809       assert( _g1h->workers()->active_workers() > 0,
1810         "Should have been previously set");
1811       _n_workers = _g1h->workers()->active_workers();
1812     } else {
1813       _n_workers = 1;
1814     }
1815   }
1816 
1817   void work(uint worker_id) {
1818     assert(worker_id < _n_workers, "invariant");
1819 
1820     FinalCountDataUpdateClosure final_update_cl(_g1h,
1821                                                 _actual_region_bm,
1822                                                 _actual_card_bm);
1823 
1824     if (G1CollectedHeap::use_parallel_gc_threads()) {
1825       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
1826                                             worker_id,
1827                                             _n_workers,
1828                                             HeapRegion::FinalCountClaimValue);
1829     } else {
1830       _g1h->heap_region_iterate(&final_update_cl);
1831     }
1832   }
1833 };
1834 
1835 class G1ParNoteEndTask;
1836 
1837 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1838   G1CollectedHeap* _g1;
1839   size_t _max_live_bytes;
1840   uint _regions_claimed;
1841   size_t _freed_bytes;
1842   FreeRegionList* _local_cleanup_list;
1843   HeapRegionSetCount _old_regions_removed;
1844   HeapRegionSetCount _humongous_regions_removed;
1845   HRRSCleanupTask* _hrrs_cleanup_task;
1846   double _claimed_region_time;
1847   double _max_region_time;
1848 
1849 public:
1850   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1851                              FreeRegionList* local_cleanup_list,
1852                              HRRSCleanupTask* hrrs_cleanup_task) :
1853     _g1(g1),
1854     _max_live_bytes(0), _regions_claimed(0),
1855     _freed_bytes(0),
1856     _claimed_region_time(0.0), _max_region_time(0.0),
1857     _local_cleanup_list(local_cleanup_list),
1858     _old_regions_removed(),
1859     _humongous_regions_removed(),
1860     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1861 
1862   size_t freed_bytes() { return _freed_bytes; }
1863   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1864   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1865 
1866   bool doHeapRegion(HeapRegion *hr) {
1867     if (hr->continuesHumongous()) {
1868       return false;
1869     }
1870     // We use a claim value of zero here because all regions
1871     // were claimed with value 1 in the FinalCount task.
1872     _g1->reset_gc_time_stamps(hr);
1873     double start = os::elapsedTime();
1874     _regions_claimed++;
1875     hr->note_end_of_marking();
1876     _max_live_bytes += hr->max_live_bytes();
1877 
1878     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1879       _freed_bytes += hr->used();
1880       hr->set_containing_set(NULL);
1881       if (hr->isHumongous()) {
1882         assert(hr->startsHumongous(), "we should only see starts humongous");
1883         _humongous_regions_removed.increment(1u, hr->capacity());
1884         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1885       } else {
1886         _old_regions_removed.increment(1u, hr->capacity());
1887         _g1->free_region(hr, _local_cleanup_list, true);
1888       }
1889     } else {
1890       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1891     }
1892 
1893     double region_time = (os::elapsedTime() - start);
1894     _claimed_region_time += region_time;
1895     if (region_time > _max_region_time) {
1896       _max_region_time = region_time;
1897     }
1898     return false;
1899   }
1900 
1901   size_t max_live_bytes() { return _max_live_bytes; }
1902   uint regions_claimed() { return _regions_claimed; }
1903   double claimed_region_time_sec() { return _claimed_region_time; }
1904   double max_region_time_sec() { return _max_region_time; }
1905 };
1906 
1907 class G1ParNoteEndTask: public AbstractGangTask {
1908   friend class G1NoteEndOfConcMarkClosure;
1909 
1910 protected:
1911   G1CollectedHeap* _g1h;
1912   size_t _max_live_bytes;
1913   size_t _freed_bytes;
1914   FreeRegionList* _cleanup_list;
1915 
1916 public:
1917   G1ParNoteEndTask(G1CollectedHeap* g1h,
1918                    FreeRegionList* cleanup_list) :
1919     AbstractGangTask("G1 note end"), _g1h(g1h),
1920     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1921 
1922   void work(uint worker_id) {
1923     double start = os::elapsedTime();
1924     FreeRegionList local_cleanup_list("Local Cleanup List");
1925     HRRSCleanupTask hrrs_cleanup_task;
1926     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1927                                            &hrrs_cleanup_task);
1928     if (G1CollectedHeap::use_parallel_gc_threads()) {
1929       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1930                                             _g1h->workers()->active_workers(),
1931                                             HeapRegion::NoteEndClaimValue);
1932     } else {
1933       _g1h->heap_region_iterate(&g1_note_end);
1934     }
1935     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1936 
1937     // Now update the lists
1938     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1939     {
1940       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1941       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1942       _max_live_bytes += g1_note_end.max_live_bytes();
1943       _freed_bytes += g1_note_end.freed_bytes();
1944 
1945       // If we iterate over the global cleanup list at the end of
1946       // cleanup to do this printing we will not guarantee to only
1947       // generate output for the newly-reclaimed regions (the list
1948       // might not be empty at the beginning of cleanup; we might
1949       // still be working on its previous contents). So we do the
1950       // printing here, before we append the new regions to the global
1951       // cleanup list.
1952 
1953       G1HRPrinter* hr_printer = _g1h->hr_printer();
1954       if (hr_printer->is_active()) {
1955         FreeRegionListIterator iter(&local_cleanup_list);
1956         while (iter.more_available()) {
1957           HeapRegion* hr = iter.get_next();
1958           hr_printer->cleanup(hr);
1959         }
1960       }
1961 
1962       _cleanup_list->add_ordered(&local_cleanup_list);
1963       assert(local_cleanup_list.is_empty(), "post-condition");
1964 
1965       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1966     }
1967   }
1968   size_t max_live_bytes() { return _max_live_bytes; }
1969   size_t freed_bytes() { return _freed_bytes; }
1970 };
1971 
1972 class G1ParScrubRemSetTask: public AbstractGangTask {
1973 protected:
1974   G1RemSet* _g1rs;
1975   BitMap* _region_bm;
1976   BitMap* _card_bm;
1977 public:
1978   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
1979                        BitMap* region_bm, BitMap* card_bm) :
1980     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1981     _region_bm(region_bm), _card_bm(card_bm) { }
1982 
1983   void work(uint worker_id) {
1984     if (G1CollectedHeap::use_parallel_gc_threads()) {
1985       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1986                        HeapRegion::ScrubRemSetClaimValue);
1987     } else {
1988       _g1rs->scrub(_region_bm, _card_bm);
1989     }
1990   }
1991 
1992 };
1993 
1994 void ConcurrentMark::cleanup() {
1995   // world is stopped at this checkpoint
1996   assert(SafepointSynchronize::is_at_safepoint(),
1997          "world should be stopped");
1998   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1999 
2000   // If a full collection has happened, we shouldn't do this.
2001   if (has_aborted()) {
2002     g1h->set_marking_complete(); // So bitmap clearing isn't confused
2003     return;
2004   }
2005 
2006   g1h->verify_region_sets_optional();
2007 
2008   if (VerifyDuringGC) {
2009     HandleMark hm;  // handle scope
2010     Universe::heap()->prepare_for_verify();
2011     Universe::verify(VerifyOption_G1UsePrevMarking,
2012                      " VerifyDuringGC:(before)");
2013   }
2014   g1h->check_bitmaps("Cleanup Start");
2015 
2016   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
2017   g1p->record_concurrent_mark_cleanup_start();
2018 
2019   double start = os::elapsedTime();
2020 
2021   HeapRegionRemSet::reset_for_cleanup_tasks();
2022 
2023   uint n_workers;
2024 
2025   // Do counting once more with the world stopped for good measure.
2026   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
2027 
2028   if (G1CollectedHeap::use_parallel_gc_threads()) {
2029    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2030            "sanity check");
2031 
2032     g1h->set_par_threads();
2033     n_workers = g1h->n_par_threads();
2034     assert(g1h->n_par_threads() == n_workers,
2035            "Should not have been reset");
2036     g1h->workers()->run_task(&g1_par_count_task);
2037     // Done with the parallel phase so reset to 0.
2038     g1h->set_par_threads(0);
2039 
2040     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2041            "sanity check");
2042   } else {
2043     n_workers = 1;
2044     g1_par_count_task.work(0);
2045   }
2046 
2047   if (VerifyDuringGC) {
2048     // Verify that the counting data accumulated during marking matches
2049     // that calculated by walking the marking bitmap.
2050 
2051     // Bitmaps to hold expected values
2052     BitMap expected_region_bm(_region_bm.size(), true);
2053     BitMap expected_card_bm(_card_bm.size(), true);
2054 
2055     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2056                                                  &_region_bm,
2057                                                  &_card_bm,
2058                                                  &expected_region_bm,
2059                                                  &expected_card_bm);
2060 
2061     if (G1CollectedHeap::use_parallel_gc_threads()) {
2062       g1h->set_par_threads((int)n_workers);
2063       g1h->workers()->run_task(&g1_par_verify_task);
2064       // Done with the parallel phase so reset to 0.
2065       g1h->set_par_threads(0);
2066 
2067       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
2068              "sanity check");
2069     } else {
2070       g1_par_verify_task.work(0);
2071     }
2072 
2073     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2074   }
2075 
2076   size_t start_used_bytes = g1h->used();
2077   g1h->set_marking_complete();
2078 
2079   double count_end = os::elapsedTime();
2080   double this_final_counting_time = (count_end - start);
2081   _total_counting_time += this_final_counting_time;
2082 
2083   if (G1PrintRegionLivenessInfo) {
2084     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2085     _g1h->heap_region_iterate(&cl);
2086   }
2087 
2088   // Install newly created mark bitMap as "prev".
2089   swapMarkBitMaps();
2090 
2091   g1h->reset_gc_time_stamp();
2092 
2093   // Note end of marking in all heap regions.
2094   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2095   if (G1CollectedHeap::use_parallel_gc_threads()) {
2096     g1h->set_par_threads((int)n_workers);
2097     g1h->workers()->run_task(&g1_par_note_end_task);
2098     g1h->set_par_threads(0);
2099 
2100     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
2101            "sanity check");
2102   } else {
2103     g1_par_note_end_task.work(0);
2104   }
2105   g1h->check_gc_time_stamps();
2106 
2107   if (!cleanup_list_is_empty()) {
2108     // The cleanup list is not empty, so we'll have to process it
2109     // concurrently. Notify anyone else that might be wanting free
2110     // regions that there will be more free regions coming soon.
2111     g1h->set_free_regions_coming();
2112   }
2113 
2114   // call below, since it affects the metric by which we sort the heap
2115   // regions.
2116   if (G1ScrubRemSets) {
2117     double rs_scrub_start = os::elapsedTime();
2118     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2119     if (G1CollectedHeap::use_parallel_gc_threads()) {
2120       g1h->set_par_threads((int)n_workers);
2121       g1h->workers()->run_task(&g1_par_scrub_rs_task);
2122       g1h->set_par_threads(0);
2123 
2124       assert(g1h->check_heap_region_claim_values(
2125                                             HeapRegion::ScrubRemSetClaimValue),
2126              "sanity check");
2127     } else {
2128       g1_par_scrub_rs_task.work(0);
2129     }
2130 
2131     double rs_scrub_end = os::elapsedTime();
2132     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2133     _total_rs_scrub_time += this_rs_scrub_time;
2134   }
2135 
2136   // this will also free any regions totally full of garbage objects,
2137   // and sort the regions.
2138   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2139 
2140   // Statistics.
2141   double end = os::elapsedTime();
2142   _cleanup_times.add((end - start) * 1000.0);
2143 
2144   if (G1Log::fine()) {
2145     g1h->print_size_transition(gclog_or_tty,
2146                                start_used_bytes,
2147                                g1h->used(),
2148                                g1h->capacity());
2149   }
2150 
2151   // Clean up will have freed any regions completely full of garbage.
2152   // Update the soft reference policy with the new heap occupancy.
2153   Universe::update_heap_info_at_gc();
2154 
2155   if (VerifyDuringGC) {
2156     HandleMark hm;  // handle scope
2157     Universe::heap()->prepare_for_verify();
2158     Universe::verify(VerifyOption_G1UsePrevMarking,
2159                      " VerifyDuringGC:(after)");
2160   }
2161   g1h->check_bitmaps("Cleanup End");
2162 
2163   g1h->verify_region_sets_optional();
2164 
2165   // We need to make this be a "collection" so any collection pause that
2166   // races with it goes around and waits for completeCleanup to finish.
2167   g1h->increment_total_collections();
2168 
2169   // Clean out dead classes and update Metaspace sizes.
