1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_bsd.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_bsd.inline.hpp"
  40 #include "os_share_bsd.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "semaphore_bsd.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 // put OS-includes here
  73 # include <sys/types.h>
  74 # include <sys/mman.h>
  75 # include <sys/stat.h>
  76 # include <sys/select.h>
  77 # include <pthread.h>
  78 # include <signal.h>
  79 # include <errno.h>
  80 # include <dlfcn.h>
  81 # include <stdio.h>
  82 # include <unistd.h>
  83 # include <sys/resource.h>
  84 # include <pthread.h>
  85 # include <sys/stat.h>
  86 # include <sys/time.h>
  87 # include <sys/times.h>
  88 # include <sys/utsname.h>
  89 # include <sys/socket.h>
  90 # include <sys/wait.h>
  91 # include <time.h>
  92 # include <pwd.h>
  93 # include <poll.h>
  94 # include <semaphore.h>
  95 # include <fcntl.h>
  96 # include <string.h>
  97 # include <sys/param.h>
  98 # include <sys/sysctl.h>
  99 # include <sys/ipc.h>
 100 # include <sys/shm.h>
 101 #ifndef __APPLE__
 102 # include <link.h>
 103 #endif
 104 # include <stdint.h>
 105 # include <inttypes.h>
 106 # include <sys/ioctl.h>
 107 # include <sys/syscall.h>
 108 
 109 #if defined(__FreeBSD__) || defined(__NetBSD__)
 110   #include <elf.h>
 111 #endif
 112 
 113 #ifdef __APPLE__
 114   #include <mach/mach.h> // semaphore_* API
 115   #include <mach-o/dyld.h>
 116   #include <sys/proc_info.h>
 117   #include <objc/objc-auto.h>
 118 #endif
 119 
 120 #ifndef MAP_ANONYMOUS
 121   #define MAP_ANONYMOUS MAP_ANON
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 
 129 #define LARGEPAGES_BIT (1 << 6)
 130 
 131 ////////////////////////////////////////////////////////////////////////////////
 132 // global variables
 133 julong os::Bsd::_physical_memory = 0;
 134 
 135 #ifdef __APPLE__
 136 mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
 137 volatile uint64_t         os::Bsd::_max_abstime   = 0;
 138 #else
 139 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 140 #endif
 141 pthread_t os::Bsd::_main_thread;
 142 int os::Bsd::_page_size = -1;
 143 
 144 static jlong initial_time_count=0;
 145 
 146 static int clock_tics_per_sec = 100;
 147 
 148 // For diagnostics to print a message once. see run_periodic_checks
 149 static sigset_t check_signal_done;
 150 static bool check_signals = true;
 151 
 152 static pid_t _initial_pid = 0;
 153 
 154 // Signal number used to suspend/resume a thread
 155 
 156 // do not use any signal number less than SIGSEGV, see 4355769
 157 static int SR_signum = SIGUSR2;
 158 sigset_t SR_sigset;
 159 
 160 
 161 ////////////////////////////////////////////////////////////////////////////////
 162 // utility functions
 163 
 164 static int SR_initialize();
 165 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 166 
 167 julong os::available_memory() {
 168   return Bsd::available_memory();
 169 }
 170 
 171 // available here means free
 172 julong os::Bsd::available_memory() {
 173   uint64_t available = physical_memory() >> 2;
 174 #ifdef __APPLE__
 175   mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
 176   vm_statistics64_data_t vmstat;
 177   kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
 178                                          (host_info64_t)&vmstat, &count);
 179   assert(kerr == KERN_SUCCESS,
 180          "host_statistics64 failed - check mach_host_self() and count");
 181   if (kerr == KERN_SUCCESS) {
 182     available = vmstat.free_count * os::vm_page_size();
 183   }
 184 #endif
 185   return available;
 186 }
 187 
 188 julong os::physical_memory() {
 189   return Bsd::physical_memory();
 190 }
 191 
 192 // Return true if user is running as root.
 193 
 194 bool os::have_special_privileges() {
 195   static bool init = false;
 196   static bool privileges = false;
 197   if (!init) {
 198     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 199     init = true;
 200   }
 201   return privileges;
 202 }
 203 
 204 
 205 
 206 // Cpu architecture string
 207 #if   defined(ZERO)
 208 static char cpu_arch[] = ZERO_LIBARCH;
 209 #elif defined(IA64)
 210 static char cpu_arch[] = "ia64";
 211 #elif defined(IA32)
 212 static char cpu_arch[] = "i386";
 213 #elif defined(AMD64)
 214 static char cpu_arch[] = "amd64";
 215 #elif defined(ARM)
 216 static char cpu_arch[] = "arm";
 217 #elif defined(PPC32)
 218 static char cpu_arch[] = "ppc";
 219 #elif defined(SPARC)
 220   #ifdef _LP64
 221 static char cpu_arch[] = "sparcv9";
 222   #else
 223 static char cpu_arch[] = "sparc";
 224   #endif
 225 #else
 226   #error Add appropriate cpu_arch setting
 227 #endif
 228 
 229 // Compiler variant
 230 #ifdef COMPILER2
 231   #define COMPILER_VARIANT "server"
 232 #else
 233   #define COMPILER_VARIANT "client"
 234 #endif
 235 
 236 
 237 void os::Bsd::initialize_system_info() {
 238   int mib[2];
 239   size_t len;
 240   int cpu_val;
 241   julong mem_val;
 242 
 243   // get processors count via hw.ncpus sysctl
 244   mib[0] = CTL_HW;
 245   mib[1] = HW_NCPU;
 246   len = sizeof(cpu_val);
 247   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
 248     assert(len == sizeof(cpu_val), "unexpected data size");
 249     set_processor_count(cpu_val);
 250   } else {
 251     set_processor_count(1);   // fallback
 252   }
 253 
 254   // get physical memory via hw.memsize sysctl (hw.memsize is used
 255   // since it returns a 64 bit value)
 256   mib[0] = CTL_HW;
 257 
 258 #if defined (HW_MEMSIZE) // Apple
 259   mib[1] = HW_MEMSIZE;
 260 #elif defined(HW_PHYSMEM) // Most of BSD
 261   mib[1] = HW_PHYSMEM;
 262 #elif defined(HW_REALMEM) // Old FreeBSD
 263   mib[1] = HW_REALMEM;
 264 #else
 265   #error No ways to get physmem
 266 #endif
 267 
 268   len = sizeof(mem_val);
 269   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
 270     assert(len == sizeof(mem_val), "unexpected data size");
 271     _physical_memory = mem_val;
 272   } else {
 273     _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
 274   }
 275 
 276 #ifdef __OpenBSD__
 277   {
 278     // limit _physical_memory memory view on OpenBSD since
 279     // datasize rlimit restricts us anyway.
 280     struct rlimit limits;
 281     getrlimit(RLIMIT_DATA, &limits);
 282     _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
 283   }
 284 #endif
 285 }
 286 
 287 #ifdef __APPLE__
 288 static const char *get_home() {
 289   const char *home_dir = ::getenv("HOME");
 290   if ((home_dir == NULL) || (*home_dir == '\0')) {
 291     struct passwd *passwd_info = getpwuid(geteuid());
 292     if (passwd_info != NULL) {
 293       home_dir = passwd_info->pw_dir;
 294     }
 295   }
 296 
 297   return home_dir;
 298 }
 299 #endif
 300 
 301 void os::init_system_properties_values() {
 302   // The next steps are taken in the product version:
 303   //
 304   // Obtain the JAVA_HOME value from the location of libjvm.so.
 305   // This library should be located at:
 306   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 307   //
 308   // If "/jre/lib/" appears at the right place in the path, then we
 309   // assume libjvm.so is installed in a JDK and we use this path.
 310   //
 311   // Otherwise exit with message: "Could not create the Java virtual machine."
 312   //
 313   // The following extra steps are taken in the debugging version:
 314   //
 315   // If "/jre/lib/" does NOT appear at the right place in the path
 316   // instead of exit check for $JAVA_HOME environment variable.
 317   //
 318   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 319   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 320   // it looks like libjvm.so is installed there
 321   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 322   //
 323   // Otherwise exit.
 324   //
 325   // Important note: if the location of libjvm.so changes this
 326   // code needs to be changed accordingly.
 327 
 328   // See ld(1):
 329   //      The linker uses the following search paths to locate required
 330   //      shared libraries:
 331   //        1: ...
 332   //        ...
 333   //        7: The default directories, normally /lib and /usr/lib.
 334 #ifndef DEFAULT_LIBPATH
 335   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 336 #endif
 337 
 338 // Base path of extensions installed on the system.
 339 #define SYS_EXT_DIR     "/usr/java/packages"
 340 #define EXTENSIONS_DIR  "/lib/ext"
 341 
 342 #ifndef __APPLE__
 343 
 344   // Buffer that fits several sprintfs.
 345   // Note that the space for the colon and the trailing null are provided
 346   // by the nulls included by the sizeof operator.
 347   const size_t bufsize =
 348     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 349          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 350   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 351 
 352   // sysclasspath, java_home, dll_dir
 353   {
 354     char *pslash;
 355     os::jvm_path(buf, bufsize);
 356 
 357     // Found the full path to libjvm.so.
 358     // Now cut the path to <java_home>/jre if we can.
 359     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 360     pslash = strrchr(buf, '/');
 361     if (pslash != NULL) {
 362       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 363     }
 364     Arguments::set_dll_dir(buf);
 365 
 366     if (pslash != NULL) {
 367       pslash = strrchr(buf, '/');
 368       if (pslash != NULL) {
 369         *pslash = '\0';          // Get rid of /<arch>.
 370         pslash = strrchr(buf, '/');
 371         if (pslash != NULL) {
 372           *pslash = '\0';        // Get rid of /lib.
 373         }
 374       }
 375     }
 376     Arguments::set_java_home(buf);
 377     set_boot_path('/', ':');
 378   }
 379 
 380   // Where to look for native libraries.
 381   //
 382   // Note: Due to a legacy implementation, most of the library path
 383   // is set in the launcher. This was to accomodate linking restrictions
 384   // on legacy Bsd implementations (which are no longer supported).
 385   // Eventually, all the library path setting will be done here.
 386   //
 387   // However, to prevent the proliferation of improperly built native
 388   // libraries, the new path component /usr/java/packages is added here.
 389   // Eventually, all the library path setting will be done here.
 390   {
 391     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 392     // should always exist (until the legacy problem cited above is
 393     // addressed).
 394     const char *v = ::getenv("LD_LIBRARY_PATH");
 395     const char *v_colon = ":";
 396     if (v == NULL) { v = ""; v_colon = ""; }
 397     // That's +1 for the colon and +1 for the trailing '\0'.
 398     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 399                                                      strlen(v) + 1 +
 400                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 401                                                      mtInternal);
 402     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 403     Arguments::set_library_path(ld_library_path);
 404     FREE_C_HEAP_ARRAY(char, ld_library_path);
 405   }
 406 
 407   // Extensions directories.
 408   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 409   Arguments::set_ext_dirs(buf);
 410 
 411   FREE_C_HEAP_ARRAY(char, buf);
 412 
 413 #else // __APPLE__
 414 
 415   #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
 416   #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
 417 
 418   const char *user_home_dir = get_home();
 419   // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
 420   size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
 421     sizeof(SYS_EXTENSIONS_DIRS);
 422 
 423   // Buffer that fits several sprintfs.
 424   // Note that the space for the colon and the trailing null are provided
 425   // by the nulls included by the sizeof operator.
 426   const size_t bufsize =
 427     MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
 428          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
 429   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 430 
 431   // sysclasspath, java_home, dll_dir
 432   {
 433     char *pslash;
 434     os::jvm_path(buf, bufsize);
 435 
 436     // Found the full path to libjvm.so.
 437     // Now cut the path to <java_home>/jre if we can.
 438     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 439     pslash = strrchr(buf, '/');
 440     if (pslash != NULL) {
 441       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 442     }
 443 #ifdef STATIC_BUILD
 444     strcat(buf, "/lib");
 445 #endif
 446 
 447     Arguments::set_dll_dir(buf);
 448 
 449     if (pslash != NULL) {
 450       pslash = strrchr(buf, '/');
 451       if (pslash != NULL) {
 452         *pslash = '\0';          // Get rid of /lib.
 453       }
 454     }
 455     Arguments::set_java_home(buf);
 456     set_boot_path('/', ':');
 457   }
 458 
 459   // Where to look for native libraries.
 460   //
 461   // Note: Due to a legacy implementation, most of the library path
 462   // is set in the launcher. This was to accomodate linking restrictions
 463   // on legacy Bsd implementations (which are no longer supported).
 464   // Eventually, all the library path setting will be done here.
 465   //
 466   // However, to prevent the proliferation of improperly built native
 467   // libraries, the new path component /usr/java/packages is added here.
 468   // Eventually, all the library path setting will be done here.
 469   {
 470     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 471     // should always exist (until the legacy problem cited above is
 472     // addressed).
 473     // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
 474     // can specify a directory inside an app wrapper
 475     const char *l = ::getenv("JAVA_LIBRARY_PATH");
 476     const char *l_colon = ":";
 477     if (l == NULL) { l = ""; l_colon = ""; }
 478 
 479     const char *v = ::getenv("DYLD_LIBRARY_PATH");
 480     const char *v_colon = ":";
 481     if (v == NULL) { v = ""; v_colon = ""; }
 482 
 483     // Apple's Java6 has "." at the beginning of java.library.path.
 484     // OpenJDK on Windows has "." at the end of java.library.path.
 485     // OpenJDK on Linux and Solaris don't have "." in java.library.path
 486     // at all. To ease the transition from Apple's Java6 to OpenJDK7,
 487     // "." is appended to the end of java.library.path. Yes, this
 488     // could cause a change in behavior, but Apple's Java6 behavior
 489     // can be achieved by putting "." at the beginning of the
 490     // JAVA_LIBRARY_PATH environment variable.
 491     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 492                                                      strlen(v) + 1 + strlen(l) + 1 +
 493                                                      system_ext_size + 3,
 494                                                      mtInternal);
 495     sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
 496             v, v_colon, l, l_colon, user_home_dir);
 497     Arguments::set_library_path(ld_library_path);
 498     FREE_C_HEAP_ARRAY(char, ld_library_path);
 499   }
 500 
 501   // Extensions directories.
 502   //
 503   // Note that the space for the colon and the trailing null are provided
 504   // by the nulls included by the sizeof operator (so actually one byte more
 505   // than necessary is allocated).
 506   sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
 507           user_home_dir, Arguments::get_java_home());
 508   Arguments::set_ext_dirs(buf);
 509 
 510   FREE_C_HEAP_ARRAY(char, buf);
 511 
 512 #undef SYS_EXTENSIONS_DIR
 513 #undef SYS_EXTENSIONS_DIRS
 514 
 515 #endif // __APPLE__
 516 
 517 #undef SYS_EXT_DIR
 518 #undef EXTENSIONS_DIR
 519 }
 520 
 521 ////////////////////////////////////////////////////////////////////////////////
 522 // breakpoint support
 523 
 524 void os::breakpoint() {
 525   BREAKPOINT;
 526 }
 527 
 528 extern "C" void breakpoint() {
 529   // use debugger to set breakpoint here
 530 }
 531 
 532 ////////////////////////////////////////////////////////////////////////////////
 533 // signal support
 534 
 535 debug_only(static bool signal_sets_initialized = false);
 536 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 537 
 538 bool os::Bsd::is_sig_ignored(int sig) {
 539   struct sigaction oact;
 540   sigaction(sig, (struct sigaction*)NULL, &oact);
 541   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 542                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 543   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 544     return true;
 545   } else {
 546     return false;
 547   }
 548 }
 549 
 550 void os::Bsd::signal_sets_init() {
 551   // Should also have an assertion stating we are still single-threaded.
 552   assert(!signal_sets_initialized, "Already initialized");
 553   // Fill in signals that are necessarily unblocked for all threads in
 554   // the VM. Currently, we unblock the following signals:
 555   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 556   //                         by -Xrs (=ReduceSignalUsage));
 557   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 558   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 559   // the dispositions or masks wrt these signals.
 560   // Programs embedding the VM that want to use the above signals for their
 561   // own purposes must, at this time, use the "-Xrs" option to prevent
 562   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 563   // (See bug 4345157, and other related bugs).
 564   // In reality, though, unblocking these signals is really a nop, since
 565   // these signals are not blocked by default.
 566   sigemptyset(&unblocked_sigs);
 567   sigemptyset(&allowdebug_blocked_sigs);
 568   sigaddset(&unblocked_sigs, SIGILL);
 569   sigaddset(&unblocked_sigs, SIGSEGV);
 570   sigaddset(&unblocked_sigs, SIGBUS);
 571   sigaddset(&unblocked_sigs, SIGFPE);
 572   sigaddset(&unblocked_sigs, SR_signum);
 573 
 574   if (!ReduceSignalUsage) {
 575     if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 576       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 577       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 578     }
 579     if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 580       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 581       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 582     }
 583     if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 584       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 585       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 586     }
 587   }
 588   // Fill in signals that are blocked by all but the VM thread.
 589   sigemptyset(&vm_sigs);
 590   if (!ReduceSignalUsage) {
 591     sigaddset(&vm_sigs, BREAK_SIGNAL);
 592   }
 593   debug_only(signal_sets_initialized = true);
 594 
 595 }
 596 
 597 // These are signals that are unblocked while a thread is running Java.
 598 // (For some reason, they get blocked by default.)
