1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "utilities/globalDefinitions.hpp"
  26 #include "prims/jvm.h"
  27 #include "semaphore_posix.hpp"
  28 #include "runtime/frame.inline.hpp"
  29 #include "runtime/interfaceSupport.hpp"
  30 #include "runtime/os.hpp"
  31 #include "utilities/macros.hpp"
  32 #include "utilities/vmError.hpp"
  33 
  34 #include <signal.h>
  35 #include <unistd.h>
  36 #include <sys/resource.h>
  37 #include <sys/utsname.h>
  38 #include <pthread.h>
  39 #include <semaphore.h>
  40 #include <signal.h>
  41 
  42 // Todo: provide a os::get_max_process_id() or similar. Number of processes
  43 // may have been configured, can be read more accurately from proc fs etc.
  44 #ifndef MAX_PID
  45 #define MAX_PID INT_MAX
  46 #endif
  47 #define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
  48 
  49 // Check core dump limit and report possible place where core can be found
  50 void os::check_dump_limit(char* buffer, size_t bufferSize) {
  51   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
  52     jio_snprintf(buffer, bufferSize, "CreateCoredumpOnCrash is disabled from command line");
  53     VMError::record_coredump_status(buffer, false);
  54     return;
  55   }
  56 
  57   int n;
  58   struct rlimit rlim;
  59   bool success;
  60 
  61   char core_path[PATH_MAX];
  62   n = get_core_path(core_path, PATH_MAX);
  63 
  64   if (n <= 0) {
  65     jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id());
  66     success = true;
  67 #ifdef LINUX
  68   } else if (core_path[0] == '"') { // redirect to user process
  69     jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path);
  70     success = true;
  71 #endif
  72   } else if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
  73     jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path);
  74     success = true;
  75   } else {
  76     switch(rlim.rlim_cur) {
  77       case RLIM_INFINITY:
  78         jio_snprintf(buffer, bufferSize, "%s", core_path);
  79         success = true;
  80         break;
  81       case 0:
  82         jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
  83         success = false;
  84         break;
  85       default:
  86         jio_snprintf(buffer, bufferSize, "%s (max size %lu kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, (unsigned long)(rlim.rlim_cur >> 10));
  87         success = true;
  88         break;
  89     }
  90   }
  91 
  92   VMError::record_coredump_status(buffer, success);
  93 }
  94 
  95 int os::get_native_stack(address* stack, int frames, int toSkip) {
  96   int frame_idx = 0;
  97   int num_of_frames;  // number of frames captured
  98   frame fr = os::current_frame();
  99   while (fr.pc() && frame_idx < frames) {
 100     if (toSkip > 0) {
 101       toSkip --;
 102     } else {
 103       stack[frame_idx ++] = fr.pc();
 104     }
 105     if (fr.fp() == NULL || fr.cb() != NULL ||
 106         fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break;
 107 
 108     if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
 109       fr = os::get_sender_for_C_frame(&fr);
 110     } else {
 111       break;
 112     }
 113   }
 114   num_of_frames = frame_idx;
 115   for (; frame_idx < frames; frame_idx ++) {
 116     stack[frame_idx] = NULL;
 117   }
 118 
 119   return num_of_frames;
 120 }
 121 
 122 
 123 bool os::unsetenv(const char* name) {
 124   assert(name != NULL, "Null pointer");
 125   return (::unsetenv(name) == 0);
 126 }
 127 
 128 int os::get_last_error() {
 129   return errno;
 130 }
 131 
 132 bool os::is_debugger_attached() {
 133   // not implemented
 134   return false;
 135 }
 136 
 137 void os::wait_for_keypress_at_exit(void) {
 138   // don't do anything on posix platforms
 139   return;
 140 }
 141 
 142 // Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
 143 // so on posix, unmap the section at the start and at the end of the chunk that we mapped
 144 // rather than unmapping and remapping the whole chunk to get requested alignment.
 145 char* os::reserve_memory_aligned(size_t size, size_t alignment, int file_desc) {
 146   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
 147       "Alignment must be a multiple of allocation granularity (page size)");
 148   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
 149 
 150   size_t extra_size = size + alignment;
 151   assert(extra_size >= size, "overflow, size is too large to allow alignment");
 152 
 153   char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
 154 
 155   if (extra_base == NULL) {
 156     return NULL;
 157   }
 158 
 159   // Do manual alignment
 160   char* aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
 161 
 162   // [  |                                       |  ]
 163   // ^ extra_base
 164   //    ^ extra_base + begin_offset == aligned_base
 165   //     extra_base + begin_offset + size       ^
 166   //                       extra_base + extra_size ^
 167   // |<>| == begin_offset
 168   //                              end_offset == |<>|
 169   size_t begin_offset = aligned_base - extra_base;
 170   size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
 171 
 172   if (begin_offset > 0) {
 173       os::release_memory(extra_base, begin_offset);
 174   }
 175 
 176   if (end_offset > 0) {
 177       os::release_memory(extra_base + begin_offset + size, end_offset);
 178   }
 179 
 180   if (file_desc != -1) {
 181     if (os::map_memory_to_file(aligned_base, size, file_desc) == NULL) {
 182       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
 183     }
 184   }
 185   return aligned_base;
 186 }
 187 
 188 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
 189     return vsnprintf(buf, len, fmt, args);
 190 }
 191 
 192 int os::get_fileno(FILE* fp) {
 193   return NOT_AIX(::)fileno(fp);
 194 }
 195 
 196 struct tm* os::gmtime_pd(const time_t* clock, struct tm*  res) {
 197   return gmtime_r(clock, res);
 198 }
 199 
 200 void os::Posix::print_load_average(outputStream* st) {
 201   st->print("load average:");
 202   double loadavg[3];
 203   os::loadavg(loadavg, 3);
 204   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
 205   st->cr();
 206 }
 207 
 208 void os::Posix::print_rlimit_info(outputStream* st) {
 209   st->print("rlimit:");
 210   struct rlimit rlim;
 211 
 212   st->print(" STACK ");
 213   getrlimit(RLIMIT_STACK, &rlim);
 214   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 215   else st->print("%luk", rlim.rlim_cur >> 10);
 216 
 217   st->print(", CORE ");
 218   getrlimit(RLIMIT_CORE, &rlim);
 219   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 220   else st->print("%luk", rlim.rlim_cur >> 10);
 221 
 222   // Isn't there on solaris
 223 #if !defined(SOLARIS) && !defined(AIX)
 224   st->print(", NPROC ");
 225   getrlimit(RLIMIT_NPROC, &rlim);
 226   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 227   else st->print("%lu", rlim.rlim_cur);
 228 #endif
 229 
 230   st->print(", NOFILE ");
 231   getrlimit(RLIMIT_NOFILE, &rlim);
 232   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 233   else st->print("%lu", rlim.rlim_cur);
 234 
 235   st->print(", AS ");
 236   getrlimit(RLIMIT_AS, &rlim);
 237   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 238   else st->print("%luk", rlim.rlim_cur >> 10);
 239   st->cr();
 240 }
 241 
 242 void os::Posix::print_uname_info(outputStream* st) {
 243   // kernel
 244   st->print("uname:");
 245   struct utsname name;
 246   uname(&name);
 247   st->print("%s ", name.sysname);
 248 #ifdef ASSERT
 249   st->print("%s ", name.nodename);
 250 #endif
 251   st->print("%s ", name.release);
 252   st->print("%s ", name.version);
 253   st->print("%s", name.machine);
 254   st->cr();
 255 }
 256 
 257 bool os::get_host_name(char* buf, size_t buflen) {
 258   struct utsname name;
 259   uname(&name);
 260   jio_snprintf(buf, buflen, "%s", name.nodename);
 261   return true;
 262 }
 263 
 264 bool os::has_allocatable_memory_limit(julong* limit) {
 265   struct rlimit rlim;
 266   int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
 267   // if there was an error when calling getrlimit, assume that there is no limitation
 268   // on virtual memory.
