1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_solaris.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_solaris.hpp"
  40 #include "os_solaris.inline.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "runtime/vm_version.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/macros.hpp"
  72 #include "utilities/vmError.hpp"
  73 
  74 // put OS-includes here
  75 # include <dlfcn.h>
  76 # include <errno.h>
  77 # include <exception>
  78 # include <link.h>
  79 # include <poll.h>
  80 # include <pthread.h>
  81 # include <schedctl.h>
  82 # include <setjmp.h>
  83 # include <signal.h>
  84 # include <stdio.h>
  85 # include <alloca.h>
  86 # include <sys/filio.h>
  87 # include <sys/ipc.h>
  88 # include <sys/lwp.h>
  89 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  90 # include <sys/mman.h>
  91 # include <sys/processor.h>
  92 # include <sys/procset.h>
  93 # include <sys/pset.h>
  94 # include <sys/resource.h>
  95 # include <sys/shm.h>
  96 # include <sys/socket.h>
  97 # include <sys/stat.h>
  98 # include <sys/systeminfo.h>
  99 # include <sys/time.h>
 100 # include <sys/times.h>
 101 # include <sys/types.h>
 102 # include <sys/wait.h>
 103 # include <sys/utsname.h>
 104 # include <thread.h>
 105 # include <unistd.h>
 106 # include <sys/priocntl.h>
 107 # include <sys/rtpriocntl.h>
 108 # include <sys/tspriocntl.h>
 109 # include <sys/iapriocntl.h>
 110 # include <sys/fxpriocntl.h>
 111 # include <sys/loadavg.h>
 112 # include <string.h>
 113 # include <stdio.h>
 114 
 115 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 116 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 117 
 118 #define MAX_PATH (2 * K)
 119 
 120 // for timer info max values which include all bits
 121 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 122 
 123 
 124 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 125 // compile on older systems without this header file.
 126 
 127 #ifndef MADV_ACCESS_LWP
 128   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 129 #endif
 130 #ifndef MADV_ACCESS_MANY
 131   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 132 #endif
 133 
 134 #ifndef LGRP_RSRC_CPU
 135   #define LGRP_RSRC_CPU      0       /* CPU resources */
 136 #endif
 137 #ifndef LGRP_RSRC_MEM
 138   #define LGRP_RSRC_MEM      1       /* memory resources */
 139 #endif
 140 
 141 // Values for ThreadPriorityPolicy == 1
 142 int prio_policy1[CriticalPriority+1] = {
 143   -99999,  0, 16,  32,  48,  64,
 144           80, 96, 112, 124, 127, 127 };
 145 
 146 // System parameters used internally
 147 static clock_t clock_tics_per_sec = 100;
 148 
 149 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 150 static bool enabled_extended_FILE_stdio = false;
 151 
 152 // For diagnostics to print a message once. see run_periodic_checks
 153 static bool check_addr0_done = false;
 154 static sigset_t check_signal_done;
 155 static bool check_signals = true;
 156 
 157 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 158 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 159 
 160 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 161 
 162 os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
 163 
 164 // "default" initializers for missing libc APIs
 165 extern "C" {
 166   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 167   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 168 
 169   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 170   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 171 }
 172 
 173 // "default" initializers for pthread-based synchronization
 174 extern "C" {
 175   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 176   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 177 }
 178 
 179 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 180 
 181 static inline size_t adjust_stack_size(address base, size_t size) {
 182   if ((ssize_t)size < 0) {
 183     // 4759953: Compensate for ridiculous stack size.
 184     size = max_intx;
 185   }
 186   if (size > (size_t)base) {
 187     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 188     size = (size_t)base;
 189   }
 190   return size;
 191 }
 192 
 193 static inline stack_t get_stack_info() {
 194   stack_t st;
 195   int retval = thr_stksegment(&st);
 196   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 197   assert(retval == 0, "incorrect return value from thr_stksegment");
 198   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 199   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 200   return st;
 201 }
 202 
 203 address os::current_stack_base() {
 204   int r = thr_main();
 205   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 206   bool is_primordial_thread = r;
 207 
 208   // Workaround 4352906, avoid calls to thr_stksegment by
 209   // thr_main after the first one (it looks like we trash
 210   // some data, causing the value for ss_sp to be incorrect).
 211   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 212     stack_t st = get_stack_info();
 213     if (is_primordial_thread) {
 214       // cache initial value of stack base
 215       os::Solaris::_main_stack_base = (address)st.ss_sp;
 216     }
 217     return (address)st.ss_sp;
 218   } else {
 219     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 220     return os::Solaris::_main_stack_base;
 221   }
 222 }
 223 
 224 size_t os::current_stack_size() {
 225   size_t size;
 226 
 227   int r = thr_main();
 228   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 229   if (!r) {
 230     size = get_stack_info().ss_size;
 231   } else {
 232     struct rlimit limits;
 233     getrlimit(RLIMIT_STACK, &limits);
 234     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 235   }
 236   // base may not be page aligned
 237   address base = current_stack_base();
 238   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
 239   return (size_t)(base - bottom);
 240 }
 241 
 242 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 243   return localtime_r(clock, res);
 244 }
 245 
 246 void os::Solaris::try_enable_extended_io() {
 247   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 248 
 249   if (!UseExtendedFileIO) {
 250     return;
 251   }
 252 
 253   enable_extended_FILE_stdio_t enabler =
 254     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 255                                          "enable_extended_FILE_stdio");
 256   if (enabler) {
 257     enabler(-1, -1);
 258   }
 259 }
 260 
 261 static int _processors_online = 0;
 262 
 263 jint os::Solaris::_os_thread_limit = 0;
 264 volatile jint os::Solaris::_os_thread_count = 0;
 265 
 266 julong os::available_memory() {
 267   return Solaris::available_memory();
 268 }
 269 
 270 julong os::Solaris::available_memory() {
 271   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 272 }
 273 
 274 julong os::Solaris::_physical_memory = 0;
 275 
 276 julong os::physical_memory() {
 277   return Solaris::physical_memory();
 278 }
 279 
 280 static hrtime_t first_hrtime = 0;
 281 static const hrtime_t hrtime_hz = 1000*1000*1000;
 282 static volatile hrtime_t max_hrtime = 0;
 283 
 284 
 285 void os::Solaris::initialize_system_info() {
 286   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 287   _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
 288   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 289                                      (julong)sysconf(_SC_PAGESIZE);
 290 }
 291 
 292 int os::active_processor_count() {
 293   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 294   pid_t pid = getpid();
 295   psetid_t pset = PS_NONE;
 296   // Are we running in a processor set or is there any processor set around?
 297   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 298     uint_t pset_cpus;
 299     // Query the number of cpus available to us.
 300     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 301       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 302       _processors_online = pset_cpus;
 303       return pset_cpus;
 304     }
 305   }
 306   // Otherwise return number of online cpus
 307   return online_cpus;
 308 }
 309 
 310 static bool find_processors_in_pset(psetid_t        pset,
 311                                     processorid_t** id_array,
 312                                     uint_t*         id_length) {
 313   bool result = false;
 314   // Find the number of processors in the processor set.
 315   if (pset_info(pset, NULL, id_length, NULL) == 0) {
 316     // Make up an array to hold their ids.
 317     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 318     // Fill in the array with their processor ids.
 319     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
 320       result = true;
 321     }
 322   }
 323   return result;
 324 }
 325 
 326 // Callers of find_processors_online() must tolerate imprecise results --
 327 // the system configuration can change asynchronously because of DR
 328 // or explicit psradm operations.
 329 //
 330 // We also need to take care that the loop (below) terminates as the
 331 // number of processors online can change between the _SC_NPROCESSORS_ONLN
 332 // request and the loop that builds the list of processor ids.   Unfortunately
 333 // there's no reliable way to determine the maximum valid processor id,
 334 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
 335 // man pages, which claim the processor id set is "sparse, but
 336 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
 337 // exit the loop.
 338 //
 339 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
 340 // not available on S8.0.
 341 
 342 static bool find_processors_online(processorid_t** id_array,
 343                                    uint*           id_length) {
 344   const processorid_t MAX_PROCESSOR_ID = 100000;
 345   // Find the number of processors online.
 346   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
 347   // Make up an array to hold their ids.
 348   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 349   // Processors need not be numbered consecutively.
 350   long found = 0;
 351   processorid_t next = 0;
 352   while (found < *id_length && next < MAX_PROCESSOR_ID) {
 353     processor_info_t info;
 354     if (processor_info(next, &info) == 0) {
 355       // NB, PI_NOINTR processors are effectively online ...
 356       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
 357         (*id_array)[found] = next;
 358         found += 1;
 359       }
 360     }
 361     next += 1;
 362   }
 363   if (found < *id_length) {
 364     // The loop above didn't identify the expected number of processors.
 365     // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
 366     // and re-running the loop, above, but there's no guarantee of progress
 367     // if the system configuration is in flux.  Instead, we just return what
 368     // we've got.  Note that in the worst case find_processors_online() could
 369     // return an empty set.  (As a fall-back in the case of the empty set we
 370     // could just return the ID of the current processor).
 371     *id_length = found;
 372   }
 373 
 374   return true;
 375 }
 376 
 377 static bool assign_distribution(processorid_t* id_array,
 378                                 uint           id_length,
 379                                 uint*          distribution,
 380                                 uint           distribution_length) {
 381   // We assume we can assign processorid_t's to uint's.
 382   assert(sizeof(processorid_t) == sizeof(uint),
 383          "can't convert processorid_t to uint");
 384   // Quick check to see if we won't succeed.
 385   if (id_length < distribution_length) {
 386     return false;
 387   }
 388   // Assign processor ids to the distribution.
 389   // Try to shuffle processors to distribute work across boards,
 390   // assuming 4 processors per board.
 391   const uint processors_per_board = ProcessDistributionStride;
 392   // Find the maximum processor id.
 393   processorid_t max_id = 0;
 394   for (uint m = 0; m < id_length; m += 1) {
 395     max_id = MAX2(max_id, id_array[m]);
 396   }
 397   // The next id, to limit loops.
 398   const processorid_t limit_id = max_id + 1;
 399   // Make up markers for available processors.
 400   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
 401   for (uint c = 0; c < limit_id; c += 1) {
 402     available_id[c] = false;
 403   }
 404   for (uint a = 0; a < id_length; a += 1) {
 405     available_id[id_array[a]] = true;
 406   }
 407   // Step by "boards", then by "slot", copying to "assigned".
 408   // NEEDS_CLEANUP: The assignment of processors should be stateful,
 409   //                remembering which processors have been assigned by
 410   //                previous calls, etc., so as to distribute several
 411   //                independent calls of this method.  What we'd like is
 412   //                It would be nice to have an API that let us ask
 413   //                how many processes are bound to a processor,
 414   //                but we don't have that, either.
 415   //                In the short term, "board" is static so that
 416   //                subsequent distributions don't all start at board 0.
 417   static uint board = 0;
 418   uint assigned = 0;
 419   // Until we've found enough processors ....
 420   while (assigned < distribution_length) {
 421     // ... find the next available processor in the board.
 422     for (uint slot = 0; slot < processors_per_board; slot += 1) {
 423       uint try_id = board * processors_per_board + slot;
 424       if ((try_id < limit_id) && (available_id[try_id] == true)) {
 425         distribution[assigned] = try_id;
 426         available_id[try_id] = false;
 427         assigned += 1;
 428         break;
 429       }
 430     }
 431     board += 1;
 432     if (board * processors_per_board + 0 >= limit_id) {
 433       board = 0;
 434     }
 435   }
 436   if (available_id != NULL) {
 437     FREE_C_HEAP_ARRAY(bool, available_id);
 438   }
 439   return true;
 440 }
 441 
 442 void os::set_native_thread_name(const char *name) {
 443   if (Solaris::_pthread_setname_np != NULL) {
 444     // Only the first 31 bytes of 'name' are processed by pthread_setname_np
 445     // but we explicitly copy into a size-limited buffer to avoid any
 446     // possible overflow.
 447     char buf[32];
 448     snprintf(buf, sizeof(buf), "%s", name);
 449     buf[sizeof(buf) - 1] = '\0';
 450     Solaris::_pthread_setname_np(pthread_self(), buf);
 451   }
 452 }
 453 
 454 bool os::distribute_processes(uint length, uint* distribution) {
 455   bool result = false;
 456   // Find the processor id's of all the available CPUs.
 457   processorid_t* id_array  = NULL;
 458   uint           id_length = 0;
 459   // There are some races between querying information and using it,
 460   // since processor sets can change dynamically.
 461   psetid_t pset = PS_NONE;
 462   // Are we running in a processor set?
 463   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
 464     result = find_processors_in_pset(pset, &id_array, &id_length);
 465   } else {
 466     result = find_processors_online(&id_array, &id_length);
 467   }
 468   if (result == true) {
 469     if (id_length >= length) {
 470       result = assign_distribution(id_array, id_length, distribution, length);
 471     } else {
 472       result = false;
 473     }
 474   }
 475   if (id_array != NULL) {
 476     FREE_C_HEAP_ARRAY(processorid_t, id_array);
 477   }
 478   return result;
 479 }
 480 
 481 bool os::bind_to_processor(uint processor_id) {
 482   // We assume that a processorid_t can be stored in a uint.
 483   assert(sizeof(uint) == sizeof(processorid_t),
 484          "can't convert uint to processorid_t");
 485   int bind_result =
 486     processor_bind(P_LWPID,                       // bind LWP.
 487                    P_MYID,                        // bind current LWP.
 488                    (processorid_t) processor_id,  // id.
 489                    NULL);                         // don't return old binding.
 490   return (bind_result == 0);
 491 }
 492 
 493 // Return true if user is running as root.
 494 
 495 bool os::have_special_privileges() {
 496   static bool init = false;
 497   static bool privileges = false;
 498   if (!init) {
 499     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 500     init = true;
 501   }
 502   return privileges;
 503 }
 504 
 505 
 506 void os::init_system_properties_values() {
 507   // The next steps are taken in the product version:
 508   //
 509   // Obtain the JAVA_HOME value from the location of libjvm.so.
 510   // This library should be located at:
 511   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 512   //
 513   // If "/jre/lib/" appears at the right place in the path, then we
 514   // assume libjvm.so is installed in a JDK and we use this path.
 515   //
 516   // Otherwise exit with message: "Could not create the Java virtual machine."
 517   //
 518   // The following extra steps are taken in the debugging version:
 519   //
 520   // If "/jre/lib/" does NOT appear at the right place in the path
 521   // instead of exit check for $JAVA_HOME environment variable.
 522   //
 523   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 524   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 525   // it looks like libjvm.so is installed there
 526   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 527   //
 528   // Otherwise exit.
 529   //
 530   // Important note: if the location of libjvm.so changes this
 531   // code needs to be changed accordingly.
 532 
 533 // Base path of extensions installed on the system.
 534 #define SYS_EXT_DIR     "/usr/jdk/packages"
 535 #define EXTENSIONS_DIR  "/lib/ext"
 536 
 537   char cpu_arch[12];
 538   // Buffer that fits several sprintfs.
 539   // Note that the space for the colon and the trailing null are provided
 540   // by the nulls included by the sizeof operator.
 541   const size_t bufsize =
 542     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 543          sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
 544          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 545   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 546 
 547   // sysclasspath, java_home, dll_dir
 548   {
 549     char *pslash;
 550     os::jvm_path(buf, bufsize);
 551 
 552     // Found the full path to libjvm.so.
 553     // Now cut the path to <java_home>/jre if we can.
 554     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 555     pslash = strrchr(buf, '/');
 556     if (pslash != NULL) {
 557       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 558     }
 559     Arguments::set_dll_dir(buf);
 560 
 561     if (pslash != NULL) {
 562       pslash = strrchr(buf, '/');
 563       if (pslash != NULL) {
 564         *pslash = '\0';          // Get rid of /<arch>.
 565         pslash = strrchr(buf, '/');
 566         if (pslash != NULL) {
 567           *pslash = '\0';        // Get rid of /lib.
 568         }
 569       }
 570     }
 571     Arguments::set_java_home(buf);
 572     set_boot_path('/', ':');
 573   }
 574 
 575   // Where to look for native libraries.
 576   {
 577     // Use dlinfo() to determine the correct java.library.path.
 578     //
 579     // If we're launched by the Java launcher, and the user
 580     // does not set java.library.path explicitly on the commandline,
 581     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 582     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 583     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 584     // /usr/lib), which is exactly what we want.
 585     //
 586     // If the user does set java.library.path, it completely
 587     // overwrites this setting, and always has.
 588     //
 589     // If we're not launched by the Java launcher, we may
 590     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 591     // settings.  Again, dlinfo does exactly what we want.
 592 
 593     Dl_serinfo     info_sz, *info = &info_sz;
 594     Dl_serpath     *path;
 595     char           *library_path;
 596     char           *common_path = buf;
 597 
 598     // Determine search path count and required buffer size.
 599     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 600       FREE_C_HEAP_ARRAY(char, buf);
 601       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 602     }
 603 
 604     // Allocate new buffer and initialize.
 605     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 606     info->dls_size = info_sz.dls_size;
 607     info->dls_cnt = info_sz.dls_cnt;
 608 
 609     // Obtain search path information.
 610     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 611       FREE_C_HEAP_ARRAY(char, buf);
 612       FREE_C_HEAP_ARRAY(char, info);
 613       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 614     }
 615 
 616     path = &info->dls_serpath[0];
 617 
 618     // Note: Due to a legacy implementation, most of the library path
 619     // is set in the launcher. This was to accomodate linking restrictions
 620     // on legacy Solaris implementations (which are no longer supported).
 621     // Eventually, all the library path setting will be done here.
 622     //
 623     // However, to prevent the proliferation of improperly built native
 624     // libraries, the new path component /usr/jdk/packages is added here.
 625 
 626     // Determine the actual CPU architecture.
 627     sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
 628 #ifdef _LP64
 629     // If we are a 64-bit vm, perform the following translations:
 630     //   sparc   -> sparcv9
 631     //   i386    -> amd64
 632     if (strcmp(cpu_arch, "sparc") == 0) {
 633       strcat(cpu_arch, "v9");
 634     } else if (strcmp(cpu_arch, "i386") == 0) {
 635       strcpy(cpu_arch, "amd64");
 636     }
 637 #endif
 638 
 639     // Construct the invariant part of ld_library_path.
 640     sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
 641 
 642     // Struct size is more than sufficient for the path components obtained
 643     // through the dlinfo() call, so only add additional space for the path
 644     // components explicitly added here.
 645     size_t library_path_size = info->dls_size + strlen(common_path);
 646     library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 647     library_path[0] = '\0';
 648 
 649     // Construct the desired Java library path from the linker's library
 650     // search path.
 651     //
 652     // For compatibility, it is optimal that we insert the additional path
 653     // components specific to the Java VM after those components specified
 654     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 655     // infrastructure.
 656     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 657       strcpy(library_path, common_path);
 658     } else {
 659       int inserted = 0;
 660       int i;
 661       for (i = 0; i < info->dls_cnt; i++, path++) {
 662         uint_t flags = path->dls_flags & LA_SER_MASK;
 663         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 664           strcat(library_path, common_path);
 665           strcat(library_path, os::path_separator());
 666           inserted = 1;
 667         }
 668         strcat(library_path, path->dls_name);
 669         strcat(library_path, os::path_separator());
 670       }
 671       // Eliminate trailing path separator.
 672       library_path[strlen(library_path)-1] = '\0';
 673     }
 674 
 675     // happens before argument parsing - can't use a trace flag
 676     // tty->print_raw("init_system_properties_values: native lib path: ");
 677     // tty->print_raw_cr(library_path);
 678 
 679     // Callee copies into its own buffer.
 680     Arguments::set_library_path(library_path);
 681 
 682     FREE_C_HEAP_ARRAY(char, library_path);
 683     FREE_C_HEAP_ARRAY(char, info);
 684   }
 685 
 686   // Extensions directories.
 687   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 688   Arguments::set_ext_dirs(buf);
 689 
 690   FREE_C_HEAP_ARRAY(char, buf);
 691 
 692 #undef SYS_EXT_DIR
 693 #undef EXTENSIONS_DIR
 694 }
 695 
 696 void os::breakpoint() {
 697   BREAKPOINT;
 698 }
 699 
 700 bool os::obsolete_option(const JavaVMOption *option) {
 701   if (!strncmp(option->optionString, "-Xt", 3)) {
 702     return true;
 703   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
 704     return true;
 705   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
 706     return true;
 707   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
 708     return true;
 709   }
 710   return false;
 711 }
 712 
 713 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
 714   address  stackStart  = (address)thread->stack_base();
 715   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
 716   if (sp < stackStart && sp >= stackEnd) return true;
 717   return false;
 718 }
 719 
 720 extern "C" void breakpoint() {
 721   // use debugger to set breakpoint here
 722 }
 723 
 724 static thread_t main_thread;
 725 
 726 // Thread start routine for all newly created threads
 727 extern "C" void* thread_native_entry(void* thread_addr) {
 728   // Try to randomize the cache line index of hot stack frames.
 729   // This helps when threads of the same stack traces evict each other's
 730   // cache lines. The threads can be either from the same JVM instance, or
 731   // from different JVM instances. The benefit is especially true for
 732   // processors with hyperthreading technology.
 733   static int counter = 0;
 734   int pid = os::current_process_id();
 735   alloca(((pid ^ counter++) & 7) * 128);
 736 
 737   int prio;
 738   Thread* thread = (Thread*)thread_addr;
 739 
 740   thread->initialize_thread_current();
 741 
 742   OSThread* osthr = thread->osthread();
 743 
 744   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 745   thread->_schedctl = (void *) schedctl_init();
 746 
 747   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
 748     os::current_thread_id());
 749 
 750   if (UseNUMA) {
 751     int lgrp_id = os::numa_get_group_id();
 752     if (lgrp_id != -1) {
 753       thread->set_lgrp_id(lgrp_id);
 754     }
 755   }
 756 
 757   // Our priority was set when we were created, and stored in the
 758   // osthread, but couldn't be passed through to our LWP until now.
 759   // So read back the priority and set it again.
