1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/align.hpp"
  68 #include "utilities/decoder.hpp"
  69 #include "utilities/defaultStream.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/elfFile.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 // put OS-includes here
  77 # include <sys/types.h>
  78 # include <sys/mman.h>
  79 # include <sys/stat.h>
  80 # include <sys/select.h>
  81 # include <pthread.h>
  82 # include <signal.h>
  83 # include <errno.h>
  84 # include <dlfcn.h>
  85 # include <stdio.h>
  86 # include <unistd.h>
  87 # include <sys/resource.h>
  88 # include <pthread.h>
  89 # include <sys/stat.h>
  90 # include <sys/time.h>
  91 # include <sys/times.h>
  92 # include <sys/utsname.h>
  93 # include <sys/socket.h>
  94 # include <sys/wait.h>
  95 # include <pwd.h>
  96 # include <poll.h>
  97 # include <semaphore.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 #define DAX_SHARED_BIT (1 << 8)
 133 ////////////////////////////////////////////////////////////////////////////////
 134 // global variables
 135 julong os::Linux::_physical_memory = 0;
 136 
 137 address   os::Linux::_initial_thread_stack_bottom = NULL;
 138 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 139 
 140 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 142 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 143 Mutex* os::Linux::_createThread_lock = NULL;
 144 pthread_t os::Linux::_main_thread;
 145 int os::Linux::_page_size = -1;
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 uint32_t os::Linux::_os_version = 0;
 148 const char * os::Linux::_glibc_version = NULL;
 149 const char * os::Linux::_libpthread_version = NULL;
 150 
 151 static jlong initial_time_count=0;
 152 
 153 static int clock_tics_per_sec = 100;
 154 
 155 // For diagnostics to print a message once. see run_periodic_checks
 156 static sigset_t check_signal_done;
 157 static bool check_signals = true;
 158 
 159 // Signal number used to suspend/resume a thread
 160 
 161 // do not use any signal number less than SIGSEGV, see 4355769
 162 static int SR_signum = SIGUSR2;
 163 sigset_t SR_sigset;
 164 
 165 // utility functions
 166 
 167 static int SR_initialize();
 168 
 169 julong os::available_memory() {
 170   return Linux::available_memory();
 171 }
 172 
 173 julong os::Linux::available_memory() {
 174   // values in struct sysinfo are "unsigned long"
 175   struct sysinfo si;
 176   sysinfo(&si);
 177 
 178   return (julong)si.freeram * si.mem_unit;
 179 }
 180 
 181 julong os::physical_memory() {
 182   return Linux::physical_memory();
 183 }
 184 
 185 // Return true if user is running as root.
 186 
 187 bool os::have_special_privileges() {
 188   static bool init = false;
 189   static bool privileges = false;
 190   if (!init) {
 191     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 192     init = true;
 193   }
 194   return privileges;
 195 }
 196 
 197 
 198 #ifndef SYS_gettid
 199 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 200   #ifdef __ia64__
 201     #define SYS_gettid 1105
 202   #else
 203     #ifdef __i386__
 204       #define SYS_gettid 224
 205     #else
 206       #ifdef __amd64__
 207         #define SYS_gettid 186
 208       #else
 209         #ifdef __sparc__
 210           #define SYS_gettid 143
 211         #else
 212           #error define gettid for the arch
 213         #endif
 214       #endif
 215     #endif
 216   #endif
 217 #endif
 218 
 219 
 220 // pid_t gettid()
 221 //
 222 // Returns the kernel thread id of the currently running thread. Kernel
 223 // thread id is used to access /proc.
 224 pid_t os::Linux::gettid() {
 225   int rslt = syscall(SYS_gettid);
 226   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 227   return (pid_t)rslt;
 228 }
 229 
 230 // Most versions of linux have a bug where the number of processors are
 231 // determined by looking at the /proc file system.  In a chroot environment,
 232 // the system call returns 1.  This causes the VM to act as if it is
 233 // a single processor and elide locking (see is_MP() call).
 234 static bool unsafe_chroot_detected = false;
 235 static const char *unstable_chroot_error = "/proc file system not found.\n"
 236                      "Java may be unstable running multithreaded in a chroot "
 237                      "environment on Linux when /proc filesystem is not mounted.";
 238 
 239 void os::Linux::initialize_system_info() {
 240   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 241   if (processor_count() == 1) {
 242     pid_t pid = os::Linux::gettid();
 243     char fname[32];
 244     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 245     FILE *fp = fopen(fname, "r");
 246     if (fp == NULL) {
 247       unsafe_chroot_detected = true;
 248     } else {
 249       fclose(fp);
 250     }
 251   }
 252   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 253   assert(processor_count() > 0, "linux error");
 254 }
 255 
 256 void os::init_system_properties_values() {
 257   // The next steps are taken in the product version:
 258   //
 259   // Obtain the JAVA_HOME value from the location of libjvm.so.
 260   // This library should be located at:
 261   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 262   //
 263   // If "/jre/lib/" appears at the right place in the path, then we
 264   // assume libjvm.so is installed in a JDK and we use this path.
 265   //
 266   // Otherwise exit with message: "Could not create the Java virtual machine."
 267   //
 268   // The following extra steps are taken in the debugging version:
 269   //
 270   // If "/jre/lib/" does NOT appear at the right place in the path
 271   // instead of exit check for $JAVA_HOME environment variable.
 272   //
 273   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 274   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 275   // it looks like libjvm.so is installed there
 276   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 277   //
 278   // Otherwise exit.
 279   //
 280   // Important note: if the location of libjvm.so changes this
 281   // code needs to be changed accordingly.
 282 
 283   // See ld(1):
 284   //      The linker uses the following search paths to locate required
 285   //      shared libraries:
 286   //        1: ...
 287   //        ...
 288   //        7: The default directories, normally /lib and /usr/lib.
 289 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 290   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 291 #else
 292   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 293 #endif
 294 
 295 // Base path of extensions installed on the system.
 296 #define SYS_EXT_DIR     "/usr/java/packages"
 297 #define EXTENSIONS_DIR  "/lib/ext"
 298 
 299   // Buffer that fits several sprintfs.
 300   // Note that the space for the colon and the trailing null are provided
 301   // by the nulls included by the sizeof operator.
 302   const size_t bufsize =
 303     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 304          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 305   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 306 
 307   // sysclasspath, java_home, dll_dir
 308   {
 309     char *pslash;
 310     os::jvm_path(buf, bufsize);
 311 
 312     // Found the full path to libjvm.so.
 313     // Now cut the path to <java_home>/jre if we can.
 314     pslash = strrchr(buf, '/');
 315     if (pslash != NULL) {
 316       *pslash = '\0';            // Get rid of /libjvm.so.
 317     }
 318     pslash = strrchr(buf, '/');
 319     if (pslash != NULL) {
 320       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 321     }
 322     Arguments::set_dll_dir(buf);
 323 
 324     if (pslash != NULL) {
 325       pslash = strrchr(buf, '/');
 326       if (pslash != NULL) {
 327         *pslash = '\0';        // Get rid of /lib.
 328       }
 329     }
 330     Arguments::set_java_home(buf);
 331     set_boot_path('/', ':');
 332   }
 333 
 334   // Where to look for native libraries.
 335   //
 336   // Note: Due to a legacy implementation, most of the library path
 337   // is set in the launcher. This was to accomodate linking restrictions
 338   // on legacy Linux implementations (which are no longer supported).
 339   // Eventually, all the library path setting will be done here.
 340   //
 341   // However, to prevent the proliferation of improperly built native
 342   // libraries, the new path component /usr/java/packages is added here.
 343   // Eventually, all the library path setting will be done here.
 344   {
 345     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 346     // should always exist (until the legacy problem cited above is
 347     // addressed).
 348     const char *v = ::getenv("LD_LIBRARY_PATH");
 349     const char *v_colon = ":";
 350     if (v == NULL) { v = ""; v_colon = ""; }
 351     // That's +1 for the colon and +1 for the trailing '\0'.
 352     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 353                                                      strlen(v) + 1 +
 354                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 355                                                      mtInternal);
 356     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 357     Arguments::set_library_path(ld_library_path);
 358     FREE_C_HEAP_ARRAY(char, ld_library_path);
 359   }
 360 
 361   // Extensions directories.
 362   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 363   Arguments::set_ext_dirs(buf);
 364 
 365   FREE_C_HEAP_ARRAY(char, buf);
 366 
 367 #undef DEFAULT_LIBPATH
 368 #undef SYS_EXT_DIR
 369 #undef EXTENSIONS_DIR
 370 }
 371 
 372 ////////////////////////////////////////////////////////////////////////////////
 373 // breakpoint support
 374 
 375 void os::breakpoint() {
 376   BREAKPOINT;
 377 }
 378 
 379 extern "C" void breakpoint() {
 380   // use debugger to set breakpoint here
 381 }
 382 
 383 ////////////////////////////////////////////////////////////////////////////////
 384 // signal support
 385 
 386 debug_only(static bool signal_sets_initialized = false);
 387 static sigset_t unblocked_sigs, vm_sigs;
 388 
 389 bool os::Linux::is_sig_ignored(int sig) {
 390   struct sigaction oact;
 391   sigaction(sig, (struct sigaction*)NULL, &oact);
 392   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 393                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 394   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 395     return true;
 396   } else {
 397     return false;
 398   }
 399 }
 400 
 401 void os::Linux::signal_sets_init() {
 402   // Should also have an assertion stating we are still single-threaded.
 403   assert(!signal_sets_initialized, "Already initialized");
 404   // Fill in signals that are necessarily unblocked for all threads in
 405   // the VM. Currently, we unblock the following signals:
 406   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 407   //                         by -Xrs (=ReduceSignalUsage));
 408   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 409   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 410   // the dispositions or masks wrt these signals.
 411   // Programs embedding the VM that want to use the above signals for their
 412   // own purposes must, at this time, use the "-Xrs" option to prevent
 413   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 414   // (See bug 4345157, and other related bugs).
 415   // In reality, though, unblocking these signals is really a nop, since
 416   // these signals are not blocked by default.
 417   sigemptyset(&unblocked_sigs);
 418   sigaddset(&unblocked_sigs, SIGILL);
 419   sigaddset(&unblocked_sigs, SIGSEGV);
 420   sigaddset(&unblocked_sigs, SIGBUS);
 421   sigaddset(&unblocked_sigs, SIGFPE);
 422 #if defined(PPC64)
 423   sigaddset(&unblocked_sigs, SIGTRAP);
 424 #endif
 425   sigaddset(&unblocked_sigs, SR_signum);
 426 
 427   if (!ReduceSignalUsage) {
 428     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 429       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 430     }
 431     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 432       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 433     }
 434     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 435       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 436     }
 437   }
 438   // Fill in signals that are blocked by all but the VM thread.
 439   sigemptyset(&vm_sigs);
 440   if (!ReduceSignalUsage) {
 441     sigaddset(&vm_sigs, BREAK_SIGNAL);
 442   }
 443   debug_only(signal_sets_initialized = true);
 444 
 445 }
 446 
 447 // These are signals that are unblocked while a thread is running Java.
 448 // (For some reason, they get blocked by default.)
 449 sigset_t* os::Linux::unblocked_signals() {
 450   assert(signal_sets_initialized, "Not initialized");
 451   return &unblocked_sigs;
 452 }
 453 
 454 // These are the signals that are blocked while a (non-VM) thread is
 455 // running Java. Only the VM thread handles these signals.
 456 sigset_t* os::Linux::vm_signals() {
 457   assert(signal_sets_initialized, "Not initialized");
 458   return &vm_sigs;
 459 }
 460 
 461 void os::Linux::hotspot_sigmask(Thread* thread) {
 462 
 463   //Save caller's signal mask before setting VM signal mask
 464   sigset_t caller_sigmask;
 465   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 466 
 467   OSThread* osthread = thread->osthread();
 468   osthread->set_caller_sigmask(caller_sigmask);
 469 
 470   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 471 
 472   if (!ReduceSignalUsage) {
 473     if (thread->is_VM_thread()) {
 474       // Only the VM thread handles BREAK_SIGNAL ...
 475       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 476     } else {
 477       // ... all other threads block BREAK_SIGNAL
 478       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 479     }
 480   }
 481 }
 482 
 483 //////////////////////////////////////////////////////////////////////////////
 484 // detecting pthread library
 485 
 486 void os::Linux::libpthread_init() {
 487   // Save glibc and pthread version strings.
 488 #if !defined(_CS_GNU_LIBC_VERSION) || \
 489     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 490   #error "glibc too old (< 2.3.2)"
 491 #endif
 492 
 493   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 494   assert(n > 0, "cannot retrieve glibc version");
 495   char *str = (char *)malloc(n, mtInternal);
 496   confstr(_CS_GNU_LIBC_VERSION, str, n);
 497   os::Linux::set_glibc_version(str);
 498 
 499   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 500   assert(n > 0, "cannot retrieve pthread version");
 501   str = (char *)malloc(n, mtInternal);
 502   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 503   os::Linux::set_libpthread_version(str);
 504 }
 505 
 506 /////////////////////////////////////////////////////////////////////////////
 507 // thread stack expansion
 508 
 509 // os::Linux::manually_expand_stack() takes care of expanding the thread
 510 // stack. Note that this is normally not needed: pthread stacks allocate
 511 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 512 // committed. Therefore it is not necessary to expand the stack manually.
 513 //
 514 // Manually expanding the stack was historically needed on LinuxThreads
 515 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 516 // it is kept to deal with very rare corner cases:
 517 //
 518 // For one, user may run the VM on an own implementation of threads
 519 // whose stacks are - like the old LinuxThreads - implemented using
 520 // mmap(MAP_GROWSDOWN).
 521 //
 522 // Also, this coding may be needed if the VM is running on the primordial
 523 // thread. Normally we avoid running on the primordial thread; however,
 524 // user may still invoke the VM on the primordial thread.
 525 //
 526 // The following historical comment describes the details about running
 527 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 528 
 529 
 530 // Force Linux kernel to expand current thread stack. If "bottom" is close
 531 // to the stack guard, caller should block all signals.
 532 //
 533 // MAP_GROWSDOWN:
 534 //   A special mmap() flag that is used to implement thread stacks. It tells
 535 //   kernel that the memory region should extend downwards when needed. This
 536 //   allows early versions of LinuxThreads to only mmap the first few pages
 537 //   when creating a new thread. Linux kernel will automatically expand thread
 538 //   stack as needed (on page faults).
 539 //
 540 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 541 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 542 //   region, it's hard to tell if the fault is due to a legitimate stack
 543 //   access or because of reading/writing non-exist memory (e.g. buffer
 544 //   overrun). As a rule, if the fault happens below current stack pointer,
 545 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 546 //   application (see Linux kernel fault.c).
 547 //
 548 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 549 //   stack overflow detection.
 550 //
 551 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 552 //   not use MAP_GROWSDOWN.
 553 //
 554 // To get around the problem and allow stack banging on Linux, we need to
 555 // manually expand thread stack after receiving the SIGSEGV.
 556 //
 557 // There are two ways to expand thread stack to address "bottom", we used
 558 // both of them in JVM before 1.5:
 559 //   1. adjust stack pointer first so that it is below "bottom", and then
 560 //      touch "bottom"
 561 //   2. mmap() the page in question
 562 //
 563 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 564 // if current sp is already near the lower end of page 101, and we need to
 565 // call mmap() to map page 100, it is possible that part of the mmap() frame
 566 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 567 // That will destroy the mmap() frame and cause VM to crash.
 568 //
 569 // The following code works by adjusting sp first, then accessing the "bottom"
 570 // page to force a page fault. Linux kernel will then automatically expand the
 571 // stack mapping.
 572 //
 573 // _expand_stack_to() assumes its frame size is less than page size, which
 574 // should always be true if the function is not inlined.
 575 
 576 static void NOINLINE _expand_stack_to(address bottom) {
 577   address sp;
 578   size_t size;
 579   volatile char *p;
 580 
 581   // Adjust bottom to point to the largest address within the same page, it
 582   // gives us a one-page buffer if alloca() allocates slightly more memory.
 583   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 584   bottom += os::Linux::page_size() - 1;
 585 
 586   // sp might be slightly above current stack pointer; if that's the case, we
 587   // will alloca() a little more space than necessary, which is OK. Don't use
 588   // os::current_stack_pointer(), as its result can be slightly below current
 589   // stack pointer, causing us to not alloca enough to reach "bottom".
 590   sp = (address)&sp;
 591 
 592   if (sp > bottom) {
 593     size = sp - bottom;
 594     p = (volatile char *)alloca(size);
 595     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 596     p[0] = '\0';
 597   }
 598 }
 599 
 600 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 601   assert(t!=NULL, "just checking");
 602   assert(t->osthread()->expanding_stack(), "expand should be set");
 603   assert(t->stack_base() != NULL, "stack_base was not initialized");
 604 
 605   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 606     sigset_t mask_all, old_sigset;
 607     sigfillset(&mask_all);
 608     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 609     _expand_stack_to(addr);
 610     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 611     return true;
 612   }
 613   return false;
 614 }
 615 
 616 //////////////////////////////////////////////////////////////////////////////
 617 // create new thread
 618 
 619 // Thread start routine for all newly created threads
 620 static void *thread_native_entry(Thread *thread) {
 621   // Try to randomize the cache line index of hot stack frames.
 622   // This helps when threads of the same stack traces evict each other's
 623   // cache lines. The threads can be either from the same JVM instance, or
 624   // from different JVM instances. The benefit is especially true for
 625   // processors with hyperthreading technology.
 626   static int counter = 0;
 627   int pid = os::current_process_id();
 628   alloca(((pid ^ counter++) & 7) * 128);
 629 
 630   thread->initialize_thread_current();
 631 
 632   OSThread* osthread = thread->osthread();
 633   Monitor* sync = osthread->startThread_lock();
 634 
 635   osthread->set_thread_id(os::current_thread_id());
 636 
 637   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 638     os::current_thread_id(), (uintx) pthread_self());
 639 
 640   if (UseNUMA) {
 641     int lgrp_id = os::numa_get_group_id();
 642     if (lgrp_id != -1) {
 643       thread->set_lgrp_id(lgrp_id);
 644     }
 645   }
 646   // initialize signal mask for this thread
 647   os::Linux::hotspot_sigmask(thread);
 648 
 649   // initialize floating point control register
 650   os::Linux::init_thread_fpu_state();
 651 
 652   // handshaking with parent thread
 653   {
 654     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 655 
 656     // notify parent thread
 657     osthread->set_state(INITIALIZED);
 658     sync->notify_all();
 659 
 660     // wait until os::start_thread()
 661     while (osthread->get_state() == INITIALIZED) {
 662       sync->wait(Mutex::_no_safepoint_check_flag);
 663     }
 664   }
 665 
 666   // call one more level start routine
 667   thread->run();
 668 
 669   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 670     os::current_thread_id(), (uintx) pthread_self());
 671 
 672   // If a thread has not deleted itself ("delete this") as part of its
 673   // termination sequence, we have to ensure thread-local-storage is
 674   // cleared before we actually terminate. No threads should ever be
 675   // deleted asynchronously with respect to their termination.
 676   if (Thread::current_or_null_safe() != NULL) {
 677     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 678     thread->clear_thread_current();
 679   }
 680 
 681   return 0;
 682 }
 683 
 684 bool os::create_thread(Thread* thread, ThreadType thr_type,
 685                        size_t req_stack_size) {
 686   assert(thread->osthread() == NULL, "caller responsible");
 687 
 688   // Allocate the OSThread object
 689   OSThread* osthread = new OSThread(NULL, NULL);
 690   if (osthread == NULL) {
 691     return false;
 692   }
 693 
 694   // set the correct thread state
 695   osthread->set_thread_type(thr_type);
 696 
 697   // Initial state is ALLOCATED but not INITIALIZED
 698   osthread->set_state(ALLOCATED);
 699 
 700   thread->set_osthread(osthread);
 701 
 702   // init thread attributes
 703   pthread_attr_t attr;
 704   pthread_attr_init(&attr);
 705   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 706 
 707   // Calculate stack size if it's not specified by caller.
 708   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 709   // In the Linux NPTL pthread implementation the guard size mechanism
 710   // is not implemented properly. The posix standard requires adding
 711   // the size of the guard pages to the stack size, instead Linux
 712   // takes the space out of 'stacksize'. Thus we adapt the requested
 713   // stack_size by the size of the guard pages to mimick proper
 714   // behaviour. However, be careful not to end up with a size
 715   // of zero due to overflow. Don't add the guard page in that case.
 716   size_t guard_size = os::Linux::default_guard_size(thr_type);
 717   if (stack_size <= SIZE_MAX - guard_size) {
 718     stack_size += guard_size;
 719   }
 720   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 721 
 722   int status = pthread_attr_setstacksize(&attr, stack_size);
 723   assert_status(status == 0, status, "pthread_attr_setstacksize");
 724 
 725   // Configure glibc guard page.
 726   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 727 
 728   ThreadState state;
 729 
 730   {
 731     pthread_t tid;
 732     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 733 
 734     char buf[64];
 735     if (ret == 0) {
 736       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 737         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 738     } else {
 739       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 740         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 741     }
 742 
 743     pthread_attr_destroy(&attr);
 744 
 745     if (ret != 0) {
 746       // Need to clean up stuff we've allocated so far
 747       thread->set_osthread(NULL);
 748       delete osthread;
 749       return false;
 750     }
 751 
 752     // Store pthread info into the OSThread
 753     osthread->set_pthread_id(tid);
 754 
 755     // Wait until child thread is either initialized or aborted
 756     {
 757       Monitor* sync_with_child = osthread->startThread_lock();
 758       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 759       while ((state = osthread->get_state()) == ALLOCATED) {
 760         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 761       }
 762     }
 763   }
 764 
 765   // Aborted due to thread limit being reached
 766   if (state == ZOMBIE) {
 767     thread->set_osthread(NULL);
 768     delete osthread;
 769     return false;
 770   }
 771 
 772   // The thread is returned suspended (in state INITIALIZED),
 773   // and is started higher up in the call chain
 774   assert(state == INITIALIZED, "race condition");
 775   return true;
 776 }
 777 
 778 /////////////////////////////////////////////////////////////////////////////
 779 // attach existing thread
 780 
 781 // bootstrap the main thread
 782 bool os::create_main_thread(JavaThread* thread) {
 783   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 784   return create_attached_thread(thread);
 785 }
 786 
 787 bool os::create_attached_thread(JavaThread* thread) {
 788 #ifdef ASSERT
 789   thread->verify_not_published();
 790 #endif
 791 
 792   // Allocate the OSThread object
 793   OSThread* osthread = new OSThread(NULL, NULL);
 794 
 795   if (osthread == NULL) {
 796     return false;
 797   }
 798 
 799   // Store pthread info into the OSThread
 800   osthread->set_thread_id(os::Linux::gettid());
 801   osthread->set_pthread_id(::pthread_self());
 802 
 803   // initialize floating point control register
 804   os::Linux::init_thread_fpu_state();
 805 
 806   // Initial thread state is RUNNABLE
 807   osthread->set_state(RUNNABLE);
 808 
 809   thread->set_osthread(osthread);
 810 
 811   if (UseNUMA) {
 812     int lgrp_id = os::numa_get_group_id();
 813     if (lgrp_id != -1) {
 814       thread->set_lgrp_id(lgrp_id);
 815     }
 816   }
 817 
 818   if (os::Linux::is_initial_thread()) {
 819     // If current thread is initial thread, its stack is mapped on demand,
 820     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 821     // the entire stack region to avoid SEGV in stack banging.