 269   bool result;
 270   if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
 271     result = false;
 272   } else {
 273     *limit = (julong)rlim.rlim_cur;
 274     result = true;
 275   }
 276 #ifdef _LP64
 277   return result;
 278 #else
 279   // arbitrary virtual space limit for 32 bit Unices found by testing. If
 280   // getrlimit above returned a limit, bound it with this limit. Otherwise
 281   // directly use it.
 282   const julong max_virtual_limit = (julong)3800*M;
 283   if (result) {
 284     *limit = MIN2(*limit, max_virtual_limit);
 285   } else {
 286     *limit = max_virtual_limit;
 287   }
 288 
 289   // bound by actually allocatable memory. The algorithm uses two bounds, an
 290   // upper and a lower limit. The upper limit is the current highest amount of
 291   // memory that could not be allocated, the lower limit is the current highest
 292   // amount of memory that could be allocated.
 293   // The algorithm iteratively refines the result by halving the difference
 294   // between these limits, updating either the upper limit (if that value could
 295   // not be allocated) or the lower limit (if the that value could be allocated)
 296   // until the difference between these limits is "small".
 297 
 298   // the minimum amount of memory we care about allocating.
 299   const julong min_allocation_size = M;
 300 
 301   julong upper_limit = *limit;
 302 
 303   // first check a few trivial cases
 304   if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
 305     *limit = upper_limit;
 306   } else if (!is_allocatable(min_allocation_size)) {
 307     // we found that not even min_allocation_size is allocatable. Return it
 308     // anyway. There is no point to search for a better value any more.
 309     *limit = min_allocation_size;
 310   } else {
 311     // perform the binary search.
 312     julong lower_limit = min_allocation_size;
 313     while ((upper_limit - lower_limit) > min_allocation_size) {
 314       julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
 315       temp_limit = align_size_down_(temp_limit, min_allocation_size);
 316       if (is_allocatable(temp_limit)) {
 317         lower_limit = temp_limit;
 318       } else {
 319         upper_limit = temp_limit;
 320       }
 321     }
 322     *limit = lower_limit;
 323   }
 324   return true;
 325 #endif
 326 }
 327 
 328 const char* os::get_current_directory(char *buf, size_t buflen) {
 329   return getcwd(buf, buflen);
 330 }
 331 
 332 FILE* os::open(int fd, const char* mode) {
 333   return ::fdopen(fd, mode);
 334 }
 335 
 336 void os::flockfile(FILE* fp) {
 337   ::flockfile(fp);
 338 }
 339 
 340 void os::funlockfile(FILE* fp) {
 341   ::funlockfile(fp);
 342 }
 343 
 344 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
 345 // which is used to find statically linked in agents.
 346 // Parameters:
 347 //            sym_name: Symbol in library we are looking for
 348 //            lib_name: Name of library to look in, NULL for shared libs.
 349 //            is_absolute_path == true if lib_name is absolute path to agent
 350 //                                     such as "/a/b/libL.so"
 351 //            == false if only the base name of the library is passed in
 352 //               such as "L"
 353 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
 354                                     bool is_absolute_path) {
 355   char *agent_entry_name;
 356   size_t len;
 357   size_t name_len;
 358   size_t prefix_len = strlen(JNI_LIB_PREFIX);
 359   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
 360   const char *start;
 361 
 362   if (lib_name != NULL) {
 363     name_len = strlen(lib_name);
 364     if (is_absolute_path) {
 365       // Need to strip path, prefix and suffix
 366       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
 367         lib_name = ++start;
 368       }
 369       if (strlen(lib_name) <= (prefix_len + suffix_len)) {
 370         return NULL;
 371       }
 372       lib_name += prefix_len;
 373       name_len = strlen(lib_name) - suffix_len;
 374     }
 375   }
 376   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
 377   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
 378   if (agent_entry_name == NULL) {
 379     return NULL;
 380   }
 381   strcpy(agent_entry_name, sym_name);
 382   if (lib_name != NULL) {
 383     strcat(agent_entry_name, "_");
 384     strncat(agent_entry_name, lib_name, name_len);
 385   }
 386   return agent_entry_name;
 387 }
 388 
 389 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
 390   assert(thread == Thread::current(),  "thread consistency check");
 391 
 392   ParkEvent * const slp = thread->_SleepEvent ;
 393   slp->reset() ;
 394   OrderAccess::fence() ;
 395 
 396   if (interruptible) {
 397     jlong prevtime = javaTimeNanos();
 398 
 399     for (;;) {
 400       if (os::is_interrupted(thread, true)) {
 401         return OS_INTRPT;
 402       }
 403 
 404       jlong newtime = javaTimeNanos();
 405 
 406       if (newtime - prevtime < 0) {
 407         // time moving backwards, should only happen if no monotonic clock
 408         // not a guarantee() because JVM should not abort on kernel/glibc bugs
 409         assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected in os::sleep(interruptible)");
 410       } else {
 411         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
 412       }
 413 
 414       if (millis <= 0) {
 415         return OS_OK;
 416       }
 417 
 418       prevtime = newtime;
 419 
 420       {
 421         assert(thread->is_Java_thread(), "sanity check");
 422         JavaThread *jt = (JavaThread *) thread;
 423         ThreadBlockInVM tbivm(jt);
 424         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
 425 
 426         jt->set_suspend_equivalent();
 427         // cleared by handle_special_suspend_equivalent_condition() or
 428         // java_suspend_self() via check_and_wait_while_suspended()
 429 
 430         slp->park(millis);
 431 
 432         // were we externally suspended while we were waiting?