 760 
 761   if (osthr->thread_id() != -1) {
 762     if (UseThreadPriorities) {
 763       int prio = osthr->native_priority();
 764       if (ThreadPriorityVerbose) {
 765         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 766                       INTPTR_FORMAT ", setting priority: %d\n",
 767                       osthr->thread_id(), osthr->lwp_id(), prio);
 768       }
 769       os::set_native_priority(thread, prio);
 770     }
 771   } else if (ThreadPriorityVerbose) {
 772     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 773   }
 774 
 775   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 776 
 777   // initialize signal mask for this thread
 778   os::Solaris::hotspot_sigmask(thread);
 779 
 780   thread->run();
 781 
 782   // One less thread is executing
 783   // When the VMThread gets here, the main thread may have already exited
 784   // which frees the CodeHeap containing the Atomic::dec code
 785   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 786     Atomic::dec(&os::Solaris::_os_thread_count);
 787   }
 788 
 789   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 790 
 791   // If a thread has not deleted itself ("delete this") as part of its
 792   // termination sequence, we have to ensure thread-local-storage is
 793   // cleared before we actually terminate. No threads should ever be
 794   // deleted asynchronously with respect to their termination.
 795   if (Thread::current_or_null_safe() != NULL) {
 796     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 797     thread->clear_thread_current();
 798   }
 799 
 800   if (UseDetachedThreads) {
 801     thr_exit(NULL);
 802     ShouldNotReachHere();
 803   }
 804   return NULL;
 805 }
 806 
 807 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 808   // Allocate the OSThread object
 809   OSThread* osthread = new OSThread(NULL, NULL);
 810   if (osthread == NULL) return NULL;
 811 
 812   // Store info on the Solaris thread into the OSThread
 813   osthread->set_thread_id(thread_id);
 814   osthread->set_lwp_id(_lwp_self());
 815   thread->_schedctl = (void *) schedctl_init();
 816 
 817   if (UseNUMA) {
 818     int lgrp_id = os::numa_get_group_id();
 819     if (lgrp_id != -1) {
 820       thread->set_lgrp_id(lgrp_id);
 821     }
 822   }
 823 
 824   if (ThreadPriorityVerbose) {
 825     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 826                   osthread->thread_id(), osthread->lwp_id());
 827   }
 828 
 829   // Initial thread state is INITIALIZED, not SUSPENDED
 830   osthread->set_state(INITIALIZED);
 831 
 832   return osthread;
 833 }
 834 
 835 void os::Solaris::hotspot_sigmask(Thread* thread) {
 836   //Save caller's signal mask
 837   sigset_t sigmask;
 838   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 839   OSThread *osthread = thread->osthread();
 840   osthread->set_caller_sigmask(sigmask);
 841 
 842   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 843   if (!ReduceSignalUsage) {
 844     if (thread->is_VM_thread()) {
 845       // Only the VM thread handles BREAK_SIGNAL ...
 846       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 847     } else {
 848       // ... all other threads block BREAK_SIGNAL
 849       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 850       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 851     }
 852   }
 853 }
 854 
 855 bool os::create_attached_thread(JavaThread* thread) {
 856 #ifdef ASSERT
 857   thread->verify_not_published();
 858 #endif
 859   OSThread* osthread = create_os_thread(thread, thr_self());
 860   if (osthread == NULL) {
 861     return false;
 862   }
 863 
 864   // Initial thread state is RUNNABLE
 865   osthread->set_state(RUNNABLE);
 866   thread->set_osthread(osthread);
 867 
 868   // initialize signal mask for this thread
 869   // and save the caller's signal mask
 870   os::Solaris::hotspot_sigmask(thread);
 871 
 872   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 873     os::current_thread_id());
 874 
 875   return true;
 876 }
 877 
 878 bool os::create_main_thread(JavaThread* thread) {
 879 #ifdef ASSERT
 880   thread->verify_not_published();
 881 #endif
 882   if (_starting_thread == NULL) {
 883     _starting_thread = create_os_thread(thread, main_thread);
 884     if (_starting_thread == NULL) {
 885       return false;
 886     }
 887   }
 888 
 889   // The primodial thread is runnable from the start
 890   _starting_thread->set_state(RUNNABLE);
 891 
 892   thread->set_osthread(_starting_thread);
 893 
 894   // initialize signal mask for this thread
 895   // and save the caller's signal mask
 896   os::Solaris::hotspot_sigmask(thread);
 897 
 898   return true;
 899 }
 900 
 901 // Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
 902 static char* describe_thr_create_attributes(char* buf, size_t buflen,
 903                                             size_t stacksize, long flags) {
 904   stringStream ss(buf, buflen);
 905   ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 906   ss.print("flags: ");
 907   #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
 908   #define ALL(X) \
 909     X(THR_SUSPENDED) \
 910     X(THR_DETACHED) \
 911     X(THR_BOUND) \
 912     X(THR_NEW_LWP) \
 913     X(THR_DAEMON)
 914   ALL(PRINT_FLAG)
 915   #undef ALL
 916   #undef PRINT_FLAG
 917   return buf;
 918 }
 919 
 920 // return default stack size for thr_type
 921 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 922   // default stack size when not specified by caller is 1M (2M for LP64)
 923   size_t s = (BytesPerWord >> 2) * K * K;
 924   return s;
 925 }
 926 
 927 bool os::create_thread(Thread* thread, ThreadType thr_type,
 928                        size_t req_stack_size) {
 929   // Allocate the OSThread object
 930   OSThread* osthread = new OSThread(NULL, NULL);
 931   if (osthread == NULL) {
 932     return false;
 933   }
 934 
 935   if (ThreadPriorityVerbose) {
 936     char *thrtyp;
 937     switch (thr_type) {
 938     case vm_thread:
 939       thrtyp = (char *)"vm";
 940       break;
 941     case cgc_thread:
 942       thrtyp = (char *)"cgc";
 943       break;
 944     case pgc_thread:
 945       thrtyp = (char *)"pgc";
 946       break;
 947     case java_thread:
 948       thrtyp = (char *)"java";
 949       break;
 950     case compiler_thread:
 951       thrtyp = (char *)"compiler";
 952       break;
 953     case watcher_thread:
 954       thrtyp = (char *)"watcher";
 955       break;
 956     default:
 957       thrtyp = (char *)"unknown";
 958       break;
 959     }
 960     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 961   }
 962 
 963   // calculate stack size if it's not specified by caller
 964   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 965 
 966   // Initial state is ALLOCATED but not INITIALIZED
 967   osthread->set_state(ALLOCATED);
 968 
 969   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 970     // We got lots of threads. Check if we still have some address space left.
 971     // Need to be at least 5Mb of unreserved address space. We do check by
 972     // trying to reserve some.
 973     const size_t VirtualMemoryBangSize = 20*K*K;
 974     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 975     if (mem == NULL) {
 976       delete osthread;
 977       return false;
 978     } else {
 979       // Release the memory again
 980       os::release_memory(mem, VirtualMemoryBangSize);
 981     }
 982   }
 983 
 984   // Setup osthread because the child thread may need it.
 985   thread->set_osthread(osthread);
 986 
 987   // Create the Solaris thread
 988   thread_t tid = 0;
 989   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
 990   int      status;
 991 
 992   // Mark that we don't have an lwp or thread id yet.
 993   // In case we attempt to set the priority before the thread starts.
 994   osthread->set_lwp_id(-1);
 995   osthread->set_thread_id(-1);
 996 
 997   status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
 998 
 999   char buf[64];
1000   if (status == 0) {
1001     log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
1002       (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1003   } else {
1004     log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
1005       os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1006   }
1007 
1008   if (status != 0) {
1009     thread->set_osthread(NULL);
1010     // Need to clean up stuff we've allocated so far
1011     delete osthread;
1012     return false;
1013   }
1014 
1015   Atomic::inc(&os::Solaris::_os_thread_count);
1016 
1017   // Store info on the Solaris thread into the OSThread
1018   osthread->set_thread_id(tid);
1019 
1020   // Remember that we created this thread so we can set priority on it
1021   osthread->set_vm_created();
1022 
1023   // Most thread types will set an explicit priority before starting the thread,
1024   // but for those that don't we need a valid value to read back in thread_native_entry.
1025   osthread->set_native_priority(NormPriority);
1026 
1027   // Initial thread state is INITIALIZED, not SUSPENDED
1028   osthread->set_state(INITIALIZED);
1029 
1030   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1031   return true;
1032 }
1033 
1034 // defined for >= Solaris 10. This allows builds on earlier versions
1035 // of Solaris to take advantage of the newly reserved Solaris JVM signals.
1036 // With SIGJVM1, SIGJVM2, ASYNC_SIGNAL is SIGJVM2. Previously INTERRUPT_SIGNAL
1037 // was SIGJVM1.
1038 //
1039 #if !defined(SIGJVM1)
1040   #define SIGJVM1 39
1041   #define SIGJVM2 40
1042 #endif
1043 
1044 debug_only(static bool signal_sets_initialized = false);
1045 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1046 
1047 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1048 
1049 bool os::Solaris::is_sig_ignored(int sig) {
1050   struct sigaction oact;
1051   sigaction(sig, (struct sigaction*)NULL, &oact);
1052   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1053                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1054   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1055     return true;
1056   } else {
1057     return false;
1058   }
1059 }
1060 
1061 // Note: SIGRTMIN is a macro that calls sysconf() so it will
1062 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1063 static bool isJVM1available() {
1064   return SIGJVM1 < SIGRTMIN;
1065 }
1066 
1067 void os::Solaris::signal_sets_init() {
1068   // Should also have an assertion stating we are still single-threaded.
1069   assert(!signal_sets_initialized, "Already initialized");
1070   // Fill in signals that are necessarily unblocked for all threads in
1071   // the VM. Currently, we unblock the following signals:
1072   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1073   //                         by -Xrs (=ReduceSignalUsage));
1074   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1075   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1076   // the dispositions or masks wrt these signals.
1077   // Programs embedding the VM that want to use the above signals for their
1078   // own purposes must, at this time, use the "-Xrs" option to prevent
1079   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1080   // (See bug 4345157, and other related bugs).
1081   // In reality, though, unblocking these signals is really a nop, since
1082   // these signals are not blocked by default.
1083   sigemptyset(&unblocked_sigs);
1084   sigemptyset(&allowdebug_blocked_sigs);
1085   sigaddset(&unblocked_sigs, SIGILL);
1086   sigaddset(&unblocked_sigs, SIGSEGV);
1087   sigaddset(&unblocked_sigs, SIGBUS);
1088   sigaddset(&unblocked_sigs, SIGFPE);
1089 
1090   // Always true on Solaris 10+
1091   guarantee(isJVM1available(), "SIGJVM1/2 missing!");
1092   os::Solaris::set_SIGasync(SIGJVM2);
1093 
1094   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1095 
1096   if (!ReduceSignalUsage) {
1097     if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1098       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1099       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1100     }
1101     if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1102       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1103       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1104     }
1105     if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1106       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1107       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1108     }
1109   }
1110   // Fill in signals that are blocked by all but the VM thread.
1111   sigemptyset(&vm_sigs);
1112   if (!ReduceSignalUsage) {
1113     sigaddset(&vm_sigs, BREAK_SIGNAL);
1114   }
1115   debug_only(signal_sets_initialized = true);
1116 
1117   // For diagnostics only used in run_periodic_checks
1118   sigemptyset(&check_signal_done);
1119 }
1120 
1121 // These are signals that are unblocked while a thread is running Java.
1122 // (For some reason, they get blocked by default.)
1123 sigset_t* os::Solaris::unblocked_signals() {
1124   assert(signal_sets_initialized, "Not initialized");
1125   return &unblocked_sigs;
1126 }
1127 
1128 // These are the signals that are blocked while a (non-VM) thread is
1129 // running Java. Only the VM thread handles these signals.
1130 sigset_t* os::Solaris::vm_signals() {
1131   assert(signal_sets_initialized, "Not initialized");
1132   return &vm_sigs;
1133 }
1134 
1135 // These are signals that are blocked during cond_wait to allow debugger in
1136 sigset_t* os::Solaris::allowdebug_blocked_signals() {
1137   assert(signal_sets_initialized, "Not initialized");
1138   return &allowdebug_blocked_sigs;
1139 }
1140 
1141 
1142 void _handle_uncaught_cxx_exception() {
1143   VMError::report_and_die("An uncaught C++ exception");
1144 }
1145 
1146 
1147 // First crack at OS-specific initialization, from inside the new thread.
1148 void os::initialize_thread(Thread* thr) {
1149   int r = thr_main();
1150   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1151   if (r) {
1152     JavaThread* jt = (JavaThread *)thr;
1153     assert(jt != NULL, "Sanity check");
1154     size_t stack_size;
1155     address base = jt->stack_base();
1156     if (Arguments::created_by_java_launcher()) {
1157       // Use 2MB to allow for Solaris 7 64 bit mode.
1158       stack_size = JavaThread::stack_size_at_create() == 0
1159         ? 2048*K : JavaThread::stack_size_at_create();
1160 
1161       // There are rare cases when we may have already used more than
1162       // the basic stack size allotment before this method is invoked.
1163       // Attempt to allow for a normally sized java_stack.
1164       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1165       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1166     } else {
1167       // 6269555: If we were not created by a Java launcher, i.e. if we are
1168       // running embedded in a native application, treat the primordial thread
1169       // as much like a native attached thread as possible.  This means using
1170       // the current stack size from thr_stksegment(), unless it is too large
1171       // to reliably setup guard pages.  A reasonable max size is 8MB.
1172       size_t current_size = current_stack_size();
1173       // This should never happen, but just in case....
1174       if (current_size == 0) current_size = 2 * K * K;
1175       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1176     }
1177     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1178     stack_size = (size_t)(base - bottom);
1179 
1180     assert(stack_size > 0, "Stack size calculation problem");
1181 
1182     if (stack_size > jt->stack_size()) {
1183 #ifndef PRODUCT
1184       struct rlimit limits;
1185       getrlimit(RLIMIT_STACK, &limits);
1186       size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1187       assert(size >= jt->stack_size(), "Stack size problem in main thread");
1188 #endif
1189       tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1190                     "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1191                     "See limit(1) to increase the stack size limit.",
1192                     stack_size / K, jt->stack_size() / K);
1193       vm_exit(1);
1194     }
1195     assert(jt->stack_size() >= stack_size,
1196            "Attempt to map more stack than was allocated");
1197     jt->set_stack_size(stack_size);
1198   }
1199 
1200   // With the T2 libthread (T1 is no longer supported) threads are always bound
1201   // and we use stackbanging in all cases.
1202 
1203   os::Solaris::init_thread_fpu_state();
1204   std::set_terminate(_handle_uncaught_cxx_exception);
1205 }
1206 
1207 
1208 
1209 // Free Solaris resources related to the OSThread
1210 void os::free_thread(OSThread* osthread) {
1211   assert(osthread != NULL, "os::free_thread but osthread not set");
1212 
1213   // We are told to free resources of the argument thread,
1214   // but we can only really operate on the current thread.
1215   assert(Thread::current()->osthread() == osthread,
1216          "os::free_thread but not current thread");
1217 
1218   // Restore caller's signal mask
1219   sigset_t sigmask = osthread->caller_sigmask();
1220   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1221 
1222   delete osthread;
1223 }
1224 
1225 void os::pd_start_thread(Thread* thread) {
1226   int status = thr_continue(thread->osthread()->thread_id());
1227   assert_status(status == 0, status, "thr_continue failed");
1228 }
1229 
1230 
1231 intx os::current_thread_id() {
1232   return (intx)thr_self();
1233 }
1234 
1235 static pid_t _initial_pid = 0;
1236 
1237 int os::current_process_id() {
1238   return (int)(_initial_pid ? _initial_pid : getpid());
1239 }
1240 
1241 // gethrtime() should be monotonic according to the documentation,
1242 // but some virtualized platforms are known to break this guarantee.
1243 // getTimeNanos() must be guaranteed not to move backwards, so we
1244 // are forced to add a check here.
1245 inline hrtime_t getTimeNanos() {
1246   const hrtime_t now = gethrtime();
1247   const hrtime_t prev = max_hrtime;
1248   if (now <= prev) {
1249     return prev;   // same or retrograde time;
1250   }
1251   const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1252   assert(obsv >= prev, "invariant");   // Monotonicity
1253   // If the CAS succeeded then we're done and return "now".
1254   // If the CAS failed and the observed value "obsv" is >= now then
1255   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1256   // some other thread raced this thread and installed a new value, in which case
1257   // we could either (a) retry the entire operation, (b) retry trying to install now
1258   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1259   // we might discard a higher "now" value in deference to a slightly lower but freshly
1260   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1261   // to (a) or (b) -- and greatly reduces coherence traffic.
1262   // We might also condition (c) on the magnitude of the delta between obsv and now.
1263   // Avoiding excessive CAS operations to hot RW locations is critical.
1264   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1265   return (prev == obsv) ? now : obsv;
1266 }
1267 
1268 // Time since start-up in seconds to a fine granularity.
1269 // Used by VMSelfDestructTimer and the MemProfiler.
1270 double os::elapsedTime() {
1271   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1272 }
1273 
1274 jlong os::elapsed_counter() {
1275   return (jlong)(getTimeNanos() - first_hrtime);
1276 }
1277 
1278 jlong os::elapsed_frequency() {
1279   return hrtime_hz;
1280 }
1281 
1282 // Return the real, user, and system times in seconds from an
1283 // arbitrary fixed point in the past.
1284 bool os::getTimesSecs(double* process_real_time,
1285                       double* process_user_time,
1286                       double* process_system_time) {
1287   struct tms ticks;
1288   clock_t real_ticks = times(&ticks);
1289 
1290   if (real_ticks == (clock_t) (-1)) {
1291     return false;
1292   } else {
1293     double ticks_per_second = (double) clock_tics_per_sec;
1294     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1295     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1296     // For consistency return the real time from getTimeNanos()
1297     // converted to seconds.
1298     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1299 
1300     return true;
1301   }
1302 }
1303 
1304 bool os::supports_vtime() { return true; }
1305 bool os::enable_vtime() { return false; }
1306 bool os::vtime_enabled() { return false; }
1307 
1308 double os::elapsedVTime() {
1309   return (double)gethrvtime() / (double)hrtime_hz;
1310 }
1311 
1312 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1313 jlong os::javaTimeMillis() {
1314   timeval t;
1315   if (gettimeofday(&t, NULL) == -1) {
1316     fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1317   }
1318   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1319 }
1320 
1321 // Must return seconds+nanos since Jan 1 1970. This must use the same
1322 // time source as javaTimeMillis and can't use get_nsec_fromepoch as
1323 // we need better than 1ms accuracy
1324 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1325   timeval t;
1326   if (gettimeofday(&t, NULL) == -1) {
1327     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1328   }
1329   seconds = jlong(t.tv_sec);
1330   nanos = jlong(t.tv_usec) * 1000;
1331 }
1332 
1333 
1334 jlong os::javaTimeNanos() {
1335   return (jlong)getTimeNanos();
1336 }
1337 
1338 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1339   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1340   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1341   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1342   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1343 }
1344 
1345 char * os::local_time_string(char *buf, size_t buflen) {
1346   struct tm t;
1347   time_t long_time;
1348   time(&long_time);
1349   localtime_r(&long_time, &t);
1350   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1351                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1352                t.tm_hour, t.tm_min, t.tm_sec);
1353   return buf;
1354 }
1355 
1356 // Note: os::shutdown() might be called very early during initialization, or
1357 // called from signal handler. Before adding something to os::shutdown(), make
1358 // sure it is async-safe and can handle partially initialized VM.
1359 void os::shutdown() {
1360 
1361   // allow PerfMemory to attempt cleanup of any persistent resources
1362   perfMemory_exit();
1363 
1364   // needs to remove object in file system
1365   AttachListener::abort();
1366 
1367   // flush buffered output, finish log files
1368   ostream_abort();
1369 
1370   // Check for abort hook
1371   abort_hook_t abort_hook = Arguments::abort_hook();
1372   if (abort_hook != NULL) {
1373     abort_hook();
1374   }
1375 }
1376 
1377 // Note: os::abort() might be called very early during initialization, or
1378 // called from signal handler. Before adding something to os::abort(), make
1379 // sure it is async-safe and can handle partially initialized VM.
1380 void os::abort(bool dump_core, void* siginfo, const void* context) {
1381   os::shutdown();
1382   if (dump_core) {
1383 #ifndef PRODUCT
1384     fdStream out(defaultStream::output_fd());
1385     out.print_raw("Current thread is ");
1386     char buf[16];
1387     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1388     out.print_raw_cr(buf);
1389     out.print_raw_cr("Dumping core ...");
1390 #endif
1391     ::abort(); // dump core (for debugging)
1392   }
1393 
1394   ::exit(1);
1395 }
1396 
1397 // Die immediately, no exit hook, no abort hook, no cleanup.
1398 void os::die() {
1399   ::abort(); // dump core (for debugging)
1400 }
1401 
1402 // DLL functions
1403 
1404 const char* os::dll_file_extension() { return ".so"; }
1405 
1406 // This must be hard coded because it's the system's temporary
1407 // directory not the java application's temp directory, ala java.io.tmpdir.
1408 const char* os::get_temp_directory() { return "/tmp"; }
1409 
1410 static bool file_exists(const char* filename) {
1411   struct stat statbuf;
1412   if (filename == NULL || strlen(filename) == 0) {
1413     return false;
1414   }
1415   return os::stat(filename, &statbuf) == 0;
1416 }
1417 
1418 bool os::dll_build_name(char* buffer, size_t buflen,
1419                         const char* pname, const char* fname) {
1420   bool retval = false;
1421   const size_t pnamelen = pname ? strlen(pname) : 0;
1422 
1423   // Return error on buffer overflow.
