1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1ThreadLocalData.hpp"
  57 #include "gc/g1/g1YCTypes.hpp"
  58 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  59 #include "gc/g1/heapRegion.inline.hpp"
  60 #include "gc/g1/heapRegionRemSet.hpp"
  61 #include "gc/g1/heapRegionSet.inline.hpp"
  62 #include "gc/g1/vm_operations_g1.hpp"
  63 #include "gc/shared/adaptiveSizePolicy.hpp"
  64 #include "gc/shared/gcHeapSummary.hpp"
  65 #include "gc/shared/gcId.hpp"
  66 #include "gc/shared/gcLocker.hpp"
  67 #include "gc/shared/gcTimer.hpp"
  68 #include "gc/shared/gcTrace.hpp"
  69 #include "gc/shared/gcTraceTime.inline.hpp"
  70 #include "gc/shared/generationSpec.hpp"
  71 #include "gc/shared/isGCActiveMark.hpp"
  72 #include "gc/shared/oopStorageParState.hpp"
  73 #include "gc/shared/preservedMarks.inline.hpp"
  74 #include "gc/shared/suspendibleThreadSet.hpp"
  75 #include "gc/shared/referenceProcessor.inline.hpp"
  76 #include "gc/shared/taskqueue.inline.hpp"
  77 #include "gc/shared/weakProcessor.hpp"
  78 #include "logging/log.hpp"
  79 #include "memory/allocation.hpp"
  80 #include "memory/iterator.hpp"
  81 #include "memory/resourceArea.hpp"
  82 #include "oops/access.inline.hpp"
  83 #include "oops/compressedOops.inline.hpp"
  84 #include "oops/oop.inline.hpp"
  85 #include "prims/resolvedMethodTable.hpp"
  86 #include "runtime/atomic.hpp"
  87 #include "runtime/flags/flagSetting.hpp"
  88 #include "runtime/handles.inline.hpp"
  89 #include "runtime/init.hpp"
  90 #include "runtime/orderAccess.hpp"
  91 #include "runtime/threadSMR.hpp"
  92 #include "runtime/vmThread.hpp"
  93 #include "utilities/align.hpp"
  94 #include "utilities/globalDefinitions.hpp"
  95 #include "utilities/stack.inline.hpp"
  96 
  97 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  98 
  99 // INVARIANTS/NOTES
 100 //
 101 // All allocation activity covered by the G1CollectedHeap interface is
 102 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 103 // and allocate_new_tlab, which are the "entry" points to the
 104 // allocation code from the rest of the JVM.  (Note that this does not
 105 // apply to TLAB allocation, which is not part of this interface: it
 106 // is done by clients of this interface.)
 107 
 108 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 109  private:
 110   size_t _num_dirtied;
 111   G1CollectedHeap* _g1h;
 112   G1CardTable* _g1_ct;
 113 
 114   HeapRegion* region_for_card(jbyte* card_ptr) const {
 115     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 116   }
 117 
 118   bool will_become_free(HeapRegion* hr) const {
 119     // A region will be freed by free_collection_set if the region is in the
 120     // collection set and has not had an evacuation failure.
 121     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 122   }
 123 
 124  public:
 125   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 126     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 127 
 128   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 129     HeapRegion* hr = region_for_card(card_ptr);
 130 
 131     // Should only dirty cards in regions that won't be freed.
 132     if (!will_become_free(hr)) {
 133       *card_ptr = G1CardTable::dirty_card_val();
 134       _num_dirtied++;
 135     }
 136 
 137     return true;
 138   }
 139 
 140   size_t num_dirtied()   const { return _num_dirtied; }
 141 };
 142 
 143 
 144 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 145   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 146 }
 147 
 148 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 149   // The from card cache is not the memory that is actually committed. So we cannot
 150   // take advantage of the zero_filled parameter.
 151   reset_from_card_cache(start_idx, num_regions);
 152 }
 153 
 154 
 155 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 156                                              MemRegion mr) {
 157   return new HeapRegion(hrs_index, bot(), mr);
 158 }
 159 
 160 // Private methods.
 161 
 162 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 163   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 164          "the only time we use this to allocate a humongous region is "
 165          "when we are allocating a single humongous region");
 166 
 167   HeapRegion* res = _hrm.allocate_free_region(is_old);
 168 
 169   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 170     // Currently, only attempts to allocate GC alloc regions set
 171     // do_expand to true. So, we should only reach here during a
 172     // safepoint. If this assumption changes we might have to
 173     // reconsider the use of _expand_heap_after_alloc_failure.
 174     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 175 
 176     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 177                               word_size * HeapWordSize);
 178 
 179     if (expand(word_size * HeapWordSize)) {
 180       // Given that expand() succeeded in expanding the heap, and we
 181       // always expand the heap by an amount aligned to the heap
 182       // region size, the free list should in theory not be empty.
 183       // In either case allocate_free_region() will check for NULL.
 184       res = _hrm.allocate_free_region(is_old);
 185     } else {
 186       _expand_heap_after_alloc_failure = false;
 187     }
 188   }
 189   return res;
 190 }
 191 
 192 HeapWord*
 193 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 194                                                            uint num_regions,
 195                                                            size_t word_size) {
 196   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 197   assert(is_humongous(word_size), "word_size should be humongous");
 198   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 199 
 200   // Index of last region in the series.
 201   uint last = first + num_regions - 1;
 202 
 203   // We need to initialize the region(s) we just discovered. This is
 204   // a bit tricky given that it can happen concurrently with
 205   // refinement threads refining cards on these regions and
 206   // potentially wanting to refine the BOT as they are scanning
 207   // those cards (this can happen shortly after a cleanup; see CR
 208   // 6991377). So we have to set up the region(s) carefully and in
 209   // a specific order.
 210 
 211   // The word size sum of all the regions we will allocate.
 212   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 213   assert(word_size <= word_size_sum, "sanity");
 214 
 215   // This will be the "starts humongous" region.
 216   HeapRegion* first_hr = region_at(first);
 217   // The header of the new object will be placed at the bottom of
 218   // the first region.
 219   HeapWord* new_obj = first_hr->bottom();
 220   // This will be the new top of the new object.
 221   HeapWord* obj_top = new_obj + word_size;
 222 
 223   // First, we need to zero the header of the space that we will be
 224   // allocating. When we update top further down, some refinement
 225   // threads might try to scan the region. By zeroing the header we
 226   // ensure that any thread that will try to scan the region will
 227   // come across the zero klass word and bail out.
 228   //
 229   // NOTE: It would not have been correct to have used
 230   // CollectedHeap::fill_with_object() and make the space look like
 231   // an int array. The thread that is doing the allocation will
 232   // later update the object header to a potentially different array
 233   // type and, for a very short period of time, the klass and length
 234   // fields will be inconsistent. This could cause a refinement
 235   // thread to calculate the object size incorrectly.
 236   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 237 
 238   // Next, pad out the unused tail of the last region with filler
 239   // objects, for improved usage accounting.
 240   // How many words we use for filler objects.
 241   size_t word_fill_size = word_size_sum - word_size;
 242 
 243   // How many words memory we "waste" which cannot hold a filler object.
 244   size_t words_not_fillable = 0;
 245 
 246   if (word_fill_size >= min_fill_size()) {
 247     fill_with_objects(obj_top, word_fill_size);
 248   } else if (word_fill_size > 0) {
 249     // We have space to fill, but we cannot fit an object there.
 250     words_not_fillable = word_fill_size;
 251     word_fill_size = 0;
 252   }
 253 
 254   // We will set up the first region as "starts humongous". This
 255   // will also update the BOT covering all the regions to reflect
 256   // that there is a single object that starts at the bottom of the
 257   // first region.
 258   first_hr->set_starts_humongous(obj_top, word_fill_size);
 259   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 260   // Then, if there are any, we will set up the "continues
 261   // humongous" regions.
 262   HeapRegion* hr = NULL;
 263   for (uint i = first + 1; i <= last; ++i) {
 264     hr = region_at(i);
 265     hr->set_continues_humongous(first_hr);
 266     _g1_policy->remset_tracker()->update_at_allocate(hr);
 267   }
 268 
 269   // Up to this point no concurrent thread would have been able to
 270   // do any scanning on any region in this series. All the top
 271   // fields still point to bottom, so the intersection between
 272   // [bottom,top] and [card_start,card_end] will be empty. Before we
 273   // update the top fields, we'll do a storestore to make sure that
 274   // no thread sees the update to top before the zeroing of the
 275   // object header and the BOT initialization.
 276   OrderAccess::storestore();
 277 
 278   // Now, we will update the top fields of the "continues humongous"
 279   // regions except the last one.
 280   for (uint i = first; i < last; ++i) {
 281     hr = region_at(i);
 282     hr->set_top(hr->end());
 283   }
 284 
 285   hr = region_at(last);
 286   // If we cannot fit a filler object, we must set top to the end
 287   // of the humongous object, otherwise we cannot iterate the heap
 288   // and the BOT will not be complete.
 289   hr->set_top(hr->end() - words_not_fillable);
 290 
 291   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 292          "obj_top should be in last region");
 293 
 294   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 295 
 296   assert(words_not_fillable == 0 ||
 297          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 298          "Miscalculation in humongous allocation");
 299 
 300   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 301 
 302   for (uint i = first; i <= last; ++i) {
 303     hr = region_at(i);
 304     _humongous_set.add(hr);
 305     _hr_printer.alloc(hr);
 306   }
 307 
 308   return new_obj;
 309 }
 310 
 311 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 312   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 313   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 314 }
 315 
 316 // If could fit into free regions w/o expansion, try.
 317 // Otherwise, if can expand, do so.
 318 // Otherwise, if using ex regions might help, try with ex given back.
 319 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 320   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 321 
 322   _verifier->verify_region_sets_optional();
 323 
 324   uint first = G1_NO_HRM_INDEX;
 325   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 326 
 327   if (obj_regions == 1) {
 328     // Only one region to allocate, try to use a fast path by directly allocating
 329     // from the free lists. Do not try to expand here, we will potentially do that
 330     // later.
 331     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 332     if (hr != NULL) {
 333       first = hr->hrm_index();
 334     }
 335   } else {
 336     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 337     // are lucky enough to find some.
 338     first = _hrm.find_contiguous_only_empty(obj_regions);
 339     if (first != G1_NO_HRM_INDEX) {
 340       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 341     }
 342   }
 343 
 344   if (first == G1_NO_HRM_INDEX) {
 345     // Policy: We could not find enough regions for the humongous object in the
 346     // free list. Look through the heap to find a mix of free and uncommitted regions.
 347     // If so, try expansion.
 348     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 349     if (first != G1_NO_HRM_INDEX) {
 350       // We found something. Make sure these regions are committed, i.e. expand
 351       // the heap. Alternatively we could do a defragmentation GC.
 352       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 353                                     word_size * HeapWordSize);
 354 
 355       _hrm.expand_at(first, obj_regions, workers());
 356       g1_policy()->record_new_heap_size(num_regions());
 357 
 358 #ifdef ASSERT
 359       for (uint i = first; i < first + obj_regions; ++i) {
 360         HeapRegion* hr = region_at(i);
 361         assert(hr->is_free(), "sanity");
 362         assert(hr->is_empty(), "sanity");
 363         assert(is_on_master_free_list(hr), "sanity");
 364       }
 365 #endif
 366       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 367     } else {
 368       // Policy: Potentially trigger a defragmentation GC.
 369     }
 370   }
 371 
 372   HeapWord* result = NULL;
 373   if (first != G1_NO_HRM_INDEX) {
 374     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 375     assert(result != NULL, "it should always return a valid result");
 376 
 377     // A successful humongous object allocation changes the used space
 378     // information of the old generation so we need to recalculate the
 379     // sizes and update the jstat counters here.
 380     g1mm()->update_sizes();
 381   }
 382 
 383   _verifier->verify_region_sets_optional();
 384 
 385   return result;
 386 }
 387 
 388 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 389                                              size_t requested_size,
 390                                              size_t* actual_size) {
 391   assert_heap_not_locked_and_not_at_safepoint();
 392   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 393 
 394   return attempt_allocation(min_size, requested_size, actual_size);
 395 }
 396 
 397 HeapWord*
 398 G1CollectedHeap::mem_allocate(size_t word_size,
 399                               bool*  gc_overhead_limit_was_exceeded) {
 400   assert_heap_not_locked_and_not_at_safepoint();
 401 
 402   if (is_humongous(word_size)) {
 403     return attempt_allocation_humongous(word_size);
 404   }
 405   size_t dummy = 0;
 406   return attempt_allocation(word_size, word_size, &dummy);
 407 }
 408 
 409 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 410   ResourceMark rm; // For retrieving the thread names in log messages.
 411 
 412   // Make sure you read the note in attempt_allocation_humongous().
 413 
 414   assert_heap_not_locked_and_not_at_safepoint();
 415   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 416          "be called for humongous allocation requests");
 417 
 418   // We should only get here after the first-level allocation attempt
 419   // (attempt_allocation()) failed to allocate.
 420 
 421   // We will loop until a) we manage to successfully perform the
 422   // allocation or b) we successfully schedule a collection which
 423   // fails to perform the allocation. b) is the only case when we'll
 424   // return NULL.
 425   HeapWord* result = NULL;
 426   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 427     bool should_try_gc;
 428     uint gc_count_before;
 429 
 430     {
 431       MutexLockerEx x(Heap_lock);
 432       result = _allocator->attempt_allocation_locked(word_size);
 433       if (result != NULL) {
 434         return result;
 435       }
 436 
 437       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 438       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 439       // waiting because the GCLocker is active to not wait too long.
 440       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 441         // No need for an ergo message here, can_expand_young_list() does this when
 442         // it returns true.
 443         result = _allocator->attempt_allocation_force(word_size);
 444         if (result != NULL) {
 445           return result;
 446         }
 447       }
 448       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 449       // the GCLocker initiated GC has been performed and then retry. This includes
 450       // the case when the GC Locker is not active but has not been performed.
 451       should_try_gc = !GCLocker::needs_gc();
 452       // Read the GC count while still holding the Heap_lock.
 453       gc_count_before = total_collections();
 454     }
 455 
 456     if (should_try_gc) {
 457       bool succeeded;
 458       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 459                                    GCCause::_g1_inc_collection_pause);
 460       if (result != NULL) {
 461         assert(succeeded, "only way to get back a non-NULL result");
 462         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 463                              Thread::current()->name(), p2i(result));
 464         return result;
 465       }
 466 
 467       if (succeeded) {
 468         // We successfully scheduled a collection which failed to allocate. No
 469         // point in trying to allocate further. We'll just return NULL.
 470         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 471                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 472         return NULL;
 473       }
 474       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 475                            Thread::current()->name(), word_size);
 476     } else {
 477       // Failed to schedule a collection.
 478       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 479         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 480                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 481         return NULL;
 482       }
 483       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 484       // The GCLocker is either active or the GCLocker initiated
 485       // GC has not yet been performed. Stall until it is and
 486       // then retry the allocation.
 487       GCLocker::stall_until_clear();
 488       gclocker_retry_count += 1;
 489     }
 490 
 491     // We can reach here if we were unsuccessful in scheduling a
 492     // collection (because another thread beat us to it) or if we were
 493     // stalled due to the GC locker. In either can we should retry the
 494     // allocation attempt in case another thread successfully
 495     // performed a collection and reclaimed enough space. We do the
 496     // first attempt (without holding the Heap_lock) here and the
 497     // follow-on attempt will be at the start of the next loop
 498     // iteration (after taking the Heap_lock).
 499     size_t dummy = 0;
 500     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 501     if (result != NULL) {
 502       return result;
 503     }
 504 
 505     // Give a warning if we seem to be looping forever.
 506     if ((QueuedAllocationWarningCount > 0) &&
 507         (try_count % QueuedAllocationWarningCount == 0)) {
 508       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 509                              Thread::current()->name(), try_count, word_size);
 510     }
 511   }
 512 
 513   ShouldNotReachHere();
 514   return NULL;
 515 }
 516 
 517 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 518   assert_at_safepoint_on_vm_thread();
 519   if (_archive_allocator == NULL) {
 520     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 521   }
 522 }
 523 
 524 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 525   // Allocations in archive regions cannot be of a size that would be considered
 526   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 527   // may be different at archive-restore time.
 528   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 529 }
 530 
 531 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 532   assert_at_safepoint_on_vm_thread();
 533   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 534   if (is_archive_alloc_too_large(word_size)) {
 535     return NULL;
 536   }
 537   return _archive_allocator->archive_mem_allocate(word_size);
 538 }
 539 
 540 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 541                                               size_t end_alignment_in_bytes) {
 542   assert_at_safepoint_on_vm_thread();
 543   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 544 
 545   // Call complete_archive to do the real work, filling in the MemRegion
 546   // array with the archive regions.
 547   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 548   delete _archive_allocator;
 549   _archive_allocator = NULL;
 550 }
 551 
 552 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 553   assert(ranges != NULL, "MemRegion array NULL");
 554   assert(count != 0, "No MemRegions provided");
 555   MemRegion reserved = _hrm.reserved();
 556   for (size_t i = 0; i < count; i++) {
 557     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 558       return false;
 559     }
 560   }
 561   return true;
 562 }
 563 
 564 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 565                                             size_t count,
 566                                             bool open) {
 567   assert(!is_init_completed(), "Expect to be called at JVM init time");
 568   assert(ranges != NULL, "MemRegion array NULL");
 569   assert(count != 0, "No MemRegions provided");
 570   MutexLockerEx x(Heap_lock);
 571 
 572   MemRegion reserved = _hrm.reserved();
 573   HeapWord* prev_last_addr = NULL;
 574   HeapRegion* prev_last_region = NULL;
 575 
 576   // Temporarily disable pretouching of heap pages. This interface is used
 577   // when mmap'ing archived heap data in, so pre-touching is wasted.
 578   FlagSetting fs(AlwaysPreTouch, false);
 579 
 580   // Enable archive object checking used by G1MarkSweep. We have to let it know
 581   // about each archive range, so that objects in those ranges aren't marked.
 582   G1ArchiveAllocator::enable_archive_object_check();
 583 
 584   // For each specified MemRegion range, allocate the corresponding G1
 585   // regions and mark them as archive regions. We expect the ranges
 586   // in ascending starting address order, without overlap.
 587   for (size_t i = 0; i < count; i++) {
 588     MemRegion curr_range = ranges[i];
 589     HeapWord* start_address = curr_range.start();
 590     size_t word_size = curr_range.word_size();
 591     HeapWord* last_address = curr_range.last();
 592     size_t commits = 0;
 593 
 594     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 595               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 596               p2i(start_address), p2i(last_address));
 597     guarantee(start_address > prev_last_addr,
 598               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 599               p2i(start_address), p2i(prev_last_addr));
 600     prev_last_addr = last_address;
 601 
 602     // Check for ranges that start in the same G1 region in which the previous
 603     // range ended, and adjust the start address so we don't try to allocate
 604     // the same region again. If the current range is entirely within that
 605     // region, skip it, just adjusting the recorded top.
 606     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 607     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 608       start_address = start_region->end();
 609       if (start_address > last_address) {
 610         increase_used(word_size * HeapWordSize);
 611         start_region->set_top(last_address + 1);
 612         continue;
 613       }
 614       start_region->set_top(start_address);
 615       curr_range = MemRegion(start_address, last_address + 1);
 616       start_region = _hrm.addr_to_region(start_address);
 617     }
 618 
 619     // Perform the actual region allocation, exiting if it fails.
 620     // Then note how much new space we have allocated.
 621     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 622       return false;
 623     }
 624     increase_used(word_size * HeapWordSize);
 625     if (commits != 0) {
 626       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 627                                 HeapRegion::GrainWords * HeapWordSize * commits);
 628 
 629     }
 630 
 631     // Mark each G1 region touched by the range as archive, add it to
 632     // the old set, and set top.