 433         jt->check_and_wait_while_suspended();
 434       }
 435     }
 436   } else {
 437     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
 438     jlong prevtime = javaTimeNanos();
 439 
 440     for (;;) {
 441       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
 442       // the 1st iteration ...
 443       jlong newtime = javaTimeNanos();
 444 
 445       if (newtime - prevtime < 0) {
 446         // time moving backwards, should only happen if no monotonic clock
 447         // not a guarantee() because JVM should not abort on kernel/glibc bugs
 448         assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected on os::sleep(!interruptible)");
 449       } else {
 450         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
 451       }
 452 
 453       if (millis <= 0) break ;
 454 
 455       prevtime = newtime;
 456       slp->park(millis);
 457     }
 458     return OS_OK ;
 459   }
 460 }
 461 
 462 ////////////////////////////////////////////////////////////////////////////////
 463 // interrupt support
 464 
 465 void os::interrupt(Thread* thread) {
 466   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
 467     "possibility of dangling Thread pointer");
 468 
 469   OSThread* osthread = thread->osthread();
 470 
 471   if (!osthread->interrupted()) {
 472     osthread->set_interrupted(true);
 473     // More than one thread can get here with the same value of osthread,
 474     // resulting in multiple notifications.  We do, however, want the store
 475     // to interrupted() to be visible to other threads before we execute unpark().
 476     OrderAccess::fence();
 477     ParkEvent * const slp = thread->_SleepEvent ;
 478     if (slp != NULL) slp->unpark() ;
 479   }
 480 
 481   // For JSR166. Unpark even if interrupt status already was set
 482   if (thread->is_Java_thread())
 483     ((JavaThread*)thread)->parker()->unpark();
 484 
 485   ParkEvent * ev = thread->_ParkEvent ;
 486   if (ev != NULL) ev->unpark() ;
 487 
 488 }
 489 
 490 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
 491   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
 492     "possibility of dangling Thread pointer");
 493 
 494   OSThread* osthread = thread->osthread();
 495 
 496   bool interrupted = osthread->interrupted();
 497 
 498   // NOTE that since there is no "lock" around the interrupt and
 499   // is_interrupted operations, there is the possibility that the
 500   // interrupted flag (in osThread) will be "false" but that the
 501   // low-level events will be in the signaled state. This is
 502   // intentional. The effect of this is that Object.wait() and
 503   // LockSupport.park() will appear to have a spurious wakeup, which
 504   // is allowed and not harmful, and the possibility is so rare that
 505   // it is not worth the added complexity to add yet another lock.
 506   // For the sleep event an explicit reset is performed on entry
 507   // to os::sleep, so there is no early return. It has also been
 508   // recommended not to put the interrupted flag into the "event"
 509   // structure because it hides the issue.
 510   if (interrupted && clear_interrupted) {
 511     osthread->set_interrupted(false);
 512     // consider thread->_SleepEvent->reset() ... optional optimization
 513   }
 514 
 515   return interrupted;
 516 }
 517 
 518 
 519 
 520 static const struct {
 521   int sig; const char* name;
 522 }
 523  g_signal_info[] =
 524   {
 525   {  SIGABRT,     "SIGABRT" },
 526 #ifdef SIGAIO
 527   {  SIGAIO,      "SIGAIO" },
 528 #endif
 529   {  SIGALRM,     "SIGALRM" },
 530 #ifdef SIGALRM1
 531   {  SIGALRM1,    "SIGALRM1" },
 532 #endif
 533   {  SIGBUS,      "SIGBUS" },
 534 #ifdef SIGCANCEL
 535   {  SIGCANCEL,   "SIGCANCEL" },
 536 #endif
 537   {  SIGCHLD,     "SIGCHLD" },
 538 #ifdef SIGCLD
 539   {  SIGCLD,      "SIGCLD" },
 540 #endif
 541   {  SIGCONT,     "SIGCONT" },
 542 #ifdef SIGCPUFAIL
 543   {  SIGCPUFAIL,  "SIGCPUFAIL" },
 544 #endif
 545 #ifdef SIGDANGER
 546   {  SIGDANGER,   "SIGDANGER" },
 547 #endif
 548 #ifdef SIGDIL
 549   {  SIGDIL,      "SIGDIL" },
 550 #endif
 551 #ifdef SIGEMT
 552   {  SIGEMT,      "SIGEMT" },
 553 #endif
 554   {  SIGFPE,      "SIGFPE" },
 555 #ifdef SIGFREEZE
 556   {  SIGFREEZE,   "SIGFREEZE" },
 557 #endif
 558 #ifdef SIGGFAULT
 559   {  SIGGFAULT,   "SIGGFAULT" },
 560 #endif
 561 #ifdef SIGGRANT
 562   {  SIGGRANT,    "SIGGRANT" },
 563 #endif
 564   {  SIGHUP,      "SIGHUP" },
 565   {  SIGILL,      "SIGILL" },
 566   {  SIGINT,      "SIGINT" },
 567 #ifdef SIGIO
 568   {  SIGIO,       "SIGIO" },
 569 #endif
 570 #ifdef SIGIOINT
 571   {  SIGIOINT,    "SIGIOINT" },
 572 #endif
 573 #ifdef SIGIOT
 574 // SIGIOT is there for BSD compatibility, but on most Unices just a
 575 // synonym for SIGABRT. The result should be "SIGABRT", not
 576 // "SIGIOT".
