1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "gc_implementation/shared/vmGCOperations.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/allocation.inline.hpp"
  35 #ifdef ASSERT
  36 #include "memory/guardedMemory.hpp"
  37 #endif
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvm.h"
  40 #include "prims/jvm_misc.hpp"
  41 #include "prims/privilegedStack.hpp"
  42 #include "runtime/arguments.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/interfaceSupport.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/javaCalls.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/os.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "services/attachListener.hpp"
  52 #include "services/nmtCommon.hpp"
  53 #include "services/mallocTracker.hpp"
  54 #include "services/memTracker.hpp"
  55 #include "services/threadService.hpp"
  56 #include "utilities/defaultStream.hpp"
  57 #include "utilities/events.hpp"
  58 #ifdef TARGET_OS_FAMILY_linux
  59 # include "os_linux.inline.hpp"
  60 #endif
  61 #ifdef TARGET_OS_FAMILY_solaris
  62 # include "os_solaris.inline.hpp"
  63 #endif
  64 #ifdef TARGET_OS_FAMILY_windows
  65 # include "os_windows.inline.hpp"
  66 #endif
  67 #ifdef TARGET_OS_FAMILY_bsd
  68 # include "os_bsd.inline.hpp"
  69 #endif
  70 
  71 # include <signal.h>
  72 
  73 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  74 
  75 OSThread*         os::_starting_thread    = NULL;
  76 address           os::_polling_page       = NULL;
  77 volatile int32_t* os::_mem_serialize_page = NULL;
  78 uintptr_t         os::_serialize_page_mask = 0;
  79 long              os::_rand_seed          = 1;
  80 int               os::_processor_count    = 0;
  81 int               os::_initial_active_processor_count = 0;
  82 size_t            os::_page_sizes[os::page_sizes_max];
  83 
  84 #ifndef PRODUCT
  85 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
  86 julong os::alloc_bytes = 0;         // # of bytes allocated
  87 julong os::num_frees = 0;           // # of calls to free
  88 julong os::free_bytes = 0;          // # of bytes freed
  89 #endif
  90 
  91 static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
  92 
  93 void os_init_globals() {
  94   // Called from init_globals().
  95   // See Threads::create_vm() in thread.cpp, and init.cpp.
  96   os::init_globals();
  97 }
  98 
  99 static time_t get_timezone(const struct tm* time_struct) {
 100 #if defined(_ALLBSD_SOURCE)
 101   return time_struct->tm_gmtoff;
 102 #elif defined(_WINDOWS)
 103   long zone;
 104   _get_timezone(&zone);
 105   return static_cast<time_t>(zone);
 106 #else
 107   return timezone;
 108 #endif
 109 }
 110 
 111 // Fill in buffer with current local time as an ISO-8601 string.
 112 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
 113 // Returns buffer, or NULL if it failed.
 114 // This would mostly be a call to
 115 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
 116 // except that on Windows the %z behaves badly, so we do it ourselves.
 117 // Also, people wanted milliseconds on there,
 118 // and strftime doesn't do milliseconds.
 119 char* os::iso8601_time(char* buffer, size_t buffer_length) {
 120   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
 121   //                                      1         2
 122   //                             12345678901234567890123456789
 123   static const char* iso8601_format =
 124     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
 125   static const size_t needed_buffer = 29;
 126 
 127   // Sanity check the arguments
 128   if (buffer == NULL) {
 129     assert(false, "NULL buffer");
 130     return NULL;
 131   }
 132   if (buffer_length < needed_buffer) {
 133     assert(false, "buffer_length too small");
 134     return NULL;
 135   }
 136   // Get the current time
 137   jlong milliseconds_since_19700101 = javaTimeMillis();
 138   const int milliseconds_per_microsecond = 1000;
 139   const time_t seconds_since_19700101 =
 140     milliseconds_since_19700101 / milliseconds_per_microsecond;
 141   const int milliseconds_after_second =
 142     milliseconds_since_19700101 % milliseconds_per_microsecond;
 143   // Convert the time value to a tm and timezone variable
 144   struct tm time_struct;
 145   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 146     assert(false, "Failed localtime_pd");
 147     return NULL;
 148   }
 149   const time_t zone = get_timezone(&time_struct);
 150 
 151   // If daylight savings time is in effect,
 152   // we are 1 hour East of our time zone
 153   const time_t seconds_per_minute = 60;
 154   const time_t minutes_per_hour = 60;
 155   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
 156   time_t UTC_to_local = zone;
 157   if (time_struct.tm_isdst > 0) {
 158     UTC_to_local = UTC_to_local - seconds_per_hour;
 159   }
 160   // Compute the time zone offset.
 161   //    localtime_pd() sets timezone to the difference (in seconds)
 162   //    between UTC and and local time.
 163   //    ISO 8601 says we need the difference between local time and UTC,
 164   //    we change the sign of the localtime_pd() result.
 165   const time_t local_to_UTC = -(UTC_to_local);
 166   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
 167   char sign_local_to_UTC = '+';
 168   time_t abs_local_to_UTC = local_to_UTC;
 169   if (local_to_UTC < 0) {
 170     sign_local_to_UTC = '-';
 171     abs_local_to_UTC = -(abs_local_to_UTC);
 172   }
 173   // Convert time zone offset seconds to hours and minutes.
 174   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
 175   const time_t zone_min =
 176     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
 177 
 178   // Print an ISO 8601 date and time stamp into the buffer
 179   const int year = 1900 + time_struct.tm_year;
 180   const int month = 1 + time_struct.tm_mon;
 181   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
 182                                    year,
 183                                    month,
 184                                    time_struct.tm_mday,
 185                                    time_struct.tm_hour,
 186                                    time_struct.tm_min,
 187                                    time_struct.tm_sec,
 188                                    milliseconds_after_second,
 189                                    sign_local_to_UTC,
 190                                    zone_hours,
 191                                    zone_min);
 192   if (printed == 0) {
 193     assert(false, "Failed jio_printf");
 194     return NULL;
 195   }
 196   return buffer;
 197 }
 198 
 199 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
 200 #ifdef ASSERT
 201   if (!(!thread->is_Java_thread() ||
 202          Thread::current() == thread  ||
 203          Threads_lock->owned_by_self()
 204          || thread->is_Compiler_thread()
 205         )) {
 206     assert(false, "possibility of dangling Thread pointer");
 207   }
 208 #endif
 209 
 210   if (p >= MinPriority && p <= MaxPriority) {
 211     int priority = java_to_os_priority[p];
 212     return set_native_priority(thread, priority);
 213   } else {
 214     assert(false, "Should not happen");
 215     return OS_ERR;
 216   }
 217 }
 218 
 219 // The mapping from OS priority back to Java priority may be inexact because
 220 // Java priorities can map M:1 with native priorities. If you want the definite
 221 // Java priority then use JavaThread::java_priority()
 222 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
 223   int p;
 224   int os_prio;
 225   OSReturn ret = get_native_priority(thread, &os_prio);
 226   if (ret != OS_OK) return ret;
 227 
 228   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
 229     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
 230   } else {
 231     // niceness values are in reverse order
 232     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
 233   }
 234   priority = (ThreadPriority)p;
 235   return OS_OK;
 236 }
 237 
 238 
 239 // --------------------- sun.misc.Signal (optional) ---------------------
 240 
 241 
 242 // SIGBREAK is sent by the keyboard to query the VM state
 243 #ifndef SIGBREAK
 244 #define SIGBREAK SIGQUIT
 245 #endif
 246 
 247 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
 248 
 249 
 250 static void signal_thread_entry(JavaThread* thread, TRAPS) {
 251   os::set_priority(thread, NearMaxPriority);
 252   while (true) {
 253     int sig;
 254     {
 255       // FIXME : Currently we have not decieded what should be the status
 256       //         for this java thread blocked here. Once we decide about
 257       //         that we should fix this.