 822     // It is also useful to get around the heap-stack-gap problem on SuSE
 823     // kernel (see 4821821 for details). We first expand stack to the top
 824     // of yellow zone, then enable stack yellow zone (order is significant,
 825     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 826     // is no gap between the last two virtual memory regions.
 827 
 828     JavaThread *jt = (JavaThread *)thread;
 829     address addr = jt->stack_reserved_zone_base();
 830     assert(addr != NULL, "initialization problem?");
 831     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 832 
 833     osthread->set_expanding_stack();
 834     os::Linux::manually_expand_stack(jt, addr);
 835     osthread->clear_expanding_stack();
 836   }
 837 
 838   // initialize signal mask for this thread
 839   // and save the caller's signal mask
 840   os::Linux::hotspot_sigmask(thread);
 841 
 842   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 843     os::current_thread_id(), (uintx) pthread_self());
 844 
 845   return true;
 846 }
 847 
 848 void os::pd_start_thread(Thread* thread) {
 849   OSThread * osthread = thread->osthread();
 850   assert(osthread->get_state() != INITIALIZED, "just checking");
 851   Monitor* sync_with_child = osthread->startThread_lock();
 852   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 853   sync_with_child->notify();
 854 }
 855 
 856 // Free Linux resources related to the OSThread
 857 void os::free_thread(OSThread* osthread) {
 858   assert(osthread != NULL, "osthread not set");
 859 
 860   // We are told to free resources of the argument thread,
 861   // but we can only really operate on the current thread.
 862   assert(Thread::current()->osthread() == osthread,
 863          "os::free_thread but not current thread");
 864 
 865 #ifdef ASSERT
 866   sigset_t current;
 867   sigemptyset(&current);
 868   pthread_sigmask(SIG_SETMASK, NULL, &current);
 869   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 870 #endif
 871 
 872   // Restore caller's signal mask
 873   sigset_t sigmask = osthread->caller_sigmask();
 874   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 875 
 876   delete osthread;
 877 }
 878 
 879 //////////////////////////////////////////////////////////////////////////////
 880 // initial thread
 881 
 882 // Check if current thread is the initial thread, similar to Solaris thr_main.
 883 bool os::Linux::is_initial_thread(void) {
 884   char dummy;
 885   // If called before init complete, thread stack bottom will be null.
 886   // Can be called if fatal error occurs before initialization.
 887   if (initial_thread_stack_bottom() == NULL) return false;
 888   assert(initial_thread_stack_bottom() != NULL &&
 889          initial_thread_stack_size()   != 0,
 890          "os::init did not locate initial thread's stack region");
 891   if ((address)&dummy >= initial_thread_stack_bottom() &&
 892       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 893     return true;
 894   } else {
 895     return false;
 896   }
 897 }
 898 
 899 // Find the virtual memory area that contains addr
 900 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 901   FILE *fp = fopen("/proc/self/maps", "r");
 902   if (fp) {
 903     address low, high;
 904     while (!feof(fp)) {
 905       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 906         if (low <= addr && addr < high) {
 907           if (vma_low)  *vma_low  = low;
 908           if (vma_high) *vma_high = high;
 909           fclose(fp);
 910           return true;
 911         }
 912       }
 913       for (;;) {
 914         int ch = fgetc(fp);
 915         if (ch == EOF || ch == (int)'\n') break;
 916       }
 917     }
 918     fclose(fp);
 919   }
 920   return false;
 921 }
 922 
 923 // Locate initial thread stack. This special handling of initial thread stack
 924 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 925 // bogus value for the primordial process thread. While the launcher has created
 926 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 927 // JNI invocation API from a primordial thread.
 928 void os::Linux::capture_initial_stack(size_t max_size) {
 929 
 930   // max_size is either 0 (which means accept OS default for thread stacks) or
 931   // a user-specified value known to be at least the minimum needed. If we
 932   // are actually on the primordial thread we can make it appear that we have a
 933   // smaller max_size stack by inserting the guard pages at that location. But we
 934   // cannot do anything to emulate a larger stack than what has been provided by
 935   // the OS or threading library. In fact if we try to use a stack greater than
 936   // what is set by rlimit then we will crash the hosting process.
 937 
 938   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 939   // If this is "unlimited" then it will be a huge value.
 940   struct rlimit rlim;
 941   getrlimit(RLIMIT_STACK, &rlim);
 942   size_t stack_size = rlim.rlim_cur;
 943 
 944   // 6308388: a bug in ld.so will relocate its own .data section to the
 945   //   lower end of primordial stack; reduce ulimit -s value a little bit
 946   //   so we won't install guard page on ld.so's data section.
 947   stack_size -= 2 * page_size();
 948 
 949   // Try to figure out where the stack base (top) is. This is harder.
 950   //
 951   // When an application is started, glibc saves the initial stack pointer in
 952   // a global variable "__libc_stack_end", which is then used by system
 953   // libraries. __libc_stack_end should be pretty close to stack top. The
 954   // variable is available since the very early days. However, because it is
 955   // a private interface, it could disappear in the future.
 956   //
 957   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 958   // to __libc_stack_end, it is very close to stack top, but isn't the real
 959   // stack top. Note that /proc may not exist if VM is running as a chroot
 960   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 961   // /proc/<pid>/stat could change in the future (though unlikely).
 962   //
 963   // We try __libc_stack_end first. If that doesn't work, look for
 964   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 965   // as a hint, which should work well in most cases.
 966 
 967   uintptr_t stack_start;
 968 
 969   // try __libc_stack_end first
 970   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 971   if (p && *p) {
 972     stack_start = *p;
 973   } else {
 974     // see if we can get the start_stack field from /proc/self/stat
 975     FILE *fp;
 976     int pid;
 977     char state;
 978     int ppid;
 979     int pgrp;
 980     int session;
 981     int nr;
 982     int tpgrp;
 983     unsigned long flags;
 984     unsigned long minflt;
 985     unsigned long cminflt;
 986     unsigned long majflt;
 987     unsigned long cmajflt;
 988     unsigned long utime;
 989     unsigned long stime;
 990     long cutime;
 991     long cstime;
 992     long prio;
 993     long nice;
 994     long junk;
 995     long it_real;
 996     uintptr_t start;
 997     uintptr_t vsize;
 998     intptr_t rss;
 999     uintptr_t rsslim;
1000     uintptr_t scodes;
1001     uintptr_t ecode;
1002     int i;
1003 
1004     // Figure what the primordial thread stack base is. Code is inspired
1005     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1006     // followed by command name surrounded by parentheses, state, etc.
1007     char stat[2048];
1008     int statlen;
1009 
1010     fp = fopen("/proc/self/stat", "r");
1011     if (fp) {
1012       statlen = fread(stat, 1, 2047, fp);
1013       stat[statlen] = '\0';
1014       fclose(fp);
1015 
1016       // Skip pid and the command string. Note that we could be dealing with
1017       // weird command names, e.g. user could decide to rename java launcher
1018       // to "java 1.4.2 :)", then the stat file would look like
1019       //                1234 (java 1.4.2 :)) R ... ...
1020       // We don't really need to know the command string, just find the last
1021       // occurrence of ")" and then start parsing from there. See bug 4726580.
1022       char * s = strrchr(stat, ')');
1023 
1024       i = 0;
1025       if (s) {
1026         // Skip blank chars
1027         do { s++; } while (s && isspace(*s));
1028 
1029 #define _UFM UINTX_FORMAT
1030 #define _DFM INTX_FORMAT
1031 
1032         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1033         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1034         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1035                    &state,          // 3  %c
1036                    &ppid,           // 4  %d
1037                    &pgrp,           // 5  %d
1038                    &session,        // 6  %d
1039                    &nr,             // 7  %d
1040                    &tpgrp,          // 8  %d
1041                    &flags,          // 9  %lu
1042                    &minflt,         // 10 %lu
1043                    &cminflt,        // 11 %lu
1044                    &majflt,         // 12 %lu
1045                    &cmajflt,        // 13 %lu
1046                    &utime,          // 14 %lu
1047                    &stime,          // 15 %lu
1048                    &cutime,         // 16 %ld
1049                    &cstime,         // 17 %ld
1050                    &prio,           // 18 %ld
1051                    &nice,           // 19 %ld
1052                    &junk,           // 20 %ld
1053                    &it_real,        // 21 %ld
1054                    &start,          // 22 UINTX_FORMAT
1055                    &vsize,          // 23 UINTX_FORMAT
1056                    &rss,            // 24 INTX_FORMAT
1057                    &rsslim,         // 25 UINTX_FORMAT
1058                    &scodes,         // 26 UINTX_FORMAT
1059                    &ecode,          // 27 UINTX_FORMAT
1060                    &stack_start);   // 28 UINTX_FORMAT
1061       }
1062 
1063 #undef _UFM
1064 #undef _DFM
1065 
1066       if (i != 28 - 2) {
1067         assert(false, "Bad conversion from /proc/self/stat");
1068         // product mode - assume we are the initial thread, good luck in the
1069         // embedded case.
1070         warning("Can't detect initial thread stack location - bad conversion");
1071         stack_start = (uintptr_t) &rlim;
1072       }
1073     } else {
1074       // For some reason we can't open /proc/self/stat (for example, running on
1075       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1076       // most cases, so don't abort:
1077       warning("Can't detect initial thread stack location - no /proc/self/stat");
1078       stack_start = (uintptr_t) &rlim;
1079     }
1080   }
1081 
1082   // Now we have a pointer (stack_start) very close to the stack top, the
1083   // next thing to do is to figure out the exact location of stack top. We
1084   // can find out the virtual memory area that contains stack_start by
1085   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1086   // and its upper limit is the real stack top. (again, this would fail if
1087   // running inside chroot, because /proc may not exist.)
1088 
1089   uintptr_t stack_top;
1090   address low, high;
1091   if (find_vma((address)stack_start, &low, &high)) {
1092     // success, "high" is the true stack top. (ignore "low", because initial
1093     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1094     stack_top = (uintptr_t)high;
1095   } else {
1096     // failed, likely because /proc/self/maps does not exist
1097     warning("Can't detect initial thread stack location - find_vma failed");
1098     // best effort: stack_start is normally within a few pages below the real
1099     // stack top, use it as stack top, and reduce stack size so we won't put
1100     // guard page outside stack.
1101     stack_top = stack_start;
1102     stack_size -= 16 * page_size();
1103   }
1104 
1105   // stack_top could be partially down the page so align it
1106   stack_top = align_up(stack_top, page_size());
1107 
1108   // Allowed stack value is minimum of max_size and what we derived from rlimit
1109   if (max_size > 0) {
1110     _initial_thread_stack_size = MIN2(max_size, stack_size);
1111   } else {
1112     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1113     // clamp it at 8MB as we do on Solaris
1114     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1115   }
1116   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1117   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1118 
1119   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1120 
1121   if (log_is_enabled(Info, os, thread)) {
1122     // See if we seem to be on primordial process thread
1123     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1124                       uintptr_t(&rlim) < stack_top;
1125 
1126     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1127                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1128                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1129                          stack_top, intptr_t(_initial_thread_stack_bottom));
1130   }
1131 }
1132 
1133 ////////////////////////////////////////////////////////////////////////////////
1134 // time support
1135 
1136 // Time since start-up in seconds to a fine granularity.
1137 // Used by VMSelfDestructTimer and the MemProfiler.
1138 double os::elapsedTime() {
1139 
1140   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1141 }
1142 
1143 jlong os::elapsed_counter() {
1144   return javaTimeNanos() - initial_time_count;
1145 }
1146 
1147 jlong os::elapsed_frequency() {
1148   return NANOSECS_PER_SEC; // nanosecond resolution
1149 }
1150 
1151 bool os::supports_vtime() { return true; }
1152 bool os::enable_vtime()   { return false; }
1153 bool os::vtime_enabled()  { return false; }
1154 
1155 double os::elapsedVTime() {
1156   struct rusage usage;
1157   int retval = getrusage(RUSAGE_THREAD, &usage);
1158   if (retval == 0) {
1159     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1160   } else {
1161     // better than nothing, but not much
1162     return elapsedTime();
1163   }
1164 }
1165 
1166 jlong os::javaTimeMillis() {
1167   timeval time;
1168   int status = gettimeofday(&time, NULL);
1169   assert(status != -1, "linux error");
1170   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1171 }
1172 
1173 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1174   timeval time;
1175   int status = gettimeofday(&time, NULL);
1176   assert(status != -1, "linux error");
1177   seconds = jlong(time.tv_sec);
1178   nanos = jlong(time.tv_usec) * 1000;
1179 }
1180 
1181 
1182 #ifndef CLOCK_MONOTONIC
1183   #define CLOCK_MONOTONIC (1)
1184 #endif
1185 
1186 void os::Linux::clock_init() {
1187   // we do dlopen's in this particular order due to bug in linux
1188   // dynamical loader (see 6348968) leading to crash on exit
1189   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1190   if (handle == NULL) {
1191     handle = dlopen("librt.so", RTLD_LAZY);
1192   }
1193 
1194   if (handle) {
1195     int (*clock_getres_func)(clockid_t, struct timespec*) =
1196            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1197     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1198            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1199     if (clock_getres_func && clock_gettime_func) {
1200       // See if monotonic clock is supported by the kernel. Note that some
1201       // early implementations simply return kernel jiffies (updated every
1202       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1203       // for nano time (though the monotonic property is still nice to have).
1204       // It's fixed in newer kernels, however clock_getres() still returns
1205       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1206       // resolution for now. Hopefully as people move to new kernels, this
1207       // won't be a problem.
1208       struct timespec res;
1209       struct timespec tp;
1210       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1211           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1212         // yes, monotonic clock is supported
1213         _clock_gettime = clock_gettime_func;
1214         return;
1215       } else {
1216         // close librt if there is no monotonic clock
1217         dlclose(handle);
1218       }
1219     }
1220   }
1221   warning("No monotonic clock was available - timed services may " \
1222           "be adversely affected if the time-of-day clock changes");
1223 }
1224 
1225 #ifndef SYS_clock_getres
1226   #if defined(X86) || defined(PPC64) || defined(S390)
1227     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1228     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1229   #else
1230     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1231     #define sys_clock_getres(x,y)  -1
1232   #endif
1233 #else
1234   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1235 #endif
1236 
1237 void os::Linux::fast_thread_clock_init() {
1238   if (!UseLinuxPosixThreadCPUClocks) {
1239     return;
1240   }
1241   clockid_t clockid;
1242   struct timespec tp;
1243   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1244       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1245 
1246   // Switch to using fast clocks for thread cpu time if
1247   // the sys_clock_getres() returns 0 error code.
1248   // Note, that some kernels may support the current thread
1249   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1250   // returned by the pthread_getcpuclockid().
1251   // If the fast Posix clocks are supported then the sys_clock_getres()
1252   // must return at least tp.tv_sec == 0 which means a resolution
1253   // better than 1 sec. This is extra check for reliability.
1254 
1255   if (pthread_getcpuclockid_func &&
1256       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1257       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1258     _supports_fast_thread_cpu_time = true;
1259     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1260   }
1261 }
1262 
1263 jlong os::javaTimeNanos() {
1264   if (os::supports_monotonic_clock()) {
1265     struct timespec tp;
1266     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1267     assert(status == 0, "gettime error");
1268     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1269     return result;
1270   } else {
1271     timeval time;
1272     int status = gettimeofday(&time, NULL);
1273     assert(status != -1, "linux error");
1274     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1275     return 1000 * usecs;
1276   }
1277 }
1278 
1279 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1280   if (os::supports_monotonic_clock()) {
1281     info_ptr->max_value = ALL_64_BITS;
1282 
1283     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1284     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1285     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1286   } else {
1287     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1288     info_ptr->max_value = ALL_64_BITS;
1289 
1290     // gettimeofday is a real time clock so it skips
1291     info_ptr->may_skip_backward = true;
1292     info_ptr->may_skip_forward = true;
1293   }
1294 
1295   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1296 }
1297 
1298 // Return the real, user, and system times in seconds from an
1299 // arbitrary fixed point in the past.
1300 bool os::getTimesSecs(double* process_real_time,
1301                       double* process_user_time,
1302                       double* process_system_time) {
1303   struct tms ticks;
1304   clock_t real_ticks = times(&ticks);
1305 
1306   if (real_ticks == (clock_t) (-1)) {
1307     return false;
1308   } else {
1309     double ticks_per_second = (double) clock_tics_per_sec;
1310     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1311     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1312     *process_real_time = ((double) real_ticks) / ticks_per_second;
1313 
1314     return true;
1315   }
1316 }
1317 
1318 
1319 char * os::local_time_string(char *buf, size_t buflen) {
1320   struct tm t;
1321   time_t long_time;
1322   time(&long_time);
1323   localtime_r(&long_time, &t);
1324   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1325                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1326                t.tm_hour, t.tm_min, t.tm_sec);
1327   return buf;
1328 }
1329 
1330 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1331   return localtime_r(clock, res);
1332 }
1333 
1334 ////////////////////////////////////////////////////////////////////////////////
1335 // runtime exit support
1336 
1337 // Note: os::shutdown() might be called very early during initialization, or
1338 // called from signal handler. Before adding something to os::shutdown(), make
1339 // sure it is async-safe and can handle partially initialized VM.
1340 void os::shutdown() {
1341 
1342   // allow PerfMemory to attempt cleanup of any persistent resources
1343   perfMemory_exit();
1344 
1345   // needs to remove object in file system
1346   AttachListener::abort();
1347 
1348   // flush buffered output, finish log files
1349   ostream_abort();
1350 
1351   // Check for abort hook
1352   abort_hook_t abort_hook = Arguments::abort_hook();
1353   if (abort_hook != NULL) {
1354     abort_hook();
1355   }
1356 
1357 }
1358 
1359 // Note: os::abort() might be called very early during initialization, or
1360 // called from signal handler. Before adding something to os::abort(), make
1361 // sure it is async-safe and can handle partially initialized VM.
1362 void os::abort(bool dump_core, void* siginfo, const void* context) {
1363   os::shutdown();
1364   if (dump_core) {
1365 #ifndef PRODUCT
1366     fdStream out(defaultStream::output_fd());
1367     out.print_raw("Current thread is ");
1368     char buf[16];
1369     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1370     out.print_raw_cr(buf);
1371     out.print_raw_cr("Dumping core ...");
1372 #endif
1373     ::abort(); // dump core
1374   }
1375 
1376   ::exit(1);
1377 }
1378 
1379 // Die immediately, no exit hook, no abort hook, no cleanup.
1380 void os::die() {
1381   ::abort();
1382 }
1383 
1384 
1385 // This method is a copy of JDK's sysGetLastErrorString
1386 // from src/solaris/hpi/src/system_md.c
1387 
1388 size_t os::lasterror(char *buf, size_t len) {
1389   if (errno == 0)  return 0;
1390 
1391   const char *s = os::strerror(errno);
1392   size_t n = ::strlen(s);
1393   if (n >= len) {
1394     n = len - 1;
1395   }
1396   ::strncpy(buf, s, n);
1397   buf[n] = '\0';
1398   return n;
1399 }
1400 
1401 // thread_id is kernel thread id (similar to Solaris LWP id)
1402 intx os::current_thread_id() { return os::Linux::gettid(); }
1403 int os::current_process_id() {
1404   return ::getpid();
1405 }
1406 
1407 // DLL functions
1408 
1409 const char* os::dll_file_extension() { return ".so"; }
1410 
1411 // This must be hard coded because it's the system's temporary
1412 // directory not the java application's temp directory, ala java.io.tmpdir.
1413 const char* os::get_temp_directory() { return "/tmp"; }
1414 
1415 static bool file_exists(const char* filename) {
1416   struct stat statbuf;
1417   if (filename == NULL || strlen(filename) == 0) {
1418     return false;
1419   }
1420   return os::stat(filename, &statbuf) == 0;
1421 }
1422 
1423 // check if addr is inside libjvm.so
1424 bool os::address_is_in_vm(address addr) {
1425   static address libjvm_base_addr;
1426   Dl_info dlinfo;
1427 
1428   if (libjvm_base_addr == NULL) {
1429     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1430       libjvm_base_addr = (address)dlinfo.dli_fbase;
1431     }
1432     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1433   }
1434 
1435   if (dladdr((void *)addr, &dlinfo) != 0) {
1436     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1437   }
1438 
1439   return false;
1440 }
1441 
1442 bool os::dll_address_to_function_name(address addr, char *buf,
1443                                       int buflen, int *offset,
1444                                       bool demangle) {
1445   // buf is not optional, but offset is optional
1446   assert(buf != NULL, "sanity check");
1447 
1448   Dl_info dlinfo;
1449 
1450   if (dladdr((void*)addr, &dlinfo) != 0) {
1451     // see if we have a matching symbol
1452     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1453       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1454         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1455       }
1456       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1457       return true;
1458     }
1459     // no matching symbol so try for just file info
1460     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1461       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1462                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1463         return true;
1464       }
1465     }
1466   }
1467 
1468   buf[0] = '\0';
1469   if (offset != NULL) *offset = -1;
1470   return false;
1471 }
1472 
1473 struct _address_to_library_name {
1474   address addr;          // input : memory address
1475   size_t  buflen;        //         size of fname
1476   char*   fname;         // output: library name
1477   address base;          //         library base addr
1478 };
1479 
1480 static int address_to_library_name_callback(struct dl_phdr_info *info,
1481                                             size_t size, void *data) {
1482   int i;
1483   bool found = false;
1484   address libbase = NULL;
1485   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1486 
1487   // iterate through all loadable segments
1488   for (i = 0; i < info->dlpi_phnum; i++) {
1489     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1490     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1491       // base address of a library is the lowest address of its loaded
1492       // segments.
