1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 
  53 // Array which maps compiler types to Basic Types
  54 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  65 
  66 #ifdef SPARC
  67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  71 #elif defined(PPC64)
  72   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  73   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  74   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  75   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  76 #else // all other
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  81 #endif
  82   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  83   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  84   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  85   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  86   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  87   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  88   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  89   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  90   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  91   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  92   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  93   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  94   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  95   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  96   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  97   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  98   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  99   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 100 };
 101 
 102 // Map ideal registers (machine types) to ideal types
 103 const Type *Type::mreg2type[_last_machine_leaf];
 104 
 105 // Map basic types to canonical Type* pointers.
 106 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 107 
 108 // Map basic types to constant-zero Types.
 109 const Type* Type::            _zero_type[T_CONFLICT+1];
 110 
 111 // Map basic types to array-body alias types.
 112 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 113 
 114 //=============================================================================
 115 // Convenience common pre-built types.
 116 const Type *Type::ABIO;         // State-of-machine only
 117 const Type *Type::BOTTOM;       // All values
 118 const Type *Type::CONTROL;      // Control only
 119 const Type *Type::DOUBLE;       // All doubles
 120 const Type *Type::FLOAT;        // All floats
 121 const Type *Type::HALF;         // Placeholder half of doublewide type
 122 const Type *Type::MEMORY;       // Abstract store only
 123 const Type *Type::RETURN_ADDRESS;
 124 const Type *Type::TOP;          // No values in set
 125 
 126 //------------------------------get_const_type---------------------------
 127 const Type* Type::get_const_type(ciType* type) {
 128   if (type == NULL) {
 129     return NULL;
 130   } else if (type->is_primitive_type()) {
 131     return get_const_basic_type(type->basic_type());
 132   } else {
 133     return TypeOopPtr::make_from_klass(type->as_klass());
 134   }
 135 }
 136 
 137 //---------------------------array_element_basic_type---------------------------------
 138 // Mapping to the array element's basic type.
 139 BasicType Type::array_element_basic_type() const {
 140   BasicType bt = basic_type();
 141   if (bt == T_INT) {
 142     if (this == TypeInt::INT)   return T_INT;
 143     if (this == TypeInt::CHAR)  return T_CHAR;
 144     if (this == TypeInt::BYTE)  return T_BYTE;
 145     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 146     if (this == TypeInt::SHORT) return T_SHORT;
 147     return T_VOID;
 148   }
 149   return bt;
 150 }
 151 
 152 // For two instance arrays of same dimension, return the base element types.
 153 // Otherwise or if the arrays have different dimensions, return NULL.
 154 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 155                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 156 
 157   if (e1) *e1 = NULL;
 158   if (e2) *e2 = NULL;
 159   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 160   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 161 
 162   if (a1tap != NULL && a2tap != NULL) {
 163     // Handle multidimensional arrays
 164     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 165     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 166     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 167       a1tap = a1tp->is_aryptr();
 168       a2tap = a2tp->is_aryptr();
 169       a1tp = a1tap->elem()->make_ptr();
 170       a2tp = a2tap->elem()->make_ptr();
 171     }
 172     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 173       if (e1) *e1 = a1tp->is_instptr();
 174       if (e2) *e2 = a2tp->is_instptr();
 175     }
 176   }
 177 }
 178 
 179 //---------------------------get_typeflow_type---------------------------------
 180 // Import a type produced by ciTypeFlow.
 181 const Type* Type::get_typeflow_type(ciType* type) {
 182   switch (type->basic_type()) {
 183 
 184   case ciTypeFlow::StateVector::T_BOTTOM:
 185     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 186     return Type::BOTTOM;
 187 
 188   case ciTypeFlow::StateVector::T_TOP:
 189     assert(type == ciTypeFlow::StateVector::top_type(), "");
 190     return Type::TOP;
 191 
 192   case ciTypeFlow::StateVector::T_NULL:
 193     assert(type == ciTypeFlow::StateVector::null_type(), "");
 194     return TypePtr::NULL_PTR;
 195 
 196   case ciTypeFlow::StateVector::T_LONG2:
 197     // The ciTypeFlow pass pushes a long, then the half.
 198     // We do the same.
 199     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 200     return TypeInt::TOP;
 201 
 202   case ciTypeFlow::StateVector::T_DOUBLE2:
 203     // The ciTypeFlow pass pushes double, then the half.
 204     // Our convention is the same.
 205     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 206     return Type::TOP;
 207 
 208   case T_ADDRESS:
 209     assert(type->is_return_address(), "");
 210     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 211 
 212   default:
 213     // make sure we did not mix up the cases:
 214     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 215     assert(type != ciTypeFlow::StateVector::top_type(), "");
 216     assert(type != ciTypeFlow::StateVector::null_type(), "");
 217     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 218     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 219     assert(!type->is_return_address(), "");
 220 
 221     return Type::get_const_type(type);
 222   }
 223 }
 224 
 225 
 226 //-----------------------make_from_constant------------------------------------
 227 const Type* Type::make_from_constant(ciConstant constant,
 228                                      bool require_constant, bool is_autobox_cache) {
 229   switch (constant.basic_type()) {
 230   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 231   case T_CHAR:     return TypeInt::make(constant.as_char());
 232   case T_BYTE:     return TypeInt::make(constant.as_byte());
 233   case T_SHORT:    return TypeInt::make(constant.as_short());
 234   case T_INT:      return TypeInt::make(constant.as_int());
 235   case T_LONG:     return TypeLong::make(constant.as_long());
 236   case T_FLOAT:    return TypeF::make(constant.as_float());
 237   case T_DOUBLE:   return TypeD::make(constant.as_double());
 238   case T_ARRAY:
 239   case T_OBJECT:
 240     {
 241       // cases:
 242       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 243       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 244       // An oop is not scavengable if it is in the perm gen.
 245       ciObject* oop_constant = constant.as_object();
 246       if (oop_constant->is_null_object()) {
 247         return Type::get_zero_type(T_OBJECT);
 248       } else if (require_constant || oop_constant->should_be_constant()) {
 249         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
 250       }
 251     }
 252   }
 253   // Fall through to failure
 254   return NULL;
 255 }
 256 
 257 
 258 //------------------------------make-------------------------------------------
 259 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 260 // and look for an existing copy in the type dictionary.
 261 const Type *Type::make( enum TYPES t ) {
 262   return (new Type(t))->hashcons();
 263 }
 264 
 265 //------------------------------cmp--------------------------------------------
 266 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 267   if( t1->_base != t2->_base )
 268     return 1;                   // Missed badly
 269   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 270   return !t1->eq(t2);           // Return ZERO if equal
 271 }
 272 
 273 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 274   if (!include_speculative) {
 275     return remove_speculative();
 276   }
 277   return this;
 278 }
 279 
 280 //------------------------------hash-------------------------------------------
 281 int Type::uhash( const Type *const t ) {
 282   return t->hash();
 283 }
 284 
 285 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 286 
 287 //--------------------------Initialize_shared----------------------------------
 288 void Type::Initialize_shared(Compile* current) {
 289   // This method does not need to be locked because the first system
 290   // compilations (stub compilations) occur serially.  If they are
 291   // changed to proceed in parallel, then this section will need
 292   // locking.
 293 
 294   Arena* save = current->type_arena();
 295   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 296 
 297   current->set_type_arena(shared_type_arena);
 298   _shared_type_dict =
 299     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 300                                   shared_type_arena, 128 );
 301   current->set_type_dict(_shared_type_dict);
 302 
 303   // Make shared pre-built types.
 304   CONTROL = make(Control);      // Control only
 305   TOP     = make(Top);          // No values in set
 306   MEMORY  = make(Memory);       // Abstract store only
 307   ABIO    = make(Abio);         // State-of-machine only
 308   RETURN_ADDRESS=make(Return_Address);
 309   FLOAT   = make(FloatBot);     // All floats
 310   DOUBLE  = make(DoubleBot);    // All doubles
 311   BOTTOM  = make(Bottom);       // Everything
 312   HALF    = make(Half);         // Placeholder half of doublewide type
 313 
 314   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 315   TypeF::ONE  = TypeF::make(1.0); // Float 1
 316 
 317   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 318   TypeD::ONE  = TypeD::make(1.0); // Double 1
 319 
 320   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 321   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 322   TypeInt::ONE     = TypeInt::make( 1);  //  1
 323   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 324   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 325   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 326   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 327   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 328   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 329   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 330   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 331   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 332   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 333   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 334   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 335   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 336   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 337   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 338   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 339   // CmpL is overloaded both as the bytecode computation returning
 340   // a trinary (-1,0,+1) integer result AND as an efficient long
 341   // compare returning optimizer ideal-type flags.
 342   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 343   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 344   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 345   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 346   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 347 
 348   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 349   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 350   TypeLong::ONE     = TypeLong::make( 1);        //  1
 351   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 352   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 353   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 354   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 355   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 356 
 357   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 358   fboth[0] = Type::CONTROL;
 359   fboth[1] = Type::CONTROL;
 360   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 361 
 362   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 363   ffalse[0] = Type::CONTROL;
 364   ffalse[1] = Type::TOP;
 365   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 366 
 367   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 368   fneither[0] = Type::TOP;
 369   fneither[1] = Type::TOP;
 370   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 371 
 372   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 373   ftrue[0] = Type::TOP;
 374   ftrue[1] = Type::CONTROL;
 375   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 376 
 377   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 378   floop[0] = Type::CONTROL;
 379   floop[1] = TypeInt::INT;
 380   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 381 
 382   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
 383   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
 384   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
 385 
 386   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 387   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 388 
 389   const Type **fmembar = TypeTuple::fields(0);
 390   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 391 
 392   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 393   fsc[0] = TypeInt::CC;
 394   fsc[1] = Type::MEMORY;
 395   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 396 
 397   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 398   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 399   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 400   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 401                                            false, 0, oopDesc::mark_offset_in_bytes());
 402   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 403                                            false, 0, oopDesc::klass_offset_in_bytes());
 404   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
 405 
 406   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 407 
 408   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 409   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 410 
 411   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 412 
 413   mreg2type[Op_Node] = Type::BOTTOM;
 414   mreg2type[Op_Set ] = 0;
 415   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 416   mreg2type[Op_RegI] = TypeInt::INT;
 417   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 418   mreg2type[Op_RegF] = Type::FLOAT;
 419   mreg2type[Op_RegD] = Type::DOUBLE;
 420   mreg2type[Op_RegL] = TypeLong::LONG;
 421   mreg2type[Op_RegFlags] = TypeInt::CC;
 422 
 423   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 424 
 425   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 426 
 427 #ifdef _LP64
 428   if (UseCompressedOops) {
 429     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 430     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 431   } else
 432 #endif
 433   {
 434     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 435     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 436   }
 437   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 438   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 439   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 440   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 441   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 442   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 443   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 444 
 445   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 446   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 447   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 448   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 449   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 450   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 451   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 452   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 453   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 454   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 455   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 456   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 457 
 458   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 459   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 460 
 461   const Type **fi2c = TypeTuple::fields(2);
 462   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 463   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 464   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 465 
 466   const Type **intpair = TypeTuple::fields(2);
 467   intpair[0] = TypeInt::INT;
 468   intpair[1] = TypeInt::INT;
 469   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 470 
 471   const Type **longpair = TypeTuple::fields(2);
 472   longpair[0] = TypeLong::LONG;
 473   longpair[1] = TypeLong::LONG;
 474   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 475 
 476   const Type **intccpair = TypeTuple::fields(2);
 477   intccpair[0] = TypeInt::INT;
 478   intccpair[1] = TypeInt::CC;
 479   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 480 
 481   const Type **longccpair = TypeTuple::fields(2);
 482   longccpair[0] = TypeLong::LONG;
 483   longccpair[1] = TypeInt::CC;
 484   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 485 
 486   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 487   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 488   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 489   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 490   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 491   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 492   _const_basic_type[T_INT]         = TypeInt::INT;
 493   _const_basic_type[T_LONG]        = TypeLong::LONG;
 494   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 495   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 496   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 497   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 498   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 499   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 500   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 501 
 502   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 503   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 504   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 505   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 506   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 507   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 508   _zero_type[T_INT]         = TypeInt::ZERO;
 509   _zero_type[T_LONG]        = TypeLong::ZERO;
 510   _zero_type[T_FLOAT]       = TypeF::ZERO;
 511   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 512   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 513   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 514   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 515   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 516 
 517   // get_zero_type() should not happen for T_CONFLICT
 518   _zero_type[T_CONFLICT]= NULL;
 519 
 520   // Vector predefined types, it needs initialized _const_basic_type[].
 521   if (Matcher::vector_size_supported(T_BYTE,4)) {
 522     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 523   }
 524   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 525     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 526   }
 527   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 528     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 529   }
 530   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 531     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 532   }
 533   mreg2type[Op_VecS] = TypeVect::VECTS;
 534   mreg2type[Op_VecD] = TypeVect::VECTD;
 535   mreg2type[Op_VecX] = TypeVect::VECTX;
 536   mreg2type[Op_VecY] = TypeVect::VECTY;
 537 
 538   // Restore working type arena.
 539   current->set_type_arena(save);
 540   current->set_type_dict(NULL);
 541 }
 542 
 543 //------------------------------Initialize-------------------------------------
 544 void Type::Initialize(Compile* current) {
 545   assert(current->type_arena() != NULL, "must have created type arena");
 546 
 547   if (_shared_type_dict == NULL) {
 548     Initialize_shared(current);
 549   }
 550 
 551   Arena* type_arena = current->type_arena();
 552 
 553   // Create the hash-cons'ing dictionary with top-level storage allocation
 554   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 555   current->set_type_dict(tdic);
 556 
 557   // Transfer the shared types.
 558   DictI i(_shared_type_dict);
 559   for( ; i.test(); ++i ) {
 560     Type* t = (Type*)i._value;
 561     tdic->Insert(t,t);  // New Type, insert into Type table
 562   }
 563 }
 564 
 565 //------------------------------hashcons---------------------------------------
 566 // Do the hash-cons trick.  If the Type already exists in the type table,
 567 // delete the current Type and return the existing Type.  Otherwise stick the
 568 // current Type in the Type table.
 569 const Type *Type::hashcons(void) {
 570   debug_only(base());           // Check the assertion in Type::base().
 571   // Look up the Type in the Type dictionary
 572   Dict *tdic = type_dict();
 573   Type* old = (Type*)(tdic->Insert(this, this, false));
 574   if( old ) {                   // Pre-existing Type?
 575     if( old != this )           // Yes, this guy is not the pre-existing?
 576       delete this;              // Yes, Nuke this guy
 577     assert( old->_dual, "" );
 578     return old;                 // Return pre-existing
 579   }
 580 
 581   // Every type has a dual (to make my lattice symmetric).
 582   // Since we just discovered a new Type, compute its dual right now.
 583   assert( !_dual, "" );         // No dual yet
 584   _dual = xdual();              // Compute the dual
 585   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 586     _dual = this;
 587     return this;
 588   }
 589   assert( !_dual->_dual, "" );  // No reverse dual yet
 590   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 591   // New Type, insert into Type table
 592   tdic->Insert((void*)_dual,(void*)_dual);
 593   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 594 #ifdef ASSERT
 595   Type *dual_dual = (Type*)_dual->xdual();
 596   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 597   delete dual_dual;
 598 #endif
 599   return this;                  // Return new Type
 600 }
 601 
 602 //------------------------------eq---------------------------------------------
 603 // Structural equality check for Type representations
 604 bool Type::eq( const Type * ) const {
 605   return true;                  // Nothing else can go wrong
 606 }
 607 
 608 //------------------------------hash-------------------------------------------
 609 // Type-specific hashing function.
 610 int Type::hash(void) const {
 611   return _base;
 612 }
 613 
 614 //------------------------------is_finite--------------------------------------
 615 // Has a finite value
 616 bool Type::is_finite() const {
 617   return false;
 618 }
 619 
 620 //------------------------------is_nan-----------------------------------------
 621 // Is not a number (NaN)
 622 bool Type::is_nan()    const {
 623   return false;
 624 }
 625 
 626 //----------------------interface_vs_oop---------------------------------------
 627 #ifdef ASSERT
 628 bool Type::interface_vs_oop_helper(const Type *t) const {
 629   bool result = false;
 630 
 631   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 632   const TypePtr*    t_ptr =    t->make_ptr();
 633   if( this_ptr == NULL || t_ptr == NULL )
 634     return result;
 635 
 636   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 637   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 638   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 639     bool this_interface = this_inst->klass()->is_interface();
 640     bool    t_interface =    t_inst->klass()->is_interface();
 641     result = this_interface ^ t_interface;
 642   }
 643 
 644   return result;
 645 }
 646 
 647 bool Type::interface_vs_oop(const Type *t) const {
 648   if (interface_vs_oop_helper(t)) {
 649     return true;
 650   }
 651   // Now check the speculative parts as well
 652   const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
 653   const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
 654   if (this_spec != NULL && t_spec != NULL) {
 655     if (this_spec->interface_vs_oop_helper(t_spec)) {
 656       return true;
 657     }
 658     return false;
 659   }
 660   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 661     return true;
 662   }
 663   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 664     return true;
 665   }
 666   return false;
 667 }
 668 
 669 #endif
 670 
 671 //------------------------------meet-------------------------------------------
 672 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 673 // commutative and the lattice is symmetric.
 674 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 675   if (isa_narrowoop() && t->isa_narrowoop()) {
 676     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 677     return result->make_narrowoop();
 678   }
 679   if (isa_narrowklass() && t->isa_narrowklass()) {
 680     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 681     return result->make_narrowklass();
 682   }
 683 
 684   const Type *this_t = maybe_remove_speculative(include_speculative);
 685   t = t->maybe_remove_speculative(include_speculative);
 686 
 687   const Type *mt = this_t->xmeet(t);
 688   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 689   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 690 #ifdef ASSERT
 691   assert(mt == t->xmeet(this_t), "meet not commutative");
 692   const Type* dual_join = mt->_dual;
 693   const Type *t2t    = dual_join->xmeet(t->_dual);
 694   const Type *t2this = dual_join->xmeet(this_t->_dual);
 695 
 696   // Interface meet Oop is Not Symmetric:
 697   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 698   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 699 
 700   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 701     tty->print_cr("=== Meet Not Symmetric ===");
 702     tty->print("t   =                   ");              t->dump(); tty->cr();
 703     tty->print("this=                   ");         this_t->dump(); tty->cr();
 704     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 705 
 706     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 707     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 708     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 709 
 710     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 711     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 712 
 713     fatal("meet not symmetric" );
 714   }
 715 #endif
 716   return mt;
 717 }
 718 
 719 //------------------------------xmeet------------------------------------------
 720 // Compute the MEET of two types.  It returns a new Type object.
 721 const Type *Type::xmeet( const Type *t ) const {
 722   // Perform a fast test for common case; meeting the same types together.
 723   if( this == t ) return this;  // Meeting same type-rep?
 724 
 725   // Meeting TOP with anything?
 726   if( _base == Top ) return t;
 727 
 728   // Meeting BOTTOM with anything?
 729   if( _base == Bottom ) return BOTTOM;
 730 
 731   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 732   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 733   switch (t->base()) {  // Switch on original type
 734 
 735   // Cut in half the number of cases I must handle.  Only need cases for when
 736   // the given enum "t->type" is less than or equal to the local enum "type".
 737   case FloatCon:
 738   case DoubleCon:
 739   case Int:
 740   case Long:
 741     return t->xmeet(this);
 742 
 743   case OopPtr:
 744     return t->xmeet(this);
 745 
 746   case InstPtr:
 747     return t->xmeet(this);
 748 
 749   case MetadataPtr:
 750   case KlassPtr:
 751     return t->xmeet(this);
 752 
 753   case AryPtr:
 754     return t->xmeet(this);
 755 
 756   case NarrowOop:
 757     return t->xmeet(this);
 758 
 759   case NarrowKlass:
 760     return t->xmeet(this);
 761 
 762   case Bad:                     // Type check
 763   default:                      // Bogus type not in lattice
 764     typerr(t);
 765     return Type::BOTTOM;
 766 
 767   case Bottom:                  // Ye Olde Default
 768     return t;
 769 
 770   case FloatTop:
 771     if( _base == FloatTop ) return this;
 772   case FloatBot:                // Float
 773     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 774     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 775     typerr(t);
 776     return Type::BOTTOM;
 777 
 778   case DoubleTop:
 779     if( _base == DoubleTop ) return this;
 780   case DoubleBot:               // Double
 781     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 782     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 783     typerr(t);
 784     return Type::BOTTOM;
 785 
 786   // These next few cases must match exactly or it is a compile-time error.