 633     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 634     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 635     prev_last_region = last_region;
 636 
 637     while (curr_region != NULL) {
 638       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 639              "Region already in use (index %u)", curr_region->hrm_index());
 640       if (open) {
 641         curr_region->set_open_archive();
 642       } else {
 643         curr_region->set_closed_archive();
 644       }
 645       _hr_printer.alloc(curr_region);
 646       _old_set.add(curr_region);
 647       HeapWord* top;
 648       HeapRegion* next_region;
 649       if (curr_region != last_region) {
 650         top = curr_region->end();
 651         next_region = _hrm.next_region_in_heap(curr_region);
 652       } else {
 653         top = last_address + 1;
 654         next_region = NULL;
 655       }
 656       curr_region->set_top(top);
 657       curr_region->set_first_dead(top);
 658       curr_region->set_end_of_live(top);
 659       curr_region = next_region;
 660     }
 661 
 662     // Notify mark-sweep of the archive
 663     G1ArchiveAllocator::set_range_archive(curr_range, open);
 664   }
 665   return true;
 666 }
 667 
 668 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 669   assert(!is_init_completed(), "Expect to be called at JVM init time");
 670   assert(ranges != NULL, "MemRegion array NULL");
 671   assert(count != 0, "No MemRegions provided");
 672   MemRegion reserved = _hrm.reserved();
 673   HeapWord *prev_last_addr = NULL;
 674   HeapRegion* prev_last_region = NULL;
 675 
 676   // For each MemRegion, create filler objects, if needed, in the G1 regions
 677   // that contain the address range. The address range actually within the
 678   // MemRegion will not be modified. That is assumed to have been initialized
 679   // elsewhere, probably via an mmap of archived heap data.
 680   MutexLockerEx x(Heap_lock);
 681   for (size_t i = 0; i < count; i++) {
 682     HeapWord* start_address = ranges[i].start();
 683     HeapWord* last_address = ranges[i].last();
 684 
 685     assert(reserved.contains(start_address) && reserved.contains(last_address),
 686            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 687            p2i(start_address), p2i(last_address));
 688     assert(start_address > prev_last_addr,
 689            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 690            p2i(start_address), p2i(prev_last_addr));
 691 
 692     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 693     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 694     HeapWord* bottom_address = start_region->bottom();
 695 
 696     // Check for a range beginning in the same region in which the
 697     // previous one ended.
 698     if (start_region == prev_last_region) {
 699       bottom_address = prev_last_addr + 1;
 700     }
 701 
 702     // Verify that the regions were all marked as archive regions by
 703     // alloc_archive_regions.
 704     HeapRegion* curr_region = start_region;
 705     while (curr_region != NULL) {
 706       guarantee(curr_region->is_archive(),
 707                 "Expected archive region at index %u", curr_region->hrm_index());
 708       if (curr_region != last_region) {
 709         curr_region = _hrm.next_region_in_heap(curr_region);
 710       } else {
 711         curr_region = NULL;
 712       }
 713     }
 714 
 715     prev_last_addr = last_address;
 716     prev_last_region = last_region;
 717 
 718     // Fill the memory below the allocated range with dummy object(s),
 719     // if the region bottom does not match the range start, or if the previous
 720     // range ended within the same G1 region, and there is a gap.
 721     if (start_address != bottom_address) {
 722       size_t fill_size = pointer_delta(start_address, bottom_address);
 723       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 724       increase_used(fill_size * HeapWordSize);
 725     }
 726   }
 727 }
 728 
 729 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 730                                                      size_t desired_word_size,
 731                                                      size_t* actual_word_size) {
 732   assert_heap_not_locked_and_not_at_safepoint();
 733   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 734          "be called for humongous allocation requests");
 735 
 736   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 737 
 738   if (result == NULL) {
 739     *actual_word_size = desired_word_size;
 740     result = attempt_allocation_slow(desired_word_size);
 741   }
 742 
 743   assert_heap_not_locked();
 744   if (result != NULL) {
 745     assert(*actual_word_size != 0, "Actual size must have been set here");
 746     dirty_young_block(result, *actual_word_size);
 747   } else {
 748     *actual_word_size = 0;
 749   }
 750 
 751   return result;
 752 }
 753 
 754 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 755   assert(!is_init_completed(), "Expect to be called at JVM init time");
 756   assert(ranges != NULL, "MemRegion array NULL");
 757   assert(count != 0, "No MemRegions provided");
 758   MemRegion reserved = _hrm.reserved();
 759   HeapWord* prev_last_addr = NULL;
 760   HeapRegion* prev_last_region = NULL;
 761   size_t size_used = 0;
 762   size_t uncommitted_regions = 0;
 763 
 764   // For each Memregion, free the G1 regions that constitute it, and
 765   // notify mark-sweep that the range is no longer to be considered 'archive.'
 766   MutexLockerEx x(Heap_lock);
 767   for (size_t i = 0; i < count; i++) {
 768     HeapWord* start_address = ranges[i].start();
 769     HeapWord* last_address = ranges[i].last();
 770 
 771     assert(reserved.contains(start_address) && reserved.contains(last_address),
 772            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 773            p2i(start_address), p2i(last_address));
 774     assert(start_address > prev_last_addr,
 775            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 776            p2i(start_address), p2i(prev_last_addr));
 777     size_used += ranges[i].byte_size();
 778     prev_last_addr = last_address;
 779 
 780     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 781     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 782 
 783     // Check for ranges that start in the same G1 region in which the previous
 784     // range ended, and adjust the start address so we don't try to free
 785     // the same region again. If the current range is entirely within that
 786     // region, skip it.
 787     if (start_region == prev_last_region) {
 788       start_address = start_region->end();
 789       if (start_address > last_address) {
 790         continue;
 791       }
 792       start_region = _hrm.addr_to_region(start_address);
 793     }
 794     prev_last_region = last_region;
 795 
 796     // After verifying that each region was marked as an archive region by
 797     // alloc_archive_regions, set it free and empty and uncommit it.
 798     HeapRegion* curr_region = start_region;
 799     while (curr_region != NULL) {
 800       guarantee(curr_region->is_archive(),
 801                 "Expected archive region at index %u", curr_region->hrm_index());
 802       uint curr_index = curr_region->hrm_index();
 803       _old_set.remove(curr_region);
 804       curr_region->set_free();
 805       curr_region->set_top(curr_region->bottom());
 806       if (curr_region != last_region) {
 807         curr_region = _hrm.next_region_in_heap(curr_region);
 808       } else {
 809         curr_region = NULL;
 810       }
 811       _hrm.shrink_at(curr_index, 1);
 812       uncommitted_regions++;
 813     }
 814 
 815     // Notify mark-sweep that this is no longer an archive range.
 816     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 817   }
 818 
 819   if (uncommitted_regions != 0) {
 820     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 821                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 822   }
 823   decrease_used(size_used);
 824 }
 825 
 826 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 827   ResourceMark rm; // For retrieving the thread names in log messages.
 828 
 829   // The structure of this method has a lot of similarities to
 830   // attempt_allocation_slow(). The reason these two were not merged
 831   // into a single one is that such a method would require several "if
 832   // allocation is not humongous do this, otherwise do that"
 833   // conditional paths which would obscure its flow. In fact, an early
 834   // version of this code did use a unified method which was harder to
 835   // follow and, as a result, it had subtle bugs that were hard to
 836   // track down. So keeping these two methods separate allows each to
 837   // be more readable. It will be good to keep these two in sync as
 838   // much as possible.
 839 
 840   assert_heap_not_locked_and_not_at_safepoint();
 841   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 842          "should only be called for humongous allocations");
 843 
 844   // Humongous objects can exhaust the heap quickly, so we should check if we
 845   // need to start a marking cycle at each humongous object allocation. We do
 846   // the check before we do the actual allocation. The reason for doing it
 847   // before the allocation is that we avoid having to keep track of the newly
 848   // allocated memory while we do a GC.
 849   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 850                                            word_size)) {
 851     collect(GCCause::_g1_humongous_allocation);
 852   }
 853 
 854   // We will loop until a) we manage to successfully perform the
 855   // allocation or b) we successfully schedule a collection which
 856   // fails to perform the allocation. b) is the only case when we'll
 857   // return NULL.
 858   HeapWord* result = NULL;
 859   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 860     bool should_try_gc;
 861     uint gc_count_before;
 862 
 863 
 864     {
 865       MutexLockerEx x(Heap_lock);
 866 
 867       // Given that humongous objects are not allocated in young
 868       // regions, we'll first try to do the allocation without doing a
 869       // collection hoping that there's enough space in the heap.
 870       result = humongous_obj_allocate(word_size);
 871       if (result != NULL) {
 872         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 873         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 874         return result;
 875       }
 876 
 877       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 878       // the GCLocker initiated GC has been performed and then retry. This includes
 879       // the case when the GC Locker is not active but has not been performed.
 880       should_try_gc = !GCLocker::needs_gc();
 881       // Read the GC count while still holding the Heap_lock.
 882       gc_count_before = total_collections();
 883     }
 884 
 885     if (should_try_gc) {
 886       bool succeeded;
 887       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 888                                    GCCause::_g1_humongous_allocation);
 889       if (result != NULL) {
 890         assert(succeeded, "only way to get back a non-NULL result");
 891         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 892                              Thread::current()->name(), p2i(result));
 893         return result;
 894       }
 895 
 896       if (succeeded) {
 897         // We successfully scheduled a collection which failed to allocate. No
 898         // point in trying to allocate further. We'll just return NULL.
 899         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 900                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 901         return NULL;
 902       }
 903       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 904                            Thread::current()->name(), word_size);
 905     } else {
 906       // Failed to schedule a collection.
 907       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 908         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 909                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 910         return NULL;
 911       }
 912       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 913       // The GCLocker is either active or the GCLocker initiated
 914       // GC has not yet been performed. Stall until it is and
 915       // then retry the allocation.
 916       GCLocker::stall_until_clear();
 917       gclocker_retry_count += 1;
 918     }
 919 
 920 
 921     // We can reach here if we were unsuccessful in scheduling a
 922     // collection (because another thread beat us to it) or if we were
 923     // stalled due to the GC locker. In either can we should retry the
 924     // allocation attempt in case another thread successfully
 925     // performed a collection and reclaimed enough space.
 926     // Humongous object allocation always needs a lock, so we wait for the retry
 927     // in the next iteration of the loop, unlike for the regular iteration case.
 928     // Give a warning if we seem to be looping forever.
 929 
 930     if ((QueuedAllocationWarningCount > 0) &&
 931         (try_count % QueuedAllocationWarningCount == 0)) {
 932       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 933                              Thread::current()->name(), try_count, word_size);
 934     }
 935   }
 936 
 937   ShouldNotReachHere();
 938   return NULL;
 939 }
 940 
 941 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 942                                                            bool expect_null_mutator_alloc_region) {
 943   assert_at_safepoint_on_vm_thread();
 944   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 945          "the current alloc region was unexpectedly found to be non-NULL");
 946 
 947   if (!is_humongous(word_size)) {
 948     return _allocator->attempt_allocation_locked(word_size);
 949   } else {
 950     HeapWord* result = humongous_obj_allocate(word_size);
 951     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 952       collector_state()->set_initiate_conc_mark_if_possible(true);
 953     }
 954     return result;
 955   }
 956 
 957   ShouldNotReachHere();
 958 }
 959 
 960 class PostCompactionPrinterClosure: public HeapRegionClosure {
 961 private:
 962   G1HRPrinter* _hr_printer;
 963 public:
 964   bool do_heap_region(HeapRegion* hr) {
 965     assert(!hr->is_young(), "not expecting to find young regions");
 966     _hr_printer->post_compaction(hr);
 967     return false;
 968   }
 969 
 970   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 971     : _hr_printer(hr_printer) { }
 972 };
 973 
 974 void G1CollectedHeap::print_hrm_post_compaction() {
 975   if (_hr_printer.is_active()) {
 976     PostCompactionPrinterClosure cl(hr_printer());
 977     heap_region_iterate(&cl);
 978   }
 979 }
 980 
 981 void G1CollectedHeap::abort_concurrent_cycle() {
 982   // If we start the compaction before the CM threads finish
 983   // scanning the root regions we might trip them over as we'll
 984   // be moving objects / updating references. So let's wait until
 985   // they are done. By telling them to abort, they should complete
 986   // early.
 987   _cm->root_regions()->abort();
 988   _cm->root_regions()->wait_until_scan_finished();
 989 
 990   // Disable discovery and empty the discovered lists
 991   // for the CM ref processor.
 992   _ref_processor_cm->disable_discovery();
 993   _ref_processor_cm->abandon_partial_discovery();
 994   _ref_processor_cm->verify_no_references_recorded();
 995 
 996   // Abandon current iterations of concurrent marking and concurrent
 997   // refinement, if any are in progress.
 998   concurrent_mark()->concurrent_cycle_abort();
 999 }
1000 
1001 void G1CollectedHeap::prepare_heap_for_full_collection() {
1002   // Make sure we'll choose a new allocation region afterwards.
1003   _allocator->release_mutator_alloc_region();
1004   _allocator->abandon_gc_alloc_regions();
1005   g1_rem_set()->cleanupHRRS();
1006 
1007   // We may have added regions to the current incremental collection
1008   // set between the last GC or pause and now. We need to clear the
1009   // incremental collection set and then start rebuilding it afresh
1010   // after this full GC.
1011   abandon_collection_set(collection_set());
1012 
1013   tear_down_region_sets(false /* free_list_only */);
1014 }
1015 
1016 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1017   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1018   assert(used() == recalculate_used(), "Should be equal");
1019   _verifier->verify_region_sets_optional();
1020   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1021   _verifier->check_bitmaps("Full GC Start");
1022 }
1023 
1024 void G1CollectedHeap::prepare_heap_for_mutators() {
1025   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1026   ClassLoaderDataGraph::purge();
1027   MetaspaceUtils::verify_metrics();
1028 
1029   // Prepare heap for normal collections.
1030   assert(num_free_regions() == 0, "we should not have added any free regions");
1031   rebuild_region_sets(false /* free_list_only */);
1032   abort_refinement();
1033   resize_if_necessary_after_full_collection();
1034 
1035   // Rebuild the strong code root lists for each region
1036   rebuild_strong_code_roots();
1037 
1038   // Start a new incremental collection set for the next pause
1039   start_new_collection_set();
1040 
1041   _allocator->init_mutator_alloc_region();
1042 
1043   // Post collection state updates.
1044   MetaspaceGC::compute_new_size();
1045 }
1046 
1047 void G1CollectedHeap::abort_refinement() {
1048   if (_hot_card_cache->use_cache()) {
1049     _hot_card_cache->reset_hot_cache();
1050   }
1051 
1052   // Discard all remembered set updates.
1053   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1054   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1055 }
1056 
1057 void G1CollectedHeap::verify_after_full_collection() {
1058   _hrm.verify_optional();
1059   _verifier->verify_region_sets_optional();
1060   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1061   // Clear the previous marking bitmap, if needed for bitmap verification.
1062   // Note we cannot do this when we clear the next marking bitmap in
1063   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1064   // objects marked during a full GC against the previous bitmap.
1065   // But we need to clear it before calling check_bitmaps below since
1066   // the full GC has compacted objects and updated TAMS but not updated
1067   // the prev bitmap.
1068   if (G1VerifyBitmaps) {
1069     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1070     _cm->clear_prev_bitmap(workers());
1071   }
1072   _verifier->check_bitmaps("Full GC End");
1073 
1074   // At this point there should be no regions in the
1075   // entire heap tagged as young.
1076   assert(check_young_list_empty(), "young list should be empty at this point");
1077 
1078   // Note: since we've just done a full GC, concurrent
1079   // marking is no longer active. Therefore we need not
1080   // re-enable reference discovery for the CM ref processor.
1081   // That will be done at the start of the next marking cycle.
1082   // We also know that the STW processor should no longer
1083   // discover any new references.
1084   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1085   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1086   _ref_processor_stw->verify_no_references_recorded();
1087   _ref_processor_cm->verify_no_references_recorded();
1088 }
1089 
1090 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1091   // Post collection logging.
1092   // We should do this after we potentially resize the heap so
1093   // that all the COMMIT / UNCOMMIT events are generated before
1094   // the compaction events.
1095   print_hrm_post_compaction();
1096   heap_transition->print();
1097   print_heap_after_gc();
1098   print_heap_regions();
1099 #ifdef TRACESPINNING
1100   ParallelTaskTerminator::print_termination_counts();
1101 #endif
1102 }
1103 
1104 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1105                                          bool clear_all_soft_refs) {
1106   assert_at_safepoint_on_vm_thread();
1107 
1108   if (GCLocker::check_active_before_gc()) {
1109     // Full GC was not completed.
1110     return false;
1111   }
1112 
1113   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1114       soft_ref_policy()->should_clear_all_soft_refs();
1115 
1116   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1117   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1118 
1119   collector.prepare_collection();
1120   collector.collect();
1121   collector.complete_collection();
1122 
1123   // Full collection was successfully completed.
1124   return true;
1125 }
1126 
1127 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1128   // Currently, there is no facility in the do_full_collection(bool) API to notify
1129   // the caller that the collection did not succeed (e.g., because it was locked
1130   // out by the GC locker). So, right now, we'll ignore the return value.
1131   bool dummy = do_full_collection(true,                /* explicit_gc */
1132                                   clear_all_soft_refs);
1133 }
1134 
1135 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1136   // Capacity, free and used after the GC counted as full regions to
1137   // include the waste in the following calculations.
1138   const size_t capacity_after_gc = capacity();
1139   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1140 
1141   // This is enforced in arguments.cpp.
1142   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1143          "otherwise the code below doesn't make sense");
1144 
1145   // We don't have floating point command-line arguments
1146   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1147   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1148   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1149   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1150 
1151   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1152   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1153 
1154   // We have to be careful here as these two calculations can overflow
1155   // 32-bit size_t's.
1156   double used_after_gc_d = (double) used_after_gc;
1157   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1158   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1159 
1160   // Let's make sure that they are both under the max heap size, which
1161   // by default will make them fit into a size_t.
1162   double desired_capacity_upper_bound = (double) max_heap_size;
1163   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1164                                     desired_capacity_upper_bound);
1165   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1166                                     desired_capacity_upper_bound);
1167 
1168   // We can now safely turn them into size_t's.
1169   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1170   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1171 
1172   // This assert only makes sense here, before we adjust them
1173   // with respect to the min and max heap size.
1174   assert(minimum_desired_capacity <= maximum_desired_capacity,
1175          "minimum_desired_capacity = " SIZE_FORMAT ", "
1176          "maximum_desired_capacity = " SIZE_FORMAT,
1177          minimum_desired_capacity, maximum_desired_capacity);
1178 
1179   // Should not be greater than the heap max size. No need to adjust
1180   // it with respect to the heap min size as it's a lower bound (i.e.,
1181   // we'll try to make the capacity larger than it, not smaller).
1182   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1183   // Should not be less than the heap min size. No need to adjust it
1184   // with respect to the heap max size as it's an upper bound (i.e.,
1185   // we'll try to make the capacity smaller than it, not greater).
1186   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1187 
1188   if (capacity_after_gc < minimum_desired_capacity) {
1189     // Don't expand unless it's significant
1190     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1191 
1192     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1193                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1194                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1195                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1196 
1197     expand(expand_bytes, _workers);
1198 
1199     // No expansion, now see if we want to shrink
1200   } else if (capacity_after_gc > maximum_desired_capacity) {
1201     // Capacity too large, compute shrinking size
1202     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1203 
1204     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1205                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1206                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1207                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1208 
1209     shrink(shrink_bytes);
1210   }
1211 }
1212 
1213 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1214                                                             bool do_gc,
1215                                                             bool clear_all_soft_refs,
1216                                                             bool expect_null_mutator_alloc_region,
1217                                                             bool* gc_succeeded) {
1218   *gc_succeeded = true;
1219   // Let's attempt the allocation first.