2170   if (ClassUnloadingWithConcurrentMark) {
2171     ClassLoaderDataGraph::purge();
2172   }
2173   MetaspaceGC::compute_new_size();
2174 
2175   // We reclaimed old regions so we should calculate the sizes to make
2176   // sure we update the old gen/space data.
2177   g1h->g1mm()->update_sizes();
2178   g1h->allocation_context_stats().update_after_mark();
2179 
2180   g1h->trace_heap_after_concurrent_cycle();
2181 }
2182 
2183 void ConcurrentMark::completeCleanup() {
2184   if (has_aborted()) return;
2185 
2186   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2187 
2188   _cleanup_list.verify_optional();
2189   FreeRegionList tmp_free_list("Tmp Free List");
2190 
2191   if (G1ConcRegionFreeingVerbose) {
2192     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2193                            "cleanup list has %u entries",
2194                            _cleanup_list.length());
2195   }
2196 
2197   // No one else should be accessing the _cleanup_list at this point,
2198   // so it is not necessary to take any locks
2199   while (!_cleanup_list.is_empty()) {
2200     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2201     assert(hr != NULL, "Got NULL from a non-empty list");
2202     hr->par_clear();
2203     tmp_free_list.add_ordered(hr);
2204 
2205     // Instead of adding one region at a time to the secondary_free_list,
2206     // we accumulate them in the local list and move them a few at a
2207     // time. This also cuts down on the number of notify_all() calls
2208     // we do during this process. We'll also append the local list when
2209     // _cleanup_list is empty (which means we just removed the last
2210     // region from the _cleanup_list).
2211     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2212         _cleanup_list.is_empty()) {
2213       if (G1ConcRegionFreeingVerbose) {
2214         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2215                                "appending %u entries to the secondary_free_list, "
2216                                "cleanup list still has %u entries",
2217                                tmp_free_list.length(),
2218                                _cleanup_list.length());
2219       }
2220 
2221       {
2222         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2223         g1h->secondary_free_list_add(&tmp_free_list);
2224         SecondaryFreeList_lock->notify_all();
2225       }
2226 
2227       if (G1StressConcRegionFreeing) {
2228         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2229           os::sleep(Thread::current(), (jlong) 1, false);
2230         }
2231       }
2232     }
2233   }
2234   assert(tmp_free_list.is_empty(), "post-condition");
2235 }
2236 
2237 // Supporting Object and Oop closures for reference discovery
2238 // and processing in during marking
2239 
2240 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2241   HeapWord* addr = (HeapWord*)obj;
2242   return addr != NULL &&
2243          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2244 }
2245 
2246 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2247 // Uses the CMTask associated with a worker thread (for serial reference
2248 // processing the CMTask for worker 0 is used) to preserve (mark) and
2249 // trace referent objects.
2250 //
2251 // Using the CMTask and embedded local queues avoids having the worker
2252 // threads operating on the global mark stack. This reduces the risk
2253 // of overflowing the stack - which we would rather avoid at this late
2254 // state. Also using the tasks' local queues removes the potential
2255 // of the workers interfering with each other that could occur if
2256 // operating on the global stack.
2257 
2258 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2259   ConcurrentMark* _cm;
2260   CMTask*         _task;
2261   int             _ref_counter_limit;
2262   int             _ref_counter;
2263   bool            _is_serial;
2264  public:
2265   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2266     _cm(cm), _task(task), _is_serial(is_serial),
2267     _ref_counter_limit(G1RefProcDrainInterval) {
2268     assert(_ref_counter_limit > 0, "sanity");
2269     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2270     _ref_counter = _ref_counter_limit;
2271   }
2272 
2273   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2274   virtual void do_oop(      oop* p) { do_oop_work(p); }
2275 
2276   template <class T> void do_oop_work(T* p) {
2277     if (!_cm->has_overflown()) {
2278       oop obj = oopDesc::load_decode_heap_oop(p);
2279       if (_cm->verbose_high()) {
2280         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2281                                "*"PTR_FORMAT" = "PTR_FORMAT,
2282                                _task->worker_id(), p2i(p), p2i((void*) obj));
2283       }
2284 
2285       _task->deal_with_reference(obj);
2286       _ref_counter--;
2287 
2288       if (_ref_counter == 0) {
2289         // We have dealt with _ref_counter_limit references, pushing them
2290         // and objects reachable from them on to the local stack (and
2291         // possibly the global stack). Call CMTask::do_marking_step() to
2292         // process these entries.
2293         //
2294         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2295         // there's nothing more to do (i.e. we're done with the entries that
2296         // were pushed as a result of the CMTask::deal_with_reference() calls
2297         // above) or we overflow.
2298         //
2299         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2300         // flag while there may still be some work to do. (See the comment at
2301         // the beginning of CMTask::do_marking_step() for those conditions -
2302         // one of which is reaching the specified time target.) It is only
2303         // when CMTask::do_marking_step() returns without setting the
2304         // has_aborted() flag that the marking step has completed.
2305         do {
2306           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2307           _task->do_marking_step(mark_step_duration_ms,
2308                                  false      /* do_termination */,
2309                                  _is_serial);
2310         } while (_task->has_aborted() && !_cm->has_overflown());
2311         _ref_counter = _ref_counter_limit;
2312       }
2313     } else {
2314       if (_cm->verbose_high()) {
2315          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2316       }
2317     }
2318   }
2319 };
2320 
2321 // 'Drain' oop closure used by both serial and parallel reference processing.
2322 // Uses the CMTask associated with a given worker thread (for serial
2323 // reference processing the CMtask for worker 0 is used). Calls the
2324 // do_marking_step routine, with an unbelievably large timeout value,
2325 // to drain the marking data structures of the remaining entries
2326 // added by the 'keep alive' oop closure above.
2327 
2328 class G1CMDrainMarkingStackClosure: public VoidClosure {
2329   ConcurrentMark* _cm;
2330   CMTask*         _task;
2331   bool            _is_serial;
2332  public:
2333   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2334     _cm(cm), _task(task), _is_serial(is_serial) {
2335     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2336   }
2337 
2338   void do_void() {
2339     do {
2340       if (_cm->verbose_high()) {
2341         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2342                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2343       }
2344 
2345       // We call CMTask::do_marking_step() to completely drain the local
2346       // and global marking stacks of entries pushed by the 'keep alive'
2347       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2348       //
2349       // CMTask::do_marking_step() is called in a loop, which we'll exit
2350       // if there's nothing more to do (i.e. we'completely drained the
2351       // entries that were pushed as a a result of applying the 'keep alive'
2352       // closure to the entries on the discovered ref lists) or we overflow
2353       // the global marking stack.
2354       //
2355       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2356       // flag while there may still be some work to do. (See the comment at
2357       // the beginning of CMTask::do_marking_step() for those conditions -
2358       // one of which is reaching the specified time target.) It is only
2359       // when CMTask::do_marking_step() returns without setting the
2360       // has_aborted() flag that the marking step has completed.
2361 
2362       _task->do_marking_step(1000000000.0 /* something very large */,
2363                              true         /* do_termination */,
2364                              _is_serial);
2365     } while (_task->has_aborted() && !_cm->has_overflown());
2366   }
2367 };
2368 
2369 // Implementation of AbstractRefProcTaskExecutor for parallel
2370 // reference processing at the end of G1 concurrent marking
2371 
2372 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2373 private:
2374   G1CollectedHeap* _g1h;
2375   ConcurrentMark*  _cm;
2376   WorkGang*        _workers;
2377   int              _active_workers;
2378 
2379 public:
2380   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2381                         ConcurrentMark* cm,
2382                         WorkGang* workers,
2383                         int n_workers) :
2384     _g1h(g1h), _cm(cm),
2385     _workers(workers), _active_workers(n_workers) { }
2386 
2387   // Executes the given task using concurrent marking worker threads.
2388   virtual void execute(ProcessTask& task);
2389   virtual void execute(EnqueueTask& task);
2390 };
2391 
2392 class G1CMRefProcTaskProxy: public AbstractGangTask {
2393   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2394   ProcessTask&     _proc_task;
2395   G1CollectedHeap* _g1h;
2396   ConcurrentMark*  _cm;
2397 
2398 public:
2399   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2400                      G1CollectedHeap* g1h,
2401                      ConcurrentMark* cm) :
2402     AbstractGangTask("Process reference objects in parallel"),
2403     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2404     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2405     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2406   }
2407 
2408   virtual void work(uint worker_id) {
2409     ResourceMark rm;
2410     HandleMark hm;
2411     CMTask* task = _cm->task(worker_id);
2412     G1CMIsAliveClosure g1_is_alive(_g1h);
2413     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2414     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2415 
2416     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2417   }
2418 };
2419 
2420 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2421   assert(_workers != NULL, "Need parallel worker threads.");
2422   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2423 
2424   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2425 
2426   // We need to reset the concurrency level before each
2427   // proxy task execution, so that the termination protocol
2428   // and overflow handling in CMTask::do_marking_step() knows
2429   // how many workers to wait for.
2430   _cm->set_concurrency(_active_workers);
2431   _g1h->set_par_threads(_active_workers);
2432   _workers->run_task(&proc_task_proxy);
2433   _g1h->set_par_threads(0);
2434 }
2435 
2436 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2437   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2438   EnqueueTask& _enq_task;
2439 
2440 public:
2441   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2442     AbstractGangTask("Enqueue reference objects in parallel"),
2443     _enq_task(enq_task) { }
2444 
2445   virtual void work(uint worker_id) {
2446     _enq_task.work(worker_id);
2447   }
2448 };
2449 
2450 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2451   assert(_workers != NULL, "Need parallel worker threads.");
2452   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2453 
2454   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2455 
2456   // Not strictly necessary but...
2457   //
2458   // We need to reset the concurrency level before each
2459   // proxy task execution, so that the termination protocol
2460   // and overflow handling in CMTask::do_marking_step() knows
2461   // how many workers to wait for.
2462   _cm->set_concurrency(_active_workers);
2463   _g1h->set_par_threads(_active_workers);
2464   _workers->run_task(&enq_task_proxy);
2465   _g1h->set_par_threads(0);
2466 }
2467 
2468 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2469   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2470 }
2471 
2472 // Helper class to get rid of some boilerplate code.
2473 class G1RemarkGCTraceTime : public GCTraceTime {
2474   static bool doit_and_prepend(bool doit) {
2475     if (doit) {
2476       gclog_or_tty->put(' ');
2477     }
2478     return doit;
2479   }
2480 
2481  public:
2482   G1RemarkGCTraceTime(const char* title, bool doit)
2483     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
2484         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
2485   }
2486 };
2487 
2488 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2489   if (has_overflown()) {
2490     // Skip processing the discovered references if we have
2491     // overflown the global marking stack. Reference objects
2492     // only get discovered once so it is OK to not
2493     // de-populate the discovered reference lists. We could have,
2494     // but the only benefit would be that, when marking restarts,
2495     // less reference objects are discovered.
2496     return;
2497   }
2498 
2499   ResourceMark rm;
2500   HandleMark   hm;
2501 
2502   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2503 
2504   // Is alive closure.
2505   G1CMIsAliveClosure g1_is_alive(g1h);
2506 
2507   // Inner scope to exclude the cleaning of the string and symbol
2508   // tables from the displayed time.
2509   {
2510     if (G1Log::finer()) {
2511       gclog_or_tty->put(' ');
2512     }
2513     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
2514 
2515     ReferenceProcessor* rp = g1h->ref_processor_cm();
2516 
2517     // See the comment in G1CollectedHeap::ref_processing_init()
2518     // about how reference processing currently works in G1.
2519 
2520     // Set the soft reference policy
2521     rp->setup_policy(clear_all_soft_refs);
2522     assert(_markStack.isEmpty(), "mark stack should be empty");
2523 
2524     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2525     // in serial reference processing. Note these closures are also
2526     // used for serially processing (by the the current thread) the
2527     // JNI references during parallel reference processing.
2528     //
2529     // These closures do not need to synchronize with the worker
2530     // threads involved in parallel reference processing as these
2531     // instances are executed serially by the current thread (e.g.
2532     // reference processing is not multi-threaded and is thus
2533     // performed by the current thread instead of a gang worker).
2534     //
2535     // The gang tasks involved in parallel reference procssing create
2536     // their own instances of these closures, which do their own
2537     // synchronization among themselves.
2538     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2539     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2540 
2541     // We need at least one active thread. If reference processing
2542     // is not multi-threaded we use the current (VMThread) thread,
2543     // otherwise we use the work gang from the G1CollectedHeap and
2544     // we utilize all the worker threads we can.
2545     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
2546     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2547     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2548 
2549     // Parallel processing task executor.
2550     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2551                                               g1h->workers(), active_workers);
2552     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2553 
2554     // Set the concurrency level. The phase was already set prior to
2555     // executing the remark task.
