1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  37 #include "gc_implementation/g1/g1Log.hpp"
  38 #include "gc_implementation/g1/g1MarkSweep.hpp"
  39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  41 #include "gc_implementation/g1/g1YCTypes.hpp"
  42 #include "gc_implementation/g1/heapRegion.inline.hpp"
  43 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  44 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  45 #include "gc_implementation/g1/vm_operations_g1.hpp"
  46 #include "gc_implementation/shared/gcHeapSummary.hpp"
  47 #include "gc_implementation/shared/gcTimer.hpp"
  48 #include "gc_implementation/shared/gcTrace.hpp"
  49 #include "gc_implementation/shared/gcTraceTime.hpp"
  50 #include "gc_implementation/shared/isGCActiveMark.hpp"
  51 #include "memory/gcLocker.inline.hpp"
  52 #include "memory/genOopClosures.inline.hpp"
  53 #include "memory/generationSpec.hpp"
  54 #include "memory/referenceProcessor.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "oops/oop.pcgc.inline.hpp"
  57 #include "runtime/aprofiler.hpp"
  58 #include "runtime/vmThread.hpp"
  59 
  60 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  61 
  62 // turn it on so that the contents of the young list (scan-only /
  63 // to-be-collected) are printed at "strategic" points before / during
  64 // / after the collection --- this is useful for debugging
  65 #define YOUNG_LIST_VERBOSE 0
  66 // CURRENT STATUS
  67 // This file is under construction.  Search for "FIXME".
  68 
  69 // INVARIANTS/NOTES
  70 //
  71 // All allocation activity covered by the G1CollectedHeap interface is
  72 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  73 // and allocate_new_tlab, which are the "entry" points to the
  74 // allocation code from the rest of the JVM.  (Note that this does not
  75 // apply to TLAB allocation, which is not part of this interface: it
  76 // is done by clients of this interface.)
  77 
  78 // Notes on implementation of parallelism in different tasks.
  79 //
  80 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  81 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  82 // It does use run_task() which sets _n_workers in the task.
  83 // G1ParTask executes g1_process_strong_roots() ->
  84 // SharedHeap::process_strong_roots() which calls eventually to
  85 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  86 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  87 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  88 //
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   SuspendibleThreadSet* _sts;
  94   G1RemSet* _g1rs;
  95   ConcurrentG1Refine* _cg1r;
  96   bool _concurrent;
  97 public:
  98   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  99                               G1RemSet* g1rs,
 100                               ConcurrentG1Refine* cg1r) :
 101     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
 102   {}
 103   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 104     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
 105     // This path is executed by the concurrent refine or mutator threads,
 106     // concurrently, and so we do not care if card_ptr contains references
 107     // that point into the collection set.
 108     assert(!oops_into_cset, "should be");
 109 
 110     if (_concurrent && _sts->should_yield()) {
 111       // Caller will actually yield.
 112       return false;
 113     }
 114     // Otherwise, we finished successfully; return true.
 115     return true;
 116   }
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 122   int _calls;
 123   G1CollectedHeap* _g1h;
 124   CardTableModRefBS* _ctbs;
 125   int _histo[256];
 126 public:
 127   ClearLoggedCardTableEntryClosure() :
 128     _calls(0)
 129   {
 130     _g1h = G1CollectedHeap::heap();
 131     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 132     for (int i = 0; i < 256; i++) _histo[i] = 0;
 133   }
 134   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 135     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 136       _calls++;
 137       unsigned char* ujb = (unsigned char*)card_ptr;
 138       int ind = (int)(*ujb);
 139       _histo[ind]++;
 140       *card_ptr = -1;
 141     }
 142     return true;
 143   }
 144   int calls() { return _calls; }
 145   void print_histo() {
 146     gclog_or_tty->print_cr("Card table value histogram:");
 147     for (int i = 0; i < 256; i++) {
 148       if (_histo[i] != 0) {
 149         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 150       }
 151     }
 152   }
 153 };
 154 
 155 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 156   int _calls;
 157   G1CollectedHeap* _g1h;
 158   CardTableModRefBS* _ctbs;
 159 public:
 160   RedirtyLoggedCardTableEntryClosure() :
 161     _calls(0)
 162   {
 163     _g1h = G1CollectedHeap::heap();
 164     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 165   }
 166   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 167     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 168       _calls++;
 169       *card_ptr = 0;
 170     }
 171     return true;
 172   }
 173   int calls() { return _calls; }
 174 };
 175 
 176 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 177 public:
 178   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 179     *card_ptr = CardTableModRefBS::dirty_card_val();
 180     return true;
 181   }
 182 };
 183 
 184 YoungList::YoungList(G1CollectedHeap* g1h) :
 185     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 186     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 187   guarantee(check_list_empty(false), "just making sure...");
 188 }
 189 
 190 void YoungList::push_region(HeapRegion *hr) {
 191   assert(!hr->is_young(), "should not already be young");
 192   assert(hr->get_next_young_region() == NULL, "cause it should!");
 193 
 194   hr->set_next_young_region(_head);
 195   _head = hr;
 196 
 197   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 198   ++_length;
 199 }
 200 
 201 void YoungList::add_survivor_region(HeapRegion* hr) {
 202   assert(hr->is_survivor(), "should be flagged as survivor region");
 203   assert(hr->get_next_young_region() == NULL, "cause it should!");
 204 
 205   hr->set_next_young_region(_survivor_head);
 206   if (_survivor_head == NULL) {
 207     _survivor_tail = hr;
 208   }
 209   _survivor_head = hr;
 210   ++_survivor_length;
 211 }
 212 
 213 void YoungList::empty_list(HeapRegion* list) {
 214   while (list != NULL) {
 215     HeapRegion* next = list->get_next_young_region();
 216     list->set_next_young_region(NULL);
 217     list->uninstall_surv_rate_group();
 218     list->set_not_young();
 219     list = next;
 220   }
 221 }
 222 
 223 void YoungList::empty_list() {
 224   assert(check_list_well_formed(), "young list should be well formed");
 225 
 226   empty_list(_head);
 227   _head = NULL;
 228   _length = 0;
 229 
 230   empty_list(_survivor_head);
 231   _survivor_head = NULL;
 232   _survivor_tail = NULL;
 233   _survivor_length = 0;
 234 
 235   _last_sampled_rs_lengths = 0;
 236 
 237   assert(check_list_empty(false), "just making sure...");
 238 }
 239 
 240 bool YoungList::check_list_well_formed() {
 241   bool ret = true;
 242 
 243   uint length = 0;
 244   HeapRegion* curr = _head;
 245   HeapRegion* last = NULL;
 246   while (curr != NULL) {
 247     if (!curr->is_young()) {
 248       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 249                              "incorrectly tagged (y: %d, surv: %d)",
 250                              curr->bottom(), curr->end(),
 251                              curr->is_young(), curr->is_survivor());
 252       ret = false;
 253     }
 254     ++length;
 255     last = curr;
 256     curr = curr->get_next_young_region();
 257   }
 258   ret = ret && (length == _length);
 259 
 260   if (!ret) {
 261     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 262     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 263                            length, _length);
 264   }
 265 
 266   return ret;
 267 }
 268 
 269 bool YoungList::check_list_empty(bool check_sample) {
 270   bool ret = true;
 271 
 272   if (_length != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 274                   _length);
 275     ret = false;
 276   }
 277   if (check_sample && _last_sampled_rs_lengths != 0) {
 278     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 279     ret = false;
 280   }
 281   if (_head != NULL) {
 282     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 283     ret = false;
 284   }
 285   if (!ret) {
 286     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 287   }
 288 
 289   return ret;
 290 }
 291 
 292 void
 293 YoungList::rs_length_sampling_init() {
 294   _sampled_rs_lengths = 0;
 295   _curr               = _head;
 296 }
 297 
 298 bool
 299 YoungList::rs_length_sampling_more() {
 300   return _curr != NULL;
 301 }
 302 
 303 void
 304 YoungList::rs_length_sampling_next() {
 305   assert( _curr != NULL, "invariant" );
 306   size_t rs_length = _curr->rem_set()->occupied();
 307 
 308   _sampled_rs_lengths += rs_length;
 309 
 310   // The current region may not yet have been added to the
 311   // incremental collection set (it gets added when it is
 312   // retired as the current allocation region).
 313   if (_curr->in_collection_set()) {
 314     // Update the collection set policy information for this region
 315     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 316   }
 317 
 318   _curr = _curr->get_next_young_region();
 319   if (_curr == NULL) {
 320     _last_sampled_rs_lengths = _sampled_rs_lengths;
 321     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 322   }
 323 }
 324 
 325 void
 326 YoungList::reset_auxilary_lists() {
 327   guarantee( is_empty(), "young list should be empty" );
 328   assert(check_list_well_formed(), "young list should be well formed");
 329 
 330   // Add survivor regions to SurvRateGroup.
 331   _g1h->g1_policy()->note_start_adding_survivor_regions();
 332   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 333 
 334   int young_index_in_cset = 0;
 335   for (HeapRegion* curr = _survivor_head;
 336        curr != NULL;
 337        curr = curr->get_next_young_region()) {
 338     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 339 
 340     // The region is a non-empty survivor so let's add it to
 341     // the incremental collection set for the next evacuation
 342     // pause.
 343     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 344     young_index_in_cset += 1;
 345   }
 346   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 347   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 348 
 349   _head   = _survivor_head;
 350   _length = _survivor_length;
 351   if (_survivor_head != NULL) {
 352     assert(_survivor_tail != NULL, "cause it shouldn't be");
 353     assert(_survivor_length > 0, "invariant");
 354     _survivor_tail->set_next_young_region(NULL);
 355   }
 356 
 357   // Don't clear the survivor list handles until the start of
 358   // the next evacuation pause - we need it in order to re-tag
 359   // the survivor regions from this evacuation pause as 'young'
 360   // at the start of the next.
 361 
 362   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 363 
 364   assert(check_list_well_formed(), "young list should be well formed");
 365 }
 366 
 367 void YoungList::print() {
 368   HeapRegion* lists[] = {_head,   _survivor_head};
 369   const char* names[] = {"YOUNG", "SURVIVOR"};
 370 
 371   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 372     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 373     HeapRegion *curr = lists[list];
 374     if (curr == NULL)
 375       gclog_or_tty->print_cr("  empty");
 376     while (curr != NULL) {
 377       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 378                              HR_FORMAT_PARAMS(curr),
 379                              curr->prev_top_at_mark_start(),
 380                              curr->next_top_at_mark_start(),
 381                              curr->age_in_surv_rate_group_cond());
 382       curr = curr->get_next_young_region();
 383     }
 384   }
 385 
 386   gclog_or_tty->print_cr("");
 387 }
 388 
 389 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 390 {
 391   // Claim the right to put the region on the dirty cards region list
 392   // by installing a self pointer.
 393   HeapRegion* next = hr->get_next_dirty_cards_region();
 394   if (next == NULL) {
 395     HeapRegion* res = (HeapRegion*)
 396       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 397                           NULL);
 398     if (res == NULL) {
 399       HeapRegion* head;
 400       do {
 401         // Put the region to the dirty cards region list.
 402         head = _dirty_cards_region_list;
 403         next = (HeapRegion*)
 404           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 405         if (next == head) {
 406           assert(hr->get_next_dirty_cards_region() == hr,
 407                  "hr->get_next_dirty_cards_region() != hr");
 408           if (next == NULL) {
 409             // The last region in the list points to itself.
 410             hr->set_next_dirty_cards_region(hr);
 411           } else {
 412             hr->set_next_dirty_cards_region(next);
 413           }
 414         }
 415       } while (next != head);
 416     }
 417   }
 418 }
 419 
 420 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 421 {
 422   HeapRegion* head;
 423   HeapRegion* hr;
 424   do {
 425     head = _dirty_cards_region_list;
 426     if (head == NULL) {
 427       return NULL;
 428     }
 429     HeapRegion* new_head = head->get_next_dirty_cards_region();
 430     if (head == new_head) {
 431       // The last region.
 432       new_head = NULL;
 433     }
 434     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 435                                           head);
 436   } while (hr != head);
 437   assert(hr != NULL, "invariant");
 438   hr->set_next_dirty_cards_region(NULL);
 439   return hr;
 440 }
 441 
 442 void G1CollectedHeap::stop_conc_gc_threads() {
 443   _cg1r->stop();
 444   _cmThread->stop();
 445 }
 446 
 447 #ifdef ASSERT
 448 // A region is added to the collection set as it is retired
 449 // so an address p can point to a region which will be in the
 450 // collection set but has not yet been retired.  This method
 451 // therefore is only accurate during a GC pause after all
 452 // regions have been retired.  It is used for debugging
 453 // to check if an nmethod has references to objects that can
 454 // be move during a partial collection.  Though it can be
 455 // inaccurate, it is sufficient for G1 because the conservative
 456 // implementation of is_scavengable() for G1 will indicate that
 457 // all nmethods must be scanned during a partial collection.
 458 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 459   HeapRegion* hr = heap_region_containing(p);
 460   return hr != NULL && hr->in_collection_set();
 461 }
 462 #endif
 463 
 464 // Returns true if the reference points to an object that
 465 // can move in an incremental collection.
 466 bool G1CollectedHeap::is_scavengable(const void* p) {
 467   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 468   G1CollectorPolicy* g1p = g1h->g1_policy();
 469   HeapRegion* hr = heap_region_containing(p);
 470   if (hr == NULL) {
 471      // perm gen (or null)
 472      return false;
 473   } else {
 474     return !hr->isHumongous();
 475   }
 476 }
 477 
 478 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 479   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 480   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 481 
 482   // Count the dirty cards at the start.
 483   CountNonCleanMemRegionClosure count1(this);
 484   ct_bs->mod_card_iterate(&count1);
 485   int orig_count = count1.n();
 486 
 487   // First clear the logged cards.
 488   ClearLoggedCardTableEntryClosure clear;
 489   dcqs.set_closure(&clear);
 490   dcqs.apply_closure_to_all_completed_buffers();
 491   dcqs.iterate_closure_all_threads(false);
 492   clear.print_histo();
 493 
 494   // Now ensure that there's no dirty cards.
 495   CountNonCleanMemRegionClosure count2(this);
 496   ct_bs->mod_card_iterate(&count2);
 497   if (count2.n() != 0) {
 498     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 499                            count2.n(), orig_count);
 500   }
 501   guarantee(count2.n() == 0, "Card table should be clean.");
 502 
 503   RedirtyLoggedCardTableEntryClosure redirty;
 504   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 505   dcqs.apply_closure_to_all_completed_buffers();
 506   dcqs.iterate_closure_all_threads(false);
 507   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 508                          clear.calls(), orig_count);
 509   guarantee(redirty.calls() == clear.calls(),
 510             "Or else mechanism is broken.");
 511 
 512   CountNonCleanMemRegionClosure count3(this);
 513   ct_bs->mod_card_iterate(&count3);
 514   if (count3.n() != orig_count) {
 515     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 516                            orig_count, count3.n());
 517     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 518   }
 519 
 520   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 521 }
 522 
 523 // Private class members.
 524 
 525 G1CollectedHeap* G1CollectedHeap::_g1h;
 526 
 527 // Private methods.
 528 
 529 HeapRegion*
 530 G1CollectedHeap::new_region_try_secondary_free_list() {
 531   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 532   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 533     if (!_secondary_free_list.is_empty()) {
 534       if (G1ConcRegionFreeingVerbose) {
 535         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 536                                "secondary_free_list has %u entries",
 537                                _secondary_free_list.length());
 538       }
 539       // It looks as if there are free regions available on the
 540       // secondary_free_list. Let's move them to the free_list and try
 541       // again to allocate from it.
 542       append_secondary_free_list();
 543 
 544       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 545              "empty we should have moved at least one entry to the free_list");
 546       HeapRegion* res = _free_list.remove_head();
 547       if (G1ConcRegionFreeingVerbose) {
 548         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 549                                "allocated "HR_FORMAT" from secondary_free_list",
 550                                HR_FORMAT_PARAMS(res));
 551       }
 552       return res;
 553     }
 554 
 555     // Wait here until we get notified either when (a) there are no
 556     // more free regions coming or (b) some regions have been moved on
 557     // the secondary_free_list.
 558     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 559   }
 560 
 561   if (G1ConcRegionFreeingVerbose) {
 562     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 563                            "could not allocate from secondary_free_list");
 564   }
 565   return NULL;
 566 }
 567 
 568 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 569   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 570          "the only time we use this to allocate a humongous region is "
 571          "when we are allocating a single humongous region");
 572 
 573   HeapRegion* res;
 574   if (G1StressConcRegionFreeing) {
 575     if (!_secondary_free_list.is_empty()) {
 576       if (G1ConcRegionFreeingVerbose) {
 577         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 578                                "forced to look at the secondary_free_list");
 579       }
 580       res = new_region_try_secondary_free_list();
 581       if (res != NULL) {
 582         return res;
 583       }
 584     }
 585   }
 586   res = _free_list.remove_head_or_null();
 587   if (res == NULL) {
 588     if (G1ConcRegionFreeingVerbose) {
 589       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 590                              "res == NULL, trying the secondary_free_list");
 591     }
 592     res = new_region_try_secondary_free_list();
 593   }
 594   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 595     // Currently, only attempts to allocate GC alloc regions set
 596     // do_expand to true. So, we should only reach here during a
 597     // safepoint. If this assumption changes we might have to
 598     // reconsider the use of _expand_heap_after_alloc_failure.
 599     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 600 
 601     ergo_verbose1(ErgoHeapSizing,
 602                   "attempt heap expansion",
 603                   ergo_format_reason("region allocation request failed")
 604                   ergo_format_byte("allocation request"),
 605                   word_size * HeapWordSize);
 606     if (expand(word_size * HeapWordSize)) {
 607       // Given that expand() succeeded in expanding the heap, and we
 608       // always expand the heap by an amount aligned to the heap
 609       // region size, the free list should in theory not be empty. So
 610       // it would probably be OK to use remove_head(). But the extra
 611       // check for NULL is unlikely to be a performance issue here (we
 612       // just expanded the heap!) so let's just be conservative and
 613       // use remove_head_or_null().
 614       res = _free_list.remove_head_or_null();
 615     } else {
 616       _expand_heap_after_alloc_failure = false;
 617     }
 618   }
 619   return res;
 620 }
 621 
 622 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 623                                                         size_t word_size) {
 624   assert(isHumongous(word_size), "word_size should be humongous");
 625   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 626 
 627   uint first = G1_NULL_HRS_INDEX;
 628   if (num_regions == 1) {
 629     // Only one region to allocate, no need to go through the slower
 630     // path. The caller will attempt the expansion if this fails, so
 631     // let's not try to expand here too.
 632     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 633     if (hr != NULL) {
 634       first = hr->hrs_index();
 635     } else {
 636       first = G1_NULL_HRS_INDEX;
 637     }
 638   } else {
 639     // We can't allocate humongous regions while cleanupComplete() is
 640     // running, since some of the regions we find to be empty might not
 641     // yet be added to the free list and it is not straightforward to
 642     // know which list they are on so that we can remove them. Note
 643     // that we only need to do this if we need to allocate more than
 644     // one region to satisfy the current humongous allocation
 645     // request. If we are only allocating one region we use the common
 646     // region allocation code (see above).
 647     wait_while_free_regions_coming();
 648     append_secondary_free_list_if_not_empty_with_lock();
 649 
 650     if (free_regions() >= num_regions) {
 651       first = _hrs.find_contiguous(num_regions);
 652       if (first != G1_NULL_HRS_INDEX) {
 653         for (uint i = first; i < first + num_regions; ++i) {
 654           HeapRegion* hr = region_at(i);
 655           assert(hr->is_empty(), "sanity");
 656           assert(is_on_master_free_list(hr), "sanity");
 657           hr->set_pending_removal(true);
 658         }
 659         _free_list.remove_all_pending(num_regions);
 660       }
 661     }
 662   }
 663   return first;
 664 }
 665 
 666 HeapWord*
 667 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 668                                                            uint num_regions,
 669                                                            size_t word_size) {
 670   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 671   assert(isHumongous(word_size), "word_size should be humongous");
 672   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 673 
 674   // Index of last region in the series + 1.
 675   uint last = first + num_regions;
 676 
 677   // We need to initialize the region(s) we just discovered. This is
 678   // a bit tricky given that it can happen concurrently with
 679   // refinement threads refining cards on these regions and
 680   // potentially wanting to refine the BOT as they are scanning
 681   // those cards (this can happen shortly after a cleanup; see CR
 682   // 6991377). So we have to set up the region(s) carefully and in
 683   // a specific order.
 684 
 685   // The word size sum of all the regions we will allocate.
 686   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 687   assert(word_size <= word_size_sum, "sanity");
 688 
 689   // This will be the "starts humongous" region.
 690   HeapRegion* first_hr = region_at(first);
 691   // The header of the new object will be placed at the bottom of
 692   // the first region.
 693   HeapWord* new_obj = first_hr->bottom();
 694   // This will be the new end of the first region in the series that
 695   // should also match the end of the last region in the series.
 696   HeapWord* new_end = new_obj + word_size_sum;
 697   // This will be the new top of the first region that will reflect
 698   // this allocation.
 699   HeapWord* new_top = new_obj + word_size;
 700 
 701   // First, we need to zero the header of the space that we will be
 702   // allocating. When we update top further down, some refinement
 703   // threads might try to scan the region. By zeroing the header we
 704   // ensure that any thread that will try to scan the region will
 705   // come across the zero klass word and bail out.
 706   //
 707   // NOTE: It would not have been correct to have used
 708   // CollectedHeap::fill_with_object() and make the space look like
 709   // an int array. The thread that is doing the allocation will
 710   // later update the object header to a potentially different array
 711   // type and, for a very short period of time, the klass and length
 712   // fields will be inconsistent. This could cause a refinement
 713   // thread to calculate the object size incorrectly.
 714   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 715 
 716   // We will set up the first region as "starts humongous". This
 717   // will also update the BOT covering all the regions to reflect
 718   // that there is a single object that starts at the bottom of the
 719   // first region.
 720   first_hr->set_startsHumongous(new_top, new_end);
 721 
 722   // Then, if there are any, we will set up the "continues
 723   // humongous" regions.
 724   HeapRegion* hr = NULL;
 725   for (uint i = first + 1; i < last; ++i) {
 726     hr = region_at(i);
 727     hr->set_continuesHumongous(first_hr);
 728   }
 729   // If we have "continues humongous" regions (hr != NULL), then the
 730   // end of the last one should match new_end.
 731   assert(hr == NULL || hr->end() == new_end, "sanity");
 732 
 733   // Up to this point no concurrent thread would have been able to
 734   // do any scanning on any region in this series. All the top
 735   // fields still point to bottom, so the intersection between
 736   // [bottom,top] and [card_start,card_end] will be empty. Before we
 737   // update the top fields, we'll do a storestore to make sure that
 738   // no thread sees the update to top before the zeroing of the
 739   // object header and the BOT initialization.
 740   OrderAccess::storestore();
 741 
 742   // Now that the BOT and the object header have been initialized,
 743   // we can update top of the "starts humongous" region.
 744   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 745          "new_top should be in this region");
 746   first_hr->set_top(new_top);
 747   if (_hr_printer.is_active()) {
 748     HeapWord* bottom = first_hr->bottom();
 749     HeapWord* end = first_hr->orig_end();
 750     if ((first + 1) == last) {
 751       // the series has a single humongous region
 752       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 753     } else {
 754       // the series has more than one humongous regions
 755       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 756     }
 757   }
 758 
 759   // Now, we will update the top fields of the "continues humongous"
 760   // regions. The reason we need to do this is that, otherwise,
 761   // these regions would look empty and this will confuse parts of
 762   // G1. For example, the code that looks for a consecutive number
 763   // of empty regions will consider them empty and try to
 764   // re-allocate them. We can extend is_empty() to also include
 765   // !continuesHumongous(), but it is easier to just update the top
 766   // fields here. The way we set top for all regions (i.e., top ==
 767   // end for all regions but the last one, top == new_top for the
 768   // last one) is actually used when we will free up the humongous
 769   // region in free_humongous_region().
 770   hr = NULL;
 771   for (uint i = first + 1; i < last; ++i) {
 772     hr = region_at(i);
 773     if ((i + 1) == last) {
 774       // last continues humongous region
 775       assert(hr->bottom() < new_top && new_top <= hr->end(),
 776              "new_top should fall on this region");
 777       hr->set_top(new_top);
 778       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 779     } else {
 780       // not last one
 781       assert(new_top > hr->end(), "new_top should be above this region");
 782       hr->set_top(hr->end());
 783       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 784     }
 785   }
 786   // If we have continues humongous regions (hr != NULL), then the
 787   // end of the last one should match new_end and its top should
 788   // match new_top.
 789   assert(hr == NULL ||
 790          (hr->end() == new_end && hr->top() == new_top), "sanity");
 791 
 792   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 793   _summary_bytes_used += first_hr->used();
 794   _humongous_set.add(first_hr);
 795 
 796   return new_obj;
 797 }
 798 
 799 // If could fit into free regions w/o expansion, try.
 800 // Otherwise, if can expand, do so.
 801 // Otherwise, if using ex regions might help, try with ex given back.
 802 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 803   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 804 
 805   verify_region_sets_optional();
 806 
 807   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 808   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 809   uint x_num = expansion_regions();
 810   uint fs = _hrs.free_suffix();
 811   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 812   if (first == G1_NULL_HRS_INDEX) {
 813     // The only thing we can do now is attempt expansion.
 814     if (fs + x_num >= num_regions) {
 815       // If the number of regions we're trying to allocate for this
 816       // object is at most the number of regions in the free suffix,
 817       // then the call to humongous_obj_allocate_find_first() above
 818       // should have succeeded and we wouldn't be here.
 819       //
 820       // We should only be trying to expand when the free suffix is
 821       // not sufficient for the object _and_ we have some expansion
 822       // room available.
 823       assert(num_regions > fs, "earlier allocation should have succeeded");
 824 
 825       ergo_verbose1(ErgoHeapSizing,
 826                     "attempt heap expansion",
 827                     ergo_format_reason("humongous allocation request failed")
 828                     ergo_format_byte("allocation request"),
 829                     word_size * HeapWordSize);
 830       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 831         // Even though the heap was expanded, it might not have
 832         // reached the desired size. So, we cannot assume that the
 833         // allocation will succeed.
 834         first = humongous_obj_allocate_find_first(num_regions, word_size);
 835       }
 836     }
 837   }
 838 
 839   HeapWord* result = NULL;
 840   if (first != G1_NULL_HRS_INDEX) {
 841     result =
 842       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 843     assert(result != NULL, "it should always return a valid result");
 844 
 845     // A successful humongous object allocation changes the used space
 846     // information of the old generation so we need to recalculate the
 847     // sizes and update the jstat counters here.