1220   HeapWord* result =
1221     attempt_allocation_at_safepoint(word_size,
1222                                     expect_null_mutator_alloc_region);
1223   if (result != NULL) {
1224     return result;
1225   }
1226 
1227   // In a G1 heap, we're supposed to keep allocation from failing by
1228   // incremental pauses.  Therefore, at least for now, we'll favor
1229   // expansion over collection.  (This might change in the future if we can
1230   // do something smarter than full collection to satisfy a failed alloc.)
1231   result = expand_and_allocate(word_size);
1232   if (result != NULL) {
1233     return result;
1234   }
1235 
1236   if (do_gc) {
1237     // Expansion didn't work, we'll try to do a Full GC.
1238     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1239                                        clear_all_soft_refs);
1240   }
1241 
1242   return NULL;
1243 }
1244 
1245 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1246                                                      bool* succeeded) {
1247   assert_at_safepoint_on_vm_thread();
1248 
1249   // Attempts to allocate followed by Full GC.
1250   HeapWord* result =
1251     satisfy_failed_allocation_helper(word_size,
1252                                      true,  /* do_gc */
1253                                      false, /* clear_all_soft_refs */
1254                                      false, /* expect_null_mutator_alloc_region */
1255                                      succeeded);
1256 
1257   if (result != NULL || !*succeeded) {
1258     return result;
1259   }
1260 
1261   // Attempts to allocate followed by Full GC that will collect all soft references.
1262   result = satisfy_failed_allocation_helper(word_size,
1263                                             true, /* do_gc */
1264                                             true, /* clear_all_soft_refs */
1265                                             true, /* expect_null_mutator_alloc_region */
1266                                             succeeded);
1267 
1268   if (result != NULL || !*succeeded) {
1269     return result;
1270   }
1271 
1272   // Attempts to allocate, no GC
1273   result = satisfy_failed_allocation_helper(word_size,
1274                                             false, /* do_gc */
1275                                             false, /* clear_all_soft_refs */
1276                                             true,  /* expect_null_mutator_alloc_region */
1277                                             succeeded);
1278 
1279   if (result != NULL) {
1280     return result;
1281   }
1282 
1283   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1284          "Flag should have been handled and cleared prior to this point");
1285 
1286   // What else?  We might try synchronous finalization later.  If the total
1287   // space available is large enough for the allocation, then a more
1288   // complete compaction phase than we've tried so far might be
1289   // appropriate.
1290   return NULL;
1291 }
1292 
1293 // Attempting to expand the heap sufficiently
1294 // to support an allocation of the given "word_size".  If
1295 // successful, perform the allocation and return the address of the
1296 // allocated block, or else "NULL".
1297 
1298 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1299   assert_at_safepoint_on_vm_thread();
1300 
1301   _verifier->verify_region_sets_optional();
1302 
1303   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1304   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1305                             word_size * HeapWordSize);
1306 
1307 
1308   if (expand(expand_bytes, _workers)) {
1309     _hrm.verify_optional();
1310     _verifier->verify_region_sets_optional();
1311     return attempt_allocation_at_safepoint(word_size,
1312                                            false /* expect_null_mutator_alloc_region */);
1313   }
1314   return NULL;
1315 }
1316 
1317 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1318   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1319   aligned_expand_bytes = align_up(aligned_expand_bytes, HeapRegion::GrainBytes);
1320 
1321   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1322                             expand_bytes, aligned_expand_bytes);
1323 
1324   if (is_maximal_no_gc()) {
1325     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1326     return false;
1327   }
1328 
1329   double expand_heap_start_time_sec = os::elapsedTime();
1330   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1331   assert(regions_to_expand > 0, "Must expand by at least one region");
1332 
1333   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1334   if (expand_time_ms != NULL) {
1335     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1336   }
1337 
1338   if (expanded_by > 0) {
1339     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1340     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1341     g1_policy()->record_new_heap_size(num_regions());
1342   } else {
1343     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1344 
1345     // The expansion of the virtual storage space was unsuccessful.
1346     // Let's see if it was because we ran out of swap.
1347     if (G1ExitOnExpansionFailure &&
1348         _hrm.available() >= regions_to_expand) {
1349       // We had head room...
1350       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1351     }
1352   }
1353   return regions_to_expand > 0;
1354 }
1355 
1356 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1357   size_t aligned_shrink_bytes =
1358     ReservedSpace::page_align_size_down(shrink_bytes);
1359   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1360                                          HeapRegion::GrainBytes);
1361   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1362 
1363   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1364   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1365 
1366 
1367   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1368                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1369   if (num_regions_removed > 0) {
1370     g1_policy()->record_new_heap_size(num_regions());
1371   } else {
1372     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1373   }
1374 }
1375 
1376 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1377   _verifier->verify_region_sets_optional();
1378 
1379   // We should only reach here at the end of a Full GC which means we
1380   // should not not be holding to any GC alloc regions. The method
1381   // below will make sure of that and do any remaining clean up.
1382   _allocator->abandon_gc_alloc_regions();
1383 
1384   // Instead of tearing down / rebuilding the free lists here, we
1385   // could instead use the remove_all_pending() method on free_list to
1386   // remove only the ones that we need to remove.
1387   tear_down_region_sets(true /* free_list_only */);
1388   shrink_helper(shrink_bytes);
1389   rebuild_region_sets(true /* free_list_only */);
1390 
1391   _hrm.verify_optional();
1392   _verifier->verify_region_sets_optional();
1393 }
1394 
1395 // Public methods.
1396 
1397 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1398   CollectedHeap(),
1399   _young_gen_sampling_thread(NULL),
1400   _collector_policy(collector_policy),
1401   _soft_ref_policy(),
1402   _card_table(NULL),
1403   _memory_manager("G1 Young Generation", "end of minor GC"),
1404   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1405   _eden_pool(NULL),
1406   _survivor_pool(NULL),
1407   _old_pool(NULL),
1408   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1409   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1410   _g1_policy(new G1Policy(_gc_timer_stw)),
1411   _collection_set(this, _g1_policy),
1412   _dirty_card_queue_set(false),
1413   _ref_processor_stw(NULL),
1414   _is_alive_closure_stw(this),
1415   _is_subject_to_discovery_stw(this),
1416   _ref_processor_cm(NULL),
1417   _is_alive_closure_cm(this),
1418   _is_subject_to_discovery_cm(this),
1419   _bot(NULL),
1420   _hot_card_cache(NULL),
1421   _g1_rem_set(NULL),
1422   _cr(NULL),
1423   _g1mm(NULL),
1424   _preserved_marks_set(true /* in_c_heap */),
1425   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1426   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1427   _humongous_reclaim_candidates(),
1428   _has_humongous_reclaim_candidates(false),
1429   _archive_allocator(NULL),
1430   _summary_bytes_used(0),
1431   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1432   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1433   _expand_heap_after_alloc_failure(true),
1434   _old_marking_cycles_started(0),
1435   _old_marking_cycles_completed(0),
1436   _in_cset_fast_test() {
1437 
1438   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1439                           /* are_GC_task_threads */true,
1440                           /* are_ConcurrentGC_threads */false);
1441   _workers->initialize_workers();
1442   _verifier = new G1HeapVerifier(this);
1443 
1444   _allocator = new G1Allocator(this);
1445 
1446   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1447 
1448   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1449 
1450   // Override the default _filler_array_max_size so that no humongous filler
1451   // objects are created.
1452   _filler_array_max_size = _humongous_object_threshold_in_words;
1453 
1454   uint n_queues = ParallelGCThreads;
1455   _task_queues = new RefToScanQueueSet(n_queues);
1456 
1457   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1458 
1459   for (uint i = 0; i < n_queues; i++) {
1460     RefToScanQueue* q = new RefToScanQueue();
1461     q->initialize();
1462     _task_queues->register_queue(i, q);
1463     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1464   }
1465 
1466   // Initialize the G1EvacuationFailureALot counters and flags.
1467   NOT_PRODUCT(reset_evacuation_should_fail();)
1468 
1469   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1470 }
1471 
1472 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1473                                                                  size_t size,
1474                                                                  size_t translation_factor) {
1475   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1476   // Allocate a new reserved space, preferring to use large pages.
1477   ReservedSpace rs(size, preferred_page_size);
1478   G1RegionToSpaceMapper* result  =
1479     G1RegionToSpaceMapper::create_mapper(rs,
1480                                          size,
1481                                          rs.alignment(),
1482                                          HeapRegion::GrainBytes,
1483                                          translation_factor,
1484                                          mtGC);
1485 
1486   os::trace_page_sizes_for_requested_size(description,
1487                                           size,
1488                                           preferred_page_size,
1489                                           rs.alignment(),
1490                                           rs.base(),
1491                                           rs.size());
1492 
1493   return result;
1494 }
1495 
1496 jint G1CollectedHeap::initialize_concurrent_refinement() {
1497   jint ecode = JNI_OK;
1498   _cr = G1ConcurrentRefine::create(&ecode);
1499   return ecode;
1500 }
1501 
1502 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1503   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1504   if (_young_gen_sampling_thread->osthread() == NULL) {
1505     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1506     return JNI_ENOMEM;
1507   }
1508   return JNI_OK;
1509 }
1510 
1511 jint G1CollectedHeap::initialize() {
1512   os::enable_vtime();
1513 
1514   // Necessary to satisfy locking discipline assertions.
1515 
1516   MutexLocker x(Heap_lock);
1517 
1518   // While there are no constraints in the GC code that HeapWordSize
1519   // be any particular value, there are multiple other areas in the
1520   // system which believe this to be true (e.g. oop->object_size in some
1521   // cases incorrectly returns the size in wordSize units rather than
1522   // HeapWordSize).
1523   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1524 
1525   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1526   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1527   size_t heap_alignment = collector_policy()->heap_alignment();
1528 
1529   // Ensure that the sizes are properly aligned.
1530   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1531   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1532   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1533 
1534   // Reserve the maximum.
1535 
1536   // When compressed oops are enabled, the preferred heap base
1537   // is calculated by subtracting the requested size from the
1538   // 32Gb boundary and using the result as the base address for
1539   // heap reservation. If the requested size is not aligned to
1540   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1541   // into the ReservedHeapSpace constructor) then the actual
1542   // base of the reserved heap may end up differing from the
1543   // address that was requested (i.e. the preferred heap base).
1544   // If this happens then we could end up using a non-optimal
1545   // compressed oops mode.
1546 
1547   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1548                                                  heap_alignment);
1549 
1550   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1551 
1552   // Create the barrier set for the entire reserved region.
1553   G1CardTable* ct = new G1CardTable(reserved_region());
1554   ct->initialize();
1555   G1BarrierSet* bs = new G1BarrierSet(ct);
1556   bs->initialize();
1557   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1558   BarrierSet::set_barrier_set(bs);
1559   _card_table = ct;
1560 
1561   // Create the hot card cache.
1562   _hot_card_cache = new G1HotCardCache(this);
1563 
1564   // Carve out the G1 part of the heap.
1565   ReservedSpace g1_rs = heap_rs.first_part(heap_rs.size());
1566   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1567   G1RegionToSpaceMapper* heap_storage =
1568     G1RegionToSpaceMapper::create_mapper(g1_rs,
1569                                          g1_rs.size(),
1570                                          page_size,
1571                                          HeapRegion::GrainBytes,
1572                                          1,
1573                                          mtJavaHeap);
1574   os::trace_page_sizes("Heap",
1575                        collector_policy()->min_heap_byte_size(),
1576                        max_byte_size,
1577                        page_size,
1578                        heap_rs.base(),
1579                        heap_rs.size());
1580   heap_storage->set_mapping_changed_listener(&_listener);
1581 
1582   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1583   G1RegionToSpaceMapper* bot_storage =
1584     create_aux_memory_mapper("Block Offset Table",
1585                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1586                              G1BlockOffsetTable::heap_map_factor());
1587 
1588   G1RegionToSpaceMapper* cardtable_storage =
1589     create_aux_memory_mapper("Card Table",
1590                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1591                              G1CardTable::heap_map_factor());
1592 
1593   G1RegionToSpaceMapper* card_counts_storage =
1594     create_aux_memory_mapper("Card Counts Table",
1595                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1596                              G1CardCounts::heap_map_factor());
1597 
1598   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1599   G1RegionToSpaceMapper* prev_bitmap_storage =
1600     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1601   G1RegionToSpaceMapper* next_bitmap_storage =
1602     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1603 
1604   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1605   _card_table->initialize(cardtable_storage);
1606   // Do later initialization work for concurrent refinement.
1607   _hot_card_cache->initialize(card_counts_storage);
1608 
1609   // 6843694 - ensure that the maximum region index can fit
1610   // in the remembered set structures.
1611   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1612   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1613 
1614   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1615   // start within the first card.
1616   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1617   // Also create a G1 rem set.
1618   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1619   _g1_rem_set->initialize(max_capacity(), max_regions());
1620 
1621   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1622   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1623   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1624             "too many cards per region");
1625 
1626   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1627 
1628   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1629 
1630   {
1631     HeapWord* start = _hrm.reserved().start();
1632     HeapWord* end = _hrm.reserved().end();
1633     size_t granularity = HeapRegion::GrainBytes;
1634 
1635     _in_cset_fast_test.initialize(start, end, granularity);
1636     _humongous_reclaim_candidates.initialize(start, end, granularity);
1637   }
1638 
1639   // Create the G1ConcurrentMark data structure and thread.
1640   // (Must do this late, so that "max_regions" is defined.)
1641   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1642   if (_cm == NULL || !_cm->completed_initialization()) {
1643     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1644     return JNI_ENOMEM;
1645   }
1646   _cm_thread = _cm->cm_thread();
1647 
1648   // Expand NVDIMM to maximum old gen size.
1649   if (AllocateOldGenAt != NULL) {
1650     int fd_for_heap = -1;
1651     fd_for_heap = os::create_file_for_heap(AllocateOldGenAt);
1652     if (fd_for_heap== -1) {
1653       vm_exit_during_initialization(
1654         err_msg("Could not create file for Heap at location %s", AllocateOldGenAt));
1655     }
1656     // Allocate space on device.
1657     os::allocate_file(fd_for_heap, MaxHeapSize);
1658     os::set_nvdimm_fd(fd_for_heap);
1659     os::set_nvdimm_present(true);
1660     os::set_nvdimm_heapbase((address)(heap_rs.base()));
1661   }
1662   size_t aligned_expand_bytes = 0;
1663   if (os::has_nvdimm()) {
1664     aligned_expand_bytes = expand_old_gen_on_nvdimm(max_byte_size);
1665   }
1666   // Now expand into the initial heap size.
1667   if (!expand(init_byte_size, _workers)) {
1668     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1669     return JNI_ENOMEM;
1670   }
1671 
1672   if (os::has_nvdimm()) {
1673     // Show how much memory was committed on NVDIMM and DRAM.
1674     log_info(gc, heap)("NVDIMM Reserved Bytes : %ld DRAM Reserved Bytes : %ld \n", aligned_expand_bytes, init_byte_size);
1675     log_info(gc, heap)("When NVDIMM is present, we always reserve and commit Maximum OldGen Size on NVDIMM");
1676     log_info(gc, heap)("JVM will have more size reserved and committed than specified by Xmn or Xms options (but never more than Xmx).");
1677   }
1678   // Perform any initialization actions delegated to the policy.
1679   g1_policy()->init(this, &_collection_set);
1680 
1681   G1BarrierSet::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1682                                                  SATB_Q_FL_lock,
1683                                                  G1SATBProcessCompletedThreshold,
1684                                                  Shared_SATB_Q_lock);
1685 
1686   jint ecode = initialize_concurrent_refinement();
1687   if (ecode != JNI_OK) {
1688     return ecode;
1689   }
1690 
1691   ecode = initialize_young_gen_sampling_thread();
1692   if (ecode != JNI_OK) {
1693     return ecode;
1694   }
1695 
1696   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1697                                                   DirtyCardQ_FL_lock,
1698                                                   (int)concurrent_refine()->yellow_zone(),
1699                                                   (int)concurrent_refine()->red_zone(),
1700                                                   Shared_DirtyCardQ_lock,
1701                                                   NULL,  // fl_owner
1702                                                   true); // init_free_ids
1703 
1704   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1705                                     DirtyCardQ_FL_lock,
1706                                     -1, // never trigger processing
1707                                     -1, // no limit on length
1708                                     Shared_DirtyCardQ_lock,
1709                                     &G1BarrierSet::dirty_card_queue_set());
1710 
1711   // Here we allocate the dummy HeapRegion that is required by the
1712   // G1AllocRegion class.
1713   HeapRegion* dummy_region = _hrm.get_dummy_region();
1714 
1715   // We'll re-use the same region whether the alloc region will
1716   // require BOT updates or not and, if it doesn't, then a non-young
1717   // region will complain that it cannot support allocations without
1718   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1719   dummy_region->set_eden();
1720   // Make sure it's full.
1721   dummy_region->set_top(dummy_region->end());
1722   G1AllocRegion::setup(this, dummy_region);
1723 
1724   _allocator->init_mutator_alloc_region();
1725 
1726   // Do create of the monitoring and management support so that
1727   // values in the heap have been properly initialized.
1728   _g1mm = new G1MonitoringSupport(this);
1729 
1730   G1StringDedup::initialize();
1731 
1732   _preserved_marks_set.init(ParallelGCThreads);
1733 
1734   _collection_set.initialize(max_regions());
1735 
1736   return JNI_OK;
1737 }
1738 
1739 size_t G1CollectedHeap::expand_old_gen_on_nvdimm(size_t max_byte_size) {
1740   size_t nvdimm_bytes = max_byte_size - (size_t)(max_byte_size * G1MaxNewSizePercent)/100;
1741   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(nvdimm_bytes);
1742   aligned_expand_bytes = align_up(aligned_expand_bytes, HeapRegion::GrainBytes);
1743   uint nvdimm_regions = (uint)(aligned_expand_bytes/HeapRegion::GrainBytes);
1744   os::set_nvdimm_regionlength(nvdimm_regions);
1745   expand(aligned_expand_bytes, _workers);
1746   return aligned_expand_bytes;
1747 }
1748 
1749 void G1CollectedHeap::initialize_serviceability() {
1750   _eden_pool = new G1EdenPool(this);
1751   _survivor_pool = new G1SurvivorPool(this);
1752   _old_pool = new G1OldGenPool(this);
1753 
1754   _full_gc_memory_manager.add_pool(_eden_pool);
1755   _full_gc_memory_manager.add_pool(_survivor_pool);
1756   _full_gc_memory_manager.add_pool(_old_pool);
1757 
1758   _memory_manager.add_pool(_eden_pool);
1759   _memory_manager.add_pool(_survivor_pool);
1760 
1761 }
1762 
1763 void G1CollectedHeap::stop() {
1764   // Stop all concurrent threads. We do this to make sure these threads
1765   // do not continue to execute and access resources (e.g. logging)
1766   // that are destroyed during shutdown.
1767   _cr->stop();
1768   _young_gen_sampling_thread->stop();
1769   _cm_thread->stop();
1770   if (G1StringDedup::is_enabled()) {
1771     G1StringDedup::stop();
1772   }
1773 }
1774 
1775 void G1CollectedHeap::safepoint_synchronize_begin() {
1776   SuspendibleThreadSet::synchronize();
1777 }
1778 
1779 void G1CollectedHeap::safepoint_synchronize_end() {
1780   SuspendibleThreadSet::desynchronize();
1781 }
1782 
1783 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1784   return HeapRegion::max_region_size();
1785 }
1786 
1787 void G1CollectedHeap::post_initialize() {
1788   CollectedHeap::post_initialize();
1789   ref_processing_init();
1790 }
1791 
1792 void G1CollectedHeap::ref_processing_init() {
1793   // Reference processing in G1 currently works as follows:
1794   //
1795   // * There are two reference processor instances. One is
1796   //   used to record and process discovered references
1797   //   during concurrent marking; the other is used to
1798   //   record and process references during STW pauses
1799   //   (both full and incremental).