 258       sig = os::signal_wait();
 259     }
 260     if (sig == os::sigexitnum_pd()) {
 261        // Terminate the signal thread
 262        return;
 263     }
 264 
 265     switch (sig) {
 266       case SIGBREAK: {
 267         // Check if the signal is a trigger to start the Attach Listener - in that
 268         // case don't print stack traces.
 269         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
 270           continue;
 271         }
 272         // Print stack traces
 273         // Any SIGBREAK operations added here should make sure to flush
 274         // the output stream (e.g. tty->flush()) after output.  See 4803766.
 275         // Each module also prints an extra carriage return after its output.
 276         VM_PrintThreads op;
 277         VMThread::execute(&op);
 278         VM_PrintJNI jni_op;
 279         VMThread::execute(&jni_op);
 280         VM_FindDeadlocks op1(tty);
 281         VMThread::execute(&op1);
 282         Universe::print_heap_at_SIGBREAK();
 283         if (PrintClassHistogram) {
 284           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
 285           VMThread::execute(&op1);
 286         }
 287         if (JvmtiExport::should_post_data_dump()) {
 288           JvmtiExport::post_data_dump();
 289         }
 290         break;
 291       }
 292       default: {
 293         // Dispatch the signal to java
 294         HandleMark hm(THREAD);
 295         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
 296         KlassHandle klass (THREAD, k);
 297         if (klass.not_null()) {
 298           JavaValue result(T_VOID);
 299           JavaCallArguments args;
 300           args.push_int(sig);
 301           JavaCalls::call_static(
 302             &result,
 303             klass,
 304             vmSymbols::dispatch_name(),
 305             vmSymbols::int_void_signature(),
 306             &args,
 307             THREAD
 308           );
 309         }
 310         if (HAS_PENDING_EXCEPTION) {
 311           // tty is initialized early so we don't expect it to be null, but
 312           // if it is we can't risk doing an initialization that might
 313           // trigger additional out-of-memory conditions
 314           if (tty != NULL) {
 315             char klass_name[256];
 316             char tmp_sig_name[16];
 317             const char* sig_name = "UNKNOWN";
 318             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
 319               name()->as_klass_external_name(klass_name, 256);
 320             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
 321               sig_name = tmp_sig_name;
 322             warning("Exception %s occurred dispatching signal %s to handler"
 323                     "- the VM may need to be forcibly terminated",
 324                     klass_name, sig_name );
 325           }
 326           CLEAR_PENDING_EXCEPTION;
 327         }
 328       }
 329     }
 330   }
 331 }
 332 
 333 void os::init_before_ergo() {
 334   initialize_initial_active_processor_count();
 335   // We need to initialize large page support here because ergonomics takes some
 336   // decisions depending on large page support and the calculated large page size.
 337   large_page_init();
 338 
 339   // VM version initialization identifies some characteristics of the
 340   // the platform that are used during ergonomic decisions.
 341   VM_Version::init_before_ergo();
 342 }
 343 
 344 void os::signal_init() {
 345   if (!ReduceSignalUsage) {
 346     // Setup JavaThread for processing signals
 347     EXCEPTION_MARK;
 348     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
 349     instanceKlassHandle klass (THREAD, k);
 350     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 351 
 352     const char thread_name[] = "Signal Dispatcher";
 353     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
 354 
 355     // Initialize thread_oop to put it into the system threadGroup
 356     Handle thread_group (THREAD, Universe::system_thread_group());
 357     JavaValue result(T_VOID);
 358     JavaCalls::call_special(&result, thread_oop,
 359                            klass,
 360                            vmSymbols::object_initializer_name(),
 361                            vmSymbols::threadgroup_string_void_signature(),
 362                            thread_group,
 363                            string,
 364                            CHECK);
 365 
 366     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
 367     JavaCalls::call_special(&result,
 368                             thread_group,
 369                             group,
 370                             vmSymbols::add_method_name(),
 371                             vmSymbols::thread_void_signature(),
 372                             thread_oop,         // ARG 1
 373                             CHECK);
 374 
 375     os::signal_init_pd();
 376 
 377     { MutexLocker mu(Threads_lock);
 378       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
 379 
 380       // At this point it may be possible that no osthread was created for the
 381       // JavaThread due to lack of memory. We would have to throw an exception
 382       // in that case. However, since this must work and we do not allow
 383       // exceptions anyway, check and abort if this fails.
 384       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
 385         vm_exit_during_initialization("java.lang.OutOfMemoryError",
 386                                       "unable to create new native thread");
 387       }
 388 
 389       java_lang_Thread::set_thread(thread_oop(), signal_thread);
 390       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
 391       java_lang_Thread::set_daemon(thread_oop());
 392 
 393       signal_thread->set_threadObj(thread_oop());
 394       Threads::add(signal_thread);
 395       Thread::start(signal_thread);
 396     }
 397     // Handle ^BREAK
 398     os::signal(SIGBREAK, os::user_handler());
 399   }
 400 }
 401 
 402 
 403 void os::terminate_signal_thread() {
 404   if (!ReduceSignalUsage)
 405     signal_notify(sigexitnum_pd());
 406 }
 407 
 408 
 409 // --------------------- loading libraries ---------------------
 410 
 411 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
 412 extern struct JavaVM_ main_vm;
 413 
 414 static void* _native_java_library = NULL;
 415 
 416 void* os::native_java_library() {
 417   if (_native_java_library == NULL) {
 418     char buffer[JVM_MAXPATHLEN];
 419     char ebuf[1024];
 420 
 421     // Try to load verify dll first. In 1.3 java dll depends on it and is not
 422     // always able to find it when the loading executable is outside the JDK.
 423     // In order to keep working with 1.2 we ignore any loading errors.