2556     set_concurrency(active_workers);
2557 
2558     // Set the degree of MT processing here.  If the discovery was done MT,
2559     // the number of threads involved during discovery could differ from
2560     // the number of active workers.  This is OK as long as the discovered
2561     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2562     rp->set_active_mt_degree(active_workers);
2563 
2564     // Process the weak references.
2565     const ReferenceProcessorStats& stats =
2566         rp->process_discovered_references(&g1_is_alive,
2567                                           &g1_keep_alive,
2568                                           &g1_drain_mark_stack,
2569                                           executor,
2570                                           g1h->gc_timer_cm(),
2571                                           concurrent_gc_id());
2572     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2573 
2574     // The do_oop work routines of the keep_alive and drain_marking_stack
2575     // oop closures will set the has_overflown flag if we overflow the
2576     // global marking stack.
2577 
2578     assert(_markStack.overflow() || _markStack.isEmpty(),
2579             "mark stack should be empty (unless it overflowed)");
2580 
2581     if (_markStack.overflow()) {
2582       // This should have been done already when we tried to push an
2583       // entry on to the global mark stack. But let's do it again.
2584       set_has_overflown();
2585     }
2586 
2587     assert(rp->num_q() == active_workers, "why not");
2588 
2589     rp->enqueue_discovered_references(executor);
2590 
2591     rp->verify_no_references_recorded();
2592     assert(!rp->discovery_enabled(), "Post condition");
2593   }
2594 
2595   if (has_overflown()) {
2596     // We can not trust g1_is_alive if the marking stack overflowed
2597     return;
2598   }
2599 
2600   assert(_markStack.isEmpty(), "Marking should have completed");
2601 
2602   // Unload Klasses, String, Symbols, Code Cache, etc.
2603   {
2604     G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
2605 
2606     if (ClassUnloadingWithConcurrentMark) {
2607       // Cleaning of klasses depends on correct information from MetadataMarkOnStack. The CodeCache::mark_on_stack
2608       // part is too slow to be done serially, so it is handled during the weakRefsWorkParallelPart phase.
2609       // Defer the cleaning until we have complete on_stack data.
2610       MetadataOnStackMark md_on_stack(false /* Don't visit the code cache at this point */);
2611 
2612       bool purged_classes;
2613 
2614       {
2615         G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
2616         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2617       }
2618 
2619       {
2620         G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
2621         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2622       }
2623 
2624       {
2625         G1RemarkGCTraceTime trace("Deallocate Metadata", G1Log::finest());
2626         ClassLoaderDataGraph::free_deallocate_lists();
2627       }
2628     }
2629 
2630     if (G1StringDedup::is_enabled()) {
2631       G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
2632       G1StringDedup::unlink(&g1_is_alive);
2633     }
2634   }
2635 }
2636 
2637 void ConcurrentMark::swapMarkBitMaps() {
2638   CMBitMapRO* temp = _prevMarkBitMap;
2639   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2640   _nextMarkBitMap  = (CMBitMap*)  temp;
2641 }
2642 
2643 class CMObjectClosure;
2644 
2645 // Closure for iterating over objects, currently only used for
2646 // processing SATB buffers.
2647 class CMObjectClosure : public ObjectClosure {
2648 private:
2649   CMTask* _task;
2650 
2651 public:
2652   void do_object(oop obj) {
2653     _task->deal_with_reference(obj);
2654   }
2655 
2656   CMObjectClosure(CMTask* task) : _task(task) { }
2657 };
2658 
2659 class G1RemarkThreadsClosure : public ThreadClosure {
2660   CMObjectClosure _cm_obj;
2661   G1CMOopClosure _cm_cl;
2662   MarkingCodeBlobClosure _code_cl;
2663   int _thread_parity;
2664   bool _is_par;
2665 
2666  public:
2667   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
2668     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2669     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
2670 
2671   void do_thread(Thread* thread) {
2672     if (thread->is_Java_thread()) {
2673       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2674         JavaThread* jt = (JavaThread*)thread;
2675 
2676         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2677         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2678         // * Alive if on the stack of an executing method
2679         // * Weakly reachable otherwise
2680         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2681         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2682         jt->nmethods_do(&_code_cl);
2683 
2684         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
2685       }
2686     } else if (thread->is_VM_thread()) {
2687       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2688         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
2689       }
2690     }
2691   }
2692 };
2693 
2694 class CMRemarkTask: public AbstractGangTask {
2695 private:
2696   ConcurrentMark* _cm;
2697   bool            _is_serial;
2698 public:
2699   void work(uint worker_id) {
2700     // Since all available tasks are actually started, we should
2701     // only proceed if we're supposed to be actived.
2702     if (worker_id < _cm->active_tasks()) {
2703       CMTask* task = _cm->task(worker_id);
2704       task->record_start_time();
2705       {
2706         ResourceMark rm;
2707         HandleMark hm;
2708 
2709         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
2710         Threads::threads_do(&threads_f);
2711       }
2712 
2713       do {
2714         task->do_marking_step(1000000000.0 /* something very large */,
2715                               true         /* do_termination       */,
2716                               _is_serial);
2717       } while (task->has_aborted() && !_cm->has_overflown());
2718       // If we overflow, then we do not want to restart. We instead
2719       // want to abort remark and do concurrent marking again.
2720       task->record_end_time();
2721     }
2722   }
2723 
2724   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
2725     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2726     _cm->terminator()->reset_for_reuse(active_workers);
2727   }
2728 };
2729 
2730 void ConcurrentMark::checkpointRootsFinalWork() {
2731   ResourceMark rm;
2732   HandleMark   hm;
2733   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2734 
2735   G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
2736 
2737   g1h->ensure_parsability(false);
2738 
2739   if (G1CollectedHeap::use_parallel_gc_threads()) {
2740     G1CollectedHeap::StrongRootsScope srs(g1h);
2741     // this is remark, so we'll use up all active threads
2742     uint active_workers = g1h->workers()->active_workers();
2743     if (active_workers == 0) {
2744       assert(active_workers > 0, "Should have been set earlier");
2745       active_workers = (uint) ParallelGCThreads;
2746       g1h->workers()->set_active_workers(active_workers);
2747     }
2748     set_concurrency_and_phase(active_workers, false /* concurrent */);
2749     // Leave _parallel_marking_threads at it's
2750     // value originally calculated in the ConcurrentMark
2751     // constructor and pass values of the active workers
2752     // through the gang in the task.
2753 
2754     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
2755     // We will start all available threads, even if we decide that the
2756     // active_workers will be fewer. The extra ones will just bail out
2757     // immediately.
2758     g1h->set_par_threads(active_workers);
2759     g1h->workers()->run_task(&remarkTask);
2760     g1h->set_par_threads(0);
2761   } else {
2762     G1CollectedHeap::StrongRootsScope srs(g1h);
2763     uint active_workers = 1;
2764     set_concurrency_and_phase(active_workers, false /* concurrent */);
2765 
2766     // Note - if there's no work gang then the VMThread will be
2767     // the thread to execute the remark - serially. We have
2768     // to pass true for the is_serial parameter so that
2769     // CMTask::do_marking_step() doesn't enter the sync
2770     // barriers in the event of an overflow. Doing so will
2771     // cause an assert that the current thread is not a
2772     // concurrent GC thread.
2773     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2774     remarkTask.work(0);
2775   }
2776   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2777   guarantee(has_overflown() ||
2778             satb_mq_set.completed_buffers_num() == 0,
2779             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2780                     BOOL_TO_STR(has_overflown()),
2781                     satb_mq_set.completed_buffers_num()));
2782 
2783   print_stats();
2784 }
2785 
2786 #ifndef PRODUCT
2787 
2788 class PrintReachableOopClosure: public OopClosure {
2789 private:
2790   G1CollectedHeap* _g1h;
2791   outputStream*    _out;
2792   VerifyOption     _vo;
2793   bool             _all;
2794 
2795 public:
2796   PrintReachableOopClosure(outputStream* out,
2797                            VerifyOption  vo,
2798                            bool          all) :
2799     _g1h(G1CollectedHeap::heap()),
2800     _out(out), _vo(vo), _all(all) { }
2801 
2802   void do_oop(narrowOop* p) { do_oop_work(p); }
2803   void do_oop(      oop* p) { do_oop_work(p); }
2804 
2805   template <class T> void do_oop_work(T* p) {
2806     oop         obj = oopDesc::load_decode_heap_oop(p);
2807     const char* str = NULL;
2808     const char* str2 = "";
2809 
2810     if (obj == NULL) {
2811       str = "";
2812     } else if (!_g1h->is_in_g1_reserved(obj)) {
2813       str = " O";
2814     } else {
2815       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2816       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2817       bool marked = _g1h->is_marked(obj, _vo);
2818 
2819       if (over_tams) {
2820         str = " >";
2821         if (marked) {
2822           str2 = " AND MARKED";
2823         }
2824       } else if (marked) {
2825         str = " M";
2826       } else {
2827         str = " NOT";
2828       }
2829     }
2830 
2831     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2832                    p2i(p), p2i((void*) obj), str, str2);
2833   }
2834 };
2835 
2836 class PrintReachableObjectClosure : public ObjectClosure {
2837 private:
2838   G1CollectedHeap* _g1h;
2839   outputStream*    _out;
2840   VerifyOption     _vo;
2841   bool             _all;
2842   HeapRegion*      _hr;
2843 
2844 public:
2845   PrintReachableObjectClosure(outputStream* out,
2846                               VerifyOption  vo,
2847                               bool          all,
2848                               HeapRegion*   hr) :
2849     _g1h(G1CollectedHeap::heap()),
2850     _out(out), _vo(vo), _all(all), _hr(hr) { }
2851 
2852   void do_object(oop o) {
2853     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2854     bool marked = _g1h->is_marked(o, _vo);
2855     bool print_it = _all || over_tams || marked;
2856 
2857     if (print_it) {
2858       _out->print_cr(" "PTR_FORMAT"%s",
2859                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2860       PrintReachableOopClosure oopCl(_out, _vo, _all);
2861       o->oop_iterate_no_header(&oopCl);
2862     }
2863   }
2864 };
2865 
2866 class PrintReachableRegionClosure : public HeapRegionClosure {
2867 private:
2868   G1CollectedHeap* _g1h;
2869   outputStream*    _out;
2870   VerifyOption     _vo;
2871   bool             _all;
2872 
2873 public:
2874   bool doHeapRegion(HeapRegion* hr) {
2875     HeapWord* b = hr->bottom();
2876     HeapWord* e = hr->end();
2877     HeapWord* t = hr->top();
2878     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2879     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2880                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2881     _out->cr();
2882 
2883     HeapWord* from = b;
2884     HeapWord* to   = t;
2885 
2886     if (to > from) {
2887       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2888       _out->cr();
2889       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2890       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2891       _out->cr();
2892     }
2893 
2894     return false;
2895   }
2896 
2897   PrintReachableRegionClosure(outputStream* out,
2898                               VerifyOption  vo,
2899                               bool          all) :
2900     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2901 };
2902 
2903 void ConcurrentMark::print_reachable(const char* str,
2904                                      VerifyOption vo,
2905                                      bool all) {
2906   gclog_or_tty->cr();
2907   gclog_or_tty->print_cr("== Doing heap dump... ");
2908 
2909   if (G1PrintReachableBaseFile == NULL) {
2910     gclog_or_tty->print_cr("  #### error: no base file defined");
2911     return;
2912   }
2913 
2914   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2915       (JVM_MAXPATHLEN - 1)) {
2916     gclog_or_tty->print_cr("  #### error: file name too long");
2917     return;
2918   }
2919 
2920   char file_name[JVM_MAXPATHLEN];
2921   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2922   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2923 
2924   fileStream fout(file_name);
2925   if (!fout.is_open()) {
2926     gclog_or_tty->print_cr("  #### error: could not open file");
2927     return;
2928   }
2929 
2930   outputStream* out = &fout;
2931   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2932   out->cr();
2933 
2934   out->print_cr("--- ITERATING OVER REGIONS");
2935   out->cr();
2936   PrintReachableRegionClosure rcl(out, vo, all);
2937   _g1h->heap_region_iterate(&rcl);
2938   out->cr();
2939 
2940   gclog_or_tty->print_cr("  done");
2941   gclog_or_tty->flush();
2942 }
2943 
2944 #endif // PRODUCT
2945 
2946 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2947   // Note we are overriding the read-only view of the prev map here, via
2948   // the cast.
2949   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2950 }
2951 
2952 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2953   _nextMarkBitMap->clearRange(mr);
2954 }
2955 
2956 HeapRegion*
2957 ConcurrentMark::claim_region(uint worker_id) {
2958   // "checkpoint" the finger
2959   HeapWord* finger = _finger;
2960 
2961   // _heap_end will not change underneath our feet; it only changes at
2962   // yield points.