 787   case Control:                 // Control of code
 788   case Abio:                    // State of world outside of program
 789   case Memory:
 790     if( _base == t->_base )  return this;
 791     typerr(t);
 792     return Type::BOTTOM;
 793 
 794   case Top:                     // Top of the lattice
 795     return this;
 796   }
 797 
 798   // The type is unchanged
 799   return this;
 800 }
 801 
 802 //-----------------------------filter------------------------------------------
 803 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 804   const Type* ft = join_helper(kills, include_speculative);
 805   if (ft->empty())
 806     return Type::TOP;           // Canonical empty value
 807   return ft;
 808 }
 809 
 810 //------------------------------xdual------------------------------------------
 811 // Compute dual right now.
 812 const Type::TYPES Type::dual_type[Type::lastype] = {
 813   Bad,          // Bad
 814   Control,      // Control
 815   Bottom,       // Top
 816   Bad,          // Int - handled in v-call
 817   Bad,          // Long - handled in v-call
 818   Half,         // Half
 819   Bad,          // NarrowOop - handled in v-call
 820   Bad,          // NarrowKlass - handled in v-call
 821 
 822   Bad,          // Tuple - handled in v-call
 823   Bad,          // Array - handled in v-call
 824   Bad,          // VectorS - handled in v-call
 825   Bad,          // VectorD - handled in v-call
 826   Bad,          // VectorX - handled in v-call
 827   Bad,          // VectorY - handled in v-call
 828 
 829   Bad,          // AnyPtr - handled in v-call
 830   Bad,          // RawPtr - handled in v-call
 831   Bad,          // OopPtr - handled in v-call
 832   Bad,          // InstPtr - handled in v-call
 833   Bad,          // AryPtr - handled in v-call
 834 
 835   Bad,          //  MetadataPtr - handled in v-call
 836   Bad,          // KlassPtr - handled in v-call
 837 
 838   Bad,          // Function - handled in v-call
 839   Abio,         // Abio
 840   Return_Address,// Return_Address
 841   Memory,       // Memory
 842   FloatBot,     // FloatTop
 843   FloatCon,     // FloatCon
 844   FloatTop,     // FloatBot
 845   DoubleBot,    // DoubleTop
 846   DoubleCon,    // DoubleCon
 847   DoubleTop,    // DoubleBot
 848   Top           // Bottom
 849 };
 850 
 851 const Type *Type::xdual() const {
 852   // Note: the base() accessor asserts the sanity of _base.
 853   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 854   return new Type(_type_info[_base].dual_type);
 855 }
 856 
 857 //------------------------------has_memory-------------------------------------
 858 bool Type::has_memory() const {
 859   Type::TYPES tx = base();
 860   if (tx == Memory) return true;
 861   if (tx == Tuple) {
 862     const TypeTuple *t = is_tuple();
 863     for (uint i=0; i < t->cnt(); i++) {
 864       tx = t->field_at(i)->base();
 865       if (tx == Memory)  return true;
 866     }
 867   }
 868   return false;
 869 }
 870 
 871 #ifndef PRODUCT
 872 //------------------------------dump2------------------------------------------
 873 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 874   st->print("%s", _type_info[_base].msg);
 875 }
 876 
 877 //------------------------------dump-------------------------------------------
 878 void Type::dump_on(outputStream *st) const {
 879   ResourceMark rm;
 880   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 881   dump2(d,1, st);
 882   if (is_ptr_to_narrowoop()) {
 883     st->print(" [narrow]");
 884   } else if (is_ptr_to_narrowklass()) {
 885     st->print(" [narrowklass]");
 886   }
 887 }
 888 #endif
 889 
 890 //------------------------------singleton--------------------------------------
 891 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 892 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 893 bool Type::singleton(void) const {
 894   return _base == Top || _base == Half;
 895 }
 896 
 897 //------------------------------empty------------------------------------------
 898 // TRUE if Type is a type with no values, FALSE otherwise.
 899 bool Type::empty(void) const {
 900   switch (_base) {
 901   case DoubleTop:
 902   case FloatTop:
 903   case Top:
 904     return true;
 905 
 906   case Half:
 907   case Abio:
 908   case Return_Address:
 909   case Memory:
 910   case Bottom:
 911   case FloatBot:
 912   case DoubleBot:
 913     return false;  // never a singleton, therefore never empty
 914   }
 915 
 916   ShouldNotReachHere();
 917   return false;
 918 }
 919 
 920 //------------------------------dump_stats-------------------------------------
 921 // Dump collected statistics to stderr
 922 #ifndef PRODUCT
 923 void Type::dump_stats() {
 924   tty->print("Types made: %d\n", type_dict()->Size());
 925 }
 926 #endif
 927 
 928 //------------------------------typerr-----------------------------------------
 929 void Type::typerr( const Type *t ) const {
 930 #ifndef PRODUCT
 931   tty->print("\nError mixing types: ");
 932   dump();
 933   tty->print(" and ");
 934   t->dump();
 935   tty->print("\n");
 936 #endif
 937   ShouldNotReachHere();
 938 }
 939 
 940 
 941 //=============================================================================
 942 // Convenience common pre-built types.
 943 const TypeF *TypeF::ZERO;       // Floating point zero
 944 const TypeF *TypeF::ONE;        // Floating point one
 945 
 946 //------------------------------make-------------------------------------------
 947 // Create a float constant
 948 const TypeF *TypeF::make(float f) {
 949   return (TypeF*)(new TypeF(f))->hashcons();
 950 }
 951 
 952 //------------------------------meet-------------------------------------------
 953 // Compute the MEET of two types.  It returns a new Type object.
 954 const Type *TypeF::xmeet( const Type *t ) const {
 955   // Perform a fast test for common case; meeting the same types together.
 956   if( this == t ) return this;  // Meeting same type-rep?
 957 
 958   // Current "this->_base" is FloatCon
 959   switch (t->base()) {          // Switch on original type
 960   case AnyPtr:                  // Mixing with oops happens when javac
 961   case RawPtr:                  // reuses local variables
 962   case OopPtr:
 963   case InstPtr:
 964   case AryPtr:
 965   case MetadataPtr:
 966   case KlassPtr:
 967   case NarrowOop:
 968   case NarrowKlass:
 969   case Int:
 970   case Long:
 971   case DoubleTop:
 972   case DoubleCon:
 973   case DoubleBot:
 974   case Bottom:                  // Ye Olde Default
 975     return Type::BOTTOM;
 976 
 977   case FloatBot:
 978     return t;
 979 
 980   default:                      // All else is a mistake
 981     typerr(t);
 982 
 983   case FloatCon:                // Float-constant vs Float-constant?
 984     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 985                                 // must compare bitwise as positive zero, negative zero and NaN have
 986                                 // all the same representation in C++
 987       return FLOAT;             // Return generic float
 988                                 // Equal constants
 989   case Top:
 990   case FloatTop:
 991     break;                      // Return the float constant
 992   }
 993   return this;                  // Return the float constant
 994 }
 995 
 996 //------------------------------xdual------------------------------------------
 997 // Dual: symmetric
 998 const Type *TypeF::xdual() const {
 999   return this;
1000 }
1001 
1002 //------------------------------eq---------------------------------------------
1003 // Structural equality check for Type representations
1004 bool TypeF::eq(const Type *t) const {
1005   // Bitwise comparison to distinguish between +/-0. These values must be treated
1006   // as different to be consistent with C1 and the interpreter.
1007   return (jint_cast(_f) == jint_cast(t->getf()));
1008 }
1009 
1010 //------------------------------hash-------------------------------------------
1011 // Type-specific hashing function.
1012 int TypeF::hash(void) const {
1013   return *(int*)(&_f);
1014 }
1015 
1016 //------------------------------is_finite--------------------------------------
1017 // Has a finite value
1018 bool TypeF::is_finite() const {
1019   return g_isfinite(getf()) != 0;
1020 }
1021 
1022 //------------------------------is_nan-----------------------------------------
1023 // Is not a number (NaN)
1024 bool TypeF::is_nan()    const {
1025   return g_isnan(getf()) != 0;
1026 }
1027 
1028 //------------------------------dump2------------------------------------------
1029 // Dump float constant Type
1030 #ifndef PRODUCT
1031 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1032   Type::dump2(d,depth, st);
1033   st->print("%f", _f);
1034 }
1035 #endif
1036 
1037 //------------------------------singleton--------------------------------------
1038 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1039 // constants (Ldi nodes).  Singletons are integer, float or double constants
1040 // or a single symbol.
1041 bool TypeF::singleton(void) const {
1042   return true;                  // Always a singleton
1043 }
1044 
1045 bool TypeF::empty(void) const {
1046   return false;                 // always exactly a singleton
1047 }
1048 
1049 //=============================================================================
1050 // Convenience common pre-built types.
1051 const TypeD *TypeD::ZERO;       // Floating point zero
1052 const TypeD *TypeD::ONE;        // Floating point one
1053 
1054 //------------------------------make-------------------------------------------
1055 const TypeD *TypeD::make(double d) {
1056   return (TypeD*)(new TypeD(d))->hashcons();
1057 }
1058 
1059 //------------------------------meet-------------------------------------------
1060 // Compute the MEET of two types.  It returns a new Type object.
1061 const Type *TypeD::xmeet( const Type *t ) const {
1062   // Perform a fast test for common case; meeting the same types together.
1063   if( this == t ) return this;  // Meeting same type-rep?
1064 
1065   // Current "this->_base" is DoubleCon
1066   switch (t->base()) {          // Switch on original type
1067   case AnyPtr:                  // Mixing with oops happens when javac
1068   case RawPtr:                  // reuses local variables
1069   case OopPtr:
1070   case InstPtr:
1071   case AryPtr:
1072   case MetadataPtr:
1073   case KlassPtr:
1074   case NarrowOop:
1075   case NarrowKlass:
1076   case Int:
1077   case Long:
1078   case FloatTop:
1079   case FloatCon:
1080   case FloatBot:
1081   case Bottom:                  // Ye Olde Default
1082     return Type::BOTTOM;
1083 
1084   case DoubleBot:
1085     return t;
1086 
1087   default:                      // All else is a mistake
1088     typerr(t);
1089 
1090   case DoubleCon:               // Double-constant vs Double-constant?
1091     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1092       return DOUBLE;            // Return generic double
1093   case Top:
1094   case DoubleTop:
1095     break;
1096   }
1097   return this;                  // Return the double constant
1098 }
1099 
1100 //------------------------------xdual------------------------------------------
1101 // Dual: symmetric
1102 const Type *TypeD::xdual() const {
1103   return this;
1104 }
1105 
1106 //------------------------------eq---------------------------------------------
1107 // Structural equality check for Type representations
1108 bool TypeD::eq(const Type *t) const {
1109   // Bitwise comparison to distinguish between +/-0. These values must be treated
1110   // as different to be consistent with C1 and the interpreter.
1111   return (jlong_cast(_d) == jlong_cast(t->getd()));
1112 }
1113 
1114 //------------------------------hash-------------------------------------------
1115 // Type-specific hashing function.
1116 int TypeD::hash(void) const {
1117   return *(int*)(&_d);
1118 }
1119 
1120 //------------------------------is_finite--------------------------------------
1121 // Has a finite value
1122 bool TypeD::is_finite() const {
1123   return g_isfinite(getd()) != 0;
1124 }
1125 
1126 //------------------------------is_nan-----------------------------------------
1127 // Is not a number (NaN)
1128 bool TypeD::is_nan()    const {
1129   return g_isnan(getd()) != 0;
1130 }
1131 
1132 //------------------------------dump2------------------------------------------
1133 // Dump double constant Type
1134 #ifndef PRODUCT
1135 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1136   Type::dump2(d,depth,st);
1137   st->print("%f", _d);
1138 }
1139 #endif
1140 
1141 //------------------------------singleton--------------------------------------
1142 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1143 // constants (Ldi nodes).  Singletons are integer, float or double constants
1144 // or a single symbol.
1145 bool TypeD::singleton(void) const {
1146   return true;                  // Always a singleton
1147 }
1148 
1149 bool TypeD::empty(void) const {
1150   return false;                 // always exactly a singleton
1151 }
1152 
1153 //=============================================================================
1154 // Convience common pre-built types.
1155 const TypeInt *TypeInt::MINUS_1;// -1
1156 const TypeInt *TypeInt::ZERO;   // 0
1157 const TypeInt *TypeInt::ONE;    // 1
1158 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1159 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1160 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1161 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1162 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1163 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1164 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1165 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1166 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1167 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1168 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1169 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1170 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1171 const TypeInt *TypeInt::INT;    // 32-bit integers
1172 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1173 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1174 
1175 //------------------------------TypeInt----------------------------------------
1176 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1177 }
1178 
1179 //------------------------------make-------------------------------------------
1180 const TypeInt *TypeInt::make( jint lo ) {
1181   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1182 }
1183 
1184 static int normalize_int_widen( jint lo, jint hi, int w ) {
1185   // Certain normalizations keep us sane when comparing types.
1186   // The 'SMALLINT' covers constants and also CC and its relatives.
1187   if (lo <= hi) {
1188     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1189     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1190   } else {
1191     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1192     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1193   }
1194   return w;
1195 }
1196 
1197 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1198   w = normalize_int_widen(lo, hi, w);
1199   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1200 }
1201 
1202 //------------------------------meet-------------------------------------------
1203 // Compute the MEET of two types.  It returns a new Type representation object
1204 // with reference count equal to the number of Types pointing at it.
1205 // Caller should wrap a Types around it.
1206 const Type *TypeInt::xmeet( const Type *t ) const {
1207   // Perform a fast test for common case; meeting the same types together.
1208   if( this == t ) return this;  // Meeting same type?
1209 
1210   // Currently "this->_base" is a TypeInt
1211   switch (t->base()) {          // Switch on original type
1212   case AnyPtr:                  // Mixing with oops happens when javac
1213   case RawPtr:                  // reuses local variables
1214   case OopPtr:
1215   case InstPtr:
1216   case AryPtr:
1217   case MetadataPtr:
1218   case KlassPtr:
1219   case NarrowOop:
1220   case NarrowKlass:
1221   case Long:
1222   case FloatTop:
1223   case FloatCon:
1224   case FloatBot:
1225   case DoubleTop:
1226   case DoubleCon:
1227   case DoubleBot:
1228   case Bottom:                  // Ye Olde Default
1229     return Type::BOTTOM;
1230   default:                      // All else is a mistake
1231     typerr(t);
1232   case Top:                     // No change
1233     return this;
1234   case Int:                     // Int vs Int?
1235     break;
1236   }
1237 
1238   // Expand covered set
1239   const TypeInt *r = t->is_int();
1240   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1241 }
1242 
1243 //------------------------------xdual------------------------------------------
1244 // Dual: reverse hi & lo; flip widen
1245 const Type *TypeInt::xdual() const {
1246   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1247   return new TypeInt(_hi,_lo,w);
1248 }
1249 
1250 //------------------------------widen------------------------------------------
1251 // Only happens for optimistic top-down optimizations.
1252 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1253   // Coming from TOP or such; no widening
1254   if( old->base() != Int ) return this;
1255   const TypeInt *ot = old->is_int();
1256 
1257   // If new guy is equal to old guy, no widening
1258   if( _lo == ot->_lo && _hi == ot->_hi )
1259     return old;
1260 
1261   // If new guy contains old, then we widened
1262   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1263     // New contains old
1264     // If new guy is already wider than old, no widening
1265     if( _widen > ot->_widen ) return this;
1266     // If old guy was a constant, do not bother
1267     if (ot->_lo == ot->_hi)  return this;
1268     // Now widen new guy.
1269     // Check for widening too far
1270     if (_widen == WidenMax) {
1271       int max = max_jint;
1272       int min = min_jint;
1273       if (limit->isa_int()) {
1274         max = limit->is_int()->_hi;
1275         min = limit->is_int()->_lo;
1276       }
1277       if (min < _lo && _hi < max) {
1278         // If neither endpoint is extremal yet, push out the endpoint
1279         // which is closer to its respective limit.
1280         if (_lo >= 0 ||                 // easy common case
1281             (juint)(_lo - min) >= (juint)(max - _hi)) {
1282           // Try to widen to an unsigned range type of 31 bits:
1283           return make(_lo, max, WidenMax);
1284         } else {
1285           return make(min, _hi, WidenMax);
1286         }
1287       }
1288       return TypeInt::INT;
1289     }
1290     // Returned widened new guy
1291     return make(_lo,_hi,_widen+1);
1292   }
1293 
1294   // If old guy contains new, then we probably widened too far & dropped to
1295   // bottom.  Return the wider fellow.
1296   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1297     return old;
1298 
1299   //fatal("Integer value range is not subset");
1300   //return this;
1301   return TypeInt::INT;
1302 }
1303 
1304 //------------------------------narrow---------------------------------------
1305 // Only happens for pessimistic optimizations.
1306 const Type *TypeInt::narrow( const Type *old ) const {
1307   if (_lo >= _hi)  return this;   // already narrow enough
1308   if (old == NULL)  return this;
1309   const TypeInt* ot = old->isa_int();
1310   if (ot == NULL)  return this;
1311   jint olo = ot->_lo;
1312   jint ohi = ot->_hi;
1313 
1314   // If new guy is equal to old guy, no narrowing
1315   if (_lo == olo && _hi == ohi)  return old;
1316 
1317   // If old guy was maximum range, allow the narrowing
1318   if (olo == min_jint && ohi == max_jint)  return this;
1319 
1320   if (_lo < olo || _hi > ohi)
1321     return this;                // doesn't narrow; pretty wierd
1322 
1323   // The new type narrows the old type, so look for a "death march".
1324   // See comments on PhaseTransform::saturate.
1325   juint nrange = _hi - _lo;
1326   juint orange = ohi - olo;
1327   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1328     // Use the new type only if the range shrinks a lot.
1329     // We do not want the optimizer computing 2^31 point by point.
1330     return old;
1331   }
1332 
1333   return this;
1334 }
1335 
1336 //-----------------------------filter------------------------------------------
1337 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1338   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1339   if (ft == NULL || ft->empty())
1340     return Type::TOP;           // Canonical empty value
1341   if (ft->_widen < this->_widen) {
1342     // Do not allow the value of kill->_widen to affect the outcome.
1343     // The widen bits must be allowed to run freely through the graph.
1344     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1345   }
1346   return ft;
1347 }
1348 
1349 //------------------------------eq---------------------------------------------
1350 // Structural equality check for Type representations
1351 bool TypeInt::eq( const Type *t ) const {
1352   const TypeInt *r = t->is_int(); // Handy access
1353   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1354 }
1355 
1356 //------------------------------hash-------------------------------------------
1357 // Type-specific hashing function.