 599 sigset_t* os::Bsd::unblocked_signals() {
 600   assert(signal_sets_initialized, "Not initialized");
 601   return &unblocked_sigs;
 602 }
 603 
 604 // These are the signals that are blocked while a (non-VM) thread is
 605 // running Java. Only the VM thread handles these signals.
 606 sigset_t* os::Bsd::vm_signals() {
 607   assert(signal_sets_initialized, "Not initialized");
 608   return &vm_sigs;
 609 }
 610 
 611 // These are signals that are blocked during cond_wait to allow debugger in
 612 sigset_t* os::Bsd::allowdebug_blocked_signals() {
 613   assert(signal_sets_initialized, "Not initialized");
 614   return &allowdebug_blocked_sigs;
 615 }
 616 
 617 void os::Bsd::hotspot_sigmask(Thread* thread) {
 618 
 619   //Save caller's signal mask before setting VM signal mask
 620   sigset_t caller_sigmask;
 621   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 622 
 623   OSThread* osthread = thread->osthread();
 624   osthread->set_caller_sigmask(caller_sigmask);
 625 
 626   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
 627 
 628   if (!ReduceSignalUsage) {
 629     if (thread->is_VM_thread()) {
 630       // Only the VM thread handles BREAK_SIGNAL ...
 631       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 632     } else {
 633       // ... all other threads block BREAK_SIGNAL
 634       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 635     }
 636   }
 637 }
 638 
 639 
 640 //////////////////////////////////////////////////////////////////////////////
 641 // create new thread
 642 
 643 #ifdef __APPLE__
 644 // library handle for calling objc_registerThreadWithCollector()
 645 // without static linking to the libobjc library
 646   #define OBJC_LIB "/usr/lib/libobjc.dylib"
 647   #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
 648 typedef void (*objc_registerThreadWithCollector_t)();
 649 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
 650 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
 651 #endif
 652 
 653 #ifdef __APPLE__
 654 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
 655   // Additional thread_id used to correlate threads in SA
 656   thread_identifier_info_data_t     m_ident_info;
 657   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
 658 
 659   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
 660               (thread_info_t) &m_ident_info, &count);
 661 
 662   return m_ident_info.thread_id;
 663 }
 664 #endif
 665 
 666 // Thread start routine for all newly created threads
 667 static void *thread_native_entry(Thread *thread) {
 668   // Try to randomize the cache line index of hot stack frames.
 669   // This helps when threads of the same stack traces evict each other's
 670   // cache lines. The threads can be either from the same JVM instance, or
 671   // from different JVM instances. The benefit is especially true for
 672   // processors with hyperthreading technology.
 673   static int counter = 0;
 674   int pid = os::current_process_id();
 675   alloca(((pid ^ counter++) & 7) * 128);
 676 
 677   thread->initialize_thread_current();
 678 
 679   OSThread* osthread = thread->osthread();
 680   Monitor* sync = osthread->startThread_lock();
 681 
 682   osthread->set_thread_id(os::Bsd::gettid());
 683 
 684   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 685     os::current_thread_id(), (uintx) pthread_self());
 686 
 687 #ifdef __APPLE__
 688   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 689   guarantee(unique_thread_id != 0, "unique thread id was not found");
 690   osthread->set_unique_thread_id(unique_thread_id);
 691 #endif
 692   // initialize signal mask for this thread
 693   os::Bsd::hotspot_sigmask(thread);
 694 
 695   // initialize floating point control register
 696   os::Bsd::init_thread_fpu_state();
 697 
 698 #ifdef __APPLE__
 699   // register thread with objc gc
 700   if (objc_registerThreadWithCollectorFunction != NULL) {
 701     objc_registerThreadWithCollectorFunction();
 702   }
 703 #endif
 704 
 705   // handshaking with parent thread
 706   {
 707     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 708 
 709     // notify parent thread
 710     osthread->set_state(INITIALIZED);
 711     sync->notify_all();
 712 
 713     // wait until os::start_thread()
 714     while (osthread->get_state() == INITIALIZED) {
 715       sync->wait(Mutex::_no_safepoint_check_flag);
 716     }
 717   }
 718 
 719   // call one more level start routine
 720   thread->run();
 721 
 722   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 723     os::current_thread_id(), (uintx) pthread_self());
 724 
 725   // If a thread has not deleted itself ("delete this") as part of its
 726   // termination sequence, we have to ensure thread-local-storage is
 727   // cleared before we actually terminate. No threads should ever be
 728   // deleted asynchronously with respect to their termination.
 729   if (Thread::current_or_null_safe() != NULL) {
 730     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 731     thread->clear_thread_current();
 732   }
 733 
 734   return 0;
 735 }
 736 
 737 bool os::create_thread(Thread* thread, ThreadType thr_type,
 738                        size_t req_stack_size) {
 739   assert(thread->osthread() == NULL, "caller responsible");
 740 
 741   // Allocate the OSThread object
 742   OSThread* osthread = new OSThread(NULL, NULL);
 743   if (osthread == NULL) {
 744     return false;
 745   }
 746 
 747   // set the correct thread state
 748   osthread->set_thread_type(thr_type);
 749 
 750   // Initial state is ALLOCATED but not INITIALIZED
 751   osthread->set_state(ALLOCATED);
 752 
 753   thread->set_osthread(osthread);
 754 
 755   // init thread attributes
 756   pthread_attr_t attr;
 757   pthread_attr_init(&attr);
 758   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 759 
 760   // calculate stack size if it's not specified by caller
 761   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 762   pthread_attr_setstacksize(&attr, stack_size);
 763 
 764   ThreadState state;
 765 
 766   {
 767     pthread_t tid;
 768     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 769 
 770     char buf[64];
 771     if (ret == 0) {
 772       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 773         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 774     } else {
 775       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 776         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 777     }
 778 
 779     pthread_attr_destroy(&attr);
 780 
 781     if (ret != 0) {
 782       // Need to clean up stuff we've allocated so far
 783       thread->set_osthread(NULL);
 784       delete osthread;
 785       return false;
 786     }
 787 
 788     // Store pthread info into the OSThread
 789     osthread->set_pthread_id(tid);
 790 
 791     // Wait until child thread is either initialized or aborted
 792     {
 793       Monitor* sync_with_child = osthread->startThread_lock();
 794       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 795       while ((state = osthread->get_state()) == ALLOCATED) {
 796         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 797       }
 798     }
 799 
 800   }
 801 
 802   // Aborted due to thread limit being reached
 803   if (state == ZOMBIE) {
 804     thread->set_osthread(NULL);
 805     delete osthread;
 806     return false;
 807   }
 808 
 809   // The thread is returned suspended (in state INITIALIZED),
 810   // and is started higher up in the call chain
 811   assert(state == INITIALIZED, "race condition");
 812   return true;
 813 }
 814 
 815 /////////////////////////////////////////////////////////////////////////////
 816 // attach existing thread
 817 
 818 // bootstrap the main thread
 819 bool os::create_main_thread(JavaThread* thread) {
 820   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
 821   return create_attached_thread(thread);
 822 }
 823 
 824 bool os::create_attached_thread(JavaThread* thread) {
 825 #ifdef ASSERT
 826   thread->verify_not_published();
 827 #endif
 828 
 829   // Allocate the OSThread object
 830   OSThread* osthread = new OSThread(NULL, NULL);
 831 
 832   if (osthread == NULL) {
 833     return false;
 834   }
 835 
 836   osthread->set_thread_id(os::Bsd::gettid());
 837 
 838   // Store pthread info into the OSThread
 839 #ifdef __APPLE__
 840   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 841   guarantee(unique_thread_id != 0, "just checking");
 842   osthread->set_unique_thread_id(unique_thread_id);
 843 #endif
 844   osthread->set_pthread_id(::pthread_self());
 845 
 846   // initialize floating point control register
 847   os::Bsd::init_thread_fpu_state();
 848 
 849   // Initial thread state is RUNNABLE
 850   osthread->set_state(RUNNABLE);
 851 
 852   thread->set_osthread(osthread);
 853 
 854   // initialize signal mask for this thread
 855   // and save the caller's signal mask
 856   os::Bsd::hotspot_sigmask(thread);
 857 
 858   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 859     os::current_thread_id(), (uintx) pthread_self());
 860 
 861   return true;
 862 }
 863 
 864 void os::pd_start_thread(Thread* thread) {
 865   OSThread * osthread = thread->osthread();
 866   assert(osthread->get_state() != INITIALIZED, "just checking");
 867   Monitor* sync_with_child = osthread->startThread_lock();
 868   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 869   sync_with_child->notify();
 870 }
 871 
 872 // Free Bsd resources related to the OSThread
 873 void os::free_thread(OSThread* osthread) {
 874   assert(osthread != NULL, "osthread not set");
 875 
 876   // We are told to free resources of the argument thread,
 877   // but we can only really operate on the current thread.
 878   assert(Thread::current()->osthread() == osthread,
 879          "os::free_thread but not current thread");
 880 
 881   // Restore caller's signal mask
 882   sigset_t sigmask = osthread->caller_sigmask();
 883   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 884 
 885   delete osthread;
 886 }
 887 
 888 ////////////////////////////////////////////////////////////////////////////////
 889 // time support
 890 
 891 // Time since start-up in seconds to a fine granularity.
 892 // Used by VMSelfDestructTimer and the MemProfiler.
 893 double os::elapsedTime() {
 894 
 895   return ((double)os::elapsed_counter()) / os::elapsed_frequency();
 896 }
 897 
 898 jlong os::elapsed_counter() {
 899   return javaTimeNanos() - initial_time_count;
 900 }
 901 
 902 jlong os::elapsed_frequency() {
 903   return NANOSECS_PER_SEC; // nanosecond resolution
 904 }
 905 
 906 bool os::supports_vtime() { return true; }
 907 bool os::enable_vtime()   { return false; }
 908 bool os::vtime_enabled()  { return false; }
 909 
 910 double os::elapsedVTime() {
 911   // better than nothing, but not much
 912   return elapsedTime();
 913 }
 914 
 915 jlong os::javaTimeMillis() {
 916   timeval time;
 917   int status = gettimeofday(&time, NULL);
 918   assert(status != -1, "bsd error");
 919   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
 920 }
 921 
 922 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 923   timeval time;
 924   int status = gettimeofday(&time, NULL);
 925   assert(status != -1, "bsd error");
 926   seconds = jlong(time.tv_sec);
 927   nanos = jlong(time.tv_usec) * 1000;
 928 }
 929 
 930 #ifndef __APPLE__
 931   #ifndef CLOCK_MONOTONIC
 932     #define CLOCK_MONOTONIC (1)
 933   #endif
 934 #endif
 935 
 936 #ifdef __APPLE__
 937 void os::Bsd::clock_init() {
 938   mach_timebase_info(&_timebase_info);
 939 }
 940 #else
 941 void os::Bsd::clock_init() {
 942   struct timespec res;
 943   struct timespec tp;
 944   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
 945       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
 946     // yes, monotonic clock is supported
 947     _clock_gettime = ::clock_gettime;
 948   }
 949 }
 950 #endif
 951 
 952 
 953 
 954 #ifdef __APPLE__
 955 
 956 jlong os::javaTimeNanos() {
 957   const uint64_t tm = mach_absolute_time();
 958   const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
 959   const uint64_t prev = Bsd::_max_abstime;
 960   if (now <= prev) {
 961     return prev;   // same or retrograde time;
 962   }
 963   const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
 964   assert(obsv >= prev, "invariant");   // Monotonicity
 965   // If the CAS succeeded then we're done and return "now".
 966   // If the CAS failed and the observed value "obsv" is >= now then
 967   // we should return "obsv".  If the CAS failed and now > obsv > prv then
 968   // some other thread raced this thread and installed a new value, in which case
 969   // we could either (a) retry the entire operation, (b) retry trying to install now
 970   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
 971   // we might discard a higher "now" value in deference to a slightly lower but freshly
 972   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
 973   // to (a) or (b) -- and greatly reduces coherence traffic.
 974   // We might also condition (c) on the magnitude of the delta between obsv and now.
 975   // Avoiding excessive CAS operations to hot RW locations is critical.
 976   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
 977   return (prev == obsv) ? now : obsv;
 978 }
 979 
 980 #else // __APPLE__
 981 
 982 jlong os::javaTimeNanos() {
 983   if (os::supports_monotonic_clock()) {
 984     struct timespec tp;
 985     int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
 986     assert(status == 0, "gettime error");
 987     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
 988     return result;
 989   } else {
 990     timeval time;
 991     int status = gettimeofday(&time, NULL);
 992     assert(status != -1, "bsd error");
 993     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
 994     return 1000 * usecs;
 995   }
 996 }
 997 
 998 #endif // __APPLE__
 999 
1000 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1001   if (os::supports_monotonic_clock()) {
1002     info_ptr->max_value = ALL_64_BITS;
1003 
1004     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1005     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1006     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1007   } else {
1008     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1009     info_ptr->max_value = ALL_64_BITS;
1010 
1011     // gettimeofday is a real time clock so it skips
1012     info_ptr->may_skip_backward = true;
1013     info_ptr->may_skip_forward = true;
1014   }
1015 
1016   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1017 }
1018 
1019 // Return the real, user, and system times in seconds from an
1020 // arbitrary fixed point in the past.
1021 bool os::getTimesSecs(double* process_real_time,
1022                       double* process_user_time,
1023                       double* process_system_time) {
1024   struct tms ticks;
1025   clock_t real_ticks = times(&ticks);
1026 
1027   if (real_ticks == (clock_t) (-1)) {
1028     return false;
1029   } else {
1030     double ticks_per_second = (double) clock_tics_per_sec;
1031     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1032     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1033     *process_real_time = ((double) real_ticks) / ticks_per_second;
1034 
1035     return true;
1036   }
1037 }
1038 
1039 
1040 char * os::local_time_string(char *buf, size_t buflen) {
1041   struct tm t;
1042   time_t long_time;
1043   time(&long_time);
1044   localtime_r(&long_time, &t);
1045   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1046                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1047                t.tm_hour, t.tm_min, t.tm_sec);
1048   return buf;
1049 }
1050 
1051 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1052   return localtime_r(clock, res);
1053 }
1054 
1055 ////////////////////////////////////////////////////////////////////////////////
1056 // runtime exit support
1057 
1058 // Note: os::shutdown() might be called very early during initialization, or
1059 // called from signal handler. Before adding something to os::shutdown(), make
1060 // sure it is async-safe and can handle partially initialized VM.
1061 void os::shutdown() {
1062 
1063   // allow PerfMemory to attempt cleanup of any persistent resources
1064   perfMemory_exit();
1065 
1066   // needs to remove object in file system
1067   AttachListener::abort();
1068 
1069   // flush buffered output, finish log files
1070   ostream_abort();
1071 
1072   // Check for abort hook
1073   abort_hook_t abort_hook = Arguments::abort_hook();
1074   if (abort_hook != NULL) {
1075     abort_hook();
1076   }
1077 
1078 }
1079 
1080 // Note: os::abort() might be called very early during initialization, or
1081 // called from signal handler. Before adding something to os::abort(), make
1082 // sure it is async-safe and can handle partially initialized VM.
1083 void os::abort(bool dump_core, void* siginfo, const void* context) {
1084   os::shutdown();
1085   if (dump_core) {
1086 #ifndef PRODUCT
1087     fdStream out(defaultStream::output_fd());
1088     out.print_raw("Current thread is ");
1089     char buf[16];
1090     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1091     out.print_raw_cr(buf);
1092     out.print_raw_cr("Dumping core ...");
1093 #endif
1094     ::abort(); // dump core
1095   }
1096 
1097   ::exit(1);
1098 }
1099 
1100 // Die immediately, no exit hook, no abort hook, no cleanup.
1101 void os::die() {
1102   // _exit() on BsdThreads only kills current thread
1103   ::abort();
1104 }
1105 
1106 // This method is a copy of JDK's sysGetLastErrorString
1107 // from src/solaris/hpi/src/system_md.c
1108 
1109 size_t os::lasterror(char *buf, size_t len) {
1110   if (errno == 0)  return 0;
1111 
1112   const char *s = os::strerror(errno);
1113   size_t n = ::strlen(s);
1114   if (n >= len) {
1115     n = len - 1;
1116   }
1117   ::strncpy(buf, s, n);
1118   buf[n] = '\0';
1119   return n;
1120 }
1121 
1122 // Information of current thread in variety of formats
1123 pid_t os::Bsd::gettid() {
1124   int retval = -1;
1125 
1126 #ifdef __APPLE__ //XNU kernel
1127   // despite the fact mach port is actually not a thread id use it
1128   // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1129   retval = ::pthread_mach_thread_np(::pthread_self());
1130   guarantee(retval != 0, "just checking");
1131   return retval;
1132 
1133 #else
1134   #ifdef __FreeBSD__
1135   retval = syscall(SYS_thr_self);
1136   #else
1137     #ifdef __OpenBSD__
1138   retval = syscall(SYS_getthrid);
1139     #else
1140       #ifdef __NetBSD__
1141   retval = (pid_t) syscall(SYS__lwp_self);
1142       #endif
1143     #endif
1144   #endif
1145 #endif
1146 
1147   if (retval == -1) {
1148     return getpid();
1149   }
1150 }
1151 
1152 intx os::current_thread_id() {
1153 #ifdef __APPLE__
1154   return (intx)::pthread_mach_thread_np(::pthread_self());
1155 #else
1156   return (intx)::pthread_self();
1157 #endif
1158 }
1159 
1160 int os::current_process_id() {
1161 
1162   // Under the old bsd thread library, bsd gives each thread
1163   // its own process id. Because of this each thread will return
1164   // a different pid if this method were to return the result
1165   // of getpid(2). Bsd provides no api that returns the pid
1166   // of the launcher thread for the vm. This implementation
1167   // returns a unique pid, the pid of the launcher thread
1168   // that starts the vm 'process'.
