1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "gc/shared/vmGCOperations.hpp"
  36 #include "logging/log.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "logging/log.hpp"
  39 #include "logging/logStream.hpp"
  40 #include "memory/allocation.inline.hpp"
  41 #ifdef ASSERT
  42 #include "memory/guardedMemory.hpp"
  43 #endif
  44 #include "memory/resourceArea.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "prims/jvm_misc.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/atomic.hpp"
  50 #include "runtime/frame.inline.hpp"
  51 #include "runtime/interfaceSupport.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/os.inline.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/threadSMR.hpp"
  60 #include "runtime/vm_version.hpp"
  61 #include "services/attachListener.hpp"
  62 #include "services/mallocTracker.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/nmtCommon.hpp"
  65 #include "services/threadService.hpp"
  66 #include "utilities/align.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 
  70 # include <signal.h>
  71 # include <errno.h>
  72 
  73 OSThread*         os::_starting_thread    = NULL;
  74 address           os::_polling_page       = NULL;
  75 volatile int32_t* os::_mem_serialize_page = NULL;
  76 uintptr_t         os::_serialize_page_mask = 0;
  77 volatile unsigned int os::_rand_seed      = 1;
  78 int               os::_processor_count    = 0;
  79 bool              os::_nvdimm_present     = false;
  80 int               os::_nvdimm_fd          = -1;
  81 address           os::_dram_heap_base     = NULL;
  82 address           os::_nvdimm_heap_base   = NULL;
  83 uint              os::_nvdimm_region_length = 0;
  84 int               os::_initial_active_processor_count = 0;
  85 size_t            os::_page_sizes[os::page_sizes_max];
  86 
  87 #ifndef PRODUCT
  88 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
  89 julong os::alloc_bytes = 0;         // # of bytes allocated
  90 julong os::num_frees = 0;           // # of calls to free
  91 julong os::free_bytes = 0;          // # of bytes freed
  92 #endif
  93 
  94 static size_t cur_malloc_words = 0;  // current size for MallocMaxTestWords
  95 
  96 void os_init_globals() {
  97   // Called from init_globals().
  98   // See Threads::create_vm() in thread.cpp, and init.cpp.
  99   os::init_globals();
 100 }
 101 
 102 static time_t get_timezone(const struct tm* time_struct) {
 103 #if defined(_ALLBSD_SOURCE)
 104   return time_struct->tm_gmtoff;
 105 #elif defined(_WINDOWS)
 106   long zone;
 107   _get_timezone(&zone);
 108   return static_cast<time_t>(zone);
 109 #else
 110   return timezone;
 111 #endif
 112 }
 113 
 114 int os::snprintf(char* buf, size_t len, const char* fmt, ...) {
 115   va_list args;
 116   va_start(args, fmt);
 117   int result = os::vsnprintf(buf, len, fmt, args);
 118   va_end(args);
 119   return result;
 120 }
 121 
 122 // Fill in buffer with current local time as an ISO-8601 string.
 123 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
 124 // Returns buffer, or NULL if it failed.
 125 // This would mostly be a call to
 126 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
 127 // except that on Windows the %z behaves badly, so we do it ourselves.
 128 // Also, people wanted milliseconds on there,
 129 // and strftime doesn't do milliseconds.