2963   while (finger < _heap_end) {
2964     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2965 
2966     // Note on how this code handles humongous regions. In the
2967     // normal case the finger will reach the start of a "starts
2968     // humongous" (SH) region. Its end will either be the end of the
2969     // last "continues humongous" (CH) region in the sequence, or the
2970     // standard end of the SH region (if the SH is the only region in
2971     // the sequence). That way claim_region() will skip over the CH
2972     // regions. However, there is a subtle race between a CM thread
2973     // executing this method and a mutator thread doing a humongous
2974     // object allocation. The two are not mutually exclusive as the CM
2975     // thread does not need to hold the Heap_lock when it gets
2976     // here. So there is a chance that claim_region() will come across
2977     // a free region that's in the progress of becoming a SH or a CH
2978     // region. In the former case, it will either
2979     //   a) Miss the update to the region's end, in which case it will
2980     //      visit every subsequent CH region, will find their bitmaps
2981     //      empty, and do nothing, or
2982     //   b) Will observe the update of the region's end (in which case
2983     //      it will skip the subsequent CH regions).
2984     // If it comes across a region that suddenly becomes CH, the
2985     // scenario will be similar to b). So, the race between
2986     // claim_region() and a humongous object allocation might force us
2987     // to do a bit of unnecessary work (due to some unnecessary bitmap
2988     // iterations) but it should not introduce and correctness issues.
2989     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
2990 
2991     // Above heap_region_containing_raw may return NULL as we always scan claim
2992     // until the end of the heap. In this case, just jump to the next region.
2993     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2994 
2995     // Is the gap between reading the finger and doing the CAS too long?
2996     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2997     if (res == finger && curr_region != NULL) {
2998       // we succeeded
2999       HeapWord*   bottom        = curr_region->bottom();
3000       HeapWord*   limit         = curr_region->next_top_at_mark_start();
3001 
3002       if (verbose_low()) {
3003         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
3004                                "["PTR_FORMAT", "PTR_FORMAT"), "
3005                                "limit = "PTR_FORMAT,
3006                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
3007       }
3008 
3009       // notice that _finger == end cannot be guaranteed here since,
3010       // someone else might have moved the finger even further
3011       assert(_finger >= end, "the finger should have moved forward");
3012 
3013       if (verbose_low()) {
3014         gclog_or_tty->print_cr("[%u] we were successful with region = "
3015                                PTR_FORMAT, worker_id, p2i(curr_region));
3016       }
3017 
3018       if (limit > bottom) {
3019         if (verbose_low()) {
3020           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
3021                                  "returning it ", worker_id, p2i(curr_region));
3022         }
3023         return curr_region;
3024       } else {
3025         assert(limit == bottom,
3026                "the region limit should be at bottom");
3027         if (verbose_low()) {
3028           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
3029                                  "returning NULL", worker_id, p2i(curr_region));
3030         }
3031         // we return NULL and the caller should try calling
3032         // claim_region() again.
3033         return NULL;
3034       }
3035     } else {
3036       assert(_finger > finger, "the finger should have moved forward");
3037       if (verbose_low()) {
3038         if (curr_region == NULL) {
3039           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
3040                                  "global finger = "PTR_FORMAT", "
3041                                  "our finger = "PTR_FORMAT,
3042                                  worker_id, p2i(_finger), p2i(finger));
3043         } else {
3044           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
3045                                  "global finger = "PTR_FORMAT", "
3046                                  "our finger = "PTR_FORMAT,
3047                                  worker_id, p2i(_finger), p2i(finger));
3048         }
3049       }
3050 
3051       // read it again
3052       finger = _finger;
3053     }
3054   }
3055 
3056   return NULL;
3057 }
3058 
3059 #ifndef PRODUCT
3060 enum VerifyNoCSetOopsPhase {
3061   VerifyNoCSetOopsStack,
3062   VerifyNoCSetOopsQueues
3063 };
3064 
3065 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
3066 private:
3067   G1CollectedHeap* _g1h;
3068   VerifyNoCSetOopsPhase _phase;
3069   int _info;
3070 
3071   const char* phase_str() {
3072     switch (_phase) {
3073     case VerifyNoCSetOopsStack:         return "Stack";
3074     case VerifyNoCSetOopsQueues:        return "Queue";
3075     default:                            ShouldNotReachHere();
3076     }
3077     return NULL;
3078   }
3079 
3080   void do_object_work(oop obj) {
3081     guarantee(!_g1h->obj_in_cs(obj),
3082               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
3083                       p2i((void*) obj), phase_str(), _info));
3084   }
3085 
3086 public:
3087   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
3088 
3089   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
3090     _phase = phase;
3091     _info = info;
3092   }
3093 
3094   virtual void do_oop(oop* p) {
3095     oop obj = oopDesc::load_decode_heap_oop(p);
3096     do_object_work(obj);
3097   }
3098 
3099   virtual void do_oop(narrowOop* p) {
3100     // We should not come across narrow oops while scanning marking
3101     // stacks
3102     ShouldNotReachHere();
3103   }
3104 
3105   virtual void do_object(oop obj) {
3106     do_object_work(obj);
3107   }
3108 };
3109 
3110 void ConcurrentMark::verify_no_cset_oops() {
3111   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
3112   if (!G1CollectedHeap::heap()->mark_in_progress()) {
3113     return;
3114   }
3115 
3116   VerifyNoCSetOopsClosure cl;
3117 
3118   // Verify entries on the global mark stack
3119   cl.set_phase(VerifyNoCSetOopsStack);
3120   _markStack.oops_do(&cl);
3121 
3122   // Verify entries on the task queues
3123   for (uint i = 0; i < _max_worker_id; i += 1) {
3124     cl.set_phase(VerifyNoCSetOopsQueues, i);
3125     CMTaskQueue* queue = _task_queues->queue(i);
3126     queue->oops_do(&cl);
3127   }
3128 
3129   // Verify the global finger
3130   HeapWord* global_finger = finger();
3131   if (global_finger != NULL && global_finger < _heap_end) {
3132     // The global finger always points to a heap region boundary. We
3133     // use heap_region_containing_raw() to get the containing region
3134     // given that the global finger could be pointing to a free region
3135     // which subsequently becomes continues humongous. If that
3136     // happens, heap_region_containing() will return the bottom of the
3137     // corresponding starts humongous region and the check below will
3138     // not hold any more.
3139     // Since we always iterate over all regions, we might get a NULL HeapRegion
3140     // here.
3141     HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3142     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
3143               err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3144                       p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3145   }
3146 
3147   // Verify the task fingers
3148   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3149   for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3150     CMTask* task = _tasks[i];
3151     HeapWord* task_finger = task->finger();
3152     if (task_finger != NULL && task_finger < _heap_end) {
3153       // See above note on the global finger verification.
3154       HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3155       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
3156                 !task_hr->in_collection_set(),
3157                 err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3158                         p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3159     }
3160   }
3161 }
3162 #endif // PRODUCT
3163 
3164 // Aggregate the counting data that was constructed concurrently
3165 // with marking.
3166 class AggregateCountDataHRClosure: public HeapRegionClosure {
3167   G1CollectedHeap* _g1h;
3168   ConcurrentMark* _cm;
3169   CardTableModRefBS* _ct_bs;
3170   BitMap* _cm_card_bm;
3171   uint _max_worker_id;
3172 
3173  public:
3174   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3175                               BitMap* cm_card_bm,
3176                               uint max_worker_id) :
3177     _g1h(g1h), _cm(g1h->concurrent_mark()),
3178     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3179     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3180 
3181   bool doHeapRegion(HeapRegion* hr) {
3182     if (hr->continuesHumongous()) {
3183       // We will ignore these here and process them when their
3184       // associated "starts humongous" region is processed.
3185       // Note that we cannot rely on their associated
3186       // "starts humongous" region to have their bit set to 1
3187       // since, due to the region chunking in the parallel region
3188       // iteration, a "continues humongous" region might be visited
3189       // before its associated "starts humongous".
3190       return false;
3191     }
3192 
3193     HeapWord* start = hr->bottom();
3194     HeapWord* limit = hr->next_top_at_mark_start();
3195     HeapWord* end = hr->end();
3196 
3197     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3198            err_msg("Preconditions not met - "
3199                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3200                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3201                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3202 
3203     assert(hr->next_marked_bytes() == 0, "Precondition");
3204 
3205     if (start == limit) {
3206       // NTAMS of this region has not been set so nothing to do.
3207       return false;
3208     }
3209 
3210     // 'start' should be in the heap.
3211     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3212     // 'end' *may* be just beyone the end of the heap (if hr is the last region)
3213     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3214 
3215     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3216     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3217     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3218 
3219     // If ntams is not card aligned then we bump card bitmap index
3220     // for limit so that we get the all the cards spanned by
3221     // the object ending at ntams.
3222     // Note: if this is the last region in the heap then ntams
3223     // could be actually just beyond the end of the the heap;
3224     // limit_idx will then  correspond to a (non-existent) card
3225     // that is also outside the heap.
3226     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3227       limit_idx += 1;
3228     }
3229 
3230     assert(limit_idx <= end_idx, "or else use atomics");
3231 
3232     // Aggregate the "stripe" in the count data associated with hr.
3233     uint hrm_index = hr->hrm_index();
3234     size_t marked_bytes = 0;
3235 
3236     for (uint i = 0; i < _max_worker_id; i += 1) {
3237       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3238       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3239 
3240       // Fetch the marked_bytes in this region for task i and
3241       // add it to the running total for this region.
3242       marked_bytes += marked_bytes_array[hrm_index];
3243 
3244       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3245       // into the global card bitmap.
3246       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3247 
3248       while (scan_idx < limit_idx) {
3249         assert(task_card_bm->at(scan_idx) == true, "should be");
3250         _cm_card_bm->set_bit(scan_idx);
3251         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3252 
3253         // BitMap::get_next_one_offset() can handle the case when
3254         // its left_offset parameter is greater than its right_offset
3255         // parameter. It does, however, have an early exit if
3256         // left_offset == right_offset. So let's limit the value
3257         // passed in for left offset here.
3258         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3259         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3260       }
3261     }
3262 
3263     // Update the marked bytes for this region.
3264     hr->add_to_marked_bytes(marked_bytes);
3265 
3266     // Next heap region
3267     return false;
3268   }
3269 };
3270 
3271 class G1AggregateCountDataTask: public AbstractGangTask {
3272 protected:
3273   G1CollectedHeap* _g1h;
3274   ConcurrentMark* _cm;
3275   BitMap* _cm_card_bm;
3276   uint _max_worker_id;
3277   int _active_workers;
3278 
3279 public:
3280   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3281                            ConcurrentMark* cm,
3282                            BitMap* cm_card_bm,
3283                            uint max_worker_id,
3284                            int n_workers) :
3285     AbstractGangTask("Count Aggregation"),
3286     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3287     _max_worker_id(max_worker_id),
3288     _active_workers(n_workers) { }
3289 
3290   void work(uint worker_id) {
3291     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3292 
3293     if (G1CollectedHeap::use_parallel_gc_threads()) {
3294       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
3295                                             _active_workers,
3296                                             HeapRegion::AggregateCountClaimValue);
3297     } else {
3298       _g1h->heap_region_iterate(&cl);
3299     }
3300   }
3301 };
3302 
3303 
3304 void ConcurrentMark::aggregate_count_data() {
3305   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3306                         _g1h->workers()->active_workers() :
3307                         1);
3308 
3309   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3310                                            _max_worker_id, n_workers);
3311 
3312   if (G1CollectedHeap::use_parallel_gc_threads()) {
3313     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3314            "sanity check");
3315     _g1h->set_par_threads(n_workers);
3316     _g1h->workers()->run_task(&g1_par_agg_task);
3317     _g1h->set_par_threads(0);
3318 
3319     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
3320            "sanity check");
3321     _g1h->reset_heap_region_claim_values();
3322   } else {
3323     g1_par_agg_task.work(0);
3324   }
3325 }
3326 
3327 // Clear the per-worker arrays used to store the per-region counting data
3328 void ConcurrentMark::clear_all_count_data() {
3329   // Clear the global card bitmap - it will be filled during
3330   // liveness count aggregation (during remark) and the
3331   // final counting task.
3332   _card_bm.clear();
3333 
3334   // Clear the global region bitmap - it will be filled as part
3335   // of the final counting task.