1800   // * Both ref processors need to 'span' the entire heap as
1801   //   the regions in the collection set may be dotted around.
1802   //
1803   // * For the concurrent marking ref processor:
1804   //   * Reference discovery is enabled at initial marking.
1805   //   * Reference discovery is disabled and the discovered
1806   //     references processed etc during remarking.
1807   //   * Reference discovery is MT (see below).
1808   //   * Reference discovery requires a barrier (see below).
1809   //   * Reference processing may or may not be MT
1810   //     (depending on the value of ParallelRefProcEnabled
1811   //     and ParallelGCThreads).
1812   //   * A full GC disables reference discovery by the CM
1813   //     ref processor and abandons any entries on it's
1814   //     discovered lists.
1815   //
1816   // * For the STW processor:
1817   //   * Non MT discovery is enabled at the start of a full GC.
1818   //   * Processing and enqueueing during a full GC is non-MT.
1819   //   * During a full GC, references are processed after marking.
1820   //
1821   //   * Discovery (may or may not be MT) is enabled at the start
1822   //     of an incremental evacuation pause.
1823   //   * References are processed near the end of a STW evacuation pause.
1824   //   * For both types of GC:
1825   //     * Discovery is atomic - i.e. not concurrent.
1826   //     * Reference discovery will not need a barrier.
1827 
1828   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1829 
1830   // Concurrent Mark ref processor
1831   _ref_processor_cm =
1832     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1833                            mt_processing,                                  // mt processing
1834                            ParallelGCThreads,                              // degree of mt processing
1835                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1836                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1837                            false,                                          // Reference discovery is not atomic
1838                            &_is_alive_closure_cm);                         // is alive closure
1839 
1840   // STW ref processor
1841   _ref_processor_stw =
1842     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1843                            mt_processing,                        // mt processing
1844                            ParallelGCThreads,                    // degree of mt processing
1845                            (ParallelGCThreads > 1),              // mt discovery
1846                            ParallelGCThreads,                    // degree of mt discovery
1847                            true,                                 // Reference discovery is atomic
1848                            &_is_alive_closure_stw);              // is alive closure
1849 }
1850 
1851 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1852   return _collector_policy;
1853 }
1854 
1855 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1856   return &_soft_ref_policy;
1857 }
1858 
1859 size_t G1CollectedHeap::capacity() const {
1860   return _hrm.length() * HeapRegion::GrainBytes;
1861 }
1862 
1863 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1864   return _hrm.total_free_bytes();
1865 }
1866 
1867 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1868   _hot_card_cache->drain(cl, worker_i);
1869 }
1870 
1871 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1872   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1873   size_t n_completed_buffers = 0;
1874   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1875     n_completed_buffers++;
1876   }
1877   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1878   dcqs.clear_n_completed_buffers();
1879   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1880 }
1881 
1882 // Computes the sum of the storage used by the various regions.
1883 size_t G1CollectedHeap::used() const {
1884   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1885   if (_archive_allocator != NULL) {
1886     result += _archive_allocator->used();
1887   }
1888   return result;
1889 }
1890 
1891 size_t G1CollectedHeap::used_unlocked() const {
1892   return _summary_bytes_used;
1893 }
1894 
1895 class SumUsedClosure: public HeapRegionClosure {
1896   size_t _used;
1897 public:
1898   SumUsedClosure() : _used(0) {}
1899   bool do_heap_region(HeapRegion* r) {
1900     _used += r->used();
1901     return false;
1902   }
1903   size_t result() { return _used; }
1904 };
1905 
1906 size_t G1CollectedHeap::recalculate_used() const {
1907   double recalculate_used_start = os::elapsedTime();
1908 
1909   SumUsedClosure blk;
1910   heap_region_iterate(&blk);
1911 
1912   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1913   return blk.result();
1914 }
1915 
1916 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1917   switch (cause) {
1918     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1919     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1920     case GCCause::_wb_conc_mark:                        return true;
1921     default :                                           return false;
1922   }
1923 }
1924 
1925 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1926   switch (cause) {
1927     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1928     case GCCause::_g1_humongous_allocation: return true;
1929     default:                                return is_user_requested_concurrent_full_gc(cause);
1930   }
1931 }
1932 
1933 #ifndef PRODUCT
1934 void G1CollectedHeap::allocate_dummy_regions() {
1935   // Let's fill up most of the region
1936   size_t word_size = HeapRegion::GrainWords - 1024;
1937   // And as a result the region we'll allocate will be humongous.
1938   guarantee(is_humongous(word_size), "sanity");
1939 
1940   // _filler_array_max_size is set to humongous object threshold
1941   // but temporarily change it to use CollectedHeap::fill_with_object().
1942   SizeTFlagSetting fs(_filler_array_max_size, word_size);
1943 
1944   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1945     // Let's use the existing mechanism for the allocation
1946     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1947     if (dummy_obj != NULL) {
1948       MemRegion mr(dummy_obj, word_size);
1949       CollectedHeap::fill_with_object(mr);
1950     } else {
1951       // If we can't allocate once, we probably cannot allocate
1952       // again. Let's get out of the loop.
1953       break;
1954     }
1955   }
1956 }
1957 #endif // !PRODUCT
1958 
1959 void G1CollectedHeap::increment_old_marking_cycles_started() {
1960   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1961          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1962          "Wrong marking cycle count (started: %d, completed: %d)",
1963          _old_marking_cycles_started, _old_marking_cycles_completed);
1964 
1965   _old_marking_cycles_started++;
1966 }
1967 
1968 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
1969   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
1970 
1971   // We assume that if concurrent == true, then the caller is a
1972   // concurrent thread that was joined the Suspendible Thread
1973   // Set. If there's ever a cheap way to check this, we should add an
1974   // assert here.
1975 
1976   // Given that this method is called at the end of a Full GC or of a
1977   // concurrent cycle, and those can be nested (i.e., a Full GC can
1978   // interrupt a concurrent cycle), the number of full collections
1979   // completed should be either one (in the case where there was no
1980   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1981   // behind the number of full collections started.
1982 
1983   // This is the case for the inner caller, i.e. a Full GC.
1984   assert(concurrent ||
1985          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1986          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1987          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1988          "is inconsistent with _old_marking_cycles_completed = %u",
1989          _old_marking_cycles_started, _old_marking_cycles_completed);
1990 
1991   // This is the case for the outer caller, i.e. the concurrent cycle.
1992   assert(!concurrent ||
1993          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1994          "for outer caller (concurrent cycle): "
1995          "_old_marking_cycles_started = %u "
1996          "is inconsistent with _old_marking_cycles_completed = %u",
1997          _old_marking_cycles_started, _old_marking_cycles_completed);
1998 
1999   _old_marking_cycles_completed += 1;
2000 
2001   // We need to clear the "in_progress" flag in the CM thread before
2002   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2003   // is set) so that if a waiter requests another System.gc() it doesn't
2004   // incorrectly see that a marking cycle is still in progress.
2005   if (concurrent) {
2006     _cm_thread->set_idle();
2007   }
2008 
2009   // This notify_all() will ensure that a thread that called
2010   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2011   // and it's waiting for a full GC to finish will be woken up. It is
2012   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2013   FullGCCount_lock->notify_all();
2014 }
2015 
2016 void G1CollectedHeap::collect(GCCause::Cause cause) {
2017   assert_heap_not_locked();
2018 
2019   uint gc_count_before;
2020   uint old_marking_count_before;
2021   uint full_gc_count_before;
2022   bool retry_gc;
2023 
2024   do {
2025     retry_gc = false;
2026 
2027     {
2028       MutexLocker ml(Heap_lock);
2029 
2030       // Read the GC count while holding the Heap_lock
2031       gc_count_before = total_collections();
2032       full_gc_count_before = total_full_collections();
2033       old_marking_count_before = _old_marking_cycles_started;
2034     }
2035 
2036     if (should_do_concurrent_full_gc(cause)) {
2037       // Schedule an initial-mark evacuation pause that will start a
2038       // concurrent cycle. We're setting word_size to 0 which means that
2039       // we are not requesting a post-GC allocation.
2040       VM_G1CollectForAllocation op(0,     /* word_size */
2041                                    gc_count_before,
2042                                    cause,
2043                                    true,  /* should_initiate_conc_mark */
2044                                    g1_policy()->max_pause_time_ms());
2045       VMThread::execute(&op);
2046       if (!op.pause_succeeded()) {
2047         if (old_marking_count_before == _old_marking_cycles_started) {
2048           retry_gc = op.should_retry_gc();
2049         } else {
2050           // A Full GC happened while we were trying to schedule the
2051           // initial-mark GC. No point in starting a new cycle given
2052           // that the whole heap was collected anyway.
2053         }
2054 
2055         if (retry_gc) {
2056           if (GCLocker::is_active_and_needs_gc()) {
2057             GCLocker::stall_until_clear();
2058           }
2059         }
2060       }
2061     } else {
2062       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2063           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2064 
2065         // Schedule a standard evacuation pause. We're setting word_size
2066         // to 0 which means that we are not requesting a post-GC allocation.
2067         VM_G1CollectForAllocation op(0,     /* word_size */
2068                                      gc_count_before,
2069                                      cause,
2070                                      false, /* should_initiate_conc_mark */
2071                                      g1_policy()->max_pause_time_ms());
2072         VMThread::execute(&op);
2073       } else {
2074         // Schedule a Full GC.
2075         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2076         VMThread::execute(&op);
2077       }
2078     }
2079   } while (retry_gc);
2080 }
2081 
2082 bool G1CollectedHeap::is_in(const void* p) const {
2083   if (_hrm.reserved().contains(p)) {
2084     // Given that we know that p is in the reserved space,
2085     // heap_region_containing() should successfully
2086     // return the containing region.
2087     HeapRegion* hr = heap_region_containing(p);
2088     return hr->is_in(p);
2089   } else {
2090     return false;
2091   }
2092 }
2093 
2094 #ifdef ASSERT
2095 bool G1CollectedHeap::is_in_exact(const void* p) const {
2096   bool contains = reserved_region().contains(p);
2097   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2098   if (contains && available) {
2099     return true;
2100   } else {
2101     return false;
2102   }
2103 }
2104 #endif
2105 
2106 // Iteration functions.
2107 
2108 // Iterates an ObjectClosure over all objects within a HeapRegion.
2109 
2110 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2111   ObjectClosure* _cl;
2112 public:
2113   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2114   bool do_heap_region(HeapRegion* r) {
2115     if (!r->is_continues_humongous()) {
2116       r->object_iterate(_cl);
2117     }
2118     return false;
2119   }
2120 };
2121 
2122 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2123   IterateObjectClosureRegionClosure blk(cl);
2124   heap_region_iterate(&blk);
2125 }
2126 
2127 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2128   _hrm.iterate(cl);
2129 }
2130 
2131 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2132                                                                  HeapRegionClaimer *hrclaimer,
2133                                                                  uint worker_id) const {
2134   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2135 }
2136 
2137 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2138                                                          HeapRegionClaimer *hrclaimer) const {
2139   _hrm.par_iterate(cl, hrclaimer, 0);
2140 }
2141 
2142 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2143   _collection_set.iterate(cl);
2144 }
2145 
2146 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2147   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2148 }
2149 
2150 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2151   HeapRegion* hr = heap_region_containing(addr);
2152   return hr->block_start(addr);
2153 }
2154 
2155 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2156   HeapRegion* hr = heap_region_containing(addr);
2157   return hr->block_size(addr);
2158 }
2159 
2160 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2161   HeapRegion* hr = heap_region_containing(addr);
2162   return hr->block_is_obj(addr);
2163 }
2164 
2165 bool G1CollectedHeap::supports_tlab_allocation() const {
2166   return true;
2167 }
2168 
2169 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2170   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2171 }
2172 
2173 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2174   return _eden.length() * HeapRegion::GrainBytes;
2175 }
2176 
2177 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2178 // must be equal to the humongous object limit.
2179 size_t G1CollectedHeap::max_tlab_size() const {
2180   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2181 }
2182 
2183 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2184   return _allocator->unsafe_max_tlab_alloc();
2185 }
2186 
2187 size_t G1CollectedHeap::max_capacity() const {
2188   return _hrm.reserved().byte_size();
2189 }
2190 
2191 jlong G1CollectedHeap::millis_since_last_gc() {
2192   // See the notes in GenCollectedHeap::millis_since_last_gc()
2193   // for more information about the implementation.
2194   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2195     _g1_policy->collection_pause_end_millis();
2196   if (ret_val < 0) {
2197     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2198       ". returning zero instead.", ret_val);
2199     return 0;
2200   }
2201   return ret_val;
2202 }
2203 
2204 void G1CollectedHeap::deduplicate_string(oop str) {
2205   assert(java_lang_String::is_instance(str), "invariant");
2206 
2207   if (G1StringDedup::is_enabled()) {
2208     G1StringDedup::deduplicate(str);
2209   }
2210 }
2211 
2212 void G1CollectedHeap::prepare_for_verify() {
2213   _verifier->prepare_for_verify();
2214 }
2215 
2216 void G1CollectedHeap::verify(VerifyOption vo) {
2217   _verifier->verify(vo);
2218 }
2219 
2220 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2221   return true;
2222 }
2223 
2224 const char* const* G1CollectedHeap::concurrent_phases() const {
2225   return _cm_thread->concurrent_phases();
2226 }
2227 
2228 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2229   return _cm_thread->request_concurrent_phase(phase);
2230 }
2231 
2232 class PrintRegionClosure: public HeapRegionClosure {
2233   outputStream* _st;
2234 public:
2235   PrintRegionClosure(outputStream* st) : _st(st) {}
2236   bool do_heap_region(HeapRegion* r) {
2237     r->print_on(_st);
2238     return false;
2239   }
2240 };
2241 
2242 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2243                                        const HeapRegion* hr,
2244                                        const VerifyOption vo) const {
2245   switch (vo) {
2246   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2247   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2248   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2249   default:                            ShouldNotReachHere();
2250   }
2251   return false; // keep some compilers happy
2252 }
2253 
2254 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2255                                        const VerifyOption vo) const {
2256   switch (vo) {
2257   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2258   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2259   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2260   default:                            ShouldNotReachHere();
2261   }
2262   return false; // keep some compilers happy
2263 }
2264 
2265 void G1CollectedHeap::print_heap_regions() const {
2266   LogTarget(Trace, gc, heap, region) lt;
2267   if (lt.is_enabled()) {
2268     LogStream ls(lt);
2269     print_regions_on(&ls);
2270   }
2271 }
2272 
2273 void G1CollectedHeap::print_on(outputStream* st) const {
2274   st->print(" %-20s", "garbage-first heap");
2275   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2276             capacity()/K, used_unlocked()/K);
2277   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2278             p2i(_hrm.reserved().start()),
2279             p2i(_hrm.reserved().end()));
2280   st->cr();
2281   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2282   uint young_regions = young_regions_count();
2283   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2284             (size_t) young_regions * HeapRegion::GrainBytes / K);
2285   uint survivor_regions = survivor_regions_count();
2286   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2287             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2288   st->cr();
2289   MetaspaceUtils::print_on(st);
2290 }
2291 
2292 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2293   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2294                "HS=humongous(starts), HC=humongous(continues), "
2295                "CS=collection set, F=free, A=archive, "
2296                "TAMS=top-at-mark-start (previous, next)");
2297   PrintRegionClosure blk(st);
2298   heap_region_iterate(&blk);
2299 }
2300 
2301 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2302   print_on(st);
2303 
2304   // Print the per-region information.
2305   print_regions_on(st);
2306 }
2307 
2308 void G1CollectedHeap::print_on_error(outputStream* st) const {
2309   this->CollectedHeap::print_on_error(st);
2310 
2311   if (_cm != NULL) {
2312     st->cr();
2313     _cm->print_on_error(st);
2314   }
2315 }
2316 
2317 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2318   workers()->print_worker_threads_on(st);
2319   _cm_thread->print_on(st);
2320   st->cr();
2321   _cm->print_worker_threads_on(st);
2322   _cr->print_threads_on(st);
2323   _young_gen_sampling_thread->print_on(st);
2324   if (G1StringDedup::is_enabled()) {
2325     G1StringDedup::print_worker_threads_on(st);
2326   }
2327 }
2328 
2329 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2330   workers()->threads_do(tc);
2331   tc->do_thread(_cm_thread);
2332   _cm->threads_do(tc);
2333   _cr->threads_do(tc);
2334   tc->do_thread(_young_gen_sampling_thread);
2335   if (G1StringDedup::is_enabled()) {
2336     G1StringDedup::threads_do(tc);
2337   }
2338 }
2339 
2340 void G1CollectedHeap::print_tracing_info() const {
2341   g1_rem_set()->print_summary_info();
2342   concurrent_mark()->print_summary_info();
2343 }
2344 
2345 #ifndef PRODUCT
2346 // Helpful for debugging RSet issues.
2347 
2348 class PrintRSetsClosure : public HeapRegionClosure {
2349 private:
2350   const char* _msg;
2351   size_t _occupied_sum;
2352 
2353 public:
2354   bool do_heap_region(HeapRegion* r) {
2355     HeapRegionRemSet* hrrs = r->rem_set();
2356     size_t occupied = hrrs->occupied();
2357     _occupied_sum += occupied;
2358 
2359     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2360     if (occupied == 0) {
2361       tty->print_cr("  RSet is empty");
2362     } else {
2363       hrrs->print();
2364     }
2365     tty->print_cr("----------");
2366     return false;
2367   }
2368 
2369   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2370     tty->cr();
2371     tty->print_cr("========================================");
2372     tty->print_cr("%s", msg);
2373     tty->cr();
2374   }
2375 
2376   ~PrintRSetsClosure() {
2377     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2378     tty->print_cr("========================================");
2379     tty->cr();
2380   }
2381 };
2382 
2383 void G1CollectedHeap::print_cset_rsets() {
2384   PrintRSetsClosure cl("Printing CSet RSets");
2385   collection_set_iterate(&cl);
2386 }
2387 
2388 void G1CollectedHeap::print_all_rsets() {
2389   PrintRSetsClosure cl("Printing All RSets");;
2390   heap_region_iterate(&cl);
2391 }
2392 #endif // PRODUCT
2393 
2394 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2395 
2396   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2397   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2398   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2399 
2400   size_t eden_capacity_bytes =
2401     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2402 
2403   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2404   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2405                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2406 }
2407 
2408 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2409   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2410                        stats->unused(), stats->used(), stats->region_end_waste(),
2411                        stats->regions_filled(), stats->direct_allocated(),
2412                        stats->failure_used(), stats->failure_waste());
2413 }
2414 
2415 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2416   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2417   gc_tracer->report_gc_heap_summary(when, heap_summary);
2418 
2419   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2420   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2421 }
2422 
2423 G1CollectedHeap* G1CollectedHeap::heap() {
2424   CollectedHeap* heap = Universe::heap();
2425   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2426   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2427   return (G1CollectedHeap*)heap;
2428 }
2429 
2430 void G1CollectedHeap::gc_prologue(bool full) {
2431   // always_do_update_barrier = false;
2432   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2433 
2434   // This summary needs to be printed before incrementing total collections.
2435   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2436 
2437   // Update common counters.