 130 char* os::iso8601_time(char* buffer, size_t buffer_length, bool utc) {
 131   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
 132   //                                      1         2
 133   //                             12345678901234567890123456789
 134   // format string: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"
 135   static const size_t needed_buffer = 29;
 136 
 137   // Sanity check the arguments
 138   if (buffer == NULL) {
 139     assert(false, "NULL buffer");
 140     return NULL;
 141   }
 142   if (buffer_length < needed_buffer) {
 143     assert(false, "buffer_length too small");
 144     return NULL;
 145   }
 146   // Get the current time
 147   jlong milliseconds_since_19700101 = javaTimeMillis();
 148   const int milliseconds_per_microsecond = 1000;
 149   const time_t seconds_since_19700101 =
 150     milliseconds_since_19700101 / milliseconds_per_microsecond;
 151   const int milliseconds_after_second =
 152     milliseconds_since_19700101 % milliseconds_per_microsecond;
 153   // Convert the time value to a tm and timezone variable
 154   struct tm time_struct;
 155   if (utc) {
 156     if (gmtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 157       assert(false, "Failed gmtime_pd");
 158       return NULL;
 159     }
 160   } else {
 161     if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 162       assert(false, "Failed localtime_pd");
 163       return NULL;
 164     }
 165   }
 166   const time_t zone = get_timezone(&time_struct);
 167 
 168   // If daylight savings time is in effect,
 169   // we are 1 hour East of our time zone
 170   const time_t seconds_per_minute = 60;
 171   const time_t minutes_per_hour = 60;
 172   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
 173   time_t UTC_to_local = zone;
 174   if (time_struct.tm_isdst > 0) {
 175     UTC_to_local = UTC_to_local - seconds_per_hour;
 176   }
 177 
 178   // No offset when dealing with UTC
 179   if (utc) {
 180     UTC_to_local = 0;
 181   }
 182 
 183   // Compute the time zone offset.
 184   //    localtime_pd() sets timezone to the difference (in seconds)
 185   //    between UTC and and local time.
 186   //    ISO 8601 says we need the difference between local time and UTC,
 187   //    we change the sign of the localtime_pd() result.
 188   const time_t local_to_UTC = -(UTC_to_local);
 189   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
 190   char sign_local_to_UTC = '+';
 191   time_t abs_local_to_UTC = local_to_UTC;
 192   if (local_to_UTC < 0) {
 193     sign_local_to_UTC = '-';
 194     abs_local_to_UTC = -(abs_local_to_UTC);
 195   }
 196   // Convert time zone offset seconds to hours and minutes.
 197   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
 198   const time_t zone_min =
 199     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
 200 
 201   // Print an ISO 8601 date and time stamp into the buffer
 202   const int year = 1900 + time_struct.tm_year;
 203   const int month = 1 + time_struct.tm_mon;
 204   const int printed = jio_snprintf(buffer, buffer_length,
 205                                    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d",
 206                                    year,
 207                                    month,
 208                                    time_struct.tm_mday,
 209                                    time_struct.tm_hour,
 210                                    time_struct.tm_min,
 211                                    time_struct.tm_sec,
 212                                    milliseconds_after_second,
 213                                    sign_local_to_UTC,
 214                                    zone_hours,
 215                                    zone_min);
 216   if (printed == 0) {
 217     assert(false, "Failed jio_printf");
 218     return NULL;
 219   }
 220   return buffer;
 221 }
 222 
 223 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
 224   debug_only(Thread::check_for_dangling_thread_pointer(thread);)
 225 
 226   if (p >= MinPriority && p <= MaxPriority) {
 227     int priority = java_to_os_priority[p];
 228     return set_native_priority(thread, priority);
 229   } else {
 230     assert(false, "Should not happen");
 231     return OS_ERR;
 232   }
 233 }
 234 
 235 // The mapping from OS priority back to Java priority may be inexact because
 236 // Java priorities can map M:1 with native priorities. If you want the definite
 237 // Java priority then use JavaThread::java_priority()
 238 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
 239   int p;
 240   int os_prio;
 241   OSReturn ret = get_native_priority(thread, &os_prio);
 242   if (ret != OS_OK) return ret;
 243 
 244   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
 245     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
 246   } else {
 247     // niceness values are in reverse order
 248     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
 249   }
 250   priority = (ThreadPriority)p;
 251   return OS_OK;
 252 }
 253 
 254 bool os::dll_build_name(char* buffer, size_t size, const char* fname) {
 255   int n = jio_snprintf(buffer, size, "%s%s%s", JNI_LIB_PREFIX, fname, JNI_LIB_SUFFIX);
 256   return (n != -1);
 257 }
 258 
 259 #if !defined(LINUX) && !defined(_WINDOWS)
 260 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
 261   committed_start = start;
 262   committed_size = size;
 263   return true;
 264 }
 265 #endif
 266 
 267 // Helper for dll_locate_lib.