1493       if (libbase == NULL || libbase > segbase) {
1494         libbase = segbase;
1495       }
1496       // see if 'addr' is within current segment
1497       if (segbase <= d->addr &&
1498           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1499         found = true;
1500       }
1501     }
1502   }
1503 
1504   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1505   // so dll_address_to_library_name() can fall through to use dladdr() which
1506   // can figure out executable name from argv[0].
1507   if (found && info->dlpi_name && info->dlpi_name[0]) {
1508     d->base = libbase;
1509     if (d->fname) {
1510       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1511     }
1512     return 1;
1513   }
1514   return 0;
1515 }
1516 
1517 bool os::dll_address_to_library_name(address addr, char* buf,
1518                                      int buflen, int* offset) {
1519   // buf is not optional, but offset is optional
1520   assert(buf != NULL, "sanity check");
1521 
1522   Dl_info dlinfo;
1523   struct _address_to_library_name data;
1524 
1525   // There is a bug in old glibc dladdr() implementation that it could resolve
1526   // to wrong library name if the .so file has a base address != NULL. Here
1527   // we iterate through the program headers of all loaded libraries to find
1528   // out which library 'addr' really belongs to. This workaround can be
1529   // removed once the minimum requirement for glibc is moved to 2.3.x.
1530   data.addr = addr;
1531   data.fname = buf;
1532   data.buflen = buflen;
1533   data.base = NULL;
1534   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1535 
1536   if (rslt) {
1537     // buf already contains library name
1538     if (offset) *offset = addr - data.base;
1539     return true;
1540   }
1541   if (dladdr((void*)addr, &dlinfo) != 0) {
1542     if (dlinfo.dli_fname != NULL) {
1543       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1544     }
1545     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1546       *offset = addr - (address)dlinfo.dli_fbase;
1547     }
1548     return true;
1549   }
1550 
1551   buf[0] = '\0';
1552   if (offset) *offset = -1;
1553   return false;
1554 }
1555 
1556 // Loads .dll/.so and
1557 // in case of error it checks if .dll/.so was built for the
1558 // same architecture as Hotspot is running on
1559 
1560 
1561 // Remember the stack's state. The Linux dynamic linker will change
1562 // the stack to 'executable' at most once, so we must safepoint only once.
1563 bool os::Linux::_stack_is_executable = false;
1564 
1565 // VM operation that loads a library.  This is necessary if stack protection
1566 // of the Java stacks can be lost during loading the library.  If we
1567 // do not stop the Java threads, they can stack overflow before the stacks
1568 // are protected again.
1569 class VM_LinuxDllLoad: public VM_Operation {
1570  private:
1571   const char *_filename;
1572   char *_ebuf;
1573   int _ebuflen;
1574   void *_lib;
1575  public:
1576   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1577     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1578   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1579   void doit() {
1580     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1581     os::Linux::_stack_is_executable = true;
1582   }
1583   void* loaded_library() { return _lib; }
1584 };
1585 
1586 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1587   void * result = NULL;
1588   bool load_attempted = false;
1589 
1590   // Check whether the library to load might change execution rights
1591   // of the stack. If they are changed, the protection of the stack
1592   // guard pages will be lost. We need a safepoint to fix this.
1593   //
1594   // See Linux man page execstack(8) for more info.
1595   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1596     if (!ElfFile::specifies_noexecstack(filename)) {
1597       if (!is_init_completed()) {
1598         os::Linux::_stack_is_executable = true;
1599         // This is OK - No Java threads have been created yet, and hence no
1600         // stack guard pages to fix.
1601         //
1602         // This should happen only when you are building JDK7 using a very
1603         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1604         //
1605         // Dynamic loader will make all stacks executable after
1606         // this function returns, and will not do that again.
1607         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1608       } else {
1609         warning("You have loaded library %s which might have disabled stack guard. "
1610                 "The VM will try to fix the stack guard now.\n"
1611                 "It's highly recommended that you fix the library with "
1612                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1613                 filename);
1614 
1615         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1616         JavaThread *jt = JavaThread::current();
1617         if (jt->thread_state() != _thread_in_native) {
1618           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1619           // that requires ExecStack. Cannot enter safe point. Let's give up.
1620           warning("Unable to fix stack guard. Giving up.");
1621         } else {
1622           if (!LoadExecStackDllInVMThread) {
1623             // This is for the case where the DLL has an static
1624             // constructor function that executes JNI code. We cannot
1625             // load such DLLs in the VMThread.
1626             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1627           }
1628 
1629           ThreadInVMfromNative tiv(jt);
1630           debug_only(VMNativeEntryWrapper vew;)
1631 
1632           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1633           VMThread::execute(&op);
1634           if (LoadExecStackDllInVMThread) {
1635             result = op.loaded_library();
1636           }
1637           load_attempted = true;
1638         }
1639       }
1640     }
1641   }
1642 
1643   if (!load_attempted) {
1644     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1645   }
1646 
1647   if (result != NULL) {
1648     // Successful loading
1649     return result;
1650   }
1651 
1652   Elf32_Ehdr elf_head;
1653   int diag_msg_max_length=ebuflen-strlen(ebuf);
1654   char* diag_msg_buf=ebuf+strlen(ebuf);
1655 
1656   if (diag_msg_max_length==0) {
1657     // No more space in ebuf for additional diagnostics message
1658     return NULL;
1659   }
1660 
1661 
1662   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1663 
1664   if (file_descriptor < 0) {
1665     // Can't open library, report dlerror() message
1666     return NULL;
1667   }
1668 
1669   bool failed_to_read_elf_head=
1670     (sizeof(elf_head)!=
1671      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1672 
1673   ::close(file_descriptor);
1674   if (failed_to_read_elf_head) {
1675     // file i/o error - report dlerror() msg
1676     return NULL;
1677   }
1678 
1679   typedef struct {
1680     Elf32_Half    code;         // Actual value as defined in elf.h
1681     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1682     unsigned char elf_class;    // 32 or 64 bit
1683     unsigned char endianess;    // MSB or LSB
1684     char*         name;         // String representation
1685   } arch_t;
1686 
1687 #ifndef EM_486
1688   #define EM_486          6               /* Intel 80486 */
1689 #endif
1690 #ifndef EM_AARCH64
1691   #define EM_AARCH64    183               /* ARM AARCH64 */
1692 #endif
1693 
1694   static const arch_t arch_array[]={
1695     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1696     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1697     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1698     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1699     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1700     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1701     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1702     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1703 #if defined(VM_LITTLE_ENDIAN)
1704     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1705     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1706 #else
1707     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1708     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1709 #endif
1710     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1711     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1712     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1713     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1714     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1715     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1716     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1717     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1718   };
1719 
1720 #if  (defined IA32)
1721   static  Elf32_Half running_arch_code=EM_386;
1722 #elif   (defined AMD64)
1723   static  Elf32_Half running_arch_code=EM_X86_64;
1724 #elif  (defined IA64)
1725   static  Elf32_Half running_arch_code=EM_IA_64;
1726 #elif  (defined __sparc) && (defined _LP64)
1727   static  Elf32_Half running_arch_code=EM_SPARCV9;
1728 #elif  (defined __sparc) && (!defined _LP64)
1729   static  Elf32_Half running_arch_code=EM_SPARC;
1730 #elif  (defined __powerpc64__)
1731   static  Elf32_Half running_arch_code=EM_PPC64;
1732 #elif  (defined __powerpc__)
1733   static  Elf32_Half running_arch_code=EM_PPC;
1734 #elif  (defined AARCH64)
1735   static  Elf32_Half running_arch_code=EM_AARCH64;
1736 #elif  (defined ARM)
1737   static  Elf32_Half running_arch_code=EM_ARM;
1738 #elif  (defined S390)
1739   static  Elf32_Half running_arch_code=EM_S390;
1740 #elif  (defined ALPHA)
1741   static  Elf32_Half running_arch_code=EM_ALPHA;
1742 #elif  (defined MIPSEL)
1743   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1744 #elif  (defined PARISC)
1745   static  Elf32_Half running_arch_code=EM_PARISC;
1746 #elif  (defined MIPS)
1747   static  Elf32_Half running_arch_code=EM_MIPS;
1748 #elif  (defined M68K)
1749   static  Elf32_Half running_arch_code=EM_68K;
1750 #elif  (defined SH)
1751   static  Elf32_Half running_arch_code=EM_SH;
1752 #else
1753     #error Method os::dll_load requires that one of following is defined:\
1754         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1755 #endif
1756 
1757   // Identify compatability class for VM's architecture and library's architecture
1758   // Obtain string descriptions for architectures
1759 
1760   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1761   int running_arch_index=-1;
1762 
1763   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1764     if (running_arch_code == arch_array[i].code) {
1765       running_arch_index    = i;
1766     }
1767     if (lib_arch.code == arch_array[i].code) {
1768       lib_arch.compat_class = arch_array[i].compat_class;
1769       lib_arch.name         = arch_array[i].name;
1770     }
1771   }
1772 
1773   assert(running_arch_index != -1,
1774          "Didn't find running architecture code (running_arch_code) in arch_array");
1775   if (running_arch_index == -1) {
1776     // Even though running architecture detection failed
1777     // we may still continue with reporting dlerror() message
1778     return NULL;
1779   }
1780 
1781   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1782     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1783     return NULL;
1784   }
1785 
1786 #ifndef S390
1787   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1788     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1789     return NULL;
1790   }
1791 #endif // !S390
1792 
1793   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1794     if (lib_arch.name!=NULL) {
1795       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1796                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1797                  lib_arch.name, arch_array[running_arch_index].name);
1798     } else {
1799       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1800                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1801                  lib_arch.code,
1802                  arch_array[running_arch_index].name);
1803     }
1804   }
1805 
1806   return NULL;
1807 }
1808 
1809 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1810                                 int ebuflen) {
1811   void * result = ::dlopen(filename, RTLD_LAZY);
1812   if (result == NULL) {
1813     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1814     ebuf[ebuflen-1] = '\0';
1815   }
1816   return result;
1817 }
1818 
1819 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1820                                        int ebuflen) {
1821   void * result = NULL;
1822   if (LoadExecStackDllInVMThread) {
1823     result = dlopen_helper(filename, ebuf, ebuflen);
1824   }
1825 
1826   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1827   // library that requires an executable stack, or which does not have this
1828   // stack attribute set, dlopen changes the stack attribute to executable. The
1829   // read protection of the guard pages gets lost.
1830   //
1831   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1832   // may have been queued at the same time.
1833 
1834   if (!_stack_is_executable) {
1835     JavaThread *jt = Threads::first();
1836 
1837     while (jt) {
1838       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1839           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1840         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1841           warning("Attempt to reguard stack yellow zone failed.");
1842         }
1843       }
1844       jt = jt->next();
1845     }
1846   }
1847 
1848   return result;
1849 }
1850 
1851 void* os::dll_lookup(void* handle, const char* name) {
1852   void* res = dlsym(handle, name);
1853   return res;
1854 }
1855 
1856 void* os::get_default_process_handle() {
1857   return (void*)::dlopen(NULL, RTLD_LAZY);
1858 }
1859 
1860 static bool _print_ascii_file(const char* filename, outputStream* st) {
1861   int fd = ::open(filename, O_RDONLY);
1862   if (fd == -1) {
1863     return false;
1864   }
1865 
1866   char buf[33];
1867   int bytes;
1868   buf[32] = '\0';
1869   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1870     st->print_raw(buf, bytes);
1871   }
1872 
1873   ::close(fd);
1874 
1875   return true;
1876 }
1877 
1878 void os::print_dll_info(outputStream *st) {
1879   st->print_cr("Dynamic libraries:");
1880 
1881   char fname[32];
1882   pid_t pid = os::Linux::gettid();
1883 
1884   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1885 
1886   if (!_print_ascii_file(fname, st)) {
1887     st->print("Can not get library information for pid = %d\n", pid);
1888   }
1889 }
1890 
1891 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1892   FILE *procmapsFile = NULL;
1893 
1894   // Open the procfs maps file for the current process
1895   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1896     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1897     char line[PATH_MAX + 100];
1898 
1899     // Read line by line from 'file'
1900     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1901       u8 base, top, offset, inode;
1902       char permissions[5];
1903       char device[6];
1904       char name[PATH_MAX + 1];
1905 
1906       // Parse fields from line
1907       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1908              &base, &top, permissions, &offset, device, &inode, name);
1909 
1910       // Filter by device id '00:00' so that we only get file system mapped files.
1911       if (strcmp(device, "00:00") != 0) {
1912 
1913         // Call callback with the fields of interest
1914         if(callback(name, (address)base, (address)top, param)) {
1915           // Oops abort, callback aborted
1916           fclose(procmapsFile);
1917           return 1;
1918         }
1919       }
1920     }
1921     fclose(procmapsFile);
1922   }
1923   return 0;
1924 }
1925 
1926 void os::print_os_info_brief(outputStream* st) {
1927   os::Linux::print_distro_info(st);
1928 
1929   os::Posix::print_uname_info(st);
1930 
1931   os::Linux::print_libversion_info(st);
1932 
1933 }
1934 
1935 void os::print_os_info(outputStream* st) {
1936   st->print("OS:");
1937 
1938   os::Linux::print_distro_info(st);
1939 
1940   os::Posix::print_uname_info(st);
1941 
1942   // Print warning if unsafe chroot environment detected
1943   if (unsafe_chroot_detected) {
1944     st->print("WARNING!! ");
1945     st->print_cr("%s", unstable_chroot_error);
1946   }
1947 
1948   os::Linux::print_libversion_info(st);
1949 
1950   os::Posix::print_rlimit_info(st);
1951 
1952   os::Posix::print_load_average(st);
1953 
1954   os::Linux::print_full_memory_info(st);
1955 }
1956 
1957 // Try to identify popular distros.
1958 // Most Linux distributions have a /etc/XXX-release file, which contains
1959 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1960 // file that also contains the OS version string. Some have more than one
1961 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1962 // /etc/redhat-release.), so the order is important.
1963 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1964 // their own specific XXX-release file as well as a redhat-release file.
1965 // Because of this the XXX-release file needs to be searched for before the
1966 // redhat-release file.
1967 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1968 // search for redhat-release / SuSE-release needs to be before lsb-release.
1969 // Since the lsb-release file is the new standard it needs to be searched
1970 // before the older style release files.
1971 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1972 // next to last resort.  The os-release file is a new standard that contains
1973 // distribution information and the system-release file seems to be an old
1974 // standard that has been replaced by the lsb-release and os-release files.
1975 // Searching for the debian_version file is the last resort.  It contains
1976 // an informative string like "6.0.6" or "wheezy/sid". Because of this
1977 // "Debian " is printed before the contents of the debian_version file.
1978 
1979 const char* distro_files[] = {
1980   "/etc/oracle-release",
1981   "/etc/mandriva-release",
1982   "/etc/mandrake-release",
1983   "/etc/sun-release",
1984   "/etc/redhat-release",
1985   "/etc/SuSE-release",
1986   "/etc/lsb-release",
1987   "/etc/turbolinux-release",
1988   "/etc/gentoo-release",
1989   "/etc/ltib-release",
1990   "/etc/angstrom-version",
1991   "/etc/system-release",
1992   "/etc/os-release",
1993   NULL };
1994 
1995 void os::Linux::print_distro_info(outputStream* st) {
1996   for (int i = 0;; i++) {
1997     const char* file = distro_files[i];
1998     if (file == NULL) {
1999       break;  // done
2000     }
2001     // If file prints, we found it.
2002     if (_print_ascii_file(file, st)) {
2003       return;
2004     }
2005   }
2006 
2007   if (file_exists("/etc/debian_version")) {
2008     st->print("Debian ");
2009     _print_ascii_file("/etc/debian_version", st);
2010   } else {
2011     st->print("Linux");
2012   }
2013   st->cr();
2014 }
2015 
2016 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2017   char buf[256];
2018   while (fgets(buf, sizeof(buf), fp)) {
2019     // Edit out extra stuff in expected format
2020     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2021       char* ptr = strstr(buf, "\"");  // the name is in quotes
2022       if (ptr != NULL) {
2023         ptr++; // go beyond first quote
2024         char* nl = strchr(ptr, '\"');
2025         if (nl != NULL) *nl = '\0';
2026         strncpy(distro, ptr, length);
2027       } else {
2028         ptr = strstr(buf, "=");
2029         ptr++; // go beyond equals then
2030         char* nl = strchr(ptr, '\n');
2031         if (nl != NULL) *nl = '\0';
2032         strncpy(distro, ptr, length);
2033       }
2034       return;
2035     } else if (get_first_line) {
2036       char* nl = strchr(buf, '\n');
2037       if (nl != NULL) *nl = '\0';
2038       strncpy(distro, buf, length);
2039       return;
2040     }
2041   }
2042   // print last line and close
2043   char* nl = strchr(buf, '\n');
2044   if (nl != NULL) *nl = '\0';
2045   strncpy(distro, buf, length);
2046 }
2047 
2048 static void parse_os_info(char* distro, size_t length, const char* file) {
2049   FILE* fp = fopen(file, "r");
2050   if (fp != NULL) {
2051     // if suse format, print out first line
2052     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2053     parse_os_info_helper(fp, distro, length, get_first_line);
2054     fclose(fp);
2055   }
2056 }
2057 
2058 void os::get_summary_os_info(char* buf, size_t buflen) {
2059   for (int i = 0;; i++) {
2060     const char* file = distro_files[i];
2061     if (file == NULL) {
2062       break; // ran out of distro_files
2063     }
2064     if (file_exists(file)) {
2065       parse_os_info(buf, buflen, file);
2066       return;
2067     }
2068   }
2069   // special case for debian
2070   if (file_exists("/etc/debian_version")) {
2071     strncpy(buf, "Debian ", buflen);
2072     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2073   } else {
2074     strncpy(buf, "Linux", buflen);
2075   }
2076 }
2077 
2078 void os::Linux::print_libversion_info(outputStream* st) {
2079   // libc, pthread
2080   st->print("libc:");
2081   st->print("%s ", os::Linux::glibc_version());
2082   st->print("%s ", os::Linux::libpthread_version());
2083   st->cr();
2084 }
2085 
2086 void os::Linux::print_full_memory_info(outputStream* st) {
2087   st->print("\n/proc/meminfo:\n");
2088   _print_ascii_file("/proc/meminfo", st);
2089   st->cr();
2090 }
2091 
2092 void os::print_memory_info(outputStream* st) {
2093 
2094   st->print("Memory:");
2095   st->print(" %dk page", os::vm_page_size()>>10);
2096 
2097   // values in struct sysinfo are "unsigned long"
2098   struct sysinfo si;
2099   sysinfo(&si);
2100 
2101   st->print(", physical " UINT64_FORMAT "k",
2102             os::physical_memory() >> 10);
2103   st->print("(" UINT64_FORMAT "k free)",
2104             os::available_memory() >> 10);
2105   st->print(", swap " UINT64_FORMAT "k",
2106             ((jlong)si.totalswap * si.mem_unit) >> 10);
2107   st->print("(" UINT64_FORMAT "k free)",
2108             ((jlong)si.freeswap * si.mem_unit) >> 10);
2109   st->cr();
2110 }
2111 
2112 // Print the first "model name" line and the first "flags" line
2113 // that we find and nothing more. We assume "model name" comes
2114 // before "flags" so if we find a second "model name", then the
2115 // "flags" field is considered missing.
2116 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2117 #if defined(IA32) || defined(AMD64)
2118   // Other platforms have less repetitive cpuinfo files
2119   FILE *fp = fopen("/proc/cpuinfo", "r");
2120   if (fp) {
2121     while (!feof(fp)) {
2122       if (fgets(buf, buflen, fp)) {
2123         // Assume model name comes before flags
2124         bool model_name_printed = false;
2125         if (strstr(buf, "model name") != NULL) {
2126           if (!model_name_printed) {
2127             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2128             st->print_raw(buf);
2129             model_name_printed = true;
2130           } else {
2131             // model name printed but not flags?  Odd, just return
2132             fclose(fp);
2133             return true;
2134           }
2135         }
2136         // print the flags line too
2137         if (strstr(buf, "flags") != NULL) {
2138           st->print_raw(buf);
2139           fclose(fp);
2140           return true;
2141         }
2142       }
2143     }
2144     fclose(fp);
2145   }
2146 #endif // x86 platforms
2147   return false;
2148 }
2149 
2150 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2151   // Only print the model name if the platform provides this as a summary
2152   if (!print_model_name_and_flags(st, buf, buflen)) {
2153     st->print("\n/proc/cpuinfo:\n");
2154     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2155       st->print_cr("  <Not Available>");
2156     }
2157   }
2158 }
2159 
2160 #if defined(AMD64) || defined(IA32) || defined(X32)
2161 const char* search_string = "model name";
2162 #elif defined(M68K)
2163 const char* search_string = "CPU";
2164 #elif defined(PPC64)
2165 const char* search_string = "cpu";
2166 #elif defined(S390)
2167 const char* search_string = "processor";
2168 #elif defined(SPARC)
2169 const char* search_string = "cpu";
2170 #else
2171 const char* search_string = "Processor";
2172 #endif
2173 
2174 // Parses the cpuinfo file for string representing the model name.
2175 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2176   FILE* fp = fopen("/proc/cpuinfo", "r");
2177   if (fp != NULL) {
2178     while (!feof(fp)) {
2179       char buf[256];
2180       if (fgets(buf, sizeof(buf), fp)) {
2181         char* start = strstr(buf, search_string);
2182         if (start != NULL) {
2183           char *ptr = start + strlen(search_string);
2184           char *end = buf + strlen(buf);
2185           while (ptr != end) {
2186              // skip whitespace and colon for the rest of the name.