1169 
1170   // Under the NPTL, getpid() returns the same pid as the
1171   // launcher thread rather than a unique pid per thread.
1172   // Use gettid() if you want the old pre NPTL behaviour.
1173 
1174   // if you are looking for the result of a call to getpid() that
1175   // returns a unique pid for the calling thread, then look at the
1176   // OSThread::thread_id() method in osThread_bsd.hpp file
1177 
1178   return (int)(_initial_pid ? _initial_pid : getpid());
1179 }
1180 
1181 // DLL functions
1182 
1183 #define JNI_LIB_PREFIX "lib"
1184 #ifdef __APPLE__
1185   #define JNI_LIB_SUFFIX ".dylib"
1186 #else
1187   #define JNI_LIB_SUFFIX ".so"
1188 #endif
1189 
1190 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1191 
1192 // This must be hard coded because it's the system's temporary
1193 // directory not the java application's temp directory, ala java.io.tmpdir.
1194 #ifdef __APPLE__
1195 // macosx has a secure per-user temporary directory
1196 char temp_path_storage[PATH_MAX];
1197 const char* os::get_temp_directory() {
1198   static char *temp_path = NULL;
1199   if (temp_path == NULL) {
1200     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1201     if (pathSize == 0 || pathSize > PATH_MAX) {
1202       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1203     }
1204     temp_path = temp_path_storage;
1205   }
1206   return temp_path;
1207 }
1208 #else // __APPLE__
1209 const char* os::get_temp_directory() { return "/tmp"; }
1210 #endif // __APPLE__
1211 
1212 static bool file_exists(const char* filename) {
1213   struct stat statbuf;
1214   if (filename == NULL || strlen(filename) == 0) {
1215     return false;
1216   }
1217   return os::stat(filename, &statbuf) == 0;
1218 }
1219 
1220 bool os::dll_build_name(char* buffer, size_t buflen,
1221                         const char* pname, const char* fname) {
1222   bool retval = false;
1223   // Copied from libhpi
1224   const size_t pnamelen = pname ? strlen(pname) : 0;
1225 
1226   // Return error on buffer overflow.
1227   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1228     return retval;
1229   }
1230 
1231   if (pnamelen == 0) {
1232     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1233     retval = true;
1234   } else if (strchr(pname, *os::path_separator()) != NULL) {
1235     int n;
1236     char** pelements = split_path(pname, &n);
1237     if (pelements == NULL) {
1238       return false;
1239     }
1240     for (int i = 0; i < n; i++) {
1241       // Really shouldn't be NULL, but check can't hurt
1242       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1243         continue; // skip the empty path values
1244       }
1245       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1246                pelements[i], fname);
1247       if (file_exists(buffer)) {
1248         retval = true;
1249         break;
1250       }
1251     }
1252     // release the storage
1253     for (int i = 0; i < n; i++) {
1254       if (pelements[i] != NULL) {
1255         FREE_C_HEAP_ARRAY(char, pelements[i]);
1256       }
1257     }
1258     if (pelements != NULL) {
1259       FREE_C_HEAP_ARRAY(char*, pelements);
1260     }
1261   } else {
1262     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1263     retval = true;
1264   }
1265   return retval;
1266 }
1267 
1268 // check if addr is inside libjvm.so
1269 bool os::address_is_in_vm(address addr) {
1270   static address libjvm_base_addr;
1271   Dl_info dlinfo;
1272 
1273   if (libjvm_base_addr == NULL) {
1274     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1275       libjvm_base_addr = (address)dlinfo.dli_fbase;
1276     }
1277     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1278   }
1279 
1280   if (dladdr((void *)addr, &dlinfo) != 0) {
1281     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1282   }
1283 
1284   return false;
1285 }
1286 
1287 
1288 #define MACH_MAXSYMLEN 256
1289 
1290 bool os::dll_address_to_function_name(address addr, char *buf,
1291                                       int buflen, int *offset,
1292                                       bool demangle) {
1293   // buf is not optional, but offset is optional
1294   assert(buf != NULL, "sanity check");
1295 
1296   Dl_info dlinfo;
1297   char localbuf[MACH_MAXSYMLEN];
1298 
1299   if (dladdr((void*)addr, &dlinfo) != 0) {
1300     // see if we have a matching symbol
1301     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1302       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1303         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1304       }
1305       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1306       return true;
1307     }
1308     // no matching symbol so try for just file info
1309     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1310       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1311                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1312         return true;
1313       }
1314     }
1315 
1316     // Handle non-dynamic manually:
1317     if (dlinfo.dli_fbase != NULL &&
1318         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1319                         dlinfo.dli_fbase)) {
1320       if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1321         jio_snprintf(buf, buflen, "%s", localbuf);
1322       }
1323       return true;
1324     }
1325   }
1326   buf[0] = '\0';
1327   if (offset != NULL) *offset = -1;
1328   return false;
1329 }
1330 
1331 // ported from solaris version
1332 bool os::dll_address_to_library_name(address addr, char* buf,
1333                                      int buflen, int* offset) {
1334   // buf is not optional, but offset is optional
1335   assert(buf != NULL, "sanity check");
1336 
1337   Dl_info dlinfo;
1338 
1339   if (dladdr((void*)addr, &dlinfo) != 0) {
1340     if (dlinfo.dli_fname != NULL) {
1341       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1342     }
1343     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1344       *offset = addr - (address)dlinfo.dli_fbase;
1345     }
1346     return true;
1347   }
1348 
1349   buf[0] = '\0';
1350   if (offset) *offset = -1;
1351   return false;
1352 }
1353 
1354 // Loads .dll/.so and
1355 // in case of error it checks if .dll/.so was built for the
1356 // same architecture as Hotspot is running on
1357 
1358 #ifdef __APPLE__
1359 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1360 #ifdef STATIC_BUILD
1361   return os::get_default_process_handle();
1362 #else
1363   void * result= ::dlopen(filename, RTLD_LAZY);
1364   if (result != NULL) {
1365     // Successful loading
1366     return result;
1367   }
1368 
1369   // Read system error message into ebuf
1370   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1371   ebuf[ebuflen-1]='\0';
1372 
1373   return NULL;
1374 #endif // STATIC_BUILD
1375 }
1376 #else
1377 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1378 #ifdef STATIC_BUILD
1379   return os::get_default_process_handle();
1380 #else
1381   void * result= ::dlopen(filename, RTLD_LAZY);
1382   if (result != NULL) {
1383     // Successful loading
1384     return result;
1385   }
1386 
1387   Elf32_Ehdr elf_head;
1388 
1389   // Read system error message into ebuf
1390   // It may or may not be overwritten below
1391   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1392   ebuf[ebuflen-1]='\0';
1393   int diag_msg_max_length=ebuflen-strlen(ebuf);
1394   char* diag_msg_buf=ebuf+strlen(ebuf);
1395 
1396   if (diag_msg_max_length==0) {
1397     // No more space in ebuf for additional diagnostics message
1398     return NULL;
1399   }
1400 
1401 
1402   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1403 
1404   if (file_descriptor < 0) {
1405     // Can't open library, report dlerror() message
1406     return NULL;
1407   }
1408 
1409   bool failed_to_read_elf_head=
1410     (sizeof(elf_head)!=
1411      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1412 
1413   ::close(file_descriptor);
1414   if (failed_to_read_elf_head) {
1415     // file i/o error - report dlerror() msg
1416     return NULL;
1417   }
1418 
1419   typedef struct {
1420     Elf32_Half  code;         // Actual value as defined in elf.h
1421     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1422     char        elf_class;    // 32 or 64 bit
1423     char        endianess;    // MSB or LSB
1424     char*       name;         // String representation
1425   } arch_t;
1426 
1427   #ifndef EM_486
1428     #define EM_486          6               /* Intel 80486 */
1429   #endif
1430 
1431   #ifndef EM_MIPS_RS3_LE
1432     #define EM_MIPS_RS3_LE  10              /* MIPS */
1433   #endif
1434 
1435   #ifndef EM_PPC64
1436     #define EM_PPC64        21              /* PowerPC64 */
1437   #endif
1438 
1439   #ifndef EM_S390
1440     #define EM_S390         22              /* IBM System/390 */
1441   #endif
1442 
1443   #ifndef EM_IA_64
1444     #define EM_IA_64        50              /* HP/Intel IA-64 */
1445   #endif
1446 
1447   #ifndef EM_X86_64
1448     #define EM_X86_64       62              /* AMD x86-64 */
1449   #endif
1450 
1451   static const arch_t arch_array[]={
1452     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1453     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1454     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1455     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1456     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1457     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1458     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1459     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1460     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1461     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1462     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1463     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1464     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1465     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1466     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1467     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1468   };
1469 
1470   #if  (defined IA32)
1471   static  Elf32_Half running_arch_code=EM_386;
1472   #elif   (defined AMD64)
1473   static  Elf32_Half running_arch_code=EM_X86_64;
1474   #elif  (defined IA64)
1475   static  Elf32_Half running_arch_code=EM_IA_64;
1476   #elif  (defined __sparc) && (defined _LP64)
1477   static  Elf32_Half running_arch_code=EM_SPARCV9;
1478   #elif  (defined __sparc) && (!defined _LP64)
1479   static  Elf32_Half running_arch_code=EM_SPARC;
1480   #elif  (defined __powerpc64__)
1481   static  Elf32_Half running_arch_code=EM_PPC64;
1482   #elif  (defined __powerpc__)
1483   static  Elf32_Half running_arch_code=EM_PPC;
1484   #elif  (defined ARM)
1485   static  Elf32_Half running_arch_code=EM_ARM;
1486   #elif  (defined S390)
1487   static  Elf32_Half running_arch_code=EM_S390;
1488   #elif  (defined ALPHA)
1489   static  Elf32_Half running_arch_code=EM_ALPHA;
1490   #elif  (defined MIPSEL)
1491   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1492   #elif  (defined PARISC)
1493   static  Elf32_Half running_arch_code=EM_PARISC;
1494   #elif  (defined MIPS)
1495   static  Elf32_Half running_arch_code=EM_MIPS;
1496   #elif  (defined M68K)
1497   static  Elf32_Half running_arch_code=EM_68K;
1498   #else
1499     #error Method os::dll_load requires that one of following is defined:\
1500          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1501   #endif
1502 
1503   // Identify compatability class for VM's architecture and library's architecture
1504   // Obtain string descriptions for architectures
1505 
1506   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1507   int running_arch_index=-1;
1508 
1509   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1510     if (running_arch_code == arch_array[i].code) {
1511       running_arch_index    = i;
1512     }
1513     if (lib_arch.code == arch_array[i].code) {
1514       lib_arch.compat_class = arch_array[i].compat_class;
1515       lib_arch.name         = arch_array[i].name;
1516     }
1517   }
1518 
1519   assert(running_arch_index != -1,
1520          "Didn't find running architecture code (running_arch_code) in arch_array");
1521   if (running_arch_index == -1) {
1522     // Even though running architecture detection failed
1523     // we may still continue with reporting dlerror() message
1524     return NULL;
1525   }
1526 
1527   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1528     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1529     return NULL;
1530   }
1531 
1532 #ifndef S390
1533   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1534     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1535     return NULL;
1536   }
1537 #endif // !S390
1538 
1539   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1540     if (lib_arch.name!=NULL) {
1541       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1542                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1543                  lib_arch.name, arch_array[running_arch_index].name);
1544     } else {
1545       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1546                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1547                  lib_arch.code,
1548                  arch_array[running_arch_index].name);
1549     }
1550   }
1551 
1552   return NULL;
1553 #endif // STATIC_BUILD
1554 }
1555 #endif // !__APPLE__
1556 
1557 void* os::get_default_process_handle() {
1558 #ifdef __APPLE__
1559   // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1560   // to avoid finding unexpected symbols on second (or later)
1561   // loads of a library.
1562   return (void*)::dlopen(NULL, RTLD_FIRST);
1563 #else
1564   return (void*)::dlopen(NULL, RTLD_LAZY);
1565 #endif
1566 }
1567 
1568 // XXX: Do we need a lock around this as per Linux?
1569 void* os::dll_lookup(void* handle, const char* name) {
1570   return dlsym(handle, name);
1571 }
1572 
1573 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1574   outputStream * out = (outputStream *) param;
1575   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1576   return 0;
1577 }
1578 
1579 void os::print_dll_info(outputStream *st) {
1580   st->print_cr("Dynamic libraries:");
1581   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1582     st->print_cr("Error: Cannot print dynamic libraries.");
1583   }
1584 }
1585 
1586 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1587 #ifdef RTLD_DI_LINKMAP
1588   Dl_info dli;
1589   void *handle;
1590   Link_map *map;
1591   Link_map *p;
1592 
1593   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1594       dli.dli_fname == NULL) {
1595     return 1;
1596   }
1597   handle = dlopen(dli.dli_fname, RTLD_LAZY);
1598   if (handle == NULL) {
1599     return 1;
1600   }
1601   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1602   if (map == NULL) {
1603     dlclose(handle);
1604     return 1;
1605   }
1606 
1607   while (map->l_prev != NULL)
1608     map = map->l_prev;
1609 
1610   while (map != NULL) {
1611     // Value for top_address is returned as 0 since we don't have any information about module size
1612     if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1613       dlclose(handle);
1614       return 1;
1615     }
1616     map = map->l_next;
1617   }
1618 
1619   dlclose(handle);
1620 #elif defined(__APPLE__)
1621   for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1622     // Value for top_address is returned as 0 since we don't have any information about module size
1623     if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1624       return 1;
1625     }
1626   }
1627   return 0;
1628 #else
1629   return 1;
1630 #endif
1631 }
1632 
1633 void os::get_summary_os_info(char* buf, size_t buflen) {
1634   // These buffers are small because we want this to be brief
1635   // and not use a lot of stack while generating the hs_err file.
1636   char os[100];
1637   size_t size = sizeof(os);
1638   int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1639   if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1640 #ifdef __APPLE__
1641       strncpy(os, "Darwin", sizeof(os));
1642 #elif __OpenBSD__
1643       strncpy(os, "OpenBSD", sizeof(os));
1644 #else
1645       strncpy(os, "BSD", sizeof(os));
1646 #endif
1647   }
1648 
1649   char release[100];
1650   size = sizeof(release);
1651   int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1652   if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1653       // if error, leave blank
1654       strncpy(release, "", sizeof(release));
1655   }
1656   snprintf(buf, buflen, "%s %s", os, release);
1657 }
1658 
1659 void os::print_os_info_brief(outputStream* st) {
1660   os::Posix::print_uname_info(st);
1661 }
1662 
1663 void os::print_os_info(outputStream* st) {
1664   st->print("OS:");
1665 
1666   os::Posix::print_uname_info(st);
1667 
1668   os::Posix::print_rlimit_info(st);
1669 
1670   os::Posix::print_load_average(st);
1671 }
1672 
1673 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1674   // Nothing to do for now.
1675 }
1676 
1677 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1678   unsigned int mhz;
1679   size_t size = sizeof(mhz);
1680   int mib[] = { CTL_HW, HW_CPU_FREQ };
1681   if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1682     mhz = 1;  // looks like an error but can be divided by
1683   } else {
1684     mhz /= 1000000;  // reported in millions
1685   }
1686 
1687   char model[100];
1688   size = sizeof(model);
1689   int mib_model[] = { CTL_HW, HW_MODEL };
1690   if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1691     strncpy(model, cpu_arch, sizeof(model));
1692   }
1693 
1694   char machine[100];
1695   size = sizeof(machine);
1696   int mib_machine[] = { CTL_HW, HW_MACHINE };
1697   if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1698       strncpy(machine, "", sizeof(machine));
1699   }
1700 
1701   snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1702 }
1703 
1704 void os::print_memory_info(outputStream* st) {
1705 
1706   st->print("Memory:");
1707   st->print(" %dk page", os::vm_page_size()>>10);
1708 
1709   st->print(", physical " UINT64_FORMAT "k",
1710             os::physical_memory() >> 10);
1711   st->print("(" UINT64_FORMAT "k free)",
1712             os::available_memory() >> 10);
1713   st->cr();
1714 }
1715 
1716 static void print_signal_handler(outputStream* st, int sig,
1717                                  char* buf, size_t buflen);
1718 
1719 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1720   st->print_cr("Signal Handlers:");
1721   print_signal_handler(st, SIGSEGV, buf, buflen);
1722   print_signal_handler(st, SIGBUS , buf, buflen);
1723   print_signal_handler(st, SIGFPE , buf, buflen);
1724   print_signal_handler(st, SIGPIPE, buf, buflen);
1725   print_signal_handler(st, SIGXFSZ, buf, buflen);
1726   print_signal_handler(st, SIGILL , buf, buflen);
1727   print_signal_handler(st, SR_signum, buf, buflen);
1728   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1729   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1730   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1731   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1732 }
1733 
1734 static char saved_jvm_path[MAXPATHLEN] = {0};
1735 
1736 // Find the full path to the current module, libjvm
1737 void os::jvm_path(char *buf, jint buflen) {
1738   // Error checking.