 268 // Pass buffer and printbuffer as we already printed the path to buffer
 269 // when we called get_current_directory. This way we avoid another buffer
 270 // of size MAX_PATH.
 271 static bool conc_path_file_and_check(char *buffer, char *printbuffer, size_t printbuflen,
 272                                      const char* pname, char lastchar, const char* fname) {
 273 
 274   // Concatenate path and file name, but don't print double path separators.
 275   const char *filesep = (WINDOWS_ONLY(lastchar == ':' ||) lastchar == os::file_separator()[0]) ?
 276                         "" : os::file_separator();
 277   int ret = jio_snprintf(printbuffer, printbuflen, "%s%s%s", pname, filesep, fname);
 278   // Check whether file exists.
 279   if (ret != -1) {
 280     struct stat statbuf;
 281     return os::stat(buffer, &statbuf) == 0;
 282   }
 283   return false;
 284 }
 285 
 286 bool os::dll_locate_lib(char *buffer, size_t buflen,
 287                         const char* pname, const char* fname) {
 288   bool retval = false;
 289 
 290   size_t fullfnamelen = strlen(JNI_LIB_PREFIX) + strlen(fname) + strlen(JNI_LIB_SUFFIX);
 291   char* fullfname = (char*)NEW_C_HEAP_ARRAY(char, fullfnamelen + 1, mtInternal);
 292   if (dll_build_name(fullfname, fullfnamelen + 1, fname)) {
 293     const size_t pnamelen = pname ? strlen(pname) : 0;
 294 
 295     if (pnamelen == 0) {
 296       // If no path given, use current working directory.
 297       const char* p = get_current_directory(buffer, buflen);
 298       if (p != NULL) {
 299         const size_t plen = strlen(buffer);
 300         const char lastchar = buffer[plen - 1];
 301         retval = conc_path_file_and_check(buffer, &buffer[plen], buflen - plen,
 302                                           "", lastchar, fullfname);
 303       }
 304     } else if (strchr(pname, *os::path_separator()) != NULL) {
 305       // A list of paths. Search for the path that contains the library.
 306       int n;
 307       char** pelements = split_path(pname, &n);
 308       if (pelements != NULL) {
 309         for (int i = 0; i < n; i++) {
 310           char* path = pelements[i];
 311           // Really shouldn't be NULL, but check can't hurt.
 312           size_t plen = (path == NULL) ? 0 : strlen(path);
 313           if (plen == 0) {
 314             continue; // Skip the empty path values.
 315           }
 316           const char lastchar = path[plen - 1];
 317           retval = conc_path_file_and_check(buffer, buffer, buflen, path, lastchar, fullfname);
 318           if (retval) break;
 319         }
 320         // Release the storage allocated by split_path.
 321         for (int i = 0; i < n; i++) {
 322           if (pelements[i] != NULL) {
 323             FREE_C_HEAP_ARRAY(char, pelements[i]);
 324           }
 325         }
 326         FREE_C_HEAP_ARRAY(char*, pelements);
 327       }
 328     } else {
 329       // A definite path.
 330       const char lastchar = pname[pnamelen-1];
 331       retval = conc_path_file_and_check(buffer, buffer, buflen, pname, lastchar, fullfname);
 332     }
 333   }
 334 
 335   FREE_C_HEAP_ARRAY(char*, fullfname);
 336   return retval;
 337 }
 338 
 339 // --------------------- sun.misc.Signal (optional) ---------------------
 340 
 341 
 342 // SIGBREAK is sent by the keyboard to query the VM state
 343 #ifndef SIGBREAK
 344 #define SIGBREAK SIGQUIT
 345 #endif
 346 
 347 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
 348 
 349 
 350 static void signal_thread_entry(JavaThread* thread, TRAPS) {
 351   os::set_priority(thread, NearMaxPriority);
 352   while (true) {
 353     int sig;
 354     {
 355       // FIXME : Currently we have not decided what should be the status
 356       //         for this java thread blocked here. Once we decide about
 357       //         that we should fix this.