 848     g1mm()->update_sizes();
 849   }
 850 
 851   verify_region_sets_optional();
 852 
 853   return result;
 854 }
 855 
 856 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 857   assert_heap_not_locked_and_not_at_safepoint();
 858   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 859 
 860   unsigned int dummy_gc_count_before;
 861   return attempt_allocation(word_size, &dummy_gc_count_before);
 862 }
 863 
 864 HeapWord*
 865 G1CollectedHeap::mem_allocate(size_t word_size,
 866                               bool*  gc_overhead_limit_was_exceeded) {
 867   assert_heap_not_locked_and_not_at_safepoint();
 868 
 869   // Loop until the allocation is satisfied, or unsatisfied after GC.
 870   for (int try_count = 1; /* we'll return */; try_count += 1) {
 871     unsigned int gc_count_before;
 872 
 873     HeapWord* result = NULL;
 874     if (!isHumongous(word_size)) {
 875       result = attempt_allocation(word_size, &gc_count_before);
 876     } else {
 877       result = attempt_allocation_humongous(word_size, &gc_count_before);
 878     }
 879     if (result != NULL) {
 880       return result;
 881     }
 882 
 883     // Create the garbage collection operation...
 884     VM_G1CollectForAllocation op(gc_count_before, word_size);
 885     // ...and get the VM thread to execute it.
 886     VMThread::execute(&op);
 887 
 888     if (op.prologue_succeeded() && op.pause_succeeded()) {
 889       // If the operation was successful we'll return the result even
 890       // if it is NULL. If the allocation attempt failed immediately
 891       // after a Full GC, it's unlikely we'll be able to allocate now.
 892       HeapWord* result = op.result();
 893       if (result != NULL && !isHumongous(word_size)) {
 894         // Allocations that take place on VM operations do not do any
 895         // card dirtying and we have to do it here. We only have to do
 896         // this for non-humongous allocations, though.
 897         dirty_young_block(result, word_size);
 898       }
 899       return result;
 900     } else {
 901       assert(op.result() == NULL,
 902              "the result should be NULL if the VM op did not succeed");
 903     }
 904 
 905     // Give a warning if we seem to be looping forever.
 906     if ((QueuedAllocationWarningCount > 0) &&
 907         (try_count % QueuedAllocationWarningCount == 0)) {
 908       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 909     }
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 917                                            unsigned int *gc_count_before_ret) {
 918   // Make sure you read the note in attempt_allocation_humongous().
 919 
 920   assert_heap_not_locked_and_not_at_safepoint();
 921   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 922          "be called for humongous allocation requests");
 923 
 924   // We should only get here after the first-level allocation attempt
 925   // (attempt_allocation()) failed to allocate.
 926 
 927   // We will loop until a) we manage to successfully perform the
 928   // allocation or b) we successfully schedule a collection which
 929   // fails to perform the allocation. b) is the only case when we'll
 930   // return NULL.
 931   HeapWord* result = NULL;
 932   for (int try_count = 1; /* we'll return */; try_count += 1) {
 933     bool should_try_gc;
 934     unsigned int gc_count_before;
 935 
 936     {
 937       MutexLockerEx x(Heap_lock);
 938 
 939       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 940                                                       false /* bot_updates */);
 941       if (result != NULL) {
 942         return result;
 943       }
 944 
 945       // If we reach here, attempt_allocation_locked() above failed to
 946       // allocate a new region. So the mutator alloc region should be NULL.
 947       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 948 
 949       if (GC_locker::is_active_and_needs_gc()) {
 950         if (g1_policy()->can_expand_young_list()) {
 951           // No need for an ergo verbose message here,
 952           // can_expand_young_list() does this when it returns true.
 953           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 954                                                       false /* bot_updates */);
 955           if (result != NULL) {
 956             return result;
 957           }
 958         }
 959         should_try_gc = false;
 960       } else {
 961         // The GCLocker may not be active but the GCLocker initiated
 962         // GC may not yet have been performed (GCLocker::needs_gc()
 963         // returns true). In this case we do not try this GC and
 964         // wait until the GCLocker initiated GC is performed, and
 965         // then retry the allocation.
 966         if (GC_locker::needs_gc()) {
 967           should_try_gc = false;
 968         } else {
 969           // Read the GC count while still holding the Heap_lock.
 970           gc_count_before = total_collections();
 971           should_try_gc = true;
 972         }
 973       }
 974     }
 975 
 976     if (should_try_gc) {
 977       bool succeeded;
 978       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 979       if (result != NULL) {
 980         assert(succeeded, "only way to get back a non-NULL result");
 981         return result;
 982       }
 983 
 984       if (succeeded) {
 985         // If we get here we successfully scheduled a collection which
 986         // failed to allocate. No point in trying to allocate
 987         // further. We'll just return NULL.
 988         MutexLockerEx x(Heap_lock);
 989         *gc_count_before_ret = total_collections();
 990         return NULL;
 991       }
 992     } else {
 993       // The GCLocker is either active or the GCLocker initiated
 994       // GC has not yet been performed. Stall until it is and
 995       // then retry the allocation.
 996       GC_locker::stall_until_clear();
 997     }
 998 
 999     // We can reach here if we were unsuccessful in scheduling a
1000     // collection (because another thread beat us to it) or if we were
1001     // stalled due to the GC locker. In either can we should retry the
1002     // allocation attempt in case another thread successfully
1003     // performed a collection and reclaimed enough space. We do the
1004     // first attempt (without holding the Heap_lock) here and the
1005     // follow-on attempt will be at the start of the next loop
1006     // iteration (after taking the Heap_lock).
1007     result = _mutator_alloc_region.attempt_allocation(word_size,
1008                                                       false /* bot_updates */);
1009     if (result != NULL) {
1010       return result;
1011     }
1012 
1013     // Give a warning if we seem to be looping forever.
1014     if ((QueuedAllocationWarningCount > 0) &&
1015         (try_count % QueuedAllocationWarningCount == 0)) {
1016       warning("G1CollectedHeap::attempt_allocation_slow() "
1017               "retries %d times", try_count);
1018     }
1019   }
1020 
1021   ShouldNotReachHere();
1022   return NULL;
1023 }
1024 
1025 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1026                                           unsigned int * gc_count_before_ret) {
1027   // The structure of this method has a lot of similarities to
1028   // attempt_allocation_slow(). The reason these two were not merged
1029   // into a single one is that such a method would require several "if
1030   // allocation is not humongous do this, otherwise do that"
1031   // conditional paths which would obscure its flow. In fact, an early
1032   // version of this code did use a unified method which was harder to
1033   // follow and, as a result, it had subtle bugs that were hard to
1034   // track down. So keeping these two methods separate allows each to
1035   // be more readable. It will be good to keep these two in sync as
1036   // much as possible.
1037 
1038   assert_heap_not_locked_and_not_at_safepoint();
1039   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1040          "should only be called for humongous allocations");
1041 
1042   // Humongous objects can exhaust the heap quickly, so we should check if we
1043   // need to start a marking cycle at each humongous object allocation. We do
1044   // the check before we do the actual allocation. The reason for doing it
1045   // before the allocation is that we avoid having to keep track of the newly
1046   // allocated memory while we do a GC.
1047   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1048                                            word_size)) {
1049     collect(GCCause::_g1_humongous_allocation);
1050   }
1051 
1052   // We will loop until a) we manage to successfully perform the
1053   // allocation or b) we successfully schedule a collection which
1054   // fails to perform the allocation. b) is the only case when we'll
1055   // return NULL.
1056   HeapWord* result = NULL;
1057   for (int try_count = 1; /* we'll return */; try_count += 1) {
1058     bool should_try_gc;
1059     unsigned int gc_count_before;
1060 
1061     {
1062       MutexLockerEx x(Heap_lock);
1063 
1064       // Given that humongous objects are not allocated in young
1065       // regions, we'll first try to do the allocation without doing a
1066       // collection hoping that there's enough space in the heap.
1067       result = humongous_obj_allocate(word_size);
1068       if (result != NULL) {
1069         return result;
1070       }
1071 
1072       if (GC_locker::is_active_and_needs_gc()) {
1073         should_try_gc = false;
1074       } else {
1075          // The GCLocker may not be active but the GCLocker initiated
1076         // GC may not yet have been performed (GCLocker::needs_gc()
1077         // returns true). In this case we do not try this GC and
1078         // wait until the GCLocker initiated GC is performed, and
1079         // then retry the allocation.
1080         if (GC_locker::needs_gc()) {
1081           should_try_gc = false;
1082         } else {
1083           // Read the GC count while still holding the Heap_lock.
1084           gc_count_before = total_collections();
1085           should_try_gc = true;
1086         }
1087       }
1088     }
1089 
1090     if (should_try_gc) {
1091       // If we failed to allocate the humongous object, we should try to
1092       // do a collection pause (if we're allowed) in case it reclaims
1093       // enough space for the allocation to succeed after the pause.
1094 
1095       bool succeeded;
1096       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1097       if (result != NULL) {
1098         assert(succeeded, "only way to get back a non-NULL result");
1099         return result;
1100       }
1101 
1102       if (succeeded) {
1103         // If we get here we successfully scheduled a collection which
1104         // failed to allocate. No point in trying to allocate
1105         // further. We'll just return NULL.
1106         MutexLockerEx x(Heap_lock);
1107         *gc_count_before_ret = total_collections();
1108         return NULL;
1109       }
1110     } else {
1111       // The GCLocker is either active or the GCLocker initiated
1112       // GC has not yet been performed. Stall until it is and
1113       // then retry the allocation.
1114       GC_locker::stall_until_clear();
1115     }
1116 
1117     // We can reach here if we were unsuccessful in scheduling a
1118     // collection (because another thread beat us to it) or if we were
1119     // stalled due to the GC locker. In either can we should retry the
1120     // allocation attempt in case another thread successfully
1121     // performed a collection and reclaimed enough space.  Give a
1122     // warning if we seem to be looping forever.
1123 
1124     if ((QueuedAllocationWarningCount > 0) &&
1125         (try_count % QueuedAllocationWarningCount == 0)) {
1126       warning("G1CollectedHeap::attempt_allocation_humongous() "
1127               "retries %d times", try_count);
1128     }
1129   }
1130 
1131   ShouldNotReachHere();
1132   return NULL;
1133 }
1134 
1135 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1136                                        bool expect_null_mutator_alloc_region) {
1137   assert_at_safepoint(true /* should_be_vm_thread */);
1138   assert(_mutator_alloc_region.get() == NULL ||
1139                                              !expect_null_mutator_alloc_region,
1140          "the current alloc region was unexpectedly found to be non-NULL");
1141 
1142   if (!isHumongous(word_size)) {
1143     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1144                                                       false /* bot_updates */);
1145   } else {
1146     HeapWord* result = humongous_obj_allocate(word_size);
1147     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1148       g1_policy()->set_initiate_conc_mark_if_possible();
1149     }
1150     return result;
1151   }
1152 
1153   ShouldNotReachHere();
1154 }
1155 
1156 class PostMCRemSetClearClosure: public HeapRegionClosure {
1157   G1CollectedHeap* _g1h;
1158   ModRefBarrierSet* _mr_bs;
1159 public:
1160   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1161     _g1h(g1h), _mr_bs(mr_bs) { }
1162   bool doHeapRegion(HeapRegion* r) {
1163     if (r->continuesHumongous()) {
1164       return false;
1165     }
1166     _g1h->reset_gc_time_stamps(r);
1167     HeapRegionRemSet* hrrs = r->rem_set();
1168     if (hrrs != NULL) hrrs->clear();
1169     // You might think here that we could clear just the cards
1170     // corresponding to the used region.  But no: if we leave a dirty card
1171     // in a region we might allocate into, then it would prevent that card
1172     // from being enqueued, and cause it to be missed.
1173     // Re: the performance cost: we shouldn't be doing full GC anyway!
1174     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1175     return false;
1176   }
1177 };
1178 
1179 void G1CollectedHeap::clear_rsets_post_compaction() {
1180   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1181   heap_region_iterate(&rs_clear);
1182 }
1183 
1184 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1185   G1CollectedHeap*   _g1h;
1186   UpdateRSOopClosure _cl;
1187   int                _worker_i;
1188 public:
1189   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1190     _cl(g1->g1_rem_set(), worker_i),
1191     _worker_i(worker_i),
1192     _g1h(g1)
1193   { }
1194 
1195   bool doHeapRegion(HeapRegion* r) {
1196     if (!r->continuesHumongous()) {
1197       _cl.set_from(r);
1198       r->oop_iterate(&_cl);
1199     }
1200     return false;
1201   }
1202 };
1203 
1204 class ParRebuildRSTask: public AbstractGangTask {
1205   G1CollectedHeap* _g1;
1206 public:
1207   ParRebuildRSTask(G1CollectedHeap* g1)
1208     : AbstractGangTask("ParRebuildRSTask"),
1209       _g1(g1)
1210   { }
1211 
1212   void work(uint worker_id) {
1213     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1214     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1215                                           _g1->workers()->active_workers(),
1216                                          HeapRegion::RebuildRSClaimValue);
1217   }
1218 };
1219 
1220 class PostCompactionPrinterClosure: public HeapRegionClosure {
1221 private:
1222   G1HRPrinter* _hr_printer;
1223 public:
1224   bool doHeapRegion(HeapRegion* hr) {
1225     assert(!hr->is_young(), "not expecting to find young regions");
1226     // We only generate output for non-empty regions.
1227     if (!hr->is_empty()) {
1228       if (!hr->isHumongous()) {
1229         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1230       } else if (hr->startsHumongous()) {
1231         if (hr->region_num() == 1) {
1232           // single humongous region
1233           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1234         } else {
1235           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1236         }
1237       } else {
1238         assert(hr->continuesHumongous(), "only way to get here");
1239         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1240       }
1241     }
1242     return false;
1243   }
1244 
1245   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1246     : _hr_printer(hr_printer) { }
1247 };
1248 
1249 void G1CollectedHeap::print_hrs_post_compaction() {
1250   PostCompactionPrinterClosure cl(hr_printer());
1251   heap_region_iterate(&cl);
1252 }
1253 
1254 double G1CollectedHeap::verify(bool guard, const char* msg) {
1255   double verify_time_ms = 0.0;
1256 
1257   if (guard && total_collections() >= VerifyGCStartAt) {
1258     double verify_start = os::elapsedTime();
1259     HandleMark hm;  // Discard invalid handles created during verification
1260     gclog_or_tty->print(msg);
1261     prepare_for_verify();
1262     Universe::verify(false /* silent */, VerifyOption_G1UsePrevMarking);
1263     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
1264   }
1265 
1266   return verify_time_ms;
1267 }
1268 
1269 void G1CollectedHeap::verify_before_gc() {
1270   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
1271   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
1272 }
1273 
1274 void G1CollectedHeap::verify_after_gc() {
1275   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
1276   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
1277 }
1278 
1279 bool G1CollectedHeap::do_collection(bool explicit_gc,
1280                                     bool clear_all_soft_refs,
1281                                     size_t word_size) {
1282   assert_at_safepoint(true /* should_be_vm_thread */);
1283 
1284   if (GC_locker::check_active_before_gc()) {
1285     return false;
1286   }
1287 
1288   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1289   gc_timer->register_gc_start(os::elapsed_counter());
1290 
1291   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1292   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1293 
1294   SvcGCMarker sgcm(SvcGCMarker::FULL);
1295   ResourceMark rm;
1296 
1297   print_heap_before_gc();
1298   trace_heap_before_gc(gc_tracer);
1299 
1300   HRSPhaseSetter x(HRSPhaseFullGC);
1301   verify_region_sets_optional();
1302 
1303   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1304                            collector_policy()->should_clear_all_soft_refs();
1305 
1306   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1307 
1308   {
1309     IsGCActiveMark x;
1310 
1311     // Timing
1312     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1313     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1314     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1315 
1316     GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1317     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1318     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1319 
1320     double start = os::elapsedTime();
1321     g1_policy()->record_full_collection_start();
1322 
1323     // Note: When we have a more flexible GC logging framework that
1324     // allows us to add optional attributes to a GC log record we
1325     // could consider timing and reporting how long we wait in the
1326     // following two methods.
1327     wait_while_free_regions_coming();
1328     // If we start the compaction before the CM threads finish
1329     // scanning the root regions we might trip them over as we'll
1330     // be moving objects / updating references. So let's wait until
1331     // they are done. By telling them to abort, they should complete
1332     // early.
1333     _cm->root_regions()->abort();
1334     _cm->root_regions()->wait_until_scan_finished();
1335     append_secondary_free_list_if_not_empty_with_lock();
1336 
1337     gc_prologue(true);
1338     increment_total_collections(true /* full gc */);
1339     increment_old_marking_cycles_started();
1340 
1341     size_t g1h_prev_used = used();
1342     assert(used() == recalculate_used(), "Should be equal");
1343 
1344     verify_before_gc();
1345 
1346     pre_full_gc_dump(gc_timer);
1347 
1348     COMPILER2_PRESENT(DerivedPointerTable::clear());
1349 
1350     // Disable discovery and empty the discovered lists
1351     // for the CM ref processor.
1352     ref_processor_cm()->disable_discovery();
1353     ref_processor_cm()->abandon_partial_discovery();
1354     ref_processor_cm()->verify_no_references_recorded();
1355 
1356     // Abandon current iterations of concurrent marking and concurrent
1357     // refinement, if any are in progress. We have to do this before
1358     // wait_until_scan_finished() below.
1359     concurrent_mark()->abort();
1360 
1361     // Make sure we'll choose a new allocation region afterwards.
1362     release_mutator_alloc_region();
1363     abandon_gc_alloc_regions();
1364     g1_rem_set()->cleanupHRRS();
1365 
1366     // We should call this after we retire any currently active alloc
1367     // regions so that all the ALLOC / RETIRE events are generated
1368     // before the start GC event.
1369     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1370 
1371     // We may have added regions to the current incremental collection
1372     // set between the last GC or pause and now. We need to clear the
1373     // incremental collection set and then start rebuilding it afresh
1374     // after this full GC.
1375     abandon_collection_set(g1_policy()->inc_cset_head());
1376     g1_policy()->clear_incremental_cset();
1377     g1_policy()->stop_incremental_cset_building();
1378 
1379     tear_down_region_sets(false /* free_list_only */);
1380     g1_policy()->set_gcs_are_young(true);
1381 
1382     // See the comments in g1CollectedHeap.hpp and
1383     // G1CollectedHeap::ref_processing_init() about
1384     // how reference processing currently works in G1.
1385 
1386     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1387     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1388 
1389     // Temporarily clear the STW ref processor's _is_alive_non_header field.
1390     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1391 
1392     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1393     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1394 
1395     // Do collection work
1396     {
1397       HandleMark hm;  // Discard invalid handles created during gc
1398       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1399     }
1400 
1401     assert(free_regions() == 0, "we should not have added any free regions");
1402     rebuild_region_sets(false /* free_list_only */);
1403 
1404     // Enqueue any discovered reference objects that have
1405     // not been removed from the discovered lists.
1406     ref_processor_stw()->enqueue_discovered_references();
1407 
1408     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1409 
1410     MemoryService::track_memory_usage();
1411 
1412     verify_after_gc();
1413 
1414     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1415     ref_processor_stw()->verify_no_references_recorded();
1416 
1417     // Note: since we've just done a full GC, concurrent
1418     // marking is no longer active. Therefore we need not
1419     // re-enable reference discovery for the CM ref processor.
1420     // That will be done at the start of the next marking cycle.
1421     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1422     ref_processor_cm()->verify_no_references_recorded();
1423 
1424     reset_gc_time_stamp();
1425     // Since everything potentially moved, we will clear all remembered
1426     // sets, and clear all cards.  Later we will rebuild remembered
1427     // sets. We will also reset the GC time stamps of the regions.
1428     clear_rsets_post_compaction();
1429     check_gc_time_stamps();
1430 
1431     // Resize the heap if necessary.
1432     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1433 
1434     if (_hr_printer.is_active()) {
1435       // We should do this after we potentially resize the heap so
1436       // that all the COMMIT / UNCOMMIT events are generated before
1437       // the end GC event.
1438 
1439       print_hrs_post_compaction();
1440       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1441     }
1442 
1443     if (_cg1r->use_cache()) {
1444       _cg1r->clear_and_record_card_counts();
1445       _cg1r->clear_hot_cache();
1446     }
1447 
1448     // Rebuild remembered sets of all regions.
1449     if (G1CollectedHeap::use_parallel_gc_threads()) {
1450       uint n_workers =
1451         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1452                                        workers()->active_workers(),
1453                                        Threads::number_of_non_daemon_threads());
1454       assert(UseDynamicNumberOfGCThreads ||
1455              n_workers == workers()->total_workers(),
1456              "If not dynamic should be using all the  workers");
1457       workers()->set_active_workers(n_workers);
1458       // Set parallel threads in the heap (_n_par_threads) only
1459       // before a parallel phase and always reset it to 0 after
1460       // the phase so that the number of parallel threads does
1461       // no get carried forward to a serial phase where there
1462       // may be code that is "possibly_parallel".
1463       set_par_threads(n_workers);
1464 
1465       ParRebuildRSTask rebuild_rs_task(this);
1466       assert(check_heap_region_claim_values(
1467              HeapRegion::InitialClaimValue), "sanity check");
1468       assert(UseDynamicNumberOfGCThreads ||
1469              workers()->active_workers() == workers()->total_workers(),
1470         "Unless dynamic should use total workers");
1471       // Use the most recent number of  active workers
1472       assert(workers()->active_workers() > 0,
1473         "Active workers not properly set");
1474       set_par_threads(workers()->active_workers());
1475       workers()->run_task(&rebuild_rs_task);
1476       set_par_threads(0);
1477       assert(check_heap_region_claim_values(
1478              HeapRegion::RebuildRSClaimValue), "sanity check");
1479       reset_heap_region_claim_values();
1480     } else {
1481       RebuildRSOutOfRegionClosure rebuild_rs(this);
1482       heap_region_iterate(&rebuild_rs);
1483     }
1484 
1485     if (G1Log::fine()) {
1486       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1487     }
1488 
1489     if (true) { // FIXME
1490       // Ask the permanent generation to adjust size for full collections
1491       perm()->compute_new_size();
1492     }
1493 
1494     // Start a new incremental collection set for the next pause
1495     assert(g1_policy()->collection_set() == NULL, "must be");
1496     g1_policy()->start_incremental_cset_building();
1497 
1498     // Clear the _cset_fast_test bitmap in anticipation of adding
1499     // regions to the incremental collection set for the next
1500     // evacuation pause.
1501     clear_cset_fast_test();
1502 
1503     init_mutator_alloc_region();
1504 
1505     double end = os::elapsedTime();
1506     g1_policy()->record_full_collection_end();
1507 
1508 #ifdef TRACESPINNING
1509     ParallelTaskTerminator::print_termination_counts();
1510 #endif
1511 
1512     gc_epilogue(true);
1513 
1514     // Discard all rset updates
1515     JavaThread::dirty_card_queue_set().abandon_logs();
1516     assert(!G1DeferredRSUpdate
1517            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1518 
1519     _young_list->reset_sampled_info();
1520     // At this point there should be no regions in the
1521     // entire heap tagged as young.
1522     assert( check_young_list_empty(true /* check_heap */),
1523       "young list should be empty at this point");
1524 
1525     // Update the number of full collections that have been completed.
1526     increment_old_marking_cycles_completed(false /* concurrent */);
1527 
1528     _hrs.verify_optional();
1529     verify_region_sets_optional();
1530 
1531     print_heap_after_gc();
1532     trace_heap_after_gc(gc_tracer);
1533 
1534     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1535     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1536     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1537     // before any GC notifications are raised.
1538     g1mm()->update_sizes();
1539   }
1540 
1541   post_full_gc_dump(gc_timer);
1542 
1543   gc_timer->register_gc_end(os::elapsed_counter());
1544 
1545   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1546 
1547   return true;
1548 }
1549 
1550 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1551   // do_collection() will return whether it succeeded in performing
1552   // the GC. Currently, there is no facility on the
1553   // do_full_collection() API to notify the caller than the collection
1554   // did not succeed (e.g., because it was locked out by the GC
1555   // locker). So, right now, we'll ignore the return value.
1556   bool dummy = do_collection(true,                /* explicit_gc */
1557                              clear_all_soft_refs,
1558                              0                    /* word_size */);
1559 }
1560 
1561 // This code is mostly copied from TenuredGeneration.
1562 void
1563 G1CollectedHeap::
1564 resize_if_necessary_after_full_collection(size_t word_size) {
1565   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1566 
1567   // Include the current allocation, if any, and bytes that will be
1568   // pre-allocated to support collections, as "used".
1569   const size_t used_after_gc = used();
1570   const size_t capacity_after_gc = capacity();
1571   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1572 
1573   // This is enforced in arguments.cpp.
1574   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1575          "otherwise the code below doesn't make sense");
1576 
1577   // We don't have floating point command-line arguments
1578   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1579   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1580   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1581   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1582 
1583   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1584   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1585 
1586   // We have to be careful here as these two calculations can overflow
1587   // 32-bit size_t's.
1588   double used_after_gc_d = (double) used_after_gc;
1589   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1590   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1591 
1592   // Let's make sure that they are both under the max heap size, which
1593   // by default will make them fit into a size_t.
1594   double desired_capacity_upper_bound = (double) max_heap_size;
1595   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1596                                     desired_capacity_upper_bound);
1597   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1598                                     desired_capacity_upper_bound);
1599 
1600   // We can now safely turn them into size_t's.
1601   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1602   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1603 
1604   // This assert only makes sense here, before we adjust them
1605   // with respect to the min and max heap size.
1606   assert(minimum_desired_capacity <= maximum_desired_capacity,
1607          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1608                  "maximum_desired_capacity = "SIZE_FORMAT,
1609                  minimum_desired_capacity, maximum_desired_capacity));
1610 
1611   // Should not be greater than the heap max size. No need to adjust
1612   // it with respect to the heap min size as it's a lower bound (i.e.,
1613   // we'll try to make the capacity larger than it, not smaller).
1614   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1615   // Should not be less than the heap min size. No need to adjust it
1616   // with respect to the heap max size as it's an upper bound (i.e.,
1617   // we'll try to make the capacity smaller than it, not greater).