2438   increment_total_collections(full /* full gc */);
2439   if (full) {
2440     increment_old_marking_cycles_started();
2441   }
2442 
2443   // Fill TLAB's and such
2444   double start = os::elapsedTime();
2445   accumulate_statistics_all_tlabs();
2446   ensure_parsability(true);
2447   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2448 }
2449 
2450 void G1CollectedHeap::gc_epilogue(bool full) {
2451   // Update common counters.
2452   if (full) {
2453     // Update the number of full collections that have been completed.
2454     increment_old_marking_cycles_completed(false /* concurrent */);
2455   }
2456 
2457   // We are at the end of the GC. Total collections has already been increased.
2458   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2459 
2460   // FIXME: what is this about?
2461   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2462   // is set.
2463 #if COMPILER2_OR_JVMCI
2464   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2465 #endif
2466   // always_do_update_barrier = true;
2467 
2468   double start = os::elapsedTime();
2469   resize_all_tlabs();
2470   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2471 
2472   MemoryService::track_memory_usage();
2473   // We have just completed a GC. Update the soft reference
2474   // policy with the new heap occupancy
2475   Universe::update_heap_info_at_gc();
2476 }
2477 
2478 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2479                                                uint gc_count_before,
2480                                                bool* succeeded,
2481                                                GCCause::Cause gc_cause) {
2482   assert_heap_not_locked_and_not_at_safepoint();
2483   VM_G1CollectForAllocation op(word_size,
2484                                gc_count_before,
2485                                gc_cause,
2486                                false, /* should_initiate_conc_mark */
2487                                g1_policy()->max_pause_time_ms());
2488   VMThread::execute(&op);
2489 
2490   HeapWord* result = op.result();
2491   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2492   assert(result == NULL || ret_succeeded,
2493          "the result should be NULL if the VM did not succeed");
2494   *succeeded = ret_succeeded;
2495 
2496   assert_heap_not_locked();
2497   return result;
2498 }
2499 
2500 void G1CollectedHeap::do_concurrent_mark() {
2501   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2502   if (!_cm_thread->in_progress()) {
2503     _cm_thread->set_started();
2504     CGC_lock->notify();
2505   }
2506 }
2507 
2508 size_t G1CollectedHeap::pending_card_num() {
2509   size_t extra_cards = 0;
2510   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2511     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2512     extra_cards += dcq.size();
2513   }
2514   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2515   size_t buffer_size = dcqs.buffer_size();
2516   size_t buffer_num = dcqs.completed_buffers_num();
2517 
2518   return buffer_size * buffer_num + extra_cards;
2519 }
2520 
2521 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2522   // We don't nominate objects with many remembered set entries, on
2523   // the assumption that such objects are likely still live.
2524   HeapRegionRemSet* rem_set = r->rem_set();
2525 
2526   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2527          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2528          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2529 }
2530 
2531 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2532  private:
2533   size_t _total_humongous;
2534   size_t _candidate_humongous;
2535 
2536   DirtyCardQueue _dcq;
2537 
2538   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2539     assert(region->is_starts_humongous(), "Must start a humongous object");
2540 
2541     oop obj = oop(region->bottom());
2542 
2543     // Dead objects cannot be eager reclaim candidates. Due to class
2544     // unloading it is unsafe to query their classes so we return early.
2545     if (g1h->is_obj_dead(obj, region)) {
2546       return false;
2547     }
2548 
2549     // If we do not have a complete remembered set for the region, then we can
2550     // not be sure that we have all references to it.
2551     if (!region->rem_set()->is_complete()) {
2552       return false;
2553     }
2554     // Candidate selection must satisfy the following constraints
2555     // while concurrent marking is in progress:
2556     //
2557     // * In order to maintain SATB invariants, an object must not be
2558     // reclaimed if it was allocated before the start of marking and
2559     // has not had its references scanned.  Such an object must have
2560     // its references (including type metadata) scanned to ensure no
2561     // live objects are missed by the marking process.  Objects
2562     // allocated after the start of concurrent marking don't need to
2563     // be scanned.
2564     //
2565     // * An object must not be reclaimed if it is on the concurrent
2566     // mark stack.  Objects allocated after the start of concurrent
2567     // marking are never pushed on the mark stack.
2568     //
2569     // Nominating only objects allocated after the start of concurrent
2570     // marking is sufficient to meet both constraints.  This may miss
2571     // some objects that satisfy the constraints, but the marking data
2572     // structures don't support efficiently performing the needed
2573     // additional tests or scrubbing of the mark stack.
2574     //
2575     // However, we presently only nominate is_typeArray() objects.
2576     // A humongous object containing references induces remembered
2577     // set entries on other regions.  In order to reclaim such an
2578     // object, those remembered sets would need to be cleaned up.
2579     //
2580     // We also treat is_typeArray() objects specially, allowing them
2581     // to be reclaimed even if allocated before the start of
2582     // concurrent mark.  For this we rely on mark stack insertion to
2583     // exclude is_typeArray() objects, preventing reclaiming an object
2584     // that is in the mark stack.  We also rely on the metadata for
2585     // such objects to be built-in and so ensured to be kept live.
2586     // Frequent allocation and drop of large binary blobs is an
2587     // important use case for eager reclaim, and this special handling
2588     // may reduce needed headroom.
2589 
2590     return obj->is_typeArray() &&
2591            g1h->is_potential_eager_reclaim_candidate(region);
2592   }
2593 
2594  public:
2595   RegisterHumongousWithInCSetFastTestClosure()
2596   : _total_humongous(0),
2597     _candidate_humongous(0),
2598     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2599   }
2600 
2601   virtual bool do_heap_region(HeapRegion* r) {
2602     if (!r->is_starts_humongous()) {
2603       return false;
2604     }
2605     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2606 
2607     bool is_candidate = humongous_region_is_candidate(g1h, r);
2608     uint rindex = r->hrm_index();
2609     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2610     if (is_candidate) {
2611       _candidate_humongous++;
2612       g1h->register_humongous_region_with_cset(rindex);
2613       // Is_candidate already filters out humongous object with large remembered sets.
2614       // If we have a humongous object with a few remembered sets, we simply flush these
2615       // remembered set entries into the DCQS. That will result in automatic
2616       // re-evaluation of their remembered set entries during the following evacuation
2617       // phase.
2618       if (!r->rem_set()->is_empty()) {
2619         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2620                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2621         G1CardTable* ct = g1h->card_table();
2622         HeapRegionRemSetIterator hrrs(r->rem_set());
2623         size_t card_index;
2624         while (hrrs.has_next(card_index)) {
2625           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2626           // The remembered set might contain references to already freed
2627           // regions. Filter out such entries to avoid failing card table
2628           // verification.
2629           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2630             if (*card_ptr != G1CardTable::dirty_card_val()) {
2631               *card_ptr = G1CardTable::dirty_card_val();
2632               _dcq.enqueue(card_ptr);
2633             }
2634           }
2635         }
2636         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2637                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2638                hrrs.n_yielded(), r->rem_set()->occupied());
2639         // We should only clear the card based remembered set here as we will not
2640         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2641         // (and probably never) we do not enter this path if there are other kind of
2642         // remembered sets for this region.
2643         r->rem_set()->clear_locked(true /* only_cardset */);
2644         // Clear_locked() above sets the state to Empty. However we want to continue
2645         // collecting remembered set entries for humongous regions that were not
2646         // reclaimed.
2647         r->rem_set()->set_state_complete();
2648       }
2649       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2650     }
2651     _total_humongous++;
2652 
2653     return false;
2654   }
2655 
2656   size_t total_humongous() const { return _total_humongous; }
2657   size_t candidate_humongous() const { return _candidate_humongous; }
2658 
2659   void flush_rem_set_entries() { _dcq.flush(); }
2660 };
2661 
2662 void G1CollectedHeap::register_humongous_regions_with_cset() {
2663   if (!G1EagerReclaimHumongousObjects) {
2664     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2665     return;
2666   }
2667   double time = os::elapsed_counter();
2668 
2669   // Collect reclaim candidate information and register candidates with cset.
2670   RegisterHumongousWithInCSetFastTestClosure cl;
2671   heap_region_iterate(&cl);
2672 
2673   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2674   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2675                                                                   cl.total_humongous(),
2676                                                                   cl.candidate_humongous());
2677   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2678 
2679   // Finally flush all remembered set entries to re-check into the global DCQS.
2680   cl.flush_rem_set_entries();
2681 }
2682 
2683 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2684   public:
2685     bool do_heap_region(HeapRegion* hr) {
2686       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2687         hr->verify_rem_set();
2688       }
2689       return false;
2690     }
2691 };
2692 
2693 uint G1CollectedHeap::num_task_queues() const {
2694   return _task_queues->size();
2695 }
2696 
2697 #if TASKQUEUE_STATS
2698 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2699   st->print_raw_cr("GC Task Stats");
2700   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2701   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2702 }
2703 
2704 void G1CollectedHeap::print_taskqueue_stats() const {
2705   if (!log_is_enabled(Trace, gc, task, stats)) {
2706     return;
2707   }
2708   Log(gc, task, stats) log;
2709   ResourceMark rm;
2710   LogStream ls(log.trace());
2711   outputStream* st = &ls;
2712 
2713   print_taskqueue_stats_hdr(st);
2714 
2715   TaskQueueStats totals;
2716   const uint n = num_task_queues();
2717   for (uint i = 0; i < n; ++i) {
2718     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2719     totals += task_queue(i)->stats;
2720   }
2721   st->print_raw("tot "); totals.print(st); st->cr();
2722 
2723   DEBUG_ONLY(totals.verify());
2724 }
2725 
2726 void G1CollectedHeap::reset_taskqueue_stats() {
2727   const uint n = num_task_queues();
2728   for (uint i = 0; i < n; ++i) {
2729     task_queue(i)->stats.reset();
2730   }
2731 }
2732 #endif // TASKQUEUE_STATS
2733 
2734 void G1CollectedHeap::wait_for_root_region_scanning() {
2735   double scan_wait_start = os::elapsedTime();
2736   // We have to wait until the CM threads finish scanning the
2737   // root regions as it's the only way to ensure that all the
2738   // objects on them have been correctly scanned before we start
2739   // moving them during the GC.
2740   bool waited = _cm->root_regions()->wait_until_scan_finished();
2741   double wait_time_ms = 0.0;
2742   if (waited) {
2743     double scan_wait_end = os::elapsedTime();
2744     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2745   }
2746   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2747 }
2748 
2749 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2750 private:
2751   G1HRPrinter* _hr_printer;
2752 public:
2753   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2754 
2755   virtual bool do_heap_region(HeapRegion* r) {
2756     _hr_printer->cset(r);
2757     return false;
2758   }
2759 };
2760 
2761 void G1CollectedHeap::start_new_collection_set() {
2762   collection_set()->start_incremental_building();
2763 
2764   clear_cset_fast_test();
2765 
2766   guarantee(_eden.length() == 0, "eden should have been cleared");
2767   g1_policy()->transfer_survivors_to_cset(survivor());
2768 }
2769 
2770 bool
2771 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2772   assert_at_safepoint_on_vm_thread();
2773   guarantee(!is_gc_active(), "collection is not reentrant");
2774 
2775   if (GCLocker::check_active_before_gc()) {
2776     return false;
2777   }
2778 
2779   _gc_timer_stw->register_gc_start();
2780 
2781   GCIdMark gc_id_mark;
2782   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2783 
2784   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2785   ResourceMark rm;
2786 
2787   g1_policy()->note_gc_start();
2788 
2789   wait_for_root_region_scanning();
2790 
2791   print_heap_before_gc();
2792   print_heap_regions();
2793   trace_heap_before_gc(_gc_tracer_stw);
2794 
2795   _verifier->verify_region_sets_optional();
2796   _verifier->verify_dirty_young_regions();
2797 
2798   // We should not be doing initial mark unless the conc mark thread is running
2799   if (!_cm_thread->should_terminate()) {
2800     // This call will decide whether this pause is an initial-mark
2801     // pause. If it is, in_initial_mark_gc() will return true
2802     // for the duration of this pause.
2803     g1_policy()->decide_on_conc_mark_initiation();
2804   }
2805 
2806   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2807   assert(!collector_state()->in_initial_mark_gc() ||
2808           collector_state()->in_young_only_phase(), "sanity");
2809 
2810   // We also do not allow mixed GCs during marking.
2811   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2812 
2813   // Record whether this pause is an initial mark. When the current
2814   // thread has completed its logging output and it's safe to signal
2815   // the CM thread, the flag's value in the policy has been reset.
2816   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2817 
2818   // Inner scope for scope based logging, timers, and stats collection
2819   {
2820     EvacuationInfo evacuation_info;
2821 
2822     if (collector_state()->in_initial_mark_gc()) {
2823       // We are about to start a marking cycle, so we increment the
2824       // full collection counter.
2825       increment_old_marking_cycles_started();
2826       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2827     }
2828 
2829     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2830 
2831     GCTraceCPUTime tcpu;
2832 
2833     G1HeapVerifier::G1VerifyType verify_type;
2834     FormatBuffer<> gc_string("Pause ");
2835     if (collector_state()->in_initial_mark_gc()) {
2836       gc_string.append("Initial Mark");
2837       verify_type = G1HeapVerifier::G1VerifyInitialMark;
2838     } else if (collector_state()->in_young_only_phase()) {
2839       gc_string.append("Young");
2840       verify_type = G1HeapVerifier::G1VerifyYoungOnly;
2841     } else {
2842       gc_string.append("Mixed");
2843       verify_type = G1HeapVerifier::G1VerifyMixed;
2844     }
2845     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2846 
2847     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2848                                                                   workers()->active_workers(),
2849                                                                   Threads::number_of_non_daemon_threads());
2850     active_workers = workers()->update_active_workers(active_workers);
2851     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2852 
2853     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2854     TraceMemoryManagerStats tms(&_memory_manager, gc_cause());
2855 
2856     G1HeapTransition heap_transition(this);
2857     size_t heap_used_bytes_before_gc = used();
2858 
2859     // Don't dynamically change the number of GC threads this early.  A value of
2860     // 0 is used to indicate serial work.  When parallel work is done,
2861     // it will be set.
2862 
2863     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2864       IsGCActiveMark x;
2865 
2866       gc_prologue(false);
2867 
2868       if (VerifyRememberedSets) {
2869         log_info(gc, verify)("[Verifying RemSets before GC]");
2870         VerifyRegionRemSetClosure v_cl;
2871         heap_region_iterate(&v_cl);
2872       }
2873 
2874       _verifier->verify_before_gc(verify_type);
2875 
2876       _verifier->check_bitmaps("GC Start");
2877 
2878 #if COMPILER2_OR_JVMCI
2879       DerivedPointerTable::clear();
2880 #endif
2881 
2882       // Please see comment in g1CollectedHeap.hpp and
2883       // G1CollectedHeap::ref_processing_init() to see how
2884       // reference processing currently works in G1.
2885 
2886       // Enable discovery in the STW reference processor
2887       _ref_processor_stw->enable_discovery();
2888 
2889       {
2890         // We want to temporarily turn off discovery by the
2891         // CM ref processor, if necessary, and turn it back on
2892         // on again later if we do. Using a scoped
2893         // NoRefDiscovery object will do this.
2894         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2895 
2896         // Forget the current alloc region (we might even choose it to be part
2897         // of the collection set!).
2898         _allocator->release_mutator_alloc_region();
2899 
2900         // This timing is only used by the ergonomics to handle our pause target.
2901         // It is unclear why this should not include the full pause. We will
2902         // investigate this in CR 7178365.
2903         //
2904         // Preserving the old comment here if that helps the investigation:
2905         //
2906         // The elapsed time induced by the start time below deliberately elides
2907         // the possible verification above.
2908         double sample_start_time_sec = os::elapsedTime();
2909 
2910         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2911 
2912         if (collector_state()->in_initial_mark_gc()) {
2913           concurrent_mark()->pre_initial_mark();
2914         }
2915 
2916         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2917 
2918         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2919 
2920         // Make sure the remembered sets are up to date. This needs to be
2921         // done before register_humongous_regions_with_cset(), because the
2922         // remembered sets are used there to choose eager reclaim candidates.
2923         // If the remembered sets are not up to date we might miss some
2924         // entries that need to be handled.
2925         g1_rem_set()->cleanupHRRS();
2926 
2927         register_humongous_regions_with_cset();
2928 
2929         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2930 
2931         // We call this after finalize_cset() to
2932         // ensure that the CSet has been finalized.
2933         _cm->verify_no_cset_oops();
2934 
2935         if (_hr_printer.is_active()) {
2936           G1PrintCollectionSetClosure cl(&_hr_printer);
2937           _collection_set.iterate(&cl);
2938         }
2939 
2940         // Initialize the GC alloc regions.
2941         _allocator->init_gc_alloc_regions(evacuation_info);
2942 
2943         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
2944         pre_evacuate_collection_set();
2945 
2946         // Actually do the work...
2947         evacuate_collection_set(&per_thread_states);
2948 
2949         post_evacuate_collection_set(evacuation_info, &per_thread_states);
2950 
2951         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
2952         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
2953 
2954         eagerly_reclaim_humongous_regions();
2955 
2956         record_obj_copy_mem_stats();
2957         _survivor_evac_stats.adjust_desired_plab_sz();
2958         _old_evac_stats.adjust_desired_plab_sz();
2959 
2960         double start = os::elapsedTime();
2961         start_new_collection_set();
2962         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2963 
2964         if (evacuation_failed()) {
2965           set_used(recalculate_used());
2966           if (_archive_allocator != NULL) {
2967             _archive_allocator->clear_used();
2968           }
2969           for (uint i = 0; i < ParallelGCThreads; i++) {
2970             if (_evacuation_failed_info_array[i].has_failed()) {
2971               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
2972             }
2973           }
2974         } else {
2975           // The "used" of the the collection set have already been subtracted
2976           // when they were freed.  Add in the bytes evacuated.
2977           increase_used(g1_policy()->bytes_copied_during_gc());
2978         }
2979 
2980         if (collector_state()->in_initial_mark_gc()) {
2981           // We have to do this before we notify the CM threads that
2982           // they can start working to make sure that all the
2983           // appropriate initialization is done on the CM object.
2984           concurrent_mark()->post_initial_mark();
2985           // Note that we don't actually trigger the CM thread at
2986           // this point. We do that later when we're sure that
2987           // the current thread has completed its logging output.
2988         }
2989 
2990         allocate_dummy_regions();
2991 
2992         _allocator->init_mutator_alloc_region();
2993 
2994         {
2995           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2996           if (expand_bytes > 0) {
2997             size_t bytes_before = capacity();
2998             // No need for an ergo logging here,
2999             // expansion_amount() does this when it returns a value > 0.
3000             double expand_ms;
3001             if (!expand(expand_bytes, _workers, &expand_ms)) {
3002               // We failed to expand the heap. Cannot do anything about it.
3003             }
3004             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3005           }
3006         }
3007 
3008         // We redo the verification but now wrt to the new CSet which
3009         // has just got initialized after the previous CSet was freed.
3010         _cm->verify_no_cset_oops();
3011 
3012         // This timing is only used by the ergonomics to handle our pause target.
3013         // It is unclear why this should not include the full pause. We will
3014         // investigate this in CR 7178365.
3015         double sample_end_time_sec = os::elapsedTime();
3016         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3017         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3018         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3019 
3020         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3021         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3022 
3023         if (VerifyRememberedSets) {
3024           log_info(gc, verify)("[Verifying RemSets after GC]");
3025           VerifyRegionRemSetClosure v_cl;
3026           heap_region_iterate(&v_cl);
3027         }
3028 
3029         _verifier->verify_after_gc(verify_type);
3030         _verifier->check_bitmaps("GC End");
3031 
3032         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
3033         _ref_processor_stw->verify_no_references_recorded();
3034 
3035         // CM reference discovery will be re-enabled if necessary.