1424   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1425     return retval;
1426   }
1427 
1428   if (pnamelen == 0) {
1429     snprintf(buffer, buflen, "lib%s.so", fname);
1430     retval = true;
1431   } else if (strchr(pname, *os::path_separator()) != NULL) {
1432     int n;
1433     char** pelements = split_path(pname, &n);
1434     if (pelements == NULL) {
1435       return false;
1436     }
1437     for (int i = 0; i < n; i++) {
1438       // really shouldn't be NULL but what the heck, check can't hurt
1439       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1440         continue; // skip the empty path values
1441       }
1442       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1443       if (file_exists(buffer)) {
1444         retval = true;
1445         break;
1446       }
1447     }
1448     // release the storage
1449     for (int i = 0; i < n; i++) {
1450       if (pelements[i] != NULL) {
1451         FREE_C_HEAP_ARRAY(char, pelements[i]);
1452       }
1453     }
1454     if (pelements != NULL) {
1455       FREE_C_HEAP_ARRAY(char*, pelements);
1456     }
1457   } else {
1458     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1459     retval = true;
1460   }
1461   return retval;
1462 }
1463 
1464 // check if addr is inside libjvm.so
1465 bool os::address_is_in_vm(address addr) {
1466   static address libjvm_base_addr;
1467   Dl_info dlinfo;
1468 
1469   if (libjvm_base_addr == NULL) {
1470     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1471       libjvm_base_addr = (address)dlinfo.dli_fbase;
1472     }
1473     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1474   }
1475 
1476   if (dladdr((void *)addr, &dlinfo) != 0) {
1477     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1478   }
1479 
1480   return false;
1481 }
1482 
1483 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1484 static dladdr1_func_type dladdr1_func = NULL;
1485 
1486 bool os::dll_address_to_function_name(address addr, char *buf,
1487                                       int buflen, int * offset,
1488                                       bool demangle) {
1489   // buf is not optional, but offset is optional
1490   assert(buf != NULL, "sanity check");
1491 
1492   Dl_info dlinfo;
1493 
1494   // dladdr1_func was initialized in os::init()
1495   if (dladdr1_func != NULL) {
1496     // yes, we have dladdr1
1497 
1498     // Support for dladdr1 is checked at runtime; it may be
1499     // available even if the vm is built on a machine that does
1500     // not have dladdr1 support.  Make sure there is a value for
1501     // RTLD_DL_SYMENT.
1502 #ifndef RTLD_DL_SYMENT
1503   #define RTLD_DL_SYMENT 1
1504 #endif
1505 #ifdef _LP64
1506     Elf64_Sym * info;
1507 #else
1508     Elf32_Sym * info;
1509 #endif
1510     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1511                      RTLD_DL_SYMENT) != 0) {
1512       // see if we have a matching symbol that covers our address
1513       if (dlinfo.dli_saddr != NULL &&
1514           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1515         if (dlinfo.dli_sname != NULL) {
1516           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1517             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1518           }
1519           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1520           return true;
1521         }
1522       }
1523       // no matching symbol so try for just file info
1524       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1525         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1526                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1527           return true;
1528         }
1529       }
1530     }
1531     buf[0] = '\0';
1532     if (offset != NULL) *offset  = -1;
1533     return false;
1534   }
1535 
1536   // no, only dladdr is available
1537   if (dladdr((void *)addr, &dlinfo) != 0) {
1538     // see if we have a matching symbol
1539     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1540       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1541         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1542       }
1543       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1544       return true;
1545     }
1546     // no matching symbol so try for just file info
1547     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1548       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1549                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1550         return true;
1551       }
1552     }
1553   }
1554   buf[0] = '\0';
1555   if (offset != NULL) *offset  = -1;
1556   return false;
1557 }
1558 
1559 bool os::dll_address_to_library_name(address addr, char* buf,
1560                                      int buflen, int* offset) {
1561   // buf is not optional, but offset is optional
1562   assert(buf != NULL, "sanity check");
1563 
1564   Dl_info dlinfo;
1565 
1566   if (dladdr((void*)addr, &dlinfo) != 0) {
1567     if (dlinfo.dli_fname != NULL) {
1568       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1569     }
1570     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1571       *offset = addr - (address)dlinfo.dli_fbase;
1572     }
1573     return true;
1574   }
1575 
1576   buf[0] = '\0';
1577   if (offset) *offset = -1;
1578   return false;
1579 }
1580 
1581 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1582   Dl_info dli;
1583   // Sanity check?
1584   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1585       dli.dli_fname == NULL) {
1586     return 1;
1587   }
1588 
1589   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1590   if (handle == NULL) {
1591     return 1;
1592   }
1593 
1594   Link_map *map;
1595   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1596   if (map == NULL) {
1597     dlclose(handle);
1598     return 1;
1599   }
1600 
1601   while (map->l_prev != NULL) {
1602     map = map->l_prev;
1603   }
1604 
1605   while (map != NULL) {
1606     // Iterate through all map entries and call callback with fields of interest
1607     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1608       dlclose(handle);
1609       return 1;
1610     }
1611     map = map->l_next;
1612   }
1613 
1614   dlclose(handle);
1615   return 0;
1616 }
1617 
1618 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1619   outputStream * out = (outputStream *) param;
1620   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1621   return 0;
1622 }
1623 
1624 void os::print_dll_info(outputStream * st) {
1625   st->print_cr("Dynamic libraries:"); st->flush();
1626   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1627     st->print_cr("Error: Cannot print dynamic libraries.");
1628   }
1629 }
1630 
1631 // Loads .dll/.so and
1632 // in case of error it checks if .dll/.so was built for the
1633 // same architecture as Hotspot is running on
1634 
1635 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1636   void * result= ::dlopen(filename, RTLD_LAZY);
1637   if (result != NULL) {
1638     // Successful loading
1639     return result;
1640   }
1641 
1642   Elf32_Ehdr elf_head;
1643 
1644   // Read system error message into ebuf
1645   // It may or may not be overwritten below
1646   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1647   ebuf[ebuflen-1]='\0';
1648   int diag_msg_max_length=ebuflen-strlen(ebuf);
1649   char* diag_msg_buf=ebuf+strlen(ebuf);
1650 
1651   if (diag_msg_max_length==0) {
1652     // No more space in ebuf for additional diagnostics message
1653     return NULL;
1654   }
1655 
1656 
1657   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1658 
1659   if (file_descriptor < 0) {
1660     // Can't open library, report dlerror() message
1661     return NULL;
1662   }
1663 
1664   bool failed_to_read_elf_head=
1665     (sizeof(elf_head)!=
1666      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1667 
1668   ::close(file_descriptor);
1669   if (failed_to_read_elf_head) {
1670     // file i/o error - report dlerror() msg
1671     return NULL;
1672   }
1673 
1674   typedef struct {
1675     Elf32_Half  code;         // Actual value as defined in elf.h
1676     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1677     char        elf_class;    // 32 or 64 bit
1678     char        endianess;    // MSB or LSB
1679     char*       name;         // String representation
1680   } arch_t;
1681 
1682   static const arch_t arch_array[]={
1683     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1684     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1685     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1686     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1687     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1688     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1689     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1690     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1691     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1692     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1693   };
1694 
1695 #if  (defined IA32)
1696   static  Elf32_Half running_arch_code=EM_386;
1697 #elif   (defined AMD64)
1698   static  Elf32_Half running_arch_code=EM_X86_64;
1699 #elif  (defined IA64)
1700   static  Elf32_Half running_arch_code=EM_IA_64;
1701 #elif  (defined __sparc) && (defined _LP64)
1702   static  Elf32_Half running_arch_code=EM_SPARCV9;
1703 #elif  (defined __sparc) && (!defined _LP64)
1704   static  Elf32_Half running_arch_code=EM_SPARC;
1705 #elif  (defined __powerpc64__)
1706   static  Elf32_Half running_arch_code=EM_PPC64;
1707 #elif  (defined __powerpc__)
1708   static  Elf32_Half running_arch_code=EM_PPC;
1709 #elif (defined ARM)
1710   static  Elf32_Half running_arch_code=EM_ARM;
1711 #else
1712   #error Method os::dll_load requires that one of following is defined:\
1713        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1714 #endif
1715 
1716   // Identify compatability class for VM's architecture and library's architecture
1717   // Obtain string descriptions for architectures
1718 
1719   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1720   int running_arch_index=-1;
1721 
1722   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1723     if (running_arch_code == arch_array[i].code) {
1724       running_arch_index    = i;
1725     }
1726     if (lib_arch.code == arch_array[i].code) {
1727       lib_arch.compat_class = arch_array[i].compat_class;
1728       lib_arch.name         = arch_array[i].name;
1729     }
1730   }
1731 
1732   assert(running_arch_index != -1,
1733          "Didn't find running architecture code (running_arch_code) in arch_array");
1734   if (running_arch_index == -1) {
1735     // Even though running architecture detection failed
1736     // we may still continue with reporting dlerror() message
1737     return NULL;
1738   }
1739 
1740   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1741     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1742     return NULL;
1743   }
1744 
1745   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1746     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1747     return NULL;
1748   }
1749 
1750   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1751     if (lib_arch.name!=NULL) {
1752       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1753                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1754                  lib_arch.name, arch_array[running_arch_index].name);
1755     } else {
1756       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1757                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1758                  lib_arch.code,
1759                  arch_array[running_arch_index].name);
1760     }
1761   }
1762 
1763   return NULL;
1764 }
1765 
1766 void* os::dll_lookup(void* handle, const char* name) {
1767   return dlsym(handle, name);
1768 }
1769 
1770 void* os::get_default_process_handle() {
1771   return (void*)::dlopen(NULL, RTLD_LAZY);
1772 }
1773 
1774 int os::stat(const char *path, struct stat *sbuf) {
1775   char pathbuf[MAX_PATH];
1776   if (strlen(path) > MAX_PATH - 1) {
1777     errno = ENAMETOOLONG;
1778     return -1;
1779   }
1780   os::native_path(strcpy(pathbuf, path));
1781   return ::stat(pathbuf, sbuf);
1782 }
1783 
1784 static inline time_t get_mtime(const char* filename) {
1785   struct stat st;
1786   int ret = os::stat(filename, &st);
1787   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1788   return st.st_mtime;
1789 }
1790 
1791 int os::compare_file_modified_times(const char* file1, const char* file2) {
1792   time_t t1 = get_mtime(file1);
1793   time_t t2 = get_mtime(file2);
1794   return t1 - t2;
1795 }
1796 
1797 static bool _print_ascii_file(const char* filename, outputStream* st) {
1798   int fd = ::open(filename, O_RDONLY);
1799   if (fd == -1) {
1800     return false;
1801   }
1802 
1803   char buf[32];
1804   int bytes;
1805   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1806     st->print_raw(buf, bytes);
1807   }
1808 
1809   ::close(fd);
1810 
1811   return true;
1812 }
1813 
1814 void os::print_os_info_brief(outputStream* st) {
1815   os::Solaris::print_distro_info(st);
1816 
1817   os::Posix::print_uname_info(st);
1818 
1819   os::Solaris::print_libversion_info(st);
1820 }
1821 
1822 void os::print_os_info(outputStream* st) {
1823   st->print("OS:");
1824 
1825   os::Solaris::print_distro_info(st);
1826 
1827   os::Posix::print_uname_info(st);
1828 
1829   os::Solaris::print_libversion_info(st);
1830 
1831   os::Posix::print_rlimit_info(st);
1832 
1833   os::Posix::print_load_average(st);
1834 }
1835 
1836 void os::Solaris::print_distro_info(outputStream* st) {
1837   if (!_print_ascii_file("/etc/release", st)) {
1838     st->print("Solaris");
1839   }
1840   st->cr();
1841 }
1842 
1843 void os::get_summary_os_info(char* buf, size_t buflen) {
1844   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1845   FILE* fp = fopen("/etc/release", "r");
1846   if (fp != NULL) {
1847     char tmp[256];
1848     // Only get the first line and chop out everything but the os name.
1849     if (fgets(tmp, sizeof(tmp), fp)) {
1850       char* ptr = tmp;
1851       // skip past whitespace characters
1852       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1853       if (*ptr != '\0') {
1854         char* nl = strchr(ptr, '\n');
1855         if (nl != NULL) *nl = '\0';
1856         strncpy(buf, ptr, buflen);
1857       }
1858     }
1859     fclose(fp);
1860   }
1861 }
1862 
1863 void os::Solaris::print_libversion_info(outputStream* st) {
1864   st->print("  (T2 libthread)");
1865   st->cr();
1866 }
1867 
1868 static bool check_addr0(outputStream* st) {
1869   jboolean status = false;
1870   const int read_chunk = 200;
1871   int ret = 0;
1872   int nmap = 0;
1873   int fd = ::open("/proc/self/map",O_RDONLY);
1874   if (fd >= 0) {
1875     prmap_t *p = NULL;
1876     char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1877     if (NULL == mbuff) {
1878       ::close(fd);
1879       return status;
1880     }
1881     while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1882       //check if read() has not read partial data
1883       if( 0 != ret % sizeof(prmap_t)){
1884         break;
1885       }
1886       nmap = ret / sizeof(prmap_t);
1887       p = (prmap_t *)mbuff;
1888       for(int i = 0; i < nmap; i++){
1889         if (p->pr_vaddr == 0x0) {
1890           st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1891           st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1892           st->print("Access: ");
1893           st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1894           st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1895           st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1896           st->cr();
1897           status = true;
1898         }
1899         p++;
1900       }
1901     }
1902     free(mbuff);
1903     ::close(fd);
1904   }
1905   return status;
1906 }
1907 
1908 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1909   // Get MHz with system call. We don't seem to already have this.
1910   processor_info_t stats;
1911   processorid_t id = getcpuid();
1912   int clock = 0;
1913   if (processor_info(id, &stats) != -1) {
1914     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1915   }
1916 #ifdef AMD64
1917   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1918 #else
1919   // must be sparc
1920   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1921 #endif
1922 }
1923 
1924 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1925   // Nothing to do for now.
1926 }
1927 
1928 void os::print_memory_info(outputStream* st) {
1929   st->print("Memory:");
1930   st->print(" %dk page", os::vm_page_size()>>10);
1931   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1932   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1933   st->cr();
1934   (void) check_addr0(st);
1935 }
1936 
1937 // Moved from whole group, because we need them here for diagnostic
1938 // prints.
1939 #define OLDMAXSIGNUM 32
1940 static int Maxsignum = 0;
1941 static int *ourSigFlags = NULL;
1942 
1943 int os::Solaris::get_our_sigflags(int sig) {
1944   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1945   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1946   return ourSigFlags[sig];
1947 }
1948 
1949 void os::Solaris::set_our_sigflags(int sig, int flags) {
1950   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1951   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1952   ourSigFlags[sig] = flags;
1953 }
1954 
1955 
1956 static const char* get_signal_handler_name(address handler,
1957                                            char* buf, int buflen) {
1958   int offset;
1959   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1960   if (found) {
1961     // skip directory names
1962     const char *p1, *p2;
1963     p1 = buf;
1964     size_t len = strlen(os::file_separator());
1965     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1966     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1967   } else {
1968     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1969   }
1970   return buf;
1971 }
1972 
1973 static void print_signal_handler(outputStream* st, int sig,
1974                                  char* buf, size_t buflen) {
1975   struct sigaction sa;
1976 
1977   sigaction(sig, NULL, &sa);
1978 
1979   st->print("%s: ", os::exception_name(sig, buf, buflen));
1980 
1981   address handler = (sa.sa_flags & SA_SIGINFO)
1982                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1983                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
1984 
1985   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1986     st->print("SIG_DFL");
1987   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1988     st->print("SIG_IGN");
1989   } else {
1990     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1991   }
1992 
1993   st->print(", sa_mask[0]=");
1994   os::Posix::print_signal_set_short(st, &sa.sa_mask);
1995 
1996   address rh = VMError::get_resetted_sighandler(sig);
1997   // May be, handler was resetted by VMError?
1998   if (rh != NULL) {
1999     handler = rh;
2000     sa.sa_flags = VMError::get_resetted_sigflags(sig);
2001   }
2002 
2003   st->print(", sa_flags=");
2004   os::Posix::print_sa_flags(st, sa.sa_flags);
2005 
2006   // Check: is it our handler?
2007   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
2008     // It is our signal handler
2009     // check for flags
2010     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2011       st->print(
2012                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2013                 os::Solaris::get_our_sigflags(sig));
2014     }
2015   }
2016   st->cr();
2017 }
2018 
2019 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2020   st->print_cr("Signal Handlers:");
2021   print_signal_handler(st, SIGSEGV, buf, buflen);
2022   print_signal_handler(st, SIGBUS , buf, buflen);
2023   print_signal_handler(st, SIGFPE , buf, buflen);
2024   print_signal_handler(st, SIGPIPE, buf, buflen);
2025   print_signal_handler(st, SIGXFSZ, buf, buflen);
2026   print_signal_handler(st, SIGILL , buf, buflen);
2027   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2028   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2029   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2030   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2031   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2032   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2033 }
2034 
2035 static char saved_jvm_path[MAXPATHLEN] = { 0 };
2036 
2037 // Find the full path to the current module, libjvm.so
2038 void os::jvm_path(char *buf, jint buflen) {
2039   // Error checking.
2040   if (buflen < MAXPATHLEN) {
2041     assert(false, "must use a large-enough buffer");
2042     buf[0] = '\0';
2043     return;
2044   }
2045   // Lazy resolve the path to current module.
2046   if (saved_jvm_path[0] != 0) {
2047     strcpy(buf, saved_jvm_path);
2048     return;
2049   }
2050 
2051   Dl_info dlinfo;
2052   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2053   assert(ret != 0, "cannot locate libjvm");
2054   if (ret != 0 && dlinfo.dli_fname != NULL) {
2055     realpath((char *)dlinfo.dli_fname, buf);
2056   } else {
2057     buf[0] = '\0';
2058     return;
2059   }
2060 
2061   if (Arguments::sun_java_launcher_is_altjvm()) {
2062     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2063     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2064     // If "/jre/lib/" appears at the right place in the string, then
2065     // assume we are installed in a JDK and we're done.  Otherwise, check
2066     // for a JAVA_HOME environment variable and fix up the path so it
2067     // looks like libjvm.so is installed there (append a fake suffix
2068     // hotspot/libjvm.so).
2069     const char *p = buf + strlen(buf) - 1;
2070     for (int count = 0; p > buf && count < 5; ++count) {
2071       for (--p; p > buf && *p != '/'; --p)
2072         /* empty */ ;
2073     }
2074 
2075     if (strncmp(p, "/jre/lib/", 9) != 0) {
2076       // Look for JAVA_HOME in the environment.
2077       char* java_home_var = ::getenv("JAVA_HOME");
2078       if (java_home_var != NULL && java_home_var[0] != 0) {
2079         char cpu_arch[12];
2080         char* jrelib_p;
2081         int   len;
2082         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2083 #ifdef _LP64
2084         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2085         if (strcmp(cpu_arch, "sparc") == 0) {
2086           strcat(cpu_arch, "v9");
2087         } else if (strcmp(cpu_arch, "i386") == 0) {
2088           strcpy(cpu_arch, "amd64");
2089         }
2090 #endif
2091         // Check the current module name "libjvm.so".
2092         p = strrchr(buf, '/');
2093         assert(strstr(p, "/libjvm") == p, "invalid library name");
2094 
2095         realpath(java_home_var, buf);
2096         // determine if this is a legacy image or modules image
2097         // modules image doesn't have "jre" subdirectory
2098         len = strlen(buf);
2099         assert(len < buflen, "Ran out of buffer space");
2100         jrelib_p = buf + len;
2101         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2102         if (0 != access(buf, F_OK)) {
2103           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2104         }
2105 
2106         if (0 == access(buf, F_OK)) {
2107           // Use current module name "libjvm.so"
2108           len = strlen(buf);
2109           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2110         } else {
2111           // Go back to path of .so
2112           realpath((char *)dlinfo.dli_fname, buf);
2113         }
2114       }
2115     }
2116   }
2117 
2118   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2119   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2120 }
2121 
2122 
2123 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2124   // no prefix required, not even "_"
2125 }
2126 
2127 
2128 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2129   // no suffix required
2130 }
2131 
2132 // This method is a copy of JDK's sysGetLastErrorString
2133 // from src/solaris/hpi/src/system_md.c
2134 
2135 size_t os::lasterror(char *buf, size_t len) {
2136   if (errno == 0)  return 0;
2137 
2138   const char *s = os::strerror(errno);
2139   size_t n = ::strlen(s);
2140   if (n >= len) {
2141     n = len - 1;
2142   }
2143   ::strncpy(buf, s, n);
2144   buf[n] = '\0';
2145   return n;
2146 }
2147 
2148 
2149 // sun.misc.Signal
2150 
2151 extern "C" {
2152   static void UserHandler(int sig, void *siginfo, void *context) {
2153     // Ctrl-C is pressed during error reporting, likely because the error
2154     // handler fails to abort. Let VM die immediately.
2155     if (sig == SIGINT && is_error_reported()) {
2156       os::die();
2157     }
2158 
2159     os::signal_notify(sig);
2160     // We do not need to reinstate the signal handler each time...
2161   }
2162 }
2163 
2164 void* os::user_handler() {
2165   return CAST_FROM_FN_PTR(void*, UserHandler);
2166 }
2167 
2168 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2169   struct timespec ts;
2170   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2171 
2172   return ts;
2173 }
2174 
2175 extern "C" {
2176   typedef void (*sa_handler_t)(int);
2177   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2178 }
2179 
2180 void* os::signal(int signal_number, void* handler) {
2181   struct sigaction sigAct, oldSigAct;
2182   sigfillset(&(sigAct.sa_mask));
2183   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2184   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2185 
2186   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2187     // -1 means registration failed
2188     return (void *)-1;
2189   }
2190 
2191   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2192 }
2193 
2194 void os::signal_raise(int signal_number) {
2195   raise(signal_number);
2196 }
2197 
2198 // The following code is moved from os.cpp for making this
2199 // code platform specific, which it is by its very nature.