1618   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1619 
1620   if (capacity_after_gc < minimum_desired_capacity) {
1621     // Don't expand unless it's significant
1622     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1623     ergo_verbose4(ErgoHeapSizing,
1624                   "attempt heap expansion",
1625                   ergo_format_reason("capacity lower than "
1626                                      "min desired capacity after Full GC")
1627                   ergo_format_byte("capacity")
1628                   ergo_format_byte("occupancy")
1629                   ergo_format_byte_perc("min desired capacity"),
1630                   capacity_after_gc, used_after_gc,
1631                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1632     expand(expand_bytes);
1633 
1634     // No expansion, now see if we want to shrink
1635   } else if (capacity_after_gc > maximum_desired_capacity) {
1636     // Capacity too large, compute shrinking size
1637     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1638     ergo_verbose4(ErgoHeapSizing,
1639                   "attempt heap shrinking",
1640                   ergo_format_reason("capacity higher than "
1641                                      "max desired capacity after Full GC")
1642                   ergo_format_byte("capacity")
1643                   ergo_format_byte("occupancy")
1644                   ergo_format_byte_perc("max desired capacity"),
1645                   capacity_after_gc, used_after_gc,
1646                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1647     shrink(shrink_bytes);
1648   }
1649 }
1650 
1651 
1652 HeapWord*
1653 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1654                                            bool* succeeded) {
1655   assert_at_safepoint(true /* should_be_vm_thread */);
1656 
1657   *succeeded = true;
1658   // Let's attempt the allocation first.
1659   HeapWord* result =
1660     attempt_allocation_at_safepoint(word_size,
1661                                  false /* expect_null_mutator_alloc_region */);
1662   if (result != NULL) {
1663     assert(*succeeded, "sanity");
1664     return result;
1665   }
1666 
1667   // In a G1 heap, we're supposed to keep allocation from failing by
1668   // incremental pauses.  Therefore, at least for now, we'll favor
1669   // expansion over collection.  (This might change in the future if we can
1670   // do something smarter than full collection to satisfy a failed alloc.)
1671   result = expand_and_allocate(word_size);
1672   if (result != NULL) {
1673     assert(*succeeded, "sanity");
1674     return result;
1675   }
1676 
1677   // Expansion didn't work, we'll try to do a Full GC.
1678   bool gc_succeeded = do_collection(false, /* explicit_gc */
1679                                     false, /* clear_all_soft_refs */
1680                                     word_size);
1681   if (!gc_succeeded) {
1682     *succeeded = false;
1683     return NULL;
1684   }
1685 
1686   // Retry the allocation
1687   result = attempt_allocation_at_safepoint(word_size,
1688                                   true /* expect_null_mutator_alloc_region */);
1689   if (result != NULL) {
1690     assert(*succeeded, "sanity");
1691     return result;
1692   }
1693 
1694   // Then, try a Full GC that will collect all soft references.
1695   gc_succeeded = do_collection(false, /* explicit_gc */
1696                                true,  /* clear_all_soft_refs */
1697                                word_size);
1698   if (!gc_succeeded) {
1699     *succeeded = false;
1700     return NULL;
1701   }
1702 
1703   // Retry the allocation once more
1704   result = attempt_allocation_at_safepoint(word_size,
1705                                   true /* expect_null_mutator_alloc_region */);
1706   if (result != NULL) {
1707     assert(*succeeded, "sanity");
1708     return result;
1709   }
1710 
1711   assert(!collector_policy()->should_clear_all_soft_refs(),
1712          "Flag should have been handled and cleared prior to this point");
1713 
1714   // What else?  We might try synchronous finalization later.  If the total
1715   // space available is large enough for the allocation, then a more
1716   // complete compaction phase than we've tried so far might be
1717   // appropriate.
1718   assert(*succeeded, "sanity");
1719   return NULL;
1720 }
1721 
1722 // Attempting to expand the heap sufficiently
1723 // to support an allocation of the given "word_size".  If
1724 // successful, perform the allocation and return the address of the
1725 // allocated block, or else "NULL".
1726 
1727 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1728   assert_at_safepoint(true /* should_be_vm_thread */);
1729 
1730   verify_region_sets_optional();
1731 
1732   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1733   ergo_verbose1(ErgoHeapSizing,
1734                 "attempt heap expansion",
1735                 ergo_format_reason("allocation request failed")
1736                 ergo_format_byte("allocation request"),
1737                 word_size * HeapWordSize);
1738   if (expand(expand_bytes)) {
1739     _hrs.verify_optional();
1740     verify_region_sets_optional();
1741     return attempt_allocation_at_safepoint(word_size,
1742                                  false /* expect_null_mutator_alloc_region */);
1743   }
1744   return NULL;
1745 }
1746 
1747 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1748                                              HeapWord* new_end) {
1749   assert(old_end != new_end, "don't call this otherwise");
1750   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1751 
1752   // Update the committed mem region.
1753   _g1_committed.set_end(new_end);
1754   // Tell the card table about the update.
1755   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1756   // Tell the BOT about the update.
1757   _bot_shared->resize(_g1_committed.word_size());
1758 }
1759 
1760 bool G1CollectedHeap::expand(size_t expand_bytes) {
1761   size_t old_mem_size = _g1_storage.committed_size();
1762   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1763   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1764                                        HeapRegion::GrainBytes);
1765   ergo_verbose2(ErgoHeapSizing,
1766                 "expand the heap",
1767                 ergo_format_byte("requested expansion amount")
1768                 ergo_format_byte("attempted expansion amount"),
1769                 expand_bytes, aligned_expand_bytes);
1770 
1771   // First commit the memory.
1772   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1773   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1774   if (successful) {
1775     // Then propagate this update to the necessary data structures.
1776     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1777     update_committed_space(old_end, new_end);
1778 
1779     FreeRegionList expansion_list("Local Expansion List");
1780     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1781     assert(mr.start() == old_end, "post-condition");
1782     // mr might be a smaller region than what was requested if
1783     // expand_by() was unable to allocate the HeapRegion instances
1784     assert(mr.end() <= new_end, "post-condition");
1785 
1786     size_t actual_expand_bytes = mr.byte_size();
1787     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1788     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1789            "post-condition");
1790     if (actual_expand_bytes < aligned_expand_bytes) {
1791       // We could not expand _hrs to the desired size. In this case we
1792       // need to shrink the committed space accordingly.
1793       assert(mr.end() < new_end, "invariant");
1794 
1795       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1796       // First uncommit the memory.
1797       _g1_storage.shrink_by(diff_bytes);
1798       // Then propagate this update to the necessary data structures.
1799       update_committed_space(new_end, mr.end());
1800     }
1801     _free_list.add_as_tail(&expansion_list);
1802 
1803     if (_hr_printer.is_active()) {
1804       HeapWord* curr = mr.start();
1805       while (curr < mr.end()) {
1806         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1807         _hr_printer.commit(curr, curr_end);
1808         curr = curr_end;
1809       }
1810       assert(curr == mr.end(), "post-condition");
1811     }
1812     g1_policy()->record_new_heap_size(n_regions());
1813   } else {
1814     ergo_verbose0(ErgoHeapSizing,
1815                   "did not expand the heap",
1816                   ergo_format_reason("heap expansion operation failed"));
1817     // The expansion of the virtual storage space was unsuccessful.
1818     // Let's see if it was because we ran out of swap.
1819     if (G1ExitOnExpansionFailure &&
1820         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1821       // We had head room...
1822       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1823     }
1824   }
1825   return successful;
1826 }
1827 
1828 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1829   size_t old_mem_size = _g1_storage.committed_size();
1830   size_t aligned_shrink_bytes =
1831     ReservedSpace::page_align_size_down(shrink_bytes);
1832   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1833                                          HeapRegion::GrainBytes);
1834   uint num_regions_deleted = 0;
1835   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1836   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1837   assert(mr.end() == old_end, "post-condition");
1838 
1839   ergo_verbose3(ErgoHeapSizing,
1840                 "shrink the heap",
1841                 ergo_format_byte("requested shrinking amount")
1842                 ergo_format_byte("aligned shrinking amount")
1843                 ergo_format_byte("attempted shrinking amount"),
1844                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1845   if (mr.byte_size() > 0) {
1846     if (_hr_printer.is_active()) {
1847       HeapWord* curr = mr.end();
1848       while (curr > mr.start()) {
1849         HeapWord* curr_end = curr;
1850         curr -= HeapRegion::GrainWords;
1851         _hr_printer.uncommit(curr, curr_end);
1852       }
1853       assert(curr == mr.start(), "post-condition");
1854     }
1855 
1856     _g1_storage.shrink_by(mr.byte_size());
1857     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1858     assert(mr.start() == new_end, "post-condition");
1859 
1860     _expansion_regions += num_regions_deleted;
1861     update_committed_space(old_end, new_end);
1862     HeapRegionRemSet::shrink_heap(n_regions());
1863     g1_policy()->record_new_heap_size(n_regions());
1864   } else {
1865     ergo_verbose0(ErgoHeapSizing,
1866                   "did not shrink the heap",
1867                   ergo_format_reason("heap shrinking operation failed"));
1868   }
1869 }
1870 
1871 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1872   verify_region_sets_optional();
1873 
1874   // We should only reach here at the end of a Full GC which means we
1875   // should not not be holding to any GC alloc regions. The method
1876   // below will make sure of that and do any remaining clean up.
1877   abandon_gc_alloc_regions();
1878 
1879   // Instead of tearing down / rebuilding the free lists here, we
1880   // could instead use the remove_all_pending() method on free_list to
1881   // remove only the ones that we need to remove.
1882   tear_down_region_sets(true /* free_list_only */);
1883   shrink_helper(shrink_bytes);
1884   rebuild_region_sets(true /* free_list_only */);
1885 
1886   _hrs.verify_optional();
1887   verify_region_sets_optional();
1888 }
1889 
1890 // Public methods.
1891 
1892 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1893 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1894 #endif // _MSC_VER
1895 
1896 
1897 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1898   SharedHeap(policy_),
1899   _g1_policy(policy_),
1900   _dirty_card_queue_set(false),
1901   _into_cset_dirty_card_queue_set(false),
1902   _is_alive_closure_cm(this),
1903   _is_alive_closure_stw(this),
1904   _ref_processor_cm(NULL),
1905   _ref_processor_stw(NULL),
1906   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1907   _bot_shared(NULL),
1908   _evac_failure_scan_stack(NULL) ,
1909   _mark_in_progress(false),
1910   _cg1r(NULL), _summary_bytes_used(0),
1911   _g1mm(NULL),
1912   _refine_cte_cl(NULL),
1913   _full_collection(false),
1914   _free_list("Master Free List"),
1915   _secondary_free_list("Secondary Free List"),
1916   _old_set("Old Set"),
1917   _humongous_set("Master Humongous Set"),
1918   _free_regions_coming(false),
1919   _young_list(new YoungList(this)),
1920   _gc_time_stamp(0),
1921   _retained_old_gc_alloc_region(NULL),
1922   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1923   _old_plab_stats(OldPLABSize, PLABWeight),
1924   _expand_heap_after_alloc_failure(true),
1925   _surviving_young_words(NULL),
1926   _old_marking_cycles_started(0),
1927   _old_marking_cycles_completed(0),
1928   _concurrent_cycle_started(false),
1929   _in_cset_fast_test(NULL),
1930   _in_cset_fast_test_base(NULL),
1931   _dirty_cards_region_list(NULL),
1932   _worker_cset_start_region(NULL),
1933   _worker_cset_start_region_time_stamp(NULL),
1934   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1935   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1936   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1937   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1938 
1939   _g1h = this;
1940   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1941     vm_exit_during_initialization("Failed necessary allocation.");
1942   }
1943 
1944   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1945 
1946   int n_queues = MAX2((int)ParallelGCThreads, 1);
1947   _task_queues = new RefToScanQueueSet(n_queues);
1948 
1949   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1950   assert(n_rem_sets > 0, "Invariant.");
1951 
1952   HeapRegionRemSetIterator** iter_arr =
1953     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
1954   for (int i = 0; i < n_queues; i++) {
1955     iter_arr[i] = new HeapRegionRemSetIterator();
1956   }
1957   _rem_set_iterator = iter_arr;
1958 
1959   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1960   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1961 
1962   for (int i = 0; i < n_queues; i++) {
1963     RefToScanQueue* q = new RefToScanQueue();
1964     q->initialize();
1965     _task_queues->register_queue(i, q);
1966   }
1967 
1968   clear_cset_start_regions();
1969 
1970   // Initialize the G1EvacuationFailureALot counters and flags.
1971   NOT_PRODUCT(reset_evacuation_should_fail();)
1972 
1973   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1974 }
1975 
1976 jint G1CollectedHeap::initialize() {
1977   CollectedHeap::pre_initialize();
1978   os::enable_vtime();
1979 
1980   G1Log::init();
1981 
1982   // Necessary to satisfy locking discipline assertions.
1983 
1984   MutexLocker x(Heap_lock);
1985 
1986   // We have to initialize the printer before committing the heap, as
1987   // it will be used then.
1988   _hr_printer.set_active(G1PrintHeapRegions);
1989 
1990   // While there are no constraints in the GC code that HeapWordSize
1991   // be any particular value, there are multiple other areas in the
1992   // system which believe this to be true (e.g. oop->object_size in some
1993   // cases incorrectly returns the size in wordSize units rather than
1994   // HeapWordSize).
1995   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1996 
1997   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1998   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1999 
2000   // Ensure that the sizes are properly aligned.
2001   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2002   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2003 
2004   _cg1r = new ConcurrentG1Refine();
2005 
2006   // Reserve the maximum.
2007   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
2008   // Includes the perm-gen.
2009 
2010   // When compressed oops are enabled, the preferred heap base
2011   // is calculated by subtracting the requested size from the
2012   // 32Gb boundary and using the result as the base address for
2013   // heap reservation. If the requested size is not aligned to
2014   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2015   // into the ReservedHeapSpace constructor) then the actual
2016   // base of the reserved heap may end up differing from the
2017   // address that was requested (i.e. the preferred heap base).
2018   // If this happens then we could end up using a non-optimal
2019   // compressed oops mode.
2020 
2021   // Since max_byte_size is aligned to the size of a heap region (checked
2022   // above), we also need to align the perm gen size as it might not be.
2023   const size_t total_reserved = max_byte_size +
2024                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
2025   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
2026 
2027   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
2028 
2029   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
2030                             UseLargePages, addr);
2031 
2032   if (UseCompressedOops) {
2033     if (addr != NULL && !heap_rs.is_reserved()) {
2034       // Failed to reserve at specified address - the requested memory
2035       // region is taken already, for example, by 'java' launcher.
2036       // Try again to reserver heap higher.
2037       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
2038 
2039       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
2040                                  UseLargePages, addr);
2041 
2042       if (addr != NULL && !heap_rs0.is_reserved()) {
2043         // Failed to reserve at specified address again - give up.
2044         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
2045         assert(addr == NULL, "");
2046 
2047         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
2048                                    UseLargePages, addr);
2049         heap_rs = heap_rs1;
2050       } else {
2051         heap_rs = heap_rs0;
2052       }
2053     }
2054   }
2055 
2056   if (!heap_rs.is_reserved()) {
2057     vm_exit_during_initialization("Could not reserve enough space for object heap");
2058     return JNI_ENOMEM;
2059   }
2060 
2061   // It is important to do this in a way such that concurrent readers can't
2062   // temporarily think something is in the heap.  (I've actually seen this
2063   // happen in asserts: DLD.)
2064   _reserved.set_word_size(0);
2065   _reserved.set_start((HeapWord*)heap_rs.base());
2066   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2067 
2068   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2069 
2070   // Create the gen rem set (and barrier set) for the entire reserved region.
2071   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2072   set_barrier_set(rem_set()->bs());
2073   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2074     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2075   } else {
2076     vm_exit_during_initialization("G1 requires a mod ref bs.");
2077     return JNI_ENOMEM;
2078   }
2079 
2080   // Also create a G1 rem set.
2081   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2082     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2083   } else {
2084     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2085     return JNI_ENOMEM;
2086   }
2087 
2088   // Carve out the G1 part of the heap.
2089 
2090   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2091   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2092                            g1_rs.size()/HeapWordSize);
2093   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
2094 
2095   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
2096 
2097   _g1_storage.initialize(g1_rs, 0);
2098   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2099   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2100                   (HeapWord*) _g1_reserved.end(),
2101                   _expansion_regions);
2102 
2103   // 6843694 - ensure that the maximum region index can fit
2104   // in the remembered set structures.
2105   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2106   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2107 
2108   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2109   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2110   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2111             "too many cards per region");
2112 
2113   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2114 
2115   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2116                                              heap_word_size(init_byte_size));
2117 
2118   _g1h = this;
2119 
2120    _in_cset_fast_test_length = max_regions();
2121    _in_cset_fast_test_base =
2122                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2123 
2124    // We're biasing _in_cset_fast_test to avoid subtracting the
2125    // beginning of the heap every time we want to index; basically
2126    // it's the same with what we do with the card table.
2127    _in_cset_fast_test = _in_cset_fast_test_base -
2128                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2129 
2130    // Clear the _cset_fast_test bitmap in anticipation of adding
2131    // regions to the incremental collection set for the first
2132    // evacuation pause.
2133    clear_cset_fast_test();
2134 
2135   // Create the ConcurrentMark data structure and thread.
2136   // (Must do this late, so that "max_regions" is defined.)
2137   _cm       = new ConcurrentMark(heap_rs, max_regions());
2138   _cmThread = _cm->cmThread();
2139 
2140   // Initialize the from_card cache structure of HeapRegionRemSet.
2141   HeapRegionRemSet::init_heap(max_regions());
2142 
2143   // Now expand into the initial heap size.
2144   if (!expand(init_byte_size)) {
2145     vm_exit_during_initialization("Failed to allocate initial heap.");
2146     return JNI_ENOMEM;
2147   }
2148 
2149   // Perform any initialization actions delegated to the policy.
2150   g1_policy()->init();
2151 
2152   _refine_cte_cl =
2153     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2154                                     g1_rem_set(),
2155                                     concurrent_g1_refine());
2156   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2157 
2158   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2159                                                SATB_Q_FL_lock,
2160                                                G1SATBProcessCompletedThreshold,
2161                                                Shared_SATB_Q_lock);
2162 
2163   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2164                                                 DirtyCardQ_FL_lock,
2165                                                 concurrent_g1_refine()->yellow_zone(),
2166                                                 concurrent_g1_refine()->red_zone(),
2167                                                 Shared_DirtyCardQ_lock);
2168 
2169   if (G1DeferredRSUpdate) {
2170     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2171                                       DirtyCardQ_FL_lock,
2172                                       -1, // never trigger processing
2173                                       -1, // no limit on length
2174                                       Shared_DirtyCardQ_lock,
2175                                       &JavaThread::dirty_card_queue_set());
2176   }
2177 
2178   // Initialize the card queue set used to hold cards containing
2179   // references into the collection set.
2180   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2181                                              DirtyCardQ_FL_lock,
2182                                              -1, // never trigger processing
2183                                              -1, // no limit on length
2184                                              Shared_DirtyCardQ_lock,
2185                                              &JavaThread::dirty_card_queue_set());
2186 
2187   // In case we're keeping closure specialization stats, initialize those
2188   // counts and that mechanism.
2189   SpecializationStats::clear();
2190 
2191   // Do later initialization work for concurrent refinement.
2192   _cg1r->init();
2193 
2194   // Here we allocate the dummy full region that is required by the
2195   // G1AllocRegion class. If we don't pass an address in the reserved
2196   // space here, lots of asserts fire.
2197 
2198   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2199                                              _g1_reserved.start());
2200   // We'll re-use the same region whether the alloc region will
2201   // require BOT updates or not and, if it doesn't, then a non-young
2202   // region will complain that it cannot support allocations without
2203   // BOT updates. So we'll tag the dummy region as young to avoid that.
2204   dummy_region->set_young();
2205   // Make sure it's full.
2206   dummy_region->set_top(dummy_region->end());
2207   G1AllocRegion::setup(this, dummy_region);
2208 
2209   init_mutator_alloc_region();
2210 
2211   // Do create of the monitoring and management support so that
2212   // values in the heap have been properly initialized.
2213   _g1mm = new G1MonitoringSupport(this);
2214 
2215   return JNI_OK;
2216 }
2217 
2218 void G1CollectedHeap::ref_processing_init() {
2219   // Reference processing in G1 currently works as follows:
2220   //
2221   // * There are two reference processor instances. One is
2222   //   used to record and process discovered references
2223   //   during concurrent marking; the other is used to
2224   //   record and process references during STW pauses
2225   //   (both full and incremental).
2226   // * Both ref processors need to 'span' the entire heap as
2227   //   the regions in the collection set may be dotted around.
2228   //
2229   // * For the concurrent marking ref processor:
2230   //   * Reference discovery is enabled at initial marking.
2231   //   * Reference discovery is disabled and the discovered
2232   //     references processed etc during remarking.
2233   //   * Reference discovery is MT (see below).
2234   //   * Reference discovery requires a barrier (see below).
2235   //   * Reference processing may or may not be MT
2236   //     (depending on the value of ParallelRefProcEnabled
2237   //     and ParallelGCThreads).
2238   //   * A full GC disables reference discovery by the CM
2239   //     ref processor and abandons any entries on it's
2240   //     discovered lists.
2241   //
2242   // * For the STW processor:
2243   //   * Non MT discovery is enabled at the start of a full GC.
2244   //   * Processing and enqueueing during a full GC is non-MT.
2245   //   * During a full GC, references are processed after marking.
2246   //
2247   //   * Discovery (may or may not be MT) is enabled at the start
2248   //     of an incremental evacuation pause.
2249   //   * References are processed near the end of a STW evacuation pause.
2250   //   * For both types of GC:
2251   //     * Discovery is atomic - i.e. not concurrent.
2252   //     * Reference discovery will not need a barrier.
2253 
2254   SharedHeap::ref_processing_init();
2255   MemRegion mr = reserved_region();
2256 
2257   // Concurrent Mark ref processor
2258   _ref_processor_cm =
2259     new ReferenceProcessor(mr,    // span
2260                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2261                                 // mt processing
2262                            (int) ParallelGCThreads,
2263                                 // degree of mt processing
2264                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2265                                 // mt discovery
2266                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2267                                 // degree of mt discovery
2268                            false,
2269                                 // Reference discovery is not atomic
2270                            &_is_alive_closure_cm,
2271                                 // is alive closure
2272                                 // (for efficiency/performance)
2273                            true);
2274                                 // Setting next fields of discovered
2275                                 // lists requires a barrier.
2276 
2277   // STW ref processor
2278   _ref_processor_stw =
2279     new ReferenceProcessor(mr,    // span
2280                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2281                                 // mt processing
2282                            MAX2((int)ParallelGCThreads, 1),
2283                                 // degree of mt processing
2284                            (ParallelGCThreads > 1),
2285                                 // mt discovery
2286                            MAX2((int)ParallelGCThreads, 1),
2287                                 // degree of mt discovery
2288                            true,
2289                                 // Reference discovery is atomic
2290                            &_is_alive_closure_stw,
2291                                 // is alive closure
2292                                 // (for efficiency/performance)
2293                            false);
2294                                 // Setting next fields of discovered
2295                                 // lists requires a barrier.
2296 }
2297 
2298 size_t G1CollectedHeap::capacity() const {
2299   return _g1_committed.byte_size();
2300 }
2301 
2302 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2303   assert(!hr->continuesHumongous(), "pre-condition");
2304   hr->reset_gc_time_stamp();
2305   if (hr->startsHumongous()) {
2306     uint first_index = hr->hrs_index() + 1;
2307     uint last_index = hr->last_hc_index();
2308     for (uint i = first_index; i < last_index; i += 1) {
2309       HeapRegion* chr = region_at(i);
2310       assert(chr->continuesHumongous(), "sanity");
2311       chr->reset_gc_time_stamp();
2312     }
2313   }
2314 }
2315 
2316 #ifndef PRODUCT
2317 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2318 private:
2319   unsigned _gc_time_stamp;
2320   bool _failures;
2321 
2322 public:
2323   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2324     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2325 
2326   virtual bool doHeapRegion(HeapRegion* hr) {
2327     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2328     if (_gc_time_stamp != region_gc_time_stamp) {
2329       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2330                              "expected %d", HR_FORMAT_PARAMS(hr),
2331                              region_gc_time_stamp, _gc_time_stamp);
2332       _failures = true;
2333     }
2334     return false;
2335   }
2336 
2337   bool failures() { return _failures; }
2338 };
2339 
2340 void G1CollectedHeap::check_gc_time_stamps() {
2341   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2342   heap_region_iterate(&cl);
2343   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2344 }
2345 #endif // PRODUCT
2346 
2347 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2348                                                  DirtyCardQueue* into_cset_dcq,
2349                                                  bool concurrent,
2350                                                  int worker_i) {
2351   // Clean cards in the hot card cache
2352   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2353 
2354   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2355   int n_completed_buffers = 0;
2356   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2357     n_completed_buffers++;
2358   }
2359   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2360   dcqs.clear_n_completed_buffers();
2361   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2362 }
2363 
2364 
2365 // Computes the sum of the storage used by the various regions.
2366 
2367 size_t G1CollectedHeap::used() const {
2368   assert(Heap_lock->owner() != NULL,
2369          "Should be owned on this thread's behalf.");
2370   size_t result = _summary_bytes_used;
2371   // Read only once in case it is set to NULL concurrently
2372   HeapRegion* hr = _mutator_alloc_region.get();
2373   if (hr != NULL)
2374     result += hr->used();
2375   return result;
2376 }
2377 
2378 size_t G1CollectedHeap::used_unlocked() const {
2379   size_t result = _summary_bytes_used;
2380   return result;
2381 }
2382 
2383 class SumUsedClosure: public HeapRegionClosure {
2384   size_t _used;
2385 public:
2386   SumUsedClosure() : _used(0) {}
2387   bool doHeapRegion(HeapRegion* r) {
2388     if (!r->continuesHumongous()) {
2389       _used += r->used();
2390     }
2391     return false;
2392   }
2393   size_t result() { return _used; }
2394 };
2395 
2396 size_t G1CollectedHeap::recalculate_used() const {
2397   SumUsedClosure blk;
2398   heap_region_iterate(&blk);
2399   return blk.result();
2400 }
2401 
2402 size_t G1CollectedHeap::unsafe_max_alloc() {
2403   if (free_regions() > 0) return HeapRegion::GrainBytes;
2404   // otherwise, is there space in the current allocation region?
2405 
2406   // We need to store the current allocation region in a local variable
2407   // here. The problem is that this method doesn't take any locks and
2408   // there may be other threads which overwrite the current allocation
2409   // region field. attempt_allocation(), for example, sets it to NULL
2410   // and this can happen *after* the NULL check here but before the call
2411   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2412   // to be a problem in the optimized build, since the two loads of the
2413   // current allocation region field are optimized away.