3036       }
3037 
3038 #ifdef TRACESPINNING
3039       ParallelTaskTerminator::print_termination_counts();
3040 #endif
3041 
3042       gc_epilogue(false);
3043     }
3044 
3045     // Print the remainder of the GC log output.
3046     if (evacuation_failed()) {
3047       log_info(gc)("To-space exhausted");
3048     }
3049 
3050     g1_policy()->print_phases();
3051     heap_transition.print();
3052 
3053     // It is not yet to safe to tell the concurrent mark to
3054     // start as we have some optional output below. We don't want the
3055     // output from the concurrent mark thread interfering with this
3056     // logging output either.
3057 
3058     _hrm.verify_optional();
3059     _verifier->verify_region_sets_optional();
3060 
3061     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3062     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3063 
3064     print_heap_after_gc();
3065     print_heap_regions();
3066     trace_heap_after_gc(_gc_tracer_stw);
3067 
3068     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3069     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3070     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3071     // before any GC notifications are raised.
3072     g1mm()->update_sizes();
3073 
3074     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3075     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3076     _gc_timer_stw->register_gc_end();
3077     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3078   }
3079   // It should now be safe to tell the concurrent mark thread to start
3080   // without its logging output interfering with the logging output
3081   // that came from the pause.
3082 
3083   if (should_start_conc_mark) {
3084     // CAUTION: after the doConcurrentMark() call below,
3085     // the concurrent marking thread(s) could be running
3086     // concurrently with us. Make sure that anything after
3087     // this point does not assume that we are the only GC thread
3088     // running. Note: of course, the actual marking work will
3089     // not start until the safepoint itself is released in
3090     // SuspendibleThreadSet::desynchronize().
3091     do_concurrent_mark();
3092   }
3093 
3094   return true;
3095 }
3096 
3097 void G1CollectedHeap::remove_self_forwarding_pointers() {
3098   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3099   workers()->run_task(&rsfp_task);
3100 }
3101 
3102 void G1CollectedHeap::restore_after_evac_failure() {
3103   double remove_self_forwards_start = os::elapsedTime();
3104 
3105   remove_self_forwarding_pointers();
3106   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3107   _preserved_marks_set.restore(&task_executor);
3108 
3109   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3110 }
3111 
3112 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3113   if (!_evacuation_failed) {
3114     _evacuation_failed = true;
3115   }
3116 
3117   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3118   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3119 }
3120 
3121 bool G1ParEvacuateFollowersClosure::offer_termination() {
3122   G1ParScanThreadState* const pss = par_scan_state();
3123   start_term_time();
3124   const bool res = terminator()->offer_termination();
3125   end_term_time();
3126   return res;
3127 }
3128 
3129 void G1ParEvacuateFollowersClosure::do_void() {
3130   G1ParScanThreadState* const pss = par_scan_state();
3131   pss->trim_queue();
3132   do {
3133     pss->steal_and_trim_queue(queues());
3134   } while (!offer_termination());
3135 }
3136 
3137 class G1ParTask : public AbstractGangTask {
3138 protected:
3139   G1CollectedHeap*         _g1h;
3140   G1ParScanThreadStateSet* _pss;
3141   RefToScanQueueSet*       _queues;
3142   G1RootProcessor*         _root_processor;
3143   ParallelTaskTerminator   _terminator;
3144   uint                     _n_workers;
3145 
3146 public:
3147   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3148     : AbstractGangTask("G1 collection"),
3149       _g1h(g1h),
3150       _pss(per_thread_states),
3151       _queues(task_queues),
3152       _root_processor(root_processor),
3153       _terminator(n_workers, _queues),
3154       _n_workers(n_workers)
3155   {}
3156 
3157   void work(uint worker_id) {
3158     if (worker_id >= _n_workers) return;  // no work needed this round
3159 
3160     double start_sec = os::elapsedTime();
3161     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3162 
3163     {
3164       ResourceMark rm;
3165       HandleMark   hm;
3166 
3167       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3168 
3169       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3170       pss->set_ref_discoverer(rp);
3171 
3172       double start_strong_roots_sec = os::elapsedTime();
3173 
3174       _root_processor->evacuate_roots(pss, worker_id);
3175 
3176       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3177       // treating the nmethods visited to act as roots for concurrent marking.
3178       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3179       // objects copied by the current evacuation.
3180       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3181 
3182       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3183 
3184       double term_sec = 0.0;
3185       size_t evac_term_attempts = 0;
3186       {
3187         double start = os::elapsedTime();
3188         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3189         evac.do_void();
3190 
3191         evac_term_attempts = evac.term_attempts();
3192         term_sec = evac.term_time();
3193         double elapsed_sec = os::elapsedTime() - start;
3194 
3195         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3196         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3197         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3198         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3199       }
3200 
3201       assert(pss->queue_is_empty(), "should be empty");
3202 
3203       if (log_is_enabled(Debug, gc, task, stats)) {
3204         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3205         size_t lab_waste;
3206         size_t lab_undo_waste;
3207         pss->waste(lab_waste, lab_undo_waste);
3208         _g1h->print_termination_stats(worker_id,
3209                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3210                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3211                                       term_sec * 1000.0,                          /* evac term time */
3212                                       evac_term_attempts,                         /* evac term attempts */
3213                                       lab_waste,                                  /* alloc buffer waste */
3214                                       lab_undo_waste                              /* undo waste */
3215                                       );
3216       }
3217 
3218       // Close the inner scope so that the ResourceMark and HandleMark
3219       // destructors are executed here and are included as part of the
3220       // "GC Worker Time".
3221     }
3222     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3223   }
3224 };
3225 
3226 void G1CollectedHeap::print_termination_stats_hdr() {
3227   log_debug(gc, task, stats)("GC Termination Stats");
3228   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3229   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3230   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3231 }
3232 
3233 void G1CollectedHeap::print_termination_stats(uint worker_id,
3234                                               double elapsed_ms,
3235                                               double strong_roots_ms,
3236                                               double term_ms,
3237                                               size_t term_attempts,
3238                                               size_t alloc_buffer_waste,
3239                                               size_t undo_waste) const {
3240   log_debug(gc, task, stats)
3241               ("%3d %9.2f %9.2f %6.2f "
3242                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3243                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3244                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3245                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3246                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3247                alloc_buffer_waste * HeapWordSize / K,
3248                undo_waste * HeapWordSize / K);
3249 }
3250 
3251 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3252 private:
3253   BoolObjectClosure* _is_alive;
3254   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3255   OopStorage::ParState<false /* concurrent */, false /* const */> _par_state_string;
3256 
3257   int _initial_string_table_size;
3258   int _initial_symbol_table_size;
3259 
3260   bool  _process_strings;
3261   int _strings_processed;
3262   int _strings_removed;
3263 
3264   bool  _process_symbols;
3265   int _symbols_processed;
3266   int _symbols_removed;
3267 
3268   bool _process_string_dedup;
3269 
3270 public:
3271   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3272     AbstractGangTask("String/Symbol Unlinking"),
3273     _is_alive(is_alive),
3274     _dedup_closure(is_alive, NULL, false),
3275     _par_state_string(StringTable::weak_storage()),
3276     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3277     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3278     _process_string_dedup(process_string_dedup) {
3279 
3280     _initial_string_table_size = (int) StringTable::the_table()->table_size();
3281     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3282     if (process_symbols) {
3283       SymbolTable::clear_parallel_claimed_index();
3284     }
3285   }
3286 
3287   ~G1StringAndSymbolCleaningTask() {
3288     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3289               "claim value %d after unlink less than initial symbol table size %d",
3290               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3291 
3292     log_info(gc, stringtable)(
3293         "Cleaned string and symbol table, "
3294         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3295         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3296         strings_processed(), strings_removed(),
3297         symbols_processed(), symbols_removed());
3298   }
3299 
3300   void work(uint worker_id) {
3301     int strings_processed = 0;
3302     int strings_removed = 0;
3303     int symbols_processed = 0;
3304     int symbols_removed = 0;
3305     if (_process_strings) {
3306       StringTable::possibly_parallel_unlink(&_par_state_string, _is_alive, &strings_processed, &strings_removed);
3307       Atomic::add(strings_processed, &_strings_processed);
3308       Atomic::add(strings_removed, &_strings_removed);
3309     }
3310     if (_process_symbols) {
3311       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3312       Atomic::add(symbols_processed, &_symbols_processed);
3313       Atomic::add(symbols_removed, &_symbols_removed);
3314     }
3315     if (_process_string_dedup) {
3316       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3317     }
3318   }
3319 
3320   size_t strings_processed() const { return (size_t)_strings_processed; }
3321   size_t strings_removed()   const { return (size_t)_strings_removed; }
3322 
3323   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3324   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3325 };
3326 
3327 class G1CodeCacheUnloadingTask {
3328 private:
3329   static Monitor* _lock;
3330 
3331   BoolObjectClosure* const _is_alive;
3332   const bool               _unloading_occurred;
3333   const uint               _num_workers;
3334 
3335   // Variables used to claim nmethods.
3336   CompiledMethod* _first_nmethod;
3337   CompiledMethod* volatile _claimed_nmethod;
3338 
3339   // The list of nmethods that need to be processed by the second pass.
3340   CompiledMethod* volatile _postponed_list;
3341   volatile uint            _num_entered_barrier;
3342 
3343  public:
3344   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3345       _is_alive(is_alive),
3346       _unloading_occurred(unloading_occurred),
3347       _num_workers(num_workers),
3348       _first_nmethod(NULL),
3349       _claimed_nmethod(NULL),
3350       _postponed_list(NULL),
3351       _num_entered_barrier(0)
3352   {
3353     CompiledMethod::increase_unloading_clock();
3354     // Get first alive nmethod
3355     CompiledMethodIterator iter = CompiledMethodIterator();
3356     if(iter.next_alive()) {
3357       _first_nmethod = iter.method();
3358     }
3359     _claimed_nmethod = _first_nmethod;
3360   }
3361 
3362   ~G1CodeCacheUnloadingTask() {
3363     CodeCache::verify_clean_inline_caches();
3364 
3365     CodeCache::set_needs_cache_clean(false);
3366     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3367 
3368     CodeCache::verify_icholder_relocations();
3369   }
3370 
3371  private:
3372   void add_to_postponed_list(CompiledMethod* nm) {
3373       CompiledMethod* old;
3374       do {
3375         old = _postponed_list;
3376         nm->set_unloading_next(old);
3377       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3378   }
3379 
3380   void clean_nmethod(CompiledMethod* nm) {
3381     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3382 
3383     if (postponed) {
3384       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3385       add_to_postponed_list(nm);
3386     }
3387 
3388     // Mark that this nmethod has been cleaned/unloaded.
3389     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3390     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3391   }
3392 
3393   void clean_nmethod_postponed(CompiledMethod* nm) {
3394     nm->do_unloading_parallel_postponed();
3395   }
3396 
3397   static const int MaxClaimNmethods = 16;
3398 
3399   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3400     CompiledMethod* first;
3401     CompiledMethodIterator last;
3402 
3403     do {
3404       *num_claimed_nmethods = 0;
3405 
3406       first = _claimed_nmethod;
3407       last = CompiledMethodIterator(first);
3408 
3409       if (first != NULL) {
3410 
3411         for (int i = 0; i < MaxClaimNmethods; i++) {
3412           if (!last.next_alive()) {
3413             break;
3414           }
3415           claimed_nmethods[i] = last.method();
3416           (*num_claimed_nmethods)++;
3417         }
3418       }
3419 
3420     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3421   }
3422 
3423   CompiledMethod* claim_postponed_nmethod() {
3424     CompiledMethod* claim;
3425     CompiledMethod* next;
3426 
3427     do {
3428       claim = _postponed_list;
3429       if (claim == NULL) {
3430         return NULL;
3431       }
3432 
3433       next = claim->unloading_next();
3434 
3435     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3436 
3437     return claim;
3438   }
3439 
3440  public:
3441   // Mark that we're done with the first pass of nmethod cleaning.
3442   void barrier_mark(uint worker_id) {
3443     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3444     _num_entered_barrier++;
3445     if (_num_entered_barrier == _num_workers) {
3446       ml.notify_all();
3447     }
3448   }
3449 
3450   // See if we have to wait for the other workers to
3451   // finish their first-pass nmethod cleaning work.
3452   void barrier_wait(uint worker_id) {
3453     if (_num_entered_barrier < _num_workers) {
3454       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3455       while (_num_entered_barrier < _num_workers) {
3456           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3457       }
3458     }
3459   }
3460 
3461   // Cleaning and unloading of nmethods. Some work has to be postponed
3462   // to the second pass, when we know which nmethods survive.
3463   void work_first_pass(uint worker_id) {
3464     // The first nmethods is claimed by the first worker.
3465     if (worker_id == 0 && _first_nmethod != NULL) {
3466       clean_nmethod(_first_nmethod);
3467       _first_nmethod = NULL;
3468     }
3469 
3470     int num_claimed_nmethods;
3471     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3472 
3473     while (true) {
3474       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3475 
3476       if (num_claimed_nmethods == 0) {
3477         break;
3478       }
3479 
3480       for (int i = 0; i < num_claimed_nmethods; i++) {
3481         clean_nmethod(claimed_nmethods[i]);
3482       }
3483     }
3484   }
3485 
3486   void work_second_pass(uint worker_id) {
3487     CompiledMethod* nm;
3488     // Take care of postponed nmethods.
3489     while ((nm = claim_postponed_nmethod()) != NULL) {
3490       clean_nmethod_postponed(nm);
3491     }
3492   }
3493 };
3494 
3495 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3496 
3497 class G1KlassCleaningTask : public StackObj {
3498   volatile int                            _clean_klass_tree_claimed;
3499   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3500 
3501  public:
3502   G1KlassCleaningTask() :
3503       _clean_klass_tree_claimed(0),
3504       _klass_iterator() {
3505   }
3506 
3507  private:
3508   bool claim_clean_klass_tree_task() {
3509     if (_clean_klass_tree_claimed) {
3510       return false;
3511     }
3512 
3513     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3514   }
3515 
3516   InstanceKlass* claim_next_klass() {
3517     Klass* klass;
3518     do {
3519       klass =_klass_iterator.next_klass();
3520     } while (klass != NULL && !klass->is_instance_klass());
3521 
3522     // this can be null so don't call InstanceKlass::cast
3523     return static_cast<InstanceKlass*>(klass);
3524   }
3525 
3526 public:
3527 
3528   void clean_klass(InstanceKlass* ik) {
3529     ik->clean_weak_instanceklass_links();
3530   }
3531 
3532   void work() {
3533     ResourceMark rm;
3534 
3535     // One worker will clean the subklass/sibling klass tree.
3536     if (claim_clean_klass_tree_task()) {
3537       Klass::clean_subklass_tree();
3538     }
3539 
3540     // All workers will help cleaning the classes,
3541     InstanceKlass* klass;
3542     while ((klass = claim_next_klass()) != NULL) {
3543       clean_klass(klass);
3544     }
3545   }
3546 };
3547 
3548 class G1ResolvedMethodCleaningTask : public StackObj {
3549   volatile int       _resolved_method_task_claimed;
3550 public:
3551   G1ResolvedMethodCleaningTask() :
3552       _resolved_method_task_claimed(0) {}
3553 
3554   bool claim_resolved_method_task() {
3555     if (_resolved_method_task_claimed) {
3556       return false;
3557     }
3558     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3559   }
3560 
3561   // These aren't big, one thread can do it all.
3562   void work() {
3563     if (claim_resolved_method_task()) {
3564       ResolvedMethodTable::unlink();
3565     }
3566   }
3567 };
3568 
3569 
3570 // To minimize the remark pause times, the tasks below are done in parallel.
3571 class G1ParallelCleaningTask : public AbstractGangTask {
3572 private:
3573   bool                          _unloading_occurred;
3574   G1StringAndSymbolCleaningTask _string_symbol_task;
3575   G1CodeCacheUnloadingTask      _code_cache_task;
3576   G1KlassCleaningTask           _klass_cleaning_task;
3577   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3578 
3579 public:
3580   // The constructor is run in the VMThread.
3581   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3582       AbstractGangTask("Parallel Cleaning"),
3583       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3584       _code_cache_task(num_workers, is_alive, unloading_occurred),
3585       _klass_cleaning_task(),
3586       _unloading_occurred(unloading_occurred),
3587       _resolved_method_cleaning_task() {
3588   }
3589 
3590   // The parallel work done by all worker threads.
3591   void work(uint worker_id) {
3592     // Do first pass of code cache cleaning.
3593     _code_cache_task.work_first_pass(worker_id);
3594 
3595     // Let the threads mark that the first pass is done.
3596     _code_cache_task.barrier_mark(worker_id);
3597 
3598     // Clean the Strings and Symbols.
3599     _string_symbol_task.work(worker_id);
3600 
3601     // Clean unreferenced things in the ResolvedMethodTable
3602     _resolved_method_cleaning_task.work();
3603 
3604     // Wait for all workers to finish the first code cache cleaning pass.
3605     _code_cache_task.barrier_wait(worker_id);
3606 
3607     // Do the second code cache cleaning work, which realize on
3608     // the liveness information gathered during the first pass.
3609     _code_cache_task.work_second_pass(worker_id);
3610 
3611     // Clean all klasses that were not unloaded.
3612     // The weak metadata in klass doesn't need to be
3613     // processed if there was no unloading.
3614     if (_unloading_occurred) {
3615       _klass_cleaning_task.work();
3616     }
3617   }
3618 };
3619 
3620 
3621 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3622                                         bool class_unloading_occurred) {
3623   uint n_workers = workers()->active_workers();
3624 
3625   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3626   workers()->run_task(&g1_unlink_task);
3627 }
3628 
3629 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3630                                        bool process_strings,
3631                                        bool process_symbols,
3632                                        bool process_string_dedup) {
3633   if (!process_strings && !process_symbols && !process_string_dedup) {
3634     // Nothing to clean.
3635     return;
3636   }
3637 
3638   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3639   workers()->run_task(&g1_unlink_task);
3640 
3641 }
3642 
3643 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3644  private:
3645   DirtyCardQueueSet* _queue;
3646   G1CollectedHeap* _g1h;
3647  public:
3648   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3649     _queue(queue), _g1h(g1h) { }
3650 
3651   virtual void work(uint worker_id) {
3652     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3653     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3654 
3655     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3656     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3657 
3658     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3659   }
3660 };
3661 
3662 void G1CollectedHeap::redirty_logged_cards() {
3663   double redirty_logged_cards_start = os::elapsedTime();
3664 
3665   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3666   dirty_card_queue_set().reset_for_par_iteration();
3667   workers()->run_task(&redirty_task);
3668 
3669   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3670   dcq.merge_bufferlists(&dirty_card_queue_set());
3671   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3672 
3673   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3674 }
3675 
3676 // Weak Reference Processing support
3677 
3678 bool G1STWIsAliveClosure::do_object_b(oop p) {
3679   // An object is reachable if it is outside the collection set,
3680   // or is inside and copied.
3681   return !_g1h->is_in_cset(p) || p->is_forwarded();
3682 }
3683 
3684 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3685   assert(obj != NULL, "must not be NULL");
3686   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3687   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3688   // may falsely indicate that this is not the case here: however the collection set only
3689   // contains old regions when concurrent mark is not running.
3690   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3691 }
3692 
3693 // Non Copying Keep Alive closure
3694 class G1KeepAliveClosure: public OopClosure {
3695   G1CollectedHeap*_g1h;
3696 public:
3697   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3698   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3699   void do_oop(oop* p) {
3700     oop obj = *p;
3701     assert(obj != NULL, "the caller should have filtered out NULL values");
3702 
3703     const InCSetState cset_state =_g1h->in_cset_state(obj);
3704     if (!cset_state.is_in_cset_or_humongous()) {
3705       return;
3706     }
3707     if (cset_state.is_in_cset()) {
3708       assert( obj->is_forwarded(), "invariant" );
3709       *p = obj->forwardee();
3710     } else {
3711       assert(!obj->is_forwarded(), "invariant" );
3712       assert(cset_state.is_humongous(),
3713              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3714      _g1h->set_humongous_is_live(obj);
3715     }
3716   }
3717 };
3718 
3719 // Copying Keep Alive closure - can be called from both
3720 // serial and parallel code as long as different worker
3721 // threads utilize different G1ParScanThreadState instances
3722 // and different queues.