2187              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2188                break;
2189              }
2190              ptr++;
2191           }
2192           if (ptr != end) {
2193             // reasonable string, get rid of newline and keep the rest
2194             char* nl = strchr(buf, '\n');
2195             if (nl != NULL) *nl = '\0';
2196             strncpy(cpuinfo, ptr, length);
2197             fclose(fp);
2198             return;
2199           }
2200         }
2201       }
2202     }
2203     fclose(fp);
2204   }
2205   // cpuinfo not found or parsing failed, just print generic string.  The entire
2206   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2207 #if   defined(AARCH64)
2208   strncpy(cpuinfo, "AArch64", length);
2209 #elif defined(AMD64)
2210   strncpy(cpuinfo, "x86_64", length);
2211 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2212   strncpy(cpuinfo, "ARM", length);
2213 #elif defined(IA32)
2214   strncpy(cpuinfo, "x86_32", length);
2215 #elif defined(IA64)
2216   strncpy(cpuinfo, "IA64", length);
2217 #elif defined(PPC)
2218   strncpy(cpuinfo, "PPC64", length);
2219 #elif defined(S390)
2220   strncpy(cpuinfo, "S390", length);
2221 #elif defined(SPARC)
2222   strncpy(cpuinfo, "sparcv9", length);
2223 #elif defined(ZERO_LIBARCH)
2224   strncpy(cpuinfo, ZERO_LIBARCH, length);
2225 #else
2226   strncpy(cpuinfo, "unknown", length);
2227 #endif
2228 }
2229 
2230 static void print_signal_handler(outputStream* st, int sig,
2231                                  char* buf, size_t buflen);
2232 
2233 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2234   st->print_cr("Signal Handlers:");
2235   print_signal_handler(st, SIGSEGV, buf, buflen);
2236   print_signal_handler(st, SIGBUS , buf, buflen);
2237   print_signal_handler(st, SIGFPE , buf, buflen);
2238   print_signal_handler(st, SIGPIPE, buf, buflen);
2239   print_signal_handler(st, SIGXFSZ, buf, buflen);
2240   print_signal_handler(st, SIGILL , buf, buflen);
2241   print_signal_handler(st, SR_signum, buf, buflen);
2242   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2243   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2244   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2245   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2246 #if defined(PPC64)
2247   print_signal_handler(st, SIGTRAP, buf, buflen);
2248 #endif
2249 }
2250 
2251 static char saved_jvm_path[MAXPATHLEN] = {0};
2252 
2253 // Find the full path to the current module, libjvm.so
2254 void os::jvm_path(char *buf, jint buflen) {
2255   // Error checking.
2256   if (buflen < MAXPATHLEN) {
2257     assert(false, "must use a large-enough buffer");
2258     buf[0] = '\0';
2259     return;
2260   }
2261   // Lazy resolve the path to current module.
2262   if (saved_jvm_path[0] != 0) {
2263     strcpy(buf, saved_jvm_path);
2264     return;
2265   }
2266 
2267   char dli_fname[MAXPATHLEN];
2268   bool ret = dll_address_to_library_name(
2269                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2270                                          dli_fname, sizeof(dli_fname), NULL);
2271   assert(ret, "cannot locate libjvm");
2272   char *rp = NULL;
2273   if (ret && dli_fname[0] != '\0') {
2274     rp = os::Posix::realpath(dli_fname, buf, buflen);
2275   }
2276   if (rp == NULL) {
2277     return;
2278   }
2279 
2280   if (Arguments::sun_java_launcher_is_altjvm()) {
2281     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2282     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2283     // If "/jre/lib/" appears at the right place in the string, then
2284     // assume we are installed in a JDK and we're done. Otherwise, check
2285     // for a JAVA_HOME environment variable and fix up the path so it
2286     // looks like libjvm.so is installed there (append a fake suffix
2287     // hotspot/libjvm.so).
2288     const char *p = buf + strlen(buf) - 1;
2289     for (int count = 0; p > buf && count < 5; ++count) {
2290       for (--p; p > buf && *p != '/'; --p)
2291         /* empty */ ;
2292     }
2293 
2294     if (strncmp(p, "/jre/lib/", 9) != 0) {
2295       // Look for JAVA_HOME in the environment.
2296       char* java_home_var = ::getenv("JAVA_HOME");
2297       if (java_home_var != NULL && java_home_var[0] != 0) {
2298         char* jrelib_p;
2299         int len;
2300 
2301         // Check the current module name "libjvm.so".
2302         p = strrchr(buf, '/');
2303         if (p == NULL) {
2304           return;
2305         }
2306         assert(strstr(p, "/libjvm") == p, "invalid library name");
2307 
2308         rp = os::Posix::realpath(java_home_var, buf, buflen);
2309         if (rp == NULL) {
2310           return;
2311         }
2312 
2313         // determine if this is a legacy image or modules image
2314         // modules image doesn't have "jre" subdirectory
2315         len = strlen(buf);
2316         assert(len < buflen, "Ran out of buffer room");
2317         jrelib_p = buf + len;
2318         snprintf(jrelib_p, buflen-len, "/jre/lib");
2319         if (0 != access(buf, F_OK)) {
2320           snprintf(jrelib_p, buflen-len, "/lib");
2321         }
2322 
2323         if (0 == access(buf, F_OK)) {
2324           // Use current module name "libjvm.so"
2325           len = strlen(buf);
2326           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2327         } else {
2328           // Go back to path of .so
2329           rp = os::Posix::realpath(dli_fname, buf, buflen);
2330           if (rp == NULL) {
2331             return;
2332           }
2333         }
2334       }
2335     }
2336   }
2337 
2338   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2339   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2340 }
2341 
2342 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2343   // no prefix required, not even "_"
2344 }
2345 
2346 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2347   // no suffix required
2348 }
2349 
2350 ////////////////////////////////////////////////////////////////////////////////
2351 // sun.misc.Signal support
2352 
2353 static volatile jint sigint_count = 0;
2354 
2355 static void UserHandler(int sig, void *siginfo, void *context) {
2356   // 4511530 - sem_post is serialized and handled by the manager thread. When
2357   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2358   // don't want to flood the manager thread with sem_post requests.
2359   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2360     return;
2361   }
2362 
2363   // Ctrl-C is pressed during error reporting, likely because the error
2364   // handler fails to abort. Let VM die immediately.
2365   if (sig == SIGINT && VMError::is_error_reported()) {
2366     os::die();
2367   }
2368 
2369   os::signal_notify(sig);
2370 }
2371 
2372 void* os::user_handler() {
2373   return CAST_FROM_FN_PTR(void*, UserHandler);
2374 }
2375 
2376 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2377   struct timespec ts;
2378   // Semaphore's are always associated with CLOCK_REALTIME
2379   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2380   // see unpackTime for discussion on overflow checking
2381   if (sec >= MAX_SECS) {
2382     ts.tv_sec += MAX_SECS;
2383     ts.tv_nsec = 0;
2384   } else {
2385     ts.tv_sec += sec;
2386     ts.tv_nsec += nsec;
2387     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2388       ts.tv_nsec -= NANOSECS_PER_SEC;
2389       ++ts.tv_sec; // note: this must be <= max_secs
2390     }
2391   }
2392 
2393   return ts;
2394 }
2395 
2396 extern "C" {
2397   typedef void (*sa_handler_t)(int);
2398   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2399 }
2400 
2401 void* os::signal(int signal_number, void* handler) {
2402   struct sigaction sigAct, oldSigAct;
2403 
2404   sigfillset(&(sigAct.sa_mask));
2405   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2406   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2407 
2408   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2409     // -1 means registration failed
2410     return (void *)-1;
2411   }
2412 
2413   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2414 }
2415 
2416 void os::signal_raise(int signal_number) {
2417   ::raise(signal_number);
2418 }
2419 
2420 // The following code is moved from os.cpp for making this
2421 // code platform specific, which it is by its very nature.
2422 
2423 // Will be modified when max signal is changed to be dynamic
2424 int os::sigexitnum_pd() {
2425   return NSIG;
2426 }
2427 
2428 // a counter for each possible signal value
2429 static volatile jint pending_signals[NSIG+1] = { 0 };
2430 
2431 // Linux(POSIX) specific hand shaking semaphore.
2432 static sem_t sig_sem;
2433 static PosixSemaphore sr_semaphore;
2434 
2435 void os::signal_init_pd() {
2436   // Initialize signal structures
2437   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2438 
2439   // Initialize signal semaphore
2440   ::sem_init(&sig_sem, 0, 0);
2441 }
2442 
2443 void os::signal_notify(int sig) {
2444   Atomic::inc(&pending_signals[sig]);
2445   ::sem_post(&sig_sem);
2446 }
2447 
2448 static int check_pending_signals(bool wait) {
2449   Atomic::store(0, &sigint_count);
2450   for (;;) {
2451     for (int i = 0; i < NSIG + 1; i++) {
2452       jint n = pending_signals[i];
2453       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2454         return i;
2455       }
2456     }
2457     if (!wait) {
2458       return -1;
2459     }
2460     JavaThread *thread = JavaThread::current();
2461     ThreadBlockInVM tbivm(thread);
2462 
2463     bool threadIsSuspended;
2464     do {
2465       thread->set_suspend_equivalent();
2466       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2467       ::sem_wait(&sig_sem);
2468 
2469       // were we externally suspended while we were waiting?
2470       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2471       if (threadIsSuspended) {
2472         // The semaphore has been incremented, but while we were waiting
2473         // another thread suspended us. We don't want to continue running
2474         // while suspended because that would surprise the thread that
2475         // suspended us.
2476         ::sem_post(&sig_sem);
2477 
2478         thread->java_suspend_self();
2479       }
2480     } while (threadIsSuspended);
2481   }
2482 }
2483 
2484 int os::signal_lookup() {
2485   return check_pending_signals(false);
2486 }
2487 
2488 int os::signal_wait() {
2489   return check_pending_signals(true);
2490 }
2491 
2492 ////////////////////////////////////////////////////////////////////////////////
2493 // Virtual Memory
2494 
2495 int os::vm_page_size() {
2496   // Seems redundant as all get out
2497   assert(os::Linux::page_size() != -1, "must call os::init");
2498   return os::Linux::page_size();
2499 }
2500 
2501 // Solaris allocates memory by pages.
2502 int os::vm_allocation_granularity() {
2503   assert(os::Linux::page_size() != -1, "must call os::init");
2504   return os::Linux::page_size();
2505 }
2506 
2507 // Rationale behind this function:
2508 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2509 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2510 //  samples for JITted code. Here we create private executable mapping over the code cache
2511 //  and then we can use standard (well, almost, as mapping can change) way to provide
2512 //  info for the reporting script by storing timestamp and location of symbol
2513 void linux_wrap_code(char* base, size_t size) {
2514   static volatile jint cnt = 0;
2515 
2516   if (!UseOprofile) {
2517     return;
2518   }
2519 
2520   char buf[PATH_MAX+1];
2521   int num = Atomic::add(1, &cnt);
2522 
2523   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2524            os::get_temp_directory(), os::current_process_id(), num);
2525   unlink(buf);
2526 
2527   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2528 
2529   if (fd != -1) {
2530     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2531     if (rv != (off_t)-1) {
2532       if (::write(fd, "", 1) == 1) {
2533         mmap(base, size,
2534              PROT_READ|PROT_WRITE|PROT_EXEC,
2535              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2536       }
2537     }
2538     ::close(fd);
2539     unlink(buf);
2540   }
2541 }
2542 
2543 static bool recoverable_mmap_error(int err) {
2544   // See if the error is one we can let the caller handle. This
2545   // list of errno values comes from JBS-6843484. I can't find a
2546   // Linux man page that documents this specific set of errno
2547   // values so while this list currently matches Solaris, it may
2548   // change as we gain experience with this failure mode.
2549   switch (err) {
2550   case EBADF:
2551   case EINVAL:
2552   case ENOTSUP:
2553     // let the caller deal with these errors
2554     return true;
2555 
2556   default:
2557     // Any remaining errors on this OS can cause our reserved mapping
2558     // to be lost. That can cause confusion where different data
2559     // structures think they have the same memory mapped. The worst
2560     // scenario is if both the VM and a library think they have the
2561     // same memory mapped.
2562     return false;
2563   }
2564 }
2565 
2566 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2567                                     int err) {
2568   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2569           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2570           os::strerror(err), err);
2571 }
2572 
2573 static void warn_fail_commit_memory(char* addr, size_t size,
2574                                     size_t alignment_hint, bool exec,
2575                                     int err) {
2576   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2577           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2578           alignment_hint, exec, os::strerror(err), err);
2579 }
2580 
2581 // NOTE: Linux kernel does not really reserve the pages for us.
2582 //       All it does is to check if there are enough free pages
2583 //       left at the time of mmap(). This could be a potential
2584 //       problem.
2585 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2586   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2587   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2588                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2589   if (res != (uintptr_t) MAP_FAILED) {
2590     if (UseNUMAInterleaving) {
2591       numa_make_global(addr, size);
2592     }
2593     return 0;
2594   }
2595 
2596   int err = errno;  // save errno from mmap() call above
2597 
2598   if (!recoverable_mmap_error(err)) {
2599     warn_fail_commit_memory(addr, size, exec, err);
2600     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2601   }
2602 
2603   return err;
2604 }
2605 
2606 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2607   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2608 }
2609 
2610 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2611                                   const char* mesg) {
2612   assert(mesg != NULL, "mesg must be specified");
2613   int err = os::Linux::commit_memory_impl(addr, size, exec);
2614   if (err != 0) {
2615     // the caller wants all commit errors to exit with the specified mesg:
2616     warn_fail_commit_memory(addr, size, exec, err);
2617     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2618   }
2619 }
2620 
2621 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2622 #ifndef MAP_HUGETLB
2623   #define MAP_HUGETLB 0x40000
2624 #endif
2625 
2626 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2627 #ifndef MADV_HUGEPAGE
2628   #define MADV_HUGEPAGE 14
2629 #endif
2630 
2631 int os::Linux::commit_memory_impl(char* addr, size_t size,
2632                                   size_t alignment_hint, bool exec) {
2633   int err = os::Linux::commit_memory_impl(addr, size, exec);
2634   if (err == 0) {
2635     realign_memory(addr, size, alignment_hint);
2636   }
2637   return err;
2638 }
2639 
2640 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2641                           bool exec) {
2642   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2643 }
2644 
2645 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2646                                   size_t alignment_hint, bool exec,
2647                                   const char* mesg) {
2648   assert(mesg != NULL, "mesg must be specified");
2649   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2650   if (err != 0) {
2651     // the caller wants all commit errors to exit with the specified mesg:
2652     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2653     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2654   }
2655 }
2656 
2657 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2658   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2659     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2660     // be supported or the memory may already be backed by huge pages.
2661     ::madvise(addr, bytes, MADV_HUGEPAGE);
2662   }
2663 }
2664 
2665 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2666   // This method works by doing an mmap over an existing mmaping and effectively discarding
2667   // the existing pages. However it won't work for SHM-based large pages that cannot be
2668   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2669   // small pages on top of the SHM segment. This method always works for small pages, so we
2670   // allow that in any case.
2671   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2672     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2673   }
2674 }
2675 
2676 void os::numa_make_global(char *addr, size_t bytes) {
2677   Linux::numa_interleave_memory(addr, bytes);
2678 }
2679 
2680 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2681 // bind policy to MPOL_PREFERRED for the current thread.
2682 #define USE_MPOL_PREFERRED 0
2683 
2684 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2685   // To make NUMA and large pages more robust when both enabled, we need to ease
2686   // the requirements on where the memory should be allocated. MPOL_BIND is the
2687   // default policy and it will force memory to be allocated on the specified
2688   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2689   // the specified node, but will not force it. Using this policy will prevent
2690   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2691   // free large pages.
2692   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2693   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2694 }
2695 
2696 bool os::numa_topology_changed() { return false; }
2697 
2698 size_t os::numa_get_groups_num() {
2699   // Return just the number of nodes in which it's possible to allocate memory
2700   // (in numa terminology, configured nodes).
2701   return Linux::numa_num_configured_nodes();
2702 }
2703 
2704 int os::numa_get_group_id() {
2705   int cpu_id = Linux::sched_getcpu();
2706   if (cpu_id != -1) {
2707     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2708     if (lgrp_id != -1) {
2709       return lgrp_id;
2710     }
2711   }
2712   return 0;
2713 }
2714 
2715 int os::Linux::get_existing_num_nodes() {
2716   size_t node;
2717   size_t highest_node_number = Linux::numa_max_node();
2718   int num_nodes = 0;
2719 
2720   // Get the total number of nodes in the system including nodes without memory.
2721   for (node = 0; node <= highest_node_number; node++) {
2722     if (isnode_in_existing_nodes(node)) {
2723       num_nodes++;
2724     }
2725   }
2726   return num_nodes;
2727 }
2728 
2729 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2730   size_t highest_node_number = Linux::numa_max_node();
2731   size_t i = 0;
2732 
2733   // Map all node ids in which is possible to allocate memory. Also nodes are
2734   // not always consecutively available, i.e. available from 0 to the highest
2735   // node number.
2736   for (size_t node = 0; node <= highest_node_number; node++) {
2737     if (Linux::isnode_in_configured_nodes(node)) {
2738       ids[i++] = node;
2739     }
2740   }
2741   return i;
2742 }
2743 
2744 bool os::get_page_info(char *start, page_info* info) {
2745   return false;
2746 }
2747 
2748 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2749                      page_info* page_found) {
2750   return end;
2751 }
2752 
2753 
2754 int os::Linux::sched_getcpu_syscall(void) {
2755   unsigned int cpu = 0;
2756   int retval = -1;
2757 
2758 #if defined(IA32)
2759   #ifndef SYS_getcpu
2760     #define SYS_getcpu 318
2761   #endif
2762   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2763 #elif defined(AMD64)
2764 // Unfortunately we have to bring all these macros here from vsyscall.h
2765 // to be able to compile on old linuxes.
2766   #define __NR_vgetcpu 2
2767   #define VSYSCALL_START (-10UL << 20)
2768   #define VSYSCALL_SIZE 1024
2769   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2770   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2771   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2772   retval = vgetcpu(&cpu, NULL, NULL);
2773 #endif
2774 
2775   return (retval == -1) ? retval : cpu;
2776 }
2777 
2778 void os::Linux::sched_getcpu_init() {
2779   // sched_getcpu() should be in libc.
2780   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2781                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2782 
2783   // If it's not, try a direct syscall.
2784   if (sched_getcpu() == -1) {
2785     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2786                                     (void*)&sched_getcpu_syscall));
2787   }
2788 }
2789 
2790 // Something to do with the numa-aware allocator needs these symbols
2791 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2792 extern "C" JNIEXPORT void numa_error(char *where) { }
2793 
2794 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2795 // load symbol from base version instead.
2796 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2797   void *f = dlvsym(handle, name, "libnuma_1.1");
2798   if (f == NULL) {
2799     f = dlsym(handle, name);
2800   }
2801   return f;
2802 }
2803 
2804 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2805 // Return NULL if the symbol is not defined in this particular version.
2806 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2807   return dlvsym(handle, name, "libnuma_1.2");
2808 }
2809 
2810 bool os::Linux::libnuma_init() {
2811   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2812     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2813     if (handle != NULL) {
2814       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2815                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2816       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2817                                        libnuma_dlsym(handle, "numa_max_node")));
2818       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2819                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2820       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2821                                         libnuma_dlsym(handle, "numa_available")));
2822       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2823                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2824       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2825                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2826       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2827                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2828       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2829                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2830       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2831                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2832       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2833                                        libnuma_dlsym(handle, "numa_distance")));
2834 
2835       if (numa_available() != -1) {
2836         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2837         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2838         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2839         // Create an index -> node mapping, since nodes are not always consecutive
2840         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2841         rebuild_nindex_to_node_map();
2842         // Create a cpu -> node mapping
2843         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2844         rebuild_cpu_to_node_map();
2845         return true;
2846       }
2847     }
2848   }
2849   return false;
2850 }
2851 
2852 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2853   // Creating guard page is very expensive. Java thread has HotSpot
2854   // guard pages, only enable glibc guard page for non-Java threads.
2855   // (Remember: compiler thread is a Java thread, too!)
2856   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2857 }
2858 
2859 void os::Linux::rebuild_nindex_to_node_map() {
2860   int highest_node_number = Linux::numa_max_node();
2861 
2862   nindex_to_node()->clear();
2863   for (int node = 0; node <= highest_node_number; node++) {
2864     if (Linux::isnode_in_existing_nodes(node)) {
2865       nindex_to_node()->append(node);
2866     }
2867   }
2868 }
2869 
2870 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2871 // The table is later used in get_node_by_cpu().
2872 void os::Linux::rebuild_cpu_to_node_map() {
2873   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2874                               // in libnuma (possible values are starting from 16,
2875                               // and continuing up with every other power of 2, but less
2876                               // than the maximum number of CPUs supported by kernel), and
2877                               // is a subject to change (in libnuma version 2 the requirements
2878                               // are more reasonable) we'll just hardcode the number they use
2879                               // in the library.
2880   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2881 
2882   size_t cpu_num = processor_count();
2883   size_t cpu_map_size = NCPUS / BitsPerCLong;
2884   size_t cpu_map_valid_size =
2885     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2886 
2887   cpu_to_node()->clear();
2888   cpu_to_node()->at_grow(cpu_num - 1);
2889 
2890   size_t node_num = get_existing_num_nodes();
2891 
2892   int distance = 0;
2893   int closest_distance = INT_MAX;
2894   int closest_node = 0;
2895   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2896   for (size_t i = 0; i < node_num; i++) {
2897     // Check if node is configured (not a memory-less node). If it is not, find
2898     // the closest configured node.
2899     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2900       closest_distance = INT_MAX;
2901       // Check distance from all remaining nodes in the system. Ignore distance
2902       // from itself and from another non-configured node.
2903       for (size_t m = 0; m < node_num; m++) {
2904         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2905           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2906           // If a closest node is found, update. There is always at least one
2907           // configured node in the system so there is always at least one node
2908           // close.
2909           if (distance != 0 && distance < closest_distance) {
2910             closest_distance = distance;
2911             closest_node = nindex_to_node()->at(m);
2912           }
2913         }
2914       }
2915      } else {
2916        // Current node is already a configured node.
2917        closest_node = nindex_to_node()->at(i);
2918      }
2919 
2920     // Get cpus from the original node and map them to the closest node. If node
2921     // is a configured node (not a memory-less node), then original node and
2922     // closest node are the same.
2923     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2924       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2925         if (cpu_map[j] != 0) {
2926           for (size_t k = 0; k < BitsPerCLong; k++) {
2927             if (cpu_map[j] & (1UL << k)) {
2928               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2929             }
2930           }
2931         }
2932       }
2933     }
2934   }
2935   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2936 }
2937 
2938 int os::Linux::get_node_by_cpu(int cpu_id) {
2939   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2940     return cpu_to_node()->at(cpu_id);
2941   }
2942   return -1;
2943 }
2944 
2945 GrowableArray<int>* os::Linux::_cpu_to_node;
2946 GrowableArray<int>* os::Linux::_nindex_to_node;
2947 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2948 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2949 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2950 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
2951 os::Linux::numa_available_func_t os::Linux::_numa_available;
2952 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2953 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2954 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
2955 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2956 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
2957 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
2958 unsigned long* os::Linux::_numa_all_nodes;
2959 struct bitmask* os::Linux::_numa_all_nodes_ptr;
2960 struct bitmask* os::Linux::_numa_nodes_ptr;
2961 
2962 bool os::pd_uncommit_memory(char* addr, size_t size) {
2963   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2964                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2965   return res  != (uintptr_t) MAP_FAILED;
2966 }
2967 
2968 static address get_stack_commited_bottom(address bottom, size_t size) {
2969   address nbot = bottom;
2970   address ntop = bottom + size;
2971 
2972   size_t page_sz = os::vm_page_size();
2973   unsigned pages = size / page_sz;
2974 
2975   unsigned char vec[1];
2976   unsigned imin = 1, imax = pages + 1, imid;
2977   int mincore_return_value = 0;
2978 
2979   assert(imin <= imax, "Unexpected page size");
2980 
2981   while (imin < imax) {
2982     imid = (imax + imin) / 2;
2983     nbot = ntop - (imid * page_sz);
2984 
2985     // Use a trick with mincore to check whether the page is mapped or not.