 358       sig = os::signal_wait();
 359     }
 360     if (sig == os::sigexitnum_pd()) {
 361        // Terminate the signal thread
 362        return;
 363     }
 364 
 365     switch (sig) {
 366       case SIGBREAK: {
 367         // Check if the signal is a trigger to start the Attach Listener - in that
 368         // case don't print stack traces.
 369         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
 370           continue;
 371         }
 372         // Print stack traces
 373         // Any SIGBREAK operations added here should make sure to flush
 374         // the output stream (e.g. tty->flush()) after output.  See 4803766.
 375         // Each module also prints an extra carriage return after its output.
 376         VM_PrintThreads op;
 377         VMThread::execute(&op);
 378         VM_PrintJNI jni_op;
 379         VMThread::execute(&jni_op);
 380         VM_FindDeadlocks op1(tty);
 381         VMThread::execute(&op1);
 382         Universe::print_heap_at_SIGBREAK();
 383         if (PrintClassHistogram) {
 384           VM_GC_HeapInspection op1(tty, true /* force full GC before heap inspection */);
 385           VMThread::execute(&op1);
 386         }
 387         if (JvmtiExport::should_post_data_dump()) {
 388           JvmtiExport::post_data_dump();
 389         }
 390         break;
 391       }
 392       default: {
 393         // Dispatch the signal to java
 394         HandleMark hm(THREAD);
 395         Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_misc_Signal(), THREAD);
 396         if (klass != NULL) {
 397           JavaValue result(T_VOID);
 398           JavaCallArguments args;
 399           args.push_int(sig);
 400           JavaCalls::call_static(
 401             &result,
 402             klass,
 403             vmSymbols::dispatch_name(),
 404             vmSymbols::int_void_signature(),
 405             &args,
 406             THREAD
 407           );
 408         }
 409         if (HAS_PENDING_EXCEPTION) {
 410           // tty is initialized early so we don't expect it to be null, but
 411           // if it is we can't risk doing an initialization that might
 412           // trigger additional out-of-memory conditions
 413           if (tty != NULL) {
 414             char klass_name[256];
 415             char tmp_sig_name[16];
 416             const char* sig_name = "UNKNOWN";
 417             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
 418               name()->as_klass_external_name(klass_name, 256);
 419             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
 420               sig_name = tmp_sig_name;
 421             warning("Exception %s occurred dispatching signal %s to handler"
 422                     "- the VM may need to be forcibly terminated",
 423                     klass_name, sig_name );
 424           }
 425           CLEAR_PENDING_EXCEPTION;
 426         }
 427       }
 428     }
 429   }
 430 }
 431 
 432 void os::init_before_ergo() {
 433   initialize_initial_active_processor_count();
 434   // We need to initialize large page support here because ergonomics takes some
 435   // decisions depending on large page support and the calculated large page size.
 436   large_page_init();
 437 
 438   // We need to adapt the configured number of stack protection pages given
 439   // in 4K pages to the actual os page size. We must do this before setting
 440   // up minimal stack sizes etc. in os::init_2().
 441   JavaThread::set_stack_red_zone_size     (align_up(StackRedPages      * 4 * K, vm_page_size()));
 442   JavaThread::set_stack_yellow_zone_size  (align_up(StackYellowPages   * 4 * K, vm_page_size()));
 443   JavaThread::set_stack_reserved_zone_size(align_up(StackReservedPages * 4 * K, vm_page_size()));
 444   JavaThread::set_stack_shadow_zone_size  (align_up(StackShadowPages   * 4 * K, vm_page_size()));
 445 
 446   // VM version initialization identifies some characteristics of the
 447   // platform that are used during ergonomic decisions.