2414   HeapRegion* hr = _mutator_alloc_region.get();
2415   if (hr == NULL) {
2416     return 0;
2417   }
2418   return hr->free();
2419 }
2420 
2421 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2422   switch (cause) {
2423     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2424     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2425     case GCCause::_g1_humongous_allocation: return true;
2426     default:                                return false;
2427   }
2428 }
2429 
2430 #ifndef PRODUCT
2431 void G1CollectedHeap::allocate_dummy_regions() {
2432   // Let's fill up most of the region
2433   size_t word_size = HeapRegion::GrainWords - 1024;
2434   // And as a result the region we'll allocate will be humongous.
2435   guarantee(isHumongous(word_size), "sanity");
2436 
2437   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2438     // Let's use the existing mechanism for the allocation
2439     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2440     if (dummy_obj != NULL) {
2441       MemRegion mr(dummy_obj, word_size);
2442       CollectedHeap::fill_with_object(mr);
2443     } else {
2444       // If we can't allocate once, we probably cannot allocate
2445       // again. Let's get out of the loop.
2446       break;
2447     }
2448   }
2449 }
2450 #endif // !PRODUCT
2451 
2452 void G1CollectedHeap::increment_old_marking_cycles_started() {
2453   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2454     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2455     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2456     _old_marking_cycles_started, _old_marking_cycles_completed));
2457 
2458   _old_marking_cycles_started++;
2459 }
2460 
2461 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2462   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2463 
2464   // We assume that if concurrent == true, then the caller is a
2465   // concurrent thread that was joined the Suspendible Thread
2466   // Set. If there's ever a cheap way to check this, we should add an
2467   // assert here.
2468 
2469   // Given that this method is called at the end of a Full GC or of a
2470   // concurrent cycle, and those can be nested (i.e., a Full GC can
2471   // interrupt a concurrent cycle), the number of full collections
2472   // completed should be either one (in the case where there was no
2473   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2474   // behind the number of full collections started.
2475 
2476   // This is the case for the inner caller, i.e. a Full GC.
2477   assert(concurrent ||
2478          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2479          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2480          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2481                  "is inconsistent with _old_marking_cycles_completed = %u",
2482                  _old_marking_cycles_started, _old_marking_cycles_completed));
2483 
2484   // This is the case for the outer caller, i.e. the concurrent cycle.
2485   assert(!concurrent ||
2486          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2487          err_msg("for outer caller (concurrent cycle): "
2488                  "_old_marking_cycles_started = %u "
2489                  "is inconsistent with _old_marking_cycles_completed = %u",
2490                  _old_marking_cycles_started, _old_marking_cycles_completed));
2491 
2492   _old_marking_cycles_completed += 1;
2493 
2494   // We need to clear the "in_progress" flag in the CM thread before
2495   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2496   // is set) so that if a waiter requests another System.gc() it doesn't
2497   // incorrectly see that a marking cycle is still in progress.
2498   if (concurrent) {
2499     _cmThread->clear_in_progress();
2500   }
2501 
2502   // This notify_all() will ensure that a thread that called
2503   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2504   // and it's waiting for a full GC to finish will be woken up. It is
2505   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2506   FullGCCount_lock->notify_all();
2507 }
2508 
2509 void G1CollectedHeap::register_concurrent_cycle_start(jlong start_time) {
2510   _concurrent_cycle_started = true;
2511   _gc_timer_cm->register_gc_start(start_time);
2512 
2513   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2514   trace_heap_before_gc(_gc_tracer_cm);
2515 }
2516 
2517 void G1CollectedHeap::register_concurrent_cycle_end() {
2518   if (_concurrent_cycle_started) {
2519     _gc_timer_cm->register_gc_end(os::elapsed_counter());
2520 
2521     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2522 
2523     _concurrent_cycle_started = false;
2524   }
2525 }
2526 
2527 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2528   if (_concurrent_cycle_started) {
2529     trace_heap_after_gc(_gc_tracer_cm);
2530   }
2531 }
2532 
2533 G1YCType G1CollectedHeap::yc_type() {
2534   bool is_young = g1_policy()->gcs_are_young();
2535   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2536   bool is_during_mark = mark_in_progress();
2537 
2538   if (is_initial_mark) {
2539     return InitialMark;
2540   } else if (is_during_mark) {
2541     return DuringMark;
2542   } else if (is_young) {
2543     return Normal;
2544   } else {
2545     return Mixed;
2546   }
2547 }
2548 
2549 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2550   assert_at_safepoint(true /* should_be_vm_thread */);
2551   GCCauseSetter gcs(this, cause);
2552   switch (cause) {
2553     case GCCause::_heap_inspection:
2554     case GCCause::_heap_dump: {
2555       HandleMark hm;
2556       do_full_collection(false);         // don't clear all soft refs
2557       break;
2558     }
2559     default: // XXX FIX ME
2560       ShouldNotReachHere(); // Unexpected use of this function
2561   }
2562 }
2563 
2564 void G1CollectedHeap::collect(GCCause::Cause cause) {
2565   assert_heap_not_locked();
2566 
2567   unsigned int gc_count_before;
2568   unsigned int old_marking_count_before;
2569   bool retry_gc;
2570 
2571   do {
2572     retry_gc = false;
2573 
2574     {
2575       MutexLocker ml(Heap_lock);
2576 
2577       // Read the GC count while holding the Heap_lock
2578       gc_count_before = total_collections();
2579       old_marking_count_before = _old_marking_cycles_started;
2580     }
2581 
2582     if (should_do_concurrent_full_gc(cause)) {
2583       // Schedule an initial-mark evacuation pause that will start a
2584       // concurrent cycle. We're setting word_size to 0 which means that
2585       // we are not requesting a post-GC allocation.
2586       VM_G1IncCollectionPause op(gc_count_before,
2587                                  0,     /* word_size */
2588                                  true,  /* should_initiate_conc_mark */
2589                                  g1_policy()->max_pause_time_ms(),
2590                                  cause);
2591 
2592       VMThread::execute(&op);
2593       if (!op.pause_succeeded()) {
2594         if (old_marking_count_before == _old_marking_cycles_started) {
2595           retry_gc = op.should_retry_gc();
2596         } else {
2597           // A Full GC happened while we were trying to schedule the
2598           // initial-mark GC. No point in starting a new cycle given
2599           // that the whole heap was collected anyway.
2600         }
2601 
2602         if (retry_gc) {
2603           if (GC_locker::is_active_and_needs_gc()) {
2604             GC_locker::stall_until_clear();
2605           }
2606         }
2607       }
2608     } else {
2609       if (cause == GCCause::_gc_locker
2610           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2611 
2612         // Schedule a standard evacuation pause. We're setting word_size
2613         // to 0 which means that we are not requesting a post-GC allocation.
2614         VM_G1IncCollectionPause op(gc_count_before,
2615                                    0,     /* word_size */
2616                                    false, /* should_initiate_conc_mark */
2617                                    g1_policy()->max_pause_time_ms(),
2618                                    cause);
2619         VMThread::execute(&op);
2620       } else {
2621         // Schedule a Full GC.
2622         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2623         VMThread::execute(&op);
2624       }
2625     }
2626   } while (retry_gc);
2627 }
2628 
2629 bool G1CollectedHeap::is_in(const void* p) const {
2630   if (_g1_committed.contains(p)) {
2631     // Given that we know that p is in the committed space,
2632     // heap_region_containing_raw() should successfully
2633     // return the containing region.
2634     HeapRegion* hr = heap_region_containing_raw(p);
2635     return hr->is_in(p);
2636   } else {
2637     return _perm_gen->as_gen()->is_in(p);
2638   }
2639 }
2640 
2641 // Iteration functions.
2642 
2643 // Iterates an OopClosure over all ref-containing fields of objects
2644 // within a HeapRegion.
2645 
2646 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2647   MemRegion _mr;
2648   OopClosure* _cl;
2649 public:
2650   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2651     : _mr(mr), _cl(cl) {}
2652   bool doHeapRegion(HeapRegion* r) {
2653     if (!r->continuesHumongous()) {
2654       r->oop_iterate(_cl);
2655     }
2656     return false;
2657   }
2658 };
2659 
2660 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2661   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2662   heap_region_iterate(&blk);
2663   if (do_perm) {
2664     perm_gen()->oop_iterate(cl);
2665   }
2666 }
2667 
2668 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2669   IterateOopClosureRegionClosure blk(mr, cl);
2670   heap_region_iterate(&blk);
2671   if (do_perm) {
2672     perm_gen()->oop_iterate(cl);
2673   }
2674 }
2675 
2676 // Iterates an ObjectClosure over all objects within a HeapRegion.
2677 
2678 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2679   ObjectClosure* _cl;
2680 public:
2681   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2682   bool doHeapRegion(HeapRegion* r) {
2683     if (! r->continuesHumongous()) {
2684       r->object_iterate(_cl);
2685     }
2686     return false;
2687   }
2688 };
2689 
2690 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2691   IterateObjectClosureRegionClosure blk(cl);
2692   heap_region_iterate(&blk);
2693   if (do_perm) {
2694     perm_gen()->object_iterate(cl);
2695   }
2696 }
2697 
2698 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2699   // FIXME: is this right?
2700   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2701 }
2702 
2703 // Calls a SpaceClosure on a HeapRegion.
2704 
2705 class SpaceClosureRegionClosure: public HeapRegionClosure {
2706   SpaceClosure* _cl;
2707 public:
2708   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2709   bool doHeapRegion(HeapRegion* r) {
2710     _cl->do_space(r);
2711     return false;
2712   }
2713 };
2714 
2715 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2716   SpaceClosureRegionClosure blk(cl);
2717   heap_region_iterate(&blk);
2718 }
2719 
2720 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2721   _hrs.iterate(cl);
2722 }
2723 
2724 void
2725 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2726                                                  uint worker_id,
2727                                                  uint no_of_par_workers,
2728                                                  jint claim_value) {
2729   const uint regions = n_regions();
2730   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2731                              no_of_par_workers :
2732                              1);
2733   assert(UseDynamicNumberOfGCThreads ||
2734          no_of_par_workers == workers()->total_workers(),
2735          "Non dynamic should use fixed number of workers");
2736   // try to spread out the starting points of the workers
2737   const HeapRegion* start_hr =
2738                         start_region_for_worker(worker_id, no_of_par_workers);
2739   const uint start_index = start_hr->hrs_index();
2740 
2741   // each worker will actually look at all regions
2742   for (uint count = 0; count < regions; ++count) {
2743     const uint index = (start_index + count) % regions;
2744     assert(0 <= index && index < regions, "sanity");
2745     HeapRegion* r = region_at(index);
2746     // we'll ignore "continues humongous" regions (we'll process them
2747     // when we come across their corresponding "start humongous"
2748     // region) and regions already claimed
2749     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2750       continue;
2751     }
2752     // OK, try to claim it
2753     if (r->claimHeapRegion(claim_value)) {
2754       // success!
2755       assert(!r->continuesHumongous(), "sanity");
2756       if (r->startsHumongous()) {
2757         // If the region is "starts humongous" we'll iterate over its
2758         // "continues humongous" first; in fact we'll do them
2759         // first. The order is important. In on case, calling the
2760         // closure on the "starts humongous" region might de-allocate
2761         // and clear all its "continues humongous" regions and, as a
2762         // result, we might end up processing them twice. So, we'll do
2763         // them first (notice: most closures will ignore them anyway) and
2764         // then we'll do the "starts humongous" region.
2765         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2766           HeapRegion* chr = region_at(ch_index);
2767 
2768           // if the region has already been claimed or it's not
2769           // "continues humongous" we're done
2770           if (chr->claim_value() == claim_value ||
2771               !chr->continuesHumongous()) {
2772             break;
2773           }
2774 
2775           // Noone should have claimed it directly. We can given
2776           // that we claimed its "starts humongous" region.
2777           assert(chr->claim_value() != claim_value, "sanity");
2778           assert(chr->humongous_start_region() == r, "sanity");
2779 
2780           if (chr->claimHeapRegion(claim_value)) {
2781             // we should always be able to claim it; noone else should
2782             // be trying to claim this region
2783 
2784             bool res2 = cl->doHeapRegion(chr);
2785             assert(!res2, "Should not abort");
2786 
2787             // Right now, this holds (i.e., no closure that actually
2788             // does something with "continues humongous" regions
2789             // clears them). We might have to weaken it in the future,
2790             // but let's leave these two asserts here for extra safety.
2791             assert(chr->continuesHumongous(), "should still be the case");
2792             assert(chr->humongous_start_region() == r, "sanity");
2793           } else {
2794             guarantee(false, "we should not reach here");
2795           }
2796         }
2797       }
2798 
2799       assert(!r->continuesHumongous(), "sanity");
2800       bool res = cl->doHeapRegion(r);
2801       assert(!res, "Should not abort");
2802     }
2803   }
2804 }
2805 
2806 class ResetClaimValuesClosure: public HeapRegionClosure {
2807 public:
2808   bool doHeapRegion(HeapRegion* r) {
2809     r->set_claim_value(HeapRegion::InitialClaimValue);
2810     return false;
2811   }
2812 };
2813 
2814 void G1CollectedHeap::reset_heap_region_claim_values() {
2815   ResetClaimValuesClosure blk;
2816   heap_region_iterate(&blk);
2817 }
2818 
2819 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2820   ResetClaimValuesClosure blk;
2821   collection_set_iterate(&blk);
2822 }
2823 
2824 #ifdef ASSERT
2825 // This checks whether all regions in the heap have the correct claim
2826 // value. I also piggy-backed on this a check to ensure that the
2827 // humongous_start_region() information on "continues humongous"
2828 // regions is correct.
2829 
2830 class CheckClaimValuesClosure : public HeapRegionClosure {
2831 private:
2832   jint _claim_value;
2833   uint _failures;
2834   HeapRegion* _sh_region;
2835 
2836 public:
2837   CheckClaimValuesClosure(jint claim_value) :
2838     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2839   bool doHeapRegion(HeapRegion* r) {
2840     if (r->claim_value() != _claim_value) {
2841       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2842                              "claim value = %d, should be %d",
2843                              HR_FORMAT_PARAMS(r),
2844                              r->claim_value(), _claim_value);
2845       ++_failures;
2846     }
2847     if (!r->isHumongous()) {
2848       _sh_region = NULL;
2849     } else if (r->startsHumongous()) {
2850       _sh_region = r;
2851     } else if (r->continuesHumongous()) {
2852       if (r->humongous_start_region() != _sh_region) {
2853         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2854                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2855                                HR_FORMAT_PARAMS(r),
2856                                r->humongous_start_region(),
2857                                _sh_region);
2858         ++_failures;
2859       }
2860     }
2861     return false;
2862   }
2863   uint failures() { return _failures; }
2864 };
2865 
2866 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2867   CheckClaimValuesClosure cl(claim_value);
2868   heap_region_iterate(&cl);
2869   return cl.failures() == 0;
2870 }
2871 
2872 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2873 private:
2874   jint _claim_value;
2875   uint _failures;
2876 
2877 public:
2878   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2879     _claim_value(claim_value), _failures(0) { }
2880 
2881   uint failures() { return _failures; }
2882 
2883   bool doHeapRegion(HeapRegion* hr) {
2884     assert(hr->in_collection_set(), "how?");
2885     assert(!hr->isHumongous(), "H-region in CSet");
2886     if (hr->claim_value() != _claim_value) {
2887       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2888                              "claim value = %d, should be %d",
2889                              HR_FORMAT_PARAMS(hr),
2890                              hr->claim_value(), _claim_value);
2891       _failures += 1;
2892     }
2893     return false;
2894   }
2895 };
2896 
2897 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2898   CheckClaimValuesInCSetHRClosure cl(claim_value);
2899   collection_set_iterate(&cl);
2900   return cl.failures() == 0;
2901 }
2902 #endif // ASSERT
2903 
2904 // Clear the cached CSet starting regions and (more importantly)
2905 // the time stamps. Called when we reset the GC time stamp.
2906 void G1CollectedHeap::clear_cset_start_regions() {
2907   assert(_worker_cset_start_region != NULL, "sanity");
2908   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2909 
2910   int n_queues = MAX2((int)ParallelGCThreads, 1);
2911   for (int i = 0; i < n_queues; i++) {
2912     _worker_cset_start_region[i] = NULL;
2913     _worker_cset_start_region_time_stamp[i] = 0;
2914   }
2915 }
2916 
2917 // Given the id of a worker, obtain or calculate a suitable
2918 // starting region for iterating over the current collection set.
2919 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2920   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2921 
2922   HeapRegion* result = NULL;
2923   unsigned gc_time_stamp = get_gc_time_stamp();
2924 
2925   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2926     // Cached starting region for current worker was set
2927     // during the current pause - so it's valid.
2928     // Note: the cached starting heap region may be NULL
2929     // (when the collection set is empty).
2930     result = _worker_cset_start_region[worker_i];
2931     assert(result == NULL || result->in_collection_set(), "sanity");
2932     return result;
2933   }
2934 
2935   // The cached entry was not valid so let's calculate
2936   // a suitable starting heap region for this worker.
2937 
2938   // We want the parallel threads to start their collection
2939   // set iteration at different collection set regions to
2940   // avoid contention.
2941   // If we have:
2942   //          n collection set regions
2943   //          p threads
2944   // Then thread t will start at region floor ((t * n) / p)
2945 
2946   result = g1_policy()->collection_set();
2947   if (G1CollectedHeap::use_parallel_gc_threads()) {
2948     uint cs_size = g1_policy()->cset_region_length();
2949     uint active_workers = workers()->active_workers();
2950     assert(UseDynamicNumberOfGCThreads ||
2951              active_workers == workers()->total_workers(),
2952              "Unless dynamic should use total workers");
2953 
2954     uint end_ind   = (cs_size * worker_i) / active_workers;
2955     uint start_ind = 0;
2956 
2957     if (worker_i > 0 &&
2958         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2959       // Previous workers starting region is valid
2960       // so let's iterate from there
2961       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2962       result = _worker_cset_start_region[worker_i - 1];
2963     }
2964 
2965     for (uint i = start_ind; i < end_ind; i++) {
2966       result = result->next_in_collection_set();
2967     }
2968   }
2969 
2970   // Note: the calculated starting heap region may be NULL
2971   // (when the collection set is empty).
2972   assert(result == NULL || result->in_collection_set(), "sanity");
2973   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2974          "should be updated only once per pause");
2975   _worker_cset_start_region[worker_i] = result;
2976   OrderAccess::storestore();
2977   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2978   return result;
2979 }
2980 
2981 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2982                                                      uint no_of_par_workers) {
2983   uint worker_num =
2984            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2985   assert(UseDynamicNumberOfGCThreads ||
2986          no_of_par_workers == workers()->total_workers(),
2987          "Non dynamic should use fixed number of workers");
2988   const uint start_index = n_regions() * worker_i / worker_num;
2989   return region_at(start_index);
2990 }
2991 
2992 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2993   HeapRegion* r = g1_policy()->collection_set();
2994   while (r != NULL) {
2995     HeapRegion* next = r->next_in_collection_set();
2996     if (cl->doHeapRegion(r)) {
2997       cl->incomplete();
2998       return;
2999     }
3000     r = next;
3001   }
3002 }
3003 
3004 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
3005                                                   HeapRegionClosure *cl) {
3006   if (r == NULL) {
3007     // The CSet is empty so there's nothing to do.
3008     return;
3009   }
3010 
3011   assert(r->in_collection_set(),
3012          "Start region must be a member of the collection set.");
3013   HeapRegion* cur = r;
3014   while (cur != NULL) {
3015     HeapRegion* next = cur->next_in_collection_set();
3016     if (cl->doHeapRegion(cur) && false) {
3017       cl->incomplete();
3018       return;
3019     }
3020     cur = next;
3021   }
3022   cur = g1_policy()->collection_set();
3023   while (cur != r) {
3024     HeapRegion* next = cur->next_in_collection_set();
3025     if (cl->doHeapRegion(cur) && false) {
3026       cl->incomplete();
3027       return;
3028     }
3029     cur = next;
3030   }
3031 }
3032 
3033 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
3034   return n_regions() > 0 ? region_at(0) : NULL;
3035 }
3036 
3037 
3038 Space* G1CollectedHeap::space_containing(const void* addr) const {
3039   Space* res = heap_region_containing(addr);
3040   if (res == NULL)
3041     res = perm_gen()->space_containing(addr);
3042   return res;
3043 }
3044 
3045 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
3046   Space* sp = space_containing(addr);
3047   if (sp != NULL) {
3048     return sp->block_start(addr);
3049   }
3050   return NULL;
3051 }
3052 
3053 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
3054   Space* sp = space_containing(addr);
3055   assert(sp != NULL, "block_size of address outside of heap");
3056   return sp->block_size(addr);
3057 }
3058 
3059 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
3060   Space* sp = space_containing(addr);
3061   return sp->block_is_obj(addr);
3062 }
3063 
3064 bool G1CollectedHeap::supports_tlab_allocation() const {
3065   return true;
3066 }
3067 
3068 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
3069   return HeapRegion::GrainBytes;
3070 }
3071 
3072 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3073   // Return the remaining space in the cur alloc region, but not less than
3074   // the min TLAB size.
3075 
3076   // Also, this value can be at most the humongous object threshold,
3077   // since we can't allow tlabs to grow big enough to accommodate
3078   // humongous objects.
3079 
3080   HeapRegion* hr = _mutator_alloc_region.get();
3081   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
3082   if (hr == NULL) {
3083     return max_tlab_size;
3084   } else {
3085     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
3086   }
3087 }
3088 
3089 size_t G1CollectedHeap::max_capacity() const {
3090   return _g1_reserved.byte_size();
3091 }
3092 
3093 jlong G1CollectedHeap::millis_since_last_gc() {
3094   // assert(false, "NYI");
3095   return 0;
3096 }
3097 
3098 void G1CollectedHeap::prepare_for_verify() {
3099   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3100     ensure_parsability(false);
3101   }
3102   g1_rem_set()->prepare_for_verify();
3103 }
3104 
3105 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3106                                               VerifyOption vo) {
3107   switch (vo) {
3108   case VerifyOption_G1UsePrevMarking:
3109     return hr->obj_allocated_since_prev_marking(obj);
3110   case VerifyOption_G1UseNextMarking:
3111     return hr->obj_allocated_since_next_marking(obj);
3112   case VerifyOption_G1UseMarkWord:
3113     return false;
3114   default:
3115     ShouldNotReachHere();
3116   }
3117   return false; // keep some compilers happy
3118 }
3119 
3120 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3121   switch (vo) {
3122   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3123   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3124   case VerifyOption_G1UseMarkWord:    return NULL;
3125   default:                            ShouldNotReachHere();
3126   }
3127   return NULL; // keep some compilers happy
3128 }
3129 
3130 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3131   switch (vo) {
3132   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3133   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3134   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3135   default:                            ShouldNotReachHere();
3136   }
3137   return false; // keep some compilers happy
3138 }
3139 
3140 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3141   switch (vo) {
3142   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3143   case VerifyOption_G1UseNextMarking: return "NTAMS";
3144   case VerifyOption_G1UseMarkWord:    return "NONE";
3145   default:                            ShouldNotReachHere();
3146   }
3147   return NULL; // keep some compilers happy
3148 }
3149 
3150 class VerifyLivenessOopClosure: public OopClosure {
3151   G1CollectedHeap* _g1h;
3152   VerifyOption _vo;
3153 public:
3154   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3155     _g1h(g1h), _vo(vo)
3156   { }
3157   void do_oop(narrowOop *p) { do_oop_work(p); }
3158   void do_oop(      oop *p) { do_oop_work(p); }
3159 
3160   template <class T> void do_oop_work(T *p) {
3161     oop obj = oopDesc::load_decode_heap_oop(p);
3162     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3163               "Dead object referenced by a not dead object");
3164   }
3165 };
3166 
3167 class VerifyObjsInRegionClosure: public ObjectClosure {
3168 private:
3169   G1CollectedHeap* _g1h;
3170   size_t _live_bytes;
3171   HeapRegion *_hr;
3172   VerifyOption _vo;
3173 public:
3174   // _vo == UsePrevMarking -> use "prev" marking information,
3175   // _vo == UseNextMarking -> use "next" marking information,
3176   // _vo == UseMarkWord    -> use mark word from object header.
3177   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3178     : _live_bytes(0), _hr(hr), _vo(vo) {
3179     _g1h = G1CollectedHeap::heap();
3180   }
3181   void do_object(oop o) {
3182     VerifyLivenessOopClosure isLive(_g1h, _vo);
3183     assert(o != NULL, "Huh?");
3184     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3185       // If the object is alive according to the mark word,
3186       // then verify that the marking information agrees.
3187       // Note we can't verify the contra-positive of the
3188       // above: if the object is dead (according to the mark
3189       // word), it may not be marked, or may have been marked
3190       // but has since became dead, or may have been allocated
3191       // since the last marking.
3192       if (_vo == VerifyOption_G1UseMarkWord) {
3193         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3194       }
3195 
3196       o->oop_iterate(&isLive);
3197       if (!_hr->obj_allocated_since_prev_marking(o)) {
3198         size_t obj_size = o->size();    // Make sure we don't overflow
3199         _live_bytes += (obj_size * HeapWordSize);
3200       }
3201     }
3202   }
3203   size_t live_bytes() { return _live_bytes; }
3204 };
3205 
3206 class PrintObjsInRegionClosure : public ObjectClosure {
3207   HeapRegion *_hr;
3208   G1CollectedHeap *_g1;
3209 public:
3210   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3211     _g1 = G1CollectedHeap::heap();
3212   };
3213 
3214   void do_object(oop o) {
3215     if (o != NULL) {
3216       HeapWord *start = (HeapWord *) o;
3217       size_t word_sz = o->size();
3218       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3219                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3220                           (void*) o, word_sz,
3221                           _g1->isMarkedPrev(o),
3222                           _g1->isMarkedNext(o),
3223                           _hr->obj_allocated_since_prev_marking(o));
3224       HeapWord *end = start + word_sz;
3225       HeapWord *cur;
3226       int *val;
3227       for (cur = start; cur < end; cur++) {
3228         val = (int *) cur;
3229         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3230       }
3231     }
3232   }
3233 };
3234 
3235 class VerifyRegionClosure: public HeapRegionClosure {
3236 private:
3237   bool             _par;
3238   VerifyOption     _vo;
3239   bool             _failures;
3240 public:
3241   // _vo == UsePrevMarking -> use "prev" marking information,
3242   // _vo == UseNextMarking -> use "next" marking information,
3243   // _vo == UseMarkWord    -> use mark word from object header.