1739   if (buflen < MAXPATHLEN) {
1740     assert(false, "must use a large-enough buffer");
1741     buf[0] = '\0';
1742     return;
1743   }
1744   // Lazy resolve the path to current module.
1745   if (saved_jvm_path[0] != 0) {
1746     strcpy(buf, saved_jvm_path);
1747     return;
1748   }
1749 
1750   char dli_fname[MAXPATHLEN];
1751   bool ret = dll_address_to_library_name(
1752                                          CAST_FROM_FN_PTR(address, os::jvm_path),
1753                                          dli_fname, sizeof(dli_fname), NULL);
1754   assert(ret, "cannot locate libjvm");
1755   char *rp = NULL;
1756   if (ret && dli_fname[0] != '\0') {
1757     rp = realpath(dli_fname, buf);
1758   }
1759   if (rp == NULL) {
1760     return;
1761   }
1762 
1763   if (Arguments::sun_java_launcher_is_altjvm()) {
1764     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1765     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1766     // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1767     // appears at the right place in the string, then assume we are
1768     // installed in a JDK and we're done. Otherwise, check for a
1769     // JAVA_HOME environment variable and construct a path to the JVM
1770     // being overridden.
1771 
1772     const char *p = buf + strlen(buf) - 1;
1773     for (int count = 0; p > buf && count < 5; ++count) {
1774       for (--p; p > buf && *p != '/'; --p)
1775         /* empty */ ;
1776     }
1777 
1778     if (strncmp(p, "/jre/lib/", 9) != 0) {
1779       // Look for JAVA_HOME in the environment.
1780       char* java_home_var = ::getenv("JAVA_HOME");
1781       if (java_home_var != NULL && java_home_var[0] != 0) {
1782         char* jrelib_p;
1783         int len;
1784 
1785         // Check the current module name "libjvm"
1786         p = strrchr(buf, '/');
1787         assert(strstr(p, "/libjvm") == p, "invalid library name");
1788 
1789         rp = realpath(java_home_var, buf);
1790         if (rp == NULL) {
1791           return;
1792         }
1793 
1794         // determine if this is a legacy image or modules image
1795         // modules image doesn't have "jre" subdirectory
1796         len = strlen(buf);
1797         assert(len < buflen, "Ran out of buffer space");
1798         jrelib_p = buf + len;
1799 
1800         // Add the appropriate library subdir
1801         snprintf(jrelib_p, buflen-len, "/jre/lib");
1802         if (0 != access(buf, F_OK)) {
1803           snprintf(jrelib_p, buflen-len, "/lib");
1804         }
1805 
1806         // Add the appropriate client or server subdir
1807         len = strlen(buf);
1808         jrelib_p = buf + len;
1809         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1810         if (0 != access(buf, F_OK)) {
1811           snprintf(jrelib_p, buflen-len, "%s", "");
1812         }
1813 
1814         // If the path exists within JAVA_HOME, add the JVM library name
1815         // to complete the path to JVM being overridden.  Otherwise fallback
1816         // to the path to the current library.
1817         if (0 == access(buf, F_OK)) {
1818           // Use current module name "libjvm"
1819           len = strlen(buf);
1820           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1821         } else {
1822           // Fall back to path of current library
1823           rp = realpath(dli_fname, buf);
1824           if (rp == NULL) {
1825             return;
1826           }
1827         }
1828       }
1829     }
1830   }
1831 
1832   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1833   saved_jvm_path[MAXPATHLEN - 1] = '\0';
1834 }
1835 
1836 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1837   // no prefix required, not even "_"
1838 }
1839 
1840 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1841   // no suffix required
1842 }
1843 
1844 ////////////////////////////////////////////////////////////////////////////////
1845 // sun.misc.Signal support
1846 
1847 static volatile jint sigint_count = 0;
1848 
1849 static void UserHandler(int sig, void *siginfo, void *context) {
1850   // 4511530 - sem_post is serialized and handled by the manager thread. When
1851   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1852   // don't want to flood the manager thread with sem_post requests.
1853   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1854     return;
1855   }
1856 
1857   // Ctrl-C is pressed during error reporting, likely because the error
1858   // handler fails to abort. Let VM die immediately.
1859   if (sig == SIGINT && is_error_reported()) {
1860     os::die();
1861   }
1862 
1863   os::signal_notify(sig);
1864 }
1865 
1866 void* os::user_handler() {
1867   return CAST_FROM_FN_PTR(void*, UserHandler);
1868 }
1869 
1870 extern "C" {
1871   typedef void (*sa_handler_t)(int);
1872   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1873 }
1874 
1875 void* os::signal(int signal_number, void* handler) {
1876   struct sigaction sigAct, oldSigAct;
1877 
1878   sigfillset(&(sigAct.sa_mask));
1879   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1880   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1881 
1882   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1883     // -1 means registration failed
1884     return (void *)-1;
1885   }
1886 
1887   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1888 }
1889 
1890 void os::signal_raise(int signal_number) {
1891   ::raise(signal_number);
1892 }
1893 
1894 // The following code is moved from os.cpp for making this
1895 // code platform specific, which it is by its very nature.
1896 
1897 // Will be modified when max signal is changed to be dynamic
1898 int os::sigexitnum_pd() {
1899   return NSIG;
1900 }
1901 
1902 // a counter for each possible signal value
1903 static volatile jint pending_signals[NSIG+1] = { 0 };
1904 
1905 // Bsd(POSIX) specific hand shaking semaphore.
1906 #ifdef __APPLE__
1907 typedef semaphore_t os_semaphore_t;
1908 
1909   #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1910   #define SEM_WAIT(sem)           semaphore_wait(sem)
1911   #define SEM_POST(sem)           semaphore_signal(sem)
1912   #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1913 #else
1914 typedef sem_t os_semaphore_t;
1915 
1916   #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1917   #define SEM_WAIT(sem)           sem_wait(&sem)
1918   #define SEM_POST(sem)           sem_post(&sem)
1919   #define SEM_DESTROY(sem)        sem_destroy(&sem)
1920 #endif
1921 
1922 #ifdef __APPLE__
1923 // OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1924 
1925 static const char* sem_init_strerror(kern_return_t value) {
1926   switch (value) {
1927     case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1928     case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1929     default:                     return "Unknown";
1930   }
1931 }
1932 
1933 OSXSemaphore::OSXSemaphore(uint value) {
1934   kern_return_t ret = SEM_INIT(_semaphore, value);
1935 
1936   guarantee(ret == KERN_SUCCESS, "Failed to create semaphore: %s", sem_init_strerror(ret));
1937 }
1938 
1939 OSXSemaphore::~OSXSemaphore() {
1940   SEM_DESTROY(_semaphore);
1941 }
1942 
1943 void OSXSemaphore::signal(uint count) {
1944   for (uint i = 0; i < count; i++) {
1945     kern_return_t ret = SEM_POST(_semaphore);
1946 
1947     assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
1948   }
1949 }
1950 
1951 void OSXSemaphore::wait() {
1952   kern_return_t ret;
1953   while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
1954     // Semaphore was interrupted. Retry.
1955   }
1956   assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
1957 }
1958 
1959 jlong OSXSemaphore::currenttime() {
1960   struct timeval tv;
1961   gettimeofday(&tv, NULL);
1962   return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1963 }
1964 
1965 bool OSXSemaphore::trywait() {
1966   return timedwait(0, 0);
1967 }
1968 
1969 bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
1970   kern_return_t kr = KERN_ABORTED;
1971   mach_timespec_t waitspec;
1972   waitspec.tv_sec = sec;
1973   waitspec.tv_nsec = nsec;
1974 
1975   jlong starttime = currenttime();
1976 
1977   kr = semaphore_timedwait(_semaphore, waitspec);
1978   while (kr == KERN_ABORTED) {
1979     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1980 
1981     jlong current = currenttime();
1982     jlong passedtime = current - starttime;
1983 
1984     if (passedtime >= totalwait) {
1985       waitspec.tv_sec = 0;
1986       waitspec.tv_nsec = 0;
1987     } else {
1988       jlong waittime = totalwait - (current - starttime);
1989       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1990       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1991     }
1992 
1993     kr = semaphore_timedwait(_semaphore, waitspec);
1994   }
1995 
1996   return kr == KERN_SUCCESS;
1997 }
1998 
1999 #else
2000 // Use POSIX implementation of semaphores.
2001 
2002 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2003   struct timespec ts;
2004   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2005 
2006   return ts;
2007 }
2008 
2009 #endif // __APPLE__
2010 
2011 static os_semaphore_t sig_sem;
2012 
2013 #ifdef __APPLE__
2014 static OSXSemaphore sr_semaphore;
2015 #else
2016 static PosixSemaphore sr_semaphore;
2017 #endif
2018 
2019 void os::signal_init_pd() {
2020   // Initialize signal structures
2021   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2022 
2023   // Initialize signal semaphore
2024   ::SEM_INIT(sig_sem, 0);
2025 }
2026 
2027 void os::signal_notify(int sig) {
2028   Atomic::inc(&pending_signals[sig]);
2029   ::SEM_POST(sig_sem);
2030 }
2031 
2032 static int check_pending_signals(bool wait) {
2033   Atomic::store(0, &sigint_count);
2034   for (;;) {
2035     for (int i = 0; i < NSIG + 1; i++) {
2036       jint n = pending_signals[i];
2037       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2038         return i;
2039       }
2040     }
2041     if (!wait) {
2042       return -1;
2043     }
2044     JavaThread *thread = JavaThread::current();
2045     ThreadBlockInVM tbivm(thread);
2046 
2047     bool threadIsSuspended;
2048     do {
2049       thread->set_suspend_equivalent();
2050       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2051       ::SEM_WAIT(sig_sem);
2052 
2053       // were we externally suspended while we were waiting?
2054       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2055       if (threadIsSuspended) {
2056         // The semaphore has been incremented, but while we were waiting
2057         // another thread suspended us. We don't want to continue running
2058         // while suspended because that would surprise the thread that
2059         // suspended us.
2060         ::SEM_POST(sig_sem);
2061 
2062         thread->java_suspend_self();
2063       }
2064     } while (threadIsSuspended);
2065   }
2066 }
2067 
2068 int os::signal_lookup() {
2069   return check_pending_signals(false);
2070 }
2071 
2072 int os::signal_wait() {
2073   return check_pending_signals(true);
2074 }
2075 
2076 ////////////////////////////////////////////////////////////////////////////////
2077 // Virtual Memory
2078 
2079 int os::vm_page_size() {
2080   // Seems redundant as all get out
2081   assert(os::Bsd::page_size() != -1, "must call os::init");
2082   return os::Bsd::page_size();
2083 }
2084 
2085 // Solaris allocates memory by pages.
2086 int os::vm_allocation_granularity() {
2087   assert(os::Bsd::page_size() != -1, "must call os::init");
2088   return os::Bsd::page_size();
2089 }
2090 
2091 // Rationale behind this function:
2092 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2093 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2094 //  samples for JITted code. Here we create private executable mapping over the code cache
2095 //  and then we can use standard (well, almost, as mapping can change) way to provide
2096 //  info for the reporting script by storing timestamp and location of symbol
2097 void bsd_wrap_code(char* base, size_t size) {
2098   static volatile jint cnt = 0;
2099 
2100   if (!UseOprofile) {
2101     return;
2102   }
2103 
2104   char buf[PATH_MAX + 1];
2105   int num = Atomic::add(1, &cnt);
2106 
2107   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2108            os::get_temp_directory(), os::current_process_id(), num);
2109   unlink(buf);
2110 
2111   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2112 
2113   if (fd != -1) {
2114     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2115     if (rv != (off_t)-1) {
2116       if (::write(fd, "", 1) == 1) {
2117         mmap(base, size,
2118              PROT_READ|PROT_WRITE|PROT_EXEC,
2119              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2120       }
2121     }
2122     ::close(fd);
2123     unlink(buf);
2124   }
2125 }
2126 
2127 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2128                                     int err) {
2129   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2130           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2131           os::errno_name(err), err);
2132 }
2133 
2134 // NOTE: Bsd kernel does not really reserve the pages for us.
2135 //       All it does is to check if there are enough free pages
2136 //       left at the time of mmap(). This could be a potential
2137 //       problem.
2138 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2139   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2140 #ifdef __OpenBSD__
2141   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2142   if (::mprotect(addr, size, prot) == 0) {
2143     return true;
2144   }
2145 #else
2146   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2147                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2148   if (res != (uintptr_t) MAP_FAILED) {
2149     return true;
2150   }
2151 #endif
2152 
2153   // Warn about any commit errors we see in non-product builds just
2154   // in case mmap() doesn't work as described on the man page.
2155   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2156 
2157   return false;
2158 }
2159 
2160 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2161                           bool exec) {
2162   // alignment_hint is ignored on this OS
2163   return pd_commit_memory(addr, size, exec);
2164 }
2165 
2166 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2167                                   const char* mesg) {
2168   assert(mesg != NULL, "mesg must be specified");
2169   if (!pd_commit_memory(addr, size, exec)) {
2170     // add extra info in product mode for vm_exit_out_of_memory():
2171     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2172     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2173   }
2174 }
2175 
2176 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2177                                   size_t alignment_hint, bool exec,
2178                                   const char* mesg) {
2179   // alignment_hint is ignored on this OS
2180   pd_commit_memory_or_exit(addr, size, exec, mesg);
2181 }
2182 
2183 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2184 }
2185 
2186 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2187   ::madvise(addr, bytes, MADV_DONTNEED);
2188 }
2189 
2190 void os::numa_make_global(char *addr, size_t bytes) {
2191 }
2192 
2193 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2194 }
2195 
2196 bool os::numa_topology_changed()   { return false; }
2197 
2198 size_t os::numa_get_groups_num() {
2199   return 1;
2200 }
2201 
2202 int os::numa_get_group_id() {
2203   return 0;
2204 }
2205 
2206 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2207   if (size > 0) {
2208     ids[0] = 0;
2209     return 1;
2210   }
2211   return 0;
2212 }
2213 
2214 bool os::get_page_info(char *start, page_info* info) {
2215   return false;
2216 }
2217 
2218 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2219   return end;
2220 }
2221 
2222 
2223 bool os::pd_uncommit_memory(char* addr, size_t size) {
2224 #ifdef __OpenBSD__
2225   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2226   return ::mprotect(addr, size, PROT_NONE) == 0;
2227 #else
2228   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2229                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2230   return res  != (uintptr_t) MAP_FAILED;
2231 #endif
2232 }
2233 
2234 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2235   return os::commit_memory(addr, size, !ExecMem);
2236 }
2237 
2238 // If this is a growable mapping, remove the guard pages entirely by
2239 // munmap()ping them.  If not, just call uncommit_memory().
2240 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2241   return os::uncommit_memory(addr, size);
2242 }
2243 
2244 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2245 // at 'requested_addr'. If there are existing memory mappings at the same
2246 // location, however, they will be overwritten. If 'fixed' is false,
2247 // 'requested_addr' is only treated as a hint, the return value may or
2248 // may not start from the requested address. Unlike Bsd mmap(), this
2249 // function returns NULL to indicate failure.
2250 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2251   char * addr;
2252   int flags;
2253 
2254   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2255   if (fixed) {
2256     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2257     flags |= MAP_FIXED;
2258   }
2259 
2260   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2261   // touch an uncommitted page. Otherwise, the read/write might
2262   // succeed if we have enough swap space to back the physical page.
2263   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2264                        flags, -1, 0);
2265 
2266   return addr == MAP_FAILED ? NULL : addr;
2267 }
2268 
2269 static int anon_munmap(char * addr, size_t size) {
2270   return ::munmap(addr, size) == 0;
2271 }
2272 
2273 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2274                             size_t alignment_hint) {
2275   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2276 }
2277 
2278 bool os::pd_release_memory(char* addr, size_t size) {
2279   return anon_munmap(addr, size);
2280 }
2281 
2282 static bool bsd_mprotect(char* addr, size_t size, int prot) {
2283   // Bsd wants the mprotect address argument to be page aligned.
2284   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2285 
2286   // According to SUSv3, mprotect() should only be used with mappings
2287   // established by mmap(), and mmap() always maps whole pages. Unaligned
2288   // 'addr' likely indicates problem in the VM (e.g. trying to change
2289   // protection of malloc'ed or statically allocated memory). Check the
2290   // caller if you hit this assert.
2291   assert(addr == bottom, "sanity check");
2292 
2293   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2294   return ::mprotect(bottom, size, prot) == 0;
2295 }
2296 
2297 // Set protections specified
2298 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2299                         bool is_committed) {
2300   unsigned int p = 0;
2301   switch (prot) {
2302   case MEM_PROT_NONE: p = PROT_NONE; break;
2303   case MEM_PROT_READ: p = PROT_READ; break;
2304   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2305   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2306   default:
2307     ShouldNotReachHere();
2308   }
2309   // is_committed is unused.
2310   return bsd_mprotect(addr, bytes, p);
2311 }
2312 
2313 bool os::guard_memory(char* addr, size_t size) {
2314   return bsd_mprotect(addr, size, PROT_NONE);
2315 }
2316 
2317 bool os::unguard_memory(char* addr, size_t size) {
2318   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2319 }
2320 
2321 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2322   return false;
2323 }
2324 
2325 // Large page support
2326 
2327 static size_t _large_page_size = 0;
2328 
2329 void os::large_page_init() {
2330 }
2331 
2332 
2333 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2334   fatal("This code is not used or maintained.");
2335 
2336   // "exec" is passed in but not used.  Creating the shared image for
2337   // the code cache doesn't have an SHM_X executable permission to check.
