
C:\Projects\3DXP_Old_Gen_on_3DXP\jdk-OldOnAEP_ParallelOld\JEP_design.txt Tuesday, August 21, 2018 10:29 AM

Placement of old generation on NV-DIMMs.

There are two levels at which we need enabling, first being the memory management level and
second is at the GC level.
At the memory management level we need to define new abstractions for VirtualSpace to manage
memory which is backed by NV-DIMMs. At GC level we need to use the correct VirtualSpace
abstractions and do additional handling to manage young and old generation. The following text
describes the design for the two GCs.

ParallelScavenge:
ParallelScavenge takes 'ReservedSpace' corresponding to the Heap and creates
'AdjoiningVirtualSpaces' which comprises of two 'PSVirtualSpace's corresponding to the two
generations. These virtual spaces are assigned to PSOldGen and PSYoungGen.
'AdjoiningVirtualSpace' maintains an internal boundary within the reserved heap space, lower
part of it belongs to PSOldGen->PSVirtualSpace and higher part belongs to
PSYoungGen->PSVirtualSpace.

Depending on value of AdaptiveGCBoundary flag there are two cases:
1. AdaptiveGCBoundary = false (default):

In this case, the boundary in AbjoiningGenerations is fixed and each generations
expand/shrink within their respective reserved spaces.
This case can be handled by creating a subclass of 'PSVirtualSpace' called
'PSFileBackedVirtualSpace' which manages memory exposed as filesystem (such as NV-DIMM). It
has a file descriptor as its member and overrides calls to expand() and shrink() the
virtual space.

2. AdaptiveGCBoundary = true:
In this case, ParallelScavenge has more flexibility to size the generations. If the desired
size of a generation is more than its reserved space, the boundary in
'AdjoiningVirtualSpaces' is moved to increase the reserved space for that generation.
This case is a little tricky to implement, because adjusting the boundary would require
changing physical memory mapping of the affected memory space (e.g. pages mapped to DRAM
will be mapped to NV-DIMM). Such remapping is known to be very costly due to tlb miss
penalties.
To avoid this we need to have non-overlapping reserved memory space for old and young
virtual spaces. We would need to reserve more than Xmx memory; reserved memory =
(max_size_of_young + max_size_of_old).
The young and old virtual spaces are assigned these non-overlapping reserved memories. To
expand the committed memory of one virtual space, we need to shrink (uncommit) the other
virtual space. In other words, we need an equivalent behaviour as adjust_boundary_up/down()
calls in AdjoiningVirtualSpaces.
To achieve this, we can implement a specialized implementation of 'AdjoiningGenerations'
called 'AdjoiningGenerationsForHeteroHeap'. This implementation overrides calls such as
adjust_boundary_*() and request_*_gen_expansion(). The overridden functionality maintains
the invariant that total committed memory before and after expanding/shrinking of
generations is same.

G1GC:
G1 divides the reserved heap space into regions; a region can end up as old, young or
humongous. Thus old generation is not a range of memory address, its a collection of region
which are spread throughout the heap. To avoid remapping of virtual pages to physical pages
when a region gets reassigned to a different generation, we need non-overlapping reserved

-1-

C:\Projects\3DXP_Old_Gen_on_3DXP\jdk-OldOnAEP_ParallelOld\JEP_design.txt Tuesday, August 21, 2018 10:29 AM

memories for old and young regions. We reserve 2*Xmx memory; Xmx memory for young regions and
remaining Xmx memory for old regions.
We can create a sub-class of HeapRegionManager called 'HeapRegionManagerForHeteroHeap' which
manages regions which are physically backed by DRAM and regions backed by NV-DIMM.
HeapRegionManagerForHeteroHeap can be internally composed of HeapRegionManager for DRAM
regions and HeapRegionManager for NV-DIMM regions (this conceptual composition does not need to
be implemented as separate classes)
This class overrides the api used by G1CollectedHeap to allocate new region, expand heap,
allocate humongous regions, etc. This class maintains the invariant that total number of
committed regions is less than current size of heap. E.g. if G1 needs more DRAM regions than
available at a given point, unused regions from NV-DIMM have to be uncommitted so that new
regions in DRAM can be committed.