3723 
3724 class G1CopyingKeepAliveClosure: public OopClosure {
3725   G1CollectedHeap*         _g1h;
3726   OopClosure*              _copy_non_heap_obj_cl;
3727   G1ParScanThreadState*    _par_scan_state;
3728 
3729 public:
3730   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3731                             OopClosure* non_heap_obj_cl,
3732                             G1ParScanThreadState* pss):
3733     _g1h(g1h),
3734     _copy_non_heap_obj_cl(non_heap_obj_cl),
3735     _par_scan_state(pss)
3736   {}
3737 
3738   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3739   virtual void do_oop(      oop* p) { do_oop_work(p); }
3740 
3741   template <class T> void do_oop_work(T* p) {
3742     oop obj = RawAccess<>::oop_load(p);
3743 
3744     if (_g1h->is_in_cset_or_humongous(obj)) {
3745       // If the referent object has been forwarded (either copied
3746       // to a new location or to itself in the event of an
3747       // evacuation failure) then we need to update the reference
3748       // field and, if both reference and referent are in the G1
3749       // heap, update the RSet for the referent.
3750       //
3751       // If the referent has not been forwarded then we have to keep
3752       // it alive by policy. Therefore we have copy the referent.
3753       //
3754       // If the reference field is in the G1 heap then we can push
3755       // on the PSS queue. When the queue is drained (after each
3756       // phase of reference processing) the object and it's followers
3757       // will be copied, the reference field set to point to the
3758       // new location, and the RSet updated. Otherwise we need to
3759       // use the the non-heap or metadata closures directly to copy
3760       // the referent object and update the pointer, while avoiding
3761       // updating the RSet.
3762 
3763       if (_g1h->is_in_g1_reserved(p)) {
3764         _par_scan_state->push_on_queue(p);
3765       } else {
3766         assert(!Metaspace::contains((const void*)p),
3767                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3768         _copy_non_heap_obj_cl->do_oop(p);
3769       }
3770     }
3771   }
3772 };
3773 
3774 // Serial drain queue closure. Called as the 'complete_gc'
3775 // closure for each discovered list in some of the
3776 // reference processing phases.
3777 
3778 class G1STWDrainQueueClosure: public VoidClosure {
3779 protected:
3780   G1CollectedHeap* _g1h;
3781   G1ParScanThreadState* _par_scan_state;
3782 
3783   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3784 
3785 public:
3786   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3787     _g1h(g1h),
3788     _par_scan_state(pss)
3789   { }
3790 
3791   void do_void() {
3792     G1ParScanThreadState* const pss = par_scan_state();
3793     pss->trim_queue();
3794   }
3795 };
3796 
3797 // Parallel Reference Processing closures
3798 
3799 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3800 // processing during G1 evacuation pauses.
3801 
3802 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3803 private:
3804   G1CollectedHeap*          _g1h;
3805   G1ParScanThreadStateSet*  _pss;
3806   RefToScanQueueSet*        _queues;
3807   WorkGang*                 _workers;
3808   uint                      _active_workers;
3809 
3810 public:
3811   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3812                            G1ParScanThreadStateSet* per_thread_states,
3813                            WorkGang* workers,
3814                            RefToScanQueueSet *task_queues,
3815                            uint n_workers) :
3816     _g1h(g1h),
3817     _pss(per_thread_states),
3818     _queues(task_queues),
3819     _workers(workers),
3820     _active_workers(n_workers)
3821   {
3822     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3823   }
3824 
3825   // Executes the given task using concurrent marking worker threads.
3826   virtual void execute(ProcessTask& task);
3827 };
3828 
3829 // Gang task for possibly parallel reference processing
3830 
3831 class G1STWRefProcTaskProxy: public AbstractGangTask {
3832   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3833   ProcessTask&     _proc_task;
3834   G1CollectedHeap* _g1h;
3835   G1ParScanThreadStateSet* _pss;
3836   RefToScanQueueSet* _task_queues;
3837   ParallelTaskTerminator* _terminator;
3838 
3839 public:
3840   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3841                         G1CollectedHeap* g1h,
3842                         G1ParScanThreadStateSet* per_thread_states,
3843                         RefToScanQueueSet *task_queues,
3844                         ParallelTaskTerminator* terminator) :
3845     AbstractGangTask("Process reference objects in parallel"),
3846     _proc_task(proc_task),
3847     _g1h(g1h),
3848     _pss(per_thread_states),
3849     _task_queues(task_queues),
3850     _terminator(terminator)
3851   {}
3852 
3853   virtual void work(uint worker_id) {
3854     // The reference processing task executed by a single worker.
3855     ResourceMark rm;
3856     HandleMark   hm;
3857 
3858     G1STWIsAliveClosure is_alive(_g1h);
3859 
3860     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3861     pss->set_ref_discoverer(NULL);
3862 
3863     // Keep alive closure.
3864     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3865 
3866     // Complete GC closure
3867     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3868 
3869     // Call the reference processing task's work routine.
3870     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3871 
3872     // Note we cannot assert that the refs array is empty here as not all
3873     // of the processing tasks (specifically phase2 - pp2_work) execute
3874     // the complete_gc closure (which ordinarily would drain the queue) so
3875     // the queue may not be empty.
3876   }
3877 };
3878 
3879 // Driver routine for parallel reference processing.
3880 // Creates an instance of the ref processing gang
3881 // task and has the worker threads execute it.
3882 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
3883   assert(_workers != NULL, "Need parallel worker threads.");
3884 
3885   ParallelTaskTerminator terminator(_active_workers, _queues);
3886   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3887 
3888   _workers->run_task(&proc_task_proxy);
3889 }
3890 
3891 // End of weak reference support closures
3892 
3893 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3894   double ref_proc_start = os::elapsedTime();
3895 
3896   ReferenceProcessor* rp = _ref_processor_stw;
3897   assert(rp->discovery_enabled(), "should have been enabled");
3898 
3899   // Closure to test whether a referent is alive.
3900   G1STWIsAliveClosure is_alive(this);
3901 
3902   // Even when parallel reference processing is enabled, the processing
3903   // of JNI refs is serial and performed serially by the current thread
3904   // rather than by a worker. The following PSS will be used for processing
3905   // JNI refs.
3906 
3907   // Use only a single queue for this PSS.
3908   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3909   pss->set_ref_discoverer(NULL);
3910   assert(pss->queue_is_empty(), "pre-condition");
3911 
3912   // Keep alive closure.
3913   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
3914 
3915   // Serial Complete GC closure
3916   G1STWDrainQueueClosure drain_queue(this, pss);
3917 
3918   // Setup the soft refs policy...
3919   rp->setup_policy(false);
3920 
3921   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3922 
3923   ReferenceProcessorStats stats;
3924   if (!rp->processing_is_mt()) {
3925     // Serial reference processing...
3926     stats = rp->process_discovered_references(&is_alive,
3927                                               &keep_alive,
3928                                               &drain_queue,
3929                                               NULL,
3930                                               pt);
3931   } else {
3932     uint no_of_gc_workers = workers()->active_workers();
3933 
3934     // Parallel reference processing
3935     assert(no_of_gc_workers <= rp->max_num_queues(),
3936            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3937            no_of_gc_workers,  rp->max_num_queues());
3938 
3939     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
3940     stats = rp->process_discovered_references(&is_alive,
3941                                               &keep_alive,
3942                                               &drain_queue,
3943                                               &par_task_executor,
3944                                               pt);
3945   }
3946 
3947   _gc_tracer_stw->report_gc_reference_stats(stats);
3948 
3949   // We have completed copying any necessary live referent objects.
3950   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3951 
3952   make_pending_list_reachable();
3953 
3954   rp->verify_no_references_recorded();
3955 
3956   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3957   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3958 }
3959 
3960 void G1CollectedHeap::make_pending_list_reachable() {
3961   if (collector_state()->in_initial_mark_gc()) {
3962     oop pll_head = Universe::reference_pending_list();
3963     if (pll_head != NULL) {
3964       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3965       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3966     }
3967   }
3968 }
3969 
3970 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3971   double merge_pss_time_start = os::elapsedTime();
3972   per_thread_states->flush();
3973   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3974 }
3975 
3976 void G1CollectedHeap::pre_evacuate_collection_set() {
3977   _expand_heap_after_alloc_failure = true;
3978   _evacuation_failed = false;
3979 
3980   // Disable the hot card cache.
3981   _hot_card_cache->reset_hot_cache_claimed_index();
3982   _hot_card_cache->set_use_cache(false);
3983 
3984   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3985   _preserved_marks_set.assert_empty();
3986 
3987   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3988 
3989   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3990   if (collector_state()->in_initial_mark_gc()) {
3991     double start_clear_claimed_marks = os::elapsedTime();
3992 
3993     ClassLoaderDataGraph::clear_claimed_marks();
3994 
3995     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3996     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3997   }
3998 }
3999 
4000 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
4001   // Should G1EvacuationFailureALot be in effect for this GC?
4002   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4003 
4004   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4005 
4006   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4007 
4008   double start_par_time_sec = os::elapsedTime();
4009   double end_par_time_sec;
4010 
4011   {
4012     const uint n_workers = workers()->active_workers();
4013     G1RootProcessor root_processor(this, n_workers);
4014     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4015 
4016     print_termination_stats_hdr();
4017 
4018     workers()->run_task(&g1_par_task);
4019     end_par_time_sec = os::elapsedTime();
4020 
4021     // Closing the inner scope will execute the destructor
4022     // for the G1RootProcessor object. We record the current
4023     // elapsed time before closing the scope so that time
4024     // taken for the destructor is NOT included in the
4025     // reported parallel time.
4026   }
4027 
4028   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4029   phase_times->record_par_time(par_time_ms);
4030 
4031   double code_root_fixup_time_ms =
4032         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4033   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4034 }
4035 
4036 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4037   // Also cleans the card table from temporary duplicate detection information used
4038   // during UpdateRS/ScanRS.
4039   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4040 
4041   // Process any discovered reference objects - we have
4042   // to do this _before_ we retire the GC alloc regions
4043   // as we may have to copy some 'reachable' referent
4044   // objects (and their reachable sub-graphs) that were
4045   // not copied during the pause.
4046   process_discovered_references(per_thread_states);
4047 
4048   // FIXME
4049   // CM's reference processing also cleans up the string and symbol tables.
4050   // Should we do that here also? We could, but it is a serial operation
4051   // and could significantly increase the pause time.
4052 
4053   G1STWIsAliveClosure is_alive(this);
4054   G1KeepAliveClosure keep_alive(this);
4055 
4056   {
4057     double start = os::elapsedTime();
4058 
4059     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4060 
4061     double time_ms = (os::elapsedTime() - start) * 1000.0;
4062     g1_policy()->phase_times()->record_weak_ref_proc_time(time_ms);
4063   }
4064 
4065   if (G1StringDedup::is_enabled()) {
4066     double fixup_start = os::elapsedTime();
4067 
4068     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4069 
4070     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4071     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4072   }
4073 
4074   if (evacuation_failed()) {
4075     restore_after_evac_failure();
4076 
4077     // Reset the G1EvacuationFailureALot counters and flags
4078     // Note: the values are reset only when an actual
4079     // evacuation failure occurs.
4080     NOT_PRODUCT(reset_evacuation_should_fail();)
4081   }
4082 
4083   _preserved_marks_set.assert_empty();
4084 
4085   _allocator->release_gc_alloc_regions(evacuation_info);
4086 
4087   merge_per_thread_state_info(per_thread_states);
4088 
4089   // Reset and re-enable the hot card cache.
4090   // Note the counts for the cards in the regions in the
4091   // collection set are reset when the collection set is freed.
4092   _hot_card_cache->reset_hot_cache();
4093   _hot_card_cache->set_use_cache(true);
4094 
4095   purge_code_root_memory();
4096 
4097   redirty_logged_cards();
4098 #if COMPILER2_OR_JVMCI
4099   double start = os::elapsedTime();
4100   DerivedPointerTable::update_pointers();
4101   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4102 #endif
4103   g1_policy()->print_age_table();
4104 }
4105 
4106 void G1CollectedHeap::record_obj_copy_mem_stats() {
4107   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4108 
4109   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4110                                                create_g1_evac_summary(&_old_evac_stats));
4111 }
4112 
4113 void G1CollectedHeap::free_region(HeapRegion* hr,
4114                                   FreeRegionList* free_list,
4115                                   bool skip_remset,
4116                                   bool skip_hot_card_cache,
4117                                   bool locked) {
4118   assert(!hr->is_free(), "the region should not be free");
4119   assert(!hr->is_empty(), "the region should not be empty");
4120   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4121   assert(free_list != NULL, "pre-condition");
4122 
4123   if (G1VerifyBitmaps) {
4124     MemRegion mr(hr->bottom(), hr->end());
4125     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4126   }
4127 
4128   // Clear the card counts for this region.
4129   // Note: we only need to do this if the region is not young
4130   // (since we don't refine cards in young regions).
4131   if (!skip_hot_card_cache && !hr->is_young()) {
4132     _hot_card_cache->reset_card_counts(hr);
4133   }
4134   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4135   _g1_policy->remset_tracker()->update_at_free(hr);
4136   free_list->add_ordered(hr);
4137 }
4138 
4139 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4140                                             FreeRegionList* free_list) {
4141   assert(hr->is_humongous(), "this is only for humongous regions");
4142   assert(free_list != NULL, "pre-condition");
4143   hr->clear_humongous();
4144   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
4145 }
4146 
4147 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4148                                            const uint humongous_regions_removed) {
4149   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4150     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4151     _old_set.bulk_remove(old_regions_removed);
4152     _humongous_set.bulk_remove(humongous_regions_removed);
4153   }
4154 
4155 }
4156 
4157 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4158   assert(list != NULL, "list can't be null");
4159   if (!list->is_empty()) {
4160     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4161     _hrm.insert_list_into_free_list(list);
4162   }
4163 }
4164 
4165 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4166   decrease_used(bytes);
4167 }
4168 
4169 class G1FreeCollectionSetTask : public AbstractGangTask {
4170 private:
4171 
4172   // Closure applied to all regions in the collection set to do work that needs to
4173   // be done serially in a single thread.
4174   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4175   private:
4176     EvacuationInfo* _evacuation_info;
4177     const size_t* _surviving_young_words;
4178 
4179     // Bytes used in successfully evacuated regions before the evacuation.
4180     size_t _before_used_bytes;
4181     // Bytes used in unsucessfully evacuated regions before the evacuation
4182     size_t _after_used_bytes;
4183 
4184     size_t _bytes_allocated_in_old_since_last_gc;
4185 
4186     size_t _failure_used_words;
4187     size_t _failure_waste_words;
4188 
4189     FreeRegionList _local_free_list;
4190   public:
4191     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4192       HeapRegionClosure(),
4193       _evacuation_info(evacuation_info),
4194       _surviving_young_words(surviving_young_words),
4195       _before_used_bytes(0),
4196       _after_used_bytes(0),
4197       _bytes_allocated_in_old_since_last_gc(0),
4198       _failure_used_words(0),
4199       _failure_waste_words(0),
4200       _local_free_list("Local Region List for CSet Freeing") {
4201     }
4202 
4203     virtual bool do_heap_region(HeapRegion* r) {
4204       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4205 
4206       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4207       g1h->clear_in_cset(r);
4208 
4209       if (r->is_young()) {
4210         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4211                "Young index %d is wrong for region %u of type %s with %u young regions",
4212                r->young_index_in_cset(),
4213                r->hrm_index(),
4214                r->get_type_str(),
4215                g1h->collection_set()->young_region_length());
4216         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4217         r->record_surv_words_in_group(words_survived);
4218       }
4219 
4220       if (!r->evacuation_failed()) {
4221         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4222         _before_used_bytes += r->used();
4223         g1h->free_region(r,
4224                          &_local_free_list,
4225                          true, /* skip_remset */
4226                          true, /* skip_hot_card_cache */
4227                          true  /* locked */);
4228       } else {
4229         r->uninstall_surv_rate_group();
4230         r->set_young_index_in_cset(-1);
4231         r->set_evacuation_failed(false);
4232         // When moving a young gen region to old gen, we "allocate" that whole region
4233         // there. This is in addition to any already evacuated objects. Notify the
4234         // policy about that.
4235         // Old gen regions do not cause an additional allocation: both the objects
4236         // still in the region and the ones already moved are accounted for elsewhere.
4237         if (r->is_young()) {
4238           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4239         }
4240         // The region is now considered to be old.
4241         r->set_old();
4242         // Do some allocation statistics accounting. Regions that failed evacuation
4243         // are always made old, so there is no need to update anything in the young
4244         // gen statistics, but we need to update old gen statistics.
4245         size_t used_words = r->marked_bytes() / HeapWordSize;
4246 
4247         _failure_used_words += used_words;
4248         _failure_waste_words += HeapRegion::GrainWords - used_words;
4249 
4250         g1h->old_set_add(r);
4251         _after_used_bytes += r->used();
4252       }
4253       return false;
4254     }
4255 
4256     void complete_work() {
4257       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4258 
4259       _evacuation_info->set_regions_freed(_local_free_list.length());
4260       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4261 
4262       g1h->prepend_to_freelist(&_local_free_list);
4263       g1h->decrement_summary_bytes(_before_used_bytes);
4264 
4265       G1Policy* policy = g1h->g1_policy();
4266       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4267 
4268       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4269     }
4270   };
4271 
4272   G1CollectionSet* _collection_set;
4273   G1SerialFreeCollectionSetClosure _cl;
4274   const size_t* _surviving_young_words;
4275 
4276   size_t _rs_lengths;
4277 
4278   volatile jint _serial_work_claim;
4279 
4280   struct WorkItem {
4281     uint region_idx;
4282     bool is_young;
4283     bool evacuation_failed;
4284 
4285     WorkItem(HeapRegion* r) {
4286       region_idx = r->hrm_index();
4287       is_young = r->is_young();
4288       evacuation_failed = r->evacuation_failed();
4289     }
4290   };
4291 
4292   volatile size_t _parallel_work_claim;
4293   size_t _num_work_items;
4294   WorkItem* _work_items;
4295 
4296   void do_serial_work() {
4297     // Need to grab the lock to be allowed to modify the old region list.
4298     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4299     _collection_set->iterate(&_cl);
4300   }
4301 
4302   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4303     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4304 
4305     HeapRegion* r = g1h->region_at(region_idx);
4306     assert(!g1h->is_on_master_free_list(r), "sanity");
4307 
4308     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4309 
4310     if (!is_young) {
4311       g1h->_hot_card_cache->reset_card_counts(r);
4312     }
4313 
4314     if (!evacuation_failed) {
4315       r->rem_set()->clear_locked();
4316     }
4317   }
4318 
4319   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4320   private:
4321     size_t _cur_idx;
4322     WorkItem* _work_items;
4323   public:
4324     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4325 
4326     virtual bool do_heap_region(HeapRegion* r) {
4327       _work_items[_cur_idx++] = WorkItem(r);
4328       return false;
4329     }
4330   };
4331 
4332   void prepare_work() {
4333     G1PrepareFreeCollectionSetClosure cl(_work_items);
4334     _collection_set->iterate(&cl);
4335   }
4336 
4337   void complete_work() {
4338     _cl.complete_work();
4339 
4340     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4341     policy->record_max_rs_lengths(_rs_lengths);
4342     policy->cset_regions_freed();
4343   }
4344 public:
4345   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4346     AbstractGangTask("G1 Free Collection Set"),
4347     _cl(evacuation_info, surviving_young_words),
4348     _collection_set(collection_set),
4349     _surviving_young_words(surviving_young_words),
4350     _serial_work_claim(0),
4351     _rs_lengths(0),
4352     _parallel_work_claim(0),
4353     _num_work_items(collection_set->region_length()),
4354     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4355     prepare_work();
4356   }
4357 
4358   ~G1FreeCollectionSetTask() {
4359     complete_work();
4360     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4361   }
4362 
4363   // Chunk size for work distribution. The chosen value has been determined experimentally
4364   // to be a good tradeoff between overhead and achievable parallelism.