2338   assert(UseLargePages && UseSHM, "only for SHM large pages");
2339 
2340   key_t key = IPC_PRIVATE;
2341   char *addr;
2342 
2343   bool warn_on_failure = UseLargePages &&
2344                          (!FLAG_IS_DEFAULT(UseLargePages) ||
2345                           !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2346 
2347   // Create a large shared memory region to attach to based on size.
2348   // Currently, size is the total size of the heap
2349   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2350   if (shmid == -1) {
2351     // Possible reasons for shmget failure:
2352     // 1. shmmax is too small for Java heap.
2353     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2354     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2355     // 2. not enough large page memory.
2356     //    > check available large pages: cat /proc/meminfo
2357     //    > increase amount of large pages:
2358     //          echo new_value > /proc/sys/vm/nr_hugepages
2359     //      Note 1: different Bsd may use different name for this property,
2360     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2361     //      Note 2: it's possible there's enough physical memory available but
2362     //            they are so fragmented after a long run that they can't
2363     //            coalesce into large pages. Try to reserve large pages when
2364     //            the system is still "fresh".
2365     if (warn_on_failure) {
2366       warning("Failed to reserve shared memory (errno = %d).", errno);
2367     }
2368     return NULL;
2369   }
2370 
2371   // attach to the region
2372   addr = (char*)shmat(shmid, req_addr, 0);
2373   int err = errno;
2374 
2375   // Remove shmid. If shmat() is successful, the actual shared memory segment
2376   // will be deleted when it's detached by shmdt() or when the process
2377   // terminates. If shmat() is not successful this will remove the shared
2378   // segment immediately.
2379   shmctl(shmid, IPC_RMID, NULL);
2380 
2381   if ((intptr_t)addr == -1) {
2382     if (warn_on_failure) {
2383       warning("Failed to attach shared memory (errno = %d).", err);
2384     }
2385     return NULL;
2386   }
2387 
2388   // The memory is committed
2389   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2390 
2391   return addr;
2392 }
2393 
2394 bool os::release_memory_special(char* base, size_t bytes) {
2395   if (MemTracker::tracking_level() > NMT_minimal) {
2396     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2397     // detaching the SHM segment will also delete it, see reserve_memory_special()
2398     int rslt = shmdt(base);
2399     if (rslt == 0) {
2400       tkr.record((address)base, bytes);
2401       return true;
2402     } else {
2403       return false;
2404     }
2405   } else {
2406     return shmdt(base) == 0;
2407   }
2408 }
2409 
2410 size_t os::large_page_size() {
2411   return _large_page_size;
2412 }
2413 
2414 // HugeTLBFS allows application to commit large page memory on demand;
2415 // with SysV SHM the entire memory region must be allocated as shared
2416 // memory.
2417 bool os::can_commit_large_page_memory() {
2418   return UseHugeTLBFS;
2419 }
2420 
2421 bool os::can_execute_large_page_memory() {
2422   return UseHugeTLBFS;
2423 }
2424 
2425 // Reserve memory at an arbitrary address, only if that area is
2426 // available (and not reserved for something else).
2427 
2428 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2429   const int max_tries = 10;
2430   char* base[max_tries];
2431   size_t size[max_tries];
2432   const size_t gap = 0x000000;
2433 
2434   // Assert only that the size is a multiple of the page size, since
2435   // that's all that mmap requires, and since that's all we really know
2436   // about at this low abstraction level.  If we need higher alignment,
2437   // we can either pass an alignment to this method or verify alignment
2438   // in one of the methods further up the call chain.  See bug 5044738.
2439   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2440 
2441   // Repeatedly allocate blocks until the block is allocated at the
2442   // right spot.
2443 
2444   // Bsd mmap allows caller to pass an address as hint; give it a try first,
2445   // if kernel honors the hint then we can return immediately.
2446   char * addr = anon_mmap(requested_addr, bytes, false);
2447   if (addr == requested_addr) {
2448     return requested_addr;
2449   }
2450 
2451   if (addr != NULL) {
2452     // mmap() is successful but it fails to reserve at the requested address
2453     anon_munmap(addr, bytes);
2454   }
2455 
2456   int i;
2457   for (i = 0; i < max_tries; ++i) {
2458     base[i] = reserve_memory(bytes);
2459 
2460     if (base[i] != NULL) {
2461       // Is this the block we wanted?
2462       if (base[i] == requested_addr) {
2463         size[i] = bytes;
2464         break;
2465       }
2466 
2467       // Does this overlap the block we wanted? Give back the overlapped
2468       // parts and try again.
2469 
2470       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2471       if (top_overlap >= 0 && top_overlap < bytes) {
2472         unmap_memory(base[i], top_overlap);
2473         base[i] += top_overlap;
2474         size[i] = bytes - top_overlap;
2475       } else {
2476         size_t bottom_overlap = base[i] + bytes - requested_addr;
2477         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2478           unmap_memory(requested_addr, bottom_overlap);
2479           size[i] = bytes - bottom_overlap;
2480         } else {
2481           size[i] = bytes;
2482         }
2483       }
2484     }
2485   }
2486 
2487   // Give back the unused reserved pieces.
2488 
2489   for (int j = 0; j < i; ++j) {
2490     if (base[j] != NULL) {
2491       unmap_memory(base[j], size[j]);
2492     }
2493   }
2494 
2495   if (i < max_tries) {
2496     return requested_addr;
2497   } else {
2498     return NULL;
2499   }
2500 }
2501 
2502 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2503   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2504 }
2505 
2506 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2507   RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2508 }
2509 
2510 void os::naked_short_sleep(jlong ms) {
2511   struct timespec req;
2512 
2513   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2514   req.tv_sec = 0;
2515   if (ms > 0) {
2516     req.tv_nsec = (ms % 1000) * 1000000;
2517   } else {
2518     req.tv_nsec = 1;
2519   }
2520 
2521   nanosleep(&req, NULL);
2522 
2523   return;
2524 }
2525 
2526 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2527 void os::infinite_sleep() {
2528   while (true) {    // sleep forever ...
2529     ::sleep(100);   // ... 100 seconds at a time
2530   }
2531 }
2532 
2533 // Used to convert frequent JVM_Yield() to nops
2534 bool os::dont_yield() {
2535   return DontYieldALot;
2536 }
2537 
2538 void os::naked_yield() {
2539   sched_yield();
2540 }
2541 
2542 ////////////////////////////////////////////////////////////////////////////////
2543 // thread priority support
2544 
2545 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2546 // only supports dynamic priority, static priority must be zero. For real-time
2547 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
2548 // However, for large multi-threaded applications, SCHED_RR is not only slower
2549 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2550 // of 5 runs - Sep 2005).
2551 //
2552 // The following code actually changes the niceness of kernel-thread/LWP. It
2553 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2554 // not the entire user process, and user level threads are 1:1 mapped to kernel
2555 // threads. It has always been the case, but could change in the future. For
2556 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2557 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2558 
2559 #if !defined(__APPLE__)
2560 int os::java_to_os_priority[CriticalPriority + 1] = {
2561   19,              // 0 Entry should never be used
2562 
2563    0,              // 1 MinPriority
2564    3,              // 2
2565    6,              // 3
2566 
2567   10,              // 4
2568   15,              // 5 NormPriority
2569   18,              // 6
2570 
2571   21,              // 7
2572   25,              // 8
2573   28,              // 9 NearMaxPriority
2574 
2575   31,              // 10 MaxPriority
2576 
2577   31               // 11 CriticalPriority
2578 };
2579 #else
2580 // Using Mach high-level priority assignments
2581 int os::java_to_os_priority[CriticalPriority + 1] = {
2582    0,              // 0 Entry should never be used (MINPRI_USER)
2583 
2584   27,              // 1 MinPriority
2585   28,              // 2
2586   29,              // 3
2587 
2588   30,              // 4
2589   31,              // 5 NormPriority (BASEPRI_DEFAULT)
2590   32,              // 6
2591 
2592   33,              // 7
2593   34,              // 8
2594   35,              // 9 NearMaxPriority
2595 
2596   36,              // 10 MaxPriority
2597 
2598   36               // 11 CriticalPriority
2599 };
2600 #endif
2601 
2602 static int prio_init() {
2603   if (ThreadPriorityPolicy == 1) {
2604     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2605     // if effective uid is not root. Perhaps, a more elegant way of doing
2606     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2607     if (geteuid() != 0) {
2608       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2609         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2610       }
2611       ThreadPriorityPolicy = 0;
2612     }
2613   }
2614   if (UseCriticalJavaThreadPriority) {
2615     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2616   }
2617   return 0;
2618 }
2619 
2620 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2621   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2622 
2623 #ifdef __OpenBSD__
2624   // OpenBSD pthread_setprio starves low priority threads
2625   return OS_OK;
2626 #elif defined(__FreeBSD__)
2627   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2628 #elif defined(__APPLE__) || defined(__NetBSD__)
2629   struct sched_param sp;
2630   int policy;
2631   pthread_t self = pthread_self();
2632 
2633   if (pthread_getschedparam(self, &policy, &sp) != 0) {
2634     return OS_ERR;
2635   }
2636 
2637   sp.sched_priority = newpri;
2638   if (pthread_setschedparam(self, policy, &sp) != 0) {
2639     return OS_ERR;
2640   }
2641 
2642   return OS_OK;
2643 #else
2644   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2645   return (ret == 0) ? OS_OK : OS_ERR;
2646 #endif
2647 }
2648 
2649 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2650   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2651     *priority_ptr = java_to_os_priority[NormPriority];
2652     return OS_OK;
2653   }
2654 
2655   errno = 0;
2656 #if defined(__OpenBSD__) || defined(__FreeBSD__)
2657   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2658 #elif defined(__APPLE__) || defined(__NetBSD__)
2659   int policy;
2660   struct sched_param sp;
2661 
2662   pthread_getschedparam(pthread_self(), &policy, &sp);
2663   *priority_ptr = sp.sched_priority;
2664 #else
2665   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2666 #endif
2667   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2668 }
2669 
2670 // Hint to the underlying OS that a task switch would not be good.
2671 // Void return because it's a hint and can fail.
2672 void os::hint_no_preempt() {}
2673 
2674 ////////////////////////////////////////////////////////////////////////////////
2675 // suspend/resume support
2676 
2677 //  the low-level signal-based suspend/resume support is a remnant from the
2678 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2679 //  within hotspot. Now there is a single use-case for this:
2680 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2681 //      that runs in the watcher thread.
2682 //  The remaining code is greatly simplified from the more general suspension
2683 //  code that used to be used.
2684 //
2685 //  The protocol is quite simple:
2686 //  - suspend:
2687 //      - sends a signal to the target thread
2688 //      - polls the suspend state of the osthread using a yield loop
2689 //      - target thread signal handler (SR_handler) sets suspend state
2690 //        and blocks in sigsuspend until continued
2691 //  - resume:
2692 //      - sets target osthread state to continue
2693 //      - sends signal to end the sigsuspend loop in the SR_handler
2694 //
2695 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2696 //  but is checked for NULL in SR_handler as a thread termination indicator.
2697 
2698 static void resume_clear_context(OSThread *osthread) {
2699   osthread->set_ucontext(NULL);
2700   osthread->set_siginfo(NULL);
2701 }
2702 
2703 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2704   osthread->set_ucontext(context);
2705   osthread->set_siginfo(siginfo);
2706 }
2707 
2708 // Handler function invoked when a thread's execution is suspended or
2709 // resumed. We have to be careful that only async-safe functions are
2710 // called here (Note: most pthread functions are not async safe and
2711 // should be avoided.)
2712 //
2713 // Note: sigwait() is a more natural fit than sigsuspend() from an
2714 // interface point of view, but sigwait() prevents the signal hander
2715 // from being run. libpthread would get very confused by not having
2716 // its signal handlers run and prevents sigwait()'s use with the
2717 // mutex granting granting signal.
2718 //
2719 // Currently only ever called on the VMThread or JavaThread
2720 //
2721 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2722   // Save and restore errno to avoid confusing native code with EINTR
2723   // after sigsuspend.
2724   int old_errno = errno;
2725 
2726   Thread* thread = Thread::current_or_null_safe();
2727   assert(thread != NULL, "Missing current thread in SR_handler");
2728 
2729   // On some systems we have seen signal delivery get "stuck" until the signal
2730   // mask is changed as part of thread termination. Check that the current thread
2731   // has not already terminated (via SR_lock()) - else the following assertion
2732   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2733   // destructor has completed.
2734 
2735   if (thread->SR_lock() == NULL) {
2736     return;
2737   }
2738 
2739   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2740 
2741   OSThread* osthread = thread->osthread();
2742 
2743   os::SuspendResume::State current = osthread->sr.state();
2744   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2745     suspend_save_context(osthread, siginfo, context);
2746 
2747     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2748     os::SuspendResume::State state = osthread->sr.suspended();
2749     if (state == os::SuspendResume::SR_SUSPENDED) {
2750       sigset_t suspend_set;  // signals for sigsuspend()
2751 
2752       // get current set of blocked signals and unblock resume signal
2753       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2754       sigdelset(&suspend_set, SR_signum);
2755 
2756       sr_semaphore.signal();
2757       // wait here until we are resumed
2758       while (1) {
2759         sigsuspend(&suspend_set);
2760 
2761         os::SuspendResume::State result = osthread->sr.running();
2762         if (result == os::SuspendResume::SR_RUNNING) {
2763           sr_semaphore.signal();
2764           break;
2765         } else if (result != os::SuspendResume::SR_SUSPENDED) {
2766           ShouldNotReachHere();
2767         }
2768       }
2769 
2770     } else if (state == os::SuspendResume::SR_RUNNING) {
2771       // request was cancelled, continue
2772     } else {
2773       ShouldNotReachHere();
2774     }
2775 
2776     resume_clear_context(osthread);
2777   } else if (current == os::SuspendResume::SR_RUNNING) {
2778     // request was cancelled, continue
2779   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2780     // ignore
2781   } else {
2782     // ignore
2783   }
2784 
2785   errno = old_errno;
2786 }
2787 
2788 
2789 static int SR_initialize() {
2790   struct sigaction act;
2791   char *s;
2792   // Get signal number to use for suspend/resume
2793   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2794     int sig = ::strtol(s, 0, 10);
2795     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2796         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2797       SR_signum = sig;
2798     } else {
2799       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2800               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2801     }
2802   }
2803 
2804   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2805          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2806 
2807   sigemptyset(&SR_sigset);
2808   sigaddset(&SR_sigset, SR_signum);
2809 
2810   // Set up signal handler for suspend/resume
2811   act.sa_flags = SA_RESTART|SA_SIGINFO;
2812   act.sa_handler = (void (*)(int)) SR_handler;
2813 
2814   // SR_signum is blocked by default.
2815   // 4528190 - We also need to block pthread restart signal (32 on all
2816   // supported Bsd platforms). Note that BsdThreads need to block
2817   // this signal for all threads to work properly. So we don't have
2818   // to use hard-coded signal number when setting up the mask.
2819   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2820 
2821   if (sigaction(SR_signum, &act, 0) == -1) {
2822     return -1;
2823   }
2824 
2825   // Save signal flag
2826   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2827   return 0;
2828 }
2829 
2830 static int sr_notify(OSThread* osthread) {
2831   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2832   assert_status(status == 0, status, "pthread_kill");
2833   return status;
2834 }
2835 
2836 // "Randomly" selected value for how long we want to spin
2837 // before bailing out on suspending a thread, also how often
2838 // we send a signal to a thread we want to resume
2839 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2840 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2841 
2842 // returns true on success and false on error - really an error is fatal
2843 // but this seems the normal response to library errors
2844 static bool do_suspend(OSThread* osthread) {
2845   assert(osthread->sr.is_running(), "thread should be running");
2846   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2847 
2848   // mark as suspended and send signal
2849   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2850     // failed to switch, state wasn't running?
2851     ShouldNotReachHere();
2852     return false;
2853   }
2854 
2855   if (sr_notify(osthread) != 0) {
2856     ShouldNotReachHere();
2857   }
2858 
2859   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2860   while (true) {
2861     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2862       break;
2863     } else {
2864       // timeout
2865       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2866       if (cancelled == os::SuspendResume::SR_RUNNING) {
2867         return false;
2868       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2869         // make sure that we consume the signal on the semaphore as well
2870         sr_semaphore.wait();
2871         break;
2872       } else {
2873         ShouldNotReachHere();
2874         return false;
2875       }
2876     }
2877   }
2878 
2879   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2880   return true;
2881 }
2882 
2883 static void do_resume(OSThread* osthread) {
2884   assert(osthread->sr.is_suspended(), "thread should be suspended");
2885   assert(!sr_semaphore.trywait(), "invalid semaphore state");
2886 
2887   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2888     // failed to switch to WAKEUP_REQUEST
2889     ShouldNotReachHere();
2890     return;
2891   }
2892 
2893   while (true) {
2894     if (sr_notify(osthread) == 0) {
2895       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2896         if (osthread->sr.is_running()) {
2897           return;
2898         }
2899       }
2900     } else {
2901       ShouldNotReachHere();
2902     }
2903   }
2904 
2905   guarantee(osthread->sr.is_running(), "Must be running!");
2906 }
2907 
2908 ///////////////////////////////////////////////////////////////////////////////////
2909 // signal handling (except suspend/resume)
2910 
2911 // This routine may be used by user applications as a "hook" to catch signals.