2200 
2201 // a counter for each possible signal value
2202 static int Sigexit = 0;
2203 static int Maxlibjsigsigs;
2204 static jint *pending_signals = NULL;
2205 static int *preinstalled_sigs = NULL;
2206 static struct sigaction *chainedsigactions = NULL;
2207 static sema_t sig_sem;
2208 typedef int (*version_getting_t)();
2209 version_getting_t os::Solaris::get_libjsig_version = NULL;
2210 static int libjsigversion = NULL;
2211 
2212 int os::sigexitnum_pd() {
2213   assert(Sigexit > 0, "signal memory not yet initialized");
2214   return Sigexit;
2215 }
2216 
2217 void os::Solaris::init_signal_mem() {
2218   // Initialize signal structures
2219   Maxsignum = SIGRTMAX;
2220   Sigexit = Maxsignum+1;
2221   assert(Maxsignum >0, "Unable to obtain max signal number");
2222 
2223   Maxlibjsigsigs = Maxsignum;
2224 
2225   // pending_signals has one int per signal
2226   // The additional signal is for SIGEXIT - exit signal to signal_thread
2227   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2228   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2229 
2230   if (UseSignalChaining) {
2231     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2232                                                    * (Maxsignum + 1), mtInternal);
2233     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2234     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2235     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2236   }
2237   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2238   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2239 }
2240 
2241 void os::signal_init_pd() {
2242   int ret;
2243 
2244   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2245   assert(ret == 0, "sema_init() failed");
2246 }
2247 
2248 void os::signal_notify(int signal_number) {
2249   int ret;
2250 
2251   Atomic::inc(&pending_signals[signal_number]);
2252   ret = ::sema_post(&sig_sem);
2253   assert(ret == 0, "sema_post() failed");
2254 }
2255 
2256 static int check_pending_signals(bool wait_for_signal) {
2257   int ret;
2258   while (true) {
2259     for (int i = 0; i < Sigexit + 1; i++) {
2260       jint n = pending_signals[i];
2261       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2262         return i;
2263       }
2264     }
2265     if (!wait_for_signal) {
2266       return -1;
2267     }
2268     JavaThread *thread = JavaThread::current();
2269     ThreadBlockInVM tbivm(thread);
2270 
2271     bool threadIsSuspended;
2272     do {
2273       thread->set_suspend_equivalent();
2274       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2275       while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2276         ;
2277       assert(ret == 0, "sema_wait() failed");
2278 
2279       // were we externally suspended while we were waiting?
2280       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2281       if (threadIsSuspended) {
2282         // The semaphore has been incremented, but while we were waiting
2283         // another thread suspended us. We don't want to continue running
2284         // while suspended because that would surprise the thread that
2285         // suspended us.
2286         ret = ::sema_post(&sig_sem);
2287         assert(ret == 0, "sema_post() failed");
2288 
2289         thread->java_suspend_self();
2290       }
2291     } while (threadIsSuspended);
2292   }
2293 }
2294 
2295 int os::signal_lookup() {
2296   return check_pending_signals(false);
2297 }
2298 
2299 int os::signal_wait() {
2300   return check_pending_signals(true);
2301 }
2302 
2303 ////////////////////////////////////////////////////////////////////////////////
2304 // Virtual Memory
2305 
2306 static int page_size = -1;
2307 
2308 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2309 // clear this var if support is not available.
2310 static bool has_map_align = true;
2311 
2312 int os::vm_page_size() {
2313   assert(page_size != -1, "must call os::init");
2314   return page_size;
2315 }
2316 
2317 // Solaris allocates memory by pages.
2318 int os::vm_allocation_granularity() {
2319   assert(page_size != -1, "must call os::init");
2320   return page_size;
2321 }
2322 
2323 static bool recoverable_mmap_error(int err) {
2324   // See if the error is one we can let the caller handle. This
2325   // list of errno values comes from the Solaris mmap(2) man page.
2326   switch (err) {
2327   case EBADF:
2328   case EINVAL:
2329   case ENOTSUP:
2330     // let the caller deal with these errors
2331     return true;
2332 
2333   default:
2334     // Any remaining errors on this OS can cause our reserved mapping
2335     // to be lost. That can cause confusion where different data
2336     // structures think they have the same memory mapped. The worst
2337     // scenario is if both the VM and a library think they have the
2338     // same memory mapped.
2339     return false;
2340   }
2341 }
2342 
2343 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2344                                     int err) {
2345   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2346           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2347           os::strerror(err), err);
2348 }
2349 
2350 static void warn_fail_commit_memory(char* addr, size_t bytes,
2351                                     size_t alignment_hint, bool exec,
2352                                     int err) {
2353   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2354           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2355           alignment_hint, exec, os::strerror(err), err);
2356 }
2357 
2358 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2359   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2360   size_t size = bytes;
2361   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2362   if (res != NULL) {
2363     if (UseNUMAInterleaving) {
2364       numa_make_global(addr, bytes);
2365     }
2366     return 0;
2367   }
2368 
2369   int err = errno;  // save errno from mmap() call in mmap_chunk()
2370 
2371   if (!recoverable_mmap_error(err)) {
2372     warn_fail_commit_memory(addr, bytes, exec, err);
2373     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2374   }
2375 
2376   return err;
2377 }
2378 
2379 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2380   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2381 }
2382 
2383 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2384                                   const char* mesg) {
2385   assert(mesg != NULL, "mesg must be specified");
2386   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2387   if (err != 0) {
2388     // the caller wants all commit errors to exit with the specified mesg:
2389     warn_fail_commit_memory(addr, bytes, exec, err);
2390     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2391   }
2392 }
2393 
2394 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2395   assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2396          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2397          alignment, (size_t) vm_page_size());
2398 
2399   for (int i = 0; _page_sizes[i] != 0; i++) {
2400     if (is_size_aligned(alignment, _page_sizes[i])) {
2401       return _page_sizes[i];
2402     }
2403   }
2404 
2405   return (size_t) vm_page_size();
2406 }
2407 
2408 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2409                                     size_t alignment_hint, bool exec) {
2410   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2411   if (err == 0 && UseLargePages && alignment_hint > 0) {
2412     assert(is_size_aligned(bytes, alignment_hint),
2413            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2414 
2415     // The syscall memcntl requires an exact page size (see man memcntl for details).
2416     size_t page_size = page_size_for_alignment(alignment_hint);
2417     if (page_size > (size_t) vm_page_size()) {
2418       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2419     }
2420   }
2421   return err;
2422 }
2423 
2424 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2425                           bool exec) {
2426   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2427 }
2428 
2429 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2430                                   size_t alignment_hint, bool exec,
2431                                   const char* mesg) {
2432   assert(mesg != NULL, "mesg must be specified");
2433   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2434   if (err != 0) {
2435     // the caller wants all commit errors to exit with the specified mesg:
2436     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2437     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2438   }
2439 }
2440 
2441 // Uncommit the pages in a specified region.
2442 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2443   if (madvise(addr, bytes, MADV_FREE) < 0) {
2444     debug_only(warning("MADV_FREE failed."));
2445     return;
2446   }
2447 }
2448 
2449 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2450   return os::commit_memory(addr, size, !ExecMem);
2451 }
2452 
2453 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2454   return os::uncommit_memory(addr, size);
2455 }
2456 
2457 // Change the page size in a given range.
2458 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2459   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2460   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2461   if (UseLargePages) {
2462     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2463     if (page_size > (size_t) vm_page_size()) {
2464       Solaris::setup_large_pages(addr, bytes, page_size);
2465     }
2466   }
2467 }
2468 
2469 // Tell the OS to make the range local to the first-touching LWP
2470 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2471   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2472   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2473     debug_only(warning("MADV_ACCESS_LWP failed."));
2474   }
2475 }
2476 
2477 // Tell the OS that this range would be accessed from different LWPs.
2478 void os::numa_make_global(char *addr, size_t bytes) {
2479   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2480   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2481     debug_only(warning("MADV_ACCESS_MANY failed."));
2482   }
2483 }
2484 
2485 // Get the number of the locality groups.
2486 size_t os::numa_get_groups_num() {
2487   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2488   return n != -1 ? n : 1;
2489 }
2490 
2491 // Get a list of leaf locality groups. A leaf lgroup is group that
2492 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2493 // board. An LWP is assigned to one of these groups upon creation.
2494 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2495   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2496     ids[0] = 0;
2497     return 1;
2498   }
2499   int result_size = 0, top = 1, bottom = 0, cur = 0;
2500   for (int k = 0; k < size; k++) {
2501     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2502                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2503     if (r == -1) {
2504       ids[0] = 0;
2505       return 1;
2506     }
2507     if (!r) {
2508       // That's a leaf node.
2509       assert(bottom <= cur, "Sanity check");
2510       // Check if the node has memory
2511       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2512                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2513         ids[bottom++] = ids[cur];
2514       }
2515     }
2516     top += r;
2517     cur++;
2518   }
2519   if (bottom == 0) {
2520     // Handle a situation, when the OS reports no memory available.
2521     // Assume UMA architecture.
2522     ids[0] = 0;
2523     return 1;
2524   }
2525   return bottom;
2526 }
2527 
2528 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2529 bool os::numa_topology_changed() {
2530   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2531   if (is_stale != -1 && is_stale) {
2532     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2533     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2534     assert(c != 0, "Failure to initialize LGRP API");
2535     Solaris::set_lgrp_cookie(c);
2536     return true;
2537   }
2538   return false;
2539 }
2540 
2541 // Get the group id of the current LWP.
2542 int os::numa_get_group_id() {
2543   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2544   if (lgrp_id == -1) {
2545     return 0;
2546   }
2547   const int size = os::numa_get_groups_num();
2548   int *ids = (int*)alloca(size * sizeof(int));
2549 
2550   // Get the ids of all lgroups with memory; r is the count.
2551   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2552                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2553   if (r <= 0) {
2554     return 0;
2555   }
2556   return ids[os::random() % r];
2557 }
2558 
2559 // Request information about the page.
2560 bool os::get_page_info(char *start, page_info* info) {
2561   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2562   uint64_t addr = (uintptr_t)start;
2563   uint64_t outdata[2];
2564   uint_t validity = 0;
2565 
2566   if (meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2567     return false;
2568   }
2569 
2570   info->size = 0;
2571   info->lgrp_id = -1;
2572 
2573   if ((validity & 1) != 0) {
2574     if ((validity & 2) != 0) {
2575       info->lgrp_id = outdata[0];
2576     }
2577     if ((validity & 4) != 0) {
2578       info->size = outdata[1];
2579     }
2580     return true;
2581   }
2582   return false;
2583 }
2584 
2585 // Scan the pages from start to end until a page different than
2586 // the one described in the info parameter is encountered.
2587 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2588                      page_info* page_found) {
2589   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2590   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2591   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2592   uint_t validity[MAX_MEMINFO_CNT];
2593 
2594   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2595   uint64_t p = (uint64_t)start;
2596   while (p < (uint64_t)end) {
2597     addrs[0] = p;
2598     size_t addrs_count = 1;
2599     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2600       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2601       addrs_count++;
2602     }
2603 
2604     if (meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2605       return NULL;
2606     }
2607 
2608     size_t i = 0;
2609     for (; i < addrs_count; i++) {
2610       if ((validity[i] & 1) != 0) {
2611         if ((validity[i] & 4) != 0) {
2612           if (outdata[types * i + 1] != page_expected->size) {
2613             break;
2614           }
2615         } else if (page_expected->size != 0) {
2616           break;
2617         }
2618 
2619         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2620           if (outdata[types * i] != page_expected->lgrp_id) {
2621             break;
2622           }
2623         }
2624       } else {
2625         return NULL;
2626       }
2627     }
2628 
2629     if (i < addrs_count) {
2630       if ((validity[i] & 2) != 0) {
2631         page_found->lgrp_id = outdata[types * i];
2632       } else {
2633         page_found->lgrp_id = -1;
2634       }
2635       if ((validity[i] & 4) != 0) {
2636         page_found->size = outdata[types * i + 1];
2637       } else {
2638         page_found->size = 0;
2639       }
2640       return (char*)addrs[i];
2641     }
2642 
2643     p = addrs[addrs_count - 1] + page_size;
2644   }
2645   return end;
2646 }
2647 
2648 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2649   size_t size = bytes;
2650   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2651   // uncommitted page. Otherwise, the read/write might succeed if we
2652   // have enough swap space to back the physical page.
2653   return
2654     NULL != Solaris::mmap_chunk(addr, size,
2655                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2656                                 PROT_NONE);
2657 }
2658 
2659 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2660   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2661 
2662   if (b == MAP_FAILED) {
2663     return NULL;
2664   }
2665   return b;
2666 }
2667 
2668 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2669                              size_t alignment_hint, bool fixed) {
2670   char* addr = requested_addr;
2671   int flags = MAP_PRIVATE | MAP_NORESERVE;
2672 
2673   assert(!(fixed && (alignment_hint > 0)),
2674          "alignment hint meaningless with fixed mmap");
2675 
2676   if (fixed) {
2677     flags |= MAP_FIXED;
2678   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2679     flags |= MAP_ALIGN;
2680     addr = (char*) alignment_hint;
2681   }
2682 
2683   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2684   // uncommitted page. Otherwise, the read/write might succeed if we
2685   // have enough swap space to back the physical page.
2686   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2687 }
2688 
2689 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2690                             size_t alignment_hint) {
2691   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2692                                   (requested_addr != NULL));
2693 
2694   guarantee(requested_addr == NULL || requested_addr == addr,
2695             "OS failed to return requested mmap address.");
2696   return addr;
2697 }
2698 
2699 // Reserve memory at an arbitrary address, only if that area is
2700 // available (and not reserved for something else).
2701 
2702 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2703   const int max_tries = 10;
2704   char* base[max_tries];
2705   size_t size[max_tries];
2706 
2707   // Solaris adds a gap between mmap'ed regions.  The size of the gap
2708   // is dependent on the requested size and the MMU.  Our initial gap
2709   // value here is just a guess and will be corrected later.
2710   bool had_top_overlap = false;
2711   bool have_adjusted_gap = false;
2712   size_t gap = 0x400000;
2713 
2714   // Assert only that the size is a multiple of the page size, since
2715   // that's all that mmap requires, and since that's all we really know
2716   // about at this low abstraction level.  If we need higher alignment,
2717   // we can either pass an alignment to this method or verify alignment
2718   // in one of the methods further up the call chain.  See bug 5044738.
2719   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2720 
2721   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2722   // Give it a try, if the kernel honors the hint we can return immediately.
2723   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2724 
2725   volatile int err = errno;
2726   if (addr == requested_addr) {
2727     return addr;
2728   } else if (addr != NULL) {
2729     pd_unmap_memory(addr, bytes);
2730   }
2731 
2732   if (log_is_enabled(Warning, os)) {
2733     char buf[256];
2734     buf[0] = '\0';
2735     if (addr == NULL) {
2736       jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2737     }
2738     log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2739             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2740             "%s", bytes, requested_addr, addr, buf);
2741   }
2742 
2743   // Address hint method didn't work.  Fall back to the old method.
2744   // In theory, once SNV becomes our oldest supported platform, this
2745   // code will no longer be needed.
2746   //
2747   // Repeatedly allocate blocks until the block is allocated at the
2748   // right spot. Give up after max_tries.
2749   int i;
2750   for (i = 0; i < max_tries; ++i) {
2751     base[i] = reserve_memory(bytes);
2752 
2753     if (base[i] != NULL) {
2754       // Is this the block we wanted?
2755       if (base[i] == requested_addr) {
2756         size[i] = bytes;
2757         break;
2758       }
2759 
2760       // check that the gap value is right
2761       if (had_top_overlap && !have_adjusted_gap) {
2762         size_t actual_gap = base[i-1] - base[i] - bytes;
2763         if (gap != actual_gap) {
2764           // adjust the gap value and retry the last 2 allocations
2765           assert(i > 0, "gap adjustment code problem");
2766           have_adjusted_gap = true;  // adjust the gap only once, just in case
2767           gap = actual_gap;
2768           log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2769           unmap_memory(base[i], bytes);
2770           unmap_memory(base[i-1], size[i-1]);
2771           i-=2;
2772           continue;
2773         }
2774       }
2775 
2776       // Does this overlap the block we wanted? Give back the overlapped
2777       // parts and try again.
2778       //
2779       // There is still a bug in this code: if top_overlap == bytes,
2780       // the overlap is offset from requested region by the value of gap.
2781       // In this case giving back the overlapped part will not work,
2782       // because we'll give back the entire block at base[i] and
2783       // therefore the subsequent allocation will not generate a new gap.
2784       // This could be fixed with a new algorithm that used larger
2785       // or variable size chunks to find the requested region -
2786       // but such a change would introduce additional complications.
2787       // It's rare enough that the planets align for this bug,
2788       // so we'll just wait for a fix for 6204603/5003415 which
2789       // will provide a mmap flag to allow us to avoid this business.
2790 
2791       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2792       if (top_overlap >= 0 && top_overlap < bytes) {
2793         had_top_overlap = true;
2794         unmap_memory(base[i], top_overlap);
2795         base[i] += top_overlap;
2796         size[i] = bytes - top_overlap;
2797       } else {
2798         size_t bottom_overlap = base[i] + bytes - requested_addr;
2799         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2800           if (bottom_overlap == 0) {
2801             log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2802           }
2803           unmap_memory(requested_addr, bottom_overlap);
2804           size[i] = bytes - bottom_overlap;
2805         } else {
2806           size[i] = bytes;
2807         }
2808       }
2809     }
2810   }
2811 
2812   // Give back the unused reserved pieces.
2813 
2814   for (int j = 0; j < i; ++j) {
2815     if (base[j] != NULL) {
2816       unmap_memory(base[j], size[j]);
2817     }
2818   }
2819 
2820   return (i < max_tries) ? requested_addr : NULL;
2821 }
2822 
2823 bool os::pd_release_memory(char* addr, size_t bytes) {
2824   size_t size = bytes;
2825   return munmap(addr, size) == 0;
2826 }
2827 
2828 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2829   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2830          "addr must be page aligned");
2831   int retVal = mprotect(addr, bytes, prot);
2832   return retVal == 0;
2833 }
2834 
2835 // Protect memory (Used to pass readonly pages through
2836 // JNI GetArray<type>Elements with empty arrays.)
2837 // Also, used for serialization page and for compressed oops null pointer
2838 // checking.
2839 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2840                         bool is_committed) {
2841   unsigned int p = 0;
2842   switch (prot) {
2843   case MEM_PROT_NONE: p = PROT_NONE; break;
2844   case MEM_PROT_READ: p = PROT_READ; break;
2845   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2846   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2847   default:
2848     ShouldNotReachHere();
2849   }
2850   // is_committed is unused.
2851   return solaris_mprotect(addr, bytes, p);
2852 }
2853 
2854 // guard_memory and unguard_memory only happens within stack guard pages.
2855 // Since ISM pertains only to the heap, guard and unguard memory should not
2856 /// happen with an ISM region.
2857 bool os::guard_memory(char* addr, size_t bytes) {
2858   return solaris_mprotect(addr, bytes, PROT_NONE);
2859 }
2860 
2861 bool os::unguard_memory(char* addr, size_t bytes) {
2862   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2863 }
2864 
2865 // Large page support
2866 static size_t _large_page_size = 0;
2867 
2868 // Insertion sort for small arrays (descending order).
2869 static void insertion_sort_descending(size_t* array, int len) {
2870   for (int i = 0; i < len; i++) {
2871     size_t val = array[i];
2872     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2873       size_t tmp = array[key];
2874       array[key] = array[key - 1];
2875       array[key - 1] = tmp;
2876     }
2877   }
2878 }
2879 
2880 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2881   const unsigned int usable_count = VM_Version::page_size_count();
2882   if (usable_count == 1) {
2883     return false;
2884   }
2885 
2886   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2887   // build platform, getpagesizes() (without the '2') can be called directly.
2888   typedef int (*gps_t)(size_t[], int);
2889   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2890   if (gps_func == NULL) {
2891     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2892     if (gps_func == NULL) {
2893       if (warn) {
2894         warning("MPSS is not supported by the operating system.");
2895       }
2896       return false;
2897     }
2898   }
2899 
2900   // Fill the array of page sizes.
2901   int n = (*gps_func)(_page_sizes, page_sizes_max);
2902   assert(n > 0, "Solaris bug?");
2903 
2904   if (n == page_sizes_max) {
2905     // Add a sentinel value (necessary only if the array was completely filled
2906     // since it is static (zeroed at initialization)).
2907     _page_sizes[--n] = 0;
2908     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2909   }
2910   assert(_page_sizes[n] == 0, "missing sentinel");
2911   trace_page_sizes("available page sizes", _page_sizes, n);
2912 
2913   if (n == 1) return false;     // Only one page size available.
2914 
2915   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2916   // select up to usable_count elements.  First sort the array, find the first
2917   // acceptable value, then copy the usable sizes to the top of the array and
2918   // trim the rest.  Make sure to include the default page size :-).
2919   //
2920   // A better policy could get rid of the 4M limit by taking the sizes of the
2921   // important VM memory regions (java heap and possibly the code cache) into
2922   // account.
2923   insertion_sort_descending(_page_sizes, n);
2924   const size_t size_limit =
2925     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2926   int beg;
2927   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2928   const int end = MIN2((int)usable_count, n) - 1;
2929   for (int cur = 0; cur < end; ++cur, ++beg) {
2930     _page_sizes[cur] = _page_sizes[beg];
2931   }
2932   _page_sizes[end] = vm_page_size();
2933   _page_sizes[end + 1] = 0;
2934 
2935   if (_page_sizes[end] > _page_sizes[end - 1]) {
2936     // Default page size is not the smallest; sort again.