2986     // mincore sets vec to 1 if page resides in memory and to 0 if page
2987     // is swapped output but if page we are asking for is unmapped
2988     // it returns -1,ENOMEM
2989     mincore_return_value = mincore(nbot, page_sz, vec);
2990 
2991     if (mincore_return_value == -1) {
2992       // Page is not mapped go up
2993       // to find first mapped page
2994       if (errno != EAGAIN) {
2995         assert(errno == ENOMEM, "Unexpected mincore errno");
2996         imax = imid;
2997       }
2998     } else {
2999       // Page is mapped go down
3000       // to find first not mapped page
3001       imin = imid + 1;
3002     }
3003   }
3004 
3005   nbot = nbot + page_sz;
3006 
3007   // Adjust stack bottom one page up if last checked page is not mapped
3008   if (mincore_return_value == -1) {
3009     nbot = nbot + page_sz;
3010   }
3011 
3012   return nbot;
3013 }
3014 
3015 
3016 // Linux uses a growable mapping for the stack, and if the mapping for
3017 // the stack guard pages is not removed when we detach a thread the
3018 // stack cannot grow beyond the pages where the stack guard was
3019 // mapped.  If at some point later in the process the stack expands to
3020 // that point, the Linux kernel cannot expand the stack any further
3021 // because the guard pages are in the way, and a segfault occurs.
3022 //
3023 // However, it's essential not to split the stack region by unmapping
3024 // a region (leaving a hole) that's already part of the stack mapping,
3025 // so if the stack mapping has already grown beyond the guard pages at
3026 // the time we create them, we have to truncate the stack mapping.
3027 // So, we need to know the extent of the stack mapping when
3028 // create_stack_guard_pages() is called.
3029 
3030 // We only need this for stacks that are growable: at the time of
3031 // writing thread stacks don't use growable mappings (i.e. those
3032 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3033 // only applies to the main thread.
3034 
3035 // If the (growable) stack mapping already extends beyond the point
3036 // where we're going to put our guard pages, truncate the mapping at
3037 // that point by munmap()ping it.  This ensures that when we later
3038 // munmap() the guard pages we don't leave a hole in the stack
3039 // mapping. This only affects the main/initial thread
3040 
3041 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3042   if (os::Linux::is_initial_thread()) {
3043     // As we manually grow stack up to bottom inside create_attached_thread(),
3044     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3045     // we don't need to do anything special.
3046     // Check it first, before calling heavy function.
3047     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3048     unsigned char vec[1];
3049 
3050     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3051       // Fallback to slow path on all errors, including EAGAIN
3052       stack_extent = (uintptr_t) get_stack_commited_bottom(
3053                                                            os::Linux::initial_thread_stack_bottom(),
3054                                                            (size_t)addr - stack_extent);
3055     }
3056 
3057     if (stack_extent < (uintptr_t)addr) {
3058       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3059     }
3060   }
3061 
3062   return os::commit_memory(addr, size, !ExecMem);
3063 }
3064 
3065 // If this is a growable mapping, remove the guard pages entirely by
3066 // munmap()ping them.  If not, just call uncommit_memory(). This only
3067 // affects the main/initial thread, but guard against future OS changes
3068 // It's safe to always unmap guard pages for initial thread because we
3069 // always place it right after end of the mapped region
3070 
3071 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3072   uintptr_t stack_extent, stack_base;
3073 
3074   if (os::Linux::is_initial_thread()) {
3075     return ::munmap(addr, size) == 0;
3076   }
3077 
3078   return os::uncommit_memory(addr, size);
3079 }
3080 
3081 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3082 // at 'requested_addr'. If there are existing memory mappings at the same
3083 // location, however, they will be overwritten. If 'fixed' is false,
3084 // 'requested_addr' is only treated as a hint, the return value may or
3085 // may not start from the requested address. Unlike Linux mmap(), this
3086 // function returns NULL to indicate failure.
3087 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3088   char * addr;
3089   int flags;
3090 
3091   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3092   if (fixed) {
3093     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3094     flags |= MAP_FIXED;
3095   }
3096 
3097   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3098   // touch an uncommitted page. Otherwise, the read/write might
3099   // succeed if we have enough swap space to back the physical page.
3100   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3101                        flags, -1, 0);
3102 
3103   return addr == MAP_FAILED ? NULL : addr;
3104 }
3105 
3106 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3107 //   (req_addr != NULL) or with a given alignment.
3108 //  - bytes shall be a multiple of alignment.
3109 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3110 //  - alignment sets the alignment at which memory shall be allocated.
3111 //     It must be a multiple of allocation granularity.
3112 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3113 //  req_addr or NULL.
3114 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3115 
3116   size_t extra_size = bytes;
3117   if (req_addr == NULL && alignment > 0) {
3118     extra_size += alignment;
3119   }
3120 
3121   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3122     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3123     -1, 0);
3124   if (start == MAP_FAILED) {
3125     start = NULL;
3126   } else {
3127     if (req_addr != NULL) {
3128       if (start != req_addr) {
3129         ::munmap(start, extra_size);
3130         start = NULL;
3131       }
3132     } else {
3133       char* const start_aligned = align_up(start, alignment);
3134       char* const end_aligned = start_aligned + bytes;
3135       char* const end = start + extra_size;
3136       if (start_aligned > start) {
3137         ::munmap(start, start_aligned - start);
3138       }
3139       if (end_aligned < end) {
3140         ::munmap(end_aligned, end - end_aligned);
3141       }
3142       start = start_aligned;
3143     }
3144   }
3145   return start;
3146 }
3147 
3148 static int anon_munmap(char * addr, size_t size) {
3149   return ::munmap(addr, size) == 0;
3150 }
3151 
3152 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3153                             size_t alignment_hint) {
3154   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3155 }
3156 
3157 bool os::pd_release_memory(char* addr, size_t size) {
3158   return anon_munmap(addr, size);
3159 }
3160 
3161 static bool linux_mprotect(char* addr, size_t size, int prot) {
3162   // Linux wants the mprotect address argument to be page aligned.
3163   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3164 
3165   // According to SUSv3, mprotect() should only be used with mappings
3166   // established by mmap(), and mmap() always maps whole pages. Unaligned
3167   // 'addr' likely indicates problem in the VM (e.g. trying to change
3168   // protection of malloc'ed or statically allocated memory). Check the
3169   // caller if you hit this assert.
3170   assert(addr == bottom, "sanity check");
3171 
3172   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3173   return ::mprotect(bottom, size, prot) == 0;
3174 }
3175 
3176 // Set protections specified
3177 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3178                         bool is_committed) {
3179   unsigned int p = 0;
3180   switch (prot) {
3181   case MEM_PROT_NONE: p = PROT_NONE; break;
3182   case MEM_PROT_READ: p = PROT_READ; break;
3183   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3184   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3185   default:
3186     ShouldNotReachHere();
3187   }
3188   // is_committed is unused.
3189   return linux_mprotect(addr, bytes, p);
3190 }
3191 
3192 bool os::guard_memory(char* addr, size_t size) {
3193   return linux_mprotect(addr, size, PROT_NONE);
3194 }
3195 
3196 bool os::unguard_memory(char* addr, size_t size) {
3197   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3198 }
3199 
3200 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3201                                                     size_t page_size) {
3202   bool result = false;
3203   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3204                  MAP_ANONYMOUS|MAP_PRIVATE,
3205                  -1, 0);
3206   if (p != MAP_FAILED) {
3207     void *aligned_p = align_up(p, page_size);
3208 
3209     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3210 
3211     munmap(p, page_size * 2);
3212   }
3213 
3214   if (warn && !result) {
3215     warning("TransparentHugePages is not supported by the operating system.");
3216   }
3217 
3218   return result;
3219 }
3220 
3221 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3222   bool result = false;
3223   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3224                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3225                  -1, 0);
3226 
3227   if (p != MAP_FAILED) {
3228     // We don't know if this really is a huge page or not.
3229     FILE *fp = fopen("/proc/self/maps", "r");
3230     if (fp) {
3231       while (!feof(fp)) {
3232         char chars[257];
3233         long x = 0;
3234         if (fgets(chars, sizeof(chars), fp)) {
3235           if (sscanf(chars, "%lx-%*x", &x) == 1
3236               && x == (long)p) {
3237             if (strstr (chars, "hugepage")) {
3238               result = true;
3239               break;
3240             }
3241           }
3242         }
3243       }
3244       fclose(fp);
3245     }
3246     munmap(p, page_size);
3247   }
3248 
3249   if (warn && !result) {
3250     warning("HugeTLBFS is not supported by the operating system.");
3251   }
3252 
3253   return result;
3254 }
3255 
3256 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3257 //
3258 // From the coredump_filter documentation:
3259 //
3260 // - (bit 0) anonymous private memory
3261 // - (bit 1) anonymous shared memory
3262 // - (bit 2) file-backed private memory
3263 // - (bit 3) file-backed shared memory
3264 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3265 //           effective only if the bit 2 is cleared)
3266 // - (bit 5) hugetlb private memory
3267 // - (bit 6) hugetlb shared memory
3268 // - (bit 7) dax private memory
3269 // - (bit 8) dax shared memory
3270 //
3271 static void set_coredump_filter(bool largepages, bool dax_shared) {
3272   FILE *f;
3273   long cdm;
3274   bool filter_changed = false;
3275 
3276   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3277     return;
3278   }
3279 
3280   if (fscanf(f, "%lx", &cdm) != 1) {
3281     fclose(f);
3282     return;
3283   }
3284 
3285   rewind(f);
3286 
3287   if (largepages && (cdm & LARGEPAGES_BIT) == 0) {
3288     cdm |= LARGEPAGES_BIT;
3289     filter_changed = true;
3290   }
3291   if (dax_shared && (cdm & DAX_SHARED_BIT) == 0) {
3292     cdm |= DAX_SHARED_BIT;
3293     filter_changed = true;
3294   }
3295   if (filter_changed) {
3296     fprintf(f, "%#lx", cdm);
3297   }
3298 
3299   fclose(f);
3300 }
3301 
3302 // Large page support
3303 
3304 static size_t _large_page_size = 0;
3305 
3306 size_t os::Linux::find_large_page_size() {
3307   size_t large_page_size = 0;
3308 
3309   // large_page_size on Linux is used to round up heap size. x86 uses either
3310   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3311   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3312   // page as large as 256M.
3313   //
3314   // Here we try to figure out page size by parsing /proc/meminfo and looking
3315   // for a line with the following format:
3316   //    Hugepagesize:     2048 kB
3317   //
3318   // If we can't determine the value (e.g. /proc is not mounted, or the text
3319   // format has been changed), we'll use the largest page size supported by
3320   // the processor.
3321 
3322 #ifndef ZERO
3323   large_page_size =
3324     AARCH64_ONLY(2 * M)
3325     AMD64_ONLY(2 * M)
3326     ARM32_ONLY(2 * M)
3327     IA32_ONLY(4 * M)
3328     IA64_ONLY(256 * M)
3329     PPC_ONLY(4 * M)
3330     S390_ONLY(1 * M)
3331     SPARC_ONLY(4 * M);
3332 #endif // ZERO
3333 
3334   FILE *fp = fopen("/proc/meminfo", "r");
3335   if (fp) {
3336     while (!feof(fp)) {
3337       int x = 0;
3338       char buf[16];
3339       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3340         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3341           large_page_size = x * K;
3342           break;
3343         }
3344       } else {
3345         // skip to next line
3346         for (;;) {
3347           int ch = fgetc(fp);
3348           if (ch == EOF || ch == (int)'\n') break;
3349         }
3350       }
3351     }
3352     fclose(fp);
3353   }
3354 
3355   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3356     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3357             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3358             proper_unit_for_byte_size(large_page_size));
3359   }
3360 
3361   return large_page_size;
3362 }
3363 
3364 size_t os::Linux::setup_large_page_size() {
3365   _large_page_size = Linux::find_large_page_size();
3366   const size_t default_page_size = (size_t)Linux::page_size();
3367   if (_large_page_size > default_page_size) {
3368     _page_sizes[0] = _large_page_size;
3369     _page_sizes[1] = default_page_size;
3370     _page_sizes[2] = 0;
3371   }
3372 
3373   return _large_page_size;
3374 }
3375 
3376 bool os::Linux::setup_large_page_type(size_t page_size) {
3377   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3378       FLAG_IS_DEFAULT(UseSHM) &&
3379       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3380 
3381     // The type of large pages has not been specified by the user.
3382 
3383     // Try UseHugeTLBFS and then UseSHM.
3384     UseHugeTLBFS = UseSHM = true;
3385 
3386     // Don't try UseTransparentHugePages since there are known
3387     // performance issues with it turned on. This might change in the future.
3388     UseTransparentHugePages = false;
3389   }
3390 
3391   if (UseTransparentHugePages) {
3392     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3393     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3394       UseHugeTLBFS = false;
3395       UseSHM = false;
3396       return true;
3397     }
3398     UseTransparentHugePages = false;
3399   }
3400 
3401   if (UseHugeTLBFS) {
3402     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3403     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3404       UseSHM = false;
3405       return true;
3406     }
3407     UseHugeTLBFS = false;
3408   }
3409 
3410   return UseSHM;
3411 }
3412 
3413 void os::large_page_init() {
3414   if (!UseLargePages &&
3415       !UseTransparentHugePages &&
3416       !UseHugeTLBFS &&
3417       !UseSHM) {
3418     // Not using large pages.
3419     return;
3420   }
3421 
3422   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3423     // The user explicitly turned off large pages.
3424     // Ignore the rest of the large pages flags.
3425     UseTransparentHugePages = false;
3426     UseHugeTLBFS = false;
3427     UseSHM = false;
3428     return;
3429   }
3430 
3431   size_t large_page_size = Linux::setup_large_page_size();
3432   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3433 
3434   set_coredump_filter(true /*largepages*/, false /*dax_shared*/);
3435 }
3436 
3437 #ifndef SHM_HUGETLB
3438   #define SHM_HUGETLB 04000
3439 #endif
3440 
3441 #define shm_warning_format(format, ...)              \
3442   do {                                               \
3443     if (UseLargePages &&                             \
3444         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3445          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3446          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3447       warning(format, __VA_ARGS__);                  \
3448     }                                                \
3449   } while (0)
3450 
3451 #define shm_warning(str) shm_warning_format("%s", str)
3452 
3453 #define shm_warning_with_errno(str)                \
3454   do {                                             \
3455     int err = errno;                               \
3456     shm_warning_format(str " (error = %d)", err);  \
3457   } while (0)
3458 
3459 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3460   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3461 
3462   if (!is_aligned(alignment, SHMLBA)) {
3463     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3464     return NULL;
3465   }
3466 
3467   // To ensure that we get 'alignment' aligned memory from shmat,
3468   // we pre-reserve aligned virtual memory and then attach to that.
3469 
3470   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3471   if (pre_reserved_addr == NULL) {
3472     // Couldn't pre-reserve aligned memory.
3473     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3474     return NULL;
3475   }
3476 
3477   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3478   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3479 
3480   if ((intptr_t)addr == -1) {
3481     int err = errno;
3482     shm_warning_with_errno("Failed to attach shared memory.");
3483 
3484     assert(err != EACCES, "Unexpected error");
3485     assert(err != EIDRM,  "Unexpected error");
3486     assert(err != EINVAL, "Unexpected error");
3487 
3488     // Since we don't know if the kernel unmapped the pre-reserved memory area
3489     // we can't unmap it, since that would potentially unmap memory that was
3490     // mapped from other threads.
3491     return NULL;
3492   }
3493 
3494   return addr;
3495 }
3496 
3497 static char* shmat_at_address(int shmid, char* req_addr) {
3498   if (!is_aligned(req_addr, SHMLBA)) {
3499     assert(false, "Requested address needs to be SHMLBA aligned");
3500     return NULL;
3501   }
3502 
3503   char* addr = (char*)shmat(shmid, req_addr, 0);
3504 
3505   if ((intptr_t)addr == -1) {
3506     shm_warning_with_errno("Failed to attach shared memory.");
3507     return NULL;
3508   }
3509 
3510   return addr;
3511 }
3512 
3513 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3514   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3515   if (req_addr != NULL) {
3516     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3517     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3518     return shmat_at_address(shmid, req_addr);
3519   }
3520 
3521   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3522   // return large page size aligned memory addresses when req_addr == NULL.
3523   // However, if the alignment is larger than the large page size, we have
3524   // to manually ensure that the memory returned is 'alignment' aligned.
3525   if (alignment > os::large_page_size()) {
3526     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3527     return shmat_with_alignment(shmid, bytes, alignment);
3528   } else {
3529     return shmat_at_address(shmid, NULL);
3530   }
3531 }
3532 
3533 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3534                                             char* req_addr, bool exec) {
3535   // "exec" is passed in but not used.  Creating the shared image for
3536   // the code cache doesn't have an SHM_X executable permission to check.
3537   assert(UseLargePages && UseSHM, "only for SHM large pages");
3538   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3539   assert(is_aligned(req_addr, alignment), "Unaligned address");
3540 
3541   if (!is_aligned(bytes, os::large_page_size())) {
3542     return NULL; // Fallback to small pages.
3543   }
3544 
3545   // Create a large shared memory region to attach to based on size.
3546   // Currently, size is the total size of the heap.
3547   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3548   if (shmid == -1) {
3549     // Possible reasons for shmget failure:
3550     // 1. shmmax is too small for Java heap.
3551     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3552     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3553     // 2. not enough large page memory.
3554     //    > check available large pages: cat /proc/meminfo
3555     //    > increase amount of large pages:
3556     //          echo new_value > /proc/sys/vm/nr_hugepages
3557     //      Note 1: different Linux may use different name for this property,
3558     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3559     //      Note 2: it's possible there's enough physical memory available but
3560     //            they are so fragmented after a long run that they can't
3561     //            coalesce into large pages. Try to reserve large pages when
3562     //            the system is still "fresh".
3563     shm_warning_with_errno("Failed to reserve shared memory.");
3564     return NULL;
3565   }
3566 
3567   // Attach to the region.
3568   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3569 
3570   // Remove shmid. If shmat() is successful, the actual shared memory segment
3571   // will be deleted when it's detached by shmdt() or when the process
3572   // terminates. If shmat() is not successful this will remove the shared
3573   // segment immediately.
3574   shmctl(shmid, IPC_RMID, NULL);
3575 
3576   return addr;
3577 }
3578 
3579 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3580                                         int error) {
3581   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3582 
3583   bool warn_on_failure = UseLargePages &&
3584       (!FLAG_IS_DEFAULT(UseLargePages) ||
3585        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3586        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3587 
3588   if (warn_on_failure) {
3589     char msg[128];
3590     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3591                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3592     warning("%s", msg);
3593   }
3594 }
3595 
3596 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3597                                                         char* req_addr,
3598                                                         bool exec) {
3599   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3600   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3601   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3602 
3603   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3604   char* addr = (char*)::mmap(req_addr, bytes, prot,
3605                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3606                              -1, 0);
3607 
3608   if (addr == MAP_FAILED) {
3609     warn_on_large_pages_failure(req_addr, bytes, errno);
3610     return NULL;
3611   }
3612 
3613   assert(is_aligned(addr, os::large_page_size()), "Must be");
3614 
3615   return addr;
3616 }
3617 
3618 // Reserve memory using mmap(MAP_HUGETLB).
3619 //  - bytes shall be a multiple of alignment.
3620 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3621 //  - alignment sets the alignment at which memory shall be allocated.
3622 //     It must be a multiple of allocation granularity.
3623 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3624 //  req_addr or NULL.
3625 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3626                                                          size_t alignment,
3627                                                          char* req_addr,
3628                                                          bool exec) {
3629   size_t large_page_size = os::large_page_size();
3630   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3631 
3632   assert(is_aligned(req_addr, alignment), "Must be");
3633   assert(is_aligned(bytes, alignment), "Must be");
3634 
3635   // First reserve - but not commit - the address range in small pages.
3636   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3637 
3638   if (start == NULL) {
3639     return NULL;
3640   }
3641 
3642   assert(is_aligned(start, alignment), "Must be");
3643 
3644   char* end = start + bytes;
3645 
3646   // Find the regions of the allocated chunk that can be promoted to large pages.
3647   char* lp_start = align_up(start, large_page_size);
3648   char* lp_end   = align_down(end, large_page_size);
3649 
3650   size_t lp_bytes = lp_end - lp_start;
3651 
3652   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3653 
3654   if (lp_bytes == 0) {
3655     // The mapped region doesn't even span the start and the end of a large page.
3656     // Fall back to allocate a non-special area.
3657     ::munmap(start, end - start);
3658     return NULL;
3659   }
3660 
3661   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3662 
3663   void* result;
3664 
3665   // Commit small-paged leading area.
3666   if (start != lp_start) {
3667     result = ::mmap(start, lp_start - start, prot,
3668                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3669                     -1, 0);
3670     if (result == MAP_FAILED) {
3671       ::munmap(lp_start, end - lp_start);
3672       return NULL;
3673     }
3674   }
3675 
3676   // Commit large-paged area.
3677   result = ::mmap(lp_start, lp_bytes, prot,
3678                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3679                   -1, 0);
3680   if (result == MAP_FAILED) {
3681     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3682     // If the mmap above fails, the large pages region will be unmapped and we
3683     // have regions before and after with small pages. Release these regions.
3684     //
3685     // |  mapped  |  unmapped  |  mapped  |
3686     // ^          ^            ^          ^
3687     // start      lp_start     lp_end     end
3688     //
3689     ::munmap(start, lp_start - start);
3690     ::munmap(lp_end, end - lp_end);
3691     return NULL;
3692   }
3693 
3694   // Commit small-paged trailing area.