2912 // The user-defined signal handler must pass unrecognized signals to this
2913 // routine, and if it returns true (non-zero), then the signal handler must
2914 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
2915 // routine will never retun false (zero), but instead will execute a VM panic
2916 // routine kill the process.
2917 //
2918 // If this routine returns false, it is OK to call it again.  This allows
2919 // the user-defined signal handler to perform checks either before or after
2920 // the VM performs its own checks.  Naturally, the user code would be making
2921 // a serious error if it tried to handle an exception (such as a null check
2922 // or breakpoint) that the VM was generating for its own correct operation.
2923 //
2924 // This routine may recognize any of the following kinds of signals:
2925 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2926 // It should be consulted by handlers for any of those signals.
2927 //
2928 // The caller of this routine must pass in the three arguments supplied
2929 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2930 // field of the structure passed to sigaction().  This routine assumes that
2931 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2932 //
2933 // Note that the VM will print warnings if it detects conflicting signal
2934 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2935 //
2936 extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2937                                                void* ucontext,
2938                                                int abort_if_unrecognized);
2939 
2940 void signalHandler(int sig, siginfo_t* info, void* uc) {
2941   assert(info != NULL && uc != NULL, "it must be old kernel");
2942   int orig_errno = errno;  // Preserve errno value over signal handler.
2943   JVM_handle_bsd_signal(sig, info, uc, true);
2944   errno = orig_errno;
2945 }
2946 
2947 
2948 // This boolean allows users to forward their own non-matching signals
2949 // to JVM_handle_bsd_signal, harmlessly.
2950 bool os::Bsd::signal_handlers_are_installed = false;
2951 
2952 // For signal-chaining
2953 struct sigaction sigact[NSIG];
2954 uint32_t sigs = 0;
2955 #if (32 < NSIG-1)
2956 #error "Not all signals can be encoded in sigs. Adapt its type!"
2957 #endif
2958 bool os::Bsd::libjsig_is_loaded = false;
2959 typedef struct sigaction *(*get_signal_t)(int);
2960 get_signal_t os::Bsd::get_signal_action = NULL;
2961 
2962 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2963   struct sigaction *actp = NULL;
2964 
2965   if (libjsig_is_loaded) {
2966     // Retrieve the old signal handler from libjsig
2967     actp = (*get_signal_action)(sig);
2968   }
2969   if (actp == NULL) {
2970     // Retrieve the preinstalled signal handler from jvm
2971     actp = get_preinstalled_handler(sig);
2972   }
2973 
2974   return actp;
2975 }
2976 
2977 static bool call_chained_handler(struct sigaction *actp, int sig,
2978                                  siginfo_t *siginfo, void *context) {
2979   // Call the old signal handler
2980   if (actp->sa_handler == SIG_DFL) {
2981     // It's more reasonable to let jvm treat it as an unexpected exception
2982     // instead of taking the default action.
2983     return false;
2984   } else if (actp->sa_handler != SIG_IGN) {
2985     if ((actp->sa_flags & SA_NODEFER) == 0) {
2986       // automaticlly block the signal
2987       sigaddset(&(actp->sa_mask), sig);
2988     }
2989 
2990     sa_handler_t hand;
2991     sa_sigaction_t sa;
2992     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2993     // retrieve the chained handler
2994     if (siginfo_flag_set) {
2995       sa = actp->sa_sigaction;
2996     } else {
2997       hand = actp->sa_handler;
2998     }
2999 
3000     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3001       actp->sa_handler = SIG_DFL;
3002     }
3003 
3004     // try to honor the signal mask
3005     sigset_t oset;
3006     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3007 
3008     // call into the chained handler
3009     if (siginfo_flag_set) {
3010       (*sa)(sig, siginfo, context);
3011     } else {
3012       (*hand)(sig);
3013     }
3014 
3015     // restore the signal mask
3016     pthread_sigmask(SIG_SETMASK, &oset, 0);
3017   }
3018   // Tell jvm's signal handler the signal is taken care of.
3019   return true;
3020 }
3021 
3022 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3023   bool chained = false;
3024   // signal-chaining
3025   if (UseSignalChaining) {
3026     struct sigaction *actp = get_chained_signal_action(sig);
3027     if (actp != NULL) {
3028       chained = call_chained_handler(actp, sig, siginfo, context);
3029     }
3030   }
3031   return chained;
3032 }
3033 
3034 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3035   if ((((uint32_t)1 << (sig-1)) & sigs) != 0) {
3036     return &sigact[sig];
3037   }
3038   return NULL;
3039 }
3040 
3041 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3042   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3043   sigact[sig] = oldAct;
3044   sigs |= (uint32_t)1 << (sig-1);
3045 }
3046 
3047 // for diagnostic
3048 int sigflags[NSIG];
3049 
3050 int os::Bsd::get_our_sigflags(int sig) {
3051   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3052   return sigflags[sig];
3053 }
3054 
3055 void os::Bsd::set_our_sigflags(int sig, int flags) {
3056   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3057   if (sig > 0 && sig < NSIG) {
3058     sigflags[sig] = flags;
3059   }
3060 }
3061 
3062 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3063   // Check for overwrite.
3064   struct sigaction oldAct;
3065   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3066 
3067   void* oldhand = oldAct.sa_sigaction
3068                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3069                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3070   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3071       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3072       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3073     if (AllowUserSignalHandlers || !set_installed) {
3074       // Do not overwrite; user takes responsibility to forward to us.
3075       return;
3076     } else if (UseSignalChaining) {
3077       // save the old handler in jvm
3078       save_preinstalled_handler(sig, oldAct);
3079       // libjsig also interposes the sigaction() call below and saves the
3080       // old sigaction on it own.
3081     } else {
3082       fatal("Encountered unexpected pre-existing sigaction handler "
3083             "%#lx for signal %d.", (long)oldhand, sig);
3084     }
3085   }
3086 
3087   struct sigaction sigAct;
3088   sigfillset(&(sigAct.sa_mask));
3089   sigAct.sa_handler = SIG_DFL;
3090   if (!set_installed) {
3091     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3092   } else {
3093     sigAct.sa_sigaction = signalHandler;
3094     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3095   }
3096 #ifdef __APPLE__
3097   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3098   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3099   // if the signal handler declares it will handle it on alternate stack.
3100   // Notice we only declare we will handle it on alt stack, but we are not
3101   // actually going to use real alt stack - this is just a workaround.
3102   // Please see ux_exception.c, method catch_mach_exception_raise for details
3103   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3104   if (sig == SIGSEGV) {
3105     sigAct.sa_flags |= SA_ONSTACK;
3106   }
3107 #endif
3108 
3109   // Save flags, which are set by ours
3110   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3111   sigflags[sig] = sigAct.sa_flags;
3112 
3113   int ret = sigaction(sig, &sigAct, &oldAct);
3114   assert(ret == 0, "check");
3115 
3116   void* oldhand2  = oldAct.sa_sigaction
3117                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3118                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3119   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3120 }
3121 
3122 // install signal handlers for signals that HotSpot needs to
3123 // handle in order to support Java-level exception handling.
3124 
3125 void os::Bsd::install_signal_handlers() {
3126   if (!signal_handlers_are_installed) {
3127     signal_handlers_are_installed = true;
3128 
3129     // signal-chaining
3130     typedef void (*signal_setting_t)();
3131     signal_setting_t begin_signal_setting = NULL;
3132     signal_setting_t end_signal_setting = NULL;
3133     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3134                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3135     if (begin_signal_setting != NULL) {
3136       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3137                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3138       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3139                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3140       libjsig_is_loaded = true;
3141       assert(UseSignalChaining, "should enable signal-chaining");
3142     }
3143     if (libjsig_is_loaded) {
3144       // Tell libjsig jvm is setting signal handlers
3145       (*begin_signal_setting)();
3146     }
3147 
3148     set_signal_handler(SIGSEGV, true);
3149     set_signal_handler(SIGPIPE, true);
3150     set_signal_handler(SIGBUS, true);
3151     set_signal_handler(SIGILL, true);
3152     set_signal_handler(SIGFPE, true);
3153     set_signal_handler(SIGXFSZ, true);
3154 
3155 #if defined(__APPLE__)
3156     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3157     // signals caught and handled by the JVM. To work around this, we reset the mach task
3158     // signal handler that's placed on our process by CrashReporter. This disables
3159     // CrashReporter-based reporting.
3160     //
3161     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3162     // on caught fatal signals.
3163     //
3164     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3165     // handlers. By replacing the existing task exception handler, we disable gdb's mach
3166     // exception handling, while leaving the standard BSD signal handlers functional.
3167     kern_return_t kr;
3168     kr = task_set_exception_ports(mach_task_self(),
3169                                   EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3170                                   MACH_PORT_NULL,
3171                                   EXCEPTION_STATE_IDENTITY,
3172                                   MACHINE_THREAD_STATE);
3173 
3174     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3175 #endif
3176 
3177     if (libjsig_is_loaded) {
3178       // Tell libjsig jvm finishes setting signal handlers
3179       (*end_signal_setting)();
3180     }
3181 
3182     // We don't activate signal checker if libjsig is in place, we trust ourselves
3183     // and if UserSignalHandler is installed all bets are off
3184     if (CheckJNICalls) {
3185       if (libjsig_is_loaded) {
3186         if (PrintJNIResolving) {
3187           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3188         }
3189         check_signals = false;
3190       }
3191       if (AllowUserSignalHandlers) {
3192         if (PrintJNIResolving) {
3193           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3194         }
3195         check_signals = false;
3196       }
3197     }
3198   }
3199 }
3200 
3201 
3202 /////
3203 // glibc on Bsd platform uses non-documented flag
3204 // to indicate, that some special sort of signal
3205 // trampoline is used.
3206 // We will never set this flag, and we should
3207 // ignore this flag in our diagnostic
3208 #ifdef SIGNIFICANT_SIGNAL_MASK
3209   #undef SIGNIFICANT_SIGNAL_MASK
3210 #endif
3211 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3212 
3213 static const char* get_signal_handler_name(address handler,
3214                                            char* buf, int buflen) {
3215   int offset;
3216   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3217   if (found) {
3218     // skip directory names
3219     const char *p1, *p2;
3220     p1 = buf;
3221     size_t len = strlen(os::file_separator());
3222     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3223     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3224   } else {
3225     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3226   }
3227   return buf;
3228 }
3229 
3230 static void print_signal_handler(outputStream* st, int sig,
3231                                  char* buf, size_t buflen) {
3232   struct sigaction sa;
3233 
3234   sigaction(sig, NULL, &sa);
3235 
3236   // See comment for SIGNIFICANT_SIGNAL_MASK define
3237   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3238 
3239   st->print("%s: ", os::exception_name(sig, buf, buflen));
3240 
3241   address handler = (sa.sa_flags & SA_SIGINFO)
3242     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3243     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3244 
3245   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3246     st->print("SIG_DFL");
3247   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3248     st->print("SIG_IGN");
3249   } else {
3250     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3251   }
3252 
3253   st->print(", sa_mask[0]=");
3254   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3255 
3256   address rh = VMError::get_resetted_sighandler(sig);
3257   // May be, handler was resetted by VMError?
3258   if (rh != NULL) {
3259     handler = rh;
3260     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3261   }
3262 
3263   st->print(", sa_flags=");
3264   os::Posix::print_sa_flags(st, sa.sa_flags);
3265 
3266   // Check: is it our handler?
3267   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3268       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3269     // It is our signal handler
3270     // check for flags, reset system-used one!
3271     if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3272       st->print(
3273                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3274                 os::Bsd::get_our_sigflags(sig));
3275     }
3276   }
3277   st->cr();
3278 }
3279 
3280 
3281 #define DO_SIGNAL_CHECK(sig)                      \
3282   do {                                            \
3283     if (!sigismember(&check_signal_done, sig)) {  \
3284       os::Bsd::check_signal_handler(sig);         \
3285     }                                             \
3286   } while (0)
3287 
3288 // This method is a periodic task to check for misbehaving JNI applications
3289 // under CheckJNI, we can add any periodic checks here
3290 
3291 void os::run_periodic_checks() {
3292 
3293   if (check_signals == false) return;
3294 
3295   // SEGV and BUS if overridden could potentially prevent
3296   // generation of hs*.log in the event of a crash, debugging
3297   // such a case can be very challenging, so we absolutely
3298   // check the following for a good measure:
3299   DO_SIGNAL_CHECK(SIGSEGV);
3300   DO_SIGNAL_CHECK(SIGILL);
3301   DO_SIGNAL_CHECK(SIGFPE);
3302   DO_SIGNAL_CHECK(SIGBUS);
3303   DO_SIGNAL_CHECK(SIGPIPE);
3304   DO_SIGNAL_CHECK(SIGXFSZ);
3305 
3306 
3307   // ReduceSignalUsage allows the user to override these handlers
3308   // see comments at the very top and jvm_solaris.h
3309   if (!ReduceSignalUsage) {
3310     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3311     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3312     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3313     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3314   }
3315 
3316   DO_SIGNAL_CHECK(SR_signum);
3317 }
3318 
3319 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3320 
3321 static os_sigaction_t os_sigaction = NULL;
3322 
3323 void os::Bsd::check_signal_handler(int sig) {
3324   char buf[O_BUFLEN];
3325   address jvmHandler = NULL;
3326 
3327 
3328   struct sigaction act;
3329   if (os_sigaction == NULL) {
3330     // only trust the default sigaction, in case it has been interposed
3331     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3332     if (os_sigaction == NULL) return;
3333   }
3334 
3335   os_sigaction(sig, (struct sigaction*)NULL, &act);
3336 
3337 
3338   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3339 
3340   address thisHandler = (act.sa_flags & SA_SIGINFO)
3341     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3342     : CAST_FROM_FN_PTR(address, act.sa_handler);
3343 
3344 
3345   switch (sig) {
3346   case SIGSEGV:
3347   case SIGBUS:
3348   case SIGFPE:
3349   case SIGPIPE:
3350   case SIGILL:
3351   case SIGXFSZ:
3352     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3353     break;
3354 
3355   case SHUTDOWN1_SIGNAL:
3356   case SHUTDOWN2_SIGNAL:
3357   case SHUTDOWN3_SIGNAL:
3358   case BREAK_SIGNAL:
3359     jvmHandler = (address)user_handler();
3360     break;
3361 
3362   default:
3363     if (sig == SR_signum) {
3364       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3365     } else {
3366       return;
3367     }
3368     break;
3369   }
3370 
3371   if (thisHandler != jvmHandler) {
3372     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3373     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3374     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3375     // No need to check this sig any longer
3376     sigaddset(&check_signal_done, sig);
3377     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3378     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3379       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3380                     exception_name(sig, buf, O_BUFLEN));
3381     }
3382   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3383     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3384     tty->print("expected:");
3385     os::Posix::print_sa_flags(tty, os::Bsd::get_our_sigflags(sig));
3386     tty->cr();
3387     tty->print("  found:");
3388     os::Posix::print_sa_flags(tty, act.sa_flags);
3389     tty->cr();
3390     // No need to check this sig any longer
3391     sigaddset(&check_signal_done, sig);
3392   }
3393 
3394   // Dump all the signal
3395   if (sigismember(&check_signal_done, sig)) {
3396     print_signal_handlers(tty, buf, O_BUFLEN);
3397   }
3398 }
3399 
3400 extern void report_error(char* file_name, int line_no, char* title,
3401                          char* format, ...);
3402 
3403 // this is called _before_ the most of global arguments have been parsed
3404 void os::init(void) {
3405   char dummy;   // used to get a guess on initial stack address
3406 //  first_hrtime = gethrtime();
3407 
3408   // With BsdThreads the JavaMain thread pid (primordial thread)
3409   // is different than the pid of the java launcher thread.
3410   // So, on Bsd, the launcher thread pid is passed to the VM
3411   // via the sun.java.launcher.pid property.
3412   // Use this property instead of getpid() if it was correctly passed.
3413   // See bug 6351349.
3414   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3415 
3416   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3417 
3418   clock_tics_per_sec = CLK_TCK;
3419 
3420   init_random(1234567);
3421 
3422   ThreadCritical::initialize();
3423 
3424   Bsd::set_page_size(getpagesize());
3425   if (Bsd::page_size() == -1) {
3426     fatal("os_bsd.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
3427   }
3428   init_page_sizes((size_t) Bsd::page_size());
3429 
3430   Bsd::initialize_system_info();
3431 
3432   // main_thread points to the aboriginal thread
3433   Bsd::_main_thread = pthread_self();
3434 
3435   Bsd::clock_init();
3436   initial_time_count = javaTimeNanos();
3437 
3438 #ifdef __APPLE__
3439   // XXXDARWIN
3440   // Work around the unaligned VM callbacks in hotspot's
3441   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3442   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3443   // alignment when doing symbol lookup. To work around this, we force early
3444   // binding of all symbols now, thus binding when alignment is known-good.