2937     insertion_sort_descending(_page_sizes, end + 1);
2938   }
2939   *page_size = _page_sizes[0];
2940 
2941   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2942   return true;
2943 }
2944 
2945 void os::large_page_init() {
2946   if (UseLargePages) {
2947     // print a warning if any large page related flag is specified on command line
2948     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2949                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2950 
2951     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2952   }
2953 }
2954 
2955 bool os::Solaris::is_valid_page_size(size_t bytes) {
2956   for (int i = 0; _page_sizes[i] != 0; i++) {
2957     if (_page_sizes[i] == bytes) {
2958       return true;
2959     }
2960   }
2961   return false;
2962 }
2963 
2964 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2965   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2966   assert(is_ptr_aligned((void*) start, align),
2967          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2968   assert(is_size_aligned(bytes, align),
2969          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2970 
2971   // Signal to OS that we want large pages for addresses
2972   // from addr, addr + bytes
2973   struct memcntl_mha mpss_struct;
2974   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2975   mpss_struct.mha_pagesize = align;
2976   mpss_struct.mha_flags = 0;
2977   // Upon successful completion, memcntl() returns 0
2978   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2979     debug_only(warning("Attempt to use MPSS failed."));
2980     return false;
2981   }
2982   return true;
2983 }
2984 
2985 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2986   fatal("os::reserve_memory_special should not be called on Solaris.");
2987   return NULL;
2988 }
2989 
2990 bool os::release_memory_special(char* base, size_t bytes) {
2991   fatal("os::release_memory_special should not be called on Solaris.");
2992   return false;
2993 }
2994 
2995 size_t os::large_page_size() {
2996   return _large_page_size;
2997 }
2998 
2999 // MPSS allows application to commit large page memory on demand; with ISM
3000 // the entire memory region must be allocated as shared memory.
3001 bool os::can_commit_large_page_memory() {
3002   return true;
3003 }
3004 
3005 bool os::can_execute_large_page_memory() {
3006   return true;
3007 }
3008 
3009 // Read calls from inside the vm need to perform state transitions
3010 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3011   size_t res;
3012   JavaThread* thread = (JavaThread*)Thread::current();
3013   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3014   ThreadBlockInVM tbiv(thread);
3015   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3016   return res;
3017 }
3018 
3019 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3020   size_t res;
3021   JavaThread* thread = (JavaThread*)Thread::current();
3022   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3023   ThreadBlockInVM tbiv(thread);
3024   RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
3025   return res;
3026 }
3027 
3028 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3029   size_t res;
3030   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3031          "Assumed _thread_in_native");
3032   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3033   return res;
3034 }
3035 
3036 void os::naked_short_sleep(jlong ms) {
3037   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3038 
3039   // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3040   // Solaris requires -lrt for this.
3041   usleep((ms * 1000));
3042 
3043   return;
3044 }
3045 
3046 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3047 void os::infinite_sleep() {
3048   while (true) {    // sleep forever ...
3049     ::sleep(100);   // ... 100 seconds at a time
3050   }
3051 }
3052 
3053 // Used to convert frequent JVM_Yield() to nops
3054 bool os::dont_yield() {
3055   if (DontYieldALot) {
3056     static hrtime_t last_time = 0;
3057     hrtime_t diff = getTimeNanos() - last_time;
3058 
3059     if (diff < DontYieldALotInterval * 1000000) {
3060       return true;
3061     }
3062 
3063     last_time += diff;
3064 
3065     return false;
3066   } else {
3067     return false;
3068   }
3069 }
3070 
3071 // Note that yield semantics are defined by the scheduling class to which
3072 // the thread currently belongs.  Typically, yield will _not yield to
3073 // other equal or higher priority threads that reside on the dispatch queues
3074 // of other CPUs.
3075 
3076 void os::naked_yield() {
3077   thr_yield();
3078 }
3079 
3080 // Interface for setting lwp priorities.  If we are using T2 libthread,
3081 // which forces the use of BoundThreads or we manually set UseBoundThreads,
3082 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
3083 // function is meaningless in this mode so we must adjust the real lwp's priority
3084 // The routines below implement the getting and setting of lwp priorities.
3085 //
3086 // Note: T2 is now the only supported libthread. UseBoundThreads flag is
3087 //       being deprecated and all threads are now BoundThreads
3088 //
3089 // Note: There are three priority scales used on Solaris.  Java priotities
3090 //       which range from 1 to 10, libthread "thr_setprio" scale which range
3091 //       from 0 to 127, and the current scheduling class of the process we
3092 //       are running in.  This is typically from -60 to +60.
3093 //       The setting of the lwp priorities in done after a call to thr_setprio
3094 //       so Java priorities are mapped to libthread priorities and we map from
3095 //       the latter to lwp priorities.  We don't keep priorities stored in
3096 //       Java priorities since some of our worker threads want to set priorities
3097 //       higher than all Java threads.
3098 //
3099 // For related information:
3100 // (1)  man -s 2 priocntl
3101 // (2)  man -s 4 priocntl
3102 // (3)  man dispadmin
3103 // =    librt.so
3104 // =    libthread/common/rtsched.c - thrp_setlwpprio().
3105 // =    ps -cL <pid> ... to validate priority.
3106 // =    sched_get_priority_min and _max
3107 //              pthread_create
3108 //              sched_setparam
3109 //              pthread_setschedparam
3110 //
3111 // Assumptions:
3112 // +    We assume that all threads in the process belong to the same
3113 //              scheduling class.   IE. an homogenous process.
3114 // +    Must be root or in IA group to change change "interactive" attribute.
3115 //              Priocntl() will fail silently.  The only indication of failure is when
3116 //              we read-back the value and notice that it hasn't changed.
3117 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
3118 // +    For RT, change timeslice as well.  Invariant:
3119 //              constant "priority integral"
3120 //              Konst == TimeSlice * (60-Priority)
3121 //              Given a priority, compute appropriate timeslice.
3122 // +    Higher numerical values have higher priority.
3123 
3124 // sched class attributes
3125 typedef struct {
3126   int   schedPolicy;              // classID
3127   int   maxPrio;
3128   int   minPrio;
3129 } SchedInfo;
3130 
3131 
3132 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3133 
3134 #ifdef ASSERT
3135 static int  ReadBackValidate = 1;
3136 #endif
3137 static int  myClass     = 0;
3138 static int  myMin       = 0;
3139 static int  myMax       = 0;
3140 static int  myCur       = 0;
3141 static bool priocntl_enable = false;
3142 
3143 static const int criticalPrio = FXCriticalPriority;
3144 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3145 
3146 
3147 // lwp_priocntl_init
3148 //
3149 // Try to determine the priority scale for our process.
3150 //
3151 // Return errno or 0 if OK.
3152 //
3153 static int lwp_priocntl_init() {
3154   int rslt;
3155   pcinfo_t ClassInfo;
3156   pcparms_t ParmInfo;
3157   int i;
3158 
3159   if (!UseThreadPriorities) return 0;
3160 
3161   // If ThreadPriorityPolicy is 1, switch tables
3162   if (ThreadPriorityPolicy == 1) {
3163     for (i = 0; i < CriticalPriority+1; i++)
3164       os::java_to_os_priority[i] = prio_policy1[i];
3165   }
3166   if (UseCriticalJavaThreadPriority) {
3167     // MaxPriority always maps to the FX scheduling class and criticalPrio.
3168     // See set_native_priority() and set_lwp_class_and_priority().
3169     // Save original MaxPriority mapping in case attempt to
3170     // use critical priority fails.
3171     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3172     // Set negative to distinguish from other priorities
3173     os::java_to_os_priority[MaxPriority] = -criticalPrio;
3174   }
3175 
3176   // Get IDs for a set of well-known scheduling classes.
3177   // TODO-FIXME: GETCLINFO returns the current # of classes in the
3178   // the system.  We should have a loop that iterates over the
3179   // classID values, which are known to be "small" integers.
3180 
3181   strcpy(ClassInfo.pc_clname, "TS");
3182   ClassInfo.pc_cid = -1;
3183   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3184   if (rslt < 0) return errno;
3185   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3186   tsLimits.schedPolicy = ClassInfo.pc_cid;
3187   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3188   tsLimits.minPrio = -tsLimits.maxPrio;
3189 
3190   strcpy(ClassInfo.pc_clname, "IA");
3191   ClassInfo.pc_cid = -1;
3192   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3193   if (rslt < 0) return errno;
3194   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3195   iaLimits.schedPolicy = ClassInfo.pc_cid;
3196   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3197   iaLimits.minPrio = -iaLimits.maxPrio;
3198 
3199   strcpy(ClassInfo.pc_clname, "RT");
3200   ClassInfo.pc_cid = -1;
3201   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3202   if (rslt < 0) return errno;
3203   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3204   rtLimits.schedPolicy = ClassInfo.pc_cid;
3205   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3206   rtLimits.minPrio = 0;
3207 
3208   strcpy(ClassInfo.pc_clname, "FX");
3209   ClassInfo.pc_cid = -1;
3210   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3211   if (rslt < 0) return errno;
3212   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3213   fxLimits.schedPolicy = ClassInfo.pc_cid;
3214   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3215   fxLimits.minPrio = 0;
3216 
3217   // Query our "current" scheduling class.
3218   // This will normally be IA, TS or, rarely, FX or RT.
3219   memset(&ParmInfo, 0, sizeof(ParmInfo));
3220   ParmInfo.pc_cid = PC_CLNULL;
3221   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3222   if (rslt < 0) return errno;
3223   myClass = ParmInfo.pc_cid;
3224 
3225   // We now know our scheduling classId, get specific information
3226   // about the class.
3227   ClassInfo.pc_cid = myClass;
3228   ClassInfo.pc_clname[0] = 0;
3229   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3230   if (rslt < 0) return errno;
3231 
3232   if (ThreadPriorityVerbose) {
3233     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3234   }
3235 
3236   memset(&ParmInfo, 0, sizeof(pcparms_t));
3237   ParmInfo.pc_cid = PC_CLNULL;
3238   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3239   if (rslt < 0) return errno;
3240 
3241   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3242     myMin = rtLimits.minPrio;
3243     myMax = rtLimits.maxPrio;
3244   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3245     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3246     myMin = iaLimits.minPrio;
3247     myMax = iaLimits.maxPrio;
3248     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3249   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3250     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3251     myMin = tsLimits.minPrio;
3252     myMax = tsLimits.maxPrio;
3253     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3254   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3255     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3256     myMin = fxLimits.minPrio;
3257     myMax = fxLimits.maxPrio;
3258     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3259   } else {
3260     // No clue - punt
3261     if (ThreadPriorityVerbose) {
3262       tty->print_cr("Unknown scheduling class: %s ... \n",
3263                     ClassInfo.pc_clname);
3264     }
3265     return EINVAL;      // no clue, punt
3266   }
3267 
3268   if (ThreadPriorityVerbose) {
3269     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3270   }
3271 
3272   priocntl_enable = true;  // Enable changing priorities
3273   return 0;
3274 }
3275 
3276 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3277 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3278 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3279 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3280 
3281 
3282 // scale_to_lwp_priority
3283 //
3284 // Convert from the libthread "thr_setprio" scale to our current
3285 // lwp scheduling class scale.
3286 //
3287 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3288   int v;
3289 
3290   if (x == 127) return rMax;            // avoid round-down
3291   v = (((x*(rMax-rMin)))/128)+rMin;
3292   return v;
3293 }
3294 
3295 
3296 // set_lwp_class_and_priority
3297 int set_lwp_class_and_priority(int ThreadID, int lwpid,
3298                                int newPrio, int new_class, bool scale) {
3299   int rslt;
3300   int Actual, Expected, prv;
3301   pcparms_t ParmInfo;                   // for GET-SET
3302 #ifdef ASSERT
3303   pcparms_t ReadBack;                   // for readback
3304 #endif
3305 
3306   // Set priority via PC_GETPARMS, update, PC_SETPARMS
3307   // Query current values.
3308   // TODO: accelerate this by eliminating the PC_GETPARMS call.
3309   // Cache "pcparms_t" in global ParmCache.
3310   // TODO: elide set-to-same-value
3311 
3312   // If something went wrong on init, don't change priorities.
3313   if (!priocntl_enable) {
3314     if (ThreadPriorityVerbose) {
3315       tty->print_cr("Trying to set priority but init failed, ignoring");
3316     }
3317     return EINVAL;
3318   }
3319 
3320   // If lwp hasn't started yet, just return
3321   // the _start routine will call us again.
3322   if (lwpid <= 0) {
3323     if (ThreadPriorityVerbose) {
3324       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3325                     INTPTR_FORMAT " to %d, lwpid not set",
3326                     ThreadID, newPrio);
3327     }
3328     return 0;
3329   }
3330 
3331   if (ThreadPriorityVerbose) {
3332     tty->print_cr ("set_lwp_class_and_priority("
3333                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3334                    ThreadID, lwpid, newPrio);
3335   }
3336 
3337   memset(&ParmInfo, 0, sizeof(pcparms_t));
3338   ParmInfo.pc_cid = PC_CLNULL;
3339   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3340   if (rslt < 0) return errno;
3341 
3342   int cur_class = ParmInfo.pc_cid;
3343   ParmInfo.pc_cid = (id_t)new_class;
3344 
3345   if (new_class == rtLimits.schedPolicy) {
3346     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3347     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3348                                                        rtLimits.maxPrio, newPrio)
3349                                : newPrio;
3350     rtInfo->rt_tqsecs  = RT_NOCHANGE;
3351     rtInfo->rt_tqnsecs = RT_NOCHANGE;
3352     if (ThreadPriorityVerbose) {
3353       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3354     }
3355   } else if (new_class == iaLimits.schedPolicy) {
3356     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3357     int maxClamped     = MIN2(iaLimits.maxPrio,
3358                               cur_class == new_class
3359                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3360     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3361                                                        maxClamped, newPrio)
3362                                : newPrio;
3363     iaInfo->ia_uprilim = cur_class == new_class
3364                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3365     iaInfo->ia_mode    = IA_NOCHANGE;
3366     if (ThreadPriorityVerbose) {
3367       tty->print_cr("IA: [%d...%d] %d->%d\n",
3368                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3369     }
3370   } else if (new_class == tsLimits.schedPolicy) {
3371     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3372     int maxClamped     = MIN2(tsLimits.maxPrio,
3373                               cur_class == new_class
3374                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3375     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3376                                                        maxClamped, newPrio)
3377                                : newPrio;
3378     tsInfo->ts_uprilim = cur_class == new_class
3379                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3380     if (ThreadPriorityVerbose) {
3381       tty->print_cr("TS: [%d...%d] %d->%d\n",
3382                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3383     }
3384   } else if (new_class == fxLimits.schedPolicy) {
3385     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3386     int maxClamped     = MIN2(fxLimits.maxPrio,
3387                               cur_class == new_class
3388                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3389     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3390                                                        maxClamped, newPrio)
3391                                : newPrio;
3392     fxInfo->fx_uprilim = cur_class == new_class
3393                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3394     fxInfo->fx_tqsecs  = FX_NOCHANGE;
3395     fxInfo->fx_tqnsecs = FX_NOCHANGE;
3396     if (ThreadPriorityVerbose) {
3397       tty->print_cr("FX: [%d...%d] %d->%d\n",
3398                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3399     }
3400   } else {
3401     if (ThreadPriorityVerbose) {
3402       tty->print_cr("Unknown new scheduling class %d\n", new_class);
3403     }
3404     return EINVAL;    // no clue, punt
3405   }
3406 
3407   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3408   if (ThreadPriorityVerbose && rslt) {
3409     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3410   }
3411   if (rslt < 0) return errno;
3412 
3413 #ifdef ASSERT
3414   // Sanity check: read back what we just attempted to set.
3415   // In theory it could have changed in the interim ...
3416   //
3417   // The priocntl system call is tricky.
3418   // Sometimes it'll validate the priority value argument and
3419   // return EINVAL if unhappy.  At other times it fails silently.
3420   // Readbacks are prudent.
3421 
3422   if (!ReadBackValidate) return 0;
3423 
3424   memset(&ReadBack, 0, sizeof(pcparms_t));
3425   ReadBack.pc_cid = PC_CLNULL;
3426   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3427   assert(rslt >= 0, "priocntl failed");
3428   Actual = Expected = 0xBAD;
3429   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3430   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3431     Actual   = RTPRI(ReadBack)->rt_pri;
3432     Expected = RTPRI(ParmInfo)->rt_pri;
3433   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3434     Actual   = IAPRI(ReadBack)->ia_upri;
3435     Expected = IAPRI(ParmInfo)->ia_upri;
3436   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3437     Actual   = TSPRI(ReadBack)->ts_upri;
3438     Expected = TSPRI(ParmInfo)->ts_upri;
3439   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3440     Actual   = FXPRI(ReadBack)->fx_upri;
3441     Expected = FXPRI(ParmInfo)->fx_upri;
3442   } else {
3443     if (ThreadPriorityVerbose) {
3444       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3445                     ParmInfo.pc_cid);
3446     }
3447   }
3448 
3449   if (Actual != Expected) {
3450     if (ThreadPriorityVerbose) {
3451       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3452                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3453     }
3454   }
3455 #endif
3456 
3457   return 0;
3458 }
3459 
3460 // Solaris only gives access to 128 real priorities at a time,
3461 // so we expand Java's ten to fill this range.  This would be better
3462 // if we dynamically adjusted relative priorities.
3463 //
3464 // The ThreadPriorityPolicy option allows us to select 2 different
3465 // priority scales.
3466 //
3467 // ThreadPriorityPolicy=0
3468 // Since the Solaris' default priority is MaximumPriority, we do not
3469 // set a priority lower than Max unless a priority lower than
3470 // NormPriority is requested.
3471 //
3472 // ThreadPriorityPolicy=1
3473 // This mode causes the priority table to get filled with
3474 // linear values.  NormPriority get's mapped to 50% of the
3475 // Maximum priority an so on.  This will cause VM threads
3476 // to get unfair treatment against other Solaris processes
3477 // which do not explicitly alter their thread priorities.
3478 
3479 int os::java_to_os_priority[CriticalPriority + 1] = {
3480   -99999,         // 0 Entry should never be used
3481 
3482   0,              // 1 MinPriority
3483   32,             // 2
3484   64,             // 3
3485 
3486   96,             // 4
3487   127,            // 5 NormPriority
3488   127,            // 6
3489 
3490   127,            // 7
3491   127,            // 8
3492   127,            // 9 NearMaxPriority
3493 
3494   127,            // 10 MaxPriority
3495 
3496   -criticalPrio   // 11 CriticalPriority
3497 };
3498 
3499 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3500   OSThread* osthread = thread->osthread();
3501 
3502   // Save requested priority in case the thread hasn't been started
3503   osthread->set_native_priority(newpri);
3504 
3505   // Check for critical priority request
3506   bool fxcritical = false;
3507   if (newpri == -criticalPrio) {
3508     fxcritical = true;
3509     newpri = criticalPrio;
3510   }
3511 
3512   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3513   if (!UseThreadPriorities) return OS_OK;
3514 
3515   int status = 0;
3516 
3517   if (!fxcritical) {
3518     // Use thr_setprio only if we have a priority that thr_setprio understands
3519     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3520   }
3521 
3522   int lwp_status =
3523           set_lwp_class_and_priority(osthread->thread_id(),
3524                                      osthread->lwp_id(),
3525                                      newpri,
3526                                      fxcritical ? fxLimits.schedPolicy : myClass,
3527                                      !fxcritical);
3528   if (lwp_status != 0 && fxcritical) {
3529     // Try again, this time without changing the scheduling class
3530     newpri = java_MaxPriority_to_os_priority;
3531     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3532                                             osthread->lwp_id(),
3533                                             newpri, myClass, false);
3534   }
3535   status |= lwp_status;
3536   return (status == 0) ? OS_OK : OS_ERR;
3537 }
3538 
3539 
3540 OSReturn os::get_native_priority(const Thread* const thread,
3541                                  int *priority_ptr) {
3542   int p;
3543   if (!UseThreadPriorities) {
3544     *priority_ptr = NormalPriority;
3545     return OS_OK;
3546   }
3547   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3548   if (status != 0) {
3549     return OS_ERR;
3550   }
3551   *priority_ptr = p;
3552   return OS_OK;
3553 }
3554 
3555 
3556 // Hint to the underlying OS that a task switch would not be good.
3557 // Void return because it's a hint and can fail.
3558 void os::hint_no_preempt() {
3559   schedctl_start(schedctl_init());
3560 }
3561 
3562 static void resume_clear_context(OSThread *osthread) {
3563   osthread->set_ucontext(NULL);
3564 }
3565 
3566 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3567   osthread->set_ucontext(context);
3568 }
3569 
3570 static PosixSemaphore sr_semaphore;
3571 
3572 void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3573   // Save and restore errno to avoid confusing native code with EINTR
3574   // after sigsuspend.
3575   int old_errno = errno;
3576 
3577   OSThread* osthread = thread->osthread();
3578   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3579 
3580   os::SuspendResume::State current = osthread->sr.state();
3581   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3582     suspend_save_context(osthread, uc);
3583 
3584     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3585     os::SuspendResume::State state = osthread->sr.suspended();
3586     if (state == os::SuspendResume::SR_SUSPENDED) {
3587       sigset_t suspend_set;  // signals for sigsuspend()
3588 
3589       // get current set of blocked signals and unblock resume signal
3590       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3591       sigdelset(&suspend_set, os::Solaris::SIGasync());
3592 
3593       sr_semaphore.signal();
3594       // wait here until we are resumed
3595       while (1) {
3596         sigsuspend(&suspend_set);
3597 
3598         os::SuspendResume::State result = osthread->sr.running();
3599         if (result == os::SuspendResume::SR_RUNNING) {
3600           sr_semaphore.signal();
3601           break;
3602         }
3603       }
3604 
3605     } else if (state == os::SuspendResume::SR_RUNNING) {
3606       // request was cancelled, continue
3607     } else {
3608       ShouldNotReachHere();
3609     }
3610 
3611     resume_clear_context(osthread);
3612   } else if (current == os::SuspendResume::SR_RUNNING) {
3613     // request was cancelled, continue
3614   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3615     // ignore
3616   } else {
3617     // ignore
3618   }
3619 
3620   errno = old_errno;
3621 }
3622 
3623 void os::print_statistics() {
3624 }
3625 
3626 bool os::message_box(const char* title, const char* message) {
3627   int i;
3628   fdStream err(defaultStream::error_fd());
3629   for (i = 0; i < 78; i++) err.print_raw("=");
3630   err.cr();
3631   err.print_raw_cr(title);
3632   for (i = 0; i < 78; i++) err.print_raw("-");
3633   err.cr();
3634   err.print_raw_cr(message);
3635   for (i = 0; i < 78; i++) err.print_raw("=");
3636   err.cr();
3637 
3638   char buf[16];
3639   // Prevent process from exiting upon "read error" without consuming all CPU
3640   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3641 
3642   return buf[0] == 'y' || buf[0] == 'Y';
3643 }
3644 
3645 static int sr_notify(OSThread* osthread) {
3646   int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3647   assert_status(status == 0, status, "thr_kill");
3648   return status;
3649 }
3650 
3651 // "Randomly" selected value for how long we want to spin
3652 // before bailing out on suspending a thread, also how often
3653 // we send a signal to a thread we want to resume
3654 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3655 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3656 
3657 static bool do_suspend(OSThread* osthread) {
3658   assert(osthread->sr.is_running(), "thread should be running");
3659   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3660 
3661   // mark as suspended and send signal
3662   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3663     // failed to switch, state wasn't running?
