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Placement of old generation on NV-DIMMs.

There are two levels at which we need enabling, first being the memory management level and 
second is at the GC level.
At the memory management level we need to define new abstractions for VirtualSpace to manage 
memory which is backed by NV-DIMMs. At GC level we need to use the correct VirtualSpace 
abstractions and do additional handling to manage young and old generation. The following text 
describes the design for the two GCs.

ParallelScavenge:
ParallelScavenge takes 'ReservedSpace' corresponding to the Heap and creates 
'AdjoiningVirtualSpaces' which comprises of two 'PSVirtualSpace's corresponding to the two 
generations. These virtual spaces are assigned to PSOldGen and PSYoungGen.
'AdjoiningVirtualSpace' maintains an internal boundary within the reserved heap space, lower 
part of it belongs to PSOldGen->PSVirtualSpace and higher part belongs to 
PSYoungGen->PSVirtualSpace.

Depending on value of AdaptiveGCBoundary flag there are two cases:
1. AdaptiveGCBoundary = false (default):

In this case, the boundary in AbjoiningGenerations is fixed and each generations 
expand/shrink within their respective reserved spaces. 
This case can be handled by creating a subclass of 'PSVirtualSpace' called 
'PSFileBackedVirtualSpace' which manages memory exposed as filesystem (such as NV-DIMM). It 
has a file descriptor as its member and overrides calls to expand() and shrink() the 
virtual space.

2. AdaptiveGCBoundary = true:
In this case, ParallelScavenge has more flexibility to size the generations. If the desired 
size of a generation is more than its reserved space, the boundary in 
'AdjoiningVirtualSpaces' is moved to increase the reserved space for that generation.
This case is a little tricky to implement, because adjusting the boundary would require 
changing physical memory mapping of the affected memory space (e.g. pages mapped to DRAM 
will be mapped to NV-DIMM). Such remapping is known to be very costly due to tlb miss 
penalties.
To avoid this we need to have non-overlapping reserved memory space for old and young 
virtual spaces. We would need to reserve more than Xmx memory; reserved memory = 
(max_size_of_young + max_size_of_old).
The young and old virtual spaces are assigned these non-overlapping reserved memories. To 
expand the committed memory of one virtual space, we need to shrink (uncommit) the other 
virtual space. In other words, we need an equivalent behaviour as adjust_boundary_up/down() 
calls in AdjoiningVirtualSpaces.
To achieve this, we can implement a specialized implementation of 'AdjoiningGenerations' 
called 'AdjoiningGenerationsForHeteroHeap'. This implementation overrides calls such as 
adjust_boundary_*() and request_*_gen_expansion(). The overridden functionality maintains 
the invariant that total committed memory before and after expanding/shrinking of 
generations is same.

G1GC:
G1 divides the reserved heap space into regions; a region can end up as old, young or 
humongous. Thus old generation is not a range of memory address, its a collection of region 
which are spread throughout the heap. To avoid remapping of virtual pages to physical pages 
when a region gets reassigned to a different generation, we need non-overlapping reserved 
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memories for old and young regions. We reserve 2*Xmx memory; Xmx memory for young regions and 
remaining Xmx memory for old regions.
We can create a sub-class of HeapRegionManager called 'HeapRegionManagerForHeteroHeap' which 
manages regions which are physically backed by DRAM and regions backed by NV-DIMM. 
HeapRegionManagerForHeteroHeap can be internally composed of  HeapRegionManager for DRAM 
regions and HeapRegionManager for NV-DIMM regions (this conceptual composition does not need to 
be implemented as separate classes)
This class overrides the api used by G1CollectedHeap to allocate new region, expand heap, 
allocate humongous regions, etc. This class maintains the invariant that total number of 
committed regions is less than current size of heap. E.g. if G1 needs more DRAM regions than 
available at a given point, unused regions from NV-DIMM have to be uncommitted so that new 
regions in DRAM can be committed.
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Class diagram for ParallelScavenge GC (new classes in red)
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