3445   _dyld_bind_fully_image_containing_address((const void *) &os::init);
3446 #endif
3447 }
3448 
3449 // To install functions for atexit system call
3450 extern "C" {
3451   static void perfMemory_exit_helper() {
3452     perfMemory_exit();
3453   }
3454 }
3455 
3456 // this is called _after_ the global arguments have been parsed
3457 jint os::init_2(void) {
3458   // Allocate a single page and mark it as readable for safepoint polling
3459   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3460   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3461 
3462   os::set_polling_page(polling_page);
3463   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
3464 
3465   if (!UseMembar) {
3466     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3467     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3468     os::set_memory_serialize_page(mem_serialize_page);
3469     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
3470   }
3471 
3472   // initialize suspend/resume support - must do this before signal_sets_init()
3473   if (SR_initialize() != 0) {
3474     perror("SR_initialize failed");
3475     return JNI_ERR;
3476   }
3477 
3478   Bsd::signal_sets_init();
3479   Bsd::install_signal_handlers();
3480 
3481   // Check and sets minimum stack sizes against command line options
3482   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3483     return JNI_ERR;
3484   }
3485 
3486   if (MaxFDLimit) {
3487     // set the number of file descriptors to max. print out error
3488     // if getrlimit/setrlimit fails but continue regardless.
3489     struct rlimit nbr_files;
3490     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3491     if (status != 0) {
3492       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3493     } else {
3494       nbr_files.rlim_cur = nbr_files.rlim_max;
3495 
3496 #ifdef __APPLE__
3497       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3498       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3499       // be used instead
3500       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3501 #endif
3502 
3503       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3504       if (status != 0) {
3505         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3506       }
3507     }
3508   }
3509 
3510   // at-exit methods are called in the reverse order of their registration.
3511   // atexit functions are called on return from main or as a result of a
3512   // call to exit(3C). There can be only 32 of these functions registered
3513   // and atexit() does not set errno.
3514 
3515   if (PerfAllowAtExitRegistration) {
3516     // only register atexit functions if PerfAllowAtExitRegistration is set.
3517     // atexit functions can be delayed until process exit time, which
3518     // can be problematic for embedded VM situations. Embedded VMs should
3519     // call DestroyJavaVM() to assure that VM resources are released.
3520 
3521     // note: perfMemory_exit_helper atexit function may be removed in
3522     // the future if the appropriate cleanup code can be added to the
3523     // VM_Exit VMOperation's doit method.
3524     if (atexit(perfMemory_exit_helper) != 0) {
3525       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3526     }
3527   }
3528 
3529   // initialize thread priority policy
3530   prio_init();
3531 
3532 #ifdef __APPLE__
3533   // dynamically link to objective c gc registration
3534   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3535   if (handleLibObjc != NULL) {
3536     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3537   }
3538 #endif
3539 
3540   return JNI_OK;
3541 }
3542 
3543 // Mark the polling page as unreadable
3544 void os::make_polling_page_unreadable(void) {
3545   if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3546     fatal("Could not disable polling page");
3547   }
3548 }
3549 
3550 // Mark the polling page as readable
3551 void os::make_polling_page_readable(void) {
3552   if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3553     fatal("Could not enable polling page");
3554   }
3555 }
3556 
3557 int os::active_processor_count() {
3558   return _processor_count;
3559 }
3560 
3561 void os::set_native_thread_name(const char *name) {
3562 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3563   // This is only supported in Snow Leopard and beyond
3564   if (name != NULL) {
3565     // Add a "Java: " prefix to the name
3566     char buf[MAXTHREADNAMESIZE];
3567     snprintf(buf, sizeof(buf), "Java: %s", name);
3568     pthread_setname_np(buf);
3569   }
3570 #endif
3571 }
3572 
3573 bool os::distribute_processes(uint length, uint* distribution) {
3574   // Not yet implemented.
3575   return false;
3576 }
3577 
3578 bool os::bind_to_processor(uint processor_id) {
3579   // Not yet implemented.
3580   return false;
3581 }
3582 
3583 void os::SuspendedThreadTask::internal_do_task() {
3584   if (do_suspend(_thread->osthread())) {
3585     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3586     do_task(context);
3587     do_resume(_thread->osthread());
3588   }
3589 }
3590 
3591 ///
3592 class PcFetcher : public os::SuspendedThreadTask {
3593  public:
3594   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3595   ExtendedPC result();
3596  protected:
3597   void do_task(const os::SuspendedThreadTaskContext& context);
3598  private:
3599   ExtendedPC _epc;
3600 };
3601 
3602 ExtendedPC PcFetcher::result() {
3603   guarantee(is_done(), "task is not done yet.");
3604   return _epc;
3605 }
3606 
3607 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3608   Thread* thread = context.thread();
3609   OSThread* osthread = thread->osthread();
3610   if (osthread->ucontext() != NULL) {
3611     _epc = os::Bsd::ucontext_get_pc((const ucontext_t *) context.ucontext());
3612   } else {
3613     // NULL context is unexpected, double-check this is the VMThread
3614     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3615   }
3616 }
3617 
3618 // Suspends the target using the signal mechanism and then grabs the PC before
3619 // resuming the target. Used by the flat-profiler only
3620 ExtendedPC os::get_thread_pc(Thread* thread) {
3621   // Make sure that it is called by the watcher for the VMThread
3622   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3623   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3624 
3625   PcFetcher fetcher(thread);
3626   fetcher.run();
3627   return fetcher.result();
3628 }
3629 
3630 ////////////////////////////////////////////////////////////////////////////////
3631 // debug support
3632 
3633 bool os::find(address addr, outputStream* st) {
3634   Dl_info dlinfo;
3635   memset(&dlinfo, 0, sizeof(dlinfo));
3636   if (dladdr(addr, &dlinfo) != 0) {
3637     st->print(PTR_FORMAT ": ", addr);
3638     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3639       st->print("%s+%#x", dlinfo.dli_sname,
3640                 addr - (intptr_t)dlinfo.dli_saddr);
3641     } else if (dlinfo.dli_fbase != NULL) {
3642       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3643     } else {
3644       st->print("<absolute address>");
3645     }
3646     if (dlinfo.dli_fname != NULL) {
3647       st->print(" in %s", dlinfo.dli_fname);
3648     }
3649     if (dlinfo.dli_fbase != NULL) {
3650       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3651     }
3652     st->cr();
3653 
3654     if (Verbose) {
3655       // decode some bytes around the PC
3656       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3657       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3658       address       lowest = (address) dlinfo.dli_sname;
3659       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3660       if (begin < lowest)  begin = lowest;
3661       Dl_info dlinfo2;
3662       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3663           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3664         end = (address) dlinfo2.dli_saddr;
3665       }
3666       Disassembler::decode(begin, end, st);
3667     }
3668     return true;
3669   }
3670   return false;
3671 }
3672 
3673 ////////////////////////////////////////////////////////////////////////////////
3674 // misc
3675 
3676 // This does not do anything on Bsd. This is basically a hook for being
3677 // able to use structured exception handling (thread-local exception filters)
3678 // on, e.g., Win32.
3679 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3680                               const methodHandle& method, JavaCallArguments* args,
3681                               Thread* thread) {
3682   f(value, method, args, thread);
3683 }
3684 
3685 void os::print_statistics() {
3686 }
3687 
3688 bool os::message_box(const char* title, const char* message) {
3689   int i;
3690   fdStream err(defaultStream::error_fd());
3691   for (i = 0; i < 78; i++) err.print_raw("=");
3692   err.cr();
3693   err.print_raw_cr(title);
3694   for (i = 0; i < 78; i++) err.print_raw("-");
3695   err.cr();
3696   err.print_raw_cr(message);
3697   for (i = 0; i < 78; i++) err.print_raw("=");
3698   err.cr();
3699 
3700   char buf[16];
3701   // Prevent process from exiting upon "read error" without consuming all CPU
3702   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3703 
3704   return buf[0] == 'y' || buf[0] == 'Y';
3705 }
3706 
3707 int os::stat(const char *path, struct stat *sbuf) {
3708   char pathbuf[MAX_PATH];
3709   if (strlen(path) > MAX_PATH - 1) {
3710     errno = ENAMETOOLONG;
3711     return -1;
3712   }
3713   os::native_path(strcpy(pathbuf, path));
3714   return ::stat(pathbuf, sbuf);
3715 }
3716 
3717 static inline struct timespec get_mtime(const char* filename) {
3718   struct stat st;
3719   int ret = os::stat(filename, &st);
3720   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
3721 #ifdef __APPLE__
3722   return st.st_mtimespec;
3723 #else
3724   return st.st_mtim;
3725 #endif
3726 }
3727 
3728 int os::compare_file_modified_times(const char* file1, const char* file2) {
3729   struct timespec filetime1 = get_mtime(file1);
3730   struct timespec filetime2 = get_mtime(file2);
3731   int diff = filetime1.tv_sec - filetime2.tv_sec;
3732   if (diff == 0) {
3733     return filetime1.tv_nsec - filetime2.tv_nsec;
3734   }
3735   return diff;
3736 }
3737 
3738 // Is a (classpath) directory empty?
3739 bool os::dir_is_empty(const char* path) {
3740   DIR *dir = NULL;
3741   struct dirent *ptr;
3742 
3743   dir = opendir(path);
3744   if (dir == NULL) return true;
3745 
3746   // Scan the directory
3747   bool result = true;
3748   char buf[sizeof(struct dirent) + MAX_PATH];
3749   while (result && (ptr = ::readdir(dir)) != NULL) {
3750     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3751       result = false;
3752     }
3753   }
3754   closedir(dir);
3755   return result;
3756 }
3757 
3758 // This code originates from JDK's sysOpen and open64_w
3759 // from src/solaris/hpi/src/system_md.c
3760 
3761 int os::open(const char *path, int oflag, int mode) {
3762   if (strlen(path) > MAX_PATH - 1) {
3763     errno = ENAMETOOLONG;
3764     return -1;
3765   }
3766   int fd;
3767 
3768   fd = ::open(path, oflag, mode);
3769   if (fd == -1) return -1;
3770 
3771   // If the open succeeded, the file might still be a directory
3772   {
3773     struct stat buf;
3774     int ret = ::fstat(fd, &buf);
3775     int st_mode = buf.st_mode;
3776 
3777     if (ret != -1) {
3778       if ((st_mode & S_IFMT) == S_IFDIR) {
3779         errno = EISDIR;
3780         ::close(fd);
3781         return -1;
3782       }
3783     } else {
3784       ::close(fd);
3785       return -1;
3786     }
3787   }
3788 
3789   // All file descriptors that are opened in the JVM and not
3790   // specifically destined for a subprocess should have the
3791   // close-on-exec flag set.  If we don't set it, then careless 3rd
3792   // party native code might fork and exec without closing all
3793   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3794   // UNIXProcess.c), and this in turn might:
3795   //
3796   // - cause end-of-file to fail to be detected on some file
3797   //   descriptors, resulting in mysterious hangs, or
3798   //
3799   // - might cause an fopen in the subprocess to fail on a system
3800   //   suffering from bug 1085341.
3801   //
3802   // (Yes, the default setting of the close-on-exec flag is a Unix
3803   // design flaw)
3804   //
3805   // See:
3806   // 1085341: 32-bit stdio routines should support file descriptors >255
3807   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3808   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3809   //
3810 #ifdef FD_CLOEXEC
3811   {
3812     int flags = ::fcntl(fd, F_GETFD);
3813     if (flags != -1) {
3814       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3815     }
3816   }
3817 #endif
3818 
3819   return fd;
3820 }
3821 
3822 
3823 // create binary file, rewriting existing file if required
3824 int os::create_binary_file(const char* path, bool rewrite_existing) {
3825   int oflags = O_WRONLY | O_CREAT;
3826   if (!rewrite_existing) {
3827     oflags |= O_EXCL;
3828   }
3829   return ::open(path, oflags, S_IREAD | S_IWRITE);
3830 }
3831 
3832 // return current position of file pointer
3833 jlong os::current_file_offset(int fd) {
3834   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3835 }
3836 
3837 // move file pointer to the specified offset
3838 jlong os::seek_to_file_offset(int fd, jlong offset) {
3839   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3840 }
3841 
3842 // This code originates from JDK's sysAvailable
3843 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3844 
3845 int os::available(int fd, jlong *bytes) {
3846   jlong cur, end;
3847   int mode;
3848   struct stat buf;
3849 
3850   if (::fstat(fd, &buf) >= 0) {
3851     mode = buf.st_mode;
3852     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3853       int n;
3854       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3855         *bytes = n;
3856         return 1;
3857       }
3858     }
3859   }
3860   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3861     return 0;
3862   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3863     return 0;
3864   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3865     return 0;
3866   }
3867   *bytes = end - cur;
3868   return 1;
3869 }
3870 
3871 // Map a block of memory.
3872 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3873                         char *addr, size_t bytes, bool read_only,
3874                         bool allow_exec) {
3875   int prot;
3876   int flags;
3877 
3878   if (read_only) {
3879     prot = PROT_READ;
3880     flags = MAP_SHARED;
3881   } else {
3882     prot = PROT_READ | PROT_WRITE;
3883     flags = MAP_PRIVATE;
3884   }
3885 
3886   if (allow_exec) {
3887     prot |= PROT_EXEC;
3888   }
3889 
3890   if (addr != NULL) {
3891     flags |= MAP_FIXED;
3892   }
3893 
3894   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3895                                      fd, file_offset);
3896   if (mapped_address == MAP_FAILED) {
3897     return NULL;
3898   }
3899   return mapped_address;
3900 }
3901 
3902 
3903 // Remap a block of memory.
3904 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3905                           char *addr, size_t bytes, bool read_only,
3906                           bool allow_exec) {
3907   // same as map_memory() on this OS
3908   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3909                         allow_exec);
3910 }
3911 
3912 
3913 // Unmap a block of memory.
3914 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3915   return munmap(addr, bytes) == 0;
3916 }
3917 
3918 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3919 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3920 // of a thread.
3921 //
3922 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3923 // the fast estimate available on the platform.
3924 
3925 jlong os::current_thread_cpu_time() {
3926 #ifdef __APPLE__
3927   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3928 #else
3929   Unimplemented();
3930   return 0;
3931 #endif
3932 }
3933 
3934 jlong os::thread_cpu_time(Thread* thread) {
3935 #ifdef __APPLE__
3936   return os::thread_cpu_time(thread, true /* user + sys */);
3937 #else
3938   Unimplemented();
3939   return 0;
3940 #endif
3941 }
3942 
3943 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3944 #ifdef __APPLE__
3945   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3946 #else
3947   Unimplemented();
3948   return 0;
3949 #endif
3950 }
3951 
3952 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3953 #ifdef __APPLE__
3954   struct thread_basic_info tinfo;
3955   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3956   kern_return_t kr;
3957   thread_t mach_thread;
3958 
3959   mach_thread = thread->osthread()->thread_id();
3960   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3961   if (kr != KERN_SUCCESS) {
3962     return -1;
3963   }
3964 
3965   if (user_sys_cpu_time) {
3966     jlong nanos;
3967     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3968     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3969     return nanos;
3970   } else {
3971     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3972   }
3973 #else
3974   Unimplemented();
3975   return 0;
3976 #endif
3977 }
3978 
3979 
3980 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3981   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3982   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3983   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3984   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3985 }
3986 
3987 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3988   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3989   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3990   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3991   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3992 }
3993 
3994 bool os::is_thread_cpu_time_supported() {
3995 #ifdef __APPLE__
3996   return true;
3997 #else
3998   return false;
3999 #endif
4000 }
4001 
4002 // System loadavg support.  Returns -1 if load average cannot be obtained.
4003 // Bsd doesn't yet have a (official) notion of processor sets,
4004 // so just return the system wide load average.
4005 int os::loadavg(double loadavg[], int nelem) {
4006   return ::getloadavg(loadavg, nelem);
4007 }
4008 
4009 void os::pause() {
4010   char filename[MAX_PATH];
4011   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4012     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4013   } else {
4014     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4015   }
4016 
4017   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4018   if (fd != -1) {
4019     struct stat buf;
4020     ::close(fd);
4021     while (::stat(filename, &buf) == 0) {
4022       (void)::poll(NULL, 0, 100);
4023     }
4024   } else {
4025     jio_fprintf(stderr,
4026                 "Could not open pause file '%s', continuing immediately.\n", filename);
4027   }
4028 }
4029 
4030 
4031 // Refer to the comments in os_solaris.cpp park-unpark. The next two
4032 // comment paragraphs are worth repeating here:
4033 //
4034 // Assumption:
4035 //    Only one parker can exist on an event, which is why we allocate
4036 //    them per-thread. Multiple unparkers can coexist.
4037 //
4038 // _Event serves as a restricted-range semaphore.
4039 //   -1 : thread is blocked, i.e. there is a waiter
4040 //    0 : neutral: thread is running or ready,
4041 //        could have been signaled after a wait started
4042 //    1 : signaled - thread is running or ready
4043 //
4044 
4045 // utility to compute the abstime argument to timedwait:
4046 // millis is the relative timeout time
4047 // abstime will be the absolute timeout time
4048 // TODO: replace compute_abstime() with unpackTime()
4049 
4050 static struct timespec* compute_abstime(struct timespec* abstime,
4051                                         jlong millis) {
4052   if (millis < 0)  millis = 0;
4053   struct timeval now;
4054   int status = gettimeofday(&now, NULL);
4055   assert(status == 0, "gettimeofday");
4056   jlong seconds = millis / 1000;
4057   millis %= 1000;
4058   if (seconds > 50000000) { // see man cond_timedwait(3T)
4059     seconds = 50000000;
4060   }
4061   abstime->tv_sec = now.tv_sec  + seconds;
4062   long       usec = now.tv_usec + millis * 1000;
4063   if (usec >= 1000000) {
4064     abstime->tv_sec += 1;
4065     usec -= 1000000;
4066   }
4067   abstime->tv_nsec = usec * 1000;
4068   return abstime;
4069 }
4070 
4071 void os::PlatformEvent::park() {       // AKA "down()"
4072   // Transitions for _Event:
4073   //   -1 => -1 : illegal
4074   //    1 =>  0 : pass - return immediately
4075   //    0 => -1 : block; then set _Event to 0 before returning
4076 
4077   // Invariant: Only the thread associated with the Event/PlatformEvent
4078   // may call park().