3664     ShouldNotReachHere();
3665     return false;
3666   }
3667 
3668   if (sr_notify(osthread) != 0) {
3669     ShouldNotReachHere();
3670   }
3671 
3672   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3673   while (true) {
3674     if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3675       break;
3676     } else {
3677       // timeout
3678       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3679       if (cancelled == os::SuspendResume::SR_RUNNING) {
3680         return false;
3681       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3682         // make sure that we consume the signal on the semaphore as well
3683         sr_semaphore.wait();
3684         break;
3685       } else {
3686         ShouldNotReachHere();
3687         return false;
3688       }
3689     }
3690   }
3691 
3692   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3693   return true;
3694 }
3695 
3696 static void do_resume(OSThread* osthread) {
3697   assert(osthread->sr.is_suspended(), "thread should be suspended");
3698   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3699 
3700   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3701     // failed to switch to WAKEUP_REQUEST
3702     ShouldNotReachHere();
3703     return;
3704   }
3705 
3706   while (true) {
3707     if (sr_notify(osthread) == 0) {
3708       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3709         if (osthread->sr.is_running()) {
3710           return;
3711         }
3712       }
3713     } else {
3714       ShouldNotReachHere();
3715     }
3716   }
3717 
3718   guarantee(osthread->sr.is_running(), "Must be running!");
3719 }
3720 
3721 void os::SuspendedThreadTask::internal_do_task() {
3722   if (do_suspend(_thread->osthread())) {
3723     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3724     do_task(context);
3725     do_resume(_thread->osthread());
3726   }
3727 }
3728 
3729 class PcFetcher : public os::SuspendedThreadTask {
3730  public:
3731   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3732   ExtendedPC result();
3733  protected:
3734   void do_task(const os::SuspendedThreadTaskContext& context);
3735  private:
3736   ExtendedPC _epc;
3737 };
3738 
3739 ExtendedPC PcFetcher::result() {
3740   guarantee(is_done(), "task is not done yet.");
3741   return _epc;
3742 }
3743 
3744 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3745   Thread* thread = context.thread();
3746   OSThread* osthread = thread->osthread();
3747   if (osthread->ucontext() != NULL) {
3748     _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3749   } else {
3750     // NULL context is unexpected, double-check this is the VMThread
3751     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3752   }
3753 }
3754 
3755 // A lightweight implementation that does not suspend the target thread and
3756 // thus returns only a hint. Used for profiling only!
3757 ExtendedPC os::get_thread_pc(Thread* thread) {
3758   // Make sure that it is called by the watcher and the Threads lock is owned.
3759   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3760   // For now, is only used to profile the VM Thread
3761   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3762   PcFetcher fetcher(thread);
3763   fetcher.run();
3764   return fetcher.result();
3765 }
3766 
3767 
3768 // This does not do anything on Solaris. This is basically a hook for being
3769 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3770 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3771                               const methodHandle& method, JavaCallArguments* args,
3772                               Thread* thread) {
3773   f(value, method, args, thread);
3774 }
3775 
3776 // This routine may be used by user applications as a "hook" to catch signals.
3777 // The user-defined signal handler must pass unrecognized signals to this
3778 // routine, and if it returns true (non-zero), then the signal handler must
3779 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3780 // routine will never retun false (zero), but instead will execute a VM panic
3781 // routine kill the process.
3782 //
3783 // If this routine returns false, it is OK to call it again.  This allows
3784 // the user-defined signal handler to perform checks either before or after
3785 // the VM performs its own checks.  Naturally, the user code would be making
3786 // a serious error if it tried to handle an exception (such as a null check
3787 // or breakpoint) that the VM was generating for its own correct operation.
3788 //
3789 // This routine may recognize any of the following kinds of signals:
3790 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3791 // os::Solaris::SIGasync
3792 // It should be consulted by handlers for any of those signals.
3793 //
3794 // The caller of this routine must pass in the three arguments supplied
3795 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3796 // field of the structure passed to sigaction().  This routine assumes that
3797 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3798 //
3799 // Note that the VM will print warnings if it detects conflicting signal
3800 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3801 //
3802 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3803                                                    siginfo_t* siginfo,
3804                                                    void* ucontext,
3805                                                    int abort_if_unrecognized);
3806 
3807 
3808 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3809   int orig_errno = errno;  // Preserve errno value over signal handler.
3810   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3811   errno = orig_errno;
3812 }
3813 
3814 // This boolean allows users to forward their own non-matching signals
3815 // to JVM_handle_solaris_signal, harmlessly.
3816 bool os::Solaris::signal_handlers_are_installed = false;
3817 
3818 // For signal-chaining
3819 bool os::Solaris::libjsig_is_loaded = false;
3820 typedef struct sigaction *(*get_signal_t)(int);
3821 get_signal_t os::Solaris::get_signal_action = NULL;
3822 
3823 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3824   struct sigaction *actp = NULL;
3825 
3826   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3827     // Retrieve the old signal handler from libjsig
3828     actp = (*get_signal_action)(sig);
3829   }
3830   if (actp == NULL) {
3831     // Retrieve the preinstalled signal handler from jvm
3832     actp = get_preinstalled_handler(sig);
3833   }
3834 
3835   return actp;
3836 }
3837 
3838 static bool call_chained_handler(struct sigaction *actp, int sig,
3839                                  siginfo_t *siginfo, void *context) {
3840   // Call the old signal handler
3841   if (actp->sa_handler == SIG_DFL) {
3842     // It's more reasonable to let jvm treat it as an unexpected exception
3843     // instead of taking the default action.
3844     return false;
3845   } else if (actp->sa_handler != SIG_IGN) {
3846     if ((actp->sa_flags & SA_NODEFER) == 0) {
3847       // automaticlly block the signal
3848       sigaddset(&(actp->sa_mask), sig);
3849     }
3850 
3851     sa_handler_t hand;
3852     sa_sigaction_t sa;
3853     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3854     // retrieve the chained handler
3855     if (siginfo_flag_set) {
3856       sa = actp->sa_sigaction;
3857     } else {
3858       hand = actp->sa_handler;
3859     }
3860 
3861     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3862       actp->sa_handler = SIG_DFL;
3863     }
3864 
3865     // try to honor the signal mask
3866     sigset_t oset;
3867     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3868 
3869     // call into the chained handler
3870     if (siginfo_flag_set) {
3871       (*sa)(sig, siginfo, context);
3872     } else {
3873       (*hand)(sig);
3874     }
3875 
3876     // restore the signal mask
3877     pthread_sigmask(SIG_SETMASK, &oset, 0);
3878   }
3879   // Tell jvm's signal handler the signal is taken care of.
3880   return true;
3881 }
3882 
3883 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3884   bool chained = false;
3885   // signal-chaining
3886   if (UseSignalChaining) {
3887     struct sigaction *actp = get_chained_signal_action(sig);
3888     if (actp != NULL) {
3889       chained = call_chained_handler(actp, sig, siginfo, context);
3890     }
3891   }
3892   return chained;
3893 }
3894 
3895 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3896   assert((chainedsigactions != (struct sigaction *)NULL) &&
3897          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3898   if (preinstalled_sigs[sig] != 0) {
3899     return &chainedsigactions[sig];
3900   }
3901   return NULL;
3902 }
3903 
3904 void os::Solaris::save_preinstalled_handler(int sig,
3905                                             struct sigaction& oldAct) {
3906   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3907   assert((chainedsigactions != (struct sigaction *)NULL) &&
3908          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3909   chainedsigactions[sig] = oldAct;
3910   preinstalled_sigs[sig] = 1;
3911 }
3912 
3913 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3914                                      bool oktochain) {
3915   // Check for overwrite.
3916   struct sigaction oldAct;
3917   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3918   void* oldhand =
3919       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3920                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3921   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3922       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3923       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3924     if (AllowUserSignalHandlers || !set_installed) {
3925       // Do not overwrite; user takes responsibility to forward to us.
3926       return;
3927     } else if (UseSignalChaining) {
3928       if (oktochain) {
3929         // save the old handler in jvm
3930         save_preinstalled_handler(sig, oldAct);
3931       } else {
3932         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3933       }
3934       // libjsig also interposes the sigaction() call below and saves the
3935       // old sigaction on it own.
3936     } else {
3937       fatal("Encountered unexpected pre-existing sigaction handler "
3938             "%#lx for signal %d.", (long)oldhand, sig);
3939     }
3940   }
3941 
3942   struct sigaction sigAct;
3943   sigfillset(&(sigAct.sa_mask));
3944   sigAct.sa_handler = SIG_DFL;
3945 
3946   sigAct.sa_sigaction = signalHandler;
3947   // Handle SIGSEGV on alternate signal stack if
3948   // not using stack banging
3949   if (!UseStackBanging && sig == SIGSEGV) {
3950     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3951   } else {
3952     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3953   }
3954   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3955 
3956   sigaction(sig, &sigAct, &oldAct);
3957 
3958   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3959                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3960   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3961 }
3962 
3963 
3964 #define DO_SIGNAL_CHECK(sig)                      \
3965   do {                                            \
3966     if (!sigismember(&check_signal_done, sig)) {  \
3967       os::Solaris::check_signal_handler(sig);     \
3968     }                                             \
3969   } while (0)
3970 
3971 // This method is a periodic task to check for misbehaving JNI applications
3972 // under CheckJNI, we can add any periodic checks here
3973 
3974 void os::run_periodic_checks() {
3975   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3976   // thereby preventing a NULL checks.
3977   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3978 
3979   if (check_signals == false) return;
3980 
3981   // SEGV and BUS if overridden could potentially prevent
3982   // generation of hs*.log in the event of a crash, debugging
3983   // such a case can be very challenging, so we absolutely
3984   // check for the following for a good measure:
3985   DO_SIGNAL_CHECK(SIGSEGV);
3986   DO_SIGNAL_CHECK(SIGILL);
3987   DO_SIGNAL_CHECK(SIGFPE);
3988   DO_SIGNAL_CHECK(SIGBUS);
3989   DO_SIGNAL_CHECK(SIGPIPE);
3990   DO_SIGNAL_CHECK(SIGXFSZ);
3991 
3992   // ReduceSignalUsage allows the user to override these handlers
3993   // see comments at the very top and jvm_solaris.h
3994   if (!ReduceSignalUsage) {
3995     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3996     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3997     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3998     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3999   }
4000 
4001   // See comments above for using JVM1/JVM2
4002   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4003 
4004 }
4005 
4006 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4007 
4008 static os_sigaction_t os_sigaction = NULL;
4009 
4010 void os::Solaris::check_signal_handler(int sig) {
4011   char buf[O_BUFLEN];
4012   address jvmHandler = NULL;
4013 
4014   struct sigaction act;
4015   if (os_sigaction == NULL) {
4016     // only trust the default sigaction, in case it has been interposed
4017     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4018     if (os_sigaction == NULL) return;
4019   }
4020 
4021   os_sigaction(sig, (struct sigaction*)NULL, &act);
4022 
4023   address thisHandler = (act.sa_flags & SA_SIGINFO)
4024     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4025     : CAST_FROM_FN_PTR(address, act.sa_handler);
4026 
4027 
4028   switch (sig) {
4029   case SIGSEGV:
4030   case SIGBUS:
4031   case SIGFPE:
4032   case SIGPIPE:
4033   case SIGXFSZ:
4034   case SIGILL:
4035     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4036     break;
4037 
4038   case SHUTDOWN1_SIGNAL:
4039   case SHUTDOWN2_SIGNAL:
4040   case SHUTDOWN3_SIGNAL:
4041   case BREAK_SIGNAL:
4042     jvmHandler = (address)user_handler();
4043     break;
4044 
4045   default:
4046     int asynsig = os::Solaris::SIGasync();
4047 
4048     if (sig == asynsig) {
4049       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4050     } else {
4051       return;
4052     }
4053     break;
4054   }
4055 
4056 
4057   if (thisHandler != jvmHandler) {
4058     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4059     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4060     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4061     // No need to check this sig any longer
4062     sigaddset(&check_signal_done, sig);
4063     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4064     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4065       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4066                     exception_name(sig, buf, O_BUFLEN));
4067     }
4068   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4069     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4070     tty->print("expected:");
4071     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
4072     tty->cr();
4073     tty->print("  found:");
4074     os::Posix::print_sa_flags(tty, act.sa_flags);
4075     tty->cr();
4076     // No need to check this sig any longer
4077     sigaddset(&check_signal_done, sig);
4078   }
4079 
4080   // Print all the signal handler state
4081   if (sigismember(&check_signal_done, sig)) {
4082     print_signal_handlers(tty, buf, O_BUFLEN);
4083   }
4084 
4085 }
4086 
4087 void os::Solaris::install_signal_handlers() {
4088   bool libjsigdone = false;
4089   signal_handlers_are_installed = true;
4090 
4091   // signal-chaining
4092   typedef void (*signal_setting_t)();
4093   signal_setting_t begin_signal_setting = NULL;
4094   signal_setting_t end_signal_setting = NULL;
4095   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4096                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4097   if (begin_signal_setting != NULL) {
4098     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4099                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4100     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4101                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4102     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4103                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4104     libjsig_is_loaded = true;
4105     if (os::Solaris::get_libjsig_version != NULL) {
4106       libjsigversion =  (*os::Solaris::get_libjsig_version)();
4107     }
4108     assert(UseSignalChaining, "should enable signal-chaining");
4109   }
4110   if (libjsig_is_loaded) {
4111     // Tell libjsig jvm is setting signal handlers
4112     (*begin_signal_setting)();
4113   }
4114 
4115   set_signal_handler(SIGSEGV, true, true);
4116   set_signal_handler(SIGPIPE, true, true);
4117   set_signal_handler(SIGXFSZ, true, true);
4118   set_signal_handler(SIGBUS, true, true);
4119   set_signal_handler(SIGILL, true, true);
4120   set_signal_handler(SIGFPE, true, true);
4121 
4122 
4123   if (os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4124     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4125     // can not register overridable signals which might be > 32
4126     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4127       // Tell libjsig jvm has finished setting signal handlers
4128       (*end_signal_setting)();
4129       libjsigdone = true;
4130     }
4131   }
4132 
4133   set_signal_handler(os::Solaris::SIGasync(), true, true);
4134 
4135   if (libjsig_is_loaded && !libjsigdone) {
4136     // Tell libjsig jvm finishes setting signal handlers
4137     (*end_signal_setting)();
4138   }
4139 
4140   // We don't activate signal checker if libjsig is in place, we trust ourselves
4141   // and if UserSignalHandler is installed all bets are off.
4142   // Log that signal checking is off only if -verbose:jni is specified.
4143   if (CheckJNICalls) {
4144     if (libjsig_is_loaded) {
4145       if (PrintJNIResolving) {
4146         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4147       }
4148       check_signals = false;
4149     }
4150     if (AllowUserSignalHandlers) {
4151       if (PrintJNIResolving) {
4152         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4153       }
4154       check_signals = false;
4155     }
4156   }
4157 }
4158 
4159 
4160 void report_error(const char* file_name, int line_no, const char* title,
4161                   const char* format, ...);
4162 
4163 // (Static) wrappers for the liblgrp API
4164 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4165 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4166 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4167 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4168 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4169 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4170 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4171 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4172 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4173 
4174 static address resolve_symbol_lazy(const char* name) {
4175   address addr = (address) dlsym(RTLD_DEFAULT, name);
4176   if (addr == NULL) {
4177     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4178     addr = (address) dlsym(RTLD_NEXT, name);
4179   }
4180   return addr;
4181 }
4182 
4183 static address resolve_symbol(const char* name) {
4184   address addr = resolve_symbol_lazy(name);
4185   if (addr == NULL) {
4186     fatal(dlerror());
4187   }
4188   return addr;
4189 }
4190 
4191 void os::Solaris::libthread_init() {
4192   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4193 
4194   lwp_priocntl_init();
4195 
4196   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4197   if (func == NULL) {
4198     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4199     // Guarantee that this VM is running on an new enough OS (5.6 or
4200     // later) that it will have a new enough libthread.so.
4201     guarantee(func != NULL, "libthread.so is too old.");
4202   }
4203 
4204   int size;
4205   void (*handler_info_func)(address *, int *);
4206   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4207   handler_info_func(&handler_start, &size);
4208   handler_end = handler_start + size;
4209 }
4210 
4211 
4212 int_fnP_mutex_tP os::Solaris::_mutex_lock;
4213 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4214 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4215 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4216 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4217 int os::Solaris::_mutex_scope = USYNC_THREAD;
4218 
4219 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4220 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4221 int_fnP_cond_tP os::Solaris::_cond_signal;
4222 int_fnP_cond_tP os::Solaris::_cond_broadcast;
4223 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4224 int_fnP_cond_tP os::Solaris::_cond_destroy;
4225 int os::Solaris::_cond_scope = USYNC_THREAD;
4226 
4227 void os::Solaris::synchronization_init() {
4228   if (UseLWPSynchronization) {
4229     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4230     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4231     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4232     os::Solaris::set_mutex_init(lwp_mutex_init);
4233     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4234     os::Solaris::set_mutex_scope(USYNC_THREAD);
4235 
4236     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4237     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4238     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4239     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4240     os::Solaris::set_cond_init(lwp_cond_init);
4241     os::Solaris::set_cond_destroy(lwp_cond_destroy);
4242     os::Solaris::set_cond_scope(USYNC_THREAD);
4243   } else {
4244     os::Solaris::set_mutex_scope(USYNC_THREAD);
4245     os::Solaris::set_cond_scope(USYNC_THREAD);
4246 
4247     if (UsePthreads) {
4248       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4249       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4250       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4251       os::Solaris::set_mutex_init(pthread_mutex_default_init);
4252       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4253 
4254       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4255       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4256       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4257       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4258       os::Solaris::set_cond_init(pthread_cond_default_init);
4259       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4260     } else {
4261       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4262       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4263       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4264       os::Solaris::set_mutex_init(::mutex_init);
4265       os::Solaris::set_mutex_destroy(::mutex_destroy);
4266 
4267       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4268       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4269       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4270       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4271       os::Solaris::set_cond_init(::cond_init);
4272       os::Solaris::set_cond_destroy(::cond_destroy);
4273     }
4274   }
4275 }
4276 
4277 bool os::Solaris::liblgrp_init() {
4278   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4279   if (handle != NULL) {
4280     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4281     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4282     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4283     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4284     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4285     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4286     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4287     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4288                                                       dlsym(handle, "lgrp_cookie_stale")));
4289 
4290     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4291     set_lgrp_cookie(c);
4292     return true;
4293   }
4294   return false;
4295 }
4296 
4297 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4298 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4299 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4300 
4301 void init_pset_getloadavg_ptr(void) {
4302   pset_getloadavg_ptr =
4303     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4304   if (pset_getloadavg_ptr == NULL) {
4305     log_warning(os)("pset_getloadavg function not found");
4306   }
4307 }
4308 
4309 int os::Solaris::_dev_zero_fd = -1;
4310 
4311 // this is called _before_ the global arguments have been parsed
4312 void os::init(void) {
4313   _initial_pid = getpid();
4314 
4315   max_hrtime = first_hrtime = gethrtime();
4316 
4317   init_random(1234567);
4318 
4319   page_size = sysconf(_SC_PAGESIZE);
4320   if (page_size == -1) {
4321     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4322   }
4323   init_page_sizes((size_t) page_size);
4324 
4325   Solaris::initialize_system_info();
4326 
4327   int fd = ::open("/dev/zero", O_RDWR);
4328   if (fd < 0) {
4329     fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4330   } else {
4331     Solaris::set_dev_zero_fd(fd);
4332 
4333     // Close on exec, child won't inherit.
4334     fcntl(fd, F_SETFD, FD_CLOEXEC);
4335   }
4336 
4337   clock_tics_per_sec = CLK_TCK;
4338 
4339   // check if dladdr1() exists; dladdr1 can provide more information than
4340   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4341   // and is available on linker patches for 5.7 and 5.8.
4342   // libdl.so must have been loaded, this call is just an entry lookup
4343   void * hdl = dlopen("libdl.so", RTLD_NOW);
4344   if (hdl) {
4345     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4346   }
4347 
4348   // (Solaris only) this switches to calls that actually do locking.
4349   ThreadCritical::initialize();
4350 
4351   main_thread = thr_self();
4352 
4353   // Constant minimum stack size allowed. It must be at least
4354   // the minimum of what the OS supports (thr_min_stack()), and
4355   // enough to allow the thread to get to user bytecode execution.
4356   Posix::_compiler_thread_min_stack_allowed = MAX2(thr_min_stack(),
4357                                                    Posix::_compiler_thread_min_stack_allowed);
4358   Posix::_java_thread_min_stack_allowed = MAX2(thr_min_stack(),
4359                                                Posix::_java_thread_min_stack_allowed);
4360   Posix::_vm_internal_thread_min_stack_allowed = MAX2(thr_min_stack(),
4361                                                       Posix::_vm_internal_thread_min_stack_allowed);
4362 
4363   // dynamic lookup of functions that may not be available in our lowest
4364   // supported Solaris release
4365   void * handle = dlopen("libc.so.1", RTLD_LAZY);
4366   if (handle != NULL) {
4367     Solaris::_pthread_setname_np =  // from 11.3
4368         (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4369   }
4370 }
4371 
4372 // To install functions for atexit system call
4373 extern "C" {
4374   static void perfMemory_exit_helper() {
4375     perfMemory_exit();
4376   }
4377 }
4378 
4379 // this is called _after_ the global arguments have been parsed
4380 jint os::init_2(void) {
4381   // try to enable extended file IO ASAP, see 6431278
4382   os::Solaris::try_enable_extended_io();
4383 
4384   // Allocate a single page and mark it as readable for safepoint polling.  Also
4385   // use this first mmap call to check support for MAP_ALIGN.