 448   VM_Version::init_before_ergo();
 449 }
 450 
 451 void os::initialize_jdk_signal_support(TRAPS) {
 452   if (!ReduceSignalUsage) {
 453     // Setup JavaThread for processing signals
 454     const char thread_name[] = "Signal Dispatcher";
 455     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
 456 
 457     // Initialize thread_oop to put it into the system threadGroup
 458     Handle thread_group (THREAD, Universe::system_thread_group());
 459     Handle thread_oop = JavaCalls::construct_new_instance(SystemDictionary::Thread_klass(),
 460                            vmSymbols::threadgroup_string_void_signature(),
 461                            thread_group,
 462                            string,
 463                            CHECK);
 464 
 465     Klass* group = SystemDictionary::ThreadGroup_klass();
 466     JavaValue result(T_VOID);
 467     JavaCalls::call_special(&result,
 468                             thread_group,
 469                             group,
 470                             vmSymbols::add_method_name(),
 471                             vmSymbols::thread_void_signature(),
 472                             thread_oop,
 473                             CHECK);
 474 
 475     { MutexLocker mu(Threads_lock);
 476       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
 477 
 478       // At this point it may be possible that no osthread was created for the
 479       // JavaThread due to lack of memory. We would have to throw an exception
 480       // in that case. However, since this must work and we do not allow
 481       // exceptions anyway, check and abort if this fails.
 482       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
 483         vm_exit_during_initialization("java.lang.OutOfMemoryError",
 484                                       os::native_thread_creation_failed_msg());
 485       }
 486 
 487       java_lang_Thread::set_thread(thread_oop(), signal_thread);
 488       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
 489       java_lang_Thread::set_daemon(thread_oop());
 490 
 491       signal_thread->set_threadObj(thread_oop());
 492       Threads::add(signal_thread);
 493       Thread::start(signal_thread);
 494     }
 495     // Handle ^BREAK
 496     os::signal(SIGBREAK, os::user_handler());
 497   }
 498 }
 499 
 500 
 501 void os::terminate_signal_thread() {
 502   if (!ReduceSignalUsage)
 503     signal_notify(sigexitnum_pd());
 504 }
 505 
 506 
 507 // --------------------- loading libraries ---------------------
 508 
 509 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
 510 extern struct JavaVM_ main_vm;
 511 
 512 static void* _native_java_library = NULL;
 513 
 514 void* os::native_java_library() {
 515   if (_native_java_library == NULL) {
 516     char buffer[JVM_MAXPATHLEN];
 517     char ebuf[1024];
 518 
 519     // Try to load verify dll first. In 1.3 java dll depends on it and is not
 520     // always able to find it when the loading executable is outside the JDK.
 521     // In order to keep working with 1.2 we ignore any loading errors.
 522     if (dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 523                        "verify")) {
 524       dll_load(buffer, ebuf, sizeof(ebuf));
 525     }
 526 
 527     // Load java dll
 528     if (dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 529                        "java")) {
 530       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
 531     }
 532     if (_native_java_library == NULL) {
 533       vm_exit_during_initialization("Unable to load native library", ebuf);
 534     }
 535 
 536 #if defined(__OpenBSD__)
 537     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
 538     // ignore errors
 539     if (dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 540                        "net")) {
 541       dll_load(buffer, ebuf, sizeof(ebuf));
 542     }
 543 #endif
 544   }
 545   return _native_java_library;
 546 }
 547 
 548 /*
 549  * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
 550  * If check_lib == true then we are looking for an
 551  * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
 552  * this library is statically linked into the image.
 553  * If check_lib == false then we will look for the appropriate symbol in the
 554  * executable if agent_lib->is_static_lib() == true or in the shared library
 555  * referenced by 'handle'.