3695   if (lp_end != end) {
3696     result = ::mmap(lp_end, end - lp_end, prot,
3697                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3698                     -1, 0);
3699     if (result == MAP_FAILED) {
3700       ::munmap(start, lp_end - start);
3701       return NULL;
3702     }
3703   }
3704 
3705   return start;
3706 }
3707 
3708 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3709                                                    size_t alignment,
3710                                                    char* req_addr,
3711                                                    bool exec) {
3712   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3713   assert(is_aligned(req_addr, alignment), "Must be");
3714   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3715   assert(is_power_of_2(os::large_page_size()), "Must be");
3716   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3717 
3718   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3719     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3720   } else {
3721     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3722   }
3723 }
3724 
3725 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3726                                  char* req_addr, bool exec) {
3727   assert(UseLargePages, "only for large pages");
3728 
3729   char* addr;
3730   if (UseSHM) {
3731     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3732   } else {
3733     assert(UseHugeTLBFS, "must be");
3734     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3735   }
3736 
3737   if (addr != NULL) {
3738     if (UseNUMAInterleaving) {
3739       numa_make_global(addr, bytes);
3740     }
3741 
3742     // The memory is committed
3743     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3744   }
3745 
3746   return addr;
3747 }
3748 
3749 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3750   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3751   return shmdt(base) == 0;
3752 }
3753 
3754 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3755   return pd_release_memory(base, bytes);
3756 }
3757 
3758 bool os::release_memory_special(char* base, size_t bytes) {
3759   bool res;
3760   if (MemTracker::tracking_level() > NMT_minimal) {
3761     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3762     res = os::Linux::release_memory_special_impl(base, bytes);
3763     if (res) {
3764       tkr.record((address)base, bytes);
3765     }
3766 
3767   } else {
3768     res = os::Linux::release_memory_special_impl(base, bytes);
3769   }
3770   return res;
3771 }
3772 
3773 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3774   assert(UseLargePages, "only for large pages");
3775   bool res;
3776 
3777   if (UseSHM) {
3778     res = os::Linux::release_memory_special_shm(base, bytes);
3779   } else {
3780     assert(UseHugeTLBFS, "must be");
3781     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3782   }
3783   return res;
3784 }
3785 
3786 size_t os::large_page_size() {
3787   return _large_page_size;
3788 }
3789 
3790 // With SysV SHM the entire memory region must be allocated as shared
3791 // memory.
3792 // HugeTLBFS allows application to commit large page memory on demand.
3793 // However, when committing memory with HugeTLBFS fails, the region
3794 // that was supposed to be committed will lose the old reservation
3795 // and allow other threads to steal that memory region. Because of this
3796 // behavior we can't commit HugeTLBFS memory.
3797 bool os::can_commit_large_page_memory() {
3798   return UseTransparentHugePages;
3799 }
3800 
3801 bool os::can_execute_large_page_memory() {
3802   return UseTransparentHugePages || UseHugeTLBFS;
3803 }
3804 
3805 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3806   assert(file_desc >= 0, "file_desc is not valid");
3807   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3808   if (result != NULL) {
3809     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3810       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3811     }
3812   }
3813   return result;
3814 }
3815 
3816 // Reserve memory at an arbitrary address, only if that area is
3817 // available (and not reserved for something else).
3818 
3819 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3820   const int max_tries = 10;
3821   char* base[max_tries];
3822   size_t size[max_tries];
3823   const size_t gap = 0x000000;
3824 
3825   // Assert only that the size is a multiple of the page size, since
3826   // that's all that mmap requires, and since that's all we really know
3827   // about at this low abstraction level.  If we need higher alignment,
3828   // we can either pass an alignment to this method or verify alignment
3829   // in one of the methods further up the call chain.  See bug 5044738.
3830   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3831 
3832   // Repeatedly allocate blocks until the block is allocated at the
3833   // right spot.
3834 
3835   // Linux mmap allows caller to pass an address as hint; give it a try first,
3836   // if kernel honors the hint then we can return immediately.
3837   char * addr = anon_mmap(requested_addr, bytes, false);
3838   if (addr == requested_addr) {
3839     return requested_addr;
3840   }
3841 
3842   if (addr != NULL) {
3843     // mmap() is successful but it fails to reserve at the requested address
3844     anon_munmap(addr, bytes);
3845   }
3846 
3847   int i;
3848   for (i = 0; i < max_tries; ++i) {
3849     base[i] = reserve_memory(bytes);
3850 
3851     if (base[i] != NULL) {
3852       // Is this the block we wanted?
3853       if (base[i] == requested_addr) {
3854         size[i] = bytes;
3855         break;
3856       }
3857 
3858       // Does this overlap the block we wanted? Give back the overlapped
3859       // parts and try again.
3860 
3861       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3862       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3863         unmap_memory(base[i], top_overlap);
3864         base[i] += top_overlap;
3865         size[i] = bytes - top_overlap;
3866       } else {
3867         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3868         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3869           unmap_memory(requested_addr, bottom_overlap);
3870           size[i] = bytes - bottom_overlap;
3871         } else {
3872           size[i] = bytes;
3873         }
3874       }
3875     }
3876   }
3877 
3878   // Give back the unused reserved pieces.
3879 
3880   for (int j = 0; j < i; ++j) {
3881     if (base[j] != NULL) {
3882       unmap_memory(base[j], size[j]);
3883     }
3884   }
3885 
3886   if (i < max_tries) {
3887     return requested_addr;
3888   } else {
3889     return NULL;
3890   }
3891 }
3892 
3893 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3894   return ::read(fd, buf, nBytes);
3895 }
3896 
3897 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3898   return ::pread(fd, buf, nBytes, offset);
3899 }
3900 
3901 // Short sleep, direct OS call.
3902 //
3903 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3904 // sched_yield(2) will actually give up the CPU:
3905 //
3906 //   * Alone on this pariticular CPU, keeps running.
3907 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3908 //     (pre 2.6.39).
3909 //
3910 // So calling this with 0 is an alternative.
3911 //
3912 void os::naked_short_sleep(jlong ms) {
3913   struct timespec req;
3914 
3915   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3916   req.tv_sec = 0;
3917   if (ms > 0) {
3918     req.tv_nsec = (ms % 1000) * 1000000;
3919   } else {
3920     req.tv_nsec = 1;
3921   }
3922 
3923   nanosleep(&req, NULL);
3924 
3925   return;
3926 }
3927 
3928 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3929 void os::infinite_sleep() {
3930   while (true) {    // sleep forever ...
3931     ::sleep(100);   // ... 100 seconds at a time
3932   }
3933 }
3934 
3935 // Used to convert frequent JVM_Yield() to nops
3936 bool os::dont_yield() {
3937   return DontYieldALot;
3938 }
3939 
3940 void os::naked_yield() {
3941   sched_yield();
3942 }
3943 
3944 ////////////////////////////////////////////////////////////////////////////////
3945 // thread priority support
3946 
3947 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3948 // only supports dynamic priority, static priority must be zero. For real-time
3949 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3950 // However, for large multi-threaded applications, SCHED_RR is not only slower
3951 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3952 // of 5 runs - Sep 2005).
3953 //
3954 // The following code actually changes the niceness of kernel-thread/LWP. It
3955 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3956 // not the entire user process, and user level threads are 1:1 mapped to kernel
3957 // threads. It has always been the case, but could change in the future. For
3958 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3959 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3960 
3961 int os::java_to_os_priority[CriticalPriority + 1] = {
3962   19,              // 0 Entry should never be used
3963 
3964    4,              // 1 MinPriority
3965    3,              // 2
3966    2,              // 3
3967 
3968    1,              // 4
3969    0,              // 5 NormPriority
3970   -1,              // 6
3971 
3972   -2,              // 7
3973   -3,              // 8
3974   -4,              // 9 NearMaxPriority
3975 
3976   -5,              // 10 MaxPriority
3977 
3978   -5               // 11 CriticalPriority
3979 };
3980 
3981 static int prio_init() {
3982   if (ThreadPriorityPolicy == 1) {
3983     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3984     // if effective uid is not root. Perhaps, a more elegant way of doing
3985     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3986     if (geteuid() != 0) {
3987       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3988         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3989       }
3990       ThreadPriorityPolicy = 0;
3991     }
3992   }
3993   if (UseCriticalJavaThreadPriority) {
3994     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3995   }
3996   return 0;
3997 }
3998 
3999 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4000   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4001 
4002   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4003   return (ret == 0) ? OS_OK : OS_ERR;
4004 }
4005 
4006 OSReturn os::get_native_priority(const Thread* const thread,
4007                                  int *priority_ptr) {
4008   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4009     *priority_ptr = java_to_os_priority[NormPriority];
4010     return OS_OK;
4011   }
4012 
4013   errno = 0;
4014   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4015   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4016 }
4017 
4018 // Hint to the underlying OS that a task switch would not be good.
4019 // Void return because it's a hint and can fail.
4020 void os::hint_no_preempt() {}
4021 
4022 ////////////////////////////////////////////////////////////////////////////////
4023 // suspend/resume support
4024 
4025 //  The low-level signal-based suspend/resume support is a remnant from the
4026 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4027 //  within hotspot. Currently used by JFR's OSThreadSampler
4028 //
4029 //  The remaining code is greatly simplified from the more general suspension
4030 //  code that used to be used.
4031 //
4032 //  The protocol is quite simple:
4033 //  - suspend:
4034 //      - sends a signal to the target thread
4035 //      - polls the suspend state of the osthread using a yield loop
4036 //      - target thread signal handler (SR_handler) sets suspend state
4037 //        and blocks in sigsuspend until continued
4038 //  - resume:
4039 //      - sets target osthread state to continue
4040 //      - sends signal to end the sigsuspend loop in the SR_handler
4041 //
4042 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4043 //  but is checked for NULL in SR_handler as a thread termination indicator.
4044 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4045 //
4046 //  Note that resume_clear_context() and suspend_save_context() are needed
4047 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4048 //  which in part is used by:
4049 //    - Forte Analyzer: AsyncGetCallTrace()
4050 //    - StackBanging: get_frame_at_stack_banging_point()
4051 
4052 static void resume_clear_context(OSThread *osthread) {
4053   osthread->set_ucontext(NULL);
4054   osthread->set_siginfo(NULL);
4055 }
4056 
4057 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4058                                  ucontext_t* context) {
4059   osthread->set_ucontext(context);
4060   osthread->set_siginfo(siginfo);
4061 }
4062 
4063 // Handler function invoked when a thread's execution is suspended or
4064 // resumed. We have to be careful that only async-safe functions are
4065 // called here (Note: most pthread functions are not async safe and
4066 // should be avoided.)
4067 //
4068 // Note: sigwait() is a more natural fit than sigsuspend() from an
4069 // interface point of view, but sigwait() prevents the signal hander
4070 // from being run. libpthread would get very confused by not having
4071 // its signal handlers run and prevents sigwait()'s use with the
4072 // mutex granting granting signal.
4073 //
4074 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4075 //
4076 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4077   // Save and restore errno to avoid confusing native code with EINTR
4078   // after sigsuspend.
4079   int old_errno = errno;
4080 
4081   Thread* thread = Thread::current_or_null_safe();
4082   assert(thread != NULL, "Missing current thread in SR_handler");
4083 
4084   // On some systems we have seen signal delivery get "stuck" until the signal
4085   // mask is changed as part of thread termination. Check that the current thread
4086   // has not already terminated (via SR_lock()) - else the following assertion
4087   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4088   // destructor has completed.
4089 
4090   if (thread->SR_lock() == NULL) {
4091     return;
4092   }
4093 
4094   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4095 
4096   OSThread* osthread = thread->osthread();
4097 
4098   os::SuspendResume::State current = osthread->sr.state();
4099   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4100     suspend_save_context(osthread, siginfo, context);
4101 
4102     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4103     os::SuspendResume::State state = osthread->sr.suspended();
4104     if (state == os::SuspendResume::SR_SUSPENDED) {
4105       sigset_t suspend_set;  // signals for sigsuspend()
4106       sigemptyset(&suspend_set);
4107       // get current set of blocked signals and unblock resume signal
4108       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4109       sigdelset(&suspend_set, SR_signum);
4110 
4111       sr_semaphore.signal();
4112       // wait here until we are resumed
4113       while (1) {
4114         sigsuspend(&suspend_set);
4115 
4116         os::SuspendResume::State result = osthread->sr.running();
4117         if (result == os::SuspendResume::SR_RUNNING) {
4118           sr_semaphore.signal();
4119           break;
4120         }
4121       }
4122 
4123     } else if (state == os::SuspendResume::SR_RUNNING) {
4124       // request was cancelled, continue
4125     } else {
4126       ShouldNotReachHere();
4127     }
4128 
4129     resume_clear_context(osthread);
4130   } else if (current == os::SuspendResume::SR_RUNNING) {
4131     // request was cancelled, continue
4132   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4133     // ignore
4134   } else {
4135     // ignore
4136   }
4137 
4138   errno = old_errno;
4139 }
4140 
4141 static int SR_initialize() {
4142   struct sigaction act;
4143   char *s;
4144 
4145   // Get signal number to use for suspend/resume
4146   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4147     int sig = ::strtol(s, 0, 10);
4148     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4149         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4150       SR_signum = sig;
4151     } else {
4152       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4153               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4154     }
4155   }
4156 
4157   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4158          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4159 
4160   sigemptyset(&SR_sigset);
4161   sigaddset(&SR_sigset, SR_signum);
4162 
4163   // Set up signal handler for suspend/resume
4164   act.sa_flags = SA_RESTART|SA_SIGINFO;
4165   act.sa_handler = (void (*)(int)) SR_handler;
4166 
4167   // SR_signum is blocked by default.
4168   // 4528190 - We also need to block pthread restart signal (32 on all
4169   // supported Linux platforms). Note that LinuxThreads need to block
4170   // this signal for all threads to work properly. So we don't have
4171   // to use hard-coded signal number when setting up the mask.
4172   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4173 
4174   if (sigaction(SR_signum, &act, 0) == -1) {
4175     return -1;
4176   }
4177 
4178   // Save signal flag
4179   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4180   return 0;
4181 }
4182 
4183 static int sr_notify(OSThread* osthread) {
4184   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4185   assert_status(status == 0, status, "pthread_kill");
4186   return status;
4187 }
4188 
4189 // "Randomly" selected value for how long we want to spin
4190 // before bailing out on suspending a thread, also how often
4191 // we send a signal to a thread we want to resume
4192 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4193 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4194 
4195 // returns true on success and false on error - really an error is fatal
4196 // but this seems the normal response to library errors
4197 static bool do_suspend(OSThread* osthread) {
4198   assert(osthread->sr.is_running(), "thread should be running");
4199   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4200 
4201   // mark as suspended and send signal
4202   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4203     // failed to switch, state wasn't running?
4204     ShouldNotReachHere();
4205     return false;
4206   }
4207 
4208   if (sr_notify(osthread) != 0) {
4209     ShouldNotReachHere();
4210   }
4211 
4212   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4213   while (true) {
4214     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4215       break;
4216     } else {
4217       // timeout
4218       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4219       if (cancelled == os::SuspendResume::SR_RUNNING) {
4220         return false;
4221       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4222         // make sure that we consume the signal on the semaphore as well
4223         sr_semaphore.wait();
4224         break;
4225       } else {
4226         ShouldNotReachHere();
4227         return false;
4228       }
4229     }
4230   }
4231 
4232   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4233   return true;
4234 }
4235 
4236 static void do_resume(OSThread* osthread) {
4237   assert(osthread->sr.is_suspended(), "thread should be suspended");
4238   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4239 
4240   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4241     // failed to switch to WAKEUP_REQUEST
4242     ShouldNotReachHere();
4243     return;
4244   }
4245 
4246   while (true) {
4247     if (sr_notify(osthread) == 0) {
4248       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4249         if (osthread->sr.is_running()) {
4250           return;
4251         }
4252       }
4253     } else {
4254       ShouldNotReachHere();
4255     }
4256   }
4257 
4258   guarantee(osthread->sr.is_running(), "Must be running!");
4259 }
4260 
4261 ///////////////////////////////////////////////////////////////////////////////////
4262 // signal handling (except suspend/resume)
4263 
4264 // This routine may be used by user applications as a "hook" to catch signals.
4265 // The user-defined signal handler must pass unrecognized signals to this
4266 // routine, and if it returns true (non-zero), then the signal handler must
4267 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4268 // routine will never retun false (zero), but instead will execute a VM panic
4269 // routine kill the process.
4270 //
4271 // If this routine returns false, it is OK to call it again.  This allows
4272 // the user-defined signal handler to perform checks either before or after
4273 // the VM performs its own checks.  Naturally, the user code would be making
4274 // a serious error if it tried to handle an exception (such as a null check
4275 // or breakpoint) that the VM was generating for its own correct operation.
4276 //
4277 // This routine may recognize any of the following kinds of signals:
4278 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4279 // It should be consulted by handlers for any of those signals.
4280 //
4281 // The caller of this routine must pass in the three arguments supplied
4282 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4283 // field of the structure passed to sigaction().  This routine assumes that
4284 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4285 //
4286 // Note that the VM will print warnings if it detects conflicting signal
4287 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4288 //
4289 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4290                                                  siginfo_t* siginfo,
4291                                                  void* ucontext,
4292                                                  int abort_if_unrecognized);
4293 
4294 void signalHandler(int sig, siginfo_t* info, void* uc) {
4295   assert(info != NULL && uc != NULL, "it must be old kernel");
4296   int orig_errno = errno;  // Preserve errno value over signal handler.
4297   JVM_handle_linux_signal(sig, info, uc, true);
4298   errno = orig_errno;
4299 }
4300 
4301 
4302 // This boolean allows users to forward their own non-matching signals
4303 // to JVM_handle_linux_signal, harmlessly.
4304 bool os::Linux::signal_handlers_are_installed = false;
4305 
4306 // For signal-chaining
4307 struct sigaction sigact[NSIG];
4308 uint64_t sigs = 0;
4309 #if (64 < NSIG-1)
4310 #error "Not all signals can be encoded in sigs. Adapt its type!"
4311 #endif
4312 bool os::Linux::libjsig_is_loaded = false;
4313 typedef struct sigaction *(*get_signal_t)(int);
4314 get_signal_t os::Linux::get_signal_action = NULL;
4315 
4316 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4317   struct sigaction *actp = NULL;
4318 
4319   if (libjsig_is_loaded) {
4320     // Retrieve the old signal handler from libjsig
4321     actp = (*get_signal_action)(sig);
4322   }
4323   if (actp == NULL) {
4324     // Retrieve the preinstalled signal handler from jvm
4325     actp = get_preinstalled_handler(sig);
4326   }
4327 
4328   return actp;
4329 }
4330 
4331 static bool call_chained_handler(struct sigaction *actp, int sig,
4332                                  siginfo_t *siginfo, void *context) {
4333   // Call the old signal handler
4334   if (actp->sa_handler == SIG_DFL) {
4335     // It's more reasonable to let jvm treat it as an unexpected exception
4336     // instead of taking the default action.
4337     return false;
4338   } else if (actp->sa_handler != SIG_IGN) {
4339     if ((actp->sa_flags & SA_NODEFER) == 0) {
4340       // automaticlly block the signal
4341       sigaddset(&(actp->sa_mask), sig);
4342     }
4343 
4344     sa_handler_t hand = NULL;
4345     sa_sigaction_t sa = NULL;
4346     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4347     // retrieve the chained handler
4348     if (siginfo_flag_set) {
4349       sa = actp->sa_sigaction;
4350     } else {
4351       hand = actp->sa_handler;
4352     }
4353 
4354     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4355       actp->sa_handler = SIG_DFL;
4356     }
4357 
4358     // try to honor the signal mask
4359     sigset_t oset;
4360     sigemptyset(&oset);
4361     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4362 
4363     // call into the chained handler
4364     if (siginfo_flag_set) {
4365       (*sa)(sig, siginfo, context);
4366     } else {
4367       (*hand)(sig);
4368     }
4369 
4370     // restore the signal mask
4371     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4372   }
4373   // Tell jvm's signal handler the signal is taken care of.
4374   return true;
4375 }
4376 
4377 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4378   bool chained = false;
4379   // signal-chaining
4380   if (UseSignalChaining) {
4381     struct sigaction *actp = get_chained_signal_action(sig);
4382     if (actp != NULL) {
4383       chained = call_chained_handler(actp, sig, siginfo, context);
4384     }
4385   }
4386   return chained;
4387 }
4388 
4389 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4390   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4391     return &sigact[sig];
4392   }
4393   return NULL;
4394 }
4395 
4396 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4397   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4398   sigact[sig] = oldAct;
4399   sigs |= (uint64_t)1 << (sig-1);
4400 }
4401 
4402 // for diagnostic
4403 int sigflags[NSIG];
4404 
4405 int os::Linux::get_our_sigflags(int sig) {
4406   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4407   return sigflags[sig];
4408 }
4409 
4410 void os::Linux::set_our_sigflags(int sig, int flags) {
4411   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4412   if (sig > 0 && sig < NSIG) {
4413     sigflags[sig] = flags;
4414   }
4415 }
4416 
4417 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4418   // Check for overwrite.
4419   struct sigaction oldAct;
4420   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4421 
4422   void* oldhand = oldAct.sa_sigaction
4423                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4424                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4425   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4426       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4427       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4428     if (AllowUserSignalHandlers || !set_installed) {
4429       // Do not overwrite; user takes responsibility to forward to us.
4430       return;
4431     } else if (UseSignalChaining) {
4432       // save the old handler in jvm
4433       save_preinstalled_handler(sig, oldAct);
4434       // libjsig also interposes the sigaction() call below and saves the
4435       // old sigaction on it own.
4436     } else {
4437       fatal("Encountered unexpected pre-existing sigaction handler "
4438             "%#lx for signal %d.", (long)oldhand, sig);
4439     }
4440   }
4441 
4442   struct sigaction sigAct;
4443   sigfillset(&(sigAct.sa_mask));
4444   sigAct.sa_handler = SIG_DFL;
4445   if (!set_installed) {
4446     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4447   } else {
4448     sigAct.sa_sigaction = signalHandler;
4449     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4450   }
4451   // Save flags, which are set by ours
4452   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4453   sigflags[sig] = sigAct.sa_flags;
4454 
4455   int ret = sigaction(sig, &sigAct, &oldAct);
4456   assert(ret == 0, "check");
4457 
4458   void* oldhand2  = oldAct.sa_sigaction
4459                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4460                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4461   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4462 }
4463 
4464 // install signal handlers for signals that HotSpot needs to
4465 // handle in order to support Java-level exception handling.