3244   VerifyRegionClosure(bool par, VerifyOption vo)
3245     : _par(par),
3246       _vo(vo),
3247       _failures(false) {}
3248 
3249   bool failures() {
3250     return _failures;
3251   }
3252 
3253   bool doHeapRegion(HeapRegion* r) {
3254     if (!r->continuesHumongous()) {
3255       bool failures = false;
3256       r->verify(_vo, &failures);
3257       if (failures) {
3258         _failures = true;
3259       } else {
3260         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3261         r->object_iterate(&not_dead_yet_cl);
3262         if (_vo != VerifyOption_G1UseNextMarking) {
3263           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3264             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3265                                    "max_live_bytes "SIZE_FORMAT" "
3266                                    "< calculated "SIZE_FORMAT,
3267                                    r->bottom(), r->end(),
3268                                    r->max_live_bytes(),
3269                                  not_dead_yet_cl.live_bytes());
3270             _failures = true;
3271           }
3272         } else {
3273           // When vo == UseNextMarking we cannot currently do a sanity
3274           // check on the live bytes as the calculation has not been
3275           // finalized yet.
3276         }
3277       }
3278     }
3279     return false; // stop the region iteration if we hit a failure
3280   }
3281 };
3282 
3283 class VerifyRootsClosure: public OopsInGenClosure {
3284 private:
3285   G1CollectedHeap* _g1h;
3286   VerifyOption     _vo;
3287   bool             _failures;
3288 public:
3289   // _vo == UsePrevMarking -> use "prev" marking information,
3290   // _vo == UseNextMarking -> use "next" marking information,
3291   // _vo == UseMarkWord    -> use mark word from object header.
3292   VerifyRootsClosure(VerifyOption vo) :
3293     _g1h(G1CollectedHeap::heap()),
3294     _vo(vo),
3295     _failures(false) { }
3296 
3297   bool failures() { return _failures; }
3298 
3299   template <class T> void do_oop_nv(T* p) {
3300     T heap_oop = oopDesc::load_heap_oop(p);
3301     if (!oopDesc::is_null(heap_oop)) {
3302       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3303       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3304         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3305                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3306         if (_vo == VerifyOption_G1UseMarkWord) {
3307           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3308         }
3309         obj->print_on(gclog_or_tty);
3310         _failures = true;
3311       }
3312     }
3313   }
3314 
3315   void do_oop(oop* p)       { do_oop_nv(p); }
3316   void do_oop(narrowOop* p) { do_oop_nv(p); }
3317 };
3318 
3319 // This is the task used for parallel heap verification.
3320 
3321 class G1ParVerifyTask: public AbstractGangTask {
3322 private:
3323   G1CollectedHeap* _g1h;
3324   VerifyOption     _vo;
3325   bool             _failures;
3326 
3327 public:
3328   // _vo == UsePrevMarking -> use "prev" marking information,
3329   // _vo == UseNextMarking -> use "next" marking information,
3330   // _vo == UseMarkWord    -> use mark word from object header.
3331   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3332     AbstractGangTask("Parallel verify task"),
3333     _g1h(g1h),
3334     _vo(vo),
3335     _failures(false) { }
3336 
3337   bool failures() {
3338     return _failures;
3339   }
3340 
3341   void work(uint worker_id) {
3342     HandleMark hm;
3343     VerifyRegionClosure blk(true, _vo);
3344     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3345                                           _g1h->workers()->active_workers(),
3346                                           HeapRegion::ParVerifyClaimValue);
3347     if (blk.failures()) {
3348       _failures = true;
3349     }
3350   }
3351 };
3352 
3353 void G1CollectedHeap::verify(bool silent) {
3354   verify(silent, VerifyOption_G1UsePrevMarking);
3355 }
3356 
3357 void G1CollectedHeap::verify(bool silent,
3358                              VerifyOption vo) {
3359   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3360     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3361     VerifyRootsClosure rootsCl(vo);
3362 
3363     assert(Thread::current()->is_VM_thread(),
3364       "Expected to be executed serially by the VM thread at this point");
3365 
3366     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3367 
3368     // We apply the relevant closures to all the oops in the
3369     // system dictionary, the string table and the code cache.
3370     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3371 
3372     process_strong_roots(true,      // activate StrongRootsScope
3373                          true,      // we set "collecting perm gen" to true,
3374                                     // so we don't reset the dirty cards in the perm gen.
3375                          ScanningOption(so),  // roots scanning options
3376                          &rootsCl,
3377                          &blobsCl,
3378                          &rootsCl);
3379 
3380     // If we're verifying after the marking phase of a Full GC then we can't
3381     // treat the perm gen as roots into the G1 heap. Some of the objects in
3382     // the perm gen may be dead and hence not marked. If one of these dead
3383     // objects is considered to be a root then we may end up with a false
3384     // "Root location <x> points to dead ob <y>" failure.
3385     if (vo != VerifyOption_G1UseMarkWord) {
3386       // Since we used "collecting_perm_gen" == true above, we will not have
3387       // checked the refs from perm into the G1-collected heap. We check those
3388       // references explicitly below. Whether the relevant cards are dirty
3389       // is checked further below in the rem set verification.
3390       if (!silent) { gclog_or_tty->print("Permgen roots "); }
3391       perm_gen()->oop_iterate(&rootsCl);
3392     }
3393     bool failures = rootsCl.failures();
3394 
3395     if (vo != VerifyOption_G1UseMarkWord) {
3396       // If we're verifying during a full GC then the region sets
3397       // will have been torn down at the start of the GC. Therefore
3398       // verifying the region sets will fail. So we only verify
3399       // the region sets when not in a full GC.
3400       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3401       verify_region_sets();
3402     }
3403 
3404     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3405     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3406       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3407              "sanity check");
3408 
3409       G1ParVerifyTask task(this, vo);
3410       assert(UseDynamicNumberOfGCThreads ||
3411         workers()->active_workers() == workers()->total_workers(),
3412         "If not dynamic should be using all the workers");
3413       int n_workers = workers()->active_workers();
3414       set_par_threads(n_workers);
3415       workers()->run_task(&task);
3416       set_par_threads(0);
3417       if (task.failures()) {
3418         failures = true;
3419       }
3420 
3421       // Checks that the expected amount of parallel work was done.
3422       // The implication is that n_workers is > 0.
3423       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3424              "sanity check");
3425 
3426       reset_heap_region_claim_values();
3427 
3428       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3429              "sanity check");
3430     } else {
3431       VerifyRegionClosure blk(false, vo);
3432       heap_region_iterate(&blk);
3433       if (blk.failures()) {
3434         failures = true;
3435       }
3436     }
3437     if (!silent) gclog_or_tty->print("RemSet ");
3438     rem_set()->verify();
3439 
3440     if (failures) {
3441       gclog_or_tty->print_cr("Heap:");
3442       // It helps to have the per-region information in the output to
3443       // help us track down what went wrong. This is why we call
3444       // print_extended_on() instead of print_on().
3445       print_extended_on(gclog_or_tty);
3446       gclog_or_tty->print_cr("");
3447 #ifndef PRODUCT
3448       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3449         concurrent_mark()->print_reachable("at-verification-failure",
3450                                            vo, false /* all */);
3451       }
3452 #endif
3453       gclog_or_tty->flush();
3454     }
3455     guarantee(!failures, "there should not have been any failures");
3456   } else {
3457     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
3458   }
3459 }
3460 
3461 class PrintRegionClosure: public HeapRegionClosure {
3462   outputStream* _st;
3463 public:
3464   PrintRegionClosure(outputStream* st) : _st(st) {}
3465   bool doHeapRegion(HeapRegion* r) {
3466     r->print_on(_st);
3467     return false;
3468   }
3469 };
3470 
3471 void G1CollectedHeap::print_on(outputStream* st) const {
3472   st->print(" %-20s", "garbage-first heap");
3473   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3474             capacity()/K, used_unlocked()/K);
3475   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3476             _g1_storage.low_boundary(),
3477             _g1_storage.high(),
3478             _g1_storage.high_boundary());
3479   st->cr();
3480   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3481   uint young_regions = _young_list->length();
3482   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3483             (size_t) young_regions * HeapRegion::GrainBytes / K);
3484   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3485   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3486             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3487   st->cr();
3488   perm()->as_gen()->print_on(st);
3489 }
3490 
3491 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3492   print_on(st);
3493 
3494   // Print the per-region information.
3495   st->cr();
3496   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3497                "HS=humongous(starts), HC=humongous(continues), "
3498                "CS=collection set, F=free, TS=gc time stamp, "
3499                "PTAMS=previous top-at-mark-start, "
3500                "NTAMS=next top-at-mark-start)");
3501   PrintRegionClosure blk(st);
3502   heap_region_iterate(&blk);
3503 }
3504 
3505 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3506   if (G1CollectedHeap::use_parallel_gc_threads()) {
3507     workers()->print_worker_threads_on(st);
3508   }
3509   _cmThread->print_on(st);
3510   st->cr();
3511   _cm->print_worker_threads_on(st);
3512   _cg1r->print_worker_threads_on(st);
3513   st->cr();
3514 }
3515 
3516 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3517   if (G1CollectedHeap::use_parallel_gc_threads()) {
3518     workers()->threads_do(tc);
3519   }
3520   tc->do_thread(_cmThread);
3521   _cg1r->threads_do(tc);
3522 }
3523 
3524 void G1CollectedHeap::print_tracing_info() const {
3525   // We'll overload this to mean "trace GC pause statistics."
3526   if (TraceGen0Time || TraceGen1Time) {
3527     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3528     // to that.
3529     g1_policy()->print_tracing_info();
3530   }
3531   if (G1SummarizeRSetStats) {
3532     g1_rem_set()->print_summary_info();
3533   }
3534   if (G1SummarizeConcMark) {
3535     concurrent_mark()->print_summary_info();
3536   }
3537   g1_policy()->print_yg_surv_rate_info();
3538   SpecializationStats::print();
3539 }
3540 
3541 #ifndef PRODUCT
3542 // Helpful for debugging RSet issues.
3543 
3544 class PrintRSetsClosure : public HeapRegionClosure {
3545 private:
3546   const char* _msg;
3547   size_t _occupied_sum;
3548 
3549 public:
3550   bool doHeapRegion(HeapRegion* r) {
3551     HeapRegionRemSet* hrrs = r->rem_set();
3552     size_t occupied = hrrs->occupied();
3553     _occupied_sum += occupied;
3554 
3555     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3556                            HR_FORMAT_PARAMS(r));
3557     if (occupied == 0) {
3558       gclog_or_tty->print_cr("  RSet is empty");
3559     } else {
3560       hrrs->print();
3561     }
3562     gclog_or_tty->print_cr("----------");
3563     return false;
3564   }
3565 
3566   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3567     gclog_or_tty->cr();
3568     gclog_or_tty->print_cr("========================================");
3569     gclog_or_tty->print_cr(msg);
3570     gclog_or_tty->cr();
3571   }
3572 
3573   ~PrintRSetsClosure() {
3574     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3575     gclog_or_tty->print_cr("========================================");
3576     gclog_or_tty->cr();
3577   }
3578 };
3579 
3580 void G1CollectedHeap::print_cset_rsets() {
3581   PrintRSetsClosure cl("Printing CSet RSets");
3582   collection_set_iterate(&cl);
3583 }
3584 
3585 void G1CollectedHeap::print_all_rsets() {
3586   PrintRSetsClosure cl("Printing All RSets");;
3587   heap_region_iterate(&cl);
3588 }
3589 #endif // PRODUCT
3590 
3591 G1CollectedHeap* G1CollectedHeap::heap() {
3592   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3593          "not a garbage-first heap");
3594   return _g1h;
3595 }
3596 
3597 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3598   // always_do_update_barrier = false;
3599   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3600   // Call allocation profiler
3601   AllocationProfiler::iterate_since_last_gc();
3602   // Fill TLAB's and such
3603   ensure_parsability(true);
3604 }
3605 
3606 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3607   // FIXME: what is this about?
3608   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3609   // is set.
3610   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3611                         "derived pointer present"));
3612   // always_do_update_barrier = true;
3613 
3614   // We have just completed a GC. Update the soft reference
3615   // policy with the new heap occupancy
3616   Universe::update_heap_info_at_gc();
3617 }
3618 
3619 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3620                                                unsigned int gc_count_before,
3621                                                bool* succeeded) {
3622   assert_heap_not_locked_and_not_at_safepoint();
3623   g1_policy()->record_stop_world_start();
3624   VM_G1IncCollectionPause op(gc_count_before,
3625                              word_size,
3626                              false, /* should_initiate_conc_mark */
3627                              g1_policy()->max_pause_time_ms(),
3628                              GCCause::_g1_inc_collection_pause);
3629   VMThread::execute(&op);
3630 
3631   HeapWord* result = op.result();
3632   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3633   assert(result == NULL || ret_succeeded,
3634          "the result should be NULL if the VM did not succeed");
3635   *succeeded = ret_succeeded;
3636 
3637   assert_heap_not_locked();
3638   return result;
3639 }
3640 
3641 void
3642 G1CollectedHeap::doConcurrentMark() {
3643   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3644   if (!_cmThread->in_progress()) {
3645     _cmThread->set_started();
3646     CGC_lock->notify();
3647   }
3648 }
3649 
3650 size_t G1CollectedHeap::pending_card_num() {
3651   size_t extra_cards = 0;
3652   JavaThread *curr = Threads::first();
3653   while (curr != NULL) {
3654     DirtyCardQueue& dcq = curr->dirty_card_queue();
3655     extra_cards += dcq.size();
3656     curr = curr->next();
3657   }
3658   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3659   size_t buffer_size = dcqs.buffer_size();
3660   size_t buffer_num = dcqs.completed_buffers_num();
3661 
3662   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3663   // in bytes - not the number of 'entries'. We need to convert
3664   // into a number of cards.
3665   return (buffer_size * buffer_num + extra_cards) / oopSize;
3666 }
3667 
3668 size_t G1CollectedHeap::cards_scanned() {
3669   return g1_rem_set()->cardsScanned();
3670 }
3671 
3672 void
3673 G1CollectedHeap::setup_surviving_young_words() {
3674   assert(_surviving_young_words == NULL, "pre-condition");
3675   uint array_length = g1_policy()->young_cset_region_length();
3676   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3677   if (_surviving_young_words == NULL) {
3678     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3679                           "Not enough space for young surv words summary.");
3680   }
3681   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3682 #ifdef ASSERT
3683   for (uint i = 0;  i < array_length; ++i) {
3684     assert( _surviving_young_words[i] == 0, "memset above" );
3685   }
3686 #endif // !ASSERT
3687 }
3688 
3689 void
3690 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3691   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3692   uint array_length = g1_policy()->young_cset_region_length();
3693   for (uint i = 0; i < array_length; ++i) {
3694     _surviving_young_words[i] += surv_young_words[i];
3695   }
3696 }
3697 
3698 void
3699 G1CollectedHeap::cleanup_surviving_young_words() {
3700   guarantee( _surviving_young_words != NULL, "pre-condition" );
3701   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3702   _surviving_young_words = NULL;
3703 }
3704 
3705 #ifdef ASSERT
3706 class VerifyCSetClosure: public HeapRegionClosure {
3707 public:
3708   bool doHeapRegion(HeapRegion* hr) {
3709     // Here we check that the CSet region's RSet is ready for parallel
3710     // iteration. The fields that we'll verify are only manipulated
3711     // when the region is part of a CSet and is collected. Afterwards,
3712     // we reset these fields when we clear the region's RSet (when the
3713     // region is freed) so they are ready when the region is
3714     // re-allocated. The only exception to this is if there's an
3715     // evacuation failure and instead of freeing the region we leave
3716     // it in the heap. In that case, we reset these fields during
3717     // evacuation failure handling.
3718     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3719 
3720     // Here's a good place to add any other checks we'd like to
3721     // perform on CSet regions.
3722     return false;
3723   }
3724 };
3725 #endif // ASSERT
3726 
3727 #if TASKQUEUE_STATS
3728 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3729   st->print_raw_cr("GC Task Stats");
3730   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3731   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3732 }
3733 
3734 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3735   print_taskqueue_stats_hdr(st);
3736 
3737   TaskQueueStats totals;
3738   const int n = workers() != NULL ? workers()->total_workers() : 1;
3739   for (int i = 0; i < n; ++i) {
3740     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3741     totals += task_queue(i)->stats;
3742   }
3743   st->print_raw("tot "); totals.print(st); st->cr();
3744 
3745   DEBUG_ONLY(totals.verify());
3746 }
3747 
3748 void G1CollectedHeap::reset_taskqueue_stats() {
3749   const int n = workers() != NULL ? workers()->total_workers() : 1;
3750   for (int i = 0; i < n; ++i) {
3751     task_queue(i)->stats.reset();
3752   }
3753 }
3754 #endif // TASKQUEUE_STATS
3755 
3756 void G1CollectedHeap::log_gc_header() {
3757   if (!G1Log::fine()) {
3758     return;
3759   }
3760 
3761   gclog_or_tty->date_stamp(PrintGCDateStamps);
3762   gclog_or_tty->stamp(PrintGCTimeStamps);
3763 
3764   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3765     .append(g1_policy()->gcs_are_young() ? " (young)" : " (mixed)")
3766     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3767 
3768   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3769 }
3770 
3771 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3772   if (!G1Log::fine()) {
3773     return;
3774   }
3775 
3776   if (G1Log::finer()) {
3777     if (evacuation_failed()) {
3778       gclog_or_tty->print(" (to-space exhausted)");
3779     }
3780     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3781     g1_policy()->phase_times()->note_gc_end();
3782     g1_policy()->phase_times()->print(pause_time_sec);
3783     g1_policy()->print_detailed_heap_transition();
3784   } else {
3785     if (evacuation_failed()) {
3786       gclog_or_tty->print("--");
3787     }
3788     g1_policy()->print_heap_transition();
3789     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3790   }
3791   gclog_or_tty->flush();
3792 }
3793 
3794 bool
3795 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3796   assert_at_safepoint(true /* should_be_vm_thread */);
3797   guarantee(!is_gc_active(), "collection is not reentrant");
3798 
3799   if (GC_locker::check_active_before_gc()) {
3800     return false;
3801   }
3802 
3803   _gc_timer_stw->register_gc_start(os::elapsed_counter());
3804 
3805   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3806 
3807   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3808   ResourceMark rm;
3809 
3810   print_heap_before_gc();
3811   trace_heap_before_gc(_gc_tracer_stw);
3812 
3813   HRSPhaseSetter x(HRSPhaseEvacuation);
3814   verify_region_sets_optional();
3815   verify_dirty_young_regions();
3816 
3817   // This call will decide whether this pause is an initial-mark
3818   // pause. If it is, during_initial_mark_pause() will return true
3819   // for the duration of this pause.
3820   g1_policy()->decide_on_conc_mark_initiation();
3821 
3822   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3823   assert(!g1_policy()->during_initial_mark_pause() ||
3824           g1_policy()->gcs_are_young(), "sanity");
3825 
3826   // We also do not allow mixed GCs during marking.
3827   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3828 
3829   // Record whether this pause is an initial mark. When the current
3830   // thread has completed its logging output and it's safe to signal
3831   // the CM thread, the flag's value in the policy has been reset.
3832   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3833 
3834   // Inner scope for scope based logging, timers, and stats collection
3835   {
3836     EvacuationInfo evacuation_info;
3837 
3838     if (g1_policy()->during_initial_mark_pause()) {
3839       // We are about to start a marking cycle, so we increment the
3840       // full collection counter.
3841       increment_old_marking_cycles_started();
3842       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3843     }
3844 
3845     _gc_tracer_stw->report_yc_type(yc_type());
3846 
3847     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3848 
3849     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3850                                 workers()->active_workers() : 1);
3851     double pause_start_sec = os::elapsedTime();
3852     g1_policy()->phase_times()->note_gc_start(active_workers);
3853     log_gc_header();
3854 
3855     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3856     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3857 
3858     // If the secondary_free_list is not empty, append it to the
3859     // free_list. No need to wait for the cleanup operation to finish;
3860     // the region allocation code will check the secondary_free_list
3861     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3862     // set, skip this step so that the region allocation code has to
3863     // get entries from the secondary_free_list.
3864     if (!G1StressConcRegionFreeing) {
3865       append_secondary_free_list_if_not_empty_with_lock();
3866     }
3867 
3868     assert(check_young_list_well_formed(),
3869       "young list should be well formed");
3870 
3871     // Don't dynamically change the number of GC threads this early.  A value of
3872     // 0 is used to indicate serial work.  When parallel work is done,
3873     // it will be set.
3874 
3875     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3876       IsGCActiveMark x;
3877 
3878       gc_prologue(false);
3879       increment_total_collections(false /* full gc */);
3880       increment_gc_time_stamp();
3881 
3882       verify_before_gc();
3883 
3884       COMPILER2_PRESENT(DerivedPointerTable::clear());
3885 
3886       // Please see comment in g1CollectedHeap.hpp and
3887       // G1CollectedHeap::ref_processing_init() to see how
3888       // reference processing currently works in G1.
3889 
3890       // Enable discovery in the STW reference processor
3891       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3892                                             true /*verify_no_refs*/);
3893 
3894       {
3895         // We want to temporarily turn off discovery by the
3896         // CM ref processor, if necessary, and turn it back on
3897         // on again later if we do. Using a scoped
3898         // NoRefDiscovery object will do this.
3899         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3900 
3901         // Forget the current alloc region (we might even choose it to be part
3902         // of the collection set!).
3903         release_mutator_alloc_region();
3904 
3905         // We should call this after we retire the mutator alloc
3906         // region(s) so that all the ALLOC / RETIRE events are generated
3907         // before the start GC event.
3908         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3909 
3910         // This timing is only used by the ergonomics to handle our pause target.
3911         // It is unclear why this should not include the full pause. We will
3912         // investigate this in CR 7178365.
3913         //
3914         // Preserving the old comment here if that helps the investigation:
3915         //
3916         // The elapsed time induced by the start time below deliberately elides
3917         // the possible verification above.
3918         double sample_start_time_sec = os::elapsedTime();
3919         size_t start_used_bytes = used();
3920 
3921 #if YOUNG_LIST_VERBOSE
3922         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3923         _young_list->print();
3924         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3925 #endif // YOUNG_LIST_VERBOSE
3926 
3927         g1_policy()->record_collection_pause_start(sample_start_time_sec,
3928                                                    start_used_bytes);
3929 
3930         double scan_wait_start = os::elapsedTime();
3931         // We have to wait until the CM threads finish scanning the
3932         // root regions as it's the only way to ensure that all the
3933         // objects on them have been correctly scanned before we start
3934         // moving them during the GC.
3935         bool waited = _cm->root_regions()->wait_until_scan_finished();
3936         double wait_time_ms = 0.0;
3937         if (waited) {
3938           double scan_wait_end = os::elapsedTime();
3939           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3940         }
3941         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3942 
3943 #if YOUNG_LIST_VERBOSE
3944         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3945         _young_list->print();
3946 #endif // YOUNG_LIST_VERBOSE
3947 
3948         if (g1_policy()->during_initial_mark_pause()) {
3949           concurrent_mark()->checkpointRootsInitialPre();
3950         }
3951         perm_gen()->save_marks();
3952 
3953 #if YOUNG_LIST_VERBOSE
3954         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3955         _young_list->print();
3956         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3957 #endif // YOUNG_LIST_VERBOSE
3958 
3959         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3960 
3961         _cm->note_start_of_gc();
3962         // We should not verify the per-thread SATB buffers given that
3963         // we have not filtered them yet (we'll do so during the
3964         // GC). We also call this after finalize_cset() to
3965         // ensure that the CSet has been finalized.
3966         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3967                                  true  /* verify_enqueued_buffers */,
3968                                  false /* verify_thread_buffers */,
3969                                  true  /* verify_fingers */);
3970 
3971         if (_hr_printer.is_active()) {
3972           HeapRegion* hr = g1_policy()->collection_set();
3973           while (hr != NULL) {
3974             G1HRPrinter::RegionType type;
3975             if (!hr->is_young()) {
3976               type = G1HRPrinter::Old;
3977             } else if (hr->is_survivor()) {
3978               type = G1HRPrinter::Survivor;
3979             } else {
3980               type = G1HRPrinter::Eden;
3981             }
3982             _hr_printer.cset(hr);
3983             hr = hr->next_in_collection_set();
3984           }
3985         }
3986 
3987 #ifdef ASSERT
3988         VerifyCSetClosure cl;
3989         collection_set_iterate(&cl);
3990 #endif // ASSERT
3991 
3992         setup_surviving_young_words();
3993 
3994         // Initialize the GC alloc regions.
3995         init_gc_alloc_regions(evacuation_info);
3996 
3997         // Actually do the work...
3998         evacuate_collection_set(evacuation_info);
3999 
4000         // We do this to mainly verify the per-thread SATB buffers
4001         // (which have been filtered by now) since we didn't verify
4002         // them earlier. No point in re-checking the stacks / enqueued
4003         // buffers given that the CSet has not changed since last time
4004         // we checked.
4005         _cm->verify_no_cset_oops(false /* verify_stacks */,
4006                                  false /* verify_enqueued_buffers */,
4007                                  true  /* verify_thread_buffers */,
4008                                  true  /* verify_fingers */);
4009 
4010         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4011         g1_policy()->clear_collection_set();
4012 
4013         cleanup_surviving_young_words();
4014 
4015         // Start a new incremental collection set for the next pause.
4016         g1_policy()->start_incremental_cset_building();
4017 
4018         // Clear the _cset_fast_test bitmap in anticipation of adding
4019         // regions to the incremental collection set for the next
4020         // evacuation pause.
4021         clear_cset_fast_test();
4022 
4023         _young_list->reset_sampled_info();
4024 
4025         // Don't check the whole heap at this point as the
4026         // GC alloc regions from this pause have been tagged
4027         // as survivors and moved on to the survivor list.
4028         // Survivor regions will fail the !is_young() check.
4029         assert(check_young_list_empty(false /* check_heap */),
4030           "young list should be empty");
4031 
4032 #if YOUNG_LIST_VERBOSE
4033         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4034         _young_list->print();
4035 #endif // YOUNG_LIST_VERBOSE
4036 
4037         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4038                                             _young_list->first_survivor_region(),
4039                                             _young_list->last_survivor_region());
4040 
4041         _young_list->reset_auxilary_lists();
4042 
4043         if (evacuation_failed()) {
4044           _summary_bytes_used = recalculate_used();
4045         } else {
4046           // The "used" of the the collection set have already been subtracted
4047           // when they were freed.  Add in the bytes evacuated.
4048           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4049         }
4050 
4051         if (g1_policy()->during_initial_mark_pause()) {
4052           // We have to do this before we notify the CM threads that
4053           // they can start working to make sure that all the
4054           // appropriate initialization is done on the CM object.