4386   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4387                                                       page_size,
4388                                                       MAP_PRIVATE | MAP_ALIGN,
4389                                                       PROT_READ);
4390   if (polling_page == NULL) {
4391     has_map_align = false;
4392     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4393                                                 PROT_READ);
4394   }
4395 
4396   os::set_polling_page(polling_page);
4397   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4398 
4399   if (!UseMembar) {
4400     address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4401     guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4402     os::set_memory_serialize_page(mem_serialize_page);
4403     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4404   }
4405 
4406   // Check and sets minimum stack sizes against command line options
4407   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4408     return JNI_ERR;
4409   }
4410 
4411   Solaris::libthread_init();
4412 
4413   if (UseNUMA) {
4414     if (!Solaris::liblgrp_init()) {
4415       UseNUMA = false;
4416     } else {
4417       size_t lgrp_limit = os::numa_get_groups_num();
4418       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4419       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4420       FREE_C_HEAP_ARRAY(int, lgrp_ids);
4421       if (lgrp_num < 2) {
4422         // There's only one locality group, disable NUMA.
4423         UseNUMA = false;
4424       }
4425     }
4426     if (!UseNUMA && ForceNUMA) {
4427       UseNUMA = true;
4428     }
4429   }
4430 
4431   Solaris::signal_sets_init();
4432   Solaris::init_signal_mem();
4433   Solaris::install_signal_handlers();
4434 
4435   if (libjsigversion < JSIG_VERSION_1_4_1) {
4436     Maxlibjsigsigs = OLDMAXSIGNUM;
4437   }
4438 
4439   // initialize synchronization primitives to use either thread or
4440   // lwp synchronization (controlled by UseLWPSynchronization)
4441   Solaris::synchronization_init();
4442 
4443   if (MaxFDLimit) {
4444     // set the number of file descriptors to max. print out error
4445     // if getrlimit/setrlimit fails but continue regardless.
4446     struct rlimit nbr_files;
4447     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4448     if (status != 0) {
4449       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4450     } else {
4451       nbr_files.rlim_cur = nbr_files.rlim_max;
4452       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4453       if (status != 0) {
4454         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4455       }
4456     }
4457   }
4458 
4459   // Calculate theoretical max. size of Threads to guard gainst
4460   // artifical out-of-memory situations, where all available address-
4461   // space has been reserved by thread stacks. Default stack size is 1Mb.
4462   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4463     JavaThread::stack_size_at_create() : (1*K*K);
4464   assert(pre_thread_stack_size != 0, "Must have a stack");
4465   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4466   // we should start doing Virtual Memory banging. Currently when the threads will
4467   // have used all but 200Mb of space.
4468   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4469   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4470 
4471   // at-exit methods are called in the reverse order of their registration.
4472   // In Solaris 7 and earlier, atexit functions are called on return from
4473   // main or as a result of a call to exit(3C). There can be only 32 of
4474   // these functions registered and atexit() does not set errno. In Solaris
4475   // 8 and later, there is no limit to the number of functions registered
4476   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4477   // functions are called upon dlclose(3DL) in addition to return from main
4478   // and exit(3C).
4479 
4480   if (PerfAllowAtExitRegistration) {
4481     // only register atexit functions if PerfAllowAtExitRegistration is set.
4482     // atexit functions can be delayed until process exit time, which
4483     // can be problematic for embedded VM situations. Embedded VMs should
4484     // call DestroyJavaVM() to assure that VM resources are released.
4485 
4486     // note: perfMemory_exit_helper atexit function may be removed in
4487     // the future if the appropriate cleanup code can be added to the
4488     // VM_Exit VMOperation's doit method.
4489     if (atexit(perfMemory_exit_helper) != 0) {
4490       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4491     }
4492   }
4493 
4494   // Init pset_loadavg function pointer
4495   init_pset_getloadavg_ptr();
4496 
4497   return JNI_OK;
4498 }
4499 
4500 // Mark the polling page as unreadable
4501 void os::make_polling_page_unreadable(void) {
4502   if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4503     fatal("Could not disable polling page");
4504   }
4505 }
4506 
4507 // Mark the polling page as readable
4508 void os::make_polling_page_readable(void) {
4509   if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4510     fatal("Could not enable polling page");
4511   }
4512 }
4513 
4514 // Is a (classpath) directory empty?
4515 bool os::dir_is_empty(const char* path) {
4516   DIR *dir = NULL;
4517   struct dirent *ptr;
4518 
4519   dir = opendir(path);
4520   if (dir == NULL) return true;
4521 
4522   // Scan the directory
4523   bool result = true;
4524   char buf[sizeof(struct dirent) + MAX_PATH];
4525   struct dirent *dbuf = (struct dirent *) buf;
4526   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4527     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4528       result = false;
4529     }
4530   }
4531   closedir(dir);
4532   return result;
4533 }
4534 
4535 // This code originates from JDK's sysOpen and open64_w
4536 // from src/solaris/hpi/src/system_md.c
4537 
4538 int os::open(const char *path, int oflag, int mode) {
4539   if (strlen(path) > MAX_PATH - 1) {
4540     errno = ENAMETOOLONG;
4541     return -1;
4542   }
4543   int fd;
4544 
4545   fd = ::open64(path, oflag, mode);
4546   if (fd == -1) return -1;
4547 
4548   // If the open succeeded, the file might still be a directory
4549   {
4550     struct stat64 buf64;
4551     int ret = ::fstat64(fd, &buf64);
4552     int st_mode = buf64.st_mode;
4553 
4554     if (ret != -1) {
4555       if ((st_mode & S_IFMT) == S_IFDIR) {
4556         errno = EISDIR;
4557         ::close(fd);
4558         return -1;
4559       }
4560     } else {
4561       ::close(fd);
4562       return -1;
4563     }
4564   }
4565 
4566   // 32-bit Solaris systems suffer from:
4567   //
4568   // - an historical default soft limit of 256 per-process file
4569   //   descriptors that is too low for many Java programs.
4570   //
4571   // - a design flaw where file descriptors created using stdio
4572   //   fopen must be less than 256, _even_ when the first limit above
4573   //   has been raised.  This can cause calls to fopen (but not calls to
4574   //   open, for example) to fail mysteriously, perhaps in 3rd party
4575   //   native code (although the JDK itself uses fopen).  One can hardly
4576   //   criticize them for using this most standard of all functions.
4577   //
4578   // We attempt to make everything work anyways by:
4579   //
4580   // - raising the soft limit on per-process file descriptors beyond
4581   //   256
4582   //
4583   // - As of Solaris 10u4, we can request that Solaris raise the 256
4584   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4585   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4586   //
4587   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4588   //   workaround the bug by remapping non-stdio file descriptors below
4589   //   256 to ones beyond 256, which is done below.
4590   //
4591   // See:
4592   // 1085341: 32-bit stdio routines should support file descriptors >255
4593   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4594   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4595   //          enable_extended_FILE_stdio() in VM initialisation
4596   // Giri Mandalika's blog
4597   // http://technopark02.blogspot.com/2005_05_01_archive.html
4598   //
4599 #ifndef  _LP64
4600   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4601     int newfd = ::fcntl(fd, F_DUPFD, 256);
4602     if (newfd != -1) {
4603       ::close(fd);
4604       fd = newfd;
4605     }
4606   }
4607 #endif // 32-bit Solaris
4608 
4609   // All file descriptors that are opened in the JVM and not
4610   // specifically destined for a subprocess should have the
4611   // close-on-exec flag set.  If we don't set it, then careless 3rd
4612   // party native code might fork and exec without closing all
4613   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4614   // UNIXProcess.c), and this in turn might:
4615   //
4616   // - cause end-of-file to fail to be detected on some file
4617   //   descriptors, resulting in mysterious hangs, or
4618   //
4619   // - might cause an fopen in the subprocess to fail on a system
4620   //   suffering from bug 1085341.
4621   //
4622   // (Yes, the default setting of the close-on-exec flag is a Unix
4623   // design flaw)
4624   //
4625   // See:
4626   // 1085341: 32-bit stdio routines should support file descriptors >255
4627   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4628   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4629   //
4630 #ifdef FD_CLOEXEC
4631   {
4632     int flags = ::fcntl(fd, F_GETFD);
4633     if (flags != -1) {
4634       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4635     }
4636   }
4637 #endif
4638 
4639   return fd;
4640 }
4641 
4642 // create binary file, rewriting existing file if required
4643 int os::create_binary_file(const char* path, bool rewrite_existing) {
4644   int oflags = O_WRONLY | O_CREAT;
4645   if (!rewrite_existing) {
4646     oflags |= O_EXCL;
4647   }
4648   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4649 }
4650 
4651 // return current position of file pointer
4652 jlong os::current_file_offset(int fd) {
4653   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4654 }
4655 
4656 // move file pointer to the specified offset
4657 jlong os::seek_to_file_offset(int fd, jlong offset) {
4658   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4659 }
4660 
4661 jlong os::lseek(int fd, jlong offset, int whence) {
4662   return (jlong) ::lseek64(fd, offset, whence);
4663 }
4664 
4665 char * os::native_path(char *path) {
4666   return path;
4667 }
4668 
4669 int os::ftruncate(int fd, jlong length) {
4670   return ::ftruncate64(fd, length);
4671 }
4672 
4673 int os::fsync(int fd)  {
4674   RESTARTABLE_RETURN_INT(::fsync(fd));
4675 }
4676 
4677 int os::available(int fd, jlong *bytes) {
4678   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4679          "Assumed _thread_in_native");
4680   jlong cur, end;
4681   int mode;
4682   struct stat64 buf64;
4683 
4684   if (::fstat64(fd, &buf64) >= 0) {
4685     mode = buf64.st_mode;
4686     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4687       int n,ioctl_return;
4688 
4689       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4690       if (ioctl_return>= 0) {
4691         *bytes = n;
4692         return 1;
4693       }
4694     }
4695   }
4696   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4697     return 0;
4698   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4699     return 0;
4700   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4701     return 0;
4702   }
4703   *bytes = end - cur;
4704   return 1;
4705 }
4706 
4707 // Map a block of memory.
4708 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4709                         char *addr, size_t bytes, bool read_only,
4710                         bool allow_exec) {
4711   int prot;
4712   int flags;
4713 
4714   if (read_only) {
4715     prot = PROT_READ;
4716     flags = MAP_SHARED;
4717   } else {
4718     prot = PROT_READ | PROT_WRITE;
4719     flags = MAP_PRIVATE;
4720   }
4721 
4722   if (allow_exec) {
4723     prot |= PROT_EXEC;
4724   }
4725 
4726   if (addr != NULL) {
4727     flags |= MAP_FIXED;
4728   }
4729 
4730   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4731                                      fd, file_offset);
4732   if (mapped_address == MAP_FAILED) {
4733     return NULL;
4734   }
4735   return mapped_address;
4736 }
4737 
4738 
4739 // Remap a block of memory.
4740 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4741                           char *addr, size_t bytes, bool read_only,
4742                           bool allow_exec) {
4743   // same as map_memory() on this OS
4744   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4745                         allow_exec);
4746 }
4747 
4748 
4749 // Unmap a block of memory.
4750 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4751   return munmap(addr, bytes) == 0;
4752 }
4753 
4754 void os::pause() {
4755   char filename[MAX_PATH];
4756   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4757     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4758   } else {
4759     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4760   }
4761 
4762   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4763   if (fd != -1) {
4764     struct stat buf;
4765     ::close(fd);
4766     while (::stat(filename, &buf) == 0) {
4767       (void)::poll(NULL, 0, 100);
4768     }
4769   } else {
4770     jio_fprintf(stderr,
4771                 "Could not open pause file '%s', continuing immediately.\n", filename);
4772   }
4773 }
4774 
4775 #ifndef PRODUCT
4776 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4777 // Turn this on if you need to trace synch operations.
4778 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4779 // and call record_synch_enable and record_synch_disable
4780 // around the computation of interest.
4781 
4782 void record_synch(char* name, bool returning);  // defined below
4783 
4784 class RecordSynch {
4785   char* _name;
4786  public:
4787   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4788   ~RecordSynch()                       { record_synch(_name, true); }
4789 };
4790 
4791 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4792 extern "C" ret name params {                                    \
4793   typedef ret name##_t params;                                  \
4794   static name##_t* implem = NULL;                               \
4795   static int callcount = 0;                                     \
4796   if (implem == NULL) {                                         \
4797     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4798     if (implem == NULL)  fatal(dlerror());                      \
4799   }                                                             \
4800   ++callcount;                                                  \
4801   RecordSynch _rs(#name);                                       \
4802   inner;                                                        \
4803   return implem args;                                           \
4804 }
4805 // in dbx, examine callcounts this way:
4806 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4807 
4808 #define CHECK_POINTER_OK(p) \
4809   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4810 #define CHECK_MU \
4811   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4812 #define CHECK_CV \
4813   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4814 #define CHECK_P(p) \
4815   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4816 
4817 #define CHECK_MUTEX(mutex_op) \
4818   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4819 
4820 CHECK_MUTEX(   mutex_lock)
4821 CHECK_MUTEX(  _mutex_lock)
4822 CHECK_MUTEX( mutex_unlock)
4823 CHECK_MUTEX(_mutex_unlock)
4824 CHECK_MUTEX( mutex_trylock)
4825 CHECK_MUTEX(_mutex_trylock)
4826 
4827 #define CHECK_COND(cond_op) \
4828   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4829 
4830 CHECK_COND( cond_wait);
4831 CHECK_COND(_cond_wait);
4832 CHECK_COND(_cond_wait_cancel);
4833 
4834 #define CHECK_COND2(cond_op) \
4835   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4836 
4837 CHECK_COND2( cond_timedwait);
4838 CHECK_COND2(_cond_timedwait);
4839 CHECK_COND2(_cond_timedwait_cancel);
4840 
4841 // do the _lwp_* versions too
4842 #define mutex_t lwp_mutex_t
4843 #define cond_t  lwp_cond_t
4844 CHECK_MUTEX(  _lwp_mutex_lock)
4845 CHECK_MUTEX(  _lwp_mutex_unlock)
4846 CHECK_MUTEX(  _lwp_mutex_trylock)
4847 CHECK_MUTEX( __lwp_mutex_lock)
4848 CHECK_MUTEX( __lwp_mutex_unlock)
4849 CHECK_MUTEX( __lwp_mutex_trylock)
4850 CHECK_MUTEX(___lwp_mutex_lock)
4851 CHECK_MUTEX(___lwp_mutex_unlock)
4852 
4853 CHECK_COND(  _lwp_cond_wait);
4854 CHECK_COND( __lwp_cond_wait);
4855 CHECK_COND(___lwp_cond_wait);
4856 
4857 CHECK_COND2(  _lwp_cond_timedwait);
4858 CHECK_COND2( __lwp_cond_timedwait);
4859 #undef mutex_t
4860 #undef cond_t
4861 
4862 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4863 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4864 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4865 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4866 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4867 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4868 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4869 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4870 
4871 
4872 // recording machinery:
4873 
4874 enum { RECORD_SYNCH_LIMIT = 200 };
4875 char* record_synch_name[RECORD_SYNCH_LIMIT];
4876 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4877 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4878 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4879 int record_synch_count = 0;
4880 bool record_synch_enabled = false;
4881 
4882 // in dbx, examine recorded data this way:
4883 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4884 
4885 void record_synch(char* name, bool returning) {
4886   if (record_synch_enabled) {
4887     if (record_synch_count < RECORD_SYNCH_LIMIT) {
4888       record_synch_name[record_synch_count] = name;
4889       record_synch_returning[record_synch_count] = returning;
4890       record_synch_thread[record_synch_count] = thr_self();
4891       record_synch_arg0ptr[record_synch_count] = &name;
4892       record_synch_count++;
4893     }
4894     // put more checking code here:
4895     // ...
4896   }
4897 }
4898 
4899 void record_synch_enable() {
4900   // start collecting trace data, if not already doing so
4901   if (!record_synch_enabled)  record_synch_count = 0;
4902   record_synch_enabled = true;
4903 }
4904 
4905 void record_synch_disable() {
4906   // stop collecting trace data
4907   record_synch_enabled = false;
4908 }
4909 
4910 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4911 #endif // PRODUCT
4912 
4913 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4914 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4915                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4916 
4917 
4918 // JVMTI & JVM monitoring and management support
4919 // The thread_cpu_time() and current_thread_cpu_time() are only
4920 // supported if is_thread_cpu_time_supported() returns true.
4921 // They are not supported on Solaris T1.
4922 
4923 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4924 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4925 // of a thread.
4926 //
4927 // current_thread_cpu_time() and thread_cpu_time(Thread *)
4928 // returns the fast estimate available on the platform.
4929 
4930 // hrtime_t gethrvtime() return value includes
4931 // user time but does not include system time
4932 jlong os::current_thread_cpu_time() {
4933   return (jlong) gethrvtime();
4934 }
4935 
4936 jlong os::thread_cpu_time(Thread *thread) {
4937   // return user level CPU time only to be consistent with
4938   // what current_thread_cpu_time returns.
4939   // thread_cpu_time_info() must be changed if this changes
4940   return os::thread_cpu_time(thread, false /* user time only */);
4941 }
4942 
4943 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4944   if (user_sys_cpu_time) {
4945     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4946   } else {
4947     return os::current_thread_cpu_time();
4948   }
4949 }
4950 
4951 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4952   char proc_name[64];
4953   int count;
4954   prusage_t prusage;
4955   jlong lwp_time;
4956   int fd;
4957 
4958   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
4959           getpid(),
4960           thread->osthread()->lwp_id());
4961   fd = ::open(proc_name, O_RDONLY);
4962   if (fd == -1) return -1;
4963 
4964   do {
4965     count = ::pread(fd,
4966                     (void *)&prusage.pr_utime,
4967                     thr_time_size,
4968                     thr_time_off);
4969   } while (count < 0 && errno == EINTR);
4970   ::close(fd);
4971   if (count < 0) return -1;
4972 
4973   if (user_sys_cpu_time) {
4974     // user + system CPU time
4975     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
4976                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
4977                  (jlong)prusage.pr_stime.tv_nsec +
4978                  (jlong)prusage.pr_utime.tv_nsec;
4979   } else {
4980     // user level CPU time only
4981     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
4982                 (jlong)prusage.pr_utime.tv_nsec;
4983   }
4984 
4985   return (lwp_time);
4986 }
4987 
4988 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4989   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4990   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4991   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4992   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4993 }
4994 
4995 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4996   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4997   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4998   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4999   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5000 }
5001 
5002 bool os::is_thread_cpu_time_supported() {
5003   return true;
5004 }
5005 
5006 // System loadavg support.  Returns -1 if load average cannot be obtained.
5007 // Return the load average for our processor set if the primitive exists
5008 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
5009 int os::loadavg(double loadavg[], int nelem) {
5010   if (pset_getloadavg_ptr != NULL) {
5011     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5012   } else {
5013     return ::getloadavg(loadavg, nelem);
5014   }
5015 }
5016 
5017 //---------------------------------------------------------------------------------
5018 
5019 bool os::find(address addr, outputStream* st) {
5020   Dl_info dlinfo;
5021   memset(&dlinfo, 0, sizeof(dlinfo));
5022   if (dladdr(addr, &dlinfo) != 0) {
5023     st->print(PTR_FORMAT ": ", addr);
5024     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5025       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5026     } else if (dlinfo.dli_fbase != NULL) {
5027       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5028     } else {
5029       st->print("<absolute address>");
5030     }
5031     if (dlinfo.dli_fname != NULL) {
5032       st->print(" in %s", dlinfo.dli_fname);
5033     }
5034     if (dlinfo.dli_fbase != NULL) {
5035       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5036     }
5037     st->cr();
5038 
5039     if (Verbose) {
5040       // decode some bytes around the PC
5041       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5042       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5043       address       lowest = (address) dlinfo.dli_sname;
5044       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5045       if (begin < lowest)  begin = lowest;
5046       Dl_info dlinfo2;
5047       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5048           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5049         end = (address) dlinfo2.dli_saddr;
5050       }
5051       Disassembler::decode(begin, end, st);
5052     }
5053     return true;
5054   }
5055   return false;
5056 }
5057 
5058 // Following function has been added to support HotSparc's libjvm.so running
5059 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5060 // src/solaris/hpi/native_threads in the EVM codebase.
5061 //
5062 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5063 // libraries and should thus be removed. We will leave it behind for a while
5064 // until we no longer want to able to run on top of 1.3.0 Solaris production
5065 // JDK. See 4341971.
5066 
5067 #define STACK_SLACK 0x800
5068 
5069 extern "C" {
5070   intptr_t sysThreadAvailableStackWithSlack() {
5071     stack_t st;
5072     intptr_t retval, stack_top;
5073     retval = thr_stksegment(&st);
5074     assert(retval == 0, "incorrect return value from thr_stksegment");
5075     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5076     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5077     stack_top=(intptr_t)st.ss_sp-st.ss_size;
5078     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5079   }
5080 }
5081 
5082 // ObjectMonitor park-unpark infrastructure ...
5083 //
5084 // We implement Solaris and Linux PlatformEvents with the
5085 // obvious condvar-mutex-flag triple.
5086 // Another alternative that works quite well is pipes:
5087 // Each PlatformEvent consists of a pipe-pair.
5088 // The thread associated with the PlatformEvent
5089 // calls park(), which reads from the input end of the pipe.
5090 // Unpark() writes into the other end of the pipe.
5091 // The write-side of the pipe must be set NDELAY.
5092 // Unfortunately pipes consume a large # of handles.
5093 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
5094 // Using pipes for the 1st few threads might be workable, however.
5095 //
5096 // park() is permitted to return spuriously.