4466 
4467 void os::Linux::install_signal_handlers() {
4468   if (!signal_handlers_are_installed) {
4469     signal_handlers_are_installed = true;
4470 
4471     // signal-chaining
4472     typedef void (*signal_setting_t)();
4473     signal_setting_t begin_signal_setting = NULL;
4474     signal_setting_t end_signal_setting = NULL;
4475     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4476                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4477     if (begin_signal_setting != NULL) {
4478       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4479                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4480       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4481                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4482       libjsig_is_loaded = true;
4483       assert(UseSignalChaining, "should enable signal-chaining");
4484     }
4485     if (libjsig_is_loaded) {
4486       // Tell libjsig jvm is setting signal handlers
4487       (*begin_signal_setting)();
4488     }
4489 
4490     set_signal_handler(SIGSEGV, true);
4491     set_signal_handler(SIGPIPE, true);
4492     set_signal_handler(SIGBUS, true);
4493     set_signal_handler(SIGILL, true);
4494     set_signal_handler(SIGFPE, true);
4495 #if defined(PPC64)
4496     set_signal_handler(SIGTRAP, true);
4497 #endif
4498     set_signal_handler(SIGXFSZ, true);
4499 
4500     if (libjsig_is_loaded) {
4501       // Tell libjsig jvm finishes setting signal handlers
4502       (*end_signal_setting)();
4503     }
4504 
4505     // We don't activate signal checker if libjsig is in place, we trust ourselves
4506     // and if UserSignalHandler is installed all bets are off.
4507     // Log that signal checking is off only if -verbose:jni is specified.
4508     if (CheckJNICalls) {
4509       if (libjsig_is_loaded) {
4510         if (PrintJNIResolving) {
4511           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4512         }
4513         check_signals = false;
4514       }
4515       if (AllowUserSignalHandlers) {
4516         if (PrintJNIResolving) {
4517           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4518         }
4519         check_signals = false;
4520       }
4521     }
4522   }
4523 }
4524 
4525 // This is the fastest way to get thread cpu time on Linux.
4526 // Returns cpu time (user+sys) for any thread, not only for current.
4527 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4528 // It might work on 2.6.10+ with a special kernel/glibc patch.
4529 // For reference, please, see IEEE Std 1003.1-2004:
4530 //   http://www.unix.org/single_unix_specification
4531 
4532 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4533   struct timespec tp;
4534   int rc = os::Linux::clock_gettime(clockid, &tp);
4535   assert(rc == 0, "clock_gettime is expected to return 0 code");
4536 
4537   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4538 }
4539 
4540 void os::Linux::initialize_os_info() {
4541   assert(_os_version == 0, "OS info already initialized");
4542 
4543   struct utsname _uname;
4544 
4545   uint32_t major;
4546   uint32_t minor;
4547   uint32_t fix;
4548 
4549   int rc;
4550 
4551   // Kernel version is unknown if
4552   // verification below fails.
4553   _os_version = 0x01000000;
4554 
4555   rc = uname(&_uname);
4556   if (rc != -1) {
4557 
4558     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4559     if (rc == 3) {
4560 
4561       if (major < 256 && minor < 256 && fix < 256) {
4562         // Kernel version format is as expected,
4563         // set it overriding unknown state.
4564         _os_version = (major << 16) |
4565                       (minor << 8 ) |
4566                       (fix   << 0 ) ;
4567       }
4568     }
4569   }
4570 }
4571 
4572 uint32_t os::Linux::os_version() {
4573   assert(_os_version != 0, "not initialized");
4574   return _os_version & 0x00FFFFFF;
4575 }
4576 
4577 bool os::Linux::os_version_is_known() {
4578   assert(_os_version != 0, "not initialized");
4579   return _os_version & 0x01000000 ? false : true;
4580 }
4581 
4582 /////
4583 // glibc on Linux platform uses non-documented flag
4584 // to indicate, that some special sort of signal
4585 // trampoline is used.
4586 // We will never set this flag, and we should
4587 // ignore this flag in our diagnostic
4588 #ifdef SIGNIFICANT_SIGNAL_MASK
4589   #undef SIGNIFICANT_SIGNAL_MASK
4590 #endif
4591 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4592 
4593 static const char* get_signal_handler_name(address handler,
4594                                            char* buf, int buflen) {
4595   int offset = 0;
4596   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4597   if (found) {
4598     // skip directory names
4599     const char *p1, *p2;
4600     p1 = buf;
4601     size_t len = strlen(os::file_separator());
4602     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4603     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4604   } else {
4605     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4606   }
4607   return buf;
4608 }
4609 
4610 static void print_signal_handler(outputStream* st, int sig,
4611                                  char* buf, size_t buflen) {
4612   struct sigaction sa;
4613 
4614   sigaction(sig, NULL, &sa);
4615 
4616   // See comment for SIGNIFICANT_SIGNAL_MASK define
4617   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4618 
4619   st->print("%s: ", os::exception_name(sig, buf, buflen));
4620 
4621   address handler = (sa.sa_flags & SA_SIGINFO)
4622     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4623     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4624 
4625   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4626     st->print("SIG_DFL");
4627   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4628     st->print("SIG_IGN");
4629   } else {
4630     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4631   }
4632 
4633   st->print(", sa_mask[0]=");
4634   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4635 
4636   address rh = VMError::get_resetted_sighandler(sig);
4637   // May be, handler was resetted by VMError?
4638   if (rh != NULL) {
4639     handler = rh;
4640     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4641   }
4642 
4643   st->print(", sa_flags=");
4644   os::Posix::print_sa_flags(st, sa.sa_flags);
4645 
4646   // Check: is it our handler?
4647   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4648       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4649     // It is our signal handler
4650     // check for flags, reset system-used one!
4651     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4652       st->print(
4653                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4654                 os::Linux::get_our_sigflags(sig));
4655     }
4656   }
4657   st->cr();
4658 }
4659 
4660 
4661 #define DO_SIGNAL_CHECK(sig)                      \
4662   do {                                            \
4663     if (!sigismember(&check_signal_done, sig)) {  \
4664       os::Linux::check_signal_handler(sig);       \
4665     }                                             \
4666   } while (0)
4667 
4668 // This method is a periodic task to check for misbehaving JNI applications
4669 // under CheckJNI, we can add any periodic checks here
4670 
4671 void os::run_periodic_checks() {
4672   if (check_signals == false) return;
4673 
4674   // SEGV and BUS if overridden could potentially prevent
4675   // generation of hs*.log in the event of a crash, debugging
4676   // such a case can be very challenging, so we absolutely
4677   // check the following for a good measure:
4678   DO_SIGNAL_CHECK(SIGSEGV);
4679   DO_SIGNAL_CHECK(SIGILL);
4680   DO_SIGNAL_CHECK(SIGFPE);
4681   DO_SIGNAL_CHECK(SIGBUS);
4682   DO_SIGNAL_CHECK(SIGPIPE);
4683   DO_SIGNAL_CHECK(SIGXFSZ);
4684 #if defined(PPC64)
4685   DO_SIGNAL_CHECK(SIGTRAP);
4686 #endif
4687 
4688   // ReduceSignalUsage allows the user to override these handlers
4689   // see comments at the very top and jvm_solaris.h
4690   if (!ReduceSignalUsage) {
4691     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4692     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4693     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4694     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4695   }
4696 
4697   DO_SIGNAL_CHECK(SR_signum);
4698 }
4699 
4700 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4701 
4702 static os_sigaction_t os_sigaction = NULL;
4703 
4704 void os::Linux::check_signal_handler(int sig) {
4705   char buf[O_BUFLEN];
4706   address jvmHandler = NULL;
4707 
4708 
4709   struct sigaction act;
4710   if (os_sigaction == NULL) {
4711     // only trust the default sigaction, in case it has been interposed
4712     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4713     if (os_sigaction == NULL) return;
4714   }
4715 
4716   os_sigaction(sig, (struct sigaction*)NULL, &act);
4717 
4718 
4719   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4720 
4721   address thisHandler = (act.sa_flags & SA_SIGINFO)
4722     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4723     : CAST_FROM_FN_PTR(address, act.sa_handler);
4724 
4725 
4726   switch (sig) {
4727   case SIGSEGV:
4728   case SIGBUS:
4729   case SIGFPE:
4730   case SIGPIPE:
4731   case SIGILL:
4732   case SIGXFSZ:
4733     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4734     break;
4735 
4736   case SHUTDOWN1_SIGNAL:
4737   case SHUTDOWN2_SIGNAL:
4738   case SHUTDOWN3_SIGNAL:
4739   case BREAK_SIGNAL:
4740     jvmHandler = (address)user_handler();
4741     break;
4742 
4743   default:
4744     if (sig == SR_signum) {
4745       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4746     } else {
4747       return;
4748     }
4749     break;
4750   }
4751 
4752   if (thisHandler != jvmHandler) {
4753     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4754     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4755     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4756     // No need to check this sig any longer
4757     sigaddset(&check_signal_done, sig);
4758     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4759     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4760       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4761                     exception_name(sig, buf, O_BUFLEN));
4762     }
4763   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4764     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4765     tty->print("expected:");
4766     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4767     tty->cr();
4768     tty->print("  found:");
4769     os::Posix::print_sa_flags(tty, act.sa_flags);
4770     tty->cr();
4771     // No need to check this sig any longer
4772     sigaddset(&check_signal_done, sig);
4773   }
4774 
4775   // Dump all the signal
4776   if (sigismember(&check_signal_done, sig)) {
4777     print_signal_handlers(tty, buf, O_BUFLEN);
4778   }
4779 }
4780 
4781 extern void report_error(char* file_name, int line_no, char* title,
4782                          char* format, ...);
4783 
4784 // this is called _before_ the most of global arguments have been parsed
4785 void os::init(void) {
4786   char dummy;   // used to get a guess on initial stack address
4787 //  first_hrtime = gethrtime();
4788 
4789   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4790 
4791   init_random(1234567);
4792 
4793   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4794   if (Linux::page_size() == -1) {
4795     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4796           os::strerror(errno));
4797   }
4798   init_page_sizes((size_t) Linux::page_size());
4799 
4800   Linux::initialize_system_info();
4801 
4802   Linux::initialize_os_info();
4803 
4804   // main_thread points to the aboriginal thread
4805   Linux::_main_thread = pthread_self();
4806 
4807   Linux::clock_init();
4808   initial_time_count = javaTimeNanos();
4809 
4810   // retrieve entry point for pthread_setname_np
4811   Linux::_pthread_setname_np =
4812     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4813 
4814   os::Posix::init();
4815 }
4816 
4817 // To install functions for atexit system call
4818 extern "C" {
4819   static void perfMemory_exit_helper() {
4820     perfMemory_exit();
4821   }
4822 }
4823 
4824 // this is called _after_ the global arguments have been parsed
4825 jint os::init_2(void) {
4826 
4827   os::Posix::init_2();
4828 
4829   Linux::fast_thread_clock_init();
4830 
4831   // Allocate a single page and mark it as readable for safepoint polling
4832   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4833   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4834 
4835   os::set_polling_page(polling_page);
4836   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4837 
4838   if (!UseMembar) {
4839     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4840     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4841     os::set_memory_serialize_page(mem_serialize_page);
4842     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4843   }
4844 
4845   // initialize suspend/resume support - must do this before signal_sets_init()
4846   if (SR_initialize() != 0) {
4847     perror("SR_initialize failed");
4848     return JNI_ERR;
4849   }
4850 
4851   Linux::signal_sets_init();
4852   Linux::install_signal_handlers();
4853 
4854   // Check and sets minimum stack sizes against command line options
4855   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4856     return JNI_ERR;
4857   }
4858   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4859 
4860 #if defined(IA32)
4861   workaround_expand_exec_shield_cs_limit();
4862 #endif
4863 
4864   Linux::libpthread_init();
4865   Linux::sched_getcpu_init();
4866   log_info(os)("HotSpot is running with %s, %s",
4867                Linux::glibc_version(), Linux::libpthread_version());
4868 
4869   if (UseNUMA) {
4870     if (!Linux::libnuma_init()) {
4871       UseNUMA = false;
4872     } else {
4873       if ((Linux::numa_max_node() < 1)) {
4874         // There's only one node(they start from 0), disable NUMA.
4875         UseNUMA = false;
4876       }
4877     }
4878     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4879     // we can make the adaptive lgrp chunk resizing work. If the user specified
4880     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4881     // disable adaptive resizing.
4882     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4883       if (FLAG_IS_DEFAULT(UseNUMA)) {
4884         UseNUMA = false;
4885       } else {
4886         if (FLAG_IS_DEFAULT(UseLargePages) &&
4887             FLAG_IS_DEFAULT(UseSHM) &&
4888             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4889           UseLargePages = false;
4890         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4891           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4892           UseAdaptiveSizePolicy = false;
4893           UseAdaptiveNUMAChunkSizing = false;
4894         }
4895       }
4896     }
4897     if (!UseNUMA && ForceNUMA) {
4898       UseNUMA = true;
4899     }
4900   }
4901 
4902   if (MaxFDLimit) {
4903     // set the number of file descriptors to max. print out error
4904     // if getrlimit/setrlimit fails but continue regardless.
4905     struct rlimit nbr_files;
4906     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4907     if (status != 0) {
4908       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4909     } else {
4910       nbr_files.rlim_cur = nbr_files.rlim_max;
4911       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4912       if (status != 0) {
4913         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4914       }
4915     }
4916   }
4917 
4918   // Initialize lock used to serialize thread creation (see os::create_thread)
4919   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4920 
4921   // at-exit methods are called in the reverse order of their registration.
4922   // atexit functions are called on return from main or as a result of a
4923   // call to exit(3C). There can be only 32 of these functions registered
4924   // and atexit() does not set errno.
4925 
4926   if (PerfAllowAtExitRegistration) {
4927     // only register atexit functions if PerfAllowAtExitRegistration is set.
4928     // atexit functions can be delayed until process exit time, which
4929     // can be problematic for embedded VM situations. Embedded VMs should
4930     // call DestroyJavaVM() to assure that VM resources are released.
4931 
4932     // note: perfMemory_exit_helper atexit function may be removed in
4933     // the future if the appropriate cleanup code can be added to the
4934     // VM_Exit VMOperation's doit method.
4935     if (atexit(perfMemory_exit_helper) != 0) {
4936       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4937     }
4938   }
4939 
4940   // initialize thread priority policy
4941   prio_init();
4942 
4943   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
4944     set_coredump_filter(false /*largepages*/, true /*dax_shared*/); 
4945   }
4946   return JNI_OK;
4947 }
4948 
4949 // Mark the polling page as unreadable
4950 void os::make_polling_page_unreadable(void) {
4951   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4952     fatal("Could not disable polling page");
4953   }
4954 }
4955 
4956 // Mark the polling page as readable
4957 void os::make_polling_page_readable(void) {
4958   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4959     fatal("Could not enable polling page");
4960   }
4961 }
4962 
4963 // older glibc versions don't have this macro (which expands to
4964 // an optimized bit-counting function) so we have to roll our own
4965 #ifndef CPU_COUNT
4966 
4967 static int _cpu_count(const cpu_set_t* cpus) {
4968   int count = 0;
4969   // only look up to the number of configured processors
4970   for (int i = 0; i < os::processor_count(); i++) {
4971     if (CPU_ISSET(i, cpus)) {
4972       count++;
4973     }
4974   }
4975   return count;
4976 }
4977 
4978 #define CPU_COUNT(cpus) _cpu_count(cpus)
4979 
4980 #endif // CPU_COUNT
4981 
4982 // Get the current number of available processors for this process.
4983 // This value can change at any time during a process's lifetime.
4984 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
4985 // If it appears there may be more than 1024 processors then we do a
4986 // dynamic check - see 6515172 for details.
4987 // If anything goes wrong we fallback to returning the number of online
4988 // processors - which can be greater than the number available to the process.
4989 int os::active_processor_count() {
4990   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4991   cpu_set_t* cpus_p = &cpus;
4992   int cpus_size = sizeof(cpu_set_t);
4993 
4994   int configured_cpus = processor_count();  // upper bound on available cpus
4995   int cpu_count = 0;
4996 
4997 // old build platforms may not support dynamic cpu sets
4998 #ifdef CPU_ALLOC
4999 
5000   // To enable easy testing of the dynamic path on different platforms we
5001   // introduce a diagnostic flag: UseCpuAllocPath
5002   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5003     // kernel may use a mask bigger than cpu_set_t
5004     log_trace(os)("active_processor_count: using dynamic path %s"
5005                   "- configured processors: %d",
5006                   UseCpuAllocPath ? "(forced) " : "",
5007                   configured_cpus);
5008     cpus_p = CPU_ALLOC(configured_cpus);
5009     if (cpus_p != NULL) {
5010       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5011       // zero it just to be safe
5012       CPU_ZERO_S(cpus_size, cpus_p);
5013     }
5014     else {
5015        // failed to allocate so fallback to online cpus
5016        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5017        log_trace(os)("active_processor_count: "
5018                      "CPU_ALLOC failed (%s) - using "
5019                      "online processor count: %d",
5020                      os::strerror(errno), online_cpus);
5021        return online_cpus;
5022     }
5023   }
5024   else {
5025     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5026                   configured_cpus);
5027   }
5028 #else // CPU_ALLOC
5029 // these stubs won't be executed
5030 #define CPU_COUNT_S(size, cpus) -1
5031 #define CPU_FREE(cpus)
5032 
5033   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5034                 configured_cpus);
5035 #endif // CPU_ALLOC
5036 
5037   // pid 0 means the current thread - which we have to assume represents the process
5038   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5039     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5040       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5041     }
5042     else {
5043       cpu_count = CPU_COUNT(cpus_p);
5044     }
5045     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5046   }
5047   else {
5048     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5049     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5050             "which may exceed available processors", os::strerror(errno), cpu_count);
5051   }
5052 
5053   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5054     CPU_FREE(cpus_p);
5055   }
5056 
5057   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5058   return cpu_count;
5059 }
5060 
5061 void os::set_native_thread_name(const char *name) {
5062   if (Linux::_pthread_setname_np) {
5063     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5064     snprintf(buf, sizeof(buf), "%s", name);
5065     buf[sizeof(buf) - 1] = '\0';
5066     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5067     // ERANGE should not happen; all other errors should just be ignored.
5068     assert(rc != ERANGE, "pthread_setname_np failed");
5069   }
5070 }
5071 
5072 bool os::distribute_processes(uint length, uint* distribution) {
5073   // Not yet implemented.
5074   return false;
5075 }
5076 
5077 bool os::bind_to_processor(uint processor_id) {
5078   // Not yet implemented.
5079   return false;
5080 }
5081 
5082 ///
5083 
5084 void os::SuspendedThreadTask::internal_do_task() {
5085   if (do_suspend(_thread->osthread())) {
5086     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5087     do_task(context);
5088     do_resume(_thread->osthread());
5089   }
5090 }
5091 
5092 ////////////////////////////////////////////////////////////////////////////////
5093 // debug support
5094 
5095 bool os::find(address addr, outputStream* st) {
5096   Dl_info dlinfo;
5097   memset(&dlinfo, 0, sizeof(dlinfo));
5098   if (dladdr(addr, &dlinfo) != 0) {
5099     st->print(PTR_FORMAT ": ", p2i(addr));
5100     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5101       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5102                 p2i(addr) - p2i(dlinfo.dli_saddr));
5103     } else if (dlinfo.dli_fbase != NULL) {
5104       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5105     } else {
5106       st->print("<absolute address>");
5107     }
5108     if (dlinfo.dli_fname != NULL) {
5109       st->print(" in %s", dlinfo.dli_fname);
5110     }
5111     if (dlinfo.dli_fbase != NULL) {
5112       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5113     }
5114     st->cr();
5115 
5116     if (Verbose) {
5117       // decode some bytes around the PC
5118       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5119       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5120       address       lowest = (address) dlinfo.dli_sname;
5121       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5122       if (begin < lowest)  begin = lowest;
5123       Dl_info dlinfo2;
5124       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5125           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5126         end = (address) dlinfo2.dli_saddr;
5127       }
5128       Disassembler::decode(begin, end, st);
5129     }
5130     return true;
5131   }
5132   return false;
5133 }
5134 
5135 ////////////////////////////////////////////////////////////////////////////////
5136 // misc
5137 
5138 // This does not do anything on Linux. This is basically a hook for being
5139 // able to use structured exception handling (thread-local exception filters)
5140 // on, e.g., Win32.
5141 void
5142 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5143                          JavaCallArguments* args, Thread* thread) {
5144   f(value, method, args, thread);
5145 }
5146 
5147 void os::print_statistics() {
5148 }
5149 
5150 bool os::message_box(const char* title, const char* message) {
5151   int i;
5152   fdStream err(defaultStream::error_fd());
5153   for (i = 0; i < 78; i++) err.print_raw("=");
5154   err.cr();
5155   err.print_raw_cr(title);
5156   for (i = 0; i < 78; i++) err.print_raw("-");
5157   err.cr();
5158   err.print_raw_cr(message);
5159   for (i = 0; i < 78; i++) err.print_raw("=");
5160   err.cr();
5161 
5162   char buf[16];
5163   // Prevent process from exiting upon "read error" without consuming all CPU
5164   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5165 
5166   return buf[0] == 'y' || buf[0] == 'Y';
5167 }
5168 
5169 int os::stat(const char *path, struct stat *sbuf) {
5170   char pathbuf[MAX_PATH];
5171   if (strlen(path) > MAX_PATH - 1) {
5172     errno = ENAMETOOLONG;
5173     return -1;
5174   }
5175   os::native_path(strcpy(pathbuf, path));
5176   return ::stat(pathbuf, sbuf);
5177 }
5178 
5179 // Is a (classpath) directory empty?
5180 bool os::dir_is_empty(const char* path) {
5181   DIR *dir = NULL;
5182   struct dirent *ptr;
5183 
5184   dir = opendir(path);
5185   if (dir == NULL) return true;
5186 
5187   // Scan the directory
5188   bool result = true;
5189   char buf[sizeof(struct dirent) + MAX_PATH];
5190   while (result && (ptr = ::readdir(dir)) != NULL) {
5191     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5192       result = false;
5193     }
5194   }
5195   closedir(dir);
5196   return result;
5197 }
5198 
5199 // This code originates from JDK's sysOpen and open64_w
5200 // from src/solaris/hpi/src/system_md.c
5201 
5202 int os::open(const char *path, int oflag, int mode) {
5203   if (strlen(path) > MAX_PATH - 1) {
5204     errno = ENAMETOOLONG;
5205     return -1;
5206   }
5207 
5208   // All file descriptors that are opened in the Java process and not
5209   // specifically destined for a subprocess should have the close-on-exec
5210   // flag set.  If we don't set it, then careless 3rd party native code
5211   // might fork and exec without closing all appropriate file descriptors
5212   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5213   // turn might:
5214   //
5215   // - cause end-of-file to fail to be detected on some file
5216   //   descriptors, resulting in mysterious hangs, or
5217   //
5218   // - might cause an fopen in the subprocess to fail on a system
5219   //   suffering from bug 1085341.