3336   _region_bm.clear();
3337 
3338   uint max_regions = _g1h->max_regions();
3339   assert(_max_worker_id > 0, "uninitialized");
3340 
3341   for (uint i = 0; i < _max_worker_id; i += 1) {
3342     BitMap* task_card_bm = count_card_bitmap_for(i);
3343     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3344 
3345     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3346     assert(marked_bytes_array != NULL, "uninitialized");
3347 
3348     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3349     task_card_bm->clear();
3350   }
3351 }
3352 
3353 void ConcurrentMark::print_stats() {
3354   if (verbose_stats()) {
3355     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3356     for (size_t i = 0; i < _active_tasks; ++i) {
3357       _tasks[i]->print_stats();
3358       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3359     }
3360   }
3361 }
3362 
3363 // abandon current marking iteration due to a Full GC
3364 void ConcurrentMark::abort() {
3365   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3366   // concurrent bitmap clearing.
3367   _nextMarkBitMap->clearAll();
3368 
3369   // Note we cannot clear the previous marking bitmap here
3370   // since VerifyDuringGC verifies the objects marked during
3371   // a full GC against the previous bitmap.
3372 
3373   // Clear the liveness counting data
3374   clear_all_count_data();
3375   // Empty mark stack
3376   reset_marking_state();
3377   for (uint i = 0; i < _max_worker_id; ++i) {
3378     _tasks[i]->clear_region_fields();
3379   }
3380   _first_overflow_barrier_sync.abort();
3381   _second_overflow_barrier_sync.abort();
3382   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
3383   if (!gc_id.is_undefined()) {
3384     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
3385     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
3386     _aborted_gc_id = gc_id;
3387    }
3388   _has_aborted = true;
3389 
3390   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3391   satb_mq_set.abandon_partial_marking();
3392   // This can be called either during or outside marking, we'll read
3393   // the expected_active value from the SATB queue set.
3394   satb_mq_set.set_active_all_threads(
3395                                  false, /* new active value */
3396                                  satb_mq_set.is_active() /* expected_active */);
3397 
3398   _g1h->trace_heap_after_concurrent_cycle();
3399   _g1h->register_concurrent_cycle_end();
3400 }
3401 
3402 const GCId& ConcurrentMark::concurrent_gc_id() {
3403   if (has_aborted()) {
3404     return _aborted_gc_id;
3405   }
3406   return _g1h->gc_tracer_cm()->gc_id();
3407 }
3408 
3409 static void print_ms_time_info(const char* prefix, const char* name,
3410                                NumberSeq& ns) {
3411   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3412                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3413   if (ns.num() > 0) {
3414     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3415                            prefix, ns.sd(), ns.maximum());
3416   }
3417 }
3418 
3419 void ConcurrentMark::print_summary_info() {
3420   gclog_or_tty->print_cr(" Concurrent marking:");
3421   print_ms_time_info("  ", "init marks", _init_times);
3422   print_ms_time_info("  ", "remarks", _remark_times);
3423   {
3424     print_ms_time_info("     ", "final marks", _remark_mark_times);
3425     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3426 
3427   }
3428   print_ms_time_info("  ", "cleanups", _cleanup_times);
3429   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3430                          _total_counting_time,
3431                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3432                           (double)_cleanup_times.num()
3433                          : 0.0));
3434   if (G1ScrubRemSets) {
3435     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3436                            _total_rs_scrub_time,
3437                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3438                             (double)_cleanup_times.num()
3439                            : 0.0));
3440   }
3441   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3442                          (_init_times.sum() + _remark_times.sum() +
3443                           _cleanup_times.sum())/1000.0);
3444   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3445                 "(%8.2f s marking).",
3446                 cmThread()->vtime_accum(),
3447                 cmThread()->vtime_mark_accum());
3448 }
3449 
3450 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3451   if (use_parallel_marking_threads()) {
3452     _parallel_workers->print_worker_threads_on(st);
3453   }
3454 }
3455 
3456 void ConcurrentMark::print_on_error(outputStream* st) const {
3457   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3458       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3459   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3460   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3461 }
3462 
3463 // We take a break if someone is trying to stop the world.
3464 bool ConcurrentMark::do_yield_check(uint worker_id) {
3465   if (SuspendibleThreadSet::should_yield()) {
3466     if (worker_id == 0) {
3467       _g1h->g1_policy()->record_concurrent_pause();
3468     }
3469     SuspendibleThreadSet::yield();
3470     return true;
3471   } else {
3472     return false;
3473   }
3474 }
3475 
3476 #ifndef PRODUCT
3477 // for debugging purposes
3478 void ConcurrentMark::print_finger() {
3479   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3480                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3481   for (uint i = 0; i < _max_worker_id; ++i) {
3482     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3483   }
3484   gclog_or_tty->cr();
3485 }
3486 #endif
3487 
3488 template<bool scan>
3489 inline void CMTask::process_grey_object(oop obj) {
3490   assert(scan || obj->is_typeArray(), "Skipping scan of grey non-typeArray");
3491   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3492 
3493   if (_cm->verbose_high()) {
3494     gclog_or_tty->print_cr("[%u] processing grey object " PTR_FORMAT,
3495                            _worker_id, p2i((void*) obj));
3496   }
3497 
3498   size_t obj_size = obj->size();
3499   _words_scanned += obj_size;
3500 
3501   if (scan) {
3502     obj->oop_iterate(_cm_oop_closure);
3503   }
3504   statsOnly( ++_objs_scanned );
3505   check_limits();
3506 }
3507 
3508 template void CMTask::process_grey_object<true>(oop);
3509 template void CMTask::process_grey_object<false>(oop);
3510 
3511 // Closure for iteration over bitmaps
3512 class CMBitMapClosure : public BitMapClosure {
3513 private:
3514   // the bitmap that is being iterated over
3515   CMBitMap*                   _nextMarkBitMap;
3516   ConcurrentMark*             _cm;
3517   CMTask*                     _task;
3518 
3519 public:
3520   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3521     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3522 
3523   bool do_bit(size_t offset) {
3524     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3525     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3526     assert( addr < _cm->finger(), "invariant");
3527 
3528     statsOnly( _task->increase_objs_found_on_bitmap() );
3529     assert(addr >= _task->finger(), "invariant");
3530 
3531     // We move that task's local finger along.
3532     _task->move_finger_to(addr);
3533 
3534     _task->scan_object(oop(addr));
3535     // we only partially drain the local queue and global stack
3536     _task->drain_local_queue(true);
3537     _task->drain_global_stack(true);
3538 
3539     // if the has_aborted flag has been raised, we need to bail out of
3540     // the iteration
3541     return !_task->has_aborted();
3542   }
3543 };
3544 
3545 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3546                                ConcurrentMark* cm,
3547                                CMTask* task)
3548   : _g1h(g1h), _cm(cm), _task(task) {
3549   assert(_ref_processor == NULL, "should be initialized to NULL");
3550 
3551   if (G1UseConcMarkReferenceProcessing) {
3552     _ref_processor = g1h->ref_processor_cm();
3553     assert(_ref_processor != NULL, "should not be NULL");
3554   }
3555 }
3556 
3557 void CMTask::setup_for_region(HeapRegion* hr) {
3558   assert(hr != NULL,
3559         "claim_region() should have filtered out NULL regions");
3560   assert(!hr->continuesHumongous(),
3561         "claim_region() should have filtered out continues humongous regions");
3562 
3563   if (_cm->verbose_low()) {
3564     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3565                            _worker_id, p2i(hr));
3566   }
3567 
3568   _curr_region  = hr;
3569   _finger       = hr->bottom();
3570   update_region_limit();
3571 }
3572 
3573 void CMTask::update_region_limit() {
3574   HeapRegion* hr            = _curr_region;
3575   HeapWord* bottom          = hr->bottom();
3576   HeapWord* limit           = hr->next_top_at_mark_start();
3577 
3578   if (limit == bottom) {
3579     if (_cm->verbose_low()) {
3580       gclog_or_tty->print_cr("[%u] found an empty region "
3581                              "["PTR_FORMAT", "PTR_FORMAT")",
3582                              _worker_id, p2i(bottom), p2i(limit));
3583     }
3584     // The region was collected underneath our feet.
3585     // We set the finger to bottom to ensure that the bitmap
3586     // iteration that will follow this will not do anything.
3587     // (this is not a condition that holds when we set the region up,
3588     // as the region is not supposed to be empty in the first place)
3589     _finger = bottom;
3590   } else if (limit >= _region_limit) {
3591     assert(limit >= _finger, "peace of mind");
3592   } else {
3593     assert(limit < _region_limit, "only way to get here");
3594     // This can happen under some pretty unusual circumstances.  An
3595     // evacuation pause empties the region underneath our feet (NTAMS
3596     // at bottom). We then do some allocation in the region (NTAMS
3597     // stays at bottom), followed by the region being used as a GC
3598     // alloc region (NTAMS will move to top() and the objects
3599     // originally below it will be grayed). All objects now marked in
3600     // the region are explicitly grayed, if below the global finger,
3601     // and we do not need in fact to scan anything else. So, we simply
3602     // set _finger to be limit to ensure that the bitmap iteration
3603     // doesn't do anything.
3604     _finger = limit;
3605   }
3606 
3607   _region_limit = limit;
3608 }
3609 
3610 void CMTask::giveup_current_region() {
3611   assert(_curr_region != NULL, "invariant");
3612   if (_cm->verbose_low()) {
3613     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3614                            _worker_id, p2i(_curr_region));
3615   }
3616   clear_region_fields();
3617 }
3618 
3619 void CMTask::clear_region_fields() {
3620   // Values for these three fields that indicate that we're not
3621   // holding on to a region.
3622   _curr_region   = NULL;
3623   _finger        = NULL;
3624   _region_limit  = NULL;
3625 }
3626 
3627 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3628   if (cm_oop_closure == NULL) {
3629     assert(_cm_oop_closure != NULL, "invariant");
3630   } else {
3631     assert(_cm_oop_closure == NULL, "invariant");
3632   }
3633   _cm_oop_closure = cm_oop_closure;
3634 }
3635 
3636 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3637   guarantee(nextMarkBitMap != NULL, "invariant");
3638 
3639   if (_cm->verbose_low()) {
3640     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3641   }
3642 
3643   _nextMarkBitMap                = nextMarkBitMap;
3644   clear_region_fields();
3645 
3646   _calls                         = 0;
3647   _elapsed_time_ms               = 0.0;
3648   _termination_time_ms           = 0.0;
3649   _termination_start_time_ms     = 0.0;
3650 
3651 #if _MARKING_STATS_
3652   _local_pushes                  = 0;
3653   _local_pops                    = 0;
3654   _local_max_size                = 0;
3655   _objs_scanned                  = 0;
3656   _global_pushes                 = 0;
3657   _global_pops                   = 0;
3658   _global_max_size               = 0;
3659   _global_transfers_to           = 0;
3660   _global_transfers_from         = 0;
3661   _regions_claimed               = 0;
3662   _objs_found_on_bitmap          = 0;
3663   _satb_buffers_processed        = 0;
3664   _steal_attempts                = 0;
3665   _steals                        = 0;
3666   _aborted                       = 0;
3667   _aborted_overflow              = 0;
3668   _aborted_cm_aborted            = 0;
3669   _aborted_yield                 = 0;
3670   _aborted_timed_out             = 0;
3671   _aborted_satb                  = 0;
3672   _aborted_termination           = 0;
3673 #endif // _MARKING_STATS_
3674 }
3675 
3676 bool CMTask::should_exit_termination() {
3677   regular_clock_call();
3678   // This is called when we are in the termination protocol. We should
3679   // quit if, for some reason, this task wants to abort or the global
3680   // stack is not empty (this means that we can get work from it).
3681   return !_cm->mark_stack_empty() || has_aborted();
3682 }
3683 
3684 void CMTask::reached_limit() {
3685   assert(_words_scanned >= _words_scanned_limit ||
3686          _refs_reached >= _refs_reached_limit ,
3687          "shouldn't have been called otherwise");
3688   regular_clock_call();
3689 }
3690 
3691 void CMTask::regular_clock_call() {
3692   if (has_aborted()) return;
3693 
3694   // First, we need to recalculate the words scanned and refs reached
3695   // limits for the next clock call.
3696   recalculate_limits();
3697 
3698   // During the regular clock call we do the following
3699 
3700   // (1) If an overflow has been flagged, then we abort.
3701   if (_cm->has_overflown()) {
3702     set_has_aborted();
3703     return;
3704   }
3705 
3706   // If we are not concurrent (i.e. we're doing remark) we don't need
3707   // to check anything else. The other steps are only needed during
3708   // the concurrent marking phase.
3709   if (!concurrent()) return;
3710 
3711   // (2) If marking has been aborted for Full GC, then we also abort.
3712   if (_cm->has_aborted()) {
3713     set_has_aborted();
3714     statsOnly( ++_aborted_cm_aborted );
3715     return;
3716   }
3717 
3718   double curr_time_ms = os::elapsedVTime() * 1000.0;
3719 
3720   // (3) If marking stats are enabled, then we update the step history.