1358 int TypeInt::hash(void) const {
1359   return _lo+_hi+_widen+(int)Type::Int;
1360 }
1361 
1362 //------------------------------is_finite--------------------------------------
1363 // Has a finite value
1364 bool TypeInt::is_finite() const {
1365   return true;
1366 }
1367 
1368 //------------------------------dump2------------------------------------------
1369 // Dump TypeInt
1370 #ifndef PRODUCT
1371 static const char* intname(char* buf, jint n) {
1372   if (n == min_jint)
1373     return "min";
1374   else if (n < min_jint + 10000)
1375     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1376   else if (n == max_jint)
1377     return "max";
1378   else if (n > max_jint - 10000)
1379     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1380   else
1381     sprintf(buf, INT32_FORMAT, n);
1382   return buf;
1383 }
1384 
1385 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1386   char buf[40], buf2[40];
1387   if (_lo == min_jint && _hi == max_jint)
1388     st->print("int");
1389   else if (is_con())
1390     st->print("int:%s", intname(buf, get_con()));
1391   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1392     st->print("bool");
1393   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1394     st->print("byte");
1395   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1396     st->print("char");
1397   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1398     st->print("short");
1399   else if (_hi == max_jint)
1400     st->print("int:>=%s", intname(buf, _lo));
1401   else if (_lo == min_jint)
1402     st->print("int:<=%s", intname(buf, _hi));
1403   else
1404     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1405 
1406   if (_widen != 0 && this != TypeInt::INT)
1407     st->print(":%.*s", _widen, "wwww");
1408 }
1409 #endif
1410 
1411 //------------------------------singleton--------------------------------------
1412 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1413 // constants.
1414 bool TypeInt::singleton(void) const {
1415   return _lo >= _hi;
1416 }
1417 
1418 bool TypeInt::empty(void) const {
1419   return _lo > _hi;
1420 }
1421 
1422 //=============================================================================
1423 // Convenience common pre-built types.
1424 const TypeLong *TypeLong::MINUS_1;// -1
1425 const TypeLong *TypeLong::ZERO; // 0
1426 const TypeLong *TypeLong::ONE;  // 1
1427 const TypeLong *TypeLong::POS;  // >=0
1428 const TypeLong *TypeLong::LONG; // 64-bit integers
1429 const TypeLong *TypeLong::INT;  // 32-bit subrange
1430 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1431 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1432 
1433 //------------------------------TypeLong---------------------------------------
1434 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1435 }
1436 
1437 //------------------------------make-------------------------------------------
1438 const TypeLong *TypeLong::make( jlong lo ) {
1439   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1440 }
1441 
1442 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1443   // Certain normalizations keep us sane when comparing types.
1444   // The 'SMALLINT' covers constants.
1445   if (lo <= hi) {
1446     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1447     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1448   } else {
1449     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1450     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1451   }
1452   return w;
1453 }
1454 
1455 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1456   w = normalize_long_widen(lo, hi, w);
1457   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1458 }
1459 
1460 
1461 //------------------------------meet-------------------------------------------
1462 // Compute the MEET of two types.  It returns a new Type representation object
1463 // with reference count equal to the number of Types pointing at it.
1464 // Caller should wrap a Types around it.
1465 const Type *TypeLong::xmeet( const Type *t ) const {
1466   // Perform a fast test for common case; meeting the same types together.
1467   if( this == t ) return this;  // Meeting same type?
1468 
1469   // Currently "this->_base" is a TypeLong
1470   switch (t->base()) {          // Switch on original type
1471   case AnyPtr:                  // Mixing with oops happens when javac
1472   case RawPtr:                  // reuses local variables
1473   case OopPtr:
1474   case InstPtr:
1475   case AryPtr:
1476   case MetadataPtr:
1477   case KlassPtr:
1478   case NarrowOop:
1479   case NarrowKlass:
1480   case Int:
1481   case FloatTop:
1482   case FloatCon:
1483   case FloatBot:
1484   case DoubleTop:
1485   case DoubleCon:
1486   case DoubleBot:
1487   case Bottom:                  // Ye Olde Default
1488     return Type::BOTTOM;
1489   default:                      // All else is a mistake
1490     typerr(t);
1491   case Top:                     // No change
1492     return this;
1493   case Long:                    // Long vs Long?
1494     break;
1495   }
1496 
1497   // Expand covered set
1498   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1499   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1500 }
1501 
1502 //------------------------------xdual------------------------------------------
1503 // Dual: reverse hi & lo; flip widen
1504 const Type *TypeLong::xdual() const {
1505   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1506   return new TypeLong(_hi,_lo,w);
1507 }
1508 
1509 //------------------------------widen------------------------------------------
1510 // Only happens for optimistic top-down optimizations.
1511 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1512   // Coming from TOP or such; no widening
1513   if( old->base() != Long ) return this;
1514   const TypeLong *ot = old->is_long();
1515 
1516   // If new guy is equal to old guy, no widening
1517   if( _lo == ot->_lo && _hi == ot->_hi )
1518     return old;
1519 
1520   // If new guy contains old, then we widened
1521   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1522     // New contains old
1523     // If new guy is already wider than old, no widening
1524     if( _widen > ot->_widen ) return this;
1525     // If old guy was a constant, do not bother
1526     if (ot->_lo == ot->_hi)  return this;
1527     // Now widen new guy.
1528     // Check for widening too far
1529     if (_widen == WidenMax) {
1530       jlong max = max_jlong;
1531       jlong min = min_jlong;
1532       if (limit->isa_long()) {
1533         max = limit->is_long()->_hi;
1534         min = limit->is_long()->_lo;
1535       }
1536       if (min < _lo && _hi < max) {
1537         // If neither endpoint is extremal yet, push out the endpoint
1538         // which is closer to its respective limit.
1539         if (_lo >= 0 ||                 // easy common case
1540             (julong)(_lo - min) >= (julong)(max - _hi)) {
1541           // Try to widen to an unsigned range type of 32/63 bits:
1542           if (max >= max_juint && _hi < max_juint)
1543             return make(_lo, max_juint, WidenMax);
1544           else
1545             return make(_lo, max, WidenMax);
1546         } else {
1547           return make(min, _hi, WidenMax);
1548         }
1549       }
1550       return TypeLong::LONG;
1551     }
1552     // Returned widened new guy
1553     return make(_lo,_hi,_widen+1);
1554   }
1555 
1556   // If old guy contains new, then we probably widened too far & dropped to
1557   // bottom.  Return the wider fellow.
1558   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1559     return old;
1560 
1561   //  fatal("Long value range is not subset");
1562   // return this;
1563   return TypeLong::LONG;
1564 }
1565 
1566 //------------------------------narrow----------------------------------------
1567 // Only happens for pessimistic optimizations.
1568 const Type *TypeLong::narrow( const Type *old ) const {
1569   if (_lo >= _hi)  return this;   // already narrow enough
1570   if (old == NULL)  return this;
1571   const TypeLong* ot = old->isa_long();
1572   if (ot == NULL)  return this;
1573   jlong olo = ot->_lo;
1574   jlong ohi = ot->_hi;
1575 
1576   // If new guy is equal to old guy, no narrowing
1577   if (_lo == olo && _hi == ohi)  return old;
1578 
1579   // If old guy was maximum range, allow the narrowing
1580   if (olo == min_jlong && ohi == max_jlong)  return this;
1581 
1582   if (_lo < olo || _hi > ohi)
1583     return this;                // doesn't narrow; pretty wierd
1584 
1585   // The new type narrows the old type, so look for a "death march".
1586   // See comments on PhaseTransform::saturate.
1587   julong nrange = _hi - _lo;
1588   julong orange = ohi - olo;
1589   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1590     // Use the new type only if the range shrinks a lot.
1591     // We do not want the optimizer computing 2^31 point by point.
1592     return old;
1593   }
1594 
1595   return this;
1596 }
1597 
1598 //-----------------------------filter------------------------------------------
1599 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1600   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1601   if (ft == NULL || ft->empty())
1602     return Type::TOP;           // Canonical empty value
1603   if (ft->_widen < this->_widen) {
1604     // Do not allow the value of kill->_widen to affect the outcome.
1605     // The widen bits must be allowed to run freely through the graph.
1606     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1607   }
1608   return ft;
1609 }
1610 
1611 //------------------------------eq---------------------------------------------
1612 // Structural equality check for Type representations
1613 bool TypeLong::eq( const Type *t ) const {
1614   const TypeLong *r = t->is_long(); // Handy access
1615   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1616 }
1617 
1618 //------------------------------hash-------------------------------------------
1619 // Type-specific hashing function.
1620 int TypeLong::hash(void) const {
1621   return (int)(_lo+_hi+_widen+(int)Type::Long);
1622 }
1623 
1624 //------------------------------is_finite--------------------------------------
1625 // Has a finite value
1626 bool TypeLong::is_finite() const {
1627   return true;
1628 }
1629 
1630 //------------------------------dump2------------------------------------------
1631 // Dump TypeLong
1632 #ifndef PRODUCT
1633 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1634   if (n > x) {
1635     if (n >= x + 10000)  return NULL;
1636     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1637   } else if (n < x) {
1638     if (n <= x - 10000)  return NULL;
1639     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1640   } else {
1641     return xname;
1642   }
1643   return buf;
1644 }
1645 
1646 static const char* longname(char* buf, jlong n) {
1647   const char* str;
1648   if (n == min_jlong)
1649     return "min";
1650   else if (n < min_jlong + 10000)
1651     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1652   else if (n == max_jlong)
1653     return "max";
1654   else if (n > max_jlong - 10000)
1655     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1656   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1657     return str;
1658   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1659     return str;
1660   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1661     return str;
1662   else
1663     sprintf(buf, JLONG_FORMAT, n);
1664   return buf;
1665 }
1666 
1667 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1668   char buf[80], buf2[80];
1669   if (_lo == min_jlong && _hi == max_jlong)
1670     st->print("long");
1671   else if (is_con())
1672     st->print("long:%s", longname(buf, get_con()));
1673   else if (_hi == max_jlong)
1674     st->print("long:>=%s", longname(buf, _lo));
1675   else if (_lo == min_jlong)
1676     st->print("long:<=%s", longname(buf, _hi));
1677   else
1678     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1679 
1680   if (_widen != 0 && this != TypeLong::LONG)
1681     st->print(":%.*s", _widen, "wwww");
1682 }
1683 #endif
1684 
1685 //------------------------------singleton--------------------------------------
1686 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1687 // constants
1688 bool TypeLong::singleton(void) const {
1689   return _lo >= _hi;
1690 }
1691 
1692 bool TypeLong::empty(void) const {
1693   return _lo > _hi;
1694 }
1695 
1696 //=============================================================================
1697 // Convenience common pre-built types.
1698 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1699 const TypeTuple *TypeTuple::IFFALSE;
1700 const TypeTuple *TypeTuple::IFTRUE;
1701 const TypeTuple *TypeTuple::IFNEITHER;
1702 const TypeTuple *TypeTuple::LOOPBODY;
1703 const TypeTuple *TypeTuple::MEMBAR;
1704 const TypeTuple *TypeTuple::STORECONDITIONAL;
1705 const TypeTuple *TypeTuple::START_I2C;
1706 const TypeTuple *TypeTuple::INT_PAIR;
1707 const TypeTuple *TypeTuple::LONG_PAIR;
1708 const TypeTuple *TypeTuple::INT_CC_PAIR;
1709 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1710 
1711 
1712 //------------------------------make-------------------------------------------
1713 // Make a TypeTuple from the range of a method signature
1714 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1715   ciType* return_type = sig->return_type();
1716   uint total_fields = TypeFunc::Parms + return_type->size();
1717   const Type **field_array = fields(total_fields);
1718   switch (return_type->basic_type()) {
1719   case T_LONG:
1720     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1721     field_array[TypeFunc::Parms+1] = Type::HALF;
1722     break;
1723   case T_DOUBLE:
1724     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1725     field_array[TypeFunc::Parms+1] = Type::HALF;
1726     break;
1727   case T_OBJECT:
1728   case T_ARRAY:
1729   case T_BOOLEAN:
1730   case T_CHAR:
1731   case T_FLOAT:
1732   case T_BYTE:
1733   case T_SHORT:
1734   case T_INT:
1735     field_array[TypeFunc::Parms] = get_const_type(return_type);
1736     break;
1737   case T_VOID:
1738     break;
1739   default:
1740     ShouldNotReachHere();
1741   }
1742   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1743 }
1744 
1745 // Make a TypeTuple from the domain of a method signature
1746 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1747   uint total_fields = TypeFunc::Parms + sig->size();
1748 
1749   uint pos = TypeFunc::Parms;
1750   const Type **field_array;
1751   if (recv != NULL) {
1752     total_fields++;
1753     field_array = fields(total_fields);
1754     // Use get_const_type here because it respects UseUniqueSubclasses:
1755     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1756   } else {
1757     field_array = fields(total_fields);
1758   }
1759 
1760   int i = 0;
1761   while (pos < total_fields) {
1762     ciType* type = sig->type_at(i);
1763 
1764     switch (type->basic_type()) {
1765     case T_LONG:
1766       field_array[pos++] = TypeLong::LONG;
1767       field_array[pos++] = Type::HALF;
1768       break;
1769     case T_DOUBLE:
1770       field_array[pos++] = Type::DOUBLE;
1771       field_array[pos++] = Type::HALF;
1772       break;
1773     case T_OBJECT:
1774     case T_ARRAY:
1775     case T_FLOAT:
1776     case T_INT:
1777       field_array[pos++] = get_const_type(type);
1778       break;
1779     case T_BOOLEAN:
1780     case T_CHAR:
1781     case T_BYTE:
1782     case T_SHORT:
1783       field_array[pos++] = TypeInt::INT;
1784       break;
1785     default:
1786       ShouldNotReachHere();
1787     }
1788     i++;
1789   }
1790   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1791 }
1792 
1793 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1794   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1795 }
1796 
1797 //------------------------------fields-----------------------------------------
1798 // Subroutine call type with space allocated for argument types
1799 const Type **TypeTuple::fields( uint arg_cnt ) {
1800   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1801   flds[TypeFunc::Control  ] = Type::CONTROL;
1802   flds[TypeFunc::I_O      ] = Type::ABIO;
1803   flds[TypeFunc::Memory   ] = Type::MEMORY;
1804   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1805   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1806 
1807   return flds;
1808 }
1809 
1810 //------------------------------meet-------------------------------------------
1811 // Compute the MEET of two types.  It returns a new Type object.
1812 const Type *TypeTuple::xmeet( const Type *t ) const {
1813   // Perform a fast test for common case; meeting the same types together.
1814   if( this == t ) return this;  // Meeting same type-rep?
1815 
1816   // Current "this->_base" is Tuple
1817   switch (t->base()) {          // switch on original type
1818 
1819   case Bottom:                  // Ye Olde Default
1820     return t;
1821 
1822   default:                      // All else is a mistake
1823     typerr(t);
1824 
1825   case Tuple: {                 // Meeting 2 signatures?
1826     const TypeTuple *x = t->is_tuple();
1827     assert( _cnt == x->_cnt, "" );
1828     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1829     for( uint i=0; i<_cnt; i++ )
1830       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1831     return TypeTuple::make(_cnt,fields);
1832   }
1833   case Top:
1834     break;
1835   }
1836   return this;                  // Return the double constant
1837 }
1838 
1839 //------------------------------xdual------------------------------------------
1840 // Dual: compute field-by-field dual
1841 const Type *TypeTuple::xdual() const {
1842   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1843   for( uint i=0; i<_cnt; i++ )
1844     fields[i] = _fields[i]->dual();
1845   return new TypeTuple(_cnt,fields);
1846 }
1847 
1848 //------------------------------eq---------------------------------------------
1849 // Structural equality check for Type representations
1850 bool TypeTuple::eq( const Type *t ) const {
1851   const TypeTuple *s = (const TypeTuple *)t;
1852   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1853   for (uint i = 0; i < _cnt; i++)
1854     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1855       return false;             // Missed
1856   return true;
1857 }
1858 
1859 //------------------------------hash-------------------------------------------
1860 // Type-specific hashing function.
1861 int TypeTuple::hash(void) const {
1862   intptr_t sum = _cnt;
1863   for( uint i=0; i<_cnt; i++ )
1864     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1865   return sum;
1866 }
1867 
1868 //------------------------------dump2------------------------------------------
1869 // Dump signature Type
1870 #ifndef PRODUCT
1871 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1872   st->print("{");
1873   if( !depth || d[this] ) {     // Check for recursive print
1874     st->print("...}");
1875     return;
1876   }
1877   d.Insert((void*)this, (void*)this);   // Stop recursion
1878   if( _cnt ) {
1879     uint i;
1880     for( i=0; i<_cnt-1; i++ ) {
1881       st->print("%d:", i);
1882       _fields[i]->dump2(d, depth-1, st);
1883       st->print(", ");
1884     }
1885     st->print("%d:", i);
1886     _fields[i]->dump2(d, depth-1, st);
1887   }
1888   st->print("}");
1889 }
1890 #endif
1891 
1892 //------------------------------singleton--------------------------------------
1893 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1894 // constants (Ldi nodes).  Singletons are integer, float or double constants
1895 // or a single symbol.
1896 bool TypeTuple::singleton(void) const {
1897   return false;                 // Never a singleton
1898 }
1899 
1900 bool TypeTuple::empty(void) const {
1901   for( uint i=0; i<_cnt; i++ ) {
1902     if (_fields[i]->empty())  return true;
1903   }
1904   return false;
1905 }
1906 
1907 //=============================================================================
1908 // Convenience common pre-built types.
1909 
1910 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1911   // Certain normalizations keep us sane when comparing types.
1912   // We do not want arrayOop variables to differ only by the wideness
1913   // of their index types.  Pick minimum wideness, since that is the
1914   // forced wideness of small ranges anyway.
1915   if (size->_widen != Type::WidenMin)
1916     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1917   else
1918     return size;
1919 }
1920 
1921 //------------------------------make-------------------------------------------
1922 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1923   if (UseCompressedOops && elem->isa_oopptr()) {
1924     elem = elem->make_narrowoop();
1925   }
1926   size = normalize_array_size(size);
1927   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1928 }
1929 
1930 //------------------------------meet-------------------------------------------
1931 // Compute the MEET of two types.  It returns a new Type object.
1932 const Type *TypeAry::xmeet( const Type *t ) const {
1933   // Perform a fast test for common case; meeting the same types together.
1934   if( this == t ) return this;  // Meeting same type-rep?
1935 
1936   // Current "this->_base" is Ary
1937   switch (t->base()) {          // switch on original type
1938 
1939   case Bottom:                  // Ye Olde Default
1940     return t;
1941 
1942   default:                      // All else is a mistake
1943     typerr(t);
1944 
1945   case Array: {                 // Meeting 2 arrays?
1946     const TypeAry *a = t->is_ary();
1947     return TypeAry::make(_elem->meet_speculative(a->_elem),
1948                          _size->xmeet(a->_size)->is_int(),
1949                          _stable & a->_stable);
1950   }
1951   case Top:
1952     break;
1953   }
1954   return this;                  // Return the double constant
1955 }
1956 
1957 //------------------------------xdual------------------------------------------
1958 // Dual: compute field-by-field dual
1959 const Type *TypeAry::xdual() const {
1960   const TypeInt* size_dual = _size->dual()->is_int();
1961   size_dual = normalize_array_size(size_dual);
1962   return new TypeAry(_elem->dual(), size_dual, !_stable);
1963 }
1964 
1965 //------------------------------eq---------------------------------------------
1966 // Structural equality check for Type representations
1967 bool TypeAry::eq( const Type *t ) const {
1968   const TypeAry *a = (const TypeAry*)t;
1969   return _elem == a->_elem &&
1970     _stable == a->_stable &&
1971     _size == a->_size;
1972 }
1973 
1974 //------------------------------hash-------------------------------------------
1975 // Type-specific hashing function.
1976 int TypeAry::hash(void) const {
1977   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1978 }
1979 
1980 /**
1981  * Return same type without a speculative part in the element
1982  */
1983 const Type* TypeAry::remove_speculative() const {
1984   return make(_elem->remove_speculative(), _size, _stable);
1985 }
1986 
1987 //----------------------interface_vs_oop---------------------------------------
1988 #ifdef ASSERT
1989 bool TypeAry::interface_vs_oop(const Type *t) const {
1990   const TypeAry* t_ary = t->is_ary();
1991   if (t_ary) {
1992     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
1993     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
1994     if(this_ptr != NULL && t_ptr != NULL) {
1995       return this_ptr->interface_vs_oop(t_ptr);
1996     }
1997   }
1998   return false;
1999 }
2000 #endif
2001 
2002 //------------------------------dump2------------------------------------------
2003 #ifndef PRODUCT
2004 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2005   if (_stable)  st->print("stable:");
2006   _elem->dump2(d, depth, st);
2007   st->print("[");
2008   _size->dump2(d, depth, st);
2009   st->print("]");
2010 }
2011 #endif
2012 
2013 //------------------------------singleton--------------------------------------
2014 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2015 // constants (Ldi nodes).  Singletons are integer, float or double constants
2016 // or a single symbol.