 424     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 425                        "verify")) {
 426       dll_load(buffer, ebuf, sizeof(ebuf));
 427     }
 428 
 429     // Load java dll
 430     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 431                        "java")) {
 432       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
 433     }
 434     if (_native_java_library == NULL) {
 435       vm_exit_during_initialization("Unable to load native library", ebuf);
 436     }
 437 
 438 #if defined(__OpenBSD__)
 439     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
 440     // ignore errors
 441     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 442                        "net")) {
 443       dll_load(buffer, ebuf, sizeof(ebuf));
 444     }
 445 #endif
 446   }
 447   static jboolean onLoaded = JNI_FALSE;
 448   if (onLoaded) {
 449     // We may have to wait to fire OnLoad until TLS is initialized.
 450     if (ThreadLocalStorage::is_initialized()) {
 451       // The JNI_OnLoad handling is normally done by method load in
 452       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
 453       // explicitly so we have to check for JNI_OnLoad as well
 454       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
 455       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
 456           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
 457       if (JNI_OnLoad != NULL) {
 458         JavaThread* thread = JavaThread::current();
 459         ThreadToNativeFromVM ttn(thread);
 460         HandleMark hm(thread);
 461         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
 462         onLoaded = JNI_TRUE;
 463         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
 464           vm_exit_during_initialization("Unsupported JNI version");
 465         }
 466       }
 467     }
 468   }
 469   return _native_java_library;
 470 }
 471 
 472 /*
 473  * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
 474  * If check_lib == true then we are looking for an
 475  * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
 476  * this library is statically linked into the image.
 477  * If check_lib == false then we will look for the appropriate symbol in the
 478  * executable if agent_lib->is_static_lib() == true or in the shared library
 479  * referenced by 'handle'.
 480  */
 481 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
 482                               const char *syms[], size_t syms_len) {
 483   assert(agent_lib != NULL, "sanity check");
 484   const char *lib_name;
 485   void *handle = agent_lib->os_lib();
 486   void *entryName = NULL;
 487   char *agent_function_name;
 488   size_t i;
 489 
 490   // If checking then use the agent name otherwise test is_static_lib() to
 491   // see how to process this lookup
 492   lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
 493   for (i = 0; i < syms_len; i++) {
 494     agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
 495     if (agent_function_name == NULL) {
 496       break;
 497     }
 498     entryName = dll_lookup(handle, agent_function_name);
 499     FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread);
 500     if (entryName != NULL) {
 501       break;
 502     }
 503   }
 504   return entryName;
 505 }
 506 
 507 // See if the passed in agent is statically linked into the VM image.
 508 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
 509                             size_t syms_len) {
 510   void *ret;
 511   void *proc_handle;
 512   void *save_handle;
 513 
 514   assert(agent_lib != NULL, "sanity check");
 515   if (agent_lib->name() == NULL) {
 516     return false;
 517   }
 518   proc_handle = get_default_process_handle();
 519   // Check for Agent_OnLoad/Attach_lib_name function
 520   save_handle = agent_lib->os_lib();
 521   // We want to look in this process' symbol table.
 522   agent_lib->set_os_lib(proc_handle);
 523   ret = find_agent_function(agent_lib, true, syms, syms_len);
 524   if (ret != NULL) {
 525     // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
 526     agent_lib->set_valid();
 527     agent_lib->set_static_lib(true);
 528     return true;
 529   }
 530   agent_lib->set_os_lib(save_handle);
 531   return false;
 532 }
 533 
 534 // --------------------- heap allocation utilities ---------------------
 535 
 536 char *os::strdup(const char *str, MEMFLAGS flags) {
 537   size_t size = strlen(str);
 538   char *dup_str = (char *)malloc(size + 1, flags);
 539   if (dup_str == NULL) return NULL;
 540   strcpy(dup_str, str);
 541   return dup_str;
 542 }
 543 
 544 
 545 
 546 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
 547 
 548 #ifdef ASSERT
 549 static void verify_memory(void* ptr) {
 550   GuardedMemory guarded(ptr);
 551   if (!guarded.verify_guards()) {
 552     tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
 553     tty->print_cr("## memory stomp:");
 554     guarded.print_on(tty);
 555     fatal("memory stomping error");
 556   }
 557 }
 558 #endif
 559 
 560 //
 561 // This function supports testing of the malloc out of memory
 562 // condition without really running the system out of memory.
 563 //
 564 static u_char* testMalloc(size_t alloc_size) {
 565   assert(MallocMaxTestWords > 0, "sanity check");
 566 
 567   if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
 568     return NULL;
 569   }
 570 
 571   u_char* ptr = (u_char*)::malloc(alloc_size);
 572 
 573   if (ptr != NULL) {
 574     Atomic::add(((jint) (alloc_size / BytesPerWord)),
 575                 (volatile jint *) &cur_malloc_words);
 576   }
 577   return ptr;
 578 }
 579 
 580 void* os::malloc(size_t size, MEMFLAGS flags) {
 581   return os::malloc(size, flags, CALLER_PC);
 582 }
 583 
 584 void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
 585   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 586   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 587 
 588 #ifdef ASSERT
 589   // checking for the WatcherThread and crash_protection first
 590   // since os::malloc can be called when the libjvm.{dll,so} is
 591   // first loaded and we don't have a thread yet.
 592   // try to find the thread after we see that the watcher thread
 593   // exists and has crash protection.
 594   WatcherThread *wt = WatcherThread::watcher_thread();
 595   if (wt != NULL && wt->has_crash_protection()) {
 596     Thread* thread = ThreadLocalStorage::get_thread_slow();
 597     if (thread == wt) {
 598       assert(!wt->has_crash_protection(),
 599           "Can't malloc with crash protection from WatcherThread");
 600     }
 601   }
 602 #endif
 603 
 604   if (size == 0) {
 605     // return a valid pointer if size is zero
 606     // if NULL is returned the calling functions assume out of memory.
 607     size = 1;
 608   }
 609 
 610   // NMT support
 611   NMT_TrackingLevel level = MemTracker::tracking_level();
 612   size_t            nmt_header_size = MemTracker::malloc_header_size(level);
 613 
 614 #ifndef ASSERT
 615   const size_t alloc_size = size + nmt_header_size;
 616 #else
 617   const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
 618   if (size + nmt_header_size > alloc_size) { // Check for rollover.