4055           concurrent_mark()->checkpointRootsInitialPost();
4056           set_marking_started();
4057           // Note that we don't actually trigger the CM thread at
4058           // this point. We do that later when we're sure that
4059           // the current thread has completed its logging output.
4060         }
4061 
4062         allocate_dummy_regions();
4063 
4064 #if YOUNG_LIST_VERBOSE
4065         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4066         _young_list->print();
4067         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4068 #endif // YOUNG_LIST_VERBOSE
4069 
4070         init_mutator_alloc_region();
4071 
4072         {
4073           size_t expand_bytes = g1_policy()->expansion_amount();
4074           if (expand_bytes > 0) {
4075             size_t bytes_before = capacity();
4076             // No need for an ergo verbose message here,
4077             // expansion_amount() does this when it returns a value > 0.
4078             if (!expand(expand_bytes)) {
4079               // We failed to expand the heap so let's verify that
4080               // committed/uncommitted amount match the backing store
4081               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4082               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4083             }
4084           }
4085         }
4086 
4087         // We redo the verification but now wrt to the new CSet which
4088         // has just got initialized after the previous CSet was freed.
4089         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4090                                  true  /* verify_enqueued_buffers */,
4091                                  true  /* verify_thread_buffers */,
4092                                  true  /* verify_fingers */);
4093         _cm->note_end_of_gc();
4094 
4095         // This timing is only used by the ergonomics to handle our pause target.
4096         // It is unclear why this should not include the full pause. We will
4097         // investigate this in CR 7178365.
4098         double sample_end_time_sec = os::elapsedTime();
4099         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4100         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4101 
4102         MemoryService::track_memory_usage();
4103 
4104         // In prepare_for_verify() below we'll need to scan the deferred
4105         // update buffers to bring the RSets up-to-date if
4106         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4107         // the update buffers we'll probably need to scan cards on the
4108         // regions we just allocated to (i.e., the GC alloc
4109         // regions). However, during the last GC we called
4110         // set_saved_mark() on all the GC alloc regions, so card
4111         // scanning might skip the [saved_mark_word()...top()] area of
4112         // those regions (i.e., the area we allocated objects into
4113         // during the last GC). But it shouldn't. Given that
4114         // saved_mark_word() is conditional on whether the GC time stamp
4115         // on the region is current or not, by incrementing the GC time
4116         // stamp here we invalidate all the GC time stamps on all the
4117         // regions and saved_mark_word() will simply return top() for
4118         // all the regions. This is a nicer way of ensuring this rather
4119         // than iterating over the regions and fixing them. In fact, the
4120         // GC time stamp increment here also ensures that
4121         // saved_mark_word() will return top() between pauses, i.e.,
4122         // during concurrent refinement. So we don't need the
4123         // is_gc_active() check to decided which top to use when
4124         // scanning cards (see CR 7039627).
4125         increment_gc_time_stamp();
4126 
4127         verify_after_gc();
4128 
4129         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4130         ref_processor_stw()->verify_no_references_recorded();
4131 
4132         // CM reference discovery will be re-enabled if necessary.
4133       }
4134 
4135       // We should do this after we potentially expand the heap so
4136       // that all the COMMIT events are generated before the end GC
4137       // event, and after we retire the GC alloc regions so that all
4138       // RETIRE events are generated before the end GC event.
4139       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4140 
4141       if (mark_in_progress()) {
4142         concurrent_mark()->update_g1_committed();
4143       }
4144 
4145 #ifdef TRACESPINNING
4146       ParallelTaskTerminator::print_termination_counts();
4147 #endif
4148 
4149       gc_epilogue(false);
4150     }
4151 
4152     // Print the remainder of the GC log output.
4153     log_gc_footer(os::elapsedTime() - pause_start_sec);
4154 
4155     // It is not yet to safe to tell the concurrent mark to
4156     // start as we have some optional output below. We don't want the
4157     // output from the concurrent mark thread interfering with this
4158     // logging output either.
4159 
4160     _hrs.verify_optional();
4161     verify_region_sets_optional();
4162 
4163     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4164     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4165 
4166     print_heap_after_gc();
4167     trace_heap_after_gc(_gc_tracer_stw);
4168 
4169     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4170     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4171     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4172     // before any GC notifications are raised.
4173     g1mm()->update_sizes();
4174 
4175     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4176     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4177     _gc_timer_stw->register_gc_end(os::elapsed_counter());
4178     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4179   }
4180 
4181   if (G1SummarizeRSetStats &&
4182       (G1SummarizeRSetStatsPeriod > 0) &&
4183       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
4184     g1_rem_set()->print_summary_info();
4185   }
4186   // It should now be safe to tell the concurrent mark thread to start
4187   // without its logging output interfering with the logging output
4188   // that came from the pause.
4189 
4190   if (should_start_conc_mark) {
4191     // CAUTION: after the doConcurrentMark() call below,
4192     // the concurrent marking thread(s) could be running
4193     // concurrently with us. Make sure that anything after
4194     // this point does not assume that we are the only GC thread
4195     // running. Note: of course, the actual marking work will
4196     // not start until the safepoint itself is released in
4197     // ConcurrentGCThread::safepoint_desynchronize().
4198     doConcurrentMark();
4199   }
4200 
4201   return true;
4202 }
4203 
4204 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4205 {
4206   size_t gclab_word_size;
4207   switch (purpose) {
4208     case GCAllocForSurvived:
4209       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4210       break;
4211     case GCAllocForTenured:
4212       gclab_word_size = _old_plab_stats.desired_plab_sz();
4213       break;
4214     default:
4215       assert(false, "unknown GCAllocPurpose");
4216       gclab_word_size = _old_plab_stats.desired_plab_sz();
4217       break;
4218   }
4219 
4220   // Prevent humongous PLAB sizes for two reasons:
4221   // * PLABs are allocated using a similar paths as oops, but should
4222   //   never be in a humongous region
4223   // * Allowing humongous PLABs needlessly churns the region free lists
4224   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4225 }
4226 
4227 void G1CollectedHeap::init_mutator_alloc_region() {
4228   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4229   _mutator_alloc_region.init();
4230 }
4231 
4232 void G1CollectedHeap::release_mutator_alloc_region() {
4233   _mutator_alloc_region.release();
4234   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4235 }
4236 
4237 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4238   assert_at_safepoint(true /* should_be_vm_thread */);
4239 
4240   _survivor_gc_alloc_region.init();
4241   _old_gc_alloc_region.init();
4242   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4243   _retained_old_gc_alloc_region = NULL;
4244 
4245   // We will discard the current GC alloc region if:
4246   // a) it's in the collection set (it can happen!),
4247   // b) it's already full (no point in using it),
4248   // c) it's empty (this means that it was emptied during
4249   // a cleanup and it should be on the free list now), or
4250   // d) it's humongous (this means that it was emptied
4251   // during a cleanup and was added to the free list, but
4252   // has been subsequently used to allocate a humongous
4253   // object that may be less than the region size).
4254   if (retained_region != NULL &&
4255       !retained_region->in_collection_set() &&
4256       !(retained_region->top() == retained_region->end()) &&
4257       !retained_region->is_empty() &&
4258       !retained_region->isHumongous()) {
4259     retained_region->set_saved_mark();
4260     // The retained region was added to the old region set when it was
4261     // retired. We have to remove it now, since we don't allow regions
4262     // we allocate to in the region sets. We'll re-add it later, when
4263     // it's retired again.
4264     _old_set.remove(retained_region);
4265     bool during_im = g1_policy()->during_initial_mark_pause();
4266     retained_region->note_start_of_copying(during_im);
4267     _old_gc_alloc_region.set(retained_region);
4268     _hr_printer.reuse(retained_region);
4269     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4270   }
4271 }
4272 
4273 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4274   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4275                                          _old_gc_alloc_region.count());
4276   _survivor_gc_alloc_region.release();
4277   // If we have an old GC alloc region to release, we'll save it in
4278   // _retained_old_gc_alloc_region. If we don't
4279   // _retained_old_gc_alloc_region will become NULL. This is what we
4280   // want either way so no reason to check explicitly for either
4281   // condition.
4282   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4283 
4284   if (ResizePLAB) {
4285     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4286     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4287   }
4288 }
4289 
4290 void G1CollectedHeap::abandon_gc_alloc_regions() {
4291   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4292   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4293   _retained_old_gc_alloc_region = NULL;
4294 }
4295 
4296 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4297   _drain_in_progress = false;
4298   set_evac_failure_closure(cl);
4299   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4300 }
4301 
4302 void G1CollectedHeap::finalize_for_evac_failure() {
4303   assert(_evac_failure_scan_stack != NULL &&
4304          _evac_failure_scan_stack->length() == 0,
4305          "Postcondition");
4306   assert(!_drain_in_progress, "Postcondition");
4307   delete _evac_failure_scan_stack;
4308   _evac_failure_scan_stack = NULL;
4309 }
4310 
4311 void G1CollectedHeap::remove_self_forwarding_pointers() {
4312   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4313 
4314   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4315 
4316   if (G1CollectedHeap::use_parallel_gc_threads()) {
4317     set_par_threads();
4318     workers()->run_task(&rsfp_task);
4319     set_par_threads(0);
4320   } else {
4321     rsfp_task.work(0);
4322   }
4323 
4324   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4325 
4326   // Reset the claim values in the regions in the collection set.
4327   reset_cset_heap_region_claim_values();
4328 
4329   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4330 
4331   // Now restore saved marks, if any.
4332   assert(_objs_with_preserved_marks.size() ==
4333             _preserved_marks_of_objs.size(), "Both or none.");
4334   while (!_objs_with_preserved_marks.is_empty()) {
4335     oop obj = _objs_with_preserved_marks.pop();
4336     markOop m = _preserved_marks_of_objs.pop();
4337     obj->set_mark(m);
4338   }
4339   _objs_with_preserved_marks.clear(true);
4340   _preserved_marks_of_objs.clear(true);
4341 }
4342 
4343 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4344   _evac_failure_scan_stack->push(obj);
4345 }
4346 
4347 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4348   assert(_evac_failure_scan_stack != NULL, "precondition");
4349 
4350   while (_evac_failure_scan_stack->length() > 0) {
4351      oop obj = _evac_failure_scan_stack->pop();
4352      _evac_failure_closure->set_region(heap_region_containing(obj));
4353      obj->oop_iterate_backwards(_evac_failure_closure);
4354   }
4355 }
4356 
4357 oop
4358 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4359                                                oop old) {
4360   assert(obj_in_cs(old),
4361          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4362                  (HeapWord*) old));
4363   markOop m = old->mark();
4364   oop forward_ptr = old->forward_to_atomic(old);
4365   if (forward_ptr == NULL) {
4366     // Forward-to-self succeeded.
4367 
4368     if (_evac_failure_closure != cl) {
4369       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4370       assert(!_drain_in_progress,
4371              "Should only be true while someone holds the lock.");
4372       // Set the global evac-failure closure to the current thread's.
4373       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4374       set_evac_failure_closure(cl);
4375       // Now do the common part.
4376       handle_evacuation_failure_common(old, m);
4377       // Reset to NULL.
4378       set_evac_failure_closure(NULL);
4379     } else {
4380       // The lock is already held, and this is recursive.
4381       assert(_drain_in_progress, "This should only be the recursive case.");
4382       handle_evacuation_failure_common(old, m);
4383     }
4384     return old;
4385   } else {
4386     // Forward-to-self failed. Either someone else managed to allocate
4387     // space for this object (old != forward_ptr) or they beat us in
4388     // self-forwarding it (old == forward_ptr).
4389     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4390            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4391                    "should not be in the CSet",
4392                    (HeapWord*) old, (HeapWord*) forward_ptr));
4393     return forward_ptr;
4394   }
4395 }
4396 
4397 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4398   set_evacuation_failed(true);
4399 
4400   preserve_mark_if_necessary(old, m);
4401 
4402   HeapRegion* r = heap_region_containing(old);
4403   if (!r->evacuation_failed()) {
4404     r->set_evacuation_failed(true);
4405     _hr_printer.evac_failure(r);
4406   }
4407 
4408   push_on_evac_failure_scan_stack(old);
4409 
4410   if (!_drain_in_progress) {
4411     // prevent recursion in copy_to_survivor_space()
4412     _drain_in_progress = true;
4413     drain_evac_failure_scan_stack();
4414     _drain_in_progress = false;
4415   }
4416 }
4417 
4418 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4419   assert(evacuation_failed(), "Oversaving!");
4420   // We want to call the "for_promotion_failure" version only in the
4421   // case of a promotion failure.
4422   if (m->must_be_preserved_for_promotion_failure(obj)) {
4423     _objs_with_preserved_marks.push(obj);
4424     _preserved_marks_of_objs.push(m);
4425   }
4426 }
4427 
4428 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4429                                                   size_t word_size) {
4430   if (purpose == GCAllocForSurvived) {
4431     HeapWord* result = survivor_attempt_allocation(word_size);
4432     if (result != NULL) {
4433       return result;
4434     } else {
4435       // Let's try to allocate in the old gen in case we can fit the
4436       // object there.
4437       return old_attempt_allocation(word_size);
4438     }
4439   } else {
4440     assert(purpose ==  GCAllocForTenured, "sanity");
4441     HeapWord* result = old_attempt_allocation(word_size);
4442     if (result != NULL) {
4443       return result;
4444     } else {
4445       // Let's try to allocate in the survivors in case we can fit the
4446       // object there.
4447       return survivor_attempt_allocation(word_size);
4448     }
4449   }
4450 
4451   ShouldNotReachHere();
4452   // Trying to keep some compilers happy.
4453   return NULL;
4454 }
4455 
4456 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4457   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4458 
4459 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4460   : _g1h(g1h),
4461     _refs(g1h->task_queue(queue_num)),
4462     _dcq(&g1h->dirty_card_queue_set()),
4463     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4464     _g1_rem(g1h->g1_rem_set()),
4465     _hash_seed(17), _queue_num(queue_num),
4466     _term_attempts(0),
4467     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4468     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4469     _age_table(false),
4470     _strong_roots_time(0), _term_time(0),
4471     _alloc_buffer_waste(0), _undo_waste(0) {
4472   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4473   // we "sacrifice" entry 0 to keep track of surviving bytes for
4474   // non-young regions (where the age is -1)
4475   // We also add a few elements at the beginning and at the end in
4476   // an attempt to eliminate cache contention
4477   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4478   uint array_length = PADDING_ELEM_NUM +
4479                       real_length +
4480                       PADDING_ELEM_NUM;
4481   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4482   if (_surviving_young_words_base == NULL)
4483     vm_exit_out_of_memory(array_length * sizeof(size_t),
4484                           "Not enough space for young surv histo.");
4485   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4486   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4487 
4488   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4489   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4490 
4491   _start = os::elapsedTime();
4492 }
4493 
4494 void
4495 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4496 {
4497   st->print_raw_cr("GC Termination Stats");
4498   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4499                    " ------waste (KiB)------");
4500   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4501                    "  total   alloc    undo");
4502   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4503                    " ------- ------- -------");
4504 }
4505 
4506 void
4507 G1ParScanThreadState::print_termination_stats(int i,
4508                                               outputStream* const st) const
4509 {
4510   const double elapsed_ms = elapsed_time() * 1000.0;
4511   const double s_roots_ms = strong_roots_time() * 1000.0;
4512   const double term_ms    = term_time() * 1000.0;
4513   st->print_cr("%3d %9.2f %9.2f %6.2f "
4514                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4515                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4516                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4517                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4518                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4519                alloc_buffer_waste() * HeapWordSize / K,
4520                undo_waste() * HeapWordSize / K);
4521 }
4522 
4523 #ifdef ASSERT
4524 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4525   assert(ref != NULL, "invariant");
4526   assert(UseCompressedOops, "sanity");
4527   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4528   oop p = oopDesc::load_decode_heap_oop(ref);
4529   assert(_g1h->is_in_g1_reserved(p),
4530          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4531   return true;
4532 }
4533 
4534 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4535   assert(ref != NULL, "invariant");
4536   if (has_partial_array_mask(ref)) {
4537     // Must be in the collection set--it's already been copied.
4538     oop p = clear_partial_array_mask(ref);
4539     assert(_g1h->obj_in_cs(p),
4540            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4541   } else {
4542     oop p = oopDesc::load_decode_heap_oop(ref);
4543     assert(_g1h->is_in_g1_reserved(p),
4544            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4545   }
4546   return true;
4547 }
4548 
4549 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4550   if (ref.is_narrow()) {
4551     return verify_ref((narrowOop*) ref);
4552   } else {
4553     return verify_ref((oop*) ref);
4554   }
4555 }
4556 #endif // ASSERT
4557 
4558 void G1ParScanThreadState::trim_queue() {
4559   assert(_evac_cl != NULL, "not set");
4560   assert(_evac_failure_cl != NULL, "not set");
4561   assert(_partial_scan_cl != NULL, "not set");
4562 
4563   StarTask ref;
4564   do {
4565     // Drain the overflow stack first, so other threads can steal.
4566     while (refs()->pop_overflow(ref)) {
4567       deal_with_reference(ref);
4568     }
4569 
4570     while (refs()->pop_local(ref)) {
4571       deal_with_reference(ref);
4572     }
4573   } while (!refs()->is_empty());
4574 }
4575 
4576 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4577                                      G1ParScanThreadState* par_scan_state) :
4578   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4579   _par_scan_state(par_scan_state),
4580   _worker_id(par_scan_state->queue_num()),
4581   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4582   _mark_in_progress(_g1->mark_in_progress()) { }
4583 
4584 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4585 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4586 #ifdef ASSERT
4587   HeapRegion* hr = _g1->heap_region_containing(obj);
4588   assert(hr != NULL, "sanity");
4589   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4590 #endif // ASSERT
4591 
4592   // We know that the object is not moving so it's safe to read its size.
4593   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4594 }
4595 
4596 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4597 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4598   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4599 #ifdef ASSERT
4600   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4601   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4602   assert(from_obj != to_obj, "should not be self-forwarded");
4603 
4604   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4605   assert(from_hr != NULL, "sanity");
4606   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4607 
4608   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4609   assert(to_hr != NULL, "sanity");
4610   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4611 #endif // ASSERT
4612 
4613   // The object might be in the process of being copied by another
4614   // worker so we cannot trust that its to-space image is
4615   // well-formed. So we have to read its size from its from-space
4616   // image which we know should not be changing.
4617   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4618 }
4619 
4620 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4621 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4622   ::copy_to_survivor_space(oop old) {
4623   size_t word_sz = old->size();
4624   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4625   // +1 to make the -1 indexes valid...
4626   int       young_index = from_region->young_index_in_cset()+1;
4627   assert( (from_region->is_young() && young_index >  0) ||
4628          (!from_region->is_young() && young_index == 0), "invariant" );
4629   G1CollectorPolicy* g1p = _g1->g1_policy();
4630   markOop m = old->mark();
4631   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4632                                            : m->age();
4633   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4634                                                              word_sz);
4635   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4636 #ifndef PRODUCT
4637   // Should this evacuation fail?
4638   if (_g1->evacuation_should_fail()) {
4639     if (obj_ptr != NULL) {
4640       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4641       obj_ptr = NULL;
4642     }
4643   }
4644 #endif // !PRODUCT
4645 
4646   if (obj_ptr == NULL) {
4647     // This will either forward-to-self, or detect that someone else has
4648     // installed a forwarding pointer.
4649     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4650     return _g1->handle_evacuation_failure_par(cl, old);
4651   }
4652 
4653   oop obj = oop(obj_ptr);
4654 
4655   // We're going to allocate linearly, so might as well prefetch ahead.
4656   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4657 
4658   oop forward_ptr = old->forward_to_atomic(obj);
4659   if (forward_ptr == NULL) {
4660     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4661     if (g1p->track_object_age(alloc_purpose)) {
4662       // We could simply do obj->incr_age(). However, this causes a
4663       // performance issue. obj->incr_age() will first check whether
4664       // the object has a displaced mark by checking its mark word;
4665       // getting the mark word from the new location of the object
4666       // stalls. So, given that we already have the mark word and we
4667       // are about to install it anyway, it's better to increase the
4668       // age on the mark word, when the object does not have a
4669       // displaced mark word. We're not expecting many objects to have
4670       // a displaced marked word, so that case is not optimized
4671       // further (it could be...) and we simply call obj->incr_age().
4672 
4673       if (m->has_displaced_mark_helper()) {
4674         // in this case, we have to install the mark word first,
4675         // otherwise obj looks to be forwarded (the old mark word,
4676         // which contains the forward pointer, was copied)
4677         obj->set_mark(m);
4678         obj->incr_age();
4679       } else {
4680         m = m->incr_age();
4681         obj->set_mark(m);
4682       }
4683       _par_scan_state->age_table()->add(obj, word_sz);
4684     } else {
4685       obj->set_mark(m);
4686     }
4687 
4688     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4689     surv_young_words[young_index] += word_sz;
4690 
4691     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4692       // We keep track of the next start index in the length field of
4693       // the to-space object. The actual length can be found in the
4694       // length field of the from-space object.
4695       arrayOop(obj)->set_length(0);
4696       oop* old_p = set_partial_array_mask(old);
4697       _par_scan_state->push_on_queue(old_p);
4698     } else {
4699       // No point in using the slower heap_region_containing() method,
4700       // given that we know obj is in the heap.
4701       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4702       obj->oop_iterate_backwards(&_scanner);
4703     }
4704   } else {
4705     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4706     obj = forward_ptr;
4707   }
4708   return obj;
4709 }
4710 
4711 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4712 template <class T>
4713 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4714 ::do_oop_work(T* p) {
4715   oop obj = oopDesc::load_decode_heap_oop(p);
4716   assert(barrier != G1BarrierRS || obj != NULL,
4717          "Precondition: G1BarrierRS implies obj is non-NULL");
4718 
4719   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4720 
4721   // here the null check is implicit in the cset_fast_test() test
4722   if (_g1->in_cset_fast_test(obj)) {
4723     oop forwardee;
4724     if (obj->is_forwarded()) {
4725       forwardee = obj->forwardee();
4726     } else {
4727       forwardee = copy_to_survivor_space(obj);
4728     }
4729     assert(forwardee != NULL, "forwardee should not be NULL");
4730     oopDesc::encode_store_heap_oop(p, forwardee);
4731     if (do_mark_object && forwardee != obj) {
4732       // If the object is self-forwarded we don't need to explicitly
4733       // mark it, the evacuation failure protocol will do so.
4734       mark_forwarded_object(obj, forwardee);
4735     }
4736 
4737     // When scanning the RS, we only care about objs in CS.
4738     if (barrier == G1BarrierRS) {
4739       _par_scan_state->update_rs(_from, p, _worker_id);
4740     }
4741   } else {
4742     // The object is not in collection set. If we're a root scanning
4743     // closure during an initial mark pause (i.e. do_mark_object will
4744     // be true) then attempt to mark the object.
4745     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4746       mark_object(obj);
4747     }
4748   }
4749 
4750   if (barrier == G1BarrierEvac && obj != NULL) {
4751     _par_scan_state->update_rs(_from, p, _worker_id);
4752   }
4753 
4754   if (do_gen_barrier && obj != NULL) {
4755     par_do_barrier(p);
4756   }
4757 }
4758 
4759 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4760 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4761 
4762 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4763   assert(has_partial_array_mask(p), "invariant");
4764   oop from_obj = clear_partial_array_mask(p);
4765 
4766   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4767   assert(from_obj->is_objArray(), "must be obj array");
4768   objArrayOop from_obj_array = objArrayOop(from_obj);
4769   // The from-space object contains the real length.
4770   int length                 = from_obj_array->length();
4771 
4772   assert(from_obj->is_forwarded(), "must be forwarded");
4773   oop to_obj                 = from_obj->forwardee();
4774   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4775   objArrayOop to_obj_array   = objArrayOop(to_obj);
4776   // We keep track of the next start index in the length field of the
4777   // to-space object.
4778   int next_index             = to_obj_array->length();
4779   assert(0 <= next_index && next_index < length,
4780          err_msg("invariant, next index: %d, length: %d", next_index, length));
4781 
4782   int start                  = next_index;
4783   int end                    = length;
4784   int remainder              = end - start;
4785   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4786   if (remainder > 2 * ParGCArrayScanChunk) {
4787     end = start + ParGCArrayScanChunk;
4788     to_obj_array->set_length(end);
4789     // Push the remainder before we process the range in case another
4790     // worker has run out of things to do and can steal it.
4791     oop* from_obj_p = set_partial_array_mask(from_obj);
4792     _par_scan_state->push_on_queue(from_obj_p);
4793   } else {
4794     assert(length == end, "sanity");
4795     // We'll process the final range for this object. Restore the length
4796     // so that the heap remains parsable in case of evacuation failure.
4797     to_obj_array->set_length(end);
4798   }
4799   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4800   // Process indexes [start,end). It will also process the header
4801   // along with the first chunk (i.e., the chunk with start == 0).
4802   // Note that at this point the length field of to_obj_array is not
4803   // correct given that we are using it to keep track of the next
4804   // start index. oop_iterate_range() (thankfully!) ignores the length
4805   // field and only relies on the start / end parameters.  It does
4806   // however return the size of the object which will be incorrect. So
4807   // we have to ignore it even if we wanted to use it.
4808   to_obj_array->oop_iterate_range(&_scanner, start, end);
4809 }
4810 
4811 class G1ParEvacuateFollowersClosure : public VoidClosure {
4812 protected:
4813   G1CollectedHeap*              _g1h;
4814   G1ParScanThreadState*         _par_scan_state;
4815   RefToScanQueueSet*            _queues;
4816   ParallelTaskTerminator*       _terminator;
4817 
4818   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4819   RefToScanQueueSet*      queues()         { return _queues; }
4820   ParallelTaskTerminator* terminator()     { return _terminator; }
4821 
4822 public:
4823   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4824                                 G1ParScanThreadState* par_scan_state,
4825                                 RefToScanQueueSet* queues,
4826                                 ParallelTaskTerminator* terminator)
4827     : _g1h(g1h), _par_scan_state(par_scan_state),
4828       _queues(queues), _terminator(terminator) {}
4829 
4830   void do_void();
4831 
4832 private:
4833   inline bool offer_termination();
4834 };
4835 
4836 bool G1ParEvacuateFollowersClosure::offer_termination() {
4837   G1ParScanThreadState* const pss = par_scan_state();
4838   pss->start_term_time();
4839   const bool res = terminator()->offer_termination();
4840   pss->end_term_time();
4841   return res;
4842 }
4843 
4844 void G1ParEvacuateFollowersClosure::do_void() {
4845   StarTask stolen_task;
4846   G1ParScanThreadState* const pss = par_scan_state();
4847   pss->trim_queue();
4848 
4849   do {
4850     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4851       assert(pss->verify_task(stolen_task), "sanity");
4852       if (stolen_task.is_narrow()) {
4853         pss->deal_with_reference((narrowOop*) stolen_task);
4854       } else {
4855         pss->deal_with_reference((oop*) stolen_task);
4856       }
4857 
4858       // We've just processed a reference and we might have made
4859       // available new entries on the queues. So we have to make sure
4860       // we drain the queues as necessary.