2017 bool TypeAry::singleton(void) const {
2018   return false;                 // Never a singleton
2019 }
2020 
2021 bool TypeAry::empty(void) const {
2022   return _elem->empty() || _size->empty();
2023 }
2024 
2025 //--------------------------ary_must_be_exact----------------------------------
2026 bool TypeAry::ary_must_be_exact() const {
2027   if (!UseExactTypes)       return false;
2028   // This logic looks at the element type of an array, and returns true
2029   // if the element type is either a primitive or a final instance class.
2030   // In such cases, an array built on this ary must have no subclasses.
2031   if (_elem == BOTTOM)      return false;  // general array not exact
2032   if (_elem == TOP   )      return false;  // inverted general array not exact
2033   const TypeOopPtr*  toop = NULL;
2034   if (UseCompressedOops && _elem->isa_narrowoop()) {
2035     toop = _elem->make_ptr()->isa_oopptr();
2036   } else {
2037     toop = _elem->isa_oopptr();
2038   }
2039   if (!toop)                return true;   // a primitive type, like int
2040   ciKlass* tklass = toop->klass();
2041   if (tklass == NULL)       return false;  // unloaded class
2042   if (!tklass->is_loaded()) return false;  // unloaded class
2043   const TypeInstPtr* tinst;
2044   if (_elem->isa_narrowoop())
2045     tinst = _elem->make_ptr()->isa_instptr();
2046   else
2047     tinst = _elem->isa_instptr();
2048   if (tinst)
2049     return tklass->as_instance_klass()->is_final();
2050   const TypeAryPtr*  tap;
2051   if (_elem->isa_narrowoop())
2052     tap = _elem->make_ptr()->isa_aryptr();
2053   else
2054     tap = _elem->isa_aryptr();
2055   if (tap)
2056     return tap->ary()->ary_must_be_exact();
2057   return false;
2058 }
2059 
2060 //==============================TypeVect=======================================
2061 // Convenience common pre-built types.
2062 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2063 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2064 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2065 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2066 
2067 //------------------------------make-------------------------------------------
2068 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2069   BasicType elem_bt = elem->array_element_basic_type();
2070   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2071   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2072   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2073   int size = length * type2aelembytes(elem_bt);
2074   switch (Matcher::vector_ideal_reg(size)) {
2075   case Op_VecS:
2076     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2077   case Op_RegL:
2078   case Op_VecD:
2079   case Op_RegD:
2080     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2081   case Op_VecX:
2082     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2083   case Op_VecY:
2084     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2085   }
2086  ShouldNotReachHere();
2087   return NULL;
2088 }
2089 
2090 //------------------------------meet-------------------------------------------
2091 // Compute the MEET of two types.  It returns a new Type object.
2092 const Type *TypeVect::xmeet( const Type *t ) const {
2093   // Perform a fast test for common case; meeting the same types together.
2094   if( this == t ) return this;  // Meeting same type-rep?
2095 
2096   // Current "this->_base" is Vector
2097   switch (t->base()) {          // switch on original type
2098 
2099   case Bottom:                  // Ye Olde Default
2100     return t;
2101 
2102   default:                      // All else is a mistake
2103     typerr(t);
2104 
2105   case VectorS:
2106   case VectorD:
2107   case VectorX:
2108   case VectorY: {                // Meeting 2 vectors?
2109     const TypeVect* v = t->is_vect();
2110     assert(  base() == v->base(), "");
2111     assert(length() == v->length(), "");
2112     assert(element_basic_type() == v->element_basic_type(), "");
2113     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2114   }
2115   case Top:
2116     break;
2117   }
2118   return this;
2119 }
2120 
2121 //------------------------------xdual------------------------------------------
2122 // Dual: compute field-by-field dual
2123 const Type *TypeVect::xdual() const {
2124   return new TypeVect(base(), _elem->dual(), _length);
2125 }
2126 
2127 //------------------------------eq---------------------------------------------
2128 // Structural equality check for Type representations
2129 bool TypeVect::eq(const Type *t) const {
2130   const TypeVect *v = t->is_vect();
2131   return (_elem == v->_elem) && (_length == v->_length);
2132 }
2133 
2134 //------------------------------hash-------------------------------------------
2135 // Type-specific hashing function.
2136 int TypeVect::hash(void) const {
2137   return (intptr_t)_elem + (intptr_t)_length;
2138 }
2139 
2140 //------------------------------singleton--------------------------------------
2141 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2142 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2143 // constant value (when vector is created with Replicate code).
2144 bool TypeVect::singleton(void) const {
2145 // There is no Con node for vectors yet.
2146 //  return _elem->singleton();
2147   return false;
2148 }
2149 
2150 bool TypeVect::empty(void) const {
2151   return _elem->empty();
2152 }
2153 
2154 //------------------------------dump2------------------------------------------
2155 #ifndef PRODUCT
2156 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2157   switch (base()) {
2158   case VectorS:
2159     st->print("vectors["); break;
2160   case VectorD:
2161     st->print("vectord["); break;
2162   case VectorX:
2163     st->print("vectorx["); break;
2164   case VectorY:
2165     st->print("vectory["); break;
2166   default:
2167     ShouldNotReachHere();
2168   }
2169   st->print("%d]:{", _length);
2170   _elem->dump2(d, depth, st);
2171   st->print("}");
2172 }
2173 #endif
2174 
2175 
2176 //=============================================================================
2177 // Convenience common pre-built types.
2178 const TypePtr *TypePtr::NULL_PTR;
2179 const TypePtr *TypePtr::NOTNULL;
2180 const TypePtr *TypePtr::BOTTOM;
2181 
2182 //------------------------------meet-------------------------------------------
2183 // Meet over the PTR enum
2184 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2185   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2186   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2187   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2188   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2189   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2190   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2191   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2192 };
2193 
2194 //------------------------------make-------------------------------------------
2195 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
2196   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
2197 }
2198 
2199 //------------------------------cast_to_ptr_type-------------------------------
2200 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2201   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2202   if( ptr == _ptr ) return this;
2203   return make(_base, ptr, _offset);
2204 }
2205 
2206 //------------------------------get_con----------------------------------------
2207 intptr_t TypePtr::get_con() const {
2208   assert( _ptr == Null, "" );
2209   return _offset;
2210 }
2211 
2212 //------------------------------meet-------------------------------------------
2213 // Compute the MEET of two types.  It returns a new Type object.
2214 const Type *TypePtr::xmeet( const Type *t ) const {
2215   // Perform a fast test for common case; meeting the same types together.
2216   if( this == t ) return this;  // Meeting same type-rep?
2217 
2218   // Current "this->_base" is AnyPtr
2219   switch (t->base()) {          // switch on original type
2220   case Int:                     // Mixing ints & oops happens when javac
2221   case Long:                    // reuses local variables
2222   case FloatTop:
2223   case FloatCon:
2224   case FloatBot:
2225   case DoubleTop:
2226   case DoubleCon:
2227   case DoubleBot:
2228   case NarrowOop:
2229   case NarrowKlass:
2230   case Bottom:                  // Ye Olde Default
2231     return Type::BOTTOM;
2232   case Top:
2233     return this;
2234 
2235   case AnyPtr: {                // Meeting to AnyPtrs
2236     const TypePtr *tp = t->is_ptr();
2237     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
2238   }
2239   case RawPtr:                  // For these, flip the call around to cut down
2240   case OopPtr:
2241   case InstPtr:                 // on the cases I have to handle.
2242   case AryPtr:
2243   case MetadataPtr:
2244   case KlassPtr:
2245     return t->xmeet(this);      // Call in reverse direction
2246   default:                      // All else is a mistake
2247     typerr(t);
2248 
2249   }
2250   return this;
2251 }
2252 
2253 //------------------------------meet_offset------------------------------------
2254 int TypePtr::meet_offset( int offset ) const {
2255   // Either is 'TOP' offset?  Return the other offset!
2256   if( _offset == OffsetTop ) return offset;
2257   if( offset == OffsetTop ) return _offset;
2258   // If either is different, return 'BOTTOM' offset
2259   if( _offset != offset ) return OffsetBot;
2260   return _offset;
2261 }
2262 
2263 //------------------------------dual_offset------------------------------------
2264 int TypePtr::dual_offset( ) const {
2265   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2266   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2267   return _offset;               // Map everything else into self
2268 }
2269 
2270 //------------------------------xdual------------------------------------------
2271 // Dual: compute field-by-field dual
2272 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2273   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2274 };
2275 const Type *TypePtr::xdual() const {
2276   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2277 }
2278 
2279 //------------------------------xadd_offset------------------------------------
2280 int TypePtr::xadd_offset( intptr_t offset ) const {
2281   // Adding to 'TOP' offset?  Return 'TOP'!
2282   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2283   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2284   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2285   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2286   offset += (intptr_t)_offset;
2287   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2288 
2289   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2290   // It is possible to construct a negative offset during PhaseCCP
2291 
2292   return (int)offset;        // Sum valid offsets
2293 }
2294 
2295 //------------------------------add_offset-------------------------------------
2296 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2297   return make( AnyPtr, _ptr, xadd_offset(offset) );
2298 }
2299 
2300 //------------------------------eq---------------------------------------------
2301 // Structural equality check for Type representations
2302 bool TypePtr::eq( const Type *t ) const {
2303   const TypePtr *a = (const TypePtr*)t;
2304   return _ptr == a->ptr() && _offset == a->offset();
2305 }
2306 
2307 //------------------------------hash-------------------------------------------
2308 // Type-specific hashing function.
2309 int TypePtr::hash(void) const {
2310   return _ptr + _offset;
2311 }
2312 
2313 //------------------------------dump2------------------------------------------
2314 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2315   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2316 };
2317 
2318 #ifndef PRODUCT
2319 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2320   if( _ptr == Null ) st->print("NULL");
2321   else st->print("%s *", ptr_msg[_ptr]);
2322   if( _offset == OffsetTop ) st->print("+top");
2323   else if( _offset == OffsetBot ) st->print("+bot");
2324   else if( _offset ) st->print("+%d", _offset);
2325 }
2326 #endif
2327 
2328 //------------------------------singleton--------------------------------------
2329 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2330 // constants
2331 bool TypePtr::singleton(void) const {
2332   // TopPTR, Null, AnyNull, Constant are all singletons
2333   return (_offset != OffsetBot) && !below_centerline(_ptr);
2334 }
2335 
2336 bool TypePtr::empty(void) const {
2337   return (_offset == OffsetTop) || above_centerline(_ptr);
2338 }
2339 
2340 //=============================================================================
2341 // Convenience common pre-built types.
2342 const TypeRawPtr *TypeRawPtr::BOTTOM;
2343 const TypeRawPtr *TypeRawPtr::NOTNULL;
2344 
2345 //------------------------------make-------------------------------------------
2346 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2347   assert( ptr != Constant, "what is the constant?" );
2348   assert( ptr != Null, "Use TypePtr for NULL" );
2349   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2350 }
2351 
2352 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2353   assert( bits, "Use TypePtr for NULL" );
2354   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2355 }
2356 
2357 //------------------------------cast_to_ptr_type-------------------------------
2358 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2359   assert( ptr != Constant, "what is the constant?" );
2360   assert( ptr != Null, "Use TypePtr for NULL" );
2361   assert( _bits==0, "Why cast a constant address?");
2362   if( ptr == _ptr ) return this;
2363   return make(ptr);
2364 }
2365 
2366 //------------------------------get_con----------------------------------------
2367 intptr_t TypeRawPtr::get_con() const {
2368   assert( _ptr == Null || _ptr == Constant, "" );
2369   return (intptr_t)_bits;
2370 }
2371 
2372 //------------------------------meet-------------------------------------------
2373 // Compute the MEET of two types.  It returns a new Type object.
2374 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2375   // Perform a fast test for common case; meeting the same types together.
2376   if( this == t ) return this;  // Meeting same type-rep?
2377 
2378   // Current "this->_base" is RawPtr
2379   switch( t->base() ) {         // switch on original type
2380   case Bottom:                  // Ye Olde Default
2381     return t;
2382   case Top:
2383     return this;
2384   case AnyPtr:                  // Meeting to AnyPtrs
2385     break;
2386   case RawPtr: {                // might be top, bot, any/not or constant
2387     enum PTR tptr = t->is_ptr()->ptr();
2388     enum PTR ptr = meet_ptr( tptr );
2389     if( ptr == Constant ) {     // Cannot be equal constants, so...
2390       if( tptr == Constant && _ptr != Constant)  return t;
2391       if( _ptr == Constant && tptr != Constant)  return this;
2392       ptr = NotNull;            // Fall down in lattice
2393     }
2394     return make( ptr );
2395   }
2396 
2397   case OopPtr:
2398   case InstPtr:
2399   case AryPtr:
2400   case MetadataPtr:
2401   case KlassPtr:
2402     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2403   default:                      // All else is a mistake
2404     typerr(t);
2405   }
2406 
2407   // Found an AnyPtr type vs self-RawPtr type
2408   const TypePtr *tp = t->is_ptr();
2409   switch (tp->ptr()) {
2410   case TypePtr::TopPTR:  return this;
2411   case TypePtr::BotPTR:  return t;
2412   case TypePtr::Null:
2413     if( _ptr == TypePtr::TopPTR ) return t;
2414     return TypeRawPtr::BOTTOM;
2415   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2416   case TypePtr::AnyNull:
2417     if( _ptr == TypePtr::Constant) return this;
2418     return make( meet_ptr(TypePtr::AnyNull) );
2419   default: ShouldNotReachHere();
2420   }
2421   return this;
2422 }
2423 
2424 //------------------------------xdual------------------------------------------
2425 // Dual: compute field-by-field dual
2426 const Type *TypeRawPtr::xdual() const {
2427   return new TypeRawPtr( dual_ptr(), _bits );
2428 }
2429 
2430 //------------------------------add_offset-------------------------------------
2431 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2432   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2433   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2434   if( offset == 0 ) return this; // No change
2435   switch (_ptr) {
2436   case TypePtr::TopPTR:
2437   case TypePtr::BotPTR:
2438   case TypePtr::NotNull:
2439     return this;
2440   case TypePtr::Null:
2441   case TypePtr::Constant: {
2442     address bits = _bits+offset;
2443     if ( bits == 0 ) return TypePtr::NULL_PTR;
2444     return make( bits );
2445   }
2446   default:  ShouldNotReachHere();
2447   }
2448   return NULL;                  // Lint noise
2449 }
2450 
2451 //------------------------------eq---------------------------------------------
2452 // Structural equality check for Type representations
2453 bool TypeRawPtr::eq( const Type *t ) const {
2454   const TypeRawPtr *a = (const TypeRawPtr*)t;
2455   return _bits == a->_bits && TypePtr::eq(t);
2456 }
2457 
2458 //------------------------------hash-------------------------------------------
2459 // Type-specific hashing function.
2460 int TypeRawPtr::hash(void) const {
2461   return (intptr_t)_bits + TypePtr::hash();
2462 }
2463 
2464 //------------------------------dump2------------------------------------------
2465 #ifndef PRODUCT
2466 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2467   if( _ptr == Constant )
2468     st->print(INTPTR_FORMAT, _bits);
2469   else
2470     st->print("rawptr:%s", ptr_msg[_ptr]);
2471 }
2472 #endif
2473 
2474 //=============================================================================
2475 // Convenience common pre-built type.
2476 const TypeOopPtr *TypeOopPtr::BOTTOM;
2477 
2478 //------------------------------TypeOopPtr-------------------------------------
2479 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
2480   : TypePtr(t, ptr, offset),
2481     _const_oop(o), _klass(k),
2482     _klass_is_exact(xk),
2483     _is_ptr_to_narrowoop(false),
2484     _is_ptr_to_narrowklass(false),
2485     _is_ptr_to_boxed_value(false),
2486     _instance_id(instance_id),
2487     _speculative(speculative),
2488     _inline_depth(inline_depth){
2489   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2490       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2491     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2492   }
2493 #ifdef _LP64
2494   if (_offset != 0) {
2495     if (_offset == oopDesc::klass_offset_in_bytes()) {
2496       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2497     } else if (klass() == NULL) {
2498       // Array with unknown body type
2499       assert(this->isa_aryptr(), "only arrays without klass");
2500       _is_ptr_to_narrowoop = UseCompressedOops;
2501     } else if (this->isa_aryptr()) {
2502       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2503                              _offset != arrayOopDesc::length_offset_in_bytes());
2504     } else if (klass()->is_instance_klass()) {
2505       ciInstanceKlass* ik = klass()->as_instance_klass();
2506       ciField* field = NULL;
2507       if (this->isa_klassptr()) {
2508         // Perm objects don't use compressed references
2509       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2510         // unsafe access
2511         _is_ptr_to_narrowoop = UseCompressedOops;
2512       } else { // exclude unsafe ops
2513         assert(this->isa_instptr(), "must be an instance ptr.");
2514 
2515         if (klass() == ciEnv::current()->Class_klass() &&
2516             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2517              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2518           // Special hidden fields from the Class.
2519           assert(this->isa_instptr(), "must be an instance ptr.");
2520           _is_ptr_to_narrowoop = false;
2521         } else if (klass() == ciEnv::current()->Class_klass() &&
2522                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2523           // Static fields
2524           assert(o != NULL, "must be constant");
2525           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2526           ciField* field = k->get_field_by_offset(_offset, true);
2527           assert(field != NULL, "missing field");
2528           BasicType basic_elem_type = field->layout_type();
2529           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2530                                                        basic_elem_type == T_ARRAY);
2531         } else {
2532           // Instance fields which contains a compressed oop references.
2533           field = ik->get_field_by_offset(_offset, false);
2534           if (field != NULL) {
2535             BasicType basic_elem_type = field->layout_type();
2536             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2537                                                          basic_elem_type == T_ARRAY);
2538           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2539             // Compile::find_alias_type() cast exactness on all types to verify
2540             // that it does not affect alias type.
2541             _is_ptr_to_narrowoop = UseCompressedOops;
2542           } else {
2543             // Type for the copy start in LibraryCallKit::inline_native_clone().
2544             _is_ptr_to_narrowoop = UseCompressedOops;
2545           }
2546         }
2547       }
2548     }
2549   }
2550 #endif
2551 }
2552 
2553 //------------------------------make-------------------------------------------
2554 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2555                                    int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
2556   assert(ptr != Constant, "no constant generic pointers");
2557   ciKlass*  k = Compile::current()->env()->Object_klass();
2558   bool      xk = false;
2559   ciObject* o = NULL;
2560   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2561 }
2562 
2563 
2564 //------------------------------cast_to_ptr_type-------------------------------
2565 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2566   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2567   if( ptr == _ptr ) return this;
2568   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2569 }
2570 
2571 //-----------------------------cast_to_instance_id----------------------------
2572 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2573   // There are no instances of a general oop.
2574   // Return self unchanged.
2575   return this;
2576 }
2577 
2578 //-----------------------------cast_to_exactness-------------------------------
2579 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2580   // There is no such thing as an exact general oop.
2581   // Return self unchanged.
2582   return this;
2583 }
2584 
2585 
2586 //------------------------------as_klass_type----------------------------------
2587 // Return the klass type corresponding to this instance or array type.
2588 // It is the type that is loaded from an object of this type.