 619     return NULL;
 620   }
 621 #endif
 622 
 623   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 624 
 625   u_char* ptr;
 626   if (MallocMaxTestWords > 0) {
 627     ptr = testMalloc(alloc_size);
 628   } else {
 629     ptr = (u_char*)::malloc(alloc_size);
 630   }
 631 
 632 #ifdef ASSERT
 633   if (ptr == NULL) {
 634     return NULL;
 635   }
 636   // Wrap memory with guard
 637   GuardedMemory guarded(ptr, size + nmt_header_size);
 638   ptr = guarded.get_user_ptr();
 639 #endif
 640   if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 641     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
 642     breakpoint();
 643   }
 644   debug_only(if (paranoid) verify_memory(ptr));
 645   if (PrintMalloc && tty != NULL) {
 646     tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
 647   }
 648 
 649   // we do not track guard memory
 650   return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
 651 }
 652 
 653 void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
 654   return os::realloc(memblock, size, flags, CALLER_PC);
 655 }
 656 
 657 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
 658 
 659 #ifndef ASSERT
 660   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 661   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 662    // NMT support
 663   void* membase = MemTracker::record_free(memblock);
 664   NMT_TrackingLevel level = MemTracker::tracking_level();
 665   size_t  nmt_header_size = MemTracker::malloc_header_size(level);
 666   void* ptr = ::realloc(membase, size + nmt_header_size);
 667   return MemTracker::record_malloc(ptr, size, memflags, stack, level);
 668 #else
 669   if (memblock == NULL) {
 670     return os::malloc(size, memflags, stack);
 671   }
 672   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 673     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
 674     breakpoint();
 675   }
 676   // NMT support
 677   void* membase = MemTracker::malloc_base(memblock);
 678   verify_memory(membase);
 679   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 680   if (size == 0) {
 681     return NULL;
 682   }
 683   // always move the block
 684   void* ptr = os::malloc(size, memflags, stack);
 685   if (PrintMalloc) {
 686     tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
 687   }
 688   // Copy to new memory if malloc didn't fail
 689   if ( ptr != NULL ) {
 690     GuardedMemory guarded(MemTracker::malloc_base(memblock));
 691     // Guard's user data contains NMT header
 692     size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
 693     memcpy(ptr, memblock, MIN2(size, memblock_size));
 694     if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
 695     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 696       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
 697       breakpoint();
 698     }
 699     os::free(memblock);
 700   }
 701   return ptr;
 702 #endif
 703 }
 704 
 705 
 706 void  os::free(void *memblock, MEMFLAGS memflags) {
 707   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
 708 #ifdef ASSERT
 709   if (memblock == NULL) return;
 710   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 711     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
 712     breakpoint();
 713   }
 714   void* membase = MemTracker::record_free(memblock);
 715   verify_memory(membase);
 716   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 717 
 718   GuardedMemory guarded(membase);
 719   size_t size = guarded.get_user_size();
 720   inc_stat_counter(&free_bytes, size);
 721   membase = guarded.release_for_freeing();
 722   if (PrintMalloc && tty != NULL) {
 723       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
 724   }
 725   ::free(membase);
 726 #else
 727   void* membase = MemTracker::record_free(memblock);
 728   ::free(membase);
 729 #endif
 730 }
 731 
 732 void os::init_random(long initval) {
 733   _rand_seed = initval;
 734 }
 735 
 736 
 737 long os::random() {
 738   /* standard, well-known linear congruential random generator with
 739    * next_rand = (16807*seed) mod (2**31-1)
 740    * see
 741    * (1) "Random Number Generators: Good Ones Are Hard to Find",
 742    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
 743    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
 744    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
 745   */
 746   const long a = 16807;
 747   const unsigned long m = 2147483647;
 748   const long q = m / a;        assert(q == 127773, "weird math");
 749   const long r = m % a;        assert(r == 2836, "weird math");
 750 
 751   // compute az=2^31p+q
 752   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
 753   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
 754   lo += (hi & 0x7FFF) << 16;
 755 
 756   // if q overflowed, ignore the overflow and increment q
 757   if (lo > m) {
 758     lo &= m;
 759     ++lo;
 760   }
 761   lo += hi >> 15;
 762 
 763   // if (p+q) overflowed, ignore the overflow and increment (p+q)
 764   if (lo > m) {
 765     lo &= m;
 766     ++lo;
 767   }
 768   return (_rand_seed = lo);
 769 }
 770 
 771 // The INITIALIZED state is distinguished from the SUSPENDED state because the
 772 // conditions in which a thread is first started are different from those in which
 773 // a suspension is resumed.  These differences make it hard for us to apply the
 774 // tougher checks when starting threads that we want to do when resuming them.
 775 // However, when start_thread is called as a result of Thread.start, on a Java
 776 // thread, the operation is synchronized on the Java Thread object.  So there
 777 // cannot be a race to start the thread and hence for the thread to exit while
 778 // we are working on it.  Non-Java threads that start Java threads either have
 779 // to do so in a context in which races are impossible, or should do appropriate
 780 // locking.
 781 
 782 void os::start_thread(Thread* thread) {
 783   // guard suspend/resume
 784   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
 785   OSThread* osthread = thread->osthread();
 786   osthread->set_state(RUNNABLE);
 787   pd_start_thread(thread);
 788 }
 789 
 790 //---------------------------------------------------------------------------
 791 // Helper functions for fatal error handler
 792 
 793 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
 794   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
 795 
 796   int cols = 0;
 797   int cols_per_line = 0;
 798   switch (unitsize) {
 799     case 1: cols_per_line = 16; break;
 800     case 2: cols_per_line = 8;  break;
 801     case 4: cols_per_line = 4;  break;
 802     case 8: cols_per_line = 2;  break;
 803     default: return;
 804   }
 805 
 806   address p = start;
 807   st->print(PTR_FORMAT ":   ", start);
 808   while (p < end) {
 809     switch (unitsize) {
 810       case 1: st->print("%02x", *(u1*)p); break;
 811       case 2: st->print("%04x", *(u2*)p); break;
 812       case 4: st->print("%08x", *(u4*)p); break;
 813       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
 814     }
 815     p += unitsize;
 816     cols++;
 817     if (cols >= cols_per_line && p < end) {
 818        cols = 0;
 819        st->cr();
 820        st->print(PTR_FORMAT ":   ", p);
 821     } else {
 822        st->print(" ");
 823     }
 824   }
 825   st->cr();
 826 }
 827 
 828 void os::print_environment_variables(outputStream* st, const char** env_list,
 829                                      char* buffer, int len) {
 830   if (env_list) {
 831     st->print_cr("Environment Variables:");
 832 
 833     for (int i = 0; env_list[i] != NULL; i++) {
 834       if (getenv(env_list[i], buffer, len)) {
 835         st->print("%s", env_list[i]);
 836         st->print("=");
 837         st->print_cr("%s", buffer);
 838       }
 839     }
 840   }
 841 }
 842 
 843 void os::print_cpu_info(outputStream* st) {
 844   // cpu
 845   st->print("CPU:");
 846   st->print("total %d", os::processor_count());
 847   // It's not safe to query number of active processors after crash
 848   // st->print("(active %d)", os::active_processor_count()); but we can
 849   // print the initial number of active processors.