4861       pss->trim_queue();
4862     }
4863   } while (!offer_termination());
4864 
4865   pss->retire_alloc_buffers();
4866 }
4867 
4868 class G1ParTask : public AbstractGangTask {
4869 protected:
4870   G1CollectedHeap*       _g1h;
4871   RefToScanQueueSet      *_queues;
4872   ParallelTaskTerminator _terminator;
4873   uint _n_workers;
4874 
4875   Mutex _stats_lock;
4876   Mutex* stats_lock() { return &_stats_lock; }
4877 
4878   size_t getNCards() {
4879     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4880       / G1BlockOffsetSharedArray::N_bytes;
4881   }
4882 
4883 public:
4884   G1ParTask(G1CollectedHeap* g1h,
4885             RefToScanQueueSet *task_queues)
4886     : AbstractGangTask("G1 collection"),
4887       _g1h(g1h),
4888       _queues(task_queues),
4889       _terminator(0, _queues),
4890       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4891   {}
4892 
4893   RefToScanQueueSet* queues() { return _queues; }
4894 
4895   RefToScanQueue *work_queue(int i) {
4896     return queues()->queue(i);
4897   }
4898 
4899   ParallelTaskTerminator* terminator() { return &_terminator; }
4900 
4901   virtual void set_for_termination(int active_workers) {
4902     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4903     // in the young space (_par_seq_tasks) in the G1 heap
4904     // for SequentialSubTasksDone.
4905     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4906     // both of which need setting by set_n_termination().
4907     _g1h->SharedHeap::set_n_termination(active_workers);
4908     _g1h->set_n_termination(active_workers);
4909     terminator()->reset_for_reuse(active_workers);
4910     _n_workers = active_workers;
4911   }
4912 
4913   void work(uint worker_id) {
4914     if (worker_id >= _n_workers) return;  // no work needed this round
4915 
4916     double start_time_ms = os::elapsedTime() * 1000.0;
4917     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4918 
4919     {
4920       ResourceMark rm;
4921       HandleMark   hm;
4922 
4923       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4924 
4925       G1ParScanThreadState            pss(_g1h, worker_id);
4926       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4927       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4928       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4929 
4930       pss.set_evac_closure(&scan_evac_cl);
4931       pss.set_evac_failure_closure(&evac_failure_cl);
4932       pss.set_partial_scan_closure(&partial_scan_cl);
4933 
4934       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4935       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4936 
4937       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4938       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4939 
4940       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4941       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4942 
4943       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4944         // We also need to mark copied objects.
4945         scan_root_cl = &scan_mark_root_cl;
4946         scan_perm_cl = &scan_mark_perm_cl;
4947       }
4948 
4949       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4950 
4951       pss.start_strong_roots();
4952       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4953                                     SharedHeap::SO_AllClasses,
4954                                     scan_root_cl,
4955                                     &push_heap_rs_cl,
4956                                     scan_perm_cl,
4957                                     worker_id);
4958       pss.end_strong_roots();
4959 
4960       {
4961         double start = os::elapsedTime();
4962         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4963         evac.do_void();
4964         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4965         double term_ms = pss.term_time()*1000.0;
4966         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4967         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4968       }
4969       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4970       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4971 
4972       if (ParallelGCVerbose) {
4973         MutexLocker x(stats_lock());
4974         pss.print_termination_stats(worker_id);
4975       }
4976 
4977       assert(pss.refs()->is_empty(), "should be empty");
4978 
4979       // Close the inner scope so that the ResourceMark and HandleMark
4980       // destructors are executed here and are included as part of the
4981       // "GC Worker Time".
4982     }
4983 
4984     double end_time_ms = os::elapsedTime() * 1000.0;
4985     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4986   }
4987 };
4988 
4989 // *** Common G1 Evacuation Stuff
4990 
4991 // Closures that support the filtering of CodeBlobs scanned during
4992 // external root scanning.
4993 
4994 // Closure applied to reference fields in code blobs (specifically nmethods)
4995 // to determine whether an nmethod contains references that point into
4996 // the collection set. Used as a predicate when walking code roots so
4997 // that only nmethods that point into the collection set are added to the
4998 // 'marked' list.
4999 
5000 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
5001 
5002   class G1PointsIntoCSOopClosure : public OopClosure {
5003     G1CollectedHeap* _g1;
5004     bool _points_into_cs;
5005   public:
5006     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
5007       _g1(g1), _points_into_cs(false) { }
5008 
5009     bool points_into_cs() const { return _points_into_cs; }
5010 
5011     template <class T>
5012     void do_oop_nv(T* p) {
5013       if (!_points_into_cs) {
5014         T heap_oop = oopDesc::load_heap_oop(p);
5015         if (!oopDesc::is_null(heap_oop) &&
5016             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
5017           _points_into_cs = true;
5018         }
5019       }
5020     }
5021 
5022     virtual void do_oop(oop* p)        { do_oop_nv(p); }
5023     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
5024   };
5025 
5026   G1CollectedHeap* _g1;
5027 
5028 public:
5029   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
5030     CodeBlobToOopClosure(cl, true), _g1(g1) { }
5031 
5032   virtual void do_code_blob(CodeBlob* cb) {
5033     nmethod* nm = cb->as_nmethod_or_null();
5034     if (nm != NULL && !(nm->test_oops_do_mark())) {
5035       G1PointsIntoCSOopClosure predicate_cl(_g1);
5036       nm->oops_do(&predicate_cl);
5037 
5038       if (predicate_cl.points_into_cs()) {
5039         // At least one of the reference fields or the oop relocations
5040         // in the nmethod points into the collection set. We have to
5041         // 'mark' this nmethod.
5042         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
5043         // or MarkingCodeBlobClosure::do_code_blob() change.
5044         if (!nm->test_set_oops_do_mark()) {
5045           do_newly_marked_nmethod(nm);
5046         }
5047       }
5048     }
5049   }
5050 };
5051 
5052 // This method is run in a GC worker.
5053 
5054 void
5055 G1CollectedHeap::
5056 g1_process_strong_roots(bool collecting_perm_gen,
5057                         ScanningOption so,
5058                         OopClosure* scan_non_heap_roots,
5059                         OopsInHeapRegionClosure* scan_rs,
5060                         OopsInGenClosure* scan_perm,
5061                         int worker_i) {
5062 
5063   // First scan the strong roots, including the perm gen.
5064   double ext_roots_start = os::elapsedTime();
5065   double closure_app_time_sec = 0.0;
5066 
5067   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5068   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
5069   buf_scan_perm.set_generation(perm_gen());
5070 
5071   // Walk the code cache w/o buffering, because StarTask cannot handle
5072   // unaligned oop locations.
5073   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
5074 
5075   process_strong_roots(false, // no scoping; this is parallel code
5076                        collecting_perm_gen, so,
5077                        &buf_scan_non_heap_roots,
5078                        &eager_scan_code_roots,
5079                        &buf_scan_perm);
5080 
5081   // Now the CM ref_processor roots.
5082   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5083     // We need to treat the discovered reference lists of the
5084     // concurrent mark ref processor as roots and keep entries
5085     // (which are added by the marking threads) on them live
5086     // until they can be processed at the end of marking.
5087     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5088   }
5089 
5090   // Finish up any enqueued closure apps (attributed as object copy time).
5091   buf_scan_non_heap_roots.done();
5092   buf_scan_perm.done();
5093 
5094   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
5095                                 buf_scan_non_heap_roots.closure_app_seconds();
5096   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5097 
5098   double ext_root_time_ms =
5099     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5100 
5101   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5102 
5103   // During conc marking we have to filter the per-thread SATB buffers
5104   // to make sure we remove any oops into the CSet (which will show up
5105   // as implicitly live).
5106   double satb_filtering_ms = 0.0;
5107   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5108     if (mark_in_progress()) {
5109       double satb_filter_start = os::elapsedTime();
5110 
5111       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5112 
5113       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5114     }
5115   }
5116   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5117 
5118   // Now scan the complement of the collection set.
5119   if (scan_rs != NULL) {
5120     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
5121   }
5122 
5123   _process_strong_tasks->all_tasks_completed();
5124 }
5125 
5126 void
5127 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
5128                                        OopClosure* non_root_closure) {
5129   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5130   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
5131 }
5132 
5133 // Weak Reference Processing support
5134 
5135 // An always "is_alive" closure that is used to preserve referents.
5136 // If the object is non-null then it's alive.  Used in the preservation
5137 // of referent objects that are pointed to by reference objects
5138 // discovered by the CM ref processor.
5139 class G1AlwaysAliveClosure: public BoolObjectClosure {
5140   G1CollectedHeap* _g1;
5141 public:
5142   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5143   void do_object(oop p) { assert(false, "Do not call."); }
5144   bool do_object_b(oop p) {
5145     if (p != NULL) {
5146       return true;
5147     }
5148     return false;
5149   }
5150 };
5151 
5152 bool G1STWIsAliveClosure::do_object_b(oop p) {
5153   // An object is reachable if it is outside the collection set,
5154   // or is inside and copied.
5155   return !_g1->obj_in_cs(p) || p->is_forwarded();
5156 }
5157 
5158 // Non Copying Keep Alive closure
5159 class G1KeepAliveClosure: public OopClosure {
5160   G1CollectedHeap* _g1;
5161 public:
5162   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5163   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5164   void do_oop(      oop* p) {
5165     oop obj = *p;
5166 
5167     if (_g1->obj_in_cs(obj)) {
5168       assert( obj->is_forwarded(), "invariant" );
5169       *p = obj->forwardee();
5170     }
5171   }
5172 };
5173 
5174 // Copying Keep Alive closure - can be called from both
5175 // serial and parallel code as long as different worker
5176 // threads utilize different G1ParScanThreadState instances
5177 // and different queues.
5178 
5179 class G1CopyingKeepAliveClosure: public OopClosure {
5180   G1CollectedHeap*         _g1h;
5181   OopClosure*              _copy_non_heap_obj_cl;
5182   OopsInHeapRegionClosure* _copy_perm_obj_cl;
5183   G1ParScanThreadState*    _par_scan_state;
5184 
5185 public:
5186   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5187                             OopClosure* non_heap_obj_cl,
5188                             OopsInHeapRegionClosure* perm_obj_cl,
5189                             G1ParScanThreadState* pss):
5190     _g1h(g1h),
5191     _copy_non_heap_obj_cl(non_heap_obj_cl),
5192     _copy_perm_obj_cl(perm_obj_cl),
5193     _par_scan_state(pss)
5194   {}
5195 
5196   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5197   virtual void do_oop(      oop* p) { do_oop_work(p); }
5198 
5199   template <class T> void do_oop_work(T* p) {
5200     oop obj = oopDesc::load_decode_heap_oop(p);
5201 
5202     if (_g1h->obj_in_cs(obj)) {
5203       // If the referent object has been forwarded (either copied
5204       // to a new location or to itself in the event of an
5205       // evacuation failure) then we need to update the reference
5206       // field and, if both reference and referent are in the G1
5207       // heap, update the RSet for the referent.
5208       //
5209       // If the referent has not been forwarded then we have to keep
5210       // it alive by policy. Therefore we have copy the referent.
5211       //
5212       // If the reference field is in the G1 heap then we can push
5213       // on the PSS queue. When the queue is drained (after each
5214       // phase of reference processing) the object and it's followers
5215       // will be copied, the reference field set to point to the
5216       // new location, and the RSet updated. Otherwise we need to
5217       // use the the non-heap or perm closures directly to copy
5218       // the referent object and update the pointer, while avoiding
5219       // updating the RSet.
5220 
5221       if (_g1h->is_in_g1_reserved(p)) {
5222         _par_scan_state->push_on_queue(p);
5223       } else {
5224         // The reference field is not in the G1 heap.
5225         if (_g1h->perm_gen()->is_in(p)) {
5226           _copy_perm_obj_cl->do_oop(p);
5227         } else {
5228           _copy_non_heap_obj_cl->do_oop(p);
5229         }
5230       }
5231     }
5232   }
5233 };
5234 
5235 // Serial drain queue closure. Called as the 'complete_gc'
5236 // closure for each discovered list in some of the
5237 // reference processing phases.
5238 
5239 class G1STWDrainQueueClosure: public VoidClosure {
5240 protected:
5241   G1CollectedHeap* _g1h;
5242   G1ParScanThreadState* _par_scan_state;
5243 
5244   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5245 
5246 public:
5247   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5248     _g1h(g1h),
5249     _par_scan_state(pss)
5250   { }
5251 
5252   void do_void() {
5253     G1ParScanThreadState* const pss = par_scan_state();
5254     pss->trim_queue();
5255   }
5256 };
5257 
5258 // Parallel Reference Processing closures
5259 
5260 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5261 // processing during G1 evacuation pauses.
5262 
5263 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5264 private:
5265   G1CollectedHeap*   _g1h;
5266   RefToScanQueueSet* _queues;
5267   FlexibleWorkGang*  _workers;
5268   int                _active_workers;
5269 
5270 public:
5271   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5272                         FlexibleWorkGang* workers,
5273                         RefToScanQueueSet *task_queues,
5274                         int n_workers) :
5275     _g1h(g1h),
5276     _queues(task_queues),
5277     _workers(workers),
5278     _active_workers(n_workers)
5279   {
5280     assert(n_workers > 0, "shouldn't call this otherwise");
5281   }
5282 
5283   // Executes the given task using concurrent marking worker threads.
5284   virtual void execute(ProcessTask& task);
5285   virtual void execute(EnqueueTask& task);
5286 };
5287 
5288 // Gang task for possibly parallel reference processing
5289 
5290 class G1STWRefProcTaskProxy: public AbstractGangTask {
5291   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5292   ProcessTask&     _proc_task;
5293   G1CollectedHeap* _g1h;
5294   RefToScanQueueSet *_task_queues;
5295   ParallelTaskTerminator* _terminator;
5296 
5297 public:
5298   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5299                      G1CollectedHeap* g1h,
5300                      RefToScanQueueSet *task_queues,
5301                      ParallelTaskTerminator* terminator) :
5302     AbstractGangTask("Process reference objects in parallel"),
5303     _proc_task(proc_task),
5304     _g1h(g1h),
5305     _task_queues(task_queues),
5306     _terminator(terminator)
5307   {}
5308 
5309   virtual void work(uint worker_id) {
5310     // The reference processing task executed by a single worker.
5311     ResourceMark rm;
5312     HandleMark   hm;
5313 
5314     G1STWIsAliveClosure is_alive(_g1h);
5315 
5316     G1ParScanThreadState pss(_g1h, worker_id);
5317 
5318     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5319     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5320     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5321 
5322     pss.set_evac_closure(&scan_evac_cl);
5323     pss.set_evac_failure_closure(&evac_failure_cl);
5324     pss.set_partial_scan_closure(&partial_scan_cl);
5325 
5326     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5327     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5328 
5329     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5330     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5331 
5332     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5333     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5334 
5335     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5336       // We also need to mark copied objects.
5337       copy_non_heap_cl = &copy_mark_non_heap_cl;
5338       copy_perm_cl = &copy_mark_perm_cl;
5339     }
5340 
5341     // Keep alive closure.
5342     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5343 
5344     // Complete GC closure
5345     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5346 
5347     // Call the reference processing task's work routine.
5348     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5349 
5350     // Note we cannot assert that the refs array is empty here as not all
5351     // of the processing tasks (specifically phase2 - pp2_work) execute
5352     // the complete_gc closure (which ordinarily would drain the queue) so
5353     // the queue may not be empty.
5354   }
5355 };
5356 
5357 // Driver routine for parallel reference processing.
5358 // Creates an instance of the ref processing gang
5359 // task and has the worker threads execute it.
5360 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5361   assert(_workers != NULL, "Need parallel worker threads.");
5362 
5363   ParallelTaskTerminator terminator(_active_workers, _queues);
5364   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5365 
5366   _g1h->set_par_threads(_active_workers);
5367   _workers->run_task(&proc_task_proxy);
5368   _g1h->set_par_threads(0);
5369 }
5370 
5371 // Gang task for parallel reference enqueueing.
5372 
5373 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5374   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5375   EnqueueTask& _enq_task;
5376 
5377 public:
5378   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5379     AbstractGangTask("Enqueue reference objects in parallel"),
5380     _enq_task(enq_task)
5381   { }
5382 
5383   virtual void work(uint worker_id) {
5384     _enq_task.work(worker_id);
5385   }
5386 };
5387 
5388 // Driver routine for parallel reference enqueueing.
5389 // Creates an instance of the ref enqueueing gang
5390 // task and has the worker threads execute it.
5391 
5392 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5393   assert(_workers != NULL, "Need parallel worker threads.");
5394 
5395   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5396 
5397   _g1h->set_par_threads(_active_workers);
5398   _workers->run_task(&enq_task_proxy);
5399   _g1h->set_par_threads(0);
5400 }
5401 
5402 // End of weak reference support closures
5403 
5404 // Abstract task used to preserve (i.e. copy) any referent objects
5405 // that are in the collection set and are pointed to by reference
5406 // objects discovered by the CM ref processor.
5407 
5408 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5409 protected:
5410   G1CollectedHeap* _g1h;
5411   RefToScanQueueSet      *_queues;
5412   ParallelTaskTerminator _terminator;
5413   uint _n_workers;
5414 
5415 public:
5416   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5417     AbstractGangTask("ParPreserveCMReferents"),
5418     _g1h(g1h),
5419     _queues(task_queues),
5420     _terminator(workers, _queues),
5421     _n_workers(workers)
5422   { }
5423 
5424   void work(uint worker_id) {
5425     ResourceMark rm;
5426     HandleMark   hm;
5427 
5428     G1ParScanThreadState            pss(_g1h, worker_id);
5429     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5430     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5431     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5432 
5433     pss.set_evac_closure(&scan_evac_cl);
5434     pss.set_evac_failure_closure(&evac_failure_cl);
5435     pss.set_partial_scan_closure(&partial_scan_cl);
5436 
5437     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5438 
5439 
5440     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5441     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5442 
5443     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5444     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5445 
5446     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5447     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5448 
5449     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5450       // We also need to mark copied objects.
5451       copy_non_heap_cl = &copy_mark_non_heap_cl;
5452       copy_perm_cl = &copy_mark_perm_cl;
5453     }
5454 
5455     // Is alive closure
5456     G1AlwaysAliveClosure always_alive(_g1h);
5457 
5458     // Copying keep alive closure. Applied to referent objects that need
5459     // to be copied.
5460     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5461 
5462     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5463 
5464     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5465     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5466 
5467     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5468     // So this must be true - but assert just in case someone decides to
5469     // change the worker ids.
5470     assert(0 <= worker_id && worker_id < limit, "sanity");
5471     assert(!rp->discovery_is_atomic(), "check this code");
5472 
5473     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5474     for (uint idx = worker_id; idx < limit; idx += stride) {
5475       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5476 
5477       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5478       while (iter.has_next()) {
5479         // Since discovery is not atomic for the CM ref processor, we
5480         // can see some null referent objects.
5481         iter.load_ptrs(DEBUG_ONLY(true));
5482         oop ref = iter.obj();
5483 
5484         // This will filter nulls.
5485         if (iter.is_referent_alive()) {
5486           iter.make_referent_alive();
5487         }
5488         iter.move_to_next();
5489       }
5490     }
5491 
5492     // Drain the queue - which may cause stealing
5493     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5494     drain_queue.do_void();
5495     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5496     assert(pss.refs()->is_empty(), "should be");
5497   }
5498 };
5499 
5500 // Weak Reference processing during an evacuation pause (part 1).
5501 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5502   double ref_proc_start = os::elapsedTime();
5503 
5504   ReferenceProcessor* rp = _ref_processor_stw;
5505   assert(rp->discovery_enabled(), "should have been enabled");
5506 
5507   // Any reference objects, in the collection set, that were 'discovered'
5508   // by the CM ref processor should have already been copied (either by
5509   // applying the external root copy closure to the discovered lists, or
5510   // by following an RSet entry).
5511   //
5512   // But some of the referents, that are in the collection set, that these
5513   // reference objects point to may not have been copied: the STW ref
5514   // processor would have seen that the reference object had already
5515   // been 'discovered' and would have skipped discovering the reference,
5516   // but would not have treated the reference object as a regular oop.
5517   // As a result the copy closure would not have been applied to the
5518   // referent object.
5519   //
5520   // We need to explicitly copy these referent objects - the references
5521   // will be processed at the end of remarking.
5522   //
5523   // We also need to do this copying before we process the reference
5524   // objects discovered by the STW ref processor in case one of these
5525   // referents points to another object which is also referenced by an
5526   // object discovered by the STW ref processor.
5527 
5528   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5529            no_of_gc_workers == workers()->active_workers(),
5530            "Need to reset active GC workers");
5531 
5532   set_par_threads(no_of_gc_workers);
5533   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5534                                                  no_of_gc_workers,
5535                                                  _task_queues);
5536 
5537   if (G1CollectedHeap::use_parallel_gc_threads()) {
5538     workers()->run_task(&keep_cm_referents);
5539   } else {
5540     keep_cm_referents.work(0);
5541   }
5542 
5543   set_par_threads(0);
5544 
5545   // Closure to test whether a referent is alive.
5546   G1STWIsAliveClosure is_alive(this);
5547 
5548   // Even when parallel reference processing is enabled, the processing
5549   // of JNI refs is serial and performed serially by the current thread
5550   // rather than by a worker. The following PSS will be used for processing
5551   // JNI refs.
5552 
5553   // Use only a single queue for this PSS.
5554   G1ParScanThreadState pss(this, 0);
5555 
5556   // We do not embed a reference processor in the copying/scanning
5557   // closures while we're actually processing the discovered
5558   // reference objects.
5559   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5560   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5561   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5562 
5563   pss.set_evac_closure(&scan_evac_cl);
5564   pss.set_evac_failure_closure(&evac_failure_cl);
5565   pss.set_partial_scan_closure(&partial_scan_cl);
5566 
5567   assert(pss.refs()->is_empty(), "pre-condition");
5568 
5569   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5570   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
5571 
5572   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5573   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
5574 
5575   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5576   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5577 
5578   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5579     // We also need to mark copied objects.
5580     copy_non_heap_cl = &copy_mark_non_heap_cl;
5581     copy_perm_cl = &copy_mark_perm_cl;
5582   }
5583 
5584   // Keep alive closure.
5585   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
5586 
5587   // Serial Complete GC closure
5588   G1STWDrainQueueClosure drain_queue(this, &pss);
5589 
5590   // Setup the soft refs policy...
5591   rp->setup_policy(false);
5592 
5593   ReferenceProcessorStats stats;
5594   if (!rp->processing_is_mt()) {
5595     // Serial reference processing...
5596     stats = rp->process_discovered_references(&is_alive,
5597                                               &keep_alive,
5598                                               &drain_queue,
5599                                               NULL,
5600                                               _gc_timer_stw);
5601   } else {
5602     // Parallel reference processing
5603     assert(rp->num_q() == no_of_gc_workers, "sanity");
5604     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5605 
5606     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5607     stats = rp->process_discovered_references(&is_alive,
5608                                               &keep_alive,
5609                                               &drain_queue,
5610                                               &par_task_executor,
5611                                               _gc_timer_stw);
5612   }
5613 
5614   _gc_tracer_stw->report_gc_reference_stats(stats);
5615   // We have completed copying any necessary live referent objects
5616   // (that were not copied during the actual pause) so we can
5617   // retire any active alloc buffers
5618   pss.retire_alloc_buffers();
5619   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5620 
5621   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5622   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5623 }
5624 
5625 // Weak Reference processing during an evacuation pause (part 2).
5626 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5627   double ref_enq_start = os::elapsedTime();
5628 
5629   ReferenceProcessor* rp = _ref_processor_stw;
5630   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5631 
5632   // Now enqueue any remaining on the discovered lists on to
5633   // the pending list.
5634   if (!rp->processing_is_mt()) {
5635     // Serial reference processing...
5636     rp->enqueue_discovered_references();
5637   } else {
5638     // Parallel reference enqueueing
5639 
5640     assert(no_of_gc_workers == workers()->active_workers(),
5641            "Need to reset active workers");
5642     assert(rp->num_q() == no_of_gc_workers, "sanity");
5643     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5644 
5645     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5646     rp->enqueue_discovered_references(&par_task_executor);
5647   }
5648 
5649   rp->verify_no_references_recorded();
5650   assert(!rp->discovery_enabled(), "should have been disabled");
5651 
5652   // FIXME
5653   // CM's reference processing also cleans up the string and symbol tables.
5654   // Should we do that here also? We could, but it is a serial operation
5655   // and could significantly increase the pause time.
5656 
5657   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5658   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5659 }
5660 
5661 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5662   _expand_heap_after_alloc_failure = true;
5663   set_evacuation_failed(false);
5664 
5665   // Should G1EvacuationFailureALot be in effect for this GC?
5666   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5667 
5668   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5669   concurrent_g1_refine()->set_use_cache(false);
5670   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5671 
5672   uint n_workers;
5673   if (G1CollectedHeap::use_parallel_gc_threads()) {
5674     n_workers =
5675       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5676                                      workers()->active_workers(),
5677                                      Threads::number_of_non_daemon_threads());
5678     assert(UseDynamicNumberOfGCThreads ||
5679            n_workers == workers()->total_workers(),
5680            "If not dynamic should be using all the  workers");
5681     workers()->set_active_workers(n_workers);
5682     set_par_threads(n_workers);
5683   } else {
5684     assert(n_par_threads() == 0,
5685            "Should be the original non-parallel value");
5686     n_workers = 1;
5687   }
5688 
5689   G1ParTask g1_par_task(this, _task_queues);
5690 
5691   init_for_evac_failure(NULL);
5692 
5693   rem_set()->prepare_for_younger_refs_iterate(true);
5694 
5695   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5696   double start_par_time_sec = os::elapsedTime();
5697   double end_par_time_sec;
5698 
5699   {
5700     StrongRootsScope srs(this);
5701 
5702     if (G1CollectedHeap::use_parallel_gc_threads()) {
5703       // The individual threads will set their evac-failure closures.
