/* * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/parallel/adjoiningGenerationsForHeteroHeap.hpp" #include "gc/parallel/adjoiningVirtualSpaces.hpp" #include "gc/parallel/generationSizer.hpp" #include "gc/parallel/parallelScavengeHeap.hpp" #include "logging/log.hpp" #include "logging/logStream.hpp" #include "memory/resourceArea.hpp" #include "utilities/align.hpp" #include "utilities/ostream.hpp" // Create two virtual spaces (HeteroVirtualSpaces), low() on nv-dimm memory, high() on dram. // create ASPSOldGen and ASPSYoungGen the same way as in base class AdjoiningGenerationsForHeteroHeap::AdjoiningGenerationsForHeteroHeap(ReservedSpace old_young_rs, size_t total_size_limit, GenerationSizer* policy, size_t alignment) : _total_size_limit(total_size_limit) { size_t init_old_byte_size = policy->initial_old_size(); size_t min_old_byte_size = policy->min_old_size(); size_t max_old_byte_size = policy->max_old_size(); size_t init_young_byte_size = policy->initial_young_size(); size_t min_young_byte_size = policy->min_young_size(); size_t max_young_byte_size = policy->max_young_size(); // create HeteroVirtualSpaces which is composed of non-overlapping virtual spaces. _virtual_spaces = new HeteroVirtualSpaces(old_young_rs, min_old_byte_size, min_young_byte_size, _total_size_limit, alignment); assert(min_old_byte_size <= init_old_byte_size && init_old_byte_size <= max_old_byte_size, "Parameter check"); assert(min_young_byte_size <= init_young_byte_size && init_young_byte_size <= max_young_byte_size, "Parameter check"); assert(UseAdaptiveGCBoundary, "Should be used only when UseAdaptiveGCBoundary is true"); // Initialize the virtual spaces. Then pass a virtual space to each generation // for initialization of the generation. // Does the actual creation of the virtual spaces _virtual_spaces->initialize(max_old_byte_size, init_old_byte_size, init_young_byte_size); _young_gen = new ASPSYoungGen(_virtual_spaces->high(), _virtual_spaces->high()->committed_size() /* intial_size */, min_young_byte_size, (static_cast (_virtual_spaces))->max_young_size()); _old_gen = new ASPSOldGen(_virtual_spaces->low(), _virtual_spaces->low()->committed_size() /* intial_size */, min_old_byte_size, (static_cast (_virtual_spaces))->max_old_size(), "old", 1); young_gen()->initialize_work(); assert(young_gen()->reserved().byte_size() <= young_gen()->gen_size_limit(), "Consistency check"); assert(old_young_rs.size() >= young_gen()->gen_size_limit(), "Consistency check"); old_gen()->initialize_work("old", 1); assert(old_gen()->reserved().byte_size() <= old_gen()->gen_size_limit(), "Consistency check"); assert(old_young_rs.size() >= old_gen()->gen_size_limit(), "Consistency check"); } size_t AdjoiningGenerationsForHeteroHeap::required_reserved_memory(GenerationSizer* policy) { // This is the size that young gen can grow to, when AdaptiveGCBoundary is true. size_t max_yg_size = policy->max_heap_byte_size() - policy->min_old_size(); // This is the size that old gen can grow to, when AdaptiveGCBoundary is true. size_t max_old_size = policy->max_heap_byte_size() - policy->min_young_size(); return max_yg_size + max_old_size; } // We override this function since size of reservedspace here is more than heap size and // callers expect this function to return heap size. size_t AdjoiningGenerationsForHeteroHeap::reserved_byte_size() { return total_size_limit(); } AdjoiningGenerationsForHeteroHeap::HeteroVirtualSpaces::HeteroVirtualSpaces(ReservedSpace rs, size_t min_old_byte_size, size_t min_yg_byte_size, size_t max_total_size, size_t alignment) : AdjoiningVirtualSpaces(rs, min_old_byte_size, min_yg_byte_size, alignment), _min_old_byte_size(min_old_byte_size), _min_young_byte_size(min_yg_byte_size), _max_old_byte_size(_max_total_size - _min_young_byte_size), _max_young_byte_size(_max_total_size - _min_old_byte_size), _max_total_size(max_total_size) { } void AdjoiningGenerationsForHeteroHeap::HeteroVirtualSpaces::initialize(size_t initial_old_reserved_size, size_t init_old_byte_size, size_t init_young_byte_size) { // This is the reserved space exclusively for old generation. ReservedSpace old_rs = _reserved_space.first_part(_max_old_byte_size, true); // Intially we only assign 'initial_old_reserved_size' of the reserved space to old virtual space. old_rs = old_rs.first_part(initial_old_reserved_size); // This is the reserved space exclusively for young generation. ReservedSpace young_rs = _reserved_space.last_part(_max_old_byte_size).first_part(_max_young_byte_size); // Carve out 'initial_young_reserved_size' of reserved space. size_t initial_young_reserved_size = _max_total_size - initial_old_reserved_size; young_rs = young_rs.last_part(_max_young_byte_size - initial_young_reserved_size); _old_vs = new PSFileBackedVirtualSpace(old_rs, alignment(), AllocateOldGenAt); if (!