5097 // Callers of park() should wrap the call to park() in
5098 // an appropriate loop.  A litmus test for the correct
5099 // usage of park is the following: if park() were modified
5100 // to immediately return 0 your code should still work,
5101 // albeit degenerating to a spin loop.
5102 //
5103 // In a sense, park()-unpark() just provides more polite spinning
5104 // and polling with the key difference over naive spinning being
5105 // that a parked thread needs to be explicitly unparked() in order
5106 // to wake up and to poll the underlying condition.
5107 //
5108 // Assumption:
5109 //    Only one parker can exist on an event, which is why we allocate
5110 //    them per-thread. Multiple unparkers can coexist.
5111 //
5112 // _Event transitions in park()
5113 //   -1 => -1 : illegal
5114 //    1 =>  0 : pass - return immediately
5115 //    0 => -1 : block; then set _Event to 0 before returning
5116 //
5117 // _Event transitions in unpark()
5118 //    0 => 1 : just return
5119 //    1 => 1 : just return
5120 //   -1 => either 0 or 1; must signal target thread
5121 //         That is, we can safely transition _Event from -1 to either
5122 //         0 or 1.
5123 //
5124 // _Event serves as a restricted-range semaphore.
5125 //   -1 : thread is blocked, i.e. there is a waiter
5126 //    0 : neutral: thread is running or ready,
5127 //        could have been signaled after a wait started
5128 //    1 : signaled - thread is running or ready
5129 //
5130 // Another possible encoding of _Event would be with
5131 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5132 //
5133 // TODO-FIXME: add DTRACE probes for:
5134 // 1.   Tx parks
5135 // 2.   Ty unparks Tx
5136 // 3.   Tx resumes from park
5137 
5138 
5139 // value determined through experimentation
5140 #define ROUNDINGFIX 11
5141 
5142 // utility to compute the abstime argument to timedwait.
5143 // TODO-FIXME: switch from compute_abstime() to unpackTime().
5144 
5145 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5146   // millis is the relative timeout time
5147   // abstime will be the absolute timeout time
5148   if (millis < 0)  millis = 0;
5149   struct timeval now;
5150   int status = gettimeofday(&now, NULL);
5151   assert(status == 0, "gettimeofday");
5152   jlong seconds = millis / 1000;
5153   jlong max_wait_period;
5154 
5155   if (UseLWPSynchronization) {
5156     // forward port of fix for 4275818 (not sleeping long enough)
5157     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5158     // _lwp_cond_timedwait() used a round_down algorithm rather
5159     // than a round_up. For millis less than our roundfactor
5160     // it rounded down to 0 which doesn't meet the spec.
5161     // For millis > roundfactor we may return a bit sooner, but
5162     // since we can not accurately identify the patch level and
5163     // this has already been fixed in Solaris 9 and 8 we will
5164     // leave it alone rather than always rounding down.
5165 
5166     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5167     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5168     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5169     max_wait_period = 21000000;
5170   } else {
5171     max_wait_period = 50000000;
5172   }
5173   millis %= 1000;
5174   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5175     seconds = max_wait_period;
5176   }
5177   abstime->tv_sec = now.tv_sec  + seconds;
5178   long       usec = now.tv_usec + millis * 1000;
5179   if (usec >= 1000000) {
5180     abstime->tv_sec += 1;
5181     usec -= 1000000;
5182   }
5183   abstime->tv_nsec = usec * 1000;
5184   return abstime;
5185 }
5186 
5187 void os::PlatformEvent::park() {           // AKA: down()
5188   // Transitions for _Event:
5189   //   -1 => -1 : illegal
5190   //    1 =>  0 : pass - return immediately
5191   //    0 => -1 : block; then set _Event to 0 before returning
5192 
5193   // Invariant: Only the thread associated with the Event/PlatformEvent
5194   // may call park().
5195   assert(_nParked == 0, "invariant");
5196 
5197   int v;
5198   for (;;) {
5199     v = _Event;
5200     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5201   }
5202   guarantee(v >= 0, "invariant");
5203   if (v == 0) {
5204     // Do this the hard way by blocking ...
5205     // See http://monaco.sfbay/detail.jsf?cr=5094058.
5206     // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5207     // Only for SPARC >= V8PlusA
5208 #if defined(__sparc) && defined(COMPILER2)
5209     if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5210 #endif
5211     int status = os::Solaris::mutex_lock(_mutex);
5212     assert_status(status == 0, status, "mutex_lock");
5213     guarantee(_nParked == 0, "invariant");
5214     ++_nParked;
5215     while (_Event < 0) {
5216       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5217       // Treat this the same as if the wait was interrupted
5218       // With usr/lib/lwp going to kernel, always handle ETIME
5219       status = os::Solaris::cond_wait(_cond, _mutex);
5220       if (status == ETIME) status = EINTR;
5221       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5222     }
5223     --_nParked;
5224     _Event = 0;
5225     status = os::Solaris::mutex_unlock(_mutex);
5226     assert_status(status == 0, status, "mutex_unlock");
5227     // Paranoia to ensure our locked and lock-free paths interact
5228     // correctly with each other.
5229     OrderAccess::fence();
5230   }
5231 }
5232 
5233 int os::PlatformEvent::park(jlong millis) {
5234   // Transitions for _Event:
5235   //   -1 => -1 : illegal
5236   //    1 =>  0 : pass - return immediately
5237   //    0 => -1 : block; then set _Event to 0 before returning
5238 
5239   guarantee(_nParked == 0, "invariant");
5240   int v;
5241   for (;;) {
5242     v = _Event;
5243     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5244   }
5245   guarantee(v >= 0, "invariant");
5246   if (v != 0) return OS_OK;
5247 
5248   int ret = OS_TIMEOUT;
5249   timestruc_t abst;
5250   compute_abstime(&abst, millis);
5251 
5252   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5253   // For Solaris SPARC set fprs.FEF=0 prior to parking.
5254   // Only for SPARC >= V8PlusA
5255 #if defined(__sparc) && defined(COMPILER2)
5256   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5257 #endif
5258   int status = os::Solaris::mutex_lock(_mutex);
5259   assert_status(status == 0, status, "mutex_lock");
5260   guarantee(_nParked == 0, "invariant");
5261   ++_nParked;
5262   while (_Event < 0) {
5263     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5264     assert_status(status == 0 || status == EINTR ||
5265                   status == ETIME || status == ETIMEDOUT,
5266                   status, "cond_timedwait");
5267     if (!FilterSpuriousWakeups) break;                // previous semantics
5268     if (status == ETIME || status == ETIMEDOUT) break;
5269     // We consume and ignore EINTR and spurious wakeups.
5270   }
5271   --_nParked;
5272   if (_Event >= 0) ret = OS_OK;
5273   _Event = 0;
5274   status = os::Solaris::mutex_unlock(_mutex);
5275   assert_status(status == 0, status, "mutex_unlock");
5276   // Paranoia to ensure our locked and lock-free paths interact
5277   // correctly with each other.
5278   OrderAccess::fence();
5279   return ret;
5280 }
5281 
5282 void os::PlatformEvent::unpark() {
5283   // Transitions for _Event:
5284   //    0 => 1 : just return
5285   //    1 => 1 : just return
5286   //   -1 => either 0 or 1; must signal target thread
5287   //         That is, we can safely transition _Event from -1 to either
5288   //         0 or 1.
5289   // See also: "Semaphores in Plan 9" by Mullender & Cox
5290   //
5291   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5292   // that it will take two back-to-back park() calls for the owning
5293   // thread to block. This has the benefit of forcing a spurious return
5294   // from the first park() call after an unpark() call which will help
5295   // shake out uses of park() and unpark() without condition variables.
5296 
5297   if (Atomic::xchg(1, &_Event) >= 0) return;
5298 
5299   // If the thread associated with the event was parked, wake it.
5300   // Wait for the thread assoc with the PlatformEvent to vacate.
5301   int status = os::Solaris::mutex_lock(_mutex);
5302   assert_status(status == 0, status, "mutex_lock");
5303   int AnyWaiters = _nParked;
5304   status = os::Solaris::mutex_unlock(_mutex);
5305   assert_status(status == 0, status, "mutex_unlock");
5306   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5307   if (AnyWaiters != 0) {
5308     // Note that we signal() *after* dropping the lock for "immortal" Events.
5309     // This is safe and avoids a common class of  futile wakeups.  In rare
5310     // circumstances this can cause a thread to return prematurely from
5311     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5312     // will simply re-test the condition and re-park itself.
5313     // This provides particular benefit if the underlying platform does not
5314     // provide wait morphing.
5315     status = os::Solaris::cond_signal(_cond);
5316     assert_status(status == 0, status, "cond_signal");
5317   }
5318 }
5319 
5320 // JSR166
5321 // -------------------------------------------------------
5322 
5323 // The solaris and linux implementations of park/unpark are fairly
5324 // conservative for now, but can be improved. They currently use a
5325 // mutex/condvar pair, plus _counter.
5326 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
5327 // sets count to 1 and signals condvar.  Only one thread ever waits
5328 // on the condvar. Contention seen when trying to park implies that someone
5329 // is unparking you, so don't wait. And spurious returns are fine, so there
5330 // is no need to track notifications.
5331 
5332 #define MAX_SECS 100000000
5333 
5334 // This code is common to linux and solaris and will be moved to a
5335 // common place in dolphin.
5336 //
5337 // The passed in time value is either a relative time in nanoseconds
5338 // or an absolute time in milliseconds. Either way it has to be unpacked
5339 // into suitable seconds and nanoseconds components and stored in the
5340 // given timespec structure.
5341 // Given time is a 64-bit value and the time_t used in the timespec is only
5342 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5343 // overflow if times way in the future are given. Further on Solaris versions
5344 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5345 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5346 // As it will be 28 years before "now + 100000000" will overflow we can
5347 // ignore overflow and just impose a hard-limit on seconds using the value
5348 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5349 // years from "now".
5350 //
5351 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5352   assert(time > 0, "convertTime");
5353 
5354   struct timeval now;
5355   int status = gettimeofday(&now, NULL);
5356   assert(status == 0, "gettimeofday");
5357 
5358   time_t max_secs = now.tv_sec + MAX_SECS;
5359 
5360   if (isAbsolute) {
5361     jlong secs = time / 1000;
5362     if (secs > max_secs) {
5363       absTime->tv_sec = max_secs;
5364     } else {
5365       absTime->tv_sec = secs;
5366     }
5367     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5368   } else {
5369     jlong secs = time / NANOSECS_PER_SEC;
5370     if (secs >= MAX_SECS) {
5371       absTime->tv_sec = max_secs;
5372       absTime->tv_nsec = 0;
5373     } else {
5374       absTime->tv_sec = now.tv_sec + secs;
5375       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5376       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5377         absTime->tv_nsec -= NANOSECS_PER_SEC;
5378         ++absTime->tv_sec; // note: this must be <= max_secs
5379       }
5380     }
5381   }
5382   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5383   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5384   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5385   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5386 }
5387 
5388 void Parker::park(bool isAbsolute, jlong time) {
5389   // Ideally we'd do something useful while spinning, such
5390   // as calling unpackTime().
5391 
5392   // Optional fast-path check:
5393   // Return immediately if a permit is available.
5394   // We depend on Atomic::xchg() having full barrier semantics
5395   // since we are doing a lock-free update to _counter.
5396   if (Atomic::xchg(0, &_counter) > 0) return;
5397 
5398   // Optional fast-exit: Check interrupt before trying to wait
5399   Thread* thread = Thread::current();
5400   assert(thread->is_Java_thread(), "Must be JavaThread");
5401   JavaThread *jt = (JavaThread *)thread;
5402   if (Thread::is_interrupted(thread, false)) {
5403     return;
5404   }
5405 
5406   // First, demultiplex/decode time arguments
5407   timespec absTime;
5408   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5409     return;
5410   }
5411   if (time > 0) {
5412     // Warning: this code might be exposed to the old Solaris time
5413     // round-down bugs.  Grep "roundingFix" for details.
5414     unpackTime(&absTime, isAbsolute, time);
5415   }
5416 
5417   // Enter safepoint region
5418   // Beware of deadlocks such as 6317397.
5419   // The per-thread Parker:: _mutex is a classic leaf-lock.
5420   // In particular a thread must never block on the Threads_lock while
5421   // holding the Parker:: mutex.  If safepoints are pending both the
5422   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5423   ThreadBlockInVM tbivm(jt);
5424 
5425   // Don't wait if cannot get lock since interference arises from
5426   // unblocking.  Also. check interrupt before trying wait
5427   if (Thread::is_interrupted(thread, false) ||
5428       os::Solaris::mutex_trylock(_mutex) != 0) {
5429     return;
5430   }
5431 
5432   int status;
5433 
5434   if (_counter > 0)  { // no wait needed
5435     _counter = 0;
5436     status = os::Solaris::mutex_unlock(_mutex);
5437     assert(status == 0, "invariant");
5438     // Paranoia to ensure our locked and lock-free paths interact
5439     // correctly with each other and Java-level accesses.
5440     OrderAccess::fence();
5441     return;
5442   }
5443 
5444 #ifdef ASSERT
5445   // Don't catch signals while blocked; let the running threads have the signals.
5446   // (This allows a debugger to break into the running thread.)
5447   sigset_t oldsigs;
5448   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5449   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5450 #endif
5451 
5452   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5453   jt->set_suspend_equivalent();
5454   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5455 
5456   // Do this the hard way by blocking ...
5457   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5458   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5459   // Only for SPARC >= V8PlusA
5460 #if defined(__sparc) && defined(COMPILER2)
5461   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5462 #endif
5463 
5464   if (time == 0) {
5465     status = os::Solaris::cond_wait(_cond, _mutex);
5466   } else {
5467     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5468   }
5469   // Note that an untimed cond_wait() can sometimes return ETIME on older
5470   // versions of the Solaris.
5471   assert_status(status == 0 || status == EINTR ||
5472                 status == ETIME || status == ETIMEDOUT,
5473                 status, "cond_timedwait");
5474 
5475 #ifdef ASSERT
5476   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5477 #endif
5478   _counter = 0;
5479   status = os::Solaris::mutex_unlock(_mutex);
5480   assert_status(status == 0, status, "mutex_unlock");
5481   // Paranoia to ensure our locked and lock-free paths interact
5482   // correctly with each other and Java-level accesses.
5483   OrderAccess::fence();
5484 
5485   // If externally suspended while waiting, re-suspend
5486   if (jt->handle_special_suspend_equivalent_condition()) {
5487     jt->java_suspend_self();
5488   }
5489 }
5490 
5491 void Parker::unpark() {
5492   int status = os::Solaris::mutex_lock(_mutex);
5493   assert(status == 0, "invariant");
5494   const int s = _counter;
5495   _counter = 1;
5496   status = os::Solaris::mutex_unlock(_mutex);
5497   assert(status == 0, "invariant");
5498 
5499   if (s < 1) {
5500     status = os::Solaris::cond_signal(_cond);
5501     assert(status == 0, "invariant");
5502   }
5503 }
5504 
5505 extern char** environ;
5506 
5507 // Run the specified command in a separate process. Return its exit value,
5508 // or -1 on failure (e.g. can't fork a new process).
5509 // Unlike system(), this function can be called from signal handler. It
5510 // doesn't block SIGINT et al.
5511 int os::fork_and_exec(char* cmd) {
5512   char * argv[4];
5513   argv[0] = (char *)"sh";
5514   argv[1] = (char *)"-c";
5515   argv[2] = cmd;
5516   argv[3] = NULL;
5517 
5518   // fork is async-safe, fork1 is not so can't use in signal handler
5519   pid_t pid;
5520   Thread* t = Thread::current_or_null_safe();
5521   if (t != NULL && t->is_inside_signal_handler()) {
5522     pid = fork();
5523   } else {
5524     pid = fork1();
5525   }
5526 
5527   if (pid < 0) {
5528     // fork failed
5529     warning("fork failed: %s", os::strerror(errno));
5530     return -1;
5531 
5532   } else if (pid == 0) {
5533     // child process
5534 
5535     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5536     execve("/usr/bin/sh", argv, environ);
5537 
5538     // execve failed
5539     _exit(-1);
5540 
5541   } else  {
5542     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5543     // care about the actual exit code, for now.
5544 
5545     int status;
5546 
5547     // Wait for the child process to exit.  This returns immediately if
5548     // the child has already exited. */
5549     while (waitpid(pid, &status, 0) < 0) {
5550       switch (errno) {
5551       case ECHILD: return 0;
5552       case EINTR: break;
5553       default: return -1;
5554       }
5555     }
5556 
5557     if (WIFEXITED(status)) {
5558       // The child exited normally; get its exit code.
5559       return WEXITSTATUS(status);
5560     } else if (WIFSIGNALED(status)) {
5561       // The child exited because of a signal
5562       // The best value to return is 0x80 + signal number,
5563       // because that is what all Unix shells do, and because
5564       // it allows callers to distinguish between process exit and
5565       // process death by signal.
5566       return 0x80 + WTERMSIG(status);
5567     } else {
5568       // Unknown exit code; pass it through
5569       return status;
5570     }
5571   }
5572 }
5573 
5574 // is_headless_jre()
5575 //
5576 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5577 // in order to report if we are running in a headless jre
5578 //
5579 // Since JDK8 xawt/libmawt.so was moved into the same directory
5580 // as libawt.so, and renamed libawt_xawt.so
5581 //
5582 bool os::is_headless_jre() {
5583   struct stat statbuf;
5584   char buf[MAXPATHLEN];
5585   char libmawtpath[MAXPATHLEN];
5586   const char *xawtstr  = "/xawt/libmawt.so";
5587   const char *new_xawtstr = "/libawt_xawt.so";
5588   char *p;
5589 
5590   // Get path to libjvm.so
5591   os::jvm_path(buf, sizeof(buf));
5592 
5593   // Get rid of libjvm.so
5594   p = strrchr(buf, '/');
5595   if (p == NULL) {
5596     return false;
5597   } else {
5598     *p = '\0';
5599   }
5600 
5601   // Get rid of client or server
5602   p = strrchr(buf, '/');
5603   if (p == NULL) {
5604     return false;
5605   } else {
5606     *p = '\0';
5607   }
5608 
5609   // check xawt/libmawt.so
5610   strcpy(libmawtpath, buf);
5611   strcat(libmawtpath, xawtstr);
5612   if (::stat(libmawtpath, &statbuf) == 0) return false;
5613 
5614   // check libawt_xawt.so
5615   strcpy(libmawtpath, buf);
5616   strcat(libmawtpath, new_xawtstr);
5617   if (::stat(libmawtpath, &statbuf) == 0) return false;
5618 
5619   return true;
5620 }
5621 
5622 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5623   size_t res;
5624   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5625   return res;
5626 }
5627 
5628 int os::close(int fd) {
5629   return ::close(fd);
5630 }
5631 
5632 int os::socket_close(int fd) {
5633   return ::close(fd);
5634 }
5635 
5636 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5637   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5638          "Assumed _thread_in_native");
5639   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5640 }
5641 
5642 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5643   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5644          "Assumed _thread_in_native");
5645   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5646 }
5647 
5648 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5649   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5650 }
5651 
5652 // As both poll and select can be interrupted by signals, we have to be
5653 // prepared to restart the system call after updating the timeout, unless
5654 // a poll() is done with timeout == -1, in which case we repeat with this
5655 // "wait forever" value.
5656 
5657 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5658   int _result;
5659   _result = ::connect(fd, him, len);
5660 
5661   // On Solaris, when a connect() call is interrupted, the connection
5662   // can be established asynchronously (see 6343810). Subsequent calls
5663   // to connect() must check the errno value which has the semantic
5664   // described below (copied from the connect() man page). Handling
5665   // of asynchronously established connections is required for both
5666   // blocking and non-blocking sockets.
5667   //     EINTR            The  connection  attempt  was   interrupted
5668   //                      before  any data arrived by the delivery of
5669   //                      a signal. The connection, however, will  be
5670   //                      established asynchronously.
5671   //
5672   //     EINPROGRESS      The socket is non-blocking, and the connec-
5673   //                      tion  cannot  be completed immediately.
5674   //
5675   //     EALREADY         The socket is non-blocking,  and a previous
5676   //                      connection  attempt  has  not yet been com-
5677   //                      pleted.
5678   //
5679   //     EISCONN          The socket is already connected.
5680   if (_result == OS_ERR && errno == EINTR) {
5681     // restarting a connect() changes its errno semantics
5682     RESTARTABLE(::connect(fd, him, len), _result);
5683     // undo these changes
5684     if (_result == OS_ERR) {
5685       if (errno == EALREADY) {
5686         errno = EINPROGRESS; // fall through
5687       } else if (errno == EISCONN) {
5688         errno = 0;
5689         return OS_OK;
5690       }
5691     }
5692   }
5693   return _result;
5694 }
5695 
5696 // Get the default path to the core file
5697 // Returns the length of the string
5698 int os::get_core_path(char* buffer, size_t bufferSize) {
5699   const char* p = get_current_directory(buffer, bufferSize);
5700 
5701   if (p == NULL) {
5702     assert(p != NULL, "failed to get current directory");
5703     return 0;
5704   }
5705 
5706   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5707                                               p, current_process_id());
5708 
5709   return strlen(buffer);
5710 }
5711 
5712 #ifndef PRODUCT
5713 void TestReserveMemorySpecial_test() {
5714   // No tests available for this platform
5715 }
5716 #endif
5717 
5718 bool os::start_debugging(char *buf, int buflen) {
5719   int len = (int)strlen(buf);
5720   char *p = &buf[len];
5721 
5722   jio_snprintf(p, buflen-len,
5723                "\n\n"
5724                "Do you want to debug the problem?\n\n"
5725                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5726                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5727                "Otherwise, press RETURN to abort...",
5728                os::current_process_id(), os::current_thread_id());
5729 
5730   bool yes = os::message_box("Unexpected Error", buf);
5731 
5732   if (yes) {
5733     // yes, user asked VM to launch debugger
5734     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5735 
5736     os::fork_and_exec(buf);
5737     yes = false;
5738   }
5739   return yes;
5740 }