 850   // We access the raw value here because the assert in the accessor will
 851   // fail if the crash occurs before initialization of this value.
 852   st->print(" (initial active %d)", _initial_active_processor_count);
 853   st->print(" %s", VM_Version::cpu_features());
 854   st->cr();
 855   pd_print_cpu_info(st);
 856 }
 857 
 858 void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
 859   const int secs_per_day  = 86400;
 860   const int secs_per_hour = 3600;
 861   const int secs_per_min  = 60;
 862 
 863   time_t tloc;
 864   (void)time(&tloc);
 865   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
 866 
 867   struct tm tz;
 868   if (localtime_pd(&tloc, &tz) != NULL) {
 869     ::strftime(buf, buflen, "%Z", &tz);
 870     st->print_cr("timezone: %s", buf);
 871   }
 872 
 873   double t = os::elapsedTime();
 874   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
 875   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
 876   //       before printf. We lost some precision, but who cares?
 877   int eltime = (int)t;  // elapsed time in seconds
 878 
 879   // print elapsed time in a human-readable format:
 880   int eldays = eltime / secs_per_day;
 881   int day_secs = eldays * secs_per_day;
 882   int elhours = (eltime - day_secs) / secs_per_hour;
 883   int hour_secs = elhours * secs_per_hour;
 884   int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
 885   int minute_secs = elmins * secs_per_min;
 886   int elsecs = (eltime - day_secs - hour_secs - minute_secs);
 887   st->print_cr("elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
 888 }
 889 
 890 // moved from debug.cpp (used to be find()) but still called from there
 891 // The verbose parameter is only set by the debug code in one case
 892 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
 893   address addr = (address)x;
 894   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
 895   if (b != NULL) {
 896     if (b->is_buffer_blob()) {
 897       // the interpreter is generated into a buffer blob
 898       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
 899       if (i != NULL) {
 900         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
 901         i->print_on(st);
 902         return;
 903       }
 904       if (Interpreter::contains(addr)) {
 905         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
 906                      " (not bytecode specific)", addr);
 907         return;
 908       }
 909       //
 910       if (AdapterHandlerLibrary::contains(b)) {
 911         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
 912         AdapterHandlerLibrary::print_handler_on(st, b);
 913       }
 914       // the stubroutines are generated into a buffer blob
 915       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
 916       if (d != NULL) {
 917         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
 918         d->print_on(st);
 919         st->cr();
 920         return;
 921       }
 922       if (StubRoutines::contains(addr)) {
 923         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
 924                      "stub routine", addr);
 925         return;
 926       }
 927       // the InlineCacheBuffer is using stubs generated into a buffer blob
 928       if (InlineCacheBuffer::contains(addr)) {
 929         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
 930         return;
 931       }
 932       VtableStub* v = VtableStubs::stub_containing(addr);
 933       if (v != NULL) {
 934         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
 935         v->print_on(st);
 936         st->cr();
 937         return;
 938       }
 939     }
 940     nmethod* nm = b->as_nmethod_or_null();
 941     if (nm != NULL) {
 942       ResourceMark rm;
 943       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
 944                 addr, (int)(addr - nm->entry_point()), nm);
 945       if (verbose) {
 946         st->print(" for ");
 947         nm->method()->print_value_on(st);
 948       }
 949       st->cr();
 950       nm->print_nmethod(verbose);
 951       return;
 952     }
 953     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
 954     b->print_on(st);
 955     return;
 956   }
 957 
 958   if (Universe::heap()->is_in(addr)) {
 959     HeapWord* p = Universe::heap()->block_start(addr);
 960     bool print = false;
 961     // If we couldn't find it it just may mean that heap wasn't parseable
 962     // See if we were just given an oop directly
 963     if (p != NULL && Universe::heap()->block_is_obj(p)) {
 964       print = true;
 965     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
 966       p = (HeapWord*) addr;
 967       print = true;
 968     }
 969     if (print) {
 970       if (p == (HeapWord*) addr) {
 971         st->print_cr(INTPTR_FORMAT " is an oop", addr);
 972       } else {
 973         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
 974       }
 975       oop(p)->print_on(st);
 976       return;
 977     }
 978   } else {
 979     if (Universe::heap()->is_in_reserved(addr)) {
 980       st->print_cr(INTPTR_FORMAT " is an unallocated location "
 981                    "in the heap", addr);
 982       return;
 983     }
 984   }
 985   if (JNIHandles::is_global_handle((jobject) addr)) {
 986     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
 987     return;
 988   }
 989   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
 990     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
 991     return;
 992   }
 993 #ifndef PRODUCT
 994   // we don't keep the block list in product mode
 995   if (JNIHandleBlock::any_contains((jobject) addr)) {
 996     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
 997     return;
 998   }
 999 #endif
1000 
1001   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1002     // Check for privilege stack
1003     if (thread->privileged_stack_top() != NULL &&
1004         thread->privileged_stack_top()->contains(addr)) {
1005       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1006                    "for thread: " INTPTR_FORMAT, addr, thread);
1007       if (verbose) thread->print_on(st);
1008       return;
1009     }
1010     // If the addr is a java thread print information about that.
1011     if (addr == (address)thread) {
1012       if (verbose) {
1013         thread->print_on(st);
1014       } else {
1015         st->print_cr(INTPTR_FORMAT " is a thread", addr);
1016       }
1017       return;
1018     }
1019     // If the addr is in the stack region for this thread then report that
1020     // and print thread info
1021     if (thread->stack_base() >= addr &&
1022         addr > (thread->stack_base() - thread->stack_size())) {
1023       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1024                    INTPTR_FORMAT, addr, thread);
1025       if (verbose) thread->print_on(st);
1026       return;
1027     }
1028 
1029   }
1030 
1031   // Check if in metaspace and print types that have vptrs (only method now)
1032   if (Metaspace::contains(addr)) {
1033     if (Method::has_method_vptr((const void*)addr)) {
1034       ((Method*)addr)->print_value_on(st);
1035       st->cr();
1036     } else {
1037       // Use addr->print() from the debugger instead (not here)
1038       st->print_cr(INTPTR_FORMAT " is pointing into metadata", addr);
1039     }
1040     return;
1041   }
1042 
1043   // Try an OS specific find
1044   if (os::find(addr, st)) {
1045     return;
1046   }
1047 
1048   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
1049 }
1050 
1051 // Looks like all platforms except IA64 can use the same function to check
1052 // if C stack is walkable beyond current frame. The check for fp() is not
1053 // necessary on Sparc, but it's harmless.
1054 bool os::is_first_C_frame(frame* fr) {
1055 #if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1056   // On IA64 we have to check if the callers bsp is still valid
1057   // (i.e. within the register stack bounds).
1058   // Notice: this only works for threads created by the VM and only if
1059   // we walk the current stack!!! If we want to be able to walk
1060   // arbitrary other threads, we'll have to somehow store the thread
1061   // object in the frame.