5220   //
5221   // (Yes, the default setting of the close-on-exec flag is a Unix
5222   // design flaw)
5223   //
5224   // See:
5225   // 1085341: 32-bit stdio routines should support file descriptors >255
5226   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5227   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5228   //
5229   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5230   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5231   // because it saves a system call and removes a small window where the flag
5232   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5233   // and we fall back to using FD_CLOEXEC (see below).
5234 #ifdef O_CLOEXEC
5235   oflag |= O_CLOEXEC;
5236 #endif
5237 
5238   int fd = ::open64(path, oflag, mode);
5239   if (fd == -1) return -1;
5240 
5241   //If the open succeeded, the file might still be a directory
5242   {
5243     struct stat64 buf64;
5244     int ret = ::fstat64(fd, &buf64);
5245     int st_mode = buf64.st_mode;
5246 
5247     if (ret != -1) {
5248       if ((st_mode & S_IFMT) == S_IFDIR) {
5249         errno = EISDIR;
5250         ::close(fd);
5251         return -1;
5252       }
5253     } else {
5254       ::close(fd);
5255       return -1;
5256     }
5257   }
5258 
5259 #ifdef FD_CLOEXEC
5260   // Validate that the use of the O_CLOEXEC flag on open above worked.
5261   // With recent kernels, we will perform this check exactly once.
5262   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5263   if (!O_CLOEXEC_is_known_to_work) {
5264     int flags = ::fcntl(fd, F_GETFD);
5265     if (flags != -1) {
5266       if ((flags & FD_CLOEXEC) != 0)
5267         O_CLOEXEC_is_known_to_work = 1;
5268       else
5269         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5270     }
5271   }
5272 #endif
5273 
5274   return fd;
5275 }
5276 
5277 
5278 // create binary file, rewriting existing file if required
5279 int os::create_binary_file(const char* path, bool rewrite_existing) {
5280   int oflags = O_WRONLY | O_CREAT;
5281   if (!rewrite_existing) {
5282     oflags |= O_EXCL;
5283   }
5284   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5285 }
5286 
5287 // return current position of file pointer
5288 jlong os::current_file_offset(int fd) {
5289   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5290 }
5291 
5292 // move file pointer to the specified offset
5293 jlong os::seek_to_file_offset(int fd, jlong offset) {
5294   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5295 }
5296 
5297 // This code originates from JDK's sysAvailable
5298 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5299 
5300 int os::available(int fd, jlong *bytes) {
5301   jlong cur, end;
5302   int mode;
5303   struct stat64 buf64;
5304 
5305   if (::fstat64(fd, &buf64) >= 0) {
5306     mode = buf64.st_mode;
5307     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5308       int n;
5309       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5310         *bytes = n;
5311         return 1;
5312       }
5313     }
5314   }
5315   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5316     return 0;
5317   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5318     return 0;
5319   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5320     return 0;
5321   }
5322   *bytes = end - cur;
5323   return 1;
5324 }
5325 
5326 // Map a block of memory.
5327 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5328                         char *addr, size_t bytes, bool read_only,
5329                         bool allow_exec) {
5330   int prot;
5331   int flags = MAP_PRIVATE;
5332 
5333   if (read_only) {
5334     prot = PROT_READ;
5335   } else {
5336     prot = PROT_READ | PROT_WRITE;
5337   }
5338 
5339   if (allow_exec) {
5340     prot |= PROT_EXEC;
5341   }
5342 
5343   if (addr != NULL) {
5344     flags |= MAP_FIXED;
5345   }
5346 
5347   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5348                                      fd, file_offset);
5349   if (mapped_address == MAP_FAILED) {
5350     return NULL;
5351   }
5352   return mapped_address;
5353 }
5354 
5355 
5356 // Remap a block of memory.
5357 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5358                           char *addr, size_t bytes, bool read_only,
5359                           bool allow_exec) {
5360   // same as map_memory() on this OS
5361   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5362                         allow_exec);
5363 }
5364 
5365 
5366 // Unmap a block of memory.
5367 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5368   return munmap(addr, bytes) == 0;
5369 }
5370 
5371 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5372 
5373 static clockid_t thread_cpu_clockid(Thread* thread) {
5374   pthread_t tid = thread->osthread()->pthread_id();
5375   clockid_t clockid;
5376 
5377   // Get thread clockid
5378   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5379   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5380   return clockid;
5381 }
5382 
5383 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5384 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5385 // of a thread.
5386 //
5387 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5388 // the fast estimate available on the platform.
5389 
5390 jlong os::current_thread_cpu_time() {
5391   if (os::Linux::supports_fast_thread_cpu_time()) {
5392     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5393   } else {
5394     // return user + sys since the cost is the same
5395     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5396   }
5397 }
5398 
5399 jlong os::thread_cpu_time(Thread* thread) {
5400   // consistent with what current_thread_cpu_time() returns
5401   if (os::Linux::supports_fast_thread_cpu_time()) {
5402     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5403   } else {
5404     return slow_thread_cpu_time(thread, true /* user + sys */);
5405   }
5406 }
5407 
5408 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5409   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5410     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5411   } else {
5412     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5413   }
5414 }
5415 
5416 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5417   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5418     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5419   } else {
5420     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5421   }
5422 }
5423 
5424 //  -1 on error.
5425 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5426   pid_t  tid = thread->osthread()->thread_id();
5427   char *s;
5428   char stat[2048];
5429   int statlen;
5430   char proc_name[64];
5431   int count;
5432   long sys_time, user_time;
5433   char cdummy;
5434   int idummy;
5435   long ldummy;
5436   FILE *fp;
5437 
5438   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5439   fp = fopen(proc_name, "r");
5440   if (fp == NULL) return -1;
5441   statlen = fread(stat, 1, 2047, fp);
5442   stat[statlen] = '\0';
5443   fclose(fp);
5444 
5445   // Skip pid and the command string. Note that we could be dealing with
5446   // weird command names, e.g. user could decide to rename java launcher
5447   // to "java 1.4.2 :)", then the stat file would look like
5448   //                1234 (java 1.4.2 :)) R ... ...
5449   // We don't really need to know the command string, just find the last
5450   // occurrence of ")" and then start parsing from there. See bug 4726580.
5451   s = strrchr(stat, ')');
5452   if (s == NULL) return -1;
5453 
5454   // Skip blank chars
5455   do { s++; } while (s && isspace(*s));
5456 
5457   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5458                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5459                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5460                  &user_time, &sys_time);
5461   if (count != 13) return -1;
5462   if (user_sys_cpu_time) {
5463     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5464   } else {
5465     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5466   }
5467 }
5468 
5469 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5470   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5471   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5472   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5473   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5474 }
5475 
5476 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5477   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5478   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5479   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5480   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5481 }
5482 
5483 bool os::is_thread_cpu_time_supported() {
5484   return true;
5485 }
5486 
5487 // System loadavg support.  Returns -1 if load average cannot be obtained.
5488 // Linux doesn't yet have a (official) notion of processor sets,
5489 // so just return the system wide load average.
5490 int os::loadavg(double loadavg[], int nelem) {
5491   return ::getloadavg(loadavg, nelem);
5492 }
5493 
5494 void os::pause() {
5495   char filename[MAX_PATH];
5496   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5497     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5498   } else {
5499     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5500   }
5501 
5502   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5503   if (fd != -1) {
5504     struct stat buf;
5505     ::close(fd);
5506     while (::stat(filename, &buf) == 0) {
5507       (void)::poll(NULL, 0, 100);
5508     }
5509   } else {
5510     jio_fprintf(stderr,
5511                 "Could not open pause file '%s', continuing immediately.\n", filename);
5512   }
5513 }
5514 
5515 extern char** environ;
5516 
5517 // Run the specified command in a separate process. Return its exit value,
5518 // or -1 on failure (e.g. can't fork a new process).
5519 // Unlike system(), this function can be called from signal handler. It
5520 // doesn't block SIGINT et al.
5521 int os::fork_and_exec(char* cmd) {
5522   const char * argv[4] = {"sh", "-c", cmd, NULL};
5523 
5524   pid_t pid = fork();
5525 
5526   if (pid < 0) {
5527     // fork failed
5528     return -1;
5529 
5530   } else if (pid == 0) {
5531     // child process
5532 
5533     execve("/bin/sh", (char* const*)argv, environ);
5534 
5535     // execve failed
5536     _exit(-1);
5537 
5538   } else  {
5539     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5540     // care about the actual exit code, for now.
5541 
5542     int status;
5543 
5544     // Wait for the child process to exit.  This returns immediately if
5545     // the child has already exited. */
5546     while (waitpid(pid, &status, 0) < 0) {
5547       switch (errno) {
5548       case ECHILD: return 0;
5549       case EINTR: break;
5550       default: return -1;
5551       }
5552     }
5553 
5554     if (WIFEXITED(status)) {
5555       // The child exited normally; get its exit code.
5556       return WEXITSTATUS(status);
5557     } else if (WIFSIGNALED(status)) {
5558       // The child exited because of a signal
5559       // The best value to return is 0x80 + signal number,
5560       // because that is what all Unix shells do, and because
5561       // it allows callers to distinguish between process exit and
5562       // process death by signal.
5563       return 0x80 + WTERMSIG(status);
5564     } else {
5565       // Unknown exit code; pass it through
5566       return status;
5567     }
5568   }
5569 }
5570 
5571 // is_headless_jre()
5572 //
5573 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5574 // in order to report if we are running in a headless jre
5575 //
5576 // Since JDK8 xawt/libmawt.so was moved into the same directory
5577 // as libawt.so, and renamed libawt_xawt.so
5578 //
5579 bool os::is_headless_jre() {
5580   struct stat statbuf;
5581   char buf[MAXPATHLEN];
5582   char libmawtpath[MAXPATHLEN];
5583   const char *xawtstr  = "/xawt/libmawt.so";
5584   const char *new_xawtstr = "/libawt_xawt.so";
5585   char *p;
5586 
5587   // Get path to libjvm.so
5588   os::jvm_path(buf, sizeof(buf));
5589 
5590   // Get rid of libjvm.so
5591   p = strrchr(buf, '/');
5592   if (p == NULL) {
5593     return false;
5594   } else {
5595     *p = '\0';
5596   }
5597 
5598   // Get rid of client or server
5599   p = strrchr(buf, '/');
5600   if (p == NULL) {
5601     return false;
5602   } else {
5603     *p = '\0';
5604   }
5605 
5606   // check xawt/libmawt.so
5607   strcpy(libmawtpath, buf);
5608   strcat(libmawtpath, xawtstr);
5609   if (::stat(libmawtpath, &statbuf) == 0) return false;
5610 
5611   // check libawt_xawt.so
5612   strcpy(libmawtpath, buf);
5613   strcat(libmawtpath, new_xawtstr);
5614   if (::stat(libmawtpath, &statbuf) == 0) return false;
5615 
5616   return true;
5617 }
5618 
5619 // Get the default path to the core file
5620 // Returns the length of the string
5621 int os::get_core_path(char* buffer, size_t bufferSize) {
5622   /*
5623    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5624    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5625    */
5626   const int core_pattern_len = 129;
5627   char core_pattern[core_pattern_len] = {0};
5628 
5629   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5630   if (core_pattern_file == -1) {
5631     return -1;
5632   }
5633 
5634   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5635   ::close(core_pattern_file);
5636   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5637     return -1;
5638   }
5639   if (core_pattern[ret-1] == '\n') {
5640     core_pattern[ret-1] = '\0';
5641   } else {
5642     core_pattern[ret] = '\0';
5643   }
5644 
5645   char *pid_pos = strstr(core_pattern, "%p");
5646   int written;
5647 
5648   if (core_pattern[0] == '/') {
5649     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5650   } else {
5651     char cwd[PATH_MAX];
5652 
5653     const char* p = get_current_directory(cwd, PATH_MAX);
5654     if (p == NULL) {
5655       return -1;
5656     }
5657 
5658     if (core_pattern[0] == '|') {
5659       written = jio_snprintf(buffer, bufferSize,
5660                              "\"%s\" (or dumping to %s/core.%d)",
5661                              &core_pattern[1], p, current_process_id());
5662     } else {
5663       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5664     }
5665   }
5666 
5667   if (written < 0) {
5668     return -1;
5669   }
5670 
5671   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5672     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5673 
5674     if (core_uses_pid_file != -1) {
5675       char core_uses_pid = 0;
5676       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5677       ::close(core_uses_pid_file);
5678 
5679       if (core_uses_pid == '1') {
5680         jio_snprintf(buffer + written, bufferSize - written,
5681                                           ".%d", current_process_id());
5682       }
5683     }
5684   }
5685 
5686   return strlen(buffer);
5687 }
5688 
5689 bool os::start_debugging(char *buf, int buflen) {
5690   int len = (int)strlen(buf);
5691   char *p = &buf[len];
5692 
5693   jio_snprintf(p, buflen-len,
5694                "\n\n"
5695                "Do you want to debug the problem?\n\n"
5696                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5697                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5698                "Otherwise, press RETURN to abort...",
5699                os::current_process_id(), os::current_process_id(),
5700                os::current_thread_id(), os::current_thread_id());
5701 
5702   bool yes = os::message_box("Unexpected Error", buf);
5703 
5704   if (yes) {
5705     // yes, user asked VM to launch debugger
5706     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5707                  os::current_process_id(), os::current_process_id());
5708 
5709     os::fork_and_exec(buf);
5710     yes = false;
5711   }
5712   return yes;
5713 }
5714 
5715 
5716 // Java/Compiler thread:
5717 //
5718 //   Low memory addresses
5719 // P0 +------------------------+
5720 //    |                        |\  Java thread created by VM does not have glibc
5721 //    |    glibc guard page    | - guard page, attached Java thread usually has
5722 //    |                        |/  1 glibc guard page.
5723 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5724 //    |                        |\
5725 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5726 //    |                        |/
5727 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5728 //    |                        |\
5729 //    |      Normal Stack      | -
5730 //    |                        |/
5731 // P2 +------------------------+ Thread::stack_base()
5732 //
5733 // Non-Java thread:
5734 //
5735 //   Low memory addresses
5736 // P0 +------------------------+
5737 //    |                        |\
5738 //    |  glibc guard page      | - usually 1 page
5739 //    |                        |/
5740 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5741 //    |                        |\
5742 //    |      Normal Stack      | -
5743 //    |                        |/
5744 // P2 +------------------------+ Thread::stack_base()
5745 //
5746 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5747 //    returned from pthread_attr_getstack().
5748 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5749 //    of the stack size given in pthread_attr. We work around this for
5750 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5751 //
5752 #ifndef ZERO
5753 static void current_stack_region(address * bottom, size_t * size) {
5754   if (os::Linux::is_initial_thread()) {
5755     // initial thread needs special handling because pthread_getattr_np()
5756     // may return bogus value.
5757     *bottom = os::Linux::initial_thread_stack_bottom();
5758     *size   = os::Linux::initial_thread_stack_size();
5759   } else {
5760     pthread_attr_t attr;
5761 
5762     int rslt = pthread_getattr_np(pthread_self(), &attr);
5763 
5764     // JVM needs to know exact stack location, abort if it fails
5765     if (rslt != 0) {
5766       if (rslt == ENOMEM) {
5767         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5768       } else {
5769         fatal("pthread_getattr_np failed with error = %d", rslt);
5770       }
5771     }
5772 
5773     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5774       fatal("Cannot locate current stack attributes!");
5775     }
5776 
5777     // Work around NPTL stack guard error.
5778     size_t guard_size = 0;
5779     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5780     if (rslt != 0) {
5781       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5782     }
5783     *bottom += guard_size;
5784     *size   -= guard_size;
5785 
5786     pthread_attr_destroy(&attr);
5787 
5788   }
5789   assert(os::current_stack_pointer() >= *bottom &&
5790          os::current_stack_pointer() < *bottom + *size, "just checking");
5791 }
5792 
5793 address os::current_stack_base() {
5794   address bottom;
5795   size_t size;
5796   current_stack_region(&bottom, &size);
5797   return (bottom + size);
5798 }
5799 
5800 size_t os::current_stack_size() {
5801   // This stack size includes the usable stack and HotSpot guard pages
5802   // (for the threads that have Hotspot guard pages).
5803   address bottom;
5804   size_t size;
5805   current_stack_region(&bottom, &size);
5806   return size;
5807 }
5808 #endif
5809 
5810 static inline struct timespec get_mtime(const char* filename) {
5811   struct stat st;
5812   int ret = os::stat(filename, &st);
5813   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5814   return st.st_mtim;
5815 }
5816 
5817 int os::compare_file_modified_times(const char* file1, const char* file2) {
5818   struct timespec filetime1 = get_mtime(file1);
5819   struct timespec filetime2 = get_mtime(file2);
5820   int diff = filetime1.tv_sec - filetime2.tv_sec;
5821   if (diff == 0) {
5822     return filetime1.tv_nsec - filetime2.tv_nsec;
5823   }
5824   return diff;
5825 }
5826 
5827 /////////////// Unit tests ///////////////
5828 
5829 #ifndef PRODUCT
5830 
5831 #define test_log(...)              \
5832   do {                             \
5833     if (VerboseInternalVMTests) {  \
5834       tty->print_cr(__VA_ARGS__);  \
5835       tty->flush();                \
5836     }                              \
5837   } while (false)
5838 
5839 class TestReserveMemorySpecial : AllStatic {
5840  public:
5841   static void small_page_write(void* addr, size_t size) {
5842     size_t page_size = os::vm_page_size();
5843 
5844     char* end = (char*)addr + size;
5845     for (char* p = (char*)addr; p < end; p += page_size) {
5846       *p = 1;
5847     }
5848   }
5849 
5850   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5851     if (!UseHugeTLBFS) {
5852       return;
5853     }
5854 
5855     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5856 
5857     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5858 
5859     if (addr != NULL) {
5860       small_page_write(addr, size);
5861 
5862       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5863     }
5864   }
5865 
5866   static void test_reserve_memory_special_huge_tlbfs_only() {
5867     if (!UseHugeTLBFS) {
5868       return;
5869     }
5870 
5871     size_t lp = os::large_page_size();
5872 
5873     for (size_t size = lp; size <= lp * 10; size += lp) {
5874       test_reserve_memory_special_huge_tlbfs_only(size);
5875     }
5876   }
5877 
5878   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5879     size_t lp = os::large_page_size();
5880     size_t ag = os::vm_allocation_granularity();
5881 
5882     // sizes to test
5883     const size_t sizes[] = {
5884       lp, lp + ag, lp + lp / 2, lp * 2,
5885       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5886       lp * 10, lp * 10 + lp / 2
5887     };
5888     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5889 
5890     // For each size/alignment combination, we test three scenarios:
5891     // 1) with req_addr == NULL
5892     // 2) with a non-null req_addr at which we expect to successfully allocate
5893     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5894     //    expect the allocation to either fail or to ignore req_addr
5895 
5896     // Pre-allocate two areas; they shall be as large as the largest allocation
5897     //  and aligned to the largest alignment we will be testing.
5898     const size_t mapping_size = sizes[num_sizes - 1] * 2;
5899     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5900       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5901       -1, 0);
5902     assert(mapping1 != MAP_FAILED, "should work");
5903 
5904     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5905       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5906       -1, 0);
5907     assert(mapping2 != MAP_FAILED, "should work");
5908 
5909     // Unmap the first mapping, but leave the second mapping intact: the first
5910     // mapping will serve as a value for a "good" req_addr (case 2). The second
5911     // mapping, still intact, as "bad" req_addr (case 3).
5912     ::munmap(mapping1, mapping_size);
5913 
5914     // Case 1
5915     test_log("%s, req_addr NULL:", __FUNCTION__);
5916     test_log("size            align           result");
5917 
5918     for (int i = 0; i < num_sizes; i++) {
5919       const size_t size = sizes[i];
5920       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5921         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5922         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5923                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
5924         if (p != NULL) {
5925           assert(is_aligned(p, alignment), "must be");
5926           small_page_write(p, size);
5927           os::Linux::release_memory_special_huge_tlbfs(p, size);
5928         }
5929       }
5930     }
5931 
5932     // Case 2
5933     test_log("%s, req_addr non-NULL:", __FUNCTION__);
5934     test_log("size            align           req_addr         result");
5935 
5936     for (int i = 0; i < num_sizes; i++) {
5937       const size_t size = sizes[i];
5938       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5939         char* const req_addr = align_up(mapping1, alignment);
5940         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5941         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5942                  size, alignment, p2i(req_addr), p2i(p),
5943                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
5944         if (p != NULL) {
5945           assert(p == req_addr, "must be");
5946           small_page_write(p, size);
5947           os::Linux::release_memory_special_huge_tlbfs(p, size);
5948         }
5949       }
5950     }
5951 
5952     // Case 3
5953     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
5954     test_log("size            align           req_addr         result");
5955 
5956     for (int i = 0; i < num_sizes; i++) {
5957       const size_t size = sizes[i];
5958       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5959         char* const req_addr = align_up(mapping2, alignment);
5960         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5961         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5962                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
5963         // as the area around req_addr contains already existing mappings, the API should always
5964         // return NULL (as per contract, it cannot return another address)
5965         assert(p == NULL, "must be");
5966       }
5967     }
5968 
5969     ::munmap(mapping2, mapping_size);
5970 
5971   }
5972 
5973   static void test_reserve_memory_special_huge_tlbfs() {
5974     if (!UseHugeTLBFS) {
5975       return;
5976     }
5977 
5978     test_reserve_memory_special_huge_tlbfs_only();
5979     test_reserve_memory_special_huge_tlbfs_mixed();
5980   }
5981 
5982   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
5983     if (!UseSHM) {
5984       return;
5985     }
5986 
5987     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
5988 
5989     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
5990 
5991     if (addr != NULL) {
5992       assert(is_aligned(addr, alignment), "Check");
5993       assert(is_aligned(addr, os::large_page_size()), "Check");
5994 
5995       small_page_write(addr, size);
5996 
5997       os::Linux::release_memory_special_shm(addr, size);
5998     }
5999   }
6000 
6001   static void test_reserve_memory_special_shm() {
6002     size_t lp = os::large_page_size();
6003     size_t ag = os::vm_allocation_granularity();
6004 
6005     for (size_t size = ag; size < lp * 3; size += ag) {
6006       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6007         test_reserve_memory_special_shm(size, alignment);
6008       }
6009     }
6010   }
6011 
6012   static void test() {
6013     test_reserve_memory_special_huge_tlbfs();
6014     test_reserve_memory_special_shm();
6015   }
6016 };
6017 
6018 void TestReserveMemorySpecial_test() {
6019   TestReserveMemorySpecial::test();
6020 }
6021 
6022 #endif