2589 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2590   ciKlass* k = klass();
2591   bool    xk = klass_is_exact();
2592   if (k == NULL)
2593     return TypeKlassPtr::OBJECT;
2594   else
2595     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2596 }
2597 
2598 const Type *TypeOopPtr::xmeet(const Type *t) const {
2599   const Type* res = xmeet_helper(t);
2600   if (res->isa_oopptr() == NULL) {
2601     return res;
2602   }
2603 
2604   const TypeOopPtr* res_oopptr = res->is_oopptr();
2605   if (res_oopptr->speculative() != NULL) {
2606     // type->speculative() == NULL means that speculation is no better
2607     // than type, i.e. type->speculative() == type. So there are 2
2608     // ways to represent the fact that we have no useful speculative
2609     // data and we should use a single one to be able to test for
2610     // equality between types. Check whether type->speculative() ==
2611     // type and set speculative to NULL if it is the case.
2612     if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
2613       return res_oopptr->remove_speculative();
2614     }
2615   }
2616 
2617   return res;
2618 }
2619 
2620 //------------------------------meet-------------------------------------------
2621 // Compute the MEET of two types.  It returns a new Type object.
2622 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2623   // Perform a fast test for common case; meeting the same types together.
2624   if( this == t ) return this;  // Meeting same type-rep?
2625 
2626   // Current "this->_base" is OopPtr
2627   switch (t->base()) {          // switch on original type
2628 
2629   case Int:                     // Mixing ints & oops happens when javac
2630   case Long:                    // reuses local variables
2631   case FloatTop:
2632   case FloatCon:
2633   case FloatBot:
2634   case DoubleTop:
2635   case DoubleCon:
2636   case DoubleBot:
2637   case NarrowOop:
2638   case NarrowKlass:
2639   case Bottom:                  // Ye Olde Default
2640     return Type::BOTTOM;
2641   case Top:
2642     return this;
2643 
2644   default:                      // All else is a mistake
2645     typerr(t);
2646 
2647   case RawPtr:
2648   case MetadataPtr:
2649   case KlassPtr:
2650     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2651 
2652   case AnyPtr: {
2653     // Found an AnyPtr type vs self-OopPtr type
2654     const TypePtr *tp = t->is_ptr();
2655     int offset = meet_offset(tp->offset());
2656     PTR ptr = meet_ptr(tp->ptr());
2657     switch (tp->ptr()) {
2658     case Null:
2659       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2660       // else fall through:
2661     case TopPTR:
2662     case AnyNull: {
2663       int instance_id = meet_instance_id(InstanceTop);
2664       const TypeOopPtr* speculative = _speculative;
2665       return make(ptr, offset, instance_id, speculative, _inline_depth);
2666     }
2667     case BotPTR:
2668     case NotNull:
2669       return TypePtr::make(AnyPtr, ptr, offset);
2670     default: typerr(t);
2671     }
2672   }
2673 
2674   case OopPtr: {                 // Meeting to other OopPtrs
2675     const TypeOopPtr *tp = t->is_oopptr();
2676     int instance_id = meet_instance_id(tp->instance_id());
2677     const TypeOopPtr* speculative = xmeet_speculative(tp);
2678     int depth = meet_inline_depth(tp->inline_depth());
2679     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
2680   }
2681 
2682   case InstPtr:                  // For these, flip the call around to cut down
2683   case AryPtr:
2684     return t->xmeet(this);      // Call in reverse direction
2685 
2686   } // End of switch
2687   return this;                  // Return the double constant
2688 }
2689 
2690 
2691 //------------------------------xdual------------------------------------------
2692 // Dual of a pure heap pointer.  No relevant klass or oop information.
2693 const Type *TypeOopPtr::xdual() const {
2694   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2695   assert(const_oop() == NULL,             "no constants here");
2696   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
2697 }
2698 
2699 //--------------------------make_from_klass_common-----------------------------
2700 // Computes the element-type given a klass.
2701 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2702   if (klass->is_instance_klass()) {
2703     Compile* C = Compile::current();
2704     Dependencies* deps = C->dependencies();
2705     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2706     // Element is an instance
2707     bool klass_is_exact = false;
2708     if (klass->is_loaded()) {
2709       // Try to set klass_is_exact.
2710       ciInstanceKlass* ik = klass->as_instance_klass();
2711       klass_is_exact = ik->is_final();
2712       if (!klass_is_exact && klass_change
2713           && deps != NULL && UseUniqueSubclasses) {
2714         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2715         if (sub != NULL) {
2716           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2717           klass = ik = sub;
2718           klass_is_exact = sub->is_final();
2719         }
2720       }
2721       if (!klass_is_exact && try_for_exact
2722           && deps != NULL && UseExactTypes) {
2723         if (!ik->is_interface() && !ik->has_subklass()) {
2724           // Add a dependence; if concrete subclass added we need to recompile
2725           deps->assert_leaf_type(ik);
2726           klass_is_exact = true;
2727         }
2728       }
2729     }
2730     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2731   } else if (klass->is_obj_array_klass()) {
2732     // Element is an object array. Recursively call ourself.
2733     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2734     bool xk = etype->klass_is_exact();
2735     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2736     // We used to pass NotNull in here, asserting that the sub-arrays
2737     // are all not-null.  This is not true in generally, as code can
2738     // slam NULLs down in the subarrays.
2739     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2740     return arr;
2741   } else if (klass->is_type_array_klass()) {
2742     // Element is an typeArray
2743     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2744     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2745     // We used to pass NotNull in here, asserting that the array pointer
2746     // is not-null. That was not true in general.
2747     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2748     return arr;
2749   } else {
2750     ShouldNotReachHere();
2751     return NULL;
2752   }
2753 }
2754 
2755 //------------------------------make_from_constant-----------------------------
2756 // Make a java pointer from an oop constant
2757 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
2758                                                  bool require_constant,
2759                                                  bool is_autobox_cache) {
2760   assert(!o->is_null_object(), "null object not yet handled here.");
2761   ciKlass* klass = o->klass();
2762   if (klass->is_instance_klass()) {
2763     // Element is an instance
2764     if (require_constant) {
2765       if (!o->can_be_constant())  return NULL;
2766     } else if (!o->should_be_constant()) {
2767       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2768     }
2769     return TypeInstPtr::make(o);
2770   } else if (klass->is_obj_array_klass()) {
2771     // Element is an object array. Recursively call ourself.
2772     const TypeOopPtr *etype =
2773       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2774     if (is_autobox_cache) {
2775       // The pointers in the autobox arrays are always non-null.
2776       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
2777     }
2778     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2779     // We used to pass NotNull in here, asserting that the sub-arrays
2780     // are all not-null.  This is not true in generally, as code can
2781     // slam NULLs down in the subarrays.
2782     if (require_constant) {
2783       if (!o->can_be_constant())  return NULL;
2784     } else if (!o->should_be_constant()) {
2785       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2786     }
2787     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
2788     return arr;
2789   } else if (klass->is_type_array_klass()) {
2790     // Element is an typeArray
2791     const Type* etype =
2792       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2793     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2794     // We used to pass NotNull in here, asserting that the array pointer
2795     // is not-null. That was not true in general.
2796     if (require_constant) {
2797       if (!o->can_be_constant())  return NULL;
2798     } else if (!o->should_be_constant()) {
2799       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2800     }
2801     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2802     return arr;
2803   }
2804 
2805   fatal("unhandled object type");
2806   return NULL;
2807 }
2808 
2809 //------------------------------get_con----------------------------------------
2810 intptr_t TypeOopPtr::get_con() const {
2811   assert( _ptr == Null || _ptr == Constant, "" );
2812   assert( _offset >= 0, "" );
2813 
2814   if (_offset != 0) {
2815     // After being ported to the compiler interface, the compiler no longer
2816     // directly manipulates the addresses of oops.  Rather, it only has a pointer
2817     // to a handle at compile time.  This handle is embedded in the generated
2818     // code and dereferenced at the time the nmethod is made.  Until that time,
2819     // it is not reasonable to do arithmetic with the addresses of oops (we don't
2820     // have access to the addresses!).  This does not seem to currently happen,
2821     // but this assertion here is to help prevent its occurence.
2822     tty->print_cr("Found oop constant with non-zero offset");
2823     ShouldNotReachHere();
2824   }
2825 
2826   return (intptr_t)const_oop()->constant_encoding();
2827 }
2828 
2829 
2830 //-----------------------------filter------------------------------------------
2831 // Do not allow interface-vs.-noninterface joins to collapse to top.
2832 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
2833 
2834   const Type* ft = join_helper(kills, include_speculative);
2835   const TypeInstPtr* ftip = ft->isa_instptr();
2836   const TypeInstPtr* ktip = kills->isa_instptr();
2837 
2838   if (ft->empty()) {
2839     // Check for evil case of 'this' being a class and 'kills' expecting an
2840     // interface.  This can happen because the bytecodes do not contain
2841     // enough type info to distinguish a Java-level interface variable
2842     // from a Java-level object variable.  If we meet 2 classes which
2843     // both implement interface I, but their meet is at 'j/l/O' which
2844     // doesn't implement I, we have no way to tell if the result should
2845     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2846     // into a Phi which "knows" it's an Interface type we'll have to
2847     // uplift the type.
2848     if (!empty()) {
2849       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
2850         return kills;           // Uplift to interface
2851       }
2852       // Also check for evil cases of 'this' being a class array
2853       // and 'kills' expecting an array of interfaces.
2854       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
2855       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
2856         return kills;           // Uplift to array of interface
2857       }
2858     }
2859 
2860     return Type::TOP;           // Canonical empty value
2861   }
2862 
2863   // If we have an interface-typed Phi or cast and we narrow to a class type,
2864   // the join should report back the class.  However, if we have a J/L/Object
2865   // class-typed Phi and an interface flows in, it's possible that the meet &
2866   // join report an interface back out.  This isn't possible but happens
2867   // because the type system doesn't interact well with interfaces.
2868   if (ftip != NULL && ktip != NULL &&
2869       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2870       ktip->is_loaded() && !ktip->klass()->is_interface()) {
2871     // Happens in a CTW of rt.jar, 320-341, no extra flags
2872     assert(!ftip->klass_is_exact(), "interface could not be exact");
2873     return ktip->cast_to_ptr_type(ftip->ptr());
2874   }
2875 
2876   return ft;
2877 }
2878 
2879 //------------------------------eq---------------------------------------------
2880 // Structural equality check for Type representations
2881 bool TypeOopPtr::eq( const Type *t ) const {
2882   const TypeOopPtr *a = (const TypeOopPtr*)t;
2883   if (_klass_is_exact != a->_klass_is_exact ||
2884       _instance_id != a->_instance_id ||
2885       !eq_speculative(a) ||
2886       _inline_depth != a->_inline_depth)  return false;
2887   ciObject* one = const_oop();
2888   ciObject* two = a->const_oop();
2889   if (one == NULL || two == NULL) {
2890     return (one == two) && TypePtr::eq(t);
2891   } else {
2892     return one->equals(two) && TypePtr::eq(t);
2893   }
2894 }
2895 
2896 //------------------------------hash-------------------------------------------
2897 // Type-specific hashing function.
2898 int TypeOopPtr::hash(void) const {
2899   return
2900     (const_oop() ? const_oop()->hash() : 0) +
2901     _klass_is_exact +
2902     _instance_id +
2903     hash_speculative() +
2904     _inline_depth +
2905     TypePtr::hash();
2906 }
2907 
2908 //------------------------------dump2------------------------------------------
2909 #ifndef PRODUCT
2910 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2911   st->print("oopptr:%s", ptr_msg[_ptr]);
2912   if( _klass_is_exact ) st->print(":exact");
2913   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2914   switch( _offset ) {
2915   case OffsetTop: st->print("+top"); break;
2916   case OffsetBot: st->print("+any"); break;
2917   case         0: break;
2918   default:        st->print("+%d",_offset); break;
2919   }
2920   if (_instance_id == InstanceTop)
2921     st->print(",iid=top");
2922   else if (_instance_id != InstanceBot)
2923     st->print(",iid=%d",_instance_id);
2924 
2925   dump_inline_depth(st);
2926   dump_speculative(st);
2927 }
2928 
2929 /**
2930  *dump the speculative part of the type
2931  */
2932 void TypeOopPtr::dump_speculative(outputStream *st) const {
2933   if (_speculative != NULL) {
2934     st->print(" (speculative=");
2935     _speculative->dump_on(st);
2936     st->print(")");
2937   }
2938 }
2939 
2940 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
2941   if (_inline_depth != InlineDepthBottom) {
2942     if (_inline_depth == InlineDepthTop) {
2943       st->print(" (inline_depth=InlineDepthTop)");
2944     } else {
2945       st->print(" (inline_depth=%d)", _inline_depth);
2946     }
2947   }
2948 }
2949 #endif
2950 
2951 //------------------------------singleton--------------------------------------
2952 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2953 // constants
2954 bool TypeOopPtr::singleton(void) const {
2955   // detune optimizer to not generate constant oop + constant offset as a constant!
2956   // TopPTR, Null, AnyNull, Constant are all singletons
2957   return (_offset == 0) && !below_centerline(_ptr);
2958 }
2959 
2960 //------------------------------add_offset-------------------------------------
2961 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
2962   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
2963 }
2964 
2965 /**
2966  * Return same type without a speculative part
2967  */
2968 const Type* TypeOopPtr::remove_speculative() const {
2969   if (_speculative == NULL) {
2970     return this;
2971   }
2972   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2973   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
2974 }
2975 
2976 /**
2977  * Return same type but with a different inline depth (used for speculation)
2978  *
2979  * @param depth  depth to meet with
2980  */
2981 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
2982   if (!UseInlineDepthForSpeculativeTypes) {
2983     return this;
2984   }
2985   return make(_ptr, _offset, _instance_id, _speculative, depth);
2986 }
2987 
2988 /**
2989  * Check whether new profiling would improve speculative type
2990  *
2991  * @param   exact_kls    class from profiling
2992  * @param   inline_depth inlining depth of profile point
2993  *
2994  * @return  true if type profile is valuable
2995  */
2996 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2997   // no way to improve an already exact type
2998   if (klass_is_exact()) {
2999     return false;
3000   }
3001   // no profiling?
3002   if (exact_kls == NULL) {
3003     return false;
3004   }
3005   // no speculative type or non exact speculative type?
3006   if (speculative_type() == NULL) {
3007     return true;
3008   }
3009   // If the node already has an exact speculative type keep it,
3010   // unless it was provided by profiling that is at a deeper
3011   // inlining level. Profiling at a higher inlining depth is
3012   // expected to be less accurate.
3013   if (_speculative->inline_depth() == InlineDepthBottom) {
3014     return false;
3015   }
3016   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
3017   return inline_depth < _speculative->inline_depth();
3018 }
3019 
3020 //------------------------------meet_instance_id--------------------------------
3021 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3022   // Either is 'TOP' instance?  Return the other instance!
3023   if( _instance_id == InstanceTop ) return  instance_id;
3024   if(  instance_id == InstanceTop ) return _instance_id;
3025   // If either is different, return 'BOTTOM' instance
3026   if( _instance_id != instance_id ) return InstanceBot;
3027   return _instance_id;
3028 }
3029 
3030 //------------------------------dual_instance_id--------------------------------
3031 int TypeOopPtr::dual_instance_id( ) const {
3032   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3033   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3034   return _instance_id;              // Map everything else into self
3035 }
3036 
3037 /**
3038  * meet of the speculative parts of 2 types
3039  *
3040  * @param other  type to meet with
3041  */
3042 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
3043   bool this_has_spec = (_speculative != NULL);
3044   bool other_has_spec = (other->speculative() != NULL);
3045 
3046   if (!this_has_spec && !other_has_spec) {
3047     return NULL;
3048   }
3049 
3050   // If we are at a point where control flow meets and one branch has
3051   // a speculative type and the other has not, we meet the speculative
3052   // type of one branch with the actual type of the other. If the
3053   // actual type is exact and the speculative is as well, then the
3054   // result is a speculative type which is exact and we can continue
3055   // speculation further.
3056   const TypeOopPtr* this_spec = _speculative;
3057   const TypeOopPtr* other_spec = other->speculative();
3058 
3059   if (!this_has_spec) {
3060     this_spec = this;
3061   }
3062 
3063   if (!other_has_spec) {
3064     other_spec = other;
3065   }
3066 
3067   return this_spec->meet_speculative(other_spec)->is_oopptr();
3068 }
3069 
3070 /**
3071  * dual of the speculative part of the type
3072  */
3073 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
3074   if (_speculative == NULL) {
3075     return NULL;
3076   }
3077   return _speculative->dual()->is_oopptr();
3078 }
3079 
3080 /**
3081  * add offset to the speculative part of the type
3082  *
3083  * @param offset  offset to add
3084  */
3085 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
3086   if (_speculative == NULL) {
3087     return NULL;
3088   }
3089   return _speculative->add_offset(offset)->is_oopptr();
3090 }
3091 
3092 /**
3093  * Are the speculative parts of 2 types equal?
3094  *
3095  * @param other  type to compare this one to
3096  */
3097 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
3098   if (_speculative == NULL || other->speculative() == NULL) {
3099     return _speculative == other->speculative();
3100   }
3101 
3102   if (_speculative->base() != other->speculative()->base()) {
3103     return false;
3104   }
3105 
3106   return _speculative->eq(other->speculative());
3107 }
3108 
3109 /**
3110  * Hash of the speculative part of the type
3111  */
3112 int TypeOopPtr::hash_speculative() const {
3113   if (_speculative == NULL) {
3114     return 0;
3115   }
3116 
3117   return _speculative->hash();
3118 }
3119 
3120 /**
3121  * dual of the inline depth for this type (used for speculation)
3122  */
3123 int TypeOopPtr::dual_inline_depth() const {
3124   return -inline_depth();
3125 }
3126 
3127 /**
3128  * meet of 2 inline depth (used for speculation)
3129  *
3130  * @param depth  depth to meet with
3131  */
3132 int TypeOopPtr::meet_inline_depth(int depth) const {
3133   return MAX2(inline_depth(), depth);
3134 }
3135 
3136 //=============================================================================
3137 // Convenience common pre-built types.
3138 const TypeInstPtr *TypeInstPtr::NOTNULL;
3139 const TypeInstPtr *TypeInstPtr::BOTTOM;
3140 const TypeInstPtr *TypeInstPtr::MIRROR;
3141 const TypeInstPtr *TypeInstPtr::MARK;
3142 const TypeInstPtr *TypeInstPtr::KLASS;
3143 
3144 //------------------------------TypeInstPtr-------------------------------------
3145 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
3146   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
3147    assert(k != NULL &&
3148           (k->is_loaded() || o == NULL),
3149           "cannot have constants with non-loaded klass");
3150 };
3151 
3152 //------------------------------make-------------------------------------------
3153 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3154                                      ciKlass* k,
3155                                      bool xk,
3156                                      ciObject* o,
3157                                      int offset,
3158                                      int instance_id,
3159                                      const TypeOopPtr* speculative,
3160                                      int inline_depth) {
3161   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3162   // Either const_oop() is NULL or else ptr is Constant
3163   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3164           "constant pointers must have a value supplied" );
3165   // Ptr is never Null
3166   assert( ptr != Null, "NULL pointers are not typed" );
3167 
3168   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3169   if (!UseExactTypes)  xk = false;
3170   if (ptr == Constant) {
3171     // Note:  This case includes meta-object constants, such as methods.
3172     xk = true;
3173   } else if (k->is_loaded()) {
3174     ciInstanceKlass* ik = k->as_instance_klass();
3175     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3176     if (xk && ik->is_interface())  xk = false;  // no exact interface
3177   }
3178 
3179   // Now hash this baby
3180   TypeInstPtr *result =
3181     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3182 
3183   return result;
3184 }
3185 
3186 /**
3187  *  Create constant type for a constant boxed value
3188  */
3189 const Type* TypeInstPtr::get_const_boxed_value() const {
3190   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3191   assert((const_oop() != NULL), "should be called only for constant object");
3192   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3193   BasicType bt = constant.basic_type();
3194   switch (bt) {
3195     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3196     case T_INT:      return TypeInt::make(constant.as_int());
3197     case T_CHAR:     return TypeInt::make(constant.as_char());
3198     case T_BYTE:     return TypeInt::make(constant.as_byte());
3199     case T_SHORT:    return TypeInt::make(constant.as_short());
3200     case T_FLOAT:    return TypeF::make(constant.as_float());
3201     case T_DOUBLE:   return TypeD::make(constant.as_double());
3202     case T_LONG:     return TypeLong::make(constant.as_long());
3203     default:         break;
3204   }
3205   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3206   return NULL;
3207 }
3208 
3209 //------------------------------cast_to_ptr_type-------------------------------
3210 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3211   if( ptr == _ptr ) return this;
3212   // Reconstruct _sig info here since not a problem with later lazy
3213   // construction, _sig will show up on demand.