1062   Thread *thread = Thread::current();
1063   if ((address)fr->fp() <=
1064       thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1065     // This check is a little hacky, because on Linux the first C
1066     // frame's ('start_thread') register stack frame starts at
1067     // "register_stack_base + 0x48" while on HPUX, the first C frame's
1068     // ('__pthread_bound_body') register stack frame seems to really
1069     // start at "register_stack_base".
1070     return true;
1071   } else {
1072     return false;
1073   }
1074 #elif defined(IA64) && defined(_WIN32)
1075   return true;
1076 #else
1077   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1078   // Check usp first, because if that's bad the other accessors may fault
1079   // on some architectures.  Ditto ufp second, etc.
1080   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1081   // sp on amd can be 32 bit aligned.
1082   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1083 
1084   uintptr_t usp    = (uintptr_t)fr->sp();
1085   if ((usp & sp_align_mask) != 0) return true;
1086 
1087   uintptr_t ufp    = (uintptr_t)fr->fp();
1088   if ((ufp & fp_align_mask) != 0) return true;
1089 
1090   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1091   if ((old_sp & sp_align_mask) != 0) return true;
1092   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1093 
1094   uintptr_t old_fp = (uintptr_t)fr->link();
1095   if ((old_fp & fp_align_mask) != 0) return true;
1096   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1097 
1098   // stack grows downwards; if old_fp is below current fp or if the stack
1099   // frame is too large, either the stack is corrupted or fp is not saved
1100   // on stack (i.e. on x86, ebp may be used as general register). The stack
1101   // is not walkable beyond current frame.
1102   if (old_fp < ufp) return true;
1103   if (old_fp - ufp > 64 * K) return true;
1104 
1105   return false;
1106 #endif
1107 }
1108 
1109 #ifdef ASSERT
1110 extern "C" void test_random() {
1111   const double m = 2147483647;
1112   double mean = 0.0, variance = 0.0, t;
1113   long reps = 10000;
1114   unsigned long seed = 1;
1115 
1116   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1117   os::init_random(seed);
1118   long num;
1119   for (int k = 0; k < reps; k++) {
1120     num = os::random();
1121     double u = (double)num / m;
1122     assert(u >= 0.0 && u <= 1.0, "bad random number!");
1123 
1124     // calculate mean and variance of the random sequence
1125     mean += u;
1126     variance += (u*u);
1127   }
1128   mean /= reps;
1129   variance /= (reps - 1);
1130 
1131   assert(num == 1043618065, "bad seed");
1132   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1133   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1134   const double eps = 0.0001;
1135   t = fabsd(mean - 0.5018);
1136   assert(t < eps, "bad mean");
1137   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1138   assert(t < eps, "bad variance");
1139 }
1140 #endif
1141 
1142 
1143 // Set up the boot classpath.
1144 
1145 char* os::format_boot_path(const char* format_string,
1146                            const char* home,
1147                            int home_len,
1148                            char fileSep,
1149                            char pathSep) {
1150     assert((fileSep == '/' && pathSep == ':') ||
1151            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
1152 
1153     // Scan the format string to determine the length of the actual
1154     // boot classpath, and handle platform dependencies as well.
1155     int formatted_path_len = 0;
1156     const char* p;
1157     for (p = format_string; *p != 0; ++p) {
1158         if (*p == '%') formatted_path_len += home_len - 1;
1159         ++formatted_path_len;
1160     }
1161 
1162     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1163     if (formatted_path == NULL) {
1164         return NULL;
1165     }
1166 
1167     // Create boot classpath from format, substituting separator chars and
1168     // java home directory.
1169     char* q = formatted_path;
1170     for (p = format_string; *p != 0; ++p) {
1171         switch (*p) {
1172         case '%':
1173             strcpy(q, home);
1174             q += home_len;
1175             break;
1176         case '/':
1177             *q++ = fileSep;
1178             break;
1179         case ':':
1180             *q++ = pathSep;
1181             break;
1182         default:
1183             *q++ = *p;
1184         }
1185     }
1186     *q = '\0';
1187 
1188     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1189     return formatted_path;
1190 }
1191 
1192 
1193 bool os::set_boot_path(char fileSep, char pathSep) {
1194     const char* home = Arguments::get_java_home();
1195     int home_len = (int)strlen(home);
1196 
1197     static const char* meta_index_dir_format = "%/lib/";
1198     static const char* meta_index_format = "%/lib/meta-index";
1199     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1200     if (meta_index == NULL) return false;
1201     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1202     if (meta_index_dir == NULL) return false;
1203     Arguments::set_meta_index_path(meta_index, meta_index_dir);
1204 
1205     // Any modification to the JAR-file list, for the boot classpath must be
1206     // aligned with install/install/make/common/Pack.gmk. Note: boot class
1207     // path class JARs, are stripped for StackMapTable to reduce download size.
1208     static const char classpath_format[] =
1209         "%/lib/resources.jar:"
1210         "%/lib/rt.jar:"
1211         "%/lib/sunrsasign.jar:"
1212         "%/lib/jsse.jar:"
1213         "%/lib/jce.jar:"
1214         "%/lib/charsets.jar:"
1215         "%/lib/jfr.jar:"
1216         "%/classes";
1217     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1218     if (sysclasspath == NULL) return false;
1219     Arguments::set_sysclasspath(sysclasspath);
1220 
1221     return true;
1222 }
1223 
1224 /*
1225  * Splits a path, based on its separator, the number of
1226  * elements is returned back in n.
1227  * It is the callers responsibility to:
1228  *   a> check the value of n, and n may be 0.
1229  *   b> ignore any empty path elements
1230  *   c> free up the data.
1231  */
1232 char** os::split_path(const char* path, int* n) {
1233   *n = 0;
1234   if (path == NULL || strlen(path) == 0) {
1235     return NULL;
1236   }
1237   const char psepchar = *os::path_separator();
1238   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1239   if (inpath == NULL) {
1240     return NULL;
1241   }
1242   strcpy(inpath, path);
1243   int count = 1;
1244   char* p = strchr(inpath, psepchar);
1245   // Get a count of elements to allocate memory
1246   while (p != NULL) {
1247     count++;
1248     p++;
1249     p = strchr(p, psepchar);
1250   }
1251   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1252   if (opath == NULL) {
1253     return NULL;
1254   }
1255 
1256   // do the actual splitting
1257   p = inpath;
1258   for (int i = 0 ; i < count ; i++) {
1259     size_t len = strcspn(p, os::path_separator());
1260     if (len > JVM_MAXPATHLEN) {
1261       return NULL;
1262     }
1263     // allocate the string and add terminator storage
1264     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1265     if (s == NULL) {
1266       return NULL;
1267     }
1268     strncpy(s, p, len);
1269     s[len] = '\0';
1270     opath[i] = s;
1271     p += len + 1;
1272   }
1273   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1274   *n = count;
1275   return opath;
1276 }
1277 
1278 void os::set_memory_serialize_page(address page) {
1279   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1280   _mem_serialize_page = (volatile int32_t *)page;
1281   // We initialize the serialization page shift count here
1282   // We assume a cache line size of 64 bytes
1283   assert(SerializePageShiftCount == count,
1284          "thread size changed, fix SerializePageShiftCount constant");
1285   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1286 }
1287 
1288 static volatile intptr_t SerializePageLock = 0;
1289 
1290 // This method is called from signal handler when SIGSEGV occurs while the current
1291 // thread tries to store to the "read-only" memory serialize page during state
1292 // transition.