4079   // TODO: assert that _Assoc != NULL or _Assoc == Self
4080   assert(_nParked == 0, "invariant");
4081 
4082   int v;
4083   for (;;) {
4084     v = _Event;
4085     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4086   }
4087   guarantee(v >= 0, "invariant");
4088   if (v == 0) {
4089     // Do this the hard way by blocking ...
4090     int status = pthread_mutex_lock(_mutex);
4091     assert_status(status == 0, status, "mutex_lock");
4092     guarantee(_nParked == 0, "invariant");
4093     ++_nParked;
4094     while (_Event < 0) {
4095       status = pthread_cond_wait(_cond, _mutex);
4096       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4097       // Treat this the same as if the wait was interrupted
4098       if (status == ETIMEDOUT) { status = EINTR; }
4099       assert_status(status == 0 || status == EINTR, status, "cond_wait");
4100     }
4101     --_nParked;
4102 
4103     _Event = 0;
4104     status = pthread_mutex_unlock(_mutex);
4105     assert_status(status == 0, status, "mutex_unlock");
4106     // Paranoia to ensure our locked and lock-free paths interact
4107     // correctly with each other.
4108     OrderAccess::fence();
4109   }
4110   guarantee(_Event >= 0, "invariant");
4111 }
4112 
4113 int os::PlatformEvent::park(jlong millis) {
4114   // Transitions for _Event:
4115   //   -1 => -1 : illegal
4116   //    1 =>  0 : pass - return immediately
4117   //    0 => -1 : block; then set _Event to 0 before returning
4118 
4119   guarantee(_nParked == 0, "invariant");
4120 
4121   int v;
4122   for (;;) {
4123     v = _Event;
4124     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4125   }
4126   guarantee(v >= 0, "invariant");
4127   if (v != 0) return OS_OK;
4128 
4129   // We do this the hard way, by blocking the thread.
4130   // Consider enforcing a minimum timeout value.
4131   struct timespec abst;
4132   compute_abstime(&abst, millis);
4133 
4134   int ret = OS_TIMEOUT;
4135   int status = pthread_mutex_lock(_mutex);
4136   assert_status(status == 0, status, "mutex_lock");
4137   guarantee(_nParked == 0, "invariant");
4138   ++_nParked;
4139 
4140   // Object.wait(timo) will return because of
4141   // (a) notification
4142   // (b) timeout
4143   // (c) thread.interrupt
4144   //
4145   // Thread.interrupt and object.notify{All} both call Event::set.
4146   // That is, we treat thread.interrupt as a special case of notification.
4147   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4148   // We assume all ETIME returns are valid.
4149   //
4150   // TODO: properly differentiate simultaneous notify+interrupt.
4151   // In that case, we should propagate the notify to another waiter.
4152 
4153   while (_Event < 0) {
4154     status = pthread_cond_timedwait(_cond, _mutex, &abst);
4155     assert_status(status == 0 || status == EINTR ||
4156                   status == ETIMEDOUT,
4157                   status, "cond_timedwait");
4158     if (!FilterSpuriousWakeups) break;                 // previous semantics
4159     if (status == ETIMEDOUT) break;
4160     // We consume and ignore EINTR and spurious wakeups.
4161   }
4162   --_nParked;
4163   if (_Event >= 0) {
4164     ret = OS_OK;
4165   }
4166   _Event = 0;
4167   status = pthread_mutex_unlock(_mutex);
4168   assert_status(status == 0, status, "mutex_unlock");
4169   assert(_nParked == 0, "invariant");
4170   // Paranoia to ensure our locked and lock-free paths interact
4171   // correctly with each other.
4172   OrderAccess::fence();
4173   return ret;
4174 }
4175 
4176 void os::PlatformEvent::unpark() {
4177   // Transitions for _Event:
4178   //    0 => 1 : just return
4179   //    1 => 1 : just return
4180   //   -1 => either 0 or 1; must signal target thread
4181   //         That is, we can safely transition _Event from -1 to either
4182   //         0 or 1.
4183   // See also: "Semaphores in Plan 9" by Mullender & Cox
4184   //
4185   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4186   // that it will take two back-to-back park() calls for the owning
4187   // thread to block. This has the benefit of forcing a spurious return
4188   // from the first park() call after an unpark() call which will help
4189   // shake out uses of park() and unpark() without condition variables.
4190 
4191   if (Atomic::xchg(1, &_Event) >= 0) return;
4192 
4193   // Wait for the thread associated with the event to vacate
4194   int status = pthread_mutex_lock(_mutex);
4195   assert_status(status == 0, status, "mutex_lock");
4196   int AnyWaiters = _nParked;
4197   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4198   status = pthread_mutex_unlock(_mutex);
4199   assert_status(status == 0, status, "mutex_unlock");
4200   if (AnyWaiters != 0) {
4201     // Note that we signal() *after* dropping the lock for "immortal" Events.
4202     // This is safe and avoids a common class of  futile wakeups.  In rare
4203     // circumstances this can cause a thread to return prematurely from
4204     // cond_{timed}wait() but the spurious wakeup is benign and the victim
4205     // will simply re-test the condition and re-park itself.
4206     // This provides particular benefit if the underlying platform does not
4207     // provide wait morphing.
4208     status = pthread_cond_signal(_cond);
4209     assert_status(status == 0, status, "cond_signal");
4210   }
4211 }
4212 
4213 
4214 // JSR166
4215 // -------------------------------------------------------
4216 
4217 // The solaris and bsd implementations of park/unpark are fairly
4218 // conservative for now, but can be improved. They currently use a
4219 // mutex/condvar pair, plus a a count.
4220 // Park decrements count if > 0, else does a condvar wait.  Unpark
4221 // sets count to 1 and signals condvar.  Only one thread ever waits
4222 // on the condvar. Contention seen when trying to park implies that someone
4223 // is unparking you, so don't wait. And spurious returns are fine, so there
4224 // is no need to track notifications.
4225 
4226 #define MAX_SECS 100000000
4227 
4228 // This code is common to bsd and solaris and will be moved to a
4229 // common place in dolphin.
4230 //
4231 // The passed in time value is either a relative time in nanoseconds
4232 // or an absolute time in milliseconds. Either way it has to be unpacked
4233 // into suitable seconds and nanoseconds components and stored in the
4234 // given timespec structure.
4235 // Given time is a 64-bit value and the time_t used in the timespec is only
4236 // a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4237 // overflow if times way in the future are given. Further on Solaris versions
4238 // prior to 10 there is a restriction (see cond_timedwait) that the specified
4239 // number of seconds, in abstime, is less than current_time  + 100,000,000.
4240 // As it will be 28 years before "now + 100000000" will overflow we can
4241 // ignore overflow and just impose a hard-limit on seconds using the value
4242 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
4243 // years from "now".
4244 
4245 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4246   assert(time > 0, "convertTime");
4247 
4248   struct timeval now;
4249   int status = gettimeofday(&now, NULL);
4250   assert(status == 0, "gettimeofday");
4251 
4252   time_t max_secs = now.tv_sec + MAX_SECS;
4253 
4254   if (isAbsolute) {
4255     jlong secs = time / 1000;
4256     if (secs > max_secs) {
4257       absTime->tv_sec = max_secs;
4258     } else {
4259       absTime->tv_sec = secs;
4260     }
4261     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4262   } else {
4263     jlong secs = time / NANOSECS_PER_SEC;
4264     if (secs >= MAX_SECS) {
4265       absTime->tv_sec = max_secs;
4266       absTime->tv_nsec = 0;
4267     } else {
4268       absTime->tv_sec = now.tv_sec + secs;
4269       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4270       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4271         absTime->tv_nsec -= NANOSECS_PER_SEC;
4272         ++absTime->tv_sec; // note: this must be <= max_secs
4273       }
4274     }
4275   }
4276   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4277   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4278   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4279   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4280 }
4281 
4282 void Parker::park(bool isAbsolute, jlong time) {
4283   // Ideally we'd do something useful while spinning, such
4284   // as calling unpackTime().
4285 
4286   // Optional fast-path check:
4287   // Return immediately if a permit is available.
4288   // We depend on Atomic::xchg() having full barrier semantics
4289   // since we are doing a lock-free update to _counter.
4290   if (Atomic::xchg(0, &_counter) > 0) return;
4291 
4292   Thread* thread = Thread::current();
4293   assert(thread->is_Java_thread(), "Must be JavaThread");
4294   JavaThread *jt = (JavaThread *)thread;
4295 
4296   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4297   // Check interrupt before trying to wait
4298   if (Thread::is_interrupted(thread, false)) {
4299     return;
4300   }
4301 
4302   // Next, demultiplex/decode time arguments
4303   struct timespec absTime;
4304   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4305     return;
4306   }
4307   if (time > 0) {
4308     unpackTime(&absTime, isAbsolute, time);
4309   }
4310 
4311 
4312   // Enter safepoint region
4313   // Beware of deadlocks such as 6317397.
4314   // The per-thread Parker:: mutex is a classic leaf-lock.
4315   // In particular a thread must never block on the Threads_lock while
4316   // holding the Parker:: mutex.  If safepoints are pending both the
4317   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4318   ThreadBlockInVM tbivm(jt);
4319 
4320   // Don't wait if cannot get lock since interference arises from
4321   // unblocking.  Also. check interrupt before trying wait
4322   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4323     return;
4324   }
4325 
4326   int status;
4327   if (_counter > 0)  { // no wait needed
4328     _counter = 0;
4329     status = pthread_mutex_unlock(_mutex);
4330     assert_status(status == 0, status, "invariant");
4331     // Paranoia to ensure our locked and lock-free paths interact
4332     // correctly with each other and Java-level accesses.
4333     OrderAccess::fence();
4334     return;
4335   }
4336 
4337 #ifdef ASSERT
4338   // Don't catch signals while blocked; let the running threads have the signals.
4339   // (This allows a debugger to break into the running thread.)
4340   sigset_t oldsigs;
4341   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4342   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4343 #endif
4344 
4345   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4346   jt->set_suspend_equivalent();
4347   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4348 
4349   if (time == 0) {
4350     status = pthread_cond_wait(_cond, _mutex);
4351   } else {
4352     status = pthread_cond_timedwait(_cond, _mutex, &absTime);
4353   }
4354   assert_status(status == 0 || status == EINTR ||
4355                 status == ETIMEDOUT,
4356                 status, "cond_timedwait");
4357 
4358 #ifdef ASSERT
4359   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4360 #endif
4361 
4362   _counter = 0;
4363   status = pthread_mutex_unlock(_mutex);
4364   assert_status(status == 0, status, "invariant");
4365   // Paranoia to ensure our locked and lock-free paths interact
4366   // correctly with each other and Java-level accesses.
4367   OrderAccess::fence();
4368 
4369   // If externally suspended while waiting, re-suspend
4370   if (jt->handle_special_suspend_equivalent_condition()) {
4371     jt->java_suspend_self();
4372   }
4373 }
4374 
4375 void Parker::unpark() {
4376   int status = pthread_mutex_lock(_mutex);
4377   assert_status(status == 0, status, "invariant");
4378   const int s = _counter;
4379   _counter = 1;
4380   status = pthread_mutex_unlock(_mutex);
4381   assert_status(status == 0, status, "invariant");
4382   if (s < 1) {
4383     status = pthread_cond_signal(_cond);
4384     assert_status(status == 0, status, "invariant");
4385   }
4386 }
4387 
4388 
4389 // Darwin has no "environ" in a dynamic library.
4390 #ifdef __APPLE__
4391   #include <crt_externs.h>
4392   #define environ (*_NSGetEnviron())
4393 #else
4394 extern char** environ;
4395 #endif
4396 
4397 // Run the specified command in a separate process. Return its exit value,
4398 // or -1 on failure (e.g. can't fork a new process).
4399 // Unlike system(), this function can be called from signal handler. It
4400 // doesn't block SIGINT et al.
4401 int os::fork_and_exec(char* cmd) {
4402   const char * argv[4] = {"sh", "-c", cmd, NULL};
4403 
4404   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4405   // pthread_atfork handlers and reset pthread library. All we need is a
4406   // separate process to execve. Make a direct syscall to fork process.
4407   // On IA64 there's no fork syscall, we have to use fork() and hope for
4408   // the best...
4409   pid_t pid = fork();
4410 
4411   if (pid < 0) {
4412     // fork failed
4413     return -1;
4414 
4415   } else if (pid == 0) {
4416     // child process
4417 
4418     // execve() in BsdThreads will call pthread_kill_other_threads_np()
4419     // first to kill every thread on the thread list. Because this list is
4420     // not reset by fork() (see notes above), execve() will instead kill
4421     // every thread in the parent process. We know this is the only thread
4422     // in the new process, so make a system call directly.
4423     // IA64 should use normal execve() from glibc to match the glibc fork()
4424     // above.
4425     execve("/bin/sh", (char* const*)argv, environ);
4426 
4427     // execve failed
4428     _exit(-1);
4429 
4430   } else  {
4431     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4432     // care about the actual exit code, for now.
4433 
4434     int status;
4435 
4436     // Wait for the child process to exit.  This returns immediately if
4437     // the child has already exited. */
4438     while (waitpid(pid, &status, 0) < 0) {
4439       switch (errno) {
4440       case ECHILD: return 0;
4441       case EINTR: break;
4442       default: return -1;
4443       }
4444     }
4445 
4446     if (WIFEXITED(status)) {
4447       // The child exited normally; get its exit code.
4448       return WEXITSTATUS(status);
4449     } else if (WIFSIGNALED(status)) {
4450       // The child exited because of a signal
4451       // The best value to return is 0x80 + signal number,
4452       // because that is what all Unix shells do, and because
4453       // it allows callers to distinguish between process exit and
4454       // process death by signal.
4455       return 0x80 + WTERMSIG(status);
4456     } else {
4457       // Unknown exit code; pass it through
4458       return status;
4459     }
4460   }
4461 }
4462 
4463 // is_headless_jre()
4464 //
4465 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4466 // in order to report if we are running in a headless jre
4467 //
4468 // Since JDK8 xawt/libmawt.so was moved into the same directory
4469 // as libawt.so, and renamed libawt_xawt.so
4470 //
4471 bool os::is_headless_jre() {
4472 #ifdef __APPLE__
4473   // We no longer build headless-only on Mac OS X
4474   return false;
4475 #else
4476   struct stat statbuf;
4477   char buf[MAXPATHLEN];
4478   char libmawtpath[MAXPATHLEN];
4479   const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4480   const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4481   char *p;
4482 
4483   // Get path to libjvm.so
4484   os::jvm_path(buf, sizeof(buf));
4485 
4486   // Get rid of libjvm.so
4487   p = strrchr(buf, '/');
4488   if (p == NULL) {
4489     return false;
4490   } else {
4491     *p = '\0';
4492   }
4493 
4494   // Get rid of client or server
4495   p = strrchr(buf, '/');
4496   if (p == NULL) {
4497     return false;
4498   } else {
4499     *p = '\0';
4500   }
4501 
4502   // check xawt/libmawt.so
4503   strcpy(libmawtpath, buf);
4504   strcat(libmawtpath, xawtstr);
4505   if (::stat(libmawtpath, &statbuf) == 0) return false;
4506 
4507   // check libawt_xawt.so
4508   strcpy(libmawtpath, buf);
4509   strcat(libmawtpath, new_xawtstr);
4510   if (::stat(libmawtpath, &statbuf) == 0) return false;
4511 
4512   return true;
4513 #endif
4514 }
4515 
4516 // Get the default path to the core file
4517 // Returns the length of the string
4518 int os::get_core_path(char* buffer, size_t bufferSize) {
4519   int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4520 
4521   // Truncate if theoretical string was longer than bufferSize
4522   n = MIN2(n, (int)bufferSize);
4523 
4524   return n;
4525 }
4526 
4527 #ifndef PRODUCT
4528 void TestReserveMemorySpecial_test() {
4529   // No tests available for this platform
4530 }
4531 #endif
4532 
4533 bool os::start_debugging(char *buf, int buflen) {
4534   int len = (int)strlen(buf);
4535   char *p = &buf[len];
4536 
4537   jio_snprintf(p, buflen-len,
4538              "\n\n"
4539              "Do you want to debug the problem?\n\n"
4540              "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " INTX_FORMAT " (" INTPTR_FORMAT ")\n"
4541              "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
4542              "Otherwise, press RETURN to abort...",
4543              os::current_process_id(), os::current_process_id(),
4544              os::current_thread_id(), os::current_thread_id());
4545 
4546   bool yes = os::message_box("Unexpected Error", buf);
4547 
4548   if (yes) {
4549     // yes, user asked VM to launch debugger
4550     jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
4551                      os::current_process_id(), os::current_process_id());
4552 
4553     os::fork_and_exec(buf);
4554     yes = false;
4555   }
4556   return yes;
4557 }
4558 
4559 int os::create_file_for_heap(const char* dir, size_t size) {
4560   VMError::report_and_die("Allocating object heap with backing file is not supported for BSD");
4561   return false;
4562 }
4563 
4564 bool os::map_memory_to_file(char* base, size_t size, int file_desc) {
4565   VMError::report_and_die("Allocating object heap with backing file is not supported for BSD");
4566   return false;
4567 }