 577 #if (SIGIOT != SIGABRT )
 578   {  SIGIOT,      "SIGIOT" },
 579 #endif
 580 #endif
 581 #ifdef SIGKAP
 582   {  SIGKAP,      "SIGKAP" },
 583 #endif
 584   {  SIGKILL,     "SIGKILL" },
 585 #ifdef SIGLOST
 586   {  SIGLOST,     "SIGLOST" },
 587 #endif
 588 #ifdef SIGLWP
 589   {  SIGLWP,      "SIGLWP" },
 590 #endif
 591 #ifdef SIGLWPTIMER
 592   {  SIGLWPTIMER, "SIGLWPTIMER" },
 593 #endif
 594 #ifdef SIGMIGRATE
 595   {  SIGMIGRATE,  "SIGMIGRATE" },
 596 #endif
 597 #ifdef SIGMSG
 598   {  SIGMSG,      "SIGMSG" },
 599 #endif
 600   {  SIGPIPE,     "SIGPIPE" },
 601 #ifdef SIGPOLL
 602   {  SIGPOLL,     "SIGPOLL" },
 603 #endif
 604 #ifdef SIGPRE
 605   {  SIGPRE,      "SIGPRE" },
 606 #endif
 607   {  SIGPROF,     "SIGPROF" },
 608 #ifdef SIGPTY
 609   {  SIGPTY,      "SIGPTY" },
 610 #endif
 611 #ifdef SIGPWR
 612   {  SIGPWR,      "SIGPWR" },
 613 #endif
 614   {  SIGQUIT,     "SIGQUIT" },
 615 #ifdef SIGRECONFIG
 616   {  SIGRECONFIG, "SIGRECONFIG" },
 617 #endif
 618 #ifdef SIGRECOVERY
 619   {  SIGRECOVERY, "SIGRECOVERY" },
 620 #endif
 621 #ifdef SIGRESERVE
 622   {  SIGRESERVE,  "SIGRESERVE" },
 623 #endif
 624 #ifdef SIGRETRACT
 625   {  SIGRETRACT,  "SIGRETRACT" },
 626 #endif
 627 #ifdef SIGSAK
 628   {  SIGSAK,      "SIGSAK" },
 629 #endif
 630   {  SIGSEGV,     "SIGSEGV" },
 631 #ifdef SIGSOUND
 632   {  SIGSOUND,    "SIGSOUND" },
 633 #endif
 634 #ifdef SIGSTKFLT
 635   {  SIGSTKFLT,    "SIGSTKFLT" },
 636 #endif
 637   {  SIGSTOP,     "SIGSTOP" },
 638   {  SIGSYS,      "SIGSYS" },
 639 #ifdef SIGSYSERROR
 640   {  SIGSYSERROR, "SIGSYSERROR" },
 641 #endif
 642 #ifdef SIGTALRM
 643   {  SIGTALRM,    "SIGTALRM" },
 644 #endif
 645   {  SIGTERM,     "SIGTERM" },
 646 #ifdef SIGTHAW
 647   {  SIGTHAW,     "SIGTHAW" },
 648 #endif
 649   {  SIGTRAP,     "SIGTRAP" },
 650 #ifdef SIGTSTP
 651   {  SIGTSTP,     "SIGTSTP" },
 652 #endif
 653   {  SIGTTIN,     "SIGTTIN" },
 654   {  SIGTTOU,     "SIGTTOU" },
 655 #ifdef SIGURG
 656   {  SIGURG,      "SIGURG" },
 657 #endif
 658   {  SIGUSR1,     "SIGUSR1" },
 659   {  SIGUSR2,     "SIGUSR2" },
 660 #ifdef SIGVIRT
 661   {  SIGVIRT,     "SIGVIRT" },
 662 #endif
 663   {  SIGVTALRM,   "SIGVTALRM" },
 664 #ifdef SIGWAITING
 665   {  SIGWAITING,  "SIGWAITING" },
 666 #endif
 667 #ifdef SIGWINCH
 668   {  SIGWINCH,    "SIGWINCH" },
 669 #endif
 670 #ifdef SIGWINDOW
 671   {  SIGWINDOW,   "SIGWINDOW" },
 672 #endif
 673   {  SIGXCPU,     "SIGXCPU" },
 674   {  SIGXFSZ,     "SIGXFSZ" },
 675 #ifdef SIGXRES
 676   {  SIGXRES,     "SIGXRES" },
 677 #endif
 678   { -1, NULL }
 679 };
 680 
 681 // Returned string is a constant. For unknown signals "UNKNOWN" is returned.
 682 const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {
 683 
 684   const char* ret = NULL;
 685 
 686 #ifdef SIGRTMIN
 687   if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
 688     if (sig == SIGRTMIN) {
 689       ret = "SIGRTMIN";
 690     } else if (sig == SIGRTMAX) {
 691       ret = "SIGRTMAX";
 692     } else {
 693       jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
 694       return out;
 695     }
 696   }
 697 #endif
 698 
 699   if (sig > 0) {
 700     for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
 701       if (g_signal_info[idx].sig == sig) {
 702         ret = g_signal_info[idx].name;
 703         break;
 704       }
 705     }
 706   }
 707 
 708   if (!ret) {
 709     if (!is_valid_signal(sig)) {
 710       ret = "INVALID";
 711     } else {
 712       ret = "UNKNOWN";
 713     }
 714   }
 715 
 716   if (out && outlen > 0) {
 717     strncpy(out, ret, outlen);
 718     out[outlen - 1] = '\0';
 719   }
 720   return out;
 721 }
 722 
 723 int os::Posix::get_signal_number(const char* signal_name) {
 724   char tmp[30];
 725   const char* s = signal_name;
 726   if (s[0] != 'S' || s[1] != 'I' || s[2] != 'G') {
 727     jio_snprintf(tmp, sizeof(tmp), "SIG%s", signal_name);
 728     s = tmp;
 729   }
 730   for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
 731     if (strcmp(g_signal_info[idx].name, s) == 0) {
 732       return g_signal_info[idx].sig;
 733     }
 734   }
 735   return -1;
 736 }
 737 
 738 int os::get_signal_number(const char* signal_name) {
 739   return os::Posix::get_signal_number(signal_name);
 740 }
 741 
 742 // Returns true if signal number is valid.
 743 bool os::Posix::is_valid_signal(int sig) {
 744   // MacOS not really POSIX compliant: sigaddset does not return
 745   // an error for invalid signal numbers. However, MacOS does not
 746   // support real time signals and simply seems to have just 33
 747   // signals with no holes in the signal range.
 748 #ifdef __APPLE__
 749   return sig >= 1 && sig < NSIG;
 750 #else
 751   // Use sigaddset to check for signal validity.
 752   sigset_t set;
 753   if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
 754     return false;
 755   }
 756   return true;
 757 #endif
 758 }
 759 
 760 // Returns:
 761 // NULL for an invalid signal number
 762 // "SIG<num>" for a valid but unknown signal number
 763 // signal name otherwise.