3214   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3215 }
3216 
3217 
3218 //-----------------------------cast_to_exactness-------------------------------
3219 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3220   if( klass_is_exact == _klass_is_exact ) return this;
3221   if (!UseExactTypes)  return this;
3222   if (!_klass->is_loaded())  return this;
3223   ciInstanceKlass* ik = _klass->as_instance_klass();
3224   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3225   if( ik->is_interface() )              return this;  // cannot set xk
3226   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3227 }
3228 
3229 //-----------------------------cast_to_instance_id----------------------------
3230 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3231   if( instance_id == _instance_id ) return this;
3232   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3233 }
3234 
3235 //------------------------------xmeet_unloaded---------------------------------
3236 // Compute the MEET of two InstPtrs when at least one is unloaded.
3237 // Assume classes are different since called after check for same name/class-loader
3238 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3239     int off = meet_offset(tinst->offset());
3240     PTR ptr = meet_ptr(tinst->ptr());
3241     int instance_id = meet_instance_id(tinst->instance_id());
3242     const TypeOopPtr* speculative = xmeet_speculative(tinst);
3243     int depth = meet_inline_depth(tinst->inline_depth());
3244 
3245     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3246     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3247     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3248       //
3249       // Meet unloaded class with java/lang/Object
3250       //
3251       // Meet
3252       //          |                     Unloaded Class
3253       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3254       //  ===================================================================
3255       //   TOP    | ..........................Unloaded......................|
3256       //  AnyNull |  U-AN    |................Unloaded......................|
3257       // Constant | ... O-NN .................................. |   O-BOT   |
3258       //  NotNull | ... O-NN .................................. |   O-BOT   |
3259       //  BOTTOM  | ........................Object-BOTTOM ..................|
3260       //
3261       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3262       //
3263       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3264       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3265       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3266       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3267         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3268         else                                      { return TypeInstPtr::NOTNULL; }
3269       }
3270       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3271 
3272       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3273     }
3274 
3275     // Both are unloaded, not the same class, not Object
3276     // Or meet unloaded with a different loaded class, not java/lang/Object
3277     if( ptr != TypePtr::BotPTR ) {
3278       return TypeInstPtr::NOTNULL;
3279     }
3280     return TypeInstPtr::BOTTOM;
3281 }
3282 
3283 
3284 //------------------------------meet-------------------------------------------
3285 // Compute the MEET of two types.  It returns a new Type object.
3286 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3287   // Perform a fast test for common case; meeting the same types together.
3288   if( this == t ) return this;  // Meeting same type-rep?
3289 
3290   // Current "this->_base" is Pointer
3291   switch (t->base()) {          // switch on original type
3292 
3293   case Int:                     // Mixing ints & oops happens when javac
3294   case Long:                    // reuses local variables
3295   case FloatTop:
3296   case FloatCon:
3297   case FloatBot:
3298   case DoubleTop:
3299   case DoubleCon:
3300   case DoubleBot:
3301   case NarrowOop:
3302   case NarrowKlass:
3303   case Bottom:                  // Ye Olde Default
3304     return Type::BOTTOM;
3305   case Top:
3306     return this;
3307 
3308   default:                      // All else is a mistake
3309     typerr(t);
3310 
3311   case MetadataPtr:
3312   case KlassPtr:
3313   case RawPtr: return TypePtr::BOTTOM;
3314 
3315   case AryPtr: {                // All arrays inherit from Object class
3316     const TypeAryPtr *tp = t->is_aryptr();
3317     int offset = meet_offset(tp->offset());
3318     PTR ptr = meet_ptr(tp->ptr());
3319     int instance_id = meet_instance_id(tp->instance_id());
3320     const TypeOopPtr* speculative = xmeet_speculative(tp);
3321     int depth = meet_inline_depth(tp->inline_depth());
3322     switch (ptr) {
3323     case TopPTR:
3324     case AnyNull:                // Fall 'down' to dual of object klass
3325       // For instances when a subclass meets a superclass we fall
3326       // below the centerline when the superclass is exact. We need to
3327       // do the same here.
3328       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3329         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3330       } else {
3331         // cannot subclass, so the meet has to fall badly below the centerline
3332         ptr = NotNull;
3333         instance_id = InstanceBot;
3334         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3335       }
3336     case Constant:
3337     case NotNull:
3338     case BotPTR:                // Fall down to object klass
3339       // LCA is object_klass, but if we subclass from the top we can do better
3340       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3341         // If 'this' (InstPtr) is above the centerline and it is Object class
3342         // then we can subclass in the Java class hierarchy.
3343         // For instances when a subclass meets a superclass we fall
3344         // below the centerline when the superclass is exact. We need
3345         // to do the same here.
3346         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3347           // that is, tp's array type is a subtype of my klass
3348           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3349                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3350         }
3351       }
3352       // The other case cannot happen, since I cannot be a subtype of an array.
3353       // The meet falls down to Object class below centerline.
3354       if( ptr == Constant )
3355          ptr = NotNull;
3356       instance_id = InstanceBot;
3357       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3358     default: typerr(t);
3359     }
3360   }
3361 
3362   case OopPtr: {                // Meeting to OopPtrs
3363     // Found a OopPtr type vs self-InstPtr type
3364     const TypeOopPtr *tp = t->is_oopptr();
3365     int offset = meet_offset(tp->offset());
3366     PTR ptr = meet_ptr(tp->ptr());
3367     switch (tp->ptr()) {
3368     case TopPTR:
3369     case AnyNull: {
3370       int instance_id = meet_instance_id(InstanceTop);
3371       const TypeOopPtr* speculative = xmeet_speculative(tp);
3372       int depth = meet_inline_depth(tp->inline_depth());
3373       return make(ptr, klass(), klass_is_exact(),
3374                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3375     }
3376     case NotNull:
3377     case BotPTR: {
3378       int instance_id = meet_instance_id(tp->instance_id());
3379       const TypeOopPtr* speculative = xmeet_speculative(tp);
3380       int depth = meet_inline_depth(tp->inline_depth());
3381       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3382     }
3383     default: typerr(t);
3384     }
3385   }
3386 
3387   case AnyPtr: {                // Meeting to AnyPtrs
3388     // Found an AnyPtr type vs self-InstPtr type
3389     const TypePtr *tp = t->is_ptr();
3390     int offset = meet_offset(tp->offset());
3391     PTR ptr = meet_ptr(tp->ptr());
3392     switch (tp->ptr()) {
3393     case Null:
3394       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3395       // else fall through to AnyNull
3396     case TopPTR:
3397     case AnyNull: {
3398       int instance_id = meet_instance_id(InstanceTop);
3399       const TypeOopPtr* speculative = _speculative;
3400       return make(ptr, klass(), klass_is_exact(),
3401                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
3402     }
3403     case NotNull:
3404     case BotPTR:
3405       return TypePtr::make(AnyPtr, ptr, offset);
3406     default: typerr(t);
3407     }
3408   }
3409 
3410   /*
3411                  A-top         }
3412                /   |   \       }  Tops
3413            B-top A-any C-top   }
3414               | /  |  \ |      }  Any-nulls
3415            B-any   |   C-any   }
3416               |    |    |
3417            B-con A-con C-con   } constants; not comparable across classes
3418               |    |    |
3419            B-not   |   C-not   }
3420               | \  |  / |      }  not-nulls
3421            B-bot A-not C-bot   }
3422                \   |   /       }  Bottoms
3423                  A-bot         }
3424   */
3425 
3426   case InstPtr: {                // Meeting 2 Oops?
3427     // Found an InstPtr sub-type vs self-InstPtr type
3428     const TypeInstPtr *tinst = t->is_instptr();
3429     int off = meet_offset( tinst->offset() );
3430     PTR ptr = meet_ptr( tinst->ptr() );
3431     int instance_id = meet_instance_id(tinst->instance_id());
3432     const TypeOopPtr* speculative = xmeet_speculative(tinst);
3433     int depth = meet_inline_depth(tinst->inline_depth());
3434 
3435     // Check for easy case; klasses are equal (and perhaps not loaded!)
3436     // If we have constants, then we created oops so classes are loaded
3437     // and we can handle the constants further down.  This case handles
3438     // both-not-loaded or both-loaded classes
3439     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3440       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3441     }
3442 
3443     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3444     ciKlass* tinst_klass = tinst->klass();
3445     ciKlass* this_klass  = this->klass();
3446     bool tinst_xk = tinst->klass_is_exact();
3447     bool this_xk  = this->klass_is_exact();
3448     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3449       // One of these classes has not been loaded
3450       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3451 #ifndef PRODUCT
3452       if( PrintOpto && Verbose ) {
3453         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3454         tty->print("  this == "); this->dump(); tty->cr();
3455         tty->print(" tinst == "); tinst->dump(); tty->cr();
3456       }
3457 #endif
3458       return unloaded_meet;
3459     }
3460 
3461     // Handle mixing oops and interfaces first.
3462     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3463                                         tinst_klass == ciEnv::current()->Object_klass())) {
3464       ciKlass *tmp = tinst_klass; // Swap interface around
3465       tinst_klass = this_klass;
3466       this_klass = tmp;
3467       bool tmp2 = tinst_xk;
3468       tinst_xk = this_xk;
3469       this_xk = tmp2;
3470     }
3471     if (tinst_klass->is_interface() &&
3472         !(this_klass->is_interface() ||
3473           // Treat java/lang/Object as an honorary interface,
3474           // because we need a bottom for the interface hierarchy.
3475           this_klass == ciEnv::current()->Object_klass())) {
3476       // Oop meets interface!
3477 
3478       // See if the oop subtypes (implements) interface.
3479       ciKlass *k;
3480       bool xk;
3481       if( this_klass->is_subtype_of( tinst_klass ) ) {
3482         // Oop indeed subtypes.  Now keep oop or interface depending
3483         // on whether we are both above the centerline or either is
3484         // below the centerline.  If we are on the centerline
3485         // (e.g., Constant vs. AnyNull interface), use the constant.
3486         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3487         // If we are keeping this_klass, keep its exactness too.
3488         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3489       } else {                  // Does not implement, fall to Object
3490         // Oop does not implement interface, so mixing falls to Object
3491         // just like the verifier does (if both are above the
3492         // centerline fall to interface)
3493         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3494         xk = above_centerline(ptr) ? tinst_xk : false;
3495         // Watch out for Constant vs. AnyNull interface.
3496         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3497         instance_id = InstanceBot;
3498       }
3499       ciObject* o = NULL;  // the Constant value, if any
3500       if (ptr == Constant) {
3501         // Find out which constant.
3502         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3503       }
3504       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3505     }
3506 
3507     // Either oop vs oop or interface vs interface or interface vs Object
3508 
3509     // !!! Here's how the symmetry requirement breaks down into invariants:
3510     // If we split one up & one down AND they subtype, take the down man.
3511     // If we split one up & one down AND they do NOT subtype, "fall hard".
3512     // If both are up and they subtype, take the subtype class.
3513     // If both are up and they do NOT subtype, "fall hard".
3514     // If both are down and they subtype, take the supertype class.
3515     // If both are down and they do NOT subtype, "fall hard".
3516     // Constants treated as down.
3517 
3518     // Now, reorder the above list; observe that both-down+subtype is also
3519     // "fall hard"; "fall hard" becomes the default case:
3520     // If we split one up & one down AND they subtype, take the down man.
3521     // If both are up and they subtype, take the subtype class.
3522 
3523     // If both are down and they subtype, "fall hard".
3524     // If both are down and they do NOT subtype, "fall hard".
3525     // If both are up and they do NOT subtype, "fall hard".
3526     // If we split one up & one down AND they do NOT subtype, "fall hard".
3527 
3528     // If a proper subtype is exact, and we return it, we return it exactly.
3529     // If a proper supertype is exact, there can be no subtyping relationship!
3530     // If both types are equal to the subtype, exactness is and-ed below the
3531     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3532 
3533     // Check for subtyping:
3534     ciKlass *subtype = NULL;
3535     bool subtype_exact = false;
3536     if( tinst_klass->equals(this_klass) ) {
3537       subtype = this_klass;
3538       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3539     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3540       subtype = this_klass;     // Pick subtyping class
3541       subtype_exact = this_xk;
3542     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3543       subtype = tinst_klass;    // Pick subtyping class
3544       subtype_exact = tinst_xk;
3545     }
3546 
3547     if( subtype ) {
3548       if( above_centerline(ptr) ) { // both are up?
3549         this_klass = tinst_klass = subtype;
3550         this_xk = tinst_xk = subtype_exact;
3551       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3552         this_klass = tinst_klass; // tinst is down; keep down man
3553         this_xk = tinst_xk;
3554       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3555         tinst_klass = this_klass; // this is down; keep down man
3556         tinst_xk = this_xk;
3557       } else {
3558         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3559       }
3560     }
3561 
3562     // Check for classes now being equal
3563     if (tinst_klass->equals(this_klass)) {
3564       // If the klasses are equal, the constants may still differ.  Fall to
3565       // NotNull if they do (neither constant is NULL; that is a special case
3566       // handled elsewhere).
3567       ciObject* o = NULL;             // Assume not constant when done
3568       ciObject* this_oop  = const_oop();
3569       ciObject* tinst_oop = tinst->const_oop();
3570       if( ptr == Constant ) {
3571         if (this_oop != NULL && tinst_oop != NULL &&
3572             this_oop->equals(tinst_oop) )
3573           o = this_oop;
3574         else if (above_centerline(this ->_ptr))
3575           o = tinst_oop;
3576         else if (above_centerline(tinst ->_ptr))
3577           o = this_oop;
3578         else
3579           ptr = NotNull;
3580       }
3581       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3582     } // Else classes are not equal
3583 
3584     // Since klasses are different, we require a LCA in the Java
3585     // class hierarchy - which means we have to fall to at least NotNull.
3586     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3587       ptr = NotNull;
3588     instance_id = InstanceBot;
3589 
3590     // Now we find the LCA of Java classes
3591     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3592     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3593   } // End of case InstPtr
3594 
3595   } // End of switch
3596   return this;                  // Return the double constant
3597 }
3598 
3599 
3600 //------------------------java_mirror_type--------------------------------------
3601 ciType* TypeInstPtr::java_mirror_type() const {
3602   // must be a singleton type
3603   if( const_oop() == NULL )  return NULL;
3604 
3605   // must be of type java.lang.Class
3606   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3607 
3608   return const_oop()->as_instance()->java_mirror_type();
3609 }
3610 
3611 
3612 //------------------------------xdual------------------------------------------
3613 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3614 // inheritance mechanism.
3615 const Type *TypeInstPtr::xdual() const {
3616   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3617 }
3618 
3619 //------------------------------eq---------------------------------------------
3620 // Structural equality check for Type representations
3621 bool TypeInstPtr::eq( const Type *t ) const {
3622   const TypeInstPtr *p = t->is_instptr();
3623   return
3624     klass()->equals(p->klass()) &&
3625     TypeOopPtr::eq(p);          // Check sub-type stuff
3626 }
3627 
3628 //------------------------------hash-------------------------------------------
3629 // Type-specific hashing function.
3630 int TypeInstPtr::hash(void) const {
3631   int hash = klass()->hash() + TypeOopPtr::hash();
3632   return hash;
3633 }
3634 
3635 //------------------------------dump2------------------------------------------
3636 // Dump oop Type
3637 #ifndef PRODUCT
3638 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3639   // Print the name of the klass.
3640   klass()->print_name_on(st);
3641 
3642   switch( _ptr ) {
3643   case Constant:
3644     // TO DO: Make CI print the hex address of the underlying oop.
3645     if (WizardMode || Verbose) {
3646       const_oop()->print_oop(st);
3647     }
3648   case BotPTR:
3649     if (!WizardMode && !Verbose) {
3650       if( _klass_is_exact ) st->print(":exact");
3651       break;
3652     }
3653   case TopPTR:
3654   case AnyNull:
3655   case NotNull:
3656     st->print(":%s", ptr_msg[_ptr]);
3657     if( _klass_is_exact ) st->print(":exact");
3658     break;
3659   }
3660 
3661   if( _offset ) {               // Dump offset, if any
3662     if( _offset == OffsetBot )      st->print("+any");
3663     else if( _offset == OffsetTop ) st->print("+unknown");
3664     else st->print("+%d", _offset);
3665   }
3666 
3667   st->print(" *");
3668   if (_instance_id == InstanceTop)
3669     st->print(",iid=top");
3670   else if (_instance_id != InstanceBot)
3671     st->print(",iid=%d",_instance_id);
3672 
3673   dump_inline_depth(st);
3674   dump_speculative(st);
3675 }
3676 #endif
3677 
3678 //------------------------------add_offset-------------------------------------
3679 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3680   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
3681 }
3682 
3683 const Type *TypeInstPtr::remove_speculative() const {
3684   if (_speculative == NULL) {
3685     return this;
3686   }
3687   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3688   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
3689 }
3690 
3691 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
3692   if (!UseInlineDepthForSpeculativeTypes) {
3693     return this;
3694   }
3695   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3696 }
3697 
3698 //=============================================================================
3699 // Convenience common pre-built types.
3700 const TypeAryPtr *TypeAryPtr::RANGE;
3701 const TypeAryPtr *TypeAryPtr::OOPS;
3702 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3703 const TypeAryPtr *TypeAryPtr::BYTES;
3704 const TypeAryPtr *TypeAryPtr::SHORTS;
3705 const TypeAryPtr *TypeAryPtr::CHARS;
3706 const TypeAryPtr *TypeAryPtr::INTS;
3707 const TypeAryPtr *TypeAryPtr::LONGS;
3708 const TypeAryPtr *TypeAryPtr::FLOATS;
3709 const TypeAryPtr *TypeAryPtr::DOUBLES;
3710 
3711 //------------------------------make-------------------------------------------
3712 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
3713   assert(!(k == NULL && ary->_elem->isa_int()),
3714          "integral arrays must be pre-equipped with a class");
3715   if (!xk)  xk = ary->ary_must_be_exact();
3716   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3717   if (!UseExactTypes)  xk = (ptr == Constant);
3718   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3719 }
3720 
3721 //------------------------------make-------------------------------------------
3722 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
3723   assert(!(k == NULL && ary->_elem->isa_int()),
3724          "integral arrays must be pre-equipped with a class");
3725   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3726   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3727   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3728   if (!UseExactTypes)  xk = (ptr == Constant);
3729   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3730 }
3731 
3732 //------------------------------cast_to_ptr_type-------------------------------
3733 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3734   if( ptr == _ptr ) return this;
3735   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3736 }
3737 
3738 
3739 //-----------------------------cast_to_exactness-------------------------------
3740 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3741   if( klass_is_exact == _klass_is_exact ) return this;
3742   if (!UseExactTypes)  return this;
3743   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3744   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3745 }
3746 
3747 //-----------------------------cast_to_instance_id----------------------------
3748 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3749   if( instance_id == _instance_id ) return this;
3750   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3751 }
3752 
3753 //-----------------------------narrow_size_type-------------------------------
3754 // Local cache for arrayOopDesc::max_array_length(etype),
3755 // which is kind of slow (and cached elsewhere by other users).