3721 #if _MARKING_STATS_
3722   if (_words_scanned >= _words_scanned_limit) {
3723     ++_clock_due_to_scanning;
3724   }
3725   if (_refs_reached >= _refs_reached_limit) {
3726     ++_clock_due_to_marking;
3727   }
3728 
3729   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3730   _interval_start_time_ms = curr_time_ms;
3731   _all_clock_intervals_ms.add(last_interval_ms);
3732 
3733   if (_cm->verbose_medium()) {
3734       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3735                         "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
3736                         _worker_id, last_interval_ms,
3737                         _words_scanned,
3738                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3739                         _refs_reached,
3740                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3741   }
3742 #endif // _MARKING_STATS_
3743 
3744   // (4) We check whether we should yield. If we have to, then we abort.
3745   if (SuspendibleThreadSet::should_yield()) {
3746     // We should yield. To do this we abort the task. The caller is
3747     // responsible for yielding.
3748     set_has_aborted();
3749     statsOnly( ++_aborted_yield );
3750     return;
3751   }
3752 
3753   // (5) We check whether we've reached our time quota. If we have,
3754   // then we abort.
3755   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3756   if (elapsed_time_ms > _time_target_ms) {
3757     set_has_aborted();
3758     _has_timed_out = true;
3759     statsOnly( ++_aborted_timed_out );
3760     return;
3761   }
3762 
3763   // (6) Finally, we check whether there are enough completed STAB
3764   // buffers available for processing. If there are, we abort.
3765   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3766   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3767     if (_cm->verbose_low()) {
3768       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3769                              _worker_id);
3770     }
3771     // we do need to process SATB buffers, we'll abort and restart
3772     // the marking task to do so
3773     set_has_aborted();
3774     statsOnly( ++_aborted_satb );
3775     return;
3776   }
3777 }
3778 
3779 void CMTask::recalculate_limits() {
3780   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3781   _words_scanned_limit      = _real_words_scanned_limit;
3782 
3783   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3784   _refs_reached_limit       = _real_refs_reached_limit;
3785 }
3786 
3787 void CMTask::decrease_limits() {
3788   // This is called when we believe that we're going to do an infrequent
3789   // operation which will increase the per byte scanned cost (i.e. move
3790   // entries to/from the global stack). It basically tries to decrease the
3791   // scanning limit so that the clock is called earlier.
3792 
3793   if (_cm->verbose_medium()) {
3794     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3795   }
3796 
3797   _words_scanned_limit = _real_words_scanned_limit -
3798     3 * words_scanned_period / 4;
3799   _refs_reached_limit  = _real_refs_reached_limit -
3800     3 * refs_reached_period / 4;
3801 }
3802 
3803 void CMTask::move_entries_to_global_stack() {
3804   // local array where we'll store the entries that will be popped
3805   // from the local queue
3806   oop buffer[global_stack_transfer_size];
3807 
3808   int n = 0;
3809   oop obj;
3810   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3811     buffer[n] = obj;
3812     ++n;
3813   }
3814 
3815   if (n > 0) {
3816     // we popped at least one entry from the local queue
3817 
3818     statsOnly( ++_global_transfers_to; _local_pops += n );
3819 
3820     if (!_cm->mark_stack_push(buffer, n)) {
3821       if (_cm->verbose_low()) {
3822         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3823                                _worker_id);
3824       }
3825       set_has_aborted();
3826     } else {
3827       // the transfer was successful
3828 
3829       if (_cm->verbose_medium()) {
3830         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3831                                _worker_id, n);
3832       }
3833       statsOnly( int tmp_size = _cm->mark_stack_size();
3834                  if (tmp_size > _global_max_size) {
3835                    _global_max_size = tmp_size;
3836                  }
3837                  _global_pushes += n );
3838     }
3839   }
3840 
3841   // this operation was quite expensive, so decrease the limits
3842   decrease_limits();
3843 }
3844 
3845 void CMTask::get_entries_from_global_stack() {
3846   // local array where we'll store the entries that will be popped
3847   // from the global stack.
3848   oop buffer[global_stack_transfer_size];
3849   int n;
3850   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3851   assert(n <= global_stack_transfer_size,
3852          "we should not pop more than the given limit");
3853   if (n > 0) {
3854     // yes, we did actually pop at least one entry
3855 
3856     statsOnly( ++_global_transfers_from; _global_pops += n );
3857     if (_cm->verbose_medium()) {
3858       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3859                              _worker_id, n);
3860     }
3861     for (int i = 0; i < n; ++i) {
3862       bool success = _task_queue->push(buffer[i]);
3863       // We only call this when the local queue is empty or under a
3864       // given target limit. So, we do not expect this push to fail.
3865       assert(success, "invariant");
3866     }
3867 
3868     statsOnly( int tmp_size = _task_queue->size();
3869                if (tmp_size > _local_max_size) {
3870                  _local_max_size = tmp_size;
3871                }
3872                _local_pushes += n );
3873   }
3874 
3875   // this operation was quite expensive, so decrease the limits
3876   decrease_limits();
3877 }
3878 
3879 void CMTask::drain_local_queue(bool partially) {
3880   if (has_aborted()) return;
3881 
3882   // Decide what the target size is, depending whether we're going to
3883   // drain it partially (so that other tasks can steal if they run out
3884   // of things to do) or totally (at the very end).
3885   size_t target_size;
3886   if (partially) {
3887     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3888   } else {
3889     target_size = 0;
3890   }
3891 
3892   if (_task_queue->size() > target_size) {
3893     if (_cm->verbose_high()) {
3894       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3895                              _worker_id, target_size);
3896     }
3897 
3898     oop obj;
3899     bool ret = _task_queue->pop_local(obj);
3900     while (ret) {
3901       statsOnly( ++_local_pops );
3902 
3903       if (_cm->verbose_high()) {
3904         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3905                                p2i((void*) obj));
3906       }
3907 
3908       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3909       assert(!_g1h->is_on_master_free_list(
3910                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3911 
3912       scan_object(obj);
3913 
3914       if (_task_queue->size() <= target_size || has_aborted()) {
3915         ret = false;
3916       } else {
3917         ret = _task_queue->pop_local(obj);
3918       }
3919     }
3920 
3921     if (_cm->verbose_high()) {
3922       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
3923                              _worker_id, _task_queue->size());
3924     }
3925   }
3926 }
3927 
3928 void CMTask::drain_global_stack(bool partially) {
3929   if (has_aborted()) return;
3930 
3931   // We have a policy to drain the local queue before we attempt to
3932   // drain the global stack.
3933   assert(partially || _task_queue->size() == 0, "invariant");
3934 
3935   // Decide what the target size is, depending whether we're going to
3936   // drain it partially (so that other tasks can steal if they run out
3937   // of things to do) or totally (at the very end).  Notice that,
3938   // because we move entries from the global stack in chunks or
3939   // because another task might be doing the same, we might in fact
3940   // drop below the target. But, this is not a problem.
3941   size_t target_size;
3942   if (partially) {
3943     target_size = _cm->partial_mark_stack_size_target();
3944   } else {
3945     target_size = 0;
3946   }
3947 
3948   if (_cm->mark_stack_size() > target_size) {
3949     if (_cm->verbose_low()) {
3950       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3951                              _worker_id, target_size);
3952     }
3953 
3954     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3955       get_entries_from_global_stack();
3956       drain_local_queue(partially);
3957     }
3958 
3959     if (_cm->verbose_low()) {
3960       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3961                              _worker_id, _cm->mark_stack_size());
3962     }
3963   }
3964 }
3965 
3966 // SATB Queue has several assumptions on whether to call the par or
3967 // non-par versions of the methods. this is why some of the code is
3968 // replicated. We should really get rid of the single-threaded version
3969 // of the code to simplify things.
3970 void CMTask::drain_satb_buffers() {
3971   if (has_aborted()) return;
3972 
3973   // We set this so that the regular clock knows that we're in the
3974   // middle of draining buffers and doesn't set the abort flag when it
3975   // notices that SATB buffers are available for draining. It'd be
3976   // very counter productive if it did that. :-)
3977   _draining_satb_buffers = true;
3978 
3979   CMObjectClosure oc(this);
3980   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3981 
3982   // This keeps claiming and applying the closure to completed buffers
3983   // until we run out of buffers or we need to abort.
3984   while (!has_aborted() &&
3985          satb_mq_set.apply_closure_to_completed_buffer(&oc)) {
3986     if (_cm->verbose_medium()) {
3987       gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3988     }
3989     statsOnly( ++_satb_buffers_processed );
3990     regular_clock_call();
3991   }
3992 
3993   _draining_satb_buffers = false;
3994 
3995   assert(has_aborted() ||
3996          concurrent() ||
3997          satb_mq_set.completed_buffers_num() == 0, "invariant");
3998 
3999   // again, this was a potentially expensive operation, decrease the
4000   // limits to get the regular clock call early
4001   decrease_limits();
4002 }
4003 
4004 void CMTask::print_stats() {
4005   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
4006                          _worker_id, _calls);
4007   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
4008                          _elapsed_time_ms, _termination_time_ms);
4009   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4010                          _step_times_ms.num(), _step_times_ms.avg(),
4011                          _step_times_ms.sd());
4012   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
4013                          _step_times_ms.maximum(), _step_times_ms.sum());
4014 
4015 #if _MARKING_STATS_
4016   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4017                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
4018                          _all_clock_intervals_ms.sd());
4019   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
4020                          _all_clock_intervals_ms.maximum(),
4021                          _all_clock_intervals_ms.sum());
4022   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
4023                          _clock_due_to_scanning, _clock_due_to_marking);
4024   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
4025                          _objs_scanned, _objs_found_on_bitmap);
4026   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
4027                          _local_pushes, _local_pops, _local_max_size);
4028   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
4029                          _global_pushes, _global_pops, _global_max_size);
4030   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
4031                          _global_transfers_to,_global_transfers_from);
4032   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
4033   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
4034   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
4035                          _steal_attempts, _steals);
4036   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
4037   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
4038                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
4039   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
4040                          _aborted_timed_out, _aborted_satb, _aborted_termination);
4041 #endif // _MARKING_STATS_
4042 }
4043 
4044 /*****************************************************************************
4045 
4046     The do_marking_step(time_target_ms, ...) method is the building
4047     block of the parallel marking framework. It can be called in parallel
4048     with other invocations of do_marking_step() on different tasks
4049     (but only one per task, obviously) and concurrently with the
4050     mutator threads, or during remark, hence it eliminates the need
4051     for two versions of the code. When called during remark, it will
4052     pick up from where the task left off during the concurrent marking
4053     phase. Interestingly, tasks are also claimable during evacuation
4054     pauses too, since do_marking_step() ensures that it aborts before
4055     it needs to yield.
4056 
4057     The data structures that it uses to do marking work are the
4058     following:
4059 
4060       (1) Marking Bitmap. If there are gray objects that appear only
4061       on the bitmap (this happens either when dealing with an overflow
4062       or when the initial marking phase has simply marked the roots
4063       and didn't push them on the stack), then tasks claim heap
4064       regions whose bitmap they then scan to find gray objects. A
4065       global finger indicates where the end of the last claimed region
4066       is. A local finger indicates how far into the region a task has
4067       scanned. The two fingers are used to determine how to gray an
4068       object (i.e. whether simply marking it is OK, as it will be
4069       visited by a task in the future, or whether it needs to be also
4070       pushed on a stack).
4071 
4072       (2) Local Queue. The local queue of the task which is accessed
4073       reasonably efficiently by the task. Other tasks can steal from
4074       it when they run out of work. Throughout the marking phase, a
4075       task attempts to keep its local queue short but not totally
4076       empty, so that entries are available for stealing by other
4077       tasks. Only when there is no more work, a task will totally
4078       drain its local queue.
4079 
4080       (3) Global Mark Stack. This handles local queue overflow. During
4081       marking only sets of entries are moved between it and the local
4082       queues, as access to it requires a mutex and more fine-grain
4083       interaction with it which might cause contention. If it
4084       overflows, then the marking phase should restart and iterate
4085       over the bitmap to identify gray objects. Throughout the marking
4086       phase, tasks attempt to keep the global mark stack at a small
4087       length but not totally empty, so that entries are available for
4088       popping by other tasks. Only when there is no more work, tasks
4089       will totally drain the global mark stack.
4090 
4091       (4) SATB Buffer Queue. This is where completed SATB buffers are
4092       made available. Buffers are regularly removed from this queue
4093       and scanned for roots, so that the queue doesn't get too
4094       long. During remark, all completed buffers are processed, as
4095       well as the filled in parts of any uncompleted buffers.
4096 
4097     The do_marking_step() method tries to abort when the time target
4098     has been reached. There are a few other cases when the
4099     do_marking_step() method also aborts:
4100 
4101       (1) When the marking phase has been aborted (after a Full GC).