 764 const char* os::exception_name(int sig, char* buf, size_t size) {
 765   if (!os::Posix::is_valid_signal(sig)) {
 766     return NULL;
 767   }
 768   const char* const name = os::Posix::get_signal_name(sig, buf, size);
 769   if (strcmp(name, "UNKNOWN") == 0) {
 770     jio_snprintf(buf, size, "SIG%d", sig);
 771   }
 772   return buf;
 773 }
 774 
 775 #define NUM_IMPORTANT_SIGS 32
 776 // Returns one-line short description of a signal set in a user provided buffer.
 777 const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
 778   assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
 779   // Note: for shortness, just print out the first 32. That should
 780   // cover most of the useful ones, apart from realtime signals.
 781   for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
 782     const int rc = sigismember(set, sig);
 783     if (rc == -1 && errno == EINVAL) {
 784       buffer[sig-1] = '?';
 785     } else {
 786       buffer[sig-1] = rc == 0 ? '0' : '1';
 787     }
 788   }
 789   buffer[NUM_IMPORTANT_SIGS] = 0;
 790   return buffer;
 791 }
 792 
 793 // Prints one-line description of a signal set.
 794 void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
 795   char buf[NUM_IMPORTANT_SIGS + 1];
 796   os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
 797   st->print("%s", buf);
 798 }
 799 
 800 // Writes one-line description of a combination of sigaction.sa_flags into a user
 801 // provided buffer. Returns that buffer.
 802 const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
 803   char* p = buffer;
 804   size_t remaining = size;
 805   bool first = true;
 806   int idx = 0;
 807 
 808   assert(buffer, "invalid argument");
 809 
 810   if (size == 0) {
 811     return buffer;
 812   }
 813 
 814   strncpy(buffer, "none", size);
 815 
 816   const struct {
 817     // NB: i is an unsigned int here because SA_RESETHAND is on some
 818     // systems 0x80000000, which is implicitly unsigned.  Assignining
 819     // it to an int field would be an overflow in unsigned-to-signed
 820     // conversion.
 821     unsigned int i;
 822     const char* s;
 823   } flaginfo [] = {
 824     { SA_NOCLDSTOP, "SA_NOCLDSTOP" },
 825     { SA_ONSTACK,   "SA_ONSTACK"   },
 826     { SA_RESETHAND, "SA_RESETHAND" },
 827     { SA_RESTART,   "SA_RESTART"   },
 828     { SA_SIGINFO,   "SA_SIGINFO"   },
 829     { SA_NOCLDWAIT, "SA_NOCLDWAIT" },
 830     { SA_NODEFER,   "SA_NODEFER"   },
 831 #ifdef AIX
 832     { SA_ONSTACK,   "SA_ONSTACK"   },
 833     { SA_OLDSTYLE,  "SA_OLDSTYLE"  },
 834 #endif
 835     { 0, NULL }
 836   };
 837 
 838   for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
 839     if (flags & flaginfo[idx].i) {
 840       if (first) {
 841         jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
 842         first = false;
 843       } else {
 844         jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
 845       }
 846       const size_t len = strlen(p);
 847       p += len;
 848       remaining -= len;
 849     }
 850   }
 851 
 852   buffer[size - 1] = '\0';
 853 
 854   return buffer;
 855 }
 856 
 857 // Prints one-line description of a combination of sigaction.sa_flags.
 858 void os::Posix::print_sa_flags(outputStream* st, int flags) {
 859   char buffer[0x100];
 860   os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
 861   st->print("%s", buffer);
 862 }
 863 
 864 // Helper function for os::Posix::print_siginfo_...():
 865 // return a textual description for signal code.
 866 struct enum_sigcode_desc_t {
 867   const char* s_name;
 868   const char* s_desc;
 869 };
 870 
 871 static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {
 872 
 873   const struct {
 874     int sig; int code; const char* s_code; const char* s_desc;
 875   } t1 [] = {
 876     { SIGILL,  ILL_ILLOPC,   "ILL_ILLOPC",   "Illegal opcode." },
 877     { SIGILL,  ILL_ILLOPN,   "ILL_ILLOPN",   "Illegal operand." },
 878     { SIGILL,  ILL_ILLADR,   "ILL_ILLADR",   "Illegal addressing mode." },
 879     { SIGILL,  ILL_ILLTRP,   "ILL_ILLTRP",   "Illegal trap." },
 880     { SIGILL,  ILL_PRVOPC,   "ILL_PRVOPC",   "Privileged opcode." },
 881     { SIGILL,  ILL_PRVREG,   "ILL_PRVREG",   "Privileged register." },
 882     { SIGILL,  ILL_COPROC,   "ILL_COPROC",   "Coprocessor error." },
 883     { SIGILL,  ILL_BADSTK,   "ILL_BADSTK",   "Internal stack error." },
 884 #if defined(IA64) && defined(LINUX)
 885     { SIGILL,  ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
 886     { SIGILL,  ILL_BREAK,    "ILL_BREAK",    "Application Break instruction" },
 887 #endif
 888     { SIGFPE,  FPE_INTDIV,   "FPE_INTDIV",   "Integer divide by zero." },
 889     { SIGFPE,  FPE_INTOVF,   "FPE_INTOVF",   "Integer overflow." },
 890     { SIGFPE,  FPE_FLTDIV,   "FPE_FLTDIV",   "Floating-point divide by zero." },
 891     { SIGFPE,  FPE_FLTOVF,   "FPE_FLTOVF",   "Floating-point overflow." },
 892     { SIGFPE,  FPE_FLTUND,   "FPE_FLTUND",   "Floating-point underflow." },
 893     { SIGFPE,  FPE_FLTRES,   "FPE_FLTRES",   "Floating-point inexact result." },
 894     { SIGFPE,  FPE_FLTINV,   "FPE_FLTINV",   "Invalid floating-point operation." },
 895     { SIGFPE,  FPE_FLTSUB,   "FPE_FLTSUB",   "Subscript out of range." },
 896     { SIGSEGV, SEGV_MAPERR,  "SEGV_MAPERR",  "Address not mapped to object." },
 897     { SIGSEGV, SEGV_ACCERR,  "SEGV_ACCERR",  "Invalid permissions for mapped object." },
 898 #ifdef AIX
 899     // no explanation found what keyerr would be
 900     { SIGSEGV, SEGV_KEYERR,  "SEGV_KEYERR",  "key error" },