3756 static jint max_array_length_cache[T_CONFLICT+1];
3757 static jint max_array_length(BasicType etype) {
3758   jint& cache = max_array_length_cache[etype];
3759   jint res = cache;
3760   if (res == 0) {
3761     switch (etype) {
3762     case T_NARROWOOP:
3763       etype = T_OBJECT;
3764       break;
3765     case T_NARROWKLASS:
3766     case T_CONFLICT:
3767     case T_ILLEGAL:
3768     case T_VOID:
3769       etype = T_BYTE;           // will produce conservatively high value
3770     }
3771     cache = res = arrayOopDesc::max_array_length(etype);
3772   }
3773   return res;
3774 }
3775 
3776 // Narrow the given size type to the index range for the given array base type.
3777 // Return NULL if the resulting int type becomes empty.
3778 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3779   jint hi = size->_hi;
3780   jint lo = size->_lo;
3781   jint min_lo = 0;
3782   jint max_hi = max_array_length(elem()->basic_type());
3783   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3784   bool chg = false;
3785   if (lo < min_lo) {
3786     lo = min_lo;
3787     if (size->is_con()) {
3788       hi = lo;
3789     }
3790     chg = true;
3791   }
3792   if (hi > max_hi) {
3793     hi = max_hi;
3794     if (size->is_con()) {
3795       lo = hi;
3796     }
3797     chg = true;
3798   }
3799   // Negative length arrays will produce weird intermediate dead fast-path code
3800   if (lo > hi)
3801     return TypeInt::ZERO;
3802   if (!chg)
3803     return size;
3804   return TypeInt::make(lo, hi, Type::WidenMin);
3805 }
3806 
3807 //-------------------------------cast_to_size----------------------------------
3808 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3809   assert(new_size != NULL, "");
3810   new_size = narrow_size_type(new_size);
3811   if (new_size == size())  return this;
3812   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3813   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3814 }
3815 
3816 
3817 //------------------------------cast_to_stable---------------------------------
3818 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3819   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3820     return this;
3821 
3822   const Type* elem = this->elem();
3823   const TypePtr* elem_ptr = elem->make_ptr();
3824 
3825   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3826     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3827     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3828   }
3829 
3830   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3831 
3832   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3833 }
3834 
3835 //-----------------------------stable_dimension--------------------------------
3836 int TypeAryPtr::stable_dimension() const {
3837   if (!is_stable())  return 0;
3838   int dim = 1;
3839   const TypePtr* elem_ptr = elem()->make_ptr();
3840   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3841     dim += elem_ptr->is_aryptr()->stable_dimension();
3842   return dim;
3843 }
3844 
3845 //------------------------------eq---------------------------------------------
3846 // Structural equality check for Type representations
3847 bool TypeAryPtr::eq( const Type *t ) const {
3848   const TypeAryPtr *p = t->is_aryptr();
3849   return
3850     _ary == p->_ary &&  // Check array
3851     TypeOopPtr::eq(p);  // Check sub-parts
3852 }
3853 
3854 //------------------------------hash-------------------------------------------
3855 // Type-specific hashing function.
3856 int TypeAryPtr::hash(void) const {
3857   return (intptr_t)_ary + TypeOopPtr::hash();
3858 }
3859 
3860 //------------------------------meet-------------------------------------------
3861 // Compute the MEET of two types.  It returns a new Type object.
3862 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
3863   // Perform a fast test for common case; meeting the same types together.
3864   if( this == t ) return this;  // Meeting same type-rep?
3865   // Current "this->_base" is Pointer
3866   switch (t->base()) {          // switch on original type
3867 
3868   // Mixing ints & oops happens when javac reuses local variables
3869   case Int:
3870   case Long:
3871   case FloatTop:
3872   case FloatCon:
3873   case FloatBot:
3874   case DoubleTop:
3875   case DoubleCon:
3876   case DoubleBot:
3877   case NarrowOop:
3878   case NarrowKlass:
3879   case Bottom:                  // Ye Olde Default
3880     return Type::BOTTOM;
3881   case Top:
3882     return this;
3883 
3884   default:                      // All else is a mistake
3885     typerr(t);
3886 
3887   case OopPtr: {                // Meeting to OopPtrs
3888     // Found a OopPtr type vs self-AryPtr type
3889     const TypeOopPtr *tp = t->is_oopptr();
3890     int offset = meet_offset(tp->offset());
3891     PTR ptr = meet_ptr(tp->ptr());
3892     int depth = meet_inline_depth(tp->inline_depth());
3893     switch (tp->ptr()) {
3894     case TopPTR:
3895     case AnyNull: {
3896       int instance_id = meet_instance_id(InstanceTop);
3897       const TypeOopPtr* speculative = xmeet_speculative(tp);
3898       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3899                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
3900     }
3901     case BotPTR:
3902     case NotNull: {
3903       int instance_id = meet_instance_id(tp->instance_id());
3904       const TypeOopPtr* speculative = xmeet_speculative(tp);
3905       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3906     }
3907     default: ShouldNotReachHere();
3908     }
3909   }
3910 
3911   case AnyPtr: {                // Meeting two AnyPtrs
3912     // Found an AnyPtr type vs self-AryPtr type
3913     const TypePtr *tp = t->is_ptr();
3914     int offset = meet_offset(tp->offset());
3915     PTR ptr = meet_ptr(tp->ptr());
3916     switch (tp->ptr()) {
3917     case TopPTR:
3918       return this;
3919     case BotPTR:
3920     case NotNull:
3921       return TypePtr::make(AnyPtr, ptr, offset);
3922     case Null:
3923       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3924       // else fall through to AnyNull
3925     case AnyNull: {
3926       int instance_id = meet_instance_id(InstanceTop);
3927       const TypeOopPtr* speculative = _speculative;
3928       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3929                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
3930     }
3931     default: ShouldNotReachHere();
3932     }
3933   }
3934 
3935   case MetadataPtr:
3936   case KlassPtr:
3937   case RawPtr: return TypePtr::BOTTOM;
3938 
3939   case AryPtr: {                // Meeting 2 references?
3940     const TypeAryPtr *tap = t->is_aryptr();
3941     int off = meet_offset(tap->offset());
3942     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
3943     PTR ptr = meet_ptr(tap->ptr());
3944     int instance_id = meet_instance_id(tap->instance_id());
3945     const TypeOopPtr* speculative = xmeet_speculative(tap);
3946     int depth = meet_inline_depth(tap->inline_depth());
3947     ciKlass* lazy_klass = NULL;
3948     if (tary->_elem->isa_int()) {
3949       // Integral array element types have irrelevant lattice relations.
3950       // It is the klass that determines array layout, not the element type.
3951       if (_klass == NULL)
3952         lazy_klass = tap->_klass;
3953       else if (tap->_klass == NULL || tap->_klass == _klass) {
3954         lazy_klass = _klass;
3955       } else {
3956         // Something like byte[int+] meets char[int+].
3957         // This must fall to bottom, not (int[-128..65535])[int+].
3958         instance_id = InstanceBot;
3959         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3960       }
3961     } else // Non integral arrays.
3962       // Must fall to bottom if exact klasses in upper lattice
3963       // are not equal or super klass is exact.
3964       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
3965           // meet with top[] and bottom[] are processed further down:
3966           tap->_klass != NULL  && this->_klass != NULL   &&
3967           // both are exact and not equal:
3968           ((tap->_klass_is_exact && this->_klass_is_exact) ||
3969            // 'tap'  is exact and super or unrelated:
3970            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
3971            // 'this' is exact and super or unrelated:
3972            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
3973       if (above_centerline(ptr)) {
3974         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3975       }
3976       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
3977     }
3978 
3979     bool xk = false;
3980     switch (tap->ptr()) {
3981     case AnyNull:
3982     case TopPTR:
3983       // Compute new klass on demand, do not use tap->_klass
3984       if (below_centerline(this->_ptr)) {
3985         xk = this->_klass_is_exact;
3986       } else {
3987         xk = (tap->_klass_is_exact | this->_klass_is_exact);
3988       }
3989       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
3990     case Constant: {
3991       ciObject* o = const_oop();
3992       if( _ptr == Constant ) {
3993         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3994           xk = (klass() == tap->klass());
3995           ptr = NotNull;
3996           o = NULL;
3997           instance_id = InstanceBot;
3998         } else {
3999           xk = true;
4000         }
4001       } else if(above_centerline(_ptr)) {
4002         o = tap->const_oop();
4003         xk = true;
4004       } else {
4005         // Only precise for identical arrays
4006         xk = this->_klass_is_exact && (klass() == tap->klass());
4007       }
4008       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4009     }
4010     case NotNull:
4011     case BotPTR:
4012       // Compute new klass on demand, do not use tap->_klass
4013       if (above_centerline(this->_ptr))
4014             xk = tap->_klass_is_exact;
4015       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4016               (klass() == tap->klass()); // Only precise for identical arrays
4017       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4018     default: ShouldNotReachHere();
4019     }
4020   }
4021 
4022   // All arrays inherit from Object class
4023   case InstPtr: {
4024     const TypeInstPtr *tp = t->is_instptr();
4025     int offset = meet_offset(tp->offset());
4026     PTR ptr = meet_ptr(tp->ptr());
4027     int instance_id = meet_instance_id(tp->instance_id());
4028     const TypeOopPtr* speculative = xmeet_speculative(tp);
4029     int depth = meet_inline_depth(tp->inline_depth());
4030     switch (ptr) {
4031     case TopPTR:
4032     case AnyNull:                // Fall 'down' to dual of object klass
4033       // For instances when a subclass meets a superclass we fall
4034       // below the centerline when the superclass is exact. We need to
4035       // do the same here.
4036       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4037         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4038       } else {
4039         // cannot subclass, so the meet has to fall badly below the centerline
4040         ptr = NotNull;
4041         instance_id = InstanceBot;
4042         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4043       }
4044     case Constant:
4045     case NotNull:
4046     case BotPTR:                // Fall down to object klass
4047       // LCA is object_klass, but if we subclass from the top we can do better
4048       if (above_centerline(tp->ptr())) {
4049         // If 'tp'  is above the centerline and it is Object class
4050         // then we can subclass in the Java class hierarchy.
4051         // For instances when a subclass meets a superclass we fall
4052         // below the centerline when the superclass is exact. We need
4053         // to do the same here.
4054         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4055           // that is, my array type is a subtype of 'tp' klass
4056           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4057                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4058         }
4059       }
4060       // The other case cannot happen, since t cannot be a subtype of an array.
4061       // The meet falls down to Object class below centerline.
4062       if( ptr == Constant )
4063          ptr = NotNull;
4064       instance_id = InstanceBot;
4065       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4066     default: typerr(t);
4067     }
4068   }
4069   }
4070   return this;                  // Lint noise
4071 }
4072 
4073 //------------------------------xdual------------------------------------------
4074 // Dual: compute field-by-field dual
4075 const Type *TypeAryPtr::xdual() const {
4076   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4077 }
4078 
4079 //----------------------interface_vs_oop---------------------------------------
4080 #ifdef ASSERT
4081 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4082   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4083   if (t_aryptr) {
4084     return _ary->interface_vs_oop(t_aryptr->_ary);
4085   }
4086   return false;
4087 }
4088 #endif
4089 
4090 //------------------------------dump2------------------------------------------
4091 #ifndef PRODUCT
4092 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4093   _ary->dump2(d,depth,st);
4094   switch( _ptr ) {
4095   case Constant:
4096     const_oop()->print(st);
4097     break;
4098   case BotPTR:
4099     if (!WizardMode && !Verbose) {
4100       if( _klass_is_exact ) st->print(":exact");
4101       break;
4102     }
4103   case TopPTR:
4104   case AnyNull:
4105   case NotNull:
4106     st->print(":%s", ptr_msg[_ptr]);
4107     if( _klass_is_exact ) st->print(":exact");
4108     break;
4109   }
4110 
4111   if( _offset != 0 ) {
4112     int header_size = objArrayOopDesc::header_size() * wordSize;
4113     if( _offset == OffsetTop )       st->print("+undefined");
4114     else if( _offset == OffsetBot )  st->print("+any");
4115     else if( _offset < header_size ) st->print("+%d", _offset);
4116     else {
4117       BasicType basic_elem_type = elem()->basic_type();
4118       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4119       int elem_size = type2aelembytes(basic_elem_type);
4120       st->print("[%d]", (_offset - array_base)/elem_size);
4121     }
4122   }
4123   st->print(" *");
4124   if (_instance_id == InstanceTop)
4125     st->print(",iid=top");
4126   else if (_instance_id != InstanceBot)
4127     st->print(",iid=%d",_instance_id);
4128 
4129   dump_inline_depth(st);
4130   dump_speculative(st);
4131 }
4132 #endif
4133 
4134 bool TypeAryPtr::empty(void) const {
4135   if (_ary->empty())       return true;
4136   return TypeOopPtr::empty();
4137 }
4138 
4139 //------------------------------add_offset-------------------------------------
4140 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4141   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4142 }
4143 
4144 const Type *TypeAryPtr::remove_speculative() const {
4145   if (_speculative == NULL) {
4146     return this;
4147   }
4148   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4149   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4150 }
4151 
4152 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
4153   if (!UseInlineDepthForSpeculativeTypes) {
4154     return this;
4155   }
4156   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4157 }
4158 
4159 //=============================================================================
4160 
4161 //------------------------------hash-------------------------------------------
4162 // Type-specific hashing function.
4163 int TypeNarrowPtr::hash(void) const {
4164   return _ptrtype->hash() + 7;
4165 }
4166 
4167 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4168   return _ptrtype->singleton();
4169 }
4170 
4171 bool TypeNarrowPtr::empty(void) const {
4172   return _ptrtype->empty();
4173 }
4174 
4175 intptr_t TypeNarrowPtr::get_con() const {
4176   return _ptrtype->get_con();
4177 }
4178 
4179 bool TypeNarrowPtr::eq( const Type *t ) const {
4180   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4181   if (tc != NULL) {
4182     if (_ptrtype->base() != tc->_ptrtype->base()) {
4183       return false;
4184     }
4185     return tc->_ptrtype->eq(_ptrtype);
4186   }
4187   return false;
4188 }
4189 
4190 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4191   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4192   return make_same_narrowptr(odual);
4193 }
4194 
4195 
4196 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4197   if (isa_same_narrowptr(kills)) {
4198     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4199     if (ft->empty())
4200       return Type::TOP;           // Canonical empty value
4201     if (ft->isa_ptr()) {
4202       return make_hash_same_narrowptr(ft->isa_ptr());
4203     }
4204     return ft;
4205   } else if (kills->isa_ptr()) {
4206     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4207     if (ft->empty())
4208       return Type::TOP;           // Canonical empty value
4209     return ft;
4210   } else {
4211     return Type::TOP;
4212   }
4213 }
4214 
4215 //------------------------------xmeet------------------------------------------
4216 // Compute the MEET of two types.  It returns a new Type object.
4217 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4218   // Perform a fast test for common case; meeting the same types together.
4219   if( this == t ) return this;  // Meeting same type-rep?
4220 
4221   if (t->base() == base()) {
4222     const Type* result = _ptrtype->xmeet(t->make_ptr());
4223     if (result->isa_ptr()) {
4224       return make_hash_same_narrowptr(result->is_ptr());
4225     }
4226     return result;
4227   }
4228 
4229   // Current "this->_base" is NarrowKlass or NarrowOop
4230   switch (t->base()) {          // switch on original type
4231 
4232   case Int:                     // Mixing ints & oops happens when javac
4233   case Long:                    // reuses local variables
4234   case FloatTop:
4235   case FloatCon:
4236   case FloatBot:
4237   case DoubleTop:
4238   case DoubleCon:
4239   case DoubleBot:
4240   case AnyPtr:
4241   case RawPtr:
4242   case OopPtr:
4243   case InstPtr:
4244   case AryPtr:
4245   case MetadataPtr:
4246   case KlassPtr:
4247   case NarrowOop:
4248   case NarrowKlass:
4249 
4250   case Bottom:                  // Ye Olde Default
4251     return Type::BOTTOM;
4252   case Top:
4253     return this;
4254 
4255   default:                      // All else is a mistake
4256     typerr(t);
4257 
4258   } // End of switch
4259 
4260   return this;
4261 }
4262 
4263 #ifndef PRODUCT
4264 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4265   _ptrtype->dump2(d, depth, st);
4266 }
4267 #endif
4268 
4269 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4270 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4271 
4272 
4273 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4274   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4275 }
4276 
4277 
4278 #ifndef PRODUCT
4279 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4280   st->print("narrowoop: ");
4281   TypeNarrowPtr::dump2(d, depth, st);
4282 }
4283 #endif
4284 
4285 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4286 
4287 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4288   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4289 }
4290 
4291 #ifndef PRODUCT
4292 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4293   st->print("narrowklass: ");
4294   TypeNarrowPtr::dump2(d, depth, st);
4295 }
4296 #endif
4297 
4298 
4299 //------------------------------eq---------------------------------------------
4300 // Structural equality check for Type representations
4301 bool TypeMetadataPtr::eq( const Type *t ) const {
4302   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4303   ciMetadata* one = metadata();
4304   ciMetadata* two = a->metadata();
4305   if (one == NULL || two == NULL) {
4306     return (one == two) && TypePtr::eq(t);
4307   } else {
4308     return one->equals(two) && TypePtr::eq(t);
4309   }
4310 }
4311 
4312 //------------------------------hash-------------------------------------------
4313 // Type-specific hashing function.
4314 int TypeMetadataPtr::hash(void) const {
4315   return
4316     (metadata() ? metadata()->hash() : 0) +
4317     TypePtr::hash();
4318 }
4319 
4320 //------------------------------singleton--------------------------------------
4321 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4322 // constants
4323 bool TypeMetadataPtr::singleton(void) const {
4324   // detune optimizer to not generate constant metadta + constant offset as a constant!
4325   // TopPTR, Null, AnyNull, Constant are all singletons
4326   return (_offset == 0) && !below_centerline(_ptr);
4327 }
4328 
4329 //------------------------------add_offset-------------------------------------
4330 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4331   return make( _ptr, _metadata, xadd_offset(offset));
4332 }
4333 
4334 //-----------------------------filter------------------------------------------
4335 // Do not allow interface-vs.-noninterface joins to collapse to top.
4336 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4337   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4338   if (ft == NULL || ft->empty())
4339     return Type::TOP;           // Canonical empty value
4340   return ft;
4341 }
4342 
4343  //------------------------------get_con----------------------------------------
4344 intptr_t TypeMetadataPtr::get_con() const {
4345   assert( _ptr == Null || _ptr == Constant, "" );
4346   assert( _offset >= 0, "" );
4347 
4348   if (_offset != 0) {
4349     // After being ported to the compiler interface, the compiler no longer
4350     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4351     // to a handle at compile time.  This handle is embedded in the generated
4352     // code and dereferenced at the time the nmethod is made.  Until that time,
4353     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4354     // have access to the addresses!).  This does not seem to currently happen,
4355     // but this assertion here is to help prevent its occurence.
4356     tty->print_cr("Found oop constant with non-zero offset");
4357     ShouldNotReachHere();
4358   }
4359 
4360   return (intptr_t)metadata()->constant_encoding();
4361 }
4362 
4363 //------------------------------cast_to_ptr_type-------------------------------
4364 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4365   if( ptr == _ptr ) return this;
4366   return make(ptr, metadata(), _offset);
4367 }
4368 
4369 //------------------------------meet-------------------------------------------
4370 // Compute the MEET of two types.  It returns a new Type object.
4371 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4372   // Perform a fast test for common case; meeting the same types together.
4373   if( this == t ) return this;  // Meeting same type-rep?