1293 void os::block_on_serialize_page_trap() {
1294   if (TraceSafepoint) {
1295     tty->print_cr("Block until the serialize page permission restored");
1296   }
1297   // When VMThread is holding the SerializePageLock during modifying the
1298   // access permission of the memory serialize page, the following call
1299   // will block until the permission of that page is restored to rw.
1300   // Generally, it is unsafe to manipulate locks in signal handlers, but in
1301   // this case, it's OK as the signal is synchronous and we know precisely when
1302   // it can occur.
1303   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1304   Thread::muxRelease(&SerializePageLock);
1305 }
1306 
1307 // Serialize all thread state variables
1308 void os::serialize_thread_states() {
1309   // On some platforms such as Solaris & Linux, the time duration of the page
1310   // permission restoration is observed to be much longer than expected  due to
1311   // scheduler starvation problem etc. To avoid the long synchronization
1312   // time and expensive page trap spinning, 'SerializePageLock' is used to block
1313   // the mutator thread if such case is encountered. See bug 6546278 for details.
1314   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1315   os::protect_memory((char *)os::get_memory_serialize_page(),
1316                      os::vm_page_size(), MEM_PROT_READ);
1317   os::protect_memory((char *)os::get_memory_serialize_page(),
1318                      os::vm_page_size(), MEM_PROT_RW);
1319   Thread::muxRelease(&SerializePageLock);
1320 }
1321 
1322 // Returns true if the current stack pointer is above the stack shadow
1323 // pages, false otherwise.
1324 
1325 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1326   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1327   address sp = current_stack_pointer();
1328   // Check if we have StackShadowPages above the yellow zone.  This parameter
1329   // is dependent on the depth of the maximum VM call stack possible from
1330   // the handler for stack overflow.  'instanceof' in the stack overflow
1331   // handler or a println uses at least 8k stack of VM and native code
1332   // respectively.
1333   const int framesize_in_bytes =
1334     Interpreter::size_top_interpreter_activation(method()) * wordSize;
1335   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1336                       * vm_page_size()) + framesize_in_bytes;
1337   // The very lower end of the stack
1338   address stack_limit = thread->stack_base() - thread->stack_size();
1339   return (sp > (stack_limit + reserved_area));
1340 }
1341 
1342 size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
1343   assert(min_pages > 0, "sanity");
1344   if (UseLargePages) {
1345     const size_t max_page_size = region_size / min_pages;
1346 
1347     for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1348       const size_t page_size = _page_sizes[i];
1349       if (page_size <= max_page_size) {
1350         if (!must_be_aligned || is_size_aligned(region_size, page_size)) {
1351           return page_size;
1352         }
1353       }
1354     }
1355   }
1356 
1357   return vm_page_size();
1358 }
1359 
1360 size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
1361   return page_size_for_region(region_size, min_pages, true);
1362 }
1363 
1364 size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
1365   return page_size_for_region(region_size, min_pages, false);
1366 }
1367 
1368 #ifndef PRODUCT
1369 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1370 {
1371   if (TracePageSizes) {
1372     tty->print("%s: ", str);
1373     for (int i = 0; i < count; ++i) {
1374       tty->print(" " SIZE_FORMAT, page_sizes[i]);
1375     }
1376     tty->cr();
1377   }
1378 }
1379 
1380 void os::trace_page_sizes(const char* str, const size_t region_min_size,
1381                           const size_t region_max_size, const size_t page_size,
1382                           const char* base, const size_t size)
1383 {
1384   if (TracePageSizes) {
1385     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1386                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1387                   " size=" SIZE_FORMAT,
1388                   str, region_min_size, region_max_size,
1389                   page_size, base, size);
1390   }
1391 }
1392 #endif  // #ifndef PRODUCT
1393 
1394 // This is the working definition of a server class machine:
1395 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
1396 // because the graphics memory (?) sometimes masks physical memory.
1397 // If you want to change the definition of a server class machine
1398 // on some OS or platform, e.g., >=4GB on Windohs platforms,
1399 // then you'll have to parameterize this method based on that state,
1400 // as was done for logical processors here, or replicate and
1401 // specialize this method for each platform.  (Or fix os to have
1402 // some inheritance structure and use subclassing.  Sigh.)
1403 // If you want some platform to always or never behave as a server
1404 // class machine, change the setting of AlwaysActAsServerClassMachine
1405 // and NeverActAsServerClassMachine in globals*.hpp.
1406 bool os::is_server_class_machine() {
1407   // First check for the early returns
1408   if (NeverActAsServerClassMachine) {
1409     return false;
1410   }
1411   if (AlwaysActAsServerClassMachine) {
1412     return true;
1413   }
1414   // Then actually look at the machine
1415   bool         result            = false;
1416   const unsigned int    server_processors = 2;
1417   const julong server_memory     = 2UL * G;
1418   // We seem not to get our full complement of memory.
1419   //     We allow some part (1/8?) of the memory to be "missing",
1420   //     based on the sizes of DIMMs, and maybe graphics cards.