 901 #endif
 902 #if defined(IA64) && !defined(AIX)
 903     { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
 904 #endif
 905 #if defined(__sparc) && defined(SOLARIS)
 906 // define Solaris Sparc M7 ADI SEGV signals
 907 #if !defined(SEGV_ACCADI)
 908 #define SEGV_ACCADI 3
 909 #endif
 910     { SIGSEGV, SEGV_ACCADI,  "SEGV_ACCADI",  "ADI not enabled for mapped object." },
 911 #if !defined(SEGV_ACCDERR)
 912 #define SEGV_ACCDERR 4
 913 #endif
 914     { SIGSEGV, SEGV_ACCDERR, "SEGV_ACCDERR", "ADI disrupting exception." },
 915 #if !defined(SEGV_ACCPERR)
 916 #define SEGV_ACCPERR 5
 917 #endif
 918     { SIGSEGV, SEGV_ACCPERR, "SEGV_ACCPERR", "ADI precise exception." },
 919 #endif // defined(__sparc) && defined(SOLARIS)
 920     { SIGBUS,  BUS_ADRALN,   "BUS_ADRALN",   "Invalid address alignment." },
 921     { SIGBUS,  BUS_ADRERR,   "BUS_ADRERR",   "Nonexistent physical address." },
 922     { SIGBUS,  BUS_OBJERR,   "BUS_OBJERR",   "Object-specific hardware error." },
 923     { SIGTRAP, TRAP_BRKPT,   "TRAP_BRKPT",   "Process breakpoint." },
 924     { SIGTRAP, TRAP_TRACE,   "TRAP_TRACE",   "Process trace trap." },
 925     { SIGCHLD, CLD_EXITED,   "CLD_EXITED",   "Child has exited." },
 926     { SIGCHLD, CLD_KILLED,   "CLD_KILLED",   "Child has terminated abnormally and did not create a core file." },
 927     { SIGCHLD, CLD_DUMPED,   "CLD_DUMPED",   "Child has terminated abnormally and created a core file." },
 928     { SIGCHLD, CLD_TRAPPED,  "CLD_TRAPPED",  "Traced child has trapped." },
 929     { SIGCHLD, CLD_STOPPED,  "CLD_STOPPED",  "Child has stopped." },
 930     { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
 931 #ifdef SIGPOLL
 932     { SIGPOLL, POLL_OUT,     "POLL_OUT",     "Output buffers available." },
 933     { SIGPOLL, POLL_MSG,     "POLL_MSG",     "Input message available." },
 934     { SIGPOLL, POLL_ERR,     "POLL_ERR",     "I/O error." },
 935     { SIGPOLL, POLL_PRI,     "POLL_PRI",     "High priority input available." },
 936     { SIGPOLL, POLL_HUP,     "POLL_HUP",     "Device disconnected. [Option End]" },
 937 #endif
 938     { -1, -1, NULL, NULL }
 939   };
 940 
 941   // Codes valid in any signal context.
 942   const struct {
 943     int code; const char* s_code; const char* s_desc;
 944   } t2 [] = {
 945     { SI_USER,      "SI_USER",     "Signal sent by kill()." },
 946     { SI_QUEUE,     "SI_QUEUE",    "Signal sent by the sigqueue()." },
 947     { SI_TIMER,     "SI_TIMER",    "Signal generated by expiration of a timer set by timer_settime()." },
 948     { SI_ASYNCIO,   "SI_ASYNCIO",  "Signal generated by completion of an asynchronous I/O request." },
 949     { SI_MESGQ,     "SI_MESGQ",    "Signal generated by arrival of a message on an empty message queue." },
 950     // Linux specific
 951 #ifdef SI_TKILL
 952     { SI_TKILL,     "SI_TKILL",    "Signal sent by tkill (pthread_kill)" },
 953 #endif
 954 #ifdef SI_DETHREAD
 955     { SI_DETHREAD,  "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
 956 #endif
 957 #ifdef SI_KERNEL
 958     { SI_KERNEL,    "SI_KERNEL",   "Signal sent by kernel." },
 959 #endif
 960 #ifdef SI_SIGIO
 961     { SI_SIGIO,     "SI_SIGIO",    "Signal sent by queued SIGIO" },
 962 #endif
 963 
 964 #ifdef AIX
 965     { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
 966     { SI_EMPTY,     "SI_EMPTY",    "siginfo contains no useful information" },
 967 #endif
 968 
 969 #ifdef __sun
 970     { SI_NOINFO,    "SI_NOINFO",   "No signal information" },
 971     { SI_RCTL,      "SI_RCTL",     "kernel generated signal via rctl action" },
 972     { SI_LWP,       "SI_LWP",      "Signal sent via lwp_kill" },
 973 #endif
 974 
 975     { -1, NULL, NULL }
 976   };
 977 
 978   const char* s_code = NULL;
 979   const char* s_desc = NULL;
 980 
 981   for (int i = 0; t1[i].sig != -1; i ++) {
 982     if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
 983       s_code = t1[i].s_code;
 984       s_desc = t1[i].s_desc;
 985       break;
 986     }
 987   }
 988 
 989   if (s_code == NULL) {
 990     for (int i = 0; t2[i].s_code != NULL; i ++) {
 991       if (t2[i].code == si->si_code) {
 992         s_code = t2[i].s_code;
 993         s_desc = t2[i].s_desc;
 994       }
 995     }
 996   }
 997 
 998   if (s_code == NULL) {
 999     out->s_name = "unknown";
1000     out->s_desc = "unknown";
1001     return false;
1002   }
1003 
1004   out->s_name = s_code;
1005   out->s_desc = s_desc;
1006 
1007   return true;
1008 }
1009 
1010 void os::print_siginfo(outputStream* os, const void* si0) {
1011 
1012   const siginfo_t* const si = (const siginfo_t*) si0;
1013 
1014   char buf[20];
1015   os->print("siginfo:");
1016 
1017   if (!si) {
1018     os->print(" <null>");
1019     return;
1020   }
1021 
1022   const int sig = si->si_signo;
1023 
1024   os->print(" si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));
1025 
1026   enum_sigcode_desc_t ed;
1027   get_signal_code_description(si, &ed);
1028   os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
1029 
1030   if (si->si_errno) {
1031     os->print(", si_errno: %d", si->si_errno);
1032   }
1033 
1034   // Output additional information depending on the signal code.
1035 
1036   // Note: Many implementations lump si_addr, si_pid, si_uid etc. together as unions,
1037   // so it depends on the context which member to use. For synchronous error signals,
1038   // we print si_addr, unless the signal was sent by another process or thread, in
1039   // which case we print out pid or tid of the sender.