4102 
4103       (2) When a global overflow (on the global stack) has been
4104       triggered. Before the task aborts, it will actually sync up with
4105       the other tasks to ensure that all the marking data structures
4106       (local queues, stacks, fingers etc.)  are re-initialized so that
4107       when do_marking_step() completes, the marking phase can
4108       immediately restart.
4109 
4110       (3) When enough completed SATB buffers are available. The
4111       do_marking_step() method only tries to drain SATB buffers right
4112       at the beginning. So, if enough buffers are available, the
4113       marking step aborts and the SATB buffers are processed at
4114       the beginning of the next invocation.
4115 
4116       (4) To yield. when we have to yield then we abort and yield
4117       right at the end of do_marking_step(). This saves us from a lot
4118       of hassle as, by yielding we might allow a Full GC. If this
4119       happens then objects will be compacted underneath our feet, the
4120       heap might shrink, etc. We save checking for this by just
4121       aborting and doing the yield right at the end.
4122 
4123     From the above it follows that the do_marking_step() method should
4124     be called in a loop (or, otherwise, regularly) until it completes.
4125 
4126     If a marking step completes without its has_aborted() flag being
4127     true, it means it has completed the current marking phase (and
4128     also all other marking tasks have done so and have all synced up).
4129 
4130     A method called regular_clock_call() is invoked "regularly" (in
4131     sub ms intervals) throughout marking. It is this clock method that
4132     checks all the abort conditions which were mentioned above and
4133     decides when the task should abort. A work-based scheme is used to
4134     trigger this clock method: when the number of object words the
4135     marking phase has scanned or the number of references the marking
4136     phase has visited reach a given limit. Additional invocations to
4137     the method clock have been planted in a few other strategic places
4138     too. The initial reason for the clock method was to avoid calling
4139     vtime too regularly, as it is quite expensive. So, once it was in
4140     place, it was natural to piggy-back all the other conditions on it
4141     too and not constantly check them throughout the code.
4142 
4143     If do_termination is true then do_marking_step will enter its
4144     termination protocol.
4145 
4146     The value of is_serial must be true when do_marking_step is being
4147     called serially (i.e. by the VMThread) and do_marking_step should
4148     skip any synchronization in the termination and overflow code.
4149     Examples include the serial remark code and the serial reference
4150     processing closures.
4151 
4152     The value of is_serial must be false when do_marking_step is
4153     being called by any of the worker threads in a work gang.
4154     Examples include the concurrent marking code (CMMarkingTask),
4155     the MT remark code, and the MT reference processing closures.
4156 
4157  *****************************************************************************/
4158 
4159 void CMTask::do_marking_step(double time_target_ms,
4160                              bool do_termination,
4161                              bool is_serial) {
4162   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4163   assert(concurrent() == _cm->concurrent(), "they should be the same");
4164 
4165   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4166   assert(_task_queues != NULL, "invariant");
4167   assert(_task_queue != NULL, "invariant");
4168   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4169 
4170   assert(!_claimed,
4171          "only one thread should claim this task at any one time");
4172 
4173   // OK, this doesn't safeguard again all possible scenarios, as it is
4174   // possible for two threads to set the _claimed flag at the same
4175   // time. But it is only for debugging purposes anyway and it will
4176   // catch most problems.
4177   _claimed = true;
4178 
4179   _start_time_ms = os::elapsedVTime() * 1000.0;
4180   statsOnly( _interval_start_time_ms = _start_time_ms );
4181 
4182   // If do_stealing is true then do_marking_step will attempt to
4183   // steal work from the other CMTasks. It only makes sense to
4184   // enable stealing when the termination protocol is enabled
4185   // and do_marking_step() is not being called serially.
4186   bool do_stealing = do_termination && !is_serial;
4187 
4188   double diff_prediction_ms =
4189     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4190   _time_target_ms = time_target_ms - diff_prediction_ms;
4191 
4192   // set up the variables that are used in the work-based scheme to
4193   // call the regular clock method
4194   _words_scanned = 0;
4195   _refs_reached  = 0;
4196   recalculate_limits();
4197 
4198   // clear all flags
4199   clear_has_aborted();
4200   _has_timed_out = false;
4201   _draining_satb_buffers = false;
4202 
4203   ++_calls;
4204 
4205   if (_cm->verbose_low()) {
4206     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4207                            "target = %1.2lfms >>>>>>>>>>",
4208                            _worker_id, _calls, _time_target_ms);
4209   }
4210 
4211   // Set up the bitmap and oop closures. Anything that uses them is
4212   // eventually called from this method, so it is OK to allocate these
4213   // statically.
4214   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4215   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4216   set_cm_oop_closure(&cm_oop_closure);
4217 
4218   if (_cm->has_overflown()) {
4219     // This can happen if the mark stack overflows during a GC pause
4220     // and this task, after a yield point, restarts. We have to abort
4221     // as we need to get into the overflow protocol which happens
4222     // right at the end of this task.
4223     set_has_aborted();
4224   }
4225 
4226   // First drain any available SATB buffers. After this, we will not
4227   // look at SATB buffers before the next invocation of this method.
4228   // If enough completed SATB buffers are queued up, the regular clock
4229   // will abort this task so that it restarts.
4230   drain_satb_buffers();
4231   // ...then partially drain the local queue and the global stack
4232   drain_local_queue(true);
4233   drain_global_stack(true);
4234 
4235   do {
4236     if (!has_aborted() && _curr_region != NULL) {
4237       // This means that we're already holding on to a region.
4238       assert(_finger != NULL, "if region is not NULL, then the finger "
4239              "should not be NULL either");
4240 
4241       // We might have restarted this task after an evacuation pause
4242       // which might have evacuated the region we're holding on to
4243       // underneath our feet. Let's read its limit again to make sure
4244       // that we do not iterate over a region of the heap that
4245       // contains garbage (update_region_limit() will also move
4246       // _finger to the start of the region if it is found empty).
4247       update_region_limit();
4248       // We will start from _finger not from the start of the region,
4249       // as we might be restarting this task after aborting half-way
4250       // through scanning this region. In this case, _finger points to
4251       // the address where we last found a marked object. If this is a
4252       // fresh region, _finger points to start().
4253       MemRegion mr = MemRegion(_finger, _region_limit);
4254 
4255       if (_cm->verbose_low()) {
4256         gclog_or_tty->print_cr("[%u] we're scanning part "
4257                                "["PTR_FORMAT", "PTR_FORMAT") "
4258                                "of region "HR_FORMAT,
4259                                _worker_id, p2i(_finger), p2i(_region_limit),
4260                                HR_FORMAT_PARAMS(_curr_region));
4261       }
4262 
4263       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
4264              "humongous regions should go around loop once only");
4265 
4266       // Some special cases:
4267       // If the memory region is empty, we can just give up the region.
4268       // If the current region is humongous then we only need to check
4269       // the bitmap for the bit associated with the start of the object,
4270       // scan the object if it's live, and give up the region.
4271       // Otherwise, let's iterate over the bitmap of the part of the region
4272       // that is left.
4273       // If the iteration is successful, give up the region.
4274       if (mr.is_empty()) {
4275         giveup_current_region();
4276         regular_clock_call();
4277       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
4278         if (_nextMarkBitMap->isMarked(mr.start())) {
4279           // The object is marked - apply the closure
4280           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4281           bitmap_closure.do_bit(offset);
4282         }
4283         // Even if this task aborted while scanning the humongous object
4284         // we can (and should) give up the current region.
4285         giveup_current_region();
4286         regular_clock_call();
4287       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4288         giveup_current_region();
4289         regular_clock_call();
4290       } else {
4291         assert(has_aborted(), "currently the only way to do so");
4292         // The only way to abort the bitmap iteration is to return
4293         // false from the do_bit() method. However, inside the
4294         // do_bit() method we move the _finger to point to the
4295         // object currently being looked at. So, if we bail out, we
4296         // have definitely set _finger to something non-null.
4297         assert(_finger != NULL, "invariant");
4298 
4299         // Region iteration was actually aborted. So now _finger
4300         // points to the address of the object we last scanned. If we
4301         // leave it there, when we restart this task, we will rescan
4302         // the object. It is easy to avoid this. We move the finger by
4303         // enough to point to the next possible object header (the
4304         // bitmap knows by how much we need to move it as it knows its
4305         // granularity).
4306         assert(_finger < _region_limit, "invariant");
4307         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4308         // Check if bitmap iteration was aborted while scanning the last object
4309         if (new_finger >= _region_limit) {
4310           giveup_current_region();
4311         } else {
4312           move_finger_to(new_finger);
4313         }
4314       }
4315     }
4316     // At this point we have either completed iterating over the
4317     // region we were holding on to, or we have aborted.
4318 
4319     // We then partially drain the local queue and the global stack.
4320     // (Do we really need this?)
4321     drain_local_queue(true);
4322     drain_global_stack(true);
4323 
4324     // Read the note on the claim_region() method on why it might
4325     // return NULL with potentially more regions available for
4326     // claiming and why we have to check out_of_regions() to determine
4327     // whether we're done or not.
4328     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4329       // We are going to try to claim a new region. We should have
4330       // given up on the previous one.
4331       // Separated the asserts so that we know which one fires.
4332       assert(_curr_region  == NULL, "invariant");
4333       assert(_finger       == NULL, "invariant");
4334       assert(_region_limit == NULL, "invariant");
4335       if (_cm->verbose_low()) {
4336         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4337       }
4338       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4339       if (claimed_region != NULL) {
4340         // Yes, we managed to claim one
4341         statsOnly( ++_regions_claimed );
4342 
4343         if (_cm->verbose_low()) {
4344           gclog_or_tty->print_cr("[%u] we successfully claimed "
4345                                  "region "PTR_FORMAT,
4346                                  _worker_id, p2i(claimed_region));
4347         }
4348 
4349         setup_for_region(claimed_region);
4350         assert(_curr_region == claimed_region, "invariant");
4351       }
4352       // It is important to call the regular clock here. It might take
4353       // a while to claim a region if, for example, we hit a large
4354       // block of empty regions. So we need to call the regular clock
4355       // method once round the loop to make sure it's called
4356       // frequently enough.
4357       regular_clock_call();
4358     }
4359 
4360     if (!has_aborted() && _curr_region == NULL) {
4361       assert(_cm->out_of_regions(),
4362              "at this point we should be out of regions");
4363     }
4364   } while ( _curr_region != NULL && !has_aborted());
4365 
4366   if (!has_aborted()) {
4367     // We cannot check whether the global stack is empty, since other
4368     // tasks might be pushing objects to it concurrently.
4369     assert(_cm->out_of_regions(),
4370            "at this point we should be out of regions");
4371 
4372     if (_cm->verbose_low()) {
4373       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4374     }
4375 
4376     // Try to reduce the number of available SATB buffers so that
4377     // remark has less work to do.
4378     drain_satb_buffers();
4379   }
4380 
4381   // Since we've done everything else, we can now totally drain the
4382   // local queue and global stack.
4383   drain_local_queue(false);
4384   drain_global_stack(false);
4385 
4386   // Attempt at work stealing from other task's queues.
4387   if (do_stealing && !has_aborted()) {
4388     // We have not aborted. This means that we have finished all that
4389     // we could. Let's try to do some stealing...
4390 
4391     // We cannot check whether the global stack is empty, since other
4392     // tasks might be pushing objects to it concurrently.
4393     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4394            "only way to reach here");
4395 
4396     if (_cm->verbose_low()) {
4397       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4398     }
4399 
4400     while (!has_aborted()) {
4401       oop obj;
4402       statsOnly( ++_steal_attempts );
4403 
4404       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4405         if (_cm->verbose_medium()) {
4406           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4407                                  _worker_id, p2i((void*) obj));
4408         }
4409 
4410         statsOnly( ++_steals );
4411 
4412         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4413                "any stolen object should be marked");
4414         scan_object(obj);
4415 
4416         // And since we're towards the end, let's totally drain the
4417         // local queue and global stack.
4418         drain_local_queue(false);
4419         drain_global_stack(false);
4420       } else {
4421         break;
4422       }
4423     }
4424   }
4425 
4426   // If we are about to wrap up and go into termination, check if we
4427   // should raise the overflow flag.
4428   if (do_termination && !has_aborted()) {
4429     if (_cm->force_overflow()->should_force()) {
4430       _cm->set_has_overflown();
4431       regular_clock_call();
4432     }
4433   }
4434 
4435   // We still haven't aborted. Now, let's try to get into the
4436   // termination protocol.
4437   if (do_termination && !has_aborted()) {
4438     // We cannot check whether the global stack is empty, since other
4439     // tasks might be concurrently pushing objects on it.
4440     // Separated the asserts so that we know which one fires.