1421   const julong missing_memory   = 256UL * M;
1422 
1423   /* Is this a server class machine? */
1424   if ((os::active_processor_count() >= (int)server_processors) &&
1425       (os::physical_memory() >= (server_memory - missing_memory))) {
1426     const unsigned int logical_processors =
1427       VM_Version::logical_processors_per_package();
1428     if (logical_processors > 1) {
1429       const unsigned int physical_packages =
1430         os::active_processor_count() / logical_processors;
1431       if (physical_packages > server_processors) {
1432         result = true;
1433       }
1434     } else {
1435       result = true;
1436     }
1437   }
1438   return result;
1439 }
1440 
1441 void os::initialize_initial_active_processor_count() {
1442   assert(_initial_active_processor_count == 0, "Initial active processor count already set.");
1443   _initial_active_processor_count = active_processor_count();
1444 }
1445 
1446 void os::SuspendedThreadTask::run() {
1447   assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1448   internal_do_task();
1449   _done = true;
1450 }
1451 
1452 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1453   return os::pd_create_stack_guard_pages(addr, bytes);
1454 }
1455 
1456 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1457   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1458   if (result != NULL) {
1459     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1460   }
1461 
1462   return result;
1463 }
1464 
1465 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1466    MEMFLAGS flags) {
1467   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1468   if (result != NULL) {
1469     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1470     MemTracker::record_virtual_memory_type((address)result, flags);
1471   }
1472 
1473   return result;
1474 }
1475 
1476 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1477   char* result = pd_attempt_reserve_memory_at(bytes, addr);
1478   if (result != NULL) {
1479     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1480   }
1481   return result;
1482 }
1483 
1484 void os::split_reserved_memory(char *base, size_t size,
1485                                  size_t split, bool realloc) {
1486   pd_split_reserved_memory(base, size, split, realloc);
1487 }
1488 
1489 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1490   bool res = pd_commit_memory(addr, bytes, executable);
1491   if (res) {
1492     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1493   }
1494   return res;
1495 }
1496 
1497 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1498                               bool executable) {
1499   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1500   if (res) {
1501     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1502   }
1503   return res;
1504 }
1505 
1506 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1507                                const char* mesg) {
1508   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1509   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1510 }
1511 
1512 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1513                                bool executable, const char* mesg) {
1514   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1515   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1516 }
1517 
1518 bool os::uncommit_memory(char* addr, size_t bytes) {
1519   bool res;
1520   if (MemTracker::tracking_level() > NMT_minimal) {
1521     Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1522     res = pd_uncommit_memory(addr, bytes);
1523     if (res) {
1524       tkr.record((address)addr, bytes);
1525     }
1526   } else {
1527     res = pd_uncommit_memory(addr, bytes);
1528   }
1529   return res;
1530 }
1531 
1532 bool os::release_memory(char* addr, size_t bytes) {
1533   bool res;
1534   if (MemTracker::tracking_level() > NMT_minimal) {
1535     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1536     res = pd_release_memory(addr, bytes);
1537     if (res) {
1538       tkr.record((address)addr, bytes);
1539     }
1540   } else {
1541     res = pd_release_memory(addr, bytes);
1542   }
1543   return res;
1544 }
1545 
1546 void os::pretouch_memory(char* start, char* end) {
1547   for (volatile char *p = start; p < end; p += os::vm_page_size()) {
1548     *p = 0;
1549   }
1550 }
1551 
1552 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1553                            char *addr, size_t bytes, bool read_only,
1554                            bool allow_exec) {
1555   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1556   if (result != NULL) {
1557     MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1558   }
1559   return result;
1560 }
1561 
1562 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1563                              char *addr, size_t bytes, bool read_only,
1564                              bool allow_exec) {
1565   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1566                     read_only, allow_exec);
1567 }
1568 
1569 bool os::unmap_memory(char *addr, size_t bytes) {
1570   bool result;
1571   if (MemTracker::tracking_level() > NMT_minimal) {
1572     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1573     result = pd_unmap_memory(addr, bytes);
1574     if (result) {
1575       tkr.record((address)addr, bytes);
1576     }
1577   } else {
1578     result = pd_unmap_memory(addr, bytes);
1579   }
1580   return result;
1581 }
1582 
1583 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1584   pd_free_memory(addr, bytes, alignment_hint);
1585 }
1586 
1587 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1588   pd_realign_memory(addr, bytes, alignment_hint);
1589 }
1590 
1591 #ifndef TARGET_OS_FAMILY_windows
1592 /* try to switch state from state "from" to state "to"
1593  * returns the state set after the method is complete
1594  */
1595 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1596                                                          os::SuspendResume::State to)
1597 {
1598   os::SuspendResume::State result =
1599     (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1600   if (result == from) {
1601     // success
1602     return to;
1603   }
1604   return result;
1605 }
1606 #endif
1607 
1608 /////////////// Unit tests ///////////////
1609 
1610 #ifndef PRODUCT
1611 
1612 #define assert_eq(a,b) assert(a == b, err_msg(SIZE_FORMAT " != " SIZE_FORMAT, a, b))
1613 
1614 class TestOS : AllStatic {
1615   static size_t small_page_size() {
1616     return os::vm_page_size();
1617   }
1618 
1619   static size_t large_page_size() {
1620     const size_t large_page_size_example = 4 * M;
1621     return os::page_size_for_region_aligned(large_page_size_example, 1);
1622   }
1623 
1624   static void test_page_size_for_region_aligned() {
1625     if (UseLargePages) {
1626       const size_t small_page = small_page_size();
1627       const size_t large_page = large_page_size();
1628 
1629       if (large_page > small_page) {
1630         size_t num_small_pages_in_large = large_page / small_page;
1631         size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
1632 
1633         assert_eq(page, small_page);
1634       }
1635     }
1636   }
1637 
1638   static void test_page_size_for_region_alignment() {
1639     if (UseLargePages) {
1640       const size_t small_page = small_page_size();
1641       const size_t large_page = large_page_size();
1642       if (large_page > small_page) {
1643         const size_t unaligned_region = large_page + 17;
1644         size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
1645         assert_eq(page, small_page);
1646 
1647         const size_t num_pages = 5;
1648         const size_t aligned_region = large_page * num_pages;
1649         page = os::page_size_for_region_aligned(aligned_region, num_pages);
1650         assert_eq(page, large_page);
1651       }
1652     }
1653   }
1654 
1655   static void test_page_size_for_region_unaligned() {
1656     if (UseLargePages) {
1657       // Given exact page size, should return that page size.
1658       for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
1659         size_t expected = os::_page_sizes[i];
1660         size_t actual = os::page_size_for_region_unaligned(expected, 1);
1661         assert_eq(expected, actual);
1662       }
1663 
1664       // Given slightly larger size than a page size, return the page size.
1665       for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
1666         size_t expected = os::_page_sizes[i];
1667         size_t actual = os::page_size_for_region_unaligned(expected + 17, 1);
1668         assert_eq(expected, actual);
1669       }
1670 
1671       // Given a slightly smaller size than a page size,
1672       // return the next smaller page size.
1673       if (os::_page_sizes[1] > os::_page_sizes[0]) {
1674         size_t expected = os::_page_sizes[0];
1675         size_t actual = os::page_size_for_region_unaligned(os::_page_sizes[1] - 17, 1);
1676         assert_eq(actual, expected);
1677       }
1678 
1679       // Return small page size for values less than a small page.
1680       size_t small_page = small_page_size();
1681       size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
1682       assert_eq(small_page, actual);
1683     }
1684   }
1685 
1686  public:
1687   static void run_tests() {
1688     test_page_size_for_region_aligned();
1689     test_page_size_for_region_alignment();
1690     test_page_size_for_region_unaligned();
1691   }
1692 };
1693 
1694 void TestOS_test() {
1695   TestOS::run_tests();
1696 }
1697 
1698 #endif // PRODUCT