1040   if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1041     const pid_t pid = si->si_pid;
1042     os->print(", si_pid: %ld", (long) pid);
1043     if (IS_VALID_PID(pid)) {
1044       const pid_t me = getpid();
1045       if (me == pid) {
1046         os->print(" (current process)");
1047       }
1048     } else {
1049       os->print(" (invalid)");
1050     }
1051     os->print(", si_uid: %ld", (long) si->si_uid);
1052     if (sig == SIGCHLD) {
1053       os->print(", si_status: %d", si->si_status);
1054     }
1055   } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1056              sig == SIGTRAP || sig == SIGFPE) {
1057     os->print(", si_addr: " PTR_FORMAT, p2i(si->si_addr));
1058 #ifdef SIGPOLL
1059   } else if (sig == SIGPOLL) {
1060     os->print(", si_band: %ld", si->si_band);
1061 #endif
1062   }
1063 
1064 }
1065 
1066 int os::Posix::unblock_thread_signal_mask(const sigset_t *set) {
1067   return pthread_sigmask(SIG_UNBLOCK, set, NULL);
1068 }
1069 
1070 address os::Posix::ucontext_get_pc(const ucontext_t* ctx) {
1071 #if defined(AIX)
1072    return Aix::ucontext_get_pc(ctx);
1073 #elif defined(BSD)
1074    return Bsd::ucontext_get_pc(ctx);
1075 #elif defined(LINUX)
1076    return Linux::ucontext_get_pc(ctx);
1077 #elif defined(SOLARIS)
1078    return Solaris::ucontext_get_pc(ctx);
1079 #else
1080    VMError::report_and_die("unimplemented ucontext_get_pc");
1081 #endif
1082 }
1083 
1084 void os::Posix::ucontext_set_pc(ucontext_t* ctx, address pc) {
1085 #if defined(AIX)
1086    Aix::ucontext_set_pc(ctx, pc);
1087 #elif defined(BSD)
1088    Bsd::ucontext_set_pc(ctx, pc);
1089 #elif defined(LINUX)
1090    Linux::ucontext_set_pc(ctx, pc);
1091 #elif defined(SOLARIS)
1092    Solaris::ucontext_set_pc(ctx, pc);
1093 #else
1094    VMError::report_and_die("unimplemented ucontext_get_pc");
1095 #endif
1096 }
1097 
1098 char* os::Posix::describe_pthread_attr(char* buf, size_t buflen, const pthread_attr_t* attr) {
1099   size_t stack_size = 0;
1100   size_t guard_size = 0;
1101   int detachstate = 0;
1102   pthread_attr_getstacksize(attr, &stack_size);
1103   pthread_attr_getguardsize(attr, &guard_size);
1104   pthread_attr_getdetachstate(attr, &detachstate);
1105   jio_snprintf(buf, buflen, "stacksize: " SIZE_FORMAT "k, guardsize: " SIZE_FORMAT "k, %s",
1106     stack_size / 1024, guard_size / 1024,
1107     (detachstate == PTHREAD_CREATE_DETACHED ? "detached" : "joinable"));
1108   return buf;
1109 }
1110 
1111 // Check minimum allowable stack sizes for thread creation and to initialize
1112 // the java system classes, including StackOverflowError - depends on page
1113 // size.  Add two 4K pages for compiler2 recursion in main thread.
1114 // Add in 4*BytesPerWord 4K pages to account for VM stack during
1115 // class initialization depending on 32 or 64 bit VM.
1116 jint os::Posix::set_minimum_stack_sizes() {
1117   _java_thread_min_stack_allowed = MAX2(_java_thread_min_stack_allowed,
1118                                         JavaThread::stack_guard_zone_size() +
1119                                         JavaThread::stack_shadow_zone_size() +
1120                                         (4 * BytesPerWord COMPILER2_PRESENT(+ 2)) * 4 * K);
1121 
1122   _java_thread_min_stack_allowed = align_size_up(_java_thread_min_stack_allowed, vm_page_size());
1123 
1124   size_t stack_size_in_bytes = ThreadStackSize * K;
1125   if (stack_size_in_bytes != 0 &&
1126       stack_size_in_bytes < _java_thread_min_stack_allowed) {
1127     // The '-Xss' and '-XX:ThreadStackSize=N' options both set
1128     // ThreadStackSize so we go with "Java thread stack size" instead
1129     // of "ThreadStackSize" to be more friendly.
1130     tty->print_cr("\nThe Java thread stack size specified is too small. "
1131                   "Specify at least " SIZE_FORMAT "k",
1132                   _java_thread_min_stack_allowed / K);
1133     return JNI_ERR;
1134   }
1135 
1136 #ifdef SOLARIS
1137   // For 64kbps there will be a 64kb page size, which makes
1138   // the usable default stack size quite a bit less.  Increase the
1139   // stack for 64kb (or any > than 8kb) pages, this increases
1140   // virtual memory fragmentation (since we're not creating the
1141   // stack on a power of 2 boundary.  The real fix for this
1142   // should be to fix the guard page mechanism.
1143 
1144   if (vm_page_size() > 8*K) {
1145     stack_size_in_bytes = (stack_size_in_bytes != 0)
1146        ? stack_size_in_bytes +
1147          JavaThread::stack_red_zone_size() +
1148          JavaThread::stack_yellow_zone_size()
1149        : 0;
1150     ThreadStackSize = stack_size_in_bytes/K;
1151   }
1152 #endif // SOLARIS
1153 
1154   // Make the stack size a multiple of the page size so that
1155   // the yellow/red zones can be guarded.