4441     assert(_cm->out_of_regions(), "only way to reach here");
4442     assert(_task_queue->size() == 0, "only way to reach here");
4443 
4444     if (_cm->verbose_low()) {
4445       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4446     }
4447 
4448     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4449 
4450     // The CMTask class also extends the TerminatorTerminator class,
4451     // hence its should_exit_termination() method will also decide
4452     // whether to exit the termination protocol or not.
4453     bool finished = (is_serial ||
4454                      _cm->terminator()->offer_termination(this));
4455     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4456     _termination_time_ms +=
4457       termination_end_time_ms - _termination_start_time_ms;
4458 
4459     if (finished) {
4460       // We're all done.
4461 
4462       if (_worker_id == 0) {
4463         // let's allow task 0 to do this
4464         if (concurrent()) {
4465           assert(_cm->concurrent_marking_in_progress(), "invariant");
4466           // we need to set this to false before the next
4467           // safepoint. This way we ensure that the marking phase
4468           // doesn't observe any more heap expansions.
4469           _cm->clear_concurrent_marking_in_progress();
4470         }
4471       }
4472 
4473       // We can now guarantee that the global stack is empty, since
4474       // all other tasks have finished. We separated the guarantees so
4475       // that, if a condition is false, we can immediately find out
4476       // which one.
4477       guarantee(_cm->out_of_regions(), "only way to reach here");
4478       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4479       guarantee(_task_queue->size() == 0, "only way to reach here");
4480       guarantee(!_cm->has_overflown(), "only way to reach here");
4481       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4482 
4483       if (_cm->verbose_low()) {
4484         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4485       }
4486     } else {
4487       // Apparently there's more work to do. Let's abort this task. It
4488       // will restart it and we can hopefully find more things to do.
4489 
4490       if (_cm->verbose_low()) {
4491         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4492                                _worker_id);
4493       }
4494 
4495       set_has_aborted();
4496       statsOnly( ++_aborted_termination );
4497     }
4498   }
4499 
4500   // Mainly for debugging purposes to make sure that a pointer to the
4501   // closure which was statically allocated in this frame doesn't
4502   // escape it by accident.
4503   set_cm_oop_closure(NULL);
4504   double end_time_ms = os::elapsedVTime() * 1000.0;
4505   double elapsed_time_ms = end_time_ms - _start_time_ms;
4506   // Update the step history.
4507   _step_times_ms.add(elapsed_time_ms);
4508 
4509   if (has_aborted()) {
4510     // The task was aborted for some reason.
4511 
4512     statsOnly( ++_aborted );
4513 
4514     if (_has_timed_out) {
4515       double diff_ms = elapsed_time_ms - _time_target_ms;
4516       // Keep statistics of how well we did with respect to hitting
4517       // our target only if we actually timed out (if we aborted for
4518       // other reasons, then the results might get skewed).
4519       _marking_step_diffs_ms.add(diff_ms);
4520     }
4521 
4522     if (_cm->has_overflown()) {
4523       // This is the interesting one. We aborted because a global
4524       // overflow was raised. This means we have to restart the
4525       // marking phase and start iterating over regions. However, in
4526       // order to do this we have to make sure that all tasks stop
4527       // what they are doing and re-initialise in a safe manner. We
4528       // will achieve this with the use of two barrier sync points.
4529 
4530       if (_cm->verbose_low()) {
4531         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4532       }
4533 
4534       if (!is_serial) {
4535         // We only need to enter the sync barrier if being called
4536         // from a parallel context
4537         _cm->enter_first_sync_barrier(_worker_id);
4538 
4539         // When we exit this sync barrier we know that all tasks have
4540         // stopped doing marking work. So, it's now safe to
4541         // re-initialise our data structures. At the end of this method,
4542         // task 0 will clear the global data structures.
4543       }
4544 
4545       statsOnly( ++_aborted_overflow );
4546 
4547       // We clear the local state of this task...
4548       clear_region_fields();
4549 
4550       if (!is_serial) {
4551         // ...and enter the second barrier.
4552         _cm->enter_second_sync_barrier(_worker_id);
4553       }
4554       // At this point, if we're during the concurrent phase of
4555       // marking, everything has been re-initialized and we're
4556       // ready to restart.
4557     }
4558 
4559     if (_cm->verbose_low()) {
4560       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4561                              "elapsed = %1.2lfms <<<<<<<<<<",
4562                              _worker_id, _time_target_ms, elapsed_time_ms);
4563       if (_cm->has_aborted()) {
4564         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4565                                _worker_id);
4566       }
4567     }
4568   } else {
4569     if (_cm->verbose_low()) {
4570       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4571                              "elapsed = %1.2lfms <<<<<<<<<<",
4572                              _worker_id, _time_target_ms, elapsed_time_ms);
4573     }
4574   }
4575 
4576   _claimed = false;
4577 }
4578 
4579 CMTask::CMTask(uint worker_id,
4580                ConcurrentMark* cm,
4581                size_t* marked_bytes,
4582                BitMap* card_bm,
4583                CMTaskQueue* task_queue,
4584                CMTaskQueueSet* task_queues)
4585   : _g1h(G1CollectedHeap::heap()),
4586     _worker_id(worker_id), _cm(cm),
4587     _claimed(false),
4588     _nextMarkBitMap(NULL), _hash_seed(17),
4589     _task_queue(task_queue),
4590     _task_queues(task_queues),
4591     _cm_oop_closure(NULL),
4592     _marked_bytes_array(marked_bytes),
4593     _card_bm(card_bm) {
4594   guarantee(task_queue != NULL, "invariant");
4595   guarantee(task_queues != NULL, "invariant");
4596 
4597   statsOnly( _clock_due_to_scanning = 0;
4598              _clock_due_to_marking  = 0 );
4599 
4600   _marking_step_diffs_ms.add(0.5);
4601 }
4602 
4603 // These are formatting macros that are used below to ensure
4604 // consistent formatting. The *_H_* versions are used to format the
4605 // header for a particular value and they should be kept consistent
4606 // with the corresponding macro. Also note that most of the macros add
4607 // the necessary white space (as a prefix) which makes them a bit
4608 // easier to compose.
4609 
4610 // All the output lines are prefixed with this string to be able to
4611 // identify them easily in a large log file.
4612 #define G1PPRL_LINE_PREFIX            "###"
4613 
4614 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4615 #ifdef _LP64
4616 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4617 #else // _LP64
4618 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4619 #endif // _LP64
4620 
4621 // For per-region info
4622 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4623 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4624 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4625 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4626 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4627 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4628 
4629 // For summary info
4630 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4631 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4632 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4633 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4634 
4635 G1PrintRegionLivenessInfoClosure::
4636 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4637   : _out(out),
4638     _total_used_bytes(0), _total_capacity_bytes(0),
4639     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4640     _hum_used_bytes(0), _hum_capacity_bytes(0),
4641     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4642     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4643   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4644   MemRegion g1_reserved = g1h->g1_reserved();
4645   double now = os::elapsedTime();
4646 
4647   // Print the header of the output.
4648   _out->cr();
4649   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4650   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4651                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4652                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4653                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4654                  HeapRegion::GrainBytes);
4655   _out->print_cr(G1PPRL_LINE_PREFIX);
4656   _out->print_cr(G1PPRL_LINE_PREFIX
4657                 G1PPRL_TYPE_H_FORMAT
4658                 G1PPRL_ADDR_BASE_H_FORMAT
4659                 G1PPRL_BYTE_H_FORMAT
4660                 G1PPRL_BYTE_H_FORMAT
4661                 G1PPRL_BYTE_H_FORMAT
4662                 G1PPRL_DOUBLE_H_FORMAT
4663                 G1PPRL_BYTE_H_FORMAT
4664                 G1PPRL_BYTE_H_FORMAT,
4665                 "type", "address-range",
4666                 "used", "prev-live", "next-live", "gc-eff",
4667                 "remset", "code-roots");
4668   _out->print_cr(G1PPRL_LINE_PREFIX
4669                 G1PPRL_TYPE_H_FORMAT
4670                 G1PPRL_ADDR_BASE_H_FORMAT
4671                 G1PPRL_BYTE_H_FORMAT
4672                 G1PPRL_BYTE_H_FORMAT
4673                 G1PPRL_BYTE_H_FORMAT
4674                 G1PPRL_DOUBLE_H_FORMAT
4675                 G1PPRL_BYTE_H_FORMAT
4676                 G1PPRL_BYTE_H_FORMAT,
4677                 "", "",
4678                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4679                 "(bytes)", "(bytes)");
4680 }
4681 
4682 // It takes as a parameter a reference to one of the _hum_* fields, it
4683 // deduces the corresponding value for a region in a humongous region
4684 // series (either the region size, or what's left if the _hum_* field
4685 // is < the region size), and updates the _hum_* field accordingly.
4686 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4687   size_t bytes = 0;
4688   // The > 0 check is to deal with the prev and next live bytes which
4689   // could be 0.
4690   if (*hum_bytes > 0) {
4691     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4692     *hum_bytes -= bytes;
4693   }
4694   return bytes;
4695 }
4696 
4697 // It deduces the values for a region in a humongous region series
4698 // from the _hum_* fields and updates those accordingly. It assumes
4699 // that that _hum_* fields have already been set up from the "starts
4700 // humongous" region and we visit the regions in address order.
4701 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4702                                                      size_t* capacity_bytes,
4703                                                      size_t* prev_live_bytes,
4704                                                      size_t* next_live_bytes) {
4705   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4706   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4707   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4708   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4709   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4710 }
4711 
4712 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4713   const char* type       = r->get_type_str();
4714   HeapWord* bottom       = r->bottom();
4715   HeapWord* end          = r->end();
4716   size_t capacity_bytes  = r->capacity();
4717   size_t used_bytes      = r->used();
4718   size_t prev_live_bytes = r->live_bytes();
4719   size_t next_live_bytes = r->next_live_bytes();
4720   double gc_eff          = r->gc_efficiency();
4721   size_t remset_bytes    = r->rem_set()->mem_size();
4722   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4723 
4724   if (r->startsHumongous()) {
4725     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4726            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4727            "they should have been zeroed after the last time we used them");
4728     // Set up the _hum_* fields.
4729     _hum_capacity_bytes  = capacity_bytes;
4730     _hum_used_bytes      = used_bytes;
4731     _hum_prev_live_bytes = prev_live_bytes;
4732     _hum_next_live_bytes = next_live_bytes;
4733     get_hum_bytes(&used_bytes, &capacity_bytes,
4734                   &prev_live_bytes, &next_live_bytes);
4735     end = bottom + HeapRegion::GrainWords;
4736   } else if (r->continuesHumongous()) {
4737     get_hum_bytes(&used_bytes, &capacity_bytes,
4738                   &prev_live_bytes, &next_live_bytes);
4739     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4740   }
4741 
4742   _total_used_bytes      += used_bytes;
4743   _total_capacity_bytes  += capacity_bytes;
4744   _total_prev_live_bytes += prev_live_bytes;
4745   _total_next_live_bytes += next_live_bytes;
4746   _total_remset_bytes    += remset_bytes;
4747   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4748 
4749   // Print a line for this particular region.
4750   _out->print_cr(G1PPRL_LINE_PREFIX
4751                  G1PPRL_TYPE_FORMAT
4752                  G1PPRL_ADDR_BASE_FORMAT
4753                  G1PPRL_BYTE_FORMAT
4754                  G1PPRL_BYTE_FORMAT
4755                  G1PPRL_BYTE_FORMAT
4756                  G1PPRL_DOUBLE_FORMAT
4757                  G1PPRL_BYTE_FORMAT
4758                  G1PPRL_BYTE_FORMAT,
4759                  type, p2i(bottom), p2i(end),
4760                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4761                  remset_bytes, strong_code_roots_bytes);
4762 
4763   return false;
4764 }
4765 
4766 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4767   // add static memory usages to remembered set sizes
4768   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4769   // Print the footer of the output.
4770   _out->print_cr(G1PPRL_LINE_PREFIX);
4771   _out->print_cr(G1PPRL_LINE_PREFIX
4772                  " SUMMARY"
4773                  G1PPRL_SUM_MB_FORMAT("capacity")
4774                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4775                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4776                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4777                  G1PPRL_SUM_MB_FORMAT("remset")
4778                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4779                  bytes_to_mb(_total_capacity_bytes),
4780                  bytes_to_mb(_total_used_bytes),
4781                  perc(_total_used_bytes, _total_capacity_bytes),
4782                  bytes_to_mb(_total_prev_live_bytes),
4783                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4784                  bytes_to_mb(_total_next_live_bytes),
4785                  perc(_total_next_live_bytes, _total_capacity_bytes),
4786                  bytes_to_mb(_total_remset_bytes),
4787                  bytes_to_mb(_total_strong_code_roots_bytes));
4788   _out->cr();
4789 }