_old_vs->expand_by(init_old_byte_size)) { vm_exit_during_initialization("Could not reserve enough space for object heap"); } _young_vs = new PSVirtualSpaceHighToLow(young_rs, alignment()); if (!_young_vs->expand_by(init_young_byte_size)) { vm_exit_during_initialization("Could not reserve enough space for object heap"); } } // Since the virtual spaces are non-overlapping, there is no boundary as such. // We replicate the same behavior and maintain the same invariants as base class - AdjoiningVirtualSpaces, by // increasing old generation size and decreasing young generation size by same amount. bool AdjoiningGenerationsForHeteroHeap::HeteroVirtualSpaces::adjust_boundary_up(size_t change_in_bytes) { assert(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary, "runtime check"); DEBUG_ONLY(size_t total_size_before = _young_vs->reserved_size() + _old_vs->reserved_size()); size_t bytes_needed = change_in_bytes; size_t uncommitted_in_old = MIN2(_old_vs->uncommitted_size(), bytes_needed); bool old_expanded = false; // 1. Try to expand old within its reserved space. if (uncommitted_in_old != 0) { if (!_old_vs->expand_by(uncommitted_in_old)) { return false; } old_expanded = true; bytes_needed -= uncommitted_in_old; if (bytes_needed == 0) { return true; } } size_t bytes_to_add_in_old = 0; // 2. Get uncommitted memory from Young virtualspace. size_t young_uncommitted = MIN2(_young_vs->uncommitted_size(), bytes_needed); if (young_uncommitted > 0) { _young_vs->set_reserved(_young_vs->reserved_low_addr() + young_uncommitted, _young_vs->reserved_high_addr(), _young_vs->special()); bytes_needed -= young_uncommitted; bytes_to_add_in_old = young_uncommitted; } // 3. Get committed memory from Young virtualspace if (bytes_needed > 0) { size_t shrink_size = align_down(bytes_needed, _young_vs->alignment()); bool ret = _young_vs->shrink_by(shrink_size); assert(ret, "We should be able to shrink young space"); _young_vs->set_reserved(_young_vs->reserved_low_addr() + shrink_size, _young_vs->reserved_high_addr(), _young_vs->special()); bytes_to_add_in_old += shrink_size; } // 4. Increase size of old space _old_vs->set_reserved(_old_vs->reserved_low_addr(), _old_vs->reserved_high_addr() + bytes_to_add_in_old, _old_vs->special()); if (!_old_vs->expand_by(bytes_to_add_in_old) && !old_expanded) { return false; } DEBUG_ONLY(size_t total_size_after = _young_vs->reserved_size() + _old_vs->reserved_size()); assert(total_size_after == total_size_before, "should be equal"); return true; } // Read comment for adjust_boundary_up() // Increase young generation size and decrease old generation size by same amount. bool AdjoiningGenerationsForHeteroHeap::HeteroVirtualSpaces::adjust_boundary_down(size_t change_in_bytes) { assert(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary, "runtime check"); DEBUG_ONLY(size_t total_size_before = _young_vs->reserved_size() + _old_vs->reserved_size()); size_t bytes_needed = change_in_bytes; size_t uncommitted_in_young = MIN2(_young_vs->uncommitted_size(), bytes_needed); bool young_expanded = false; // 1. Try to expand old within its reserved space. if (uncommitted_in_young > 0) { if (!_young_vs->expand_by(uncommitted_in_young)) { return false; } young_expanded = true; bytes_needed -= uncommitted_in_young; if (bytes_needed == 0) { return true; } } size_t bytes_to_add_in_young = 0; // 2. Get uncommitted memory from Old virtualspace. size_t old_uncommitted = MIN2(_old_vs->uncommitted_size(), bytes_needed); if (old_uncommitted > 0) { _old_vs->set_reserved(_old_vs->reserved_low_addr(), _old_vs->reserved_high_addr() - old_uncommitted, _old_vs->special()); bytes_needed -= old_uncommitted; bytes_to_add_in_young = old_uncommitted; } // 3. Get committed memory from Old virtualspace if (bytes_needed > 0) { size_t shrink_size = align_down(bytes_needed, _old_vs->alignment()); bool ret = _old_vs->shrink_by(shrink_size); assert(ret, "We should be able to shrink young space"); _old_vs->set_reserved(_old_vs->reserved_low_addr(), _old_vs->reserved_high_addr() - shrink_size, _old_vs->special()); bytes_to_add_in_young += shrink_size; } assert(bytes_to_add_in_young <= change_in_bytes, "should not be more than requested size"); // 4. Increase size of young space _young_vs->set_reserved(_young_vs->reserved_low_addr() - bytes_to_add_in_young, _young_vs->reserved_high_addr(), _young_vs->special()); if (!_young_vs->expand_by(bytes_to_add_in_young) && !young_expanded) { return false; } DEBUG_ONLY(size_t total_size_after = _young_vs->reserved_size() + _old_vs->reserved_size()); assert(total_size_after == total_size_before, "should be equal"); return true; }