4374 
4375   // Current "this->_base" is OopPtr
4376   switch (t->base()) {          // switch on original type
4377 
4378   case Int:                     // Mixing ints & oops happens when javac
4379   case Long:                    // reuses local variables
4380   case FloatTop:
4381   case FloatCon:
4382   case FloatBot:
4383   case DoubleTop:
4384   case DoubleCon:
4385   case DoubleBot:
4386   case NarrowOop:
4387   case NarrowKlass:
4388   case Bottom:                  // Ye Olde Default
4389     return Type::BOTTOM;
4390   case Top:
4391     return this;
4392 
4393   default:                      // All else is a mistake
4394     typerr(t);
4395 
4396   case AnyPtr: {
4397     // Found an AnyPtr type vs self-OopPtr type
4398     const TypePtr *tp = t->is_ptr();
4399     int offset = meet_offset(tp->offset());
4400     PTR ptr = meet_ptr(tp->ptr());
4401     switch (tp->ptr()) {
4402     case Null:
4403       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
4404       // else fall through:
4405     case TopPTR:
4406     case AnyNull: {
4407       return make(ptr, _metadata, offset);
4408     }
4409     case BotPTR:
4410     case NotNull:
4411       return TypePtr::make(AnyPtr, ptr, offset);
4412     default: typerr(t);
4413     }
4414   }
4415 
4416   case RawPtr:
4417   case KlassPtr:
4418   case OopPtr:
4419   case InstPtr:
4420   case AryPtr:
4421     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4422 
4423   case MetadataPtr: {
4424     const TypeMetadataPtr *tp = t->is_metadataptr();
4425     int offset = meet_offset(tp->offset());
4426     PTR tptr = tp->ptr();
4427     PTR ptr = meet_ptr(tptr);
4428     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4429     if (tptr == TopPTR || _ptr == TopPTR ||
4430         metadata()->equals(tp->metadata())) {
4431       return make(ptr, md, offset);
4432     }
4433     // metadata is different
4434     if( ptr == Constant ) {  // Cannot be equal constants, so...
4435       if( tptr == Constant && _ptr != Constant)  return t;
4436       if( _ptr == Constant && tptr != Constant)  return this;
4437       ptr = NotNull;            // Fall down in lattice
4438     }
4439     return make(ptr, NULL, offset);
4440     break;
4441   }
4442   } // End of switch
4443   return this;                  // Return the double constant
4444 }
4445 
4446 
4447 //------------------------------xdual------------------------------------------
4448 // Dual of a pure metadata pointer.
4449 const Type *TypeMetadataPtr::xdual() const {
4450   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4451 }
4452 
4453 //------------------------------dump2------------------------------------------
4454 #ifndef PRODUCT
4455 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4456   st->print("metadataptr:%s", ptr_msg[_ptr]);
4457   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4458   switch( _offset ) {
4459   case OffsetTop: st->print("+top"); break;
4460   case OffsetBot: st->print("+any"); break;
4461   case         0: break;
4462   default:        st->print("+%d",_offset); break;
4463   }
4464 }
4465 #endif
4466 
4467 
4468 //=============================================================================
4469 // Convenience common pre-built type.
4470 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4471 
4472 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4473   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4474 }
4475 
4476 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4477   return make(Constant, m, 0);
4478 }
4479 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4480   return make(Constant, m, 0);
4481 }
4482 
4483 //------------------------------make-------------------------------------------
4484 // Create a meta data constant
4485 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4486   assert(m == NULL || !m->is_klass(), "wrong type");
4487   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4488 }
4489 
4490 
4491 //=============================================================================
4492 // Convenience common pre-built types.
4493 
4494 // Not-null object klass or below
4495 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4496 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4497 
4498 //------------------------------TypeKlassPtr-----------------------------------
4499 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4500   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4501 }
4502 
4503 //------------------------------make-------------------------------------------
4504 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4505 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4506   assert( k != NULL, "Expect a non-NULL klass");
4507   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4508   TypeKlassPtr *r =
4509     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4510 
4511   return r;
4512 }
4513 
4514 //------------------------------eq---------------------------------------------
4515 // Structural equality check for Type representations
4516 bool TypeKlassPtr::eq( const Type *t ) const {
4517   const TypeKlassPtr *p = t->is_klassptr();
4518   return
4519     klass()->equals(p->klass()) &&
4520     TypePtr::eq(p);
4521 }
4522 
4523 //------------------------------hash-------------------------------------------
4524 // Type-specific hashing function.
4525 int TypeKlassPtr::hash(void) const {
4526   return klass()->hash() + TypePtr::hash();
4527 }
4528 
4529 //------------------------------singleton--------------------------------------
4530 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4531 // constants
4532 bool TypeKlassPtr::singleton(void) const {
4533   // detune optimizer to not generate constant klass + constant offset as a constant!
4534   // TopPTR, Null, AnyNull, Constant are all singletons
4535   return (_offset == 0) && !below_centerline(_ptr);
4536 }
4537 
4538 // Do not allow interface-vs.-noninterface joins to collapse to top.
4539 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4540   // logic here mirrors the one from TypeOopPtr::filter. See comments
4541   // there.
4542   const Type* ft = join_helper(kills, include_speculative);
4543   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4544   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4545 
4546   if (ft->empty()) {
4547     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4548       return kills;             // Uplift to interface
4549 
4550     return Type::TOP;           // Canonical empty value
4551   }
4552 
4553   // Interface klass type could be exact in opposite to interface type,
4554   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4555   if (ftkp != NULL && ktkp != NULL &&
4556       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4557       !ftkp->klass_is_exact() && // Keep exact interface klass
4558       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4559     return ktkp->cast_to_ptr_type(ftkp->ptr());
4560   }
4561 
4562   return ft;
4563 }
4564 
4565 //----------------------compute_klass------------------------------------------
4566 // Compute the defining klass for this class
4567 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4568   // Compute _klass based on element type.
4569   ciKlass* k_ary = NULL;
4570   const TypeInstPtr *tinst;
4571   const TypeAryPtr *tary;
4572   const Type* el = elem();
4573   if (el->isa_narrowoop()) {
4574     el = el->make_ptr();
4575   }
4576 
4577   // Get element klass
4578   if ((tinst = el->isa_instptr()) != NULL) {
4579     // Compute array klass from element klass
4580     k_ary = ciObjArrayKlass::make(tinst->klass());
4581   } else if ((tary = el->isa_aryptr()) != NULL) {
4582     // Compute array klass from element klass
4583     ciKlass* k_elem = tary->klass();
4584     // If element type is something like bottom[], k_elem will be null.
4585     if (k_elem != NULL)
4586       k_ary = ciObjArrayKlass::make(k_elem);
4587   } else if ((el->base() == Type::Top) ||
4588              (el->base() == Type::Bottom)) {
4589     // element type of Bottom occurs from meet of basic type
4590     // and object; Top occurs when doing join on Bottom.
4591     // Leave k_ary at NULL.
4592   } else {
4593     // Cannot compute array klass directly from basic type,
4594     // since subtypes of TypeInt all have basic type T_INT.
4595 #ifdef ASSERT
4596     if (verify && el->isa_int()) {
4597       // Check simple cases when verifying klass.
4598       BasicType bt = T_ILLEGAL;
4599       if (el == TypeInt::BYTE) {
4600         bt = T_BYTE;
4601       } else if (el == TypeInt::SHORT) {
4602         bt = T_SHORT;
4603       } else if (el == TypeInt::CHAR) {
4604         bt = T_CHAR;
4605       } else if (el == TypeInt::INT) {
4606         bt = T_INT;
4607       } else {
4608         return _klass; // just return specified klass
4609       }
4610       return ciTypeArrayKlass::make(bt);
4611     }
4612 #endif
4613     assert(!el->isa_int(),
4614            "integral arrays must be pre-equipped with a class");
4615     // Compute array klass directly from basic type
4616     k_ary = ciTypeArrayKlass::make(el->basic_type());
4617   }
4618   return k_ary;
4619 }
4620 
4621 //------------------------------klass------------------------------------------
4622 // Return the defining klass for this class
4623 ciKlass* TypeAryPtr::klass() const {
4624   if( _klass ) return _klass;   // Return cached value, if possible
4625 
4626   // Oops, need to compute _klass and cache it
4627   ciKlass* k_ary = compute_klass();
4628 
4629   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4630     // The _klass field acts as a cache of the underlying
4631     // ciKlass for this array type.  In order to set the field,
4632     // we need to cast away const-ness.
4633     //
4634     // IMPORTANT NOTE: we *never* set the _klass field for the
4635     // type TypeAryPtr::OOPS.  This Type is shared between all
4636     // active compilations.  However, the ciKlass which represents
4637     // this Type is *not* shared between compilations, so caching
4638     // this value would result in fetching a dangling pointer.
4639     //
4640     // Recomputing the underlying ciKlass for each request is
4641     // a bit less efficient than caching, but calls to
4642     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4643     ((TypeAryPtr*)this)->_klass = k_ary;
4644     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4645         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4646       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4647     }
4648   }
4649   return k_ary;
4650 }
4651 
4652 
4653 //------------------------------add_offset-------------------------------------
4654 // Access internals of klass object
4655 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4656   return make( _ptr, klass(), xadd_offset(offset) );
4657 }
4658 
4659 //------------------------------cast_to_ptr_type-------------------------------
4660 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4661   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4662   if( ptr == _ptr ) return this;
4663   return make(ptr, _klass, _offset);
4664 }
4665 
4666 
4667 //-----------------------------cast_to_exactness-------------------------------
4668 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4669   if( klass_is_exact == _klass_is_exact ) return this;
4670   if (!UseExactTypes)  return this;
4671   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4672 }
4673 
4674 
4675 //-----------------------------as_instance_type--------------------------------
4676 // Corresponding type for an instance of the given class.
4677 // It will be NotNull, and exact if and only if the klass type is exact.
4678 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4679   ciKlass* k = klass();
4680   bool    xk = klass_is_exact();
4681   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4682   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4683   guarantee(toop != NULL, "need type for given klass");
4684   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4685   return toop->cast_to_exactness(xk)->is_oopptr();
4686 }
4687 
4688 
4689 //------------------------------xmeet------------------------------------------
4690 // Compute the MEET of two types, return a new Type object.
4691 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4692   // Perform a fast test for common case; meeting the same types together.
4693   if( this == t ) return this;  // Meeting same type-rep?
4694 
4695   // Current "this->_base" is Pointer
4696   switch (t->base()) {          // switch on original type
4697 
4698   case Int:                     // Mixing ints & oops happens when javac
4699   case Long:                    // reuses local variables
4700   case FloatTop:
4701   case FloatCon:
4702   case FloatBot:
4703   case DoubleTop:
4704   case DoubleCon:
4705   case DoubleBot:
4706   case NarrowOop:
4707   case NarrowKlass:
4708   case Bottom:                  // Ye Olde Default
4709     return Type::BOTTOM;
4710   case Top:
4711     return this;
4712 
4713   default:                      // All else is a mistake
4714     typerr(t);
4715 
4716   case AnyPtr: {                // Meeting to AnyPtrs
4717     // Found an AnyPtr type vs self-KlassPtr type
4718     const TypePtr *tp = t->is_ptr();
4719     int offset = meet_offset(tp->offset());
4720     PTR ptr = meet_ptr(tp->ptr());
4721     switch (tp->ptr()) {
4722     case TopPTR:
4723       return this;
4724     case Null:
4725       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
4726     case AnyNull:
4727       return make( ptr, klass(), offset );
4728     case BotPTR:
4729     case NotNull:
4730       return TypePtr::make(AnyPtr, ptr, offset);
4731     default: typerr(t);
4732     }
4733   }
4734 
4735   case RawPtr:
4736   case MetadataPtr:
4737   case OopPtr:
4738   case AryPtr:                  // Meet with AryPtr
4739   case InstPtr:                 // Meet with InstPtr
4740     return TypePtr::BOTTOM;
4741 
4742   //
4743   //             A-top         }
4744   //           /   |   \       }  Tops
4745   //       B-top A-any C-top   }
4746   //          | /  |  \ |      }  Any-nulls
4747   //       B-any   |   C-any   }
4748   //          |    |    |
4749   //       B-con A-con C-con   } constants; not comparable across classes
4750   //          |    |    |
4751   //       B-not   |   C-not   }
4752   //          | \  |  / |      }  not-nulls
4753   //       B-bot A-not C-bot   }
4754   //           \   |   /       }  Bottoms
4755   //             A-bot         }
4756   //
4757 
4758   case KlassPtr: {  // Meet two KlassPtr types
4759     const TypeKlassPtr *tkls = t->is_klassptr();
4760     int  off     = meet_offset(tkls->offset());
4761     PTR  ptr     = meet_ptr(tkls->ptr());
4762 
4763     // Check for easy case; klasses are equal (and perhaps not loaded!)
4764     // If we have constants, then we created oops so classes are loaded
4765     // and we can handle the constants further down.  This case handles
4766     // not-loaded classes
4767     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4768       return make( ptr, klass(), off );
4769     }
4770 
4771     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4772     ciKlass* tkls_klass = tkls->klass();
4773     ciKlass* this_klass = this->klass();
4774     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4775     assert( this_klass->is_loaded(), "This class should have been loaded.");
4776 
4777     // If 'this' type is above the centerline and is a superclass of the
4778     // other, we can treat 'this' as having the same type as the other.
4779     if ((above_centerline(this->ptr())) &&
4780         tkls_klass->is_subtype_of(this_klass)) {
4781       this_klass = tkls_klass;
4782     }
4783     // If 'tinst' type is above the centerline and is a superclass of the
4784     // other, we can treat 'tinst' as having the same type as the other.
4785     if ((above_centerline(tkls->ptr())) &&
4786         this_klass->is_subtype_of(tkls_klass)) {
4787       tkls_klass = this_klass;
4788     }
4789 
4790     // Check for classes now being equal
4791     if (tkls_klass->equals(this_klass)) {
4792       // If the klasses are equal, the constants may still differ.  Fall to
4793       // NotNull if they do (neither constant is NULL; that is a special case
4794       // handled elsewhere).
4795       if( ptr == Constant ) {
4796         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4797             this->klass()->equals(tkls->klass()));
4798         else if (above_centerline(this->ptr()));
4799         else if (above_centerline(tkls->ptr()));
4800         else
4801           ptr = NotNull;
4802       }
4803       return make( ptr, this_klass, off );
4804     } // Else classes are not equal
4805 
4806     // Since klasses are different, we require the LCA in the Java
4807     // class hierarchy - which means we have to fall to at least NotNull.
4808     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4809       ptr = NotNull;
4810     // Now we find the LCA of Java classes
4811     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4812     return   make( ptr, k, off );
4813   } // End of case KlassPtr
4814 
4815   } // End of switch
4816   return this;                  // Return the double constant
4817 }
4818 
4819 //------------------------------xdual------------------------------------------
4820 // Dual: compute field-by-field dual
4821 const Type    *TypeKlassPtr::xdual() const {
4822   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4823 }
4824 
4825 //------------------------------get_con----------------------------------------
4826 intptr_t TypeKlassPtr::get_con() const {
4827   assert( _ptr == Null || _ptr == Constant, "" );
4828   assert( _offset >= 0, "" );
4829 
4830   if (_offset != 0) {
4831     // After being ported to the compiler interface, the compiler no longer
4832     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4833     // to a handle at compile time.  This handle is embedded in the generated
4834     // code and dereferenced at the time the nmethod is made.  Until that time,
4835     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4836     // have access to the addresses!).  This does not seem to currently happen,
4837     // but this assertion here is to help prevent its occurence.
4838     tty->print_cr("Found oop constant with non-zero offset");
4839     ShouldNotReachHere();
4840   }
4841 
4842   return (intptr_t)klass()->constant_encoding();
4843 }
4844 //------------------------------dump2------------------------------------------
4845 // Dump Klass Type
4846 #ifndef PRODUCT
4847 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4848   switch( _ptr ) {
4849   case Constant:
4850     st->print("precise ");
4851   case NotNull:
4852     {
4853       const char *name = klass()->name()->as_utf8();
4854       if( name ) {
4855         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4856       } else {
4857         ShouldNotReachHere();
4858       }
4859     }
4860   case BotPTR:
4861     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4862   case TopPTR:
4863   case AnyNull:
4864     st->print(":%s", ptr_msg[_ptr]);
4865     if( _klass_is_exact ) st->print(":exact");
4866     break;
4867   }
4868 
4869   if( _offset ) {               // Dump offset, if any
4870     if( _offset == OffsetBot )      { st->print("+any"); }
4871     else if( _offset == OffsetTop ) { st->print("+unknown"); }
4872     else                            { st->print("+%d", _offset); }
4873   }
4874 
4875   st->print(" *");
4876 }
4877 #endif
4878 
4879 
4880 
4881 //=============================================================================
4882 // Convenience common pre-built types.
4883 
4884 //------------------------------make-------------------------------------------
4885 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4886   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4887 }
4888 
4889 //------------------------------make-------------------------------------------
4890 const TypeFunc *TypeFunc::make(ciMethod* method) {
4891   Compile* C = Compile::current();
4892   const TypeFunc* tf = C->last_tf(method); // check cache
4893   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4894   const TypeTuple *domain;
4895   if (method->is_static()) {
4896     domain = TypeTuple::make_domain(NULL, method->signature());
4897   } else {
4898     domain = TypeTuple::make_domain(method->holder(), method->signature());
4899   }
4900   const TypeTuple *range  = TypeTuple::make_range(method->signature());
4901   tf = TypeFunc::make(domain, range);
4902   C->set_last_tf(method, tf);  // fill cache
4903   return tf;
4904 }
4905 
4906 //------------------------------meet-------------------------------------------
4907 // Compute the MEET of two types.  It returns a new Type object.
4908 const Type *TypeFunc::xmeet( const Type *t ) const {
4909   // Perform a fast test for common case; meeting the same types together.
4910   if( this == t ) return this;  // Meeting same type-rep?
4911 
4912   // Current "this->_base" is Func
4913   switch (t->base()) {          // switch on original type
4914 
4915   case Bottom:                  // Ye Olde Default
4916     return t;
4917 
4918   default:                      // All else is a mistake
4919     typerr(t);
4920 
4921   case Top:
4922     break;
4923   }
4924   return this;                  // Return the double constant
4925 }
4926 
4927 //------------------------------xdual------------------------------------------
4928 // Dual: compute field-by-field dual
4929 const Type *TypeFunc::xdual() const {
4930   return this;
4931 }
4932 
4933 //------------------------------eq---------------------------------------------
4934 // Structural equality check for Type representations
4935 bool TypeFunc::eq( const Type *t ) const {
4936   const TypeFunc *a = (const TypeFunc*)t;
4937   return _domain == a->_domain &&
4938     _range == a->_range;
4939 }
4940 
4941 //------------------------------hash-------------------------------------------
4942 // Type-specific hashing function.
4943 int TypeFunc::hash(void) const {
4944   return (intptr_t)_domain + (intptr_t)_range;
4945 }
4946 
4947 //------------------------------dump2------------------------------------------
4948 // Dump Function Type
4949 #ifndef PRODUCT
4950 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4951   if( _range->_cnt <= Parms )
4952     st->print("void");
4953   else {
4954     uint i;
4955     for (i = Parms; i < _range->_cnt-1; i++) {
4956       _range->field_at(i)->dump2(d,depth,st);
4957       st->print("/");
4958     }
4959     _range->field_at(i)->dump2(d,depth,st);
4960   }
4961   st->print(" ");
4962   st->print("( ");
4963   if( !depth || d[this] ) {     // Check for recursive dump
4964     st->print("...)");
4965     return;
4966   }
4967   d.Insert((void*)this,(void*)this);    // Stop recursion
4968   if (Parms < _domain->_cnt)
4969     _domain->field_at(Parms)->dump2(d,depth-1,st);
4970   for (uint i = Parms+1; i < _domain->_cnt; i++) {
4971     st->print(", ");
4972     _domain->field_at(i)->dump2(d,depth-1,st);
4973   }
4974   st->print(" )");
4975 }
4976 #endif
4977 
4978 //------------------------------singleton--------------------------------------
4979 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4980 // constants (Ldi nodes).  Singletons are integer, float or double constants
4981 // or a single symbol.
4982 bool TypeFunc::singleton(void) const {
4983   return false;                 // Never a singleton
4984 }
4985 
4986 bool TypeFunc::empty(void) const {
4987   return false;                 // Never empty
4988 }
4989 
4990 
4991 BasicType TypeFunc::return_type() const{
4992   if (range()->cnt() == TypeFunc::Parms) {
4993     return T_VOID;
4994   }
4995   return range()->field_at(TypeFunc::Parms)->basic_type();
4996 }