-2-

Class diagram for ParallelScavenge GC (new classes in red)

AdjoiningGenerations

_old_gen

_young_gen

PSOldGen

_virtual_space

PSYoungGen

_virtual_space

PSVirtualSpace

ParallelScavengeHeap

_gens

PSFileBackedVirtualSpace

_file_path

AdjoiningGenerationsForHeteroHe
ap

_old_gen

_young_gen

ASPSOldGen

_virtual_space

ASPSYoungGen

_virtual_space

PSFileBackedVirtualSpace

_file_path

PSVirtualSpace

ParallelScavengeHeap

_gens

Object diagram when
UseAdaptiveGCBoundary == false

Object diagram when
UseAdaptiveGCBoundary == true

ReservedHeap (Xmx + Xmx)

DRAM regions (Xmx)
NVDIMM regions (Xmx)

- comitted

- uncomitted

- committed

- uncommited

HeapRegionManager

+ <= current _heap_size <= Xmx

NVDIMMDRAM

G1 GC design

HeapRegionManager

HeapRegionManagerForHeteroHeap

 _max_regions

 _total_committed

HRM_NVDIMM

_committed_nvdimm

_free_list_nvdimm

HRM_Dram

_committed_dram

_free_list_dram

G1 Class diagram

VM
Thread

HeapRegionManag
erForHeteroHeap HRM_Dram HRM_NVDIMM

Start

Expand by initial size

commit initial size
regions (n) Do not commit any

regions in DRAM.
Commit when G1Policy

decides
_target_young_list_length

Commit 'n' regions.
_num_committed_nv = n

new mutator
allocation

1. Allocate new region
from free_list_dram.

humongous
allocation 1. Find contiguous available regions.

2. If success, return index.

request contiguous 'n' regions

Survivor allocation duing evac.
pause

Old allocation duing evac.
pause

end of evac failure
1. Add collection set to
free_list.
2. Resize hrm_dram as per
new young_target_length
(as shown earlier)

1. add old regions
collection set to
_free_list_nvdimm

conc. marking cleanup
free_regions

1. add to
_free_list_nvdimm

Full GC

1. _num_committed_nv = 0
2. Open file and fallocate
'Xmx' space on NV-DIMM.

Map all regions to NV-DIMM.

Divide:
 [0,Xmx) to HRM_DRAM
[Xmx, 2Mx) to HRM_NV

initialize hrm with
 reserved space = 2Xmx _num_comitted_dram = 0

Resize hrm_dram
with _young_list_target_length (n)

G1Policy init()
completed

Shrink nvdimm

Uncommit 'n' regions.
_num_committed_nv -= nexpand dram

1. Commit 'n' regions.
2. _num_committed_dram += n

3. add to _free_list_dram

1. commit 'n' regions for
mutator allocations

2. Commit p% extra for
future expansion.

n = n + n%y

_hrm->expand_by()

Uncommit a region from
nvdimm if empty found

if empty

1. Success: Commit a
region in dram

2. Failure : return NULL

success?

success?

1. Success -> return index
2. Failure -> uncommit 'n'

regions from dram

uncommit 'n' regions if enough empty()

1. Success -> commit 'n'
regions in nvdimm

2. Failure -> return failure

success?

1. Find 'n' contiguous uncommitted
regions.
2. if success, commit 'n' regions and
return index.success?

1. Success -> return index
2. Failure -> return failure

1. Allocate new region
from free_list_dram.

2. If not empty, return
index

Uncommit a region from
nvdimm if empty found

if empty

1. Success: Commit a
region in dram

2. Failure : return NULL

success?

1. Allocate new region
from free_list_nvdimm.
2. If not empty, return

index
Uncommit a region from

dram if empty found

1. Success: Commit a
region in nvdimm

2. Failure : return NULL

if empty

success?

1. add dram regions
collection set to
_free_nv_dram

1. Make sure compaction
happens in nvdimm regions.
2. If we run out of nvdimm
regions, we need to uncommit
dram regions and commit
nvdimm regions.

UML Sequence diagram showing
interaction between objects