4365   static uint chunk_size() { return 32; }
4366 
4367   virtual void work(uint worker_id) {
4368     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4369 
4370     // Claim serial work.
4371     if (_serial_work_claim == 0) {
4372       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4373       if (value == 0) {
4374         double serial_time = os::elapsedTime();
4375         do_serial_work();
4376         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4377       }
4378     }
4379 
4380     // Start parallel work.
4381     double young_time = 0.0;
4382     bool has_young_time = false;
4383     double non_young_time = 0.0;
4384     bool has_non_young_time = false;
4385 
4386     while (true) {
4387       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4388       size_t cur = end - chunk_size();
4389 
4390       if (cur >= _num_work_items) {
4391         break;
4392       }
4393 
4394       double start_time = os::elapsedTime();
4395 
4396       end = MIN2(end, _num_work_items);
4397 
4398       for (; cur < end; cur++) {
4399         bool is_young = _work_items[cur].is_young;
4400 
4401         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4402 
4403         double end_time = os::elapsedTime();
4404         double time_taken = end_time - start_time;
4405         if (is_young) {
4406           young_time += time_taken;
4407           has_young_time = true;
4408         } else {
4409           non_young_time += time_taken;
4410           has_non_young_time = true;
4411         }
4412         start_time = end_time;
4413       }
4414     }
4415 
4416     if (has_young_time) {
4417       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4418     }
4419     if (has_non_young_time) {
4420       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4421     }
4422   }
4423 };
4424 
4425 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4426   _eden.clear();
4427 
4428   double free_cset_start_time = os::elapsedTime();
4429 
4430   {
4431     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4432     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4433 
4434     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4435 
4436     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4437                         cl.name(),
4438                         num_workers,
4439                         _collection_set.region_length());
4440     workers()->run_task(&cl, num_workers);
4441   }
4442   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4443 
4444   collection_set->clear();
4445 }
4446 
4447 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4448  private:
4449   FreeRegionList* _free_region_list;
4450   HeapRegionSet* _proxy_set;
4451   uint _humongous_objects_reclaimed;
4452   uint _humongous_regions_reclaimed;
4453   size_t _freed_bytes;
4454  public:
4455 
4456   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4457     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4458   }
4459 
4460   virtual bool do_heap_region(HeapRegion* r) {
4461     if (!r->is_starts_humongous()) {
4462       return false;
4463     }
4464 
4465     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4466 
4467     oop obj = (oop)r->bottom();
4468     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4469 
4470     // The following checks whether the humongous object is live are sufficient.
4471     // The main additional check (in addition to having a reference from the roots
4472     // or the young gen) is whether the humongous object has a remembered set entry.
4473     //
4474     // A humongous object cannot be live if there is no remembered set for it
4475     // because:
4476     // - there can be no references from within humongous starts regions referencing
4477     // the object because we never allocate other objects into them.
4478     // (I.e. there are no intra-region references that may be missed by the
4479     // remembered set)
4480     // - as soon there is a remembered set entry to the humongous starts region
4481     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4482     // until the end of a concurrent mark.
4483     //
4484     // It is not required to check whether the object has been found dead by marking
4485     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4486     // all objects allocated during that time are considered live.
4487     // SATB marking is even more conservative than the remembered set.
4488     // So if at this point in the collection there is no remembered set entry,
4489     // nobody has a reference to it.
4490     // At the start of collection we flush all refinement logs, and remembered sets
4491     // are completely up-to-date wrt to references to the humongous object.
4492     //
4493     // Other implementation considerations:
4494     // - never consider object arrays at this time because they would pose
4495     // considerable effort for cleaning up the the remembered sets. This is
4496     // required because stale remembered sets might reference locations that
4497     // are currently allocated into.
4498     uint region_idx = r->hrm_index();
4499     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4500         !r->rem_set()->is_empty()) {
4501       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4502                                region_idx,
4503                                (size_t)obj->size() * HeapWordSize,
4504                                p2i(r->bottom()),
4505                                r->rem_set()->occupied(),
4506                                r->rem_set()->strong_code_roots_list_length(),
4507                                next_bitmap->is_marked(r->bottom()),
4508                                g1h->is_humongous_reclaim_candidate(region_idx),
4509                                obj->is_typeArray()
4510                               );
4511       return false;
4512     }
4513 
4514     guarantee(obj->is_typeArray(),
4515               "Only eagerly reclaiming type arrays is supported, but the object "
4516               PTR_FORMAT " is not.", p2i(r->bottom()));
4517 
4518     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4519                              region_idx,
4520                              (size_t)obj->size() * HeapWordSize,
4521                              p2i(r->bottom()),
4522                              r->rem_set()->occupied(),
4523                              r->rem_set()->strong_code_roots_list_length(),
4524                              next_bitmap->is_marked(r->bottom()),
4525                              g1h->is_humongous_reclaim_candidate(region_idx),
4526                              obj->is_typeArray()
4527                             );
4528 
4529     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4530     cm->humongous_object_eagerly_reclaimed(r);
4531     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4532            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4533            region_idx,
4534            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4535            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4536     _humongous_objects_reclaimed++;
4537     do {
4538       HeapRegion* next = g1h->next_region_in_humongous(r);
4539       _freed_bytes += r->used();
4540       r->set_containing_set(NULL);
4541       _humongous_regions_reclaimed++;
4542       g1h->free_humongous_region(r, _free_region_list);
4543       r = next;
4544     } while (r != NULL);
4545 
4546     return false;
4547   }
4548 
4549   uint humongous_objects_reclaimed() {
4550     return _humongous_objects_reclaimed;
4551   }
4552 
4553   uint humongous_regions_reclaimed() {
4554     return _humongous_regions_reclaimed;
4555   }
4556 
4557   size_t bytes_freed() const {
4558     return _freed_bytes;
4559   }
4560 };
4561 
4562 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4563   assert_at_safepoint_on_vm_thread();
4564 
4565   if (!G1EagerReclaimHumongousObjects ||
4566       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4567     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4568     return;
4569   }
4570 
4571   double start_time = os::elapsedTime();
4572 
4573   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4574 
4575   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4576   heap_region_iterate(&cl);
4577 
4578   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4579 
4580   G1HRPrinter* hrp = hr_printer();
4581   if (hrp->is_active()) {
4582     FreeRegionListIterator iter(&local_cleanup_list);
4583     while (iter.more_available()) {
4584       HeapRegion* hr = iter.get_next();
4585       hrp->cleanup(hr);
4586     }
4587   }
4588 
4589   prepend_to_freelist(&local_cleanup_list);
4590   decrement_summary_bytes(cl.bytes_freed());
4591 
4592   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4593                                                                     cl.humongous_objects_reclaimed());
4594 }
4595 
4596 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4597 public:
4598   virtual bool do_heap_region(HeapRegion* r) {
4599     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4600     G1CollectedHeap::heap()->clear_in_cset(r);
4601     r->set_young_index_in_cset(-1);
4602     return false;
4603   }
4604 };
4605 
4606 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4607   G1AbandonCollectionSetClosure cl;
4608   collection_set->iterate(&cl);
4609 
4610   collection_set->clear();
4611   collection_set->stop_incremental_building();
4612 }
4613 
4614 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4615   return _allocator->is_retained_old_region(hr);
4616 }
4617 
4618 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4619   _eden.add(hr);
4620   _g1_policy->set_region_eden(hr);
4621 }
4622 
4623 #ifdef ASSERT
4624 
4625 class NoYoungRegionsClosure: public HeapRegionClosure {
4626 private:
4627   bool _success;
4628 public:
4629   NoYoungRegionsClosure() : _success(true) { }
4630   bool do_heap_region(HeapRegion* r) {
4631     if (r->is_young()) {
4632       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4633                             p2i(r->bottom()), p2i(r->end()));
4634       _success = false;
4635     }
4636     return false;
4637   }
4638   bool success() { return _success; }
4639 };
4640 
4641 bool G1CollectedHeap::check_young_list_empty() {
4642   bool ret = (young_regions_count() == 0);
4643 
4644   NoYoungRegionsClosure closure;
4645   heap_region_iterate(&closure);
4646   ret = ret && closure.success();
4647 
4648   return ret;
4649 }
4650 
4651 #endif // ASSERT
4652 
4653 class TearDownRegionSetsClosure : public HeapRegionClosure {
4654 private:
4655   HeapRegionSet *_old_set;
4656 
4657 public:
4658   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4659 
4660   bool do_heap_region(HeapRegion* r) {
4661     if (r->is_old()) {
4662       _old_set->remove(r);
4663     } else if(r->is_young()) {
4664       r->uninstall_surv_rate_group();
4665     } else {
4666       // We ignore free regions, we'll empty the free list afterwards.
4667       // We ignore humongous regions, we're not tearing down the
4668       // humongous regions set.
4669       assert(r->is_free() || r->is_humongous(),
4670              "it cannot be another type");
4671     }
4672     return false;
4673   }
4674 
4675   ~TearDownRegionSetsClosure() {
4676     assert(_old_set->is_empty(), "post-condition");
4677   }
4678 };
4679 
4680 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4681   assert_at_safepoint_on_vm_thread();
4682 
4683   if (!free_list_only) {
4684     TearDownRegionSetsClosure cl(&_old_set);
4685     heap_region_iterate(&cl);
4686 
4687     // Note that emptying the _young_list is postponed and instead done as
4688     // the first step when rebuilding the regions sets again. The reason for
4689     // this is that during a full GC string deduplication needs to know if
4690     // a collected region was young or old when the full GC was initiated.
4691   }
4692   _hrm.remove_all_free_regions();
4693 }
4694 
4695 void G1CollectedHeap::increase_used(size_t bytes) {
4696   _summary_bytes_used += bytes;
4697 }
4698 
4699 void G1CollectedHeap::decrease_used(size_t bytes) {
4700   assert(_summary_bytes_used >= bytes,
4701          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4702          _summary_bytes_used, bytes);
4703   _summary_bytes_used -= bytes;
4704 }
4705 
4706 void G1CollectedHeap::set_used(size_t bytes) {
4707   _summary_bytes_used = bytes;
4708 }
4709 
4710 class RebuildRegionSetsClosure : public HeapRegionClosure {
4711 private:
4712   bool            _free_list_only;
4713   HeapRegionSet*   _old_set;
4714   HeapRegionManager*   _hrm;
4715   size_t          _total_used;
4716 
4717 public:
4718   RebuildRegionSetsClosure(bool free_list_only,
4719                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
4720     _free_list_only(free_list_only),
4721     _old_set(old_set), _hrm(hrm), _total_used(0) {
4722     assert(_hrm->num_free_regions() == 0, "pre-condition");
4723     if (!free_list_only) {
4724       assert(_old_set->is_empty(), "pre-condition");
4725     }
4726   }
4727 
4728   bool do_heap_region(HeapRegion* r) {
4729     // After full GC, no region should have a remembered set.
4730     r->rem_set()->clear(true);
4731     if (r->is_empty()) {
4732       // Add free regions to the free list
4733       r->set_free();
4734       _hrm->insert_into_free_list(r);
4735     } else if (!_free_list_only) {
4736 
4737       if (r->is_humongous()) {
4738         // We ignore humongous regions. We left the humongous set unchanged.
4739       } else {
4740         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4741         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
4742         r->move_to_old();
4743         _old_set->add(r);
4744       }
4745       _total_used += r->used();
4746     }
4747 
4748     return false;
4749   }
4750 
4751   size_t total_used() {
4752     return _total_used;
4753   }
4754 };
4755 
4756 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4757   assert_at_safepoint_on_vm_thread();
4758 
4759   if (!free_list_only) {
4760     _eden.clear();
4761     _survivor.clear();
4762   }
4763 
4764   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
4765   heap_region_iterate(&cl);
4766 
4767   if (!free_list_only) {
4768     set_used(cl.total_used());
4769     if (_archive_allocator != NULL) {
4770       _archive_allocator->clear_used();
4771     }
4772   }
4773   assert(used_unlocked() == recalculate_used(),
4774          "inconsistent used_unlocked(), "
4775          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4776          used_unlocked(), recalculate_used());
4777 }
4778 
4779 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4780   HeapRegion* hr = heap_region_containing(p);
4781   return hr->is_in(p);
4782 }
4783 
4784 // Methods for the mutator alloc region
4785 
4786 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4787                                                       bool force) {
4788   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4789   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4790   if (force || should_allocate) {
4791     HeapRegion* new_alloc_region = new_region(word_size,
4792                                               false /* is_old */,
4793                                               false /* do_expand */);
4794     if (new_alloc_region != NULL) {
4795       set_region_short_lived_locked(new_alloc_region);
4796       _hr_printer.alloc(new_alloc_region, !should_allocate);
4797       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4798       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4799       return new_alloc_region;
4800     }
4801   }
4802   return NULL;
4803 }
4804 
4805 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4806                                                   size_t allocated_bytes) {
4807   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4808   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4809 
4810   collection_set()->add_eden_region(alloc_region);
4811   increase_used(allocated_bytes);
4812   _hr_printer.retire(alloc_region);
4813   // We update the eden sizes here, when the region is retired,
4814   // instead of when it's allocated, since this is the point that its
4815   // used space has been recored in _summary_bytes_used.
4816   g1mm()->update_eden_size();
4817 }
4818 
4819 // Methods for the GC alloc regions
4820 
4821 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4822   if (dest.is_old()) {
4823     return true;
4824   } else {
4825     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4826   }
4827 }
4828 
4829 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4830   assert(FreeList_lock->owned_by_self(), "pre-condition");
4831 
4832   if (!has_more_regions(dest)) {
4833     return NULL;
4834   }
4835 
4836   const bool is_survivor = dest.is_young();
4837 
4838   HeapRegion* new_alloc_region = new_region(word_size,
4839                                             !is_survivor,
4840                                             true /* do_expand */);
4841   if (new_alloc_region != NULL) {
4842     if (is_survivor) {
4843       new_alloc_region->set_survivor();
4844       _survivor.add(new_alloc_region);
4845       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4846     } else {
4847       new_alloc_region->set_old();
4848       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4849     }
4850     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4851     _hr_printer.alloc(new_alloc_region);
4852     bool during_im = collector_state()->in_initial_mark_gc();
4853     new_alloc_region->note_start_of_copying(during_im);
4854     return new_alloc_region;
4855   }
4856   return NULL;
4857 }
4858 
4859 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4860                                              size_t allocated_bytes,
4861                                              InCSetState dest) {
4862   bool during_im = collector_state()->in_initial_mark_gc();
4863   alloc_region->note_end_of_copying(during_im);
4864   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4865   if (dest.is_old()) {
4866     _old_set.add(alloc_region);
4867   }
4868   _hr_printer.retire(alloc_region);
4869 }
4870 
4871 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4872   bool expanded = false;
4873   uint index = _hrm.find_highest_free(&expanded);
4874 
4875   if (index != G1_NO_HRM_INDEX) {
4876     if (expanded) {
4877       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4878                                 HeapRegion::GrainWords * HeapWordSize);
4879     }
4880     _hrm.allocate_free_regions_starting_at(index, 1);
4881     return region_at(index);
4882   }
4883   return NULL;
4884 }
4885 
4886 // Optimized nmethod scanning
4887 
4888 class RegisterNMethodOopClosure: public OopClosure {
4889   G1CollectedHeap* _g1h;
4890   nmethod* _nm;
4891 
4892   template <class T> void do_oop_work(T* p) {
4893     T heap_oop = RawAccess<>::oop_load(p);
4894     if (!CompressedOops::is_null(heap_oop)) {
4895       oop obj = CompressedOops::decode_not_null(heap_oop);
4896       HeapRegion* hr = _g1h->heap_region_containing(obj);
4897       assert(!hr->is_continues_humongous(),
4898              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4899              " starting at " HR_FORMAT,
4900              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4901 
4902       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4903       hr->add_strong_code_root_locked(_nm);
4904     }
4905   }
4906 
4907 public:
4908   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4909     _g1h(g1h), _nm(nm) {}
4910 
4911   void do_oop(oop* p)       { do_oop_work(p); }
4912   void do_oop(narrowOop* p) { do_oop_work(p); }
4913 };
4914 
4915 class UnregisterNMethodOopClosure: public OopClosure {
4916   G1CollectedHeap* _g1h;
4917   nmethod* _nm;
4918 
4919   template <class T> void do_oop_work(T* p) {
4920     T heap_oop = RawAccess<>::oop_load(p);
4921     if (!CompressedOops::is_null(heap_oop)) {
4922       oop obj = CompressedOops::decode_not_null(heap_oop);
4923       HeapRegion* hr = _g1h->heap_region_containing(obj);
4924       assert(!hr->is_continues_humongous(),
4925              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4926              " starting at " HR_FORMAT,
4927              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4928 
4929       hr->remove_strong_code_root(_nm);
4930     }
4931   }
4932 
4933 public:
4934   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4935     _g1h(g1h), _nm(nm) {}
4936 
4937   void do_oop(oop* p)       { do_oop_work(p); }
4938   void do_oop(narrowOop* p) { do_oop_work(p); }
4939 };
4940 
4941 // Returns true if the reference points to an object that
4942 // can move in an incremental collection.
4943 bool G1CollectedHeap::is_scavengable(oop obj) {
4944   HeapRegion* hr = heap_region_containing(obj);
4945   return !hr->is_pinned();
4946 }
4947 
4948 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4949   guarantee(nm != NULL, "sanity");
4950   RegisterNMethodOopClosure reg_cl(this, nm);
4951   nm->oops_do(&reg_cl);
4952 }
4953 
4954 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4955   guarantee(nm != NULL, "sanity");
4956   UnregisterNMethodOopClosure reg_cl(this, nm);
4957   nm->oops_do(&reg_cl, true);
4958 }
4959 
4960 void G1CollectedHeap::purge_code_root_memory() {
4961   double purge_start = os::elapsedTime();
4962   G1CodeRootSet::purge();
4963   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4964   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4965 }
4966 
4967 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4968   G1CollectedHeap* _g1h;
4969 
4970 public:
4971   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4972     _g1h(g1h) {}
4973 
4974   void do_code_blob(CodeBlob* cb) {
4975     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4976     if (nm == NULL) {
4977       return;
4978     }
4979 
4980     if (ScavengeRootsInCode) {
4981       _g1h->register_nmethod(nm);
4982     }
4983   }
4984 };
4985 
4986 void G1CollectedHeap::rebuild_strong_code_roots() {
4987   RebuildStrongCodeRootClosure blob_cl(this);
4988   CodeCache::blobs_do(&blob_cl);
4989 }
4990 
4991 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4992   GrowableArray<GCMemoryManager*> memory_managers(2);
4993   memory_managers.append(&_memory_manager);
4994   memory_managers.append(&_full_gc_memory_manager);
4995   return memory_managers;
4996 }
4997 
4998 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4999   GrowableArray<MemoryPool*> memory_pools(3);
5000   memory_pools.append(_eden_pool);
5001   memory_pools.append(_survivor_pool);
5002   memory_pools.append(_old_pool);
5003   return memory_pools;
5004 }