1156   JavaThread::set_stack_size_at_create(round_to(stack_size_in_bytes,
1157                                                 vm_page_size()));
1158 
1159   _compiler_thread_min_stack_allowed = align_size_up(_compiler_thread_min_stack_allowed, vm_page_size());
1160 
1161   stack_size_in_bytes = CompilerThreadStackSize * K;
1162   if (stack_size_in_bytes != 0 &&
1163       stack_size_in_bytes < _compiler_thread_min_stack_allowed) {
1164     tty->print_cr("\nThe CompilerThreadStackSize specified is too small. "
1165                   "Specify at least " SIZE_FORMAT "k",
1166                   _compiler_thread_min_stack_allowed / K);
1167     return JNI_ERR;
1168   }
1169 
1170   _vm_internal_thread_min_stack_allowed = align_size_up(_vm_internal_thread_min_stack_allowed, vm_page_size());
1171 
1172   stack_size_in_bytes = VMThreadStackSize * K;
1173   if (stack_size_in_bytes != 0 &&
1174       stack_size_in_bytes < _vm_internal_thread_min_stack_allowed) {
1175     tty->print_cr("\nThe VMThreadStackSize specified is too small. "
1176                   "Specify at least " SIZE_FORMAT "k",
1177                   _vm_internal_thread_min_stack_allowed / K);
1178     return JNI_ERR;
1179   }
1180   return JNI_OK;
1181 }
1182 
1183 // Called when creating the thread.  The minimum stack sizes have already been calculated
1184 size_t os::Posix::get_initial_stack_size(ThreadType thr_type, size_t req_stack_size) {
1185   size_t stack_size;
1186   if (req_stack_size == 0) {
1187     stack_size = default_stack_size(thr_type);
1188   } else {
1189     stack_size = req_stack_size;
1190   }
1191 
1192   switch (thr_type) {
1193   case os::java_thread:
1194     // Java threads use ThreadStackSize which default value can be
1195     // changed with the flag -Xss
1196     if (req_stack_size == 0 && JavaThread::stack_size_at_create() > 0) {
1197       // no requested size and we have a more specific default value
1198       stack_size = JavaThread::stack_size_at_create();
1199     }
1200     stack_size = MAX2(stack_size,
1201                       _java_thread_min_stack_allowed);
1202     break;
1203   case os::compiler_thread:
1204     if (req_stack_size == 0 && CompilerThreadStackSize > 0) {
1205       // no requested size and we have a more specific default value
1206       stack_size = (size_t)(CompilerThreadStackSize * K);
1207     }
1208     stack_size = MAX2(stack_size,
1209                       _compiler_thread_min_stack_allowed);
1210     break;
1211   case os::vm_thread:
1212   case os::pgc_thread:
1213   case os::cgc_thread:
1214   case os::watcher_thread:
1215   default:  // presume the unknown thr_type is a VM internal
1216     if (req_stack_size == 0 && VMThreadStackSize > 0) {
1217       // no requested size and we have a more specific default value
1218       stack_size = (size_t)(VMThreadStackSize * K);
1219     }
1220 
1221     stack_size = MAX2(stack_size,
1222                       _vm_internal_thread_min_stack_allowed);
1223     break;
1224   }
1225 
1226   return stack_size;
1227 }
1228 
1229 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
1230   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
1231 }
1232 
1233 /*
1234  * See the caveats for this class in os_posix.hpp
1235  * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
1236  * method and returns false. If none of the signals are raised, returns true.
1237  * The callback is supposed to provide the method that should be protected.
1238  */
1239 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
1240   sigset_t saved_sig_mask;
1241 
1242   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
1243   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
1244       "crash_protection already set?");
1245 
1246   // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
1247   // since on at least some systems (OS X) siglongjmp will restore the mask
1248   // for the process, not the thread
1249   pthread_sigmask(0, NULL, &saved_sig_mask);
1250   if (sigsetjmp(_jmpbuf, 0) == 0) {
1251     // make sure we can see in the signal handler that we have crash protection
1252     // installed
1253     WatcherThread::watcher_thread()->set_crash_protection(this);
1254     cb.call();
1255     // and clear the crash protection
1256     WatcherThread::watcher_thread()->set_crash_protection(NULL);
1257     return true;
1258   }
1259   // this happens when we siglongjmp() back
1260   pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
1261   WatcherThread::watcher_thread()->set_crash_protection(NULL);
1262   return false;
1263 }
1264 
1265 void os::WatcherThreadCrashProtection::restore() {
1266   assert(WatcherThread::watcher_thread()->has_crash_protection(),
1267       "must have crash protection");
1268 
1269   siglongjmp(_jmpbuf, 1);
1270 }
1271 
1272 void os::WatcherThreadCrashProtection::check_crash_protection(int sig,
1273     Thread* thread) {
1274 
1275   if (thread != NULL &&
1276       thread->is_Watcher_thread() &&
1277       WatcherThread::watcher_thread()->has_crash_protection()) {
1278 
1279     if (sig == SIGSEGV || sig == SIGBUS) {
1280       WatcherThread::watcher_thread()->crash_protection()->restore();
1281     }
1282   }
1283 }
1284 
1285 #define check_with_errno(check_type, cond, msg)                             \
1286   do {                                                                      \
1287     int err = errno;                                                        \
1288     check_type(cond, "%s; error='%s' (errno=%s)", msg, os::strerror(err),   \
1289                os::errno_name(err));                                        \
1290 } while (false)
1291 
1292 #define assert_with_errno(cond, msg)    check_with_errno(assert, cond, msg)
1293 #define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg)
1294 
1295 // POSIX unamed semaphores are not supported on OS X.
1296 #ifndef __APPLE__
1297 
1298 PosixSemaphore::PosixSemaphore(uint value) {
1299   int ret = sem_init(&_semaphore, 0, value);
1300 
1301   guarantee_with_errno(ret == 0, "Failed to initialize semaphore");
1302 }
1303 
1304 PosixSemaphore::~PosixSemaphore() {
1305   sem_destroy(&_semaphore);
1306 }
1307 
1308 void PosixSemaphore::signal(uint count) {
1309   for (uint i = 0; i < count; i++) {
1310     int ret = sem_post(&_semaphore);
1311 
1312     assert_with_errno(ret == 0, "sem_post failed");
1313   }
1314 }
1315 
1316 void PosixSemaphore::wait() {
1317   int ret;
1318 
1319   do {
1320     ret = sem_wait(&_semaphore);
1321   } while (ret != 0 && errno == EINTR);
1322 
1323   assert_with_errno(ret == 0, "sem_wait failed");
1324 }
1325 
1326 bool PosixSemaphore::trywait() {
1327   int ret;
1328 
1329   do {
1330     ret = sem_trywait(&_semaphore);
1331   } while (ret != 0 && errno == EINTR);
1332 
1333   assert_with_errno(ret == 0 || errno == EAGAIN, "trywait failed");
1334 
1335   return ret == 0;
1336 }
1337 
1338 bool PosixSemaphore::timedwait(struct timespec ts) {
1339   while (true) {
1340     int result = sem_timedwait(&_semaphore, &ts);
1341     if (result == 0) {
1342       return true;
1343     } else if (errno == EINTR) {
1344       continue;
1345     } else if (errno == ETIMEDOUT) {
1346       return false;
1347     } else {
1348       assert_with_errno(false, "timedwait failed");
1349       return false;
1350     }
1351   }
1352 }
1353 
1354 #endif // __APPLE__