5704       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5705       // These tasks use ShareHeap::_process_strong_tasks
5706       assert(UseDynamicNumberOfGCThreads ||
5707              workers()->active_workers() == workers()->total_workers(),
5708              "If not dynamic should be using all the  workers");
5709       workers()->run_task(&g1_par_task);
5710     } else {
5711       g1_par_task.set_for_termination(n_workers);
5712       g1_par_task.work(0);
5713     }
5714     end_par_time_sec = os::elapsedTime();
5715 
5716     // Closing the inner scope will execute the destructor
5717     // for the StrongRootsScope object. We record the current
5718     // elapsed time before closing the scope so that time
5719     // taken for the SRS destructor is NOT included in the
5720     // reported parallel time.
5721   }
5722 
5723   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5724   g1_policy()->phase_times()->record_par_time(par_time_ms);
5725 
5726   double code_root_fixup_time_ms =
5727         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5728   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5729 
5730   set_par_threads(0);
5731 
5732   // Process any discovered reference objects - we have
5733   // to do this _before_ we retire the GC alloc regions
5734   // as we may have to copy some 'reachable' referent
5735   // objects (and their reachable sub-graphs) that were
5736   // not copied during the pause.
5737   process_discovered_references(n_workers);
5738 
5739   // Weak root processing.
5740   // Note: when JSR 292 is enabled and code blobs can contain
5741   // non-perm oops then we will need to process the code blobs
5742   // here too.
5743   {
5744     G1STWIsAliveClosure is_alive(this);
5745     G1KeepAliveClosure keep_alive(this);
5746     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5747   }
5748 
5749   release_gc_alloc_regions(n_workers, evacuation_info);
5750   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5751 
5752   concurrent_g1_refine()->clear_hot_cache();
5753   concurrent_g1_refine()->set_use_cache(true);
5754 
5755   finalize_for_evac_failure();
5756 
5757   if (evacuation_failed()) {
5758     remove_self_forwarding_pointers();
5759 
5760     // Reset the G1EvacuationFailureALot counters and flags
5761     // Note: the values are reset only when an actual
5762     // evacuation failure occurs.
5763     NOT_PRODUCT(reset_evacuation_should_fail();)
5764   }
5765 
5766   // Enqueue any remaining references remaining on the STW
5767   // reference processor's discovered lists. We need to do
5768   // this after the card table is cleaned (and verified) as
5769   // the act of enqueueing entries on to the pending list
5770   // will log these updates (and dirty their associated
5771   // cards). We need these updates logged to update any
5772   // RSets.
5773   enqueue_discovered_references(n_workers);
5774 
5775   if (G1DeferredRSUpdate) {
5776     RedirtyLoggedCardTableEntryFastClosure redirty;
5777     dirty_card_queue_set().set_closure(&redirty);
5778     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5779 
5780     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5781     dcq.merge_bufferlists(&dirty_card_queue_set());
5782     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5783   }
5784   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5785 }
5786 
5787 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5788                                      size_t* pre_used,
5789                                      FreeRegionList* free_list,
5790                                      OldRegionSet* old_proxy_set,
5791                                      HumongousRegionSet* humongous_proxy_set,
5792                                      HRRSCleanupTask* hrrs_cleanup_task,
5793                                      bool par) {
5794   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5795     if (hr->isHumongous()) {
5796       assert(hr->startsHumongous(), "we should only see starts humongous");
5797       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5798     } else {
5799       _old_set.remove_with_proxy(hr, old_proxy_set);
5800       free_region(hr, pre_used, free_list, par);
5801     }
5802   } else {
5803     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5804   }
5805 }
5806 
5807 void G1CollectedHeap::free_region(HeapRegion* hr,
5808                                   size_t* pre_used,
5809                                   FreeRegionList* free_list,
5810                                   bool par) {
5811   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5812   assert(!hr->is_empty(), "the region should not be empty");
5813   assert(free_list != NULL, "pre-condition");
5814 
5815   *pre_used += hr->used();
5816   hr->hr_clear(par, true /* clear_space */);
5817   free_list->add_as_head(hr);
5818 }
5819 
5820 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5821                                      size_t* pre_used,
5822                                      FreeRegionList* free_list,
5823                                      HumongousRegionSet* humongous_proxy_set,
5824                                      bool par) {
5825   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5826   assert(free_list != NULL, "pre-condition");
5827   assert(humongous_proxy_set != NULL, "pre-condition");
5828 
5829   size_t hr_used = hr->used();
5830   size_t hr_capacity = hr->capacity();
5831   size_t hr_pre_used = 0;
5832   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5833   // We need to read this before we make the region non-humongous,
5834   // otherwise the information will be gone.
5835   uint last_index = hr->last_hc_index();
5836   hr->set_notHumongous();
5837   free_region(hr, &hr_pre_used, free_list, par);
5838 
5839   uint i = hr->hrs_index() + 1;
5840   while (i < last_index) {
5841     HeapRegion* curr_hr = region_at(i);
5842     assert(curr_hr->continuesHumongous(), "invariant");
5843     curr_hr->set_notHumongous();
5844     free_region(curr_hr, &hr_pre_used, free_list, par);
5845     i += 1;
5846   }
5847   assert(hr_pre_used == hr_used,
5848          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5849                  "should be the same", hr_pre_used, hr_used));
5850   *pre_used += hr_pre_used;
5851 }
5852 
5853 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5854                                        FreeRegionList* free_list,
5855                                        OldRegionSet* old_proxy_set,
5856                                        HumongousRegionSet* humongous_proxy_set,
5857                                        bool par) {
5858   if (pre_used > 0) {
5859     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5860     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5861     assert(_summary_bytes_used >= pre_used,
5862            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5863                    "should be >= pre_used: "SIZE_FORMAT,
5864                    _summary_bytes_used, pre_used));
5865     _summary_bytes_used -= pre_used;
5866   }
5867   if (free_list != NULL && !free_list->is_empty()) {
5868     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5869     _free_list.add_as_head(free_list);
5870   }
5871   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5872     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5873     _old_set.update_from_proxy(old_proxy_set);
5874   }
5875   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5876     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5877     _humongous_set.update_from_proxy(humongous_proxy_set);
5878   }
5879 }
5880 
5881 class G1ParCleanupCTTask : public AbstractGangTask {
5882   CardTableModRefBS* _ct_bs;
5883   G1CollectedHeap* _g1h;
5884   HeapRegion* volatile _su_head;
5885 public:
5886   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5887                      G1CollectedHeap* g1h) :
5888     AbstractGangTask("G1 Par Cleanup CT Task"),
5889     _ct_bs(ct_bs), _g1h(g1h) { }
5890 
5891   void work(uint worker_id) {
5892     HeapRegion* r;
5893     while (r = _g1h->pop_dirty_cards_region()) {
5894       clear_cards(r);
5895     }
5896   }
5897 
5898   void clear_cards(HeapRegion* r) {
5899     // Cards of the survivors should have already been dirtied.
5900     if (!r->is_survivor()) {
5901       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5902     }
5903   }
5904 };
5905 
5906 #ifndef PRODUCT
5907 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5908   G1CollectedHeap* _g1h;
5909   CardTableModRefBS* _ct_bs;
5910 public:
5911   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5912     : _g1h(g1h), _ct_bs(ct_bs) { }
5913   virtual bool doHeapRegion(HeapRegion* r) {
5914     if (r->is_survivor()) {
5915       _g1h->verify_dirty_region(r);
5916     } else {
5917       _g1h->verify_not_dirty_region(r);
5918     }
5919     return false;
5920   }
5921 };
5922 
5923 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5924   // All of the region should be clean.
5925   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5926   MemRegion mr(hr->bottom(), hr->end());
5927   ct_bs->verify_not_dirty_region(mr);
5928 }
5929 
5930 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5931   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5932   // dirty allocated blocks as they allocate them. The thread that
5933   // retires each region and replaces it with a new one will do a
5934   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5935   // not dirty that area (one less thing to have to do while holding
5936   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5937   // is dirty.
5938   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5939   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5940   ct_bs->verify_dirty_region(mr);
5941 }
5942 
5943 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5944   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5945   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5946     verify_dirty_region(hr);
5947   }
5948 }
5949 
5950 void G1CollectedHeap::verify_dirty_young_regions() {
5951   verify_dirty_young_list(_young_list->first_region());
5952 }
5953 #endif
5954 
5955 void G1CollectedHeap::cleanUpCardTable() {
5956   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5957   double start = os::elapsedTime();
5958 
5959   {
5960     // Iterate over the dirty cards region list.
5961     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5962 
5963     if (G1CollectedHeap::use_parallel_gc_threads()) {
5964       set_par_threads();
5965       workers()->run_task(&cleanup_task);
5966       set_par_threads(0);
5967     } else {
5968       while (_dirty_cards_region_list) {
5969         HeapRegion* r = _dirty_cards_region_list;
5970         cleanup_task.clear_cards(r);
5971         _dirty_cards_region_list = r->get_next_dirty_cards_region();
5972         if (_dirty_cards_region_list == r) {
5973           // The last region.
5974           _dirty_cards_region_list = NULL;
5975         }
5976         r->set_next_dirty_cards_region(NULL);
5977       }
5978     }
5979 #ifndef PRODUCT
5980     if (G1VerifyCTCleanup || VerifyAfterGC) {
5981       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5982       heap_region_iterate(&cleanup_verifier);
5983     }
5984 #endif
5985   }
5986 
5987   double elapsed = os::elapsedTime() - start;
5988   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5989 }
5990 
5991 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5992   size_t pre_used = 0;
5993   FreeRegionList local_free_list("Local List for CSet Freeing");
5994 
5995   double young_time_ms     = 0.0;
5996   double non_young_time_ms = 0.0;
5997 
5998   // Since the collection set is a superset of the the young list,
5999   // all we need to do to clear the young list is clear its
6000   // head and length, and unlink any young regions in the code below
6001   _young_list->clear();
6002 
6003   G1CollectorPolicy* policy = g1_policy();
6004 
6005   double start_sec = os::elapsedTime();
6006   bool non_young = true;
6007 
6008   HeapRegion* cur = cs_head;
6009   int age_bound = -1;
6010   size_t rs_lengths = 0;
6011 
6012   while (cur != NULL) {
6013     assert(!is_on_master_free_list(cur), "sanity");
6014     if (non_young) {
6015       if (cur->is_young()) {
6016         double end_sec = os::elapsedTime();
6017         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6018         non_young_time_ms += elapsed_ms;
6019 
6020         start_sec = os::elapsedTime();
6021         non_young = false;
6022       }
6023     } else {
6024       if (!cur->is_young()) {
6025         double end_sec = os::elapsedTime();
6026         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6027         young_time_ms += elapsed_ms;
6028 
6029         start_sec = os::elapsedTime();
6030         non_young = true;
6031       }
6032     }
6033 
6034     rs_lengths += cur->rem_set()->occupied();
6035 
6036     HeapRegion* next = cur->next_in_collection_set();
6037     assert(cur->in_collection_set(), "bad CS");
6038     cur->set_next_in_collection_set(NULL);
6039     cur->set_in_collection_set(false);
6040 
6041     if (cur->is_young()) {
6042       int index = cur->young_index_in_cset();
6043       assert(index != -1, "invariant");
6044       assert((uint) index < policy->young_cset_region_length(), "invariant");
6045       size_t words_survived = _surviving_young_words[index];
6046       cur->record_surv_words_in_group(words_survived);
6047 
6048       // At this point the we have 'popped' cur from the collection set
6049       // (linked via next_in_collection_set()) but it is still in the
6050       // young list (linked via next_young_region()). Clear the
6051       // _next_young_region field.
6052       cur->set_next_young_region(NULL);
6053     } else {
6054       int index = cur->young_index_in_cset();
6055       assert(index == -1, "invariant");
6056     }
6057 
6058     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6059             (!cur->is_young() && cur->young_index_in_cset() == -1),
6060             "invariant" );
6061 
6062     if (!cur->evacuation_failed()) {
6063       MemRegion used_mr = cur->used_region();
6064 
6065       // And the region is empty.
6066       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6067       free_region(cur, &pre_used, &local_free_list, false /* par */);
6068     } else {
6069       cur->uninstall_surv_rate_group();
6070       if (cur->is_young()) {
6071         cur->set_young_index_in_cset(-1);
6072       }
6073       cur->set_not_young();
6074       cur->set_evacuation_failed(false);
6075       // The region is now considered to be old.
6076       _old_set.add(cur);
6077       evacuation_info.increment_collectionset_used_after(cur->used());
6078     }
6079     cur = next;
6080   }
6081 
6082   evacuation_info.set_regions_freed(local_free_list.length());
6083   policy->record_max_rs_lengths(rs_lengths);
6084   policy->cset_regions_freed();
6085 
6086   double end_sec = os::elapsedTime();
6087   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6088 
6089   if (non_young) {
6090     non_young_time_ms += elapsed_ms;
6091   } else {
6092     young_time_ms += elapsed_ms;
6093   }
6094 
6095   update_sets_after_freeing_regions(pre_used, &local_free_list,
6096                                     NULL /* old_proxy_set */,
6097                                     NULL /* humongous_proxy_set */,
6098                                     false /* par */);
6099   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6100   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6101 }
6102 
6103 // This routine is similar to the above but does not record
6104 // any policy statistics or update free lists; we are abandoning
6105 // the current incremental collection set in preparation of a
6106 // full collection. After the full GC we will start to build up
6107 // the incremental collection set again.
6108 // This is only called when we're doing a full collection
6109 // and is immediately followed by the tearing down of the young list.
6110 
6111 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6112   HeapRegion* cur = cs_head;
6113 
6114   while (cur != NULL) {
6115     HeapRegion* next = cur->next_in_collection_set();
6116     assert(cur->in_collection_set(), "bad CS");
6117     cur->set_next_in_collection_set(NULL);
6118     cur->set_in_collection_set(false);
6119     cur->set_young_index_in_cset(-1);
6120     cur = next;
6121   }
6122 }
6123 
6124 void G1CollectedHeap::set_free_regions_coming() {
6125   if (G1ConcRegionFreeingVerbose) {
6126     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6127                            "setting free regions coming");
6128   }
6129 
6130   assert(!free_regions_coming(), "pre-condition");
6131   _free_regions_coming = true;
6132 }
6133 
6134 void G1CollectedHeap::reset_free_regions_coming() {
6135   assert(free_regions_coming(), "pre-condition");
6136 
6137   {
6138     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6139     _free_regions_coming = false;
6140     SecondaryFreeList_lock->notify_all();
6141   }
6142 
6143   if (G1ConcRegionFreeingVerbose) {
6144     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6145                            "reset free regions coming");
6146   }
6147 }
6148 
6149 void G1CollectedHeap::wait_while_free_regions_coming() {
6150   // Most of the time we won't have to wait, so let's do a quick test
6151   // first before we take the lock.
6152   if (!free_regions_coming()) {
6153     return;
6154   }
6155 
6156   if (G1ConcRegionFreeingVerbose) {
6157     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6158                            "waiting for free regions");
6159   }
6160 
6161   {
6162     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6163     while (free_regions_coming()) {
6164       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6165     }
6166   }
6167 
6168   if (G1ConcRegionFreeingVerbose) {
6169     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6170                            "done waiting for free regions");
6171   }
6172 }
6173 
6174 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6175   assert(heap_lock_held_for_gc(),
6176               "the heap lock should already be held by or for this thread");
6177   _young_list->push_region(hr);
6178 }
6179 
6180 class NoYoungRegionsClosure: public HeapRegionClosure {
6181 private:
6182   bool _success;
6183 public:
6184   NoYoungRegionsClosure() : _success(true) { }
6185   bool doHeapRegion(HeapRegion* r) {
6186     if (r->is_young()) {
6187       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6188                              r->bottom(), r->end());
6189       _success = false;
6190     }
6191     return false;
6192   }
6193   bool success() { return _success; }
6194 };
6195 
6196 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6197   bool ret = _young_list->check_list_empty(check_sample);
6198 
6199   if (check_heap) {
6200     NoYoungRegionsClosure closure;
6201     heap_region_iterate(&closure);
6202     ret = ret && closure.success();
6203   }
6204 
6205   return ret;
6206 }
6207 
6208 class TearDownRegionSetsClosure : public HeapRegionClosure {
6209 private:
6210   OldRegionSet *_old_set;
6211 
6212 public:
6213   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6214 
6215   bool doHeapRegion(HeapRegion* r) {
6216     if (r->is_empty()) {
6217       // We ignore empty regions, we'll empty the free list afterwards
6218     } else if (r->is_young()) {
6219       // We ignore young regions, we'll empty the young list afterwards
6220     } else if (r->isHumongous()) {
6221       // We ignore humongous regions, we're not tearing down the
6222       // humongous region set
6223     } else {
6224       // The rest should be old
6225       _old_set->remove(r);
6226     }
6227     return false;
6228   }
6229 
6230   ~TearDownRegionSetsClosure() {
6231     assert(_old_set->is_empty(), "post-condition");
6232   }
6233 };
6234 
6235 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6236   assert_at_safepoint(true /* should_be_vm_thread */);
6237 
6238   if (!free_list_only) {
6239     TearDownRegionSetsClosure cl(&_old_set);
6240     heap_region_iterate(&cl);
6241 
6242     // Need to do this after the heap iteration to be able to
6243     // recognize the young regions and ignore them during the iteration.
6244     _young_list->empty_list();
6245   }
6246   _free_list.remove_all();
6247 }
6248 
6249 class RebuildRegionSetsClosure : public HeapRegionClosure {
6250 private:
6251   bool            _free_list_only;
6252   OldRegionSet*   _old_set;
6253   FreeRegionList* _free_list;
6254   size_t          _total_used;
6255 
6256 public:
6257   RebuildRegionSetsClosure(bool free_list_only,
6258                            OldRegionSet* old_set, FreeRegionList* free_list) :
6259     _free_list_only(free_list_only),
6260     _old_set(old_set), _free_list(free_list), _total_used(0) {
6261     assert(_free_list->is_empty(), "pre-condition");
6262     if (!free_list_only) {
6263       assert(_old_set->is_empty(), "pre-condition");
6264     }
6265   }
6266 
6267   bool doHeapRegion(HeapRegion* r) {
6268     if (r->continuesHumongous()) {
6269       return false;
6270     }
6271 
6272     if (r->is_empty()) {
6273       // Add free regions to the free list
6274       _free_list->add_as_tail(r);
6275     } else if (!_free_list_only) {
6276       assert(!r->is_young(), "we should not come across young regions");
6277 
6278       if (r->isHumongous()) {
6279         // We ignore humongous regions, we left the humongous set unchanged
6280       } else {
6281         // The rest should be old, add them to the old set
6282         _old_set->add(r);
6283       }
6284       _total_used += r->used();
6285     }
6286 
6287     return false;
6288   }
6289 
6290   size_t total_used() {
6291     return _total_used;
6292   }
6293 };
6294 
6295 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6296   assert_at_safepoint(true /* should_be_vm_thread */);
6297 
6298   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6299   heap_region_iterate(&cl);
6300 
6301   if (!free_list_only) {
6302     _summary_bytes_used = cl.total_used();
6303   }
6304   assert(_summary_bytes_used == recalculate_used(),
6305          err_msg("inconsistent _summary_bytes_used, "
6306                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6307                  _summary_bytes_used, recalculate_used()));
6308 }
6309 
6310 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6311   _refine_cte_cl->set_concurrent(concurrent);
6312 }
6313 
6314 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6315   HeapRegion* hr = heap_region_containing(p);
6316   if (hr == NULL) {
6317     return is_in_permanent(p);
6318   } else {
6319     return hr->is_in(p);
6320   }
6321 }
6322 
6323 // Methods for the mutator alloc region
6324 
6325 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6326                                                       bool force) {
6327   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6328   assert(!force || g1_policy()->can_expand_young_list(),
6329          "if force is true we should be able to expand the young list");
6330   bool young_list_full = g1_policy()->is_young_list_full();
6331   if (force || !young_list_full) {
6332     HeapRegion* new_alloc_region = new_region(word_size,
6333                                               false /* do_expand */);
6334     if (new_alloc_region != NULL) {
6335       set_region_short_lived_locked(new_alloc_region);
6336       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6337       return new_alloc_region;
6338     }
6339   }
6340   return NULL;
6341 }
6342 
6343 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6344                                                   size_t allocated_bytes) {
6345   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6346   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6347 
6348   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6349   _summary_bytes_used += allocated_bytes;
6350   _hr_printer.retire(alloc_region);
6351   // We update the eden sizes here, when the region is retired,
6352   // instead of when it's allocated, since this is the point that its
6353   // used space has been recored in _summary_bytes_used.
6354   g1mm()->update_eden_size();
6355 }
6356 
6357 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6358                                                     bool force) {
6359   return _g1h->new_mutator_alloc_region(word_size, force);
6360 }
6361 
6362 void G1CollectedHeap::set_par_threads() {
6363   // Don't change the number of workers.  Use the value previously set
6364   // in the workgroup.
6365   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6366   uint n_workers = workers()->active_workers();
6367   assert(UseDynamicNumberOfGCThreads ||
6368            n_workers == workers()->total_workers(),
6369       "Otherwise should be using the total number of workers");
6370   if (n_workers == 0) {
6371     assert(false, "Should have been set in prior evacuation pause.");
6372     n_workers = ParallelGCThreads;
6373     workers()->set_active_workers(n_workers);
6374   }
6375   set_par_threads(n_workers);
6376 }
6377 
6378 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6379                                        size_t allocated_bytes) {
6380   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6381 }
6382 
6383 // Methods for the GC alloc regions
6384 
6385 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6386                                                  uint count,
6387                                                  GCAllocPurpose ap) {
6388   assert(FreeList_lock->owned_by_self(), "pre-condition");
6389 
6390   if (count < g1_policy()->max_regions(ap)) {
6391     HeapRegion* new_alloc_region = new_region(word_size,
6392                                               true /* do_expand */);
6393     if (new_alloc_region != NULL) {
6394       // We really only need to do this for old regions given that we
6395       // should never scan survivors. But it doesn't hurt to do it
6396       // for survivors too.
6397       new_alloc_region->set_saved_mark();
6398       if (ap == GCAllocForSurvived) {
6399         new_alloc_region->set_survivor();
6400         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6401       } else {
6402         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6403       }
6404       bool during_im = g1_policy()->during_initial_mark_pause();
6405       new_alloc_region->note_start_of_copying(during_im);
6406       return new_alloc_region;
6407     } else {
6408       g1_policy()->note_alloc_region_limit_reached(ap);
6409     }
6410   }
6411   return NULL;
6412 }
6413 
6414 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6415                                              size_t allocated_bytes,
6416                                              GCAllocPurpose ap) {
6417   bool during_im = g1_policy()->during_initial_mark_pause();
6418   alloc_region->note_end_of_copying(during_im);
6419   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6420   if (ap == GCAllocForSurvived) {
6421     young_list()->add_survivor_region(alloc_region);
6422   } else {
6423     _old_set.add(alloc_region);
6424   }
6425   _hr_printer.retire(alloc_region);
6426 }
6427 
6428 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6429                                                        bool force) {
6430   assert(!force, "not supported for GC alloc regions");
6431   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6432 }
6433 
6434 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6435                                           size_t allocated_bytes) {
6436   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6437                                GCAllocForSurvived);
6438 }
6439 
6440 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6441                                                   bool force) {
6442   assert(!force, "not supported for GC alloc regions");
6443   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6444 }
6445 
6446 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6447                                      size_t allocated_bytes) {
6448   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6449                                GCAllocForTenured);
6450 }
6451 // Heap region set verification
6452 
6453 class VerifyRegionListsClosure : public HeapRegionClosure {
6454 private:
6455   FreeRegionList*     _free_list;
6456   OldRegionSet*       _old_set;
6457   HumongousRegionSet* _humongous_set;
6458   uint                _region_count;
6459 
6460 public:
6461   VerifyRegionListsClosure(OldRegionSet* old_set,
6462                            HumongousRegionSet* humongous_set,
6463                            FreeRegionList* free_list) :
6464     _old_set(old_set), _humongous_set(humongous_set),
6465     _free_list(free_list), _region_count(0) { }
6466 
6467   uint region_count() { return _region_count; }
6468 
6469   bool doHeapRegion(HeapRegion* hr) {
6470     _region_count += 1;
6471 
6472     if (hr->continuesHumongous()) {
6473       return false;
6474     }
6475 
6476     if (hr->is_young()) {
6477       // TODO
6478     } else if (hr->startsHumongous()) {
6479       _humongous_set->verify_next_region(hr);
6480     } else if (hr->is_empty()) {
6481       _free_list->verify_next_region(hr);
6482     } else {
6483       _old_set->verify_next_region(hr);
6484     }
6485     return false;
6486   }
6487 };
6488 
6489 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6490                                              HeapWord* bottom) {
6491   HeapWord* end = bottom + HeapRegion::GrainWords;
6492   MemRegion mr(bottom, end);
6493   assert(_g1_reserved.contains(mr), "invariant");
6494   // This might return NULL if the allocation fails
6495   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
6496 }
6497 
6498 void G1CollectedHeap::verify_region_sets() {
6499   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6500 
6501   // First, check the explicit lists.
6502   _free_list.verify();
6503   {
6504     // Given that a concurrent operation might be adding regions to
6505     // the secondary free list we have to take the lock before
6506     // verifying it.
6507     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6508     _secondary_free_list.verify();
6509   }
6510   _old_set.verify();
6511   _humongous_set.verify();
6512 
6513   // If a concurrent region freeing operation is in progress it will
6514   // be difficult to correctly attributed any free regions we come
6515   // across to the correct free list given that they might belong to
6516   // one of several (free_list, secondary_free_list, any local lists,
6517   // etc.). So, if that's the case we will skip the rest of the
6518   // verification operation. Alternatively, waiting for the concurrent
6519   // operation to complete will have a non-trivial effect on the GC's
6520   // operation (no concurrent operation will last longer than the
6521   // interval between two calls to verification) and it might hide
6522   // any issues that we would like to catch during testing.
6523   if (free_regions_coming()) {
6524     return;
6525   }
6526 
6527   // Make sure we append the secondary_free_list on the free_list so
6528   // that all free regions we will come across can be safely
6529   // attributed to the free_list.
6530   append_secondary_free_list_if_not_empty_with_lock();
6531 
6532   // Finally, make sure that the region accounting in the lists is
6533   // consistent with what we see in the heap.
6534   _old_set.verify_start();
6535   _humongous_set.verify_start();
6536   _free_list.verify_start();
6537 
6538   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6539   heap_region_iterate(&cl);
6540 
6541   _old_set.verify_end();
6542   _humongous_set.verify_end();
6543   _free_list.verify_end();
6544 }