 556  */
 557 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
 558                               const char *syms[], size_t syms_len) {
 559   assert(agent_lib != NULL, "sanity check");
 560   const char *lib_name;
 561   void *handle = agent_lib->os_lib();
 562   void *entryName = NULL;
 563   char *agent_function_name;
 564   size_t i;
 565 
 566   // If checking then use the agent name otherwise test is_static_lib() to
 567   // see how to process this lookup
 568   lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
 569   for (i = 0; i < syms_len; i++) {
 570     agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
 571     if (agent_function_name == NULL) {
 572       break;
 573     }
 574     entryName = dll_lookup(handle, agent_function_name);
 575     FREE_C_HEAP_ARRAY(char, agent_function_name);
 576     if (entryName != NULL) {
 577       break;
 578     }
 579   }
 580   return entryName;
 581 }
 582 
 583 // See if the passed in agent is statically linked into the VM image.
 584 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
 585                             size_t syms_len) {
 586   void *ret;
 587   void *proc_handle;
 588   void *save_handle;
 589 
 590   assert(agent_lib != NULL, "sanity check");
 591   if (agent_lib->name() == NULL) {
 592     return false;
 593   }
 594   proc_handle = get_default_process_handle();
 595   // Check for Agent_OnLoad/Attach_lib_name function
 596   save_handle = agent_lib->os_lib();
 597   // We want to look in this process' symbol table.
 598   agent_lib->set_os_lib(proc_handle);
 599   ret = find_agent_function(agent_lib, true, syms, syms_len);
 600   if (ret != NULL) {
 601     // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
 602     agent_lib->set_valid();
 603     agent_lib->set_static_lib(true);
 604     return true;
 605   }
 606   agent_lib->set_os_lib(save_handle);
 607   return false;
 608 }
 609 
 610 // --------------------- heap allocation utilities ---------------------
 611 
 612 char *os::strdup(const char *str, MEMFLAGS flags) {
 613   size_t size = strlen(str);
 614   char *dup_str = (char *)malloc(size + 1, flags);
 615   if (dup_str == NULL) return NULL;
 616   strcpy(dup_str, str);
 617   return dup_str;
 618 }
 619 
 620 char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
 621   char* p = os::strdup(str, flags);
 622   if (p == NULL) {
 623     vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
 624   }
 625   return p;
 626 }
 627 
 628 
 629 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
 630 
 631 #ifdef ASSERT
 632 
 633 static void verify_memory(void* ptr) {
 634   GuardedMemory guarded(ptr);
 635   if (!guarded.verify_guards()) {
 636     LogTarget(Warning, malloc, free) lt;
 637     ResourceMark rm;
 638     LogStream ls(lt);
 639     ls.print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
 640     ls.print_cr("## memory stomp:");
 641     guarded.print_on(&ls);
 642     fatal("memory stomping error");
 643   }
 644 }
 645 
 646 #endif
 647 
 648 //
 649 // This function supports testing of the malloc out of memory
 650 // condition without really running the system out of memory.
 651 //
 652 static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
 653   if (MallocMaxTestWords > 0) {
 654     size_t words = (alloc_size / BytesPerWord);
 655 
 656     if ((cur_malloc_words + words) > MallocMaxTestWords) {
 657       return true;
 658     }
 659     Atomic::add(words, &cur_malloc_words);
 660   }
 661   return false;
 662 }
 663 
 664 void* os::malloc(size_t size, MEMFLAGS flags) {
 665   return os::malloc(size, flags, CALLER_PC);
 666 }
 667 
 668 void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
 669   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 670   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 671 
 672   // Since os::malloc can be called when the libjvm.{dll,so} is
 673   // first loaded and we don't have a thread yet we must accept NULL also here.
 674   assert(!os::ThreadCrashProtection::is_crash_protected(Thread::current_or_null()),
 675          "malloc() not allowed when crash protection is set");
 676 
 677   if (size == 0) {
 678     // return a valid pointer if size is zero
 679     // if NULL is returned the calling functions assume out of memory.
 680     size = 1;
 681   }
 682 
 683   // NMT support
 684   NMT_TrackingLevel level = MemTracker::tracking_level();
 685   size_t            nmt_header_size = MemTracker::malloc_header_size(level);
 686 
 687 #ifndef ASSERT
 688   const size_t alloc_size = size + nmt_header_size;
 689 #else
 690   const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
 691   if (size + nmt_header_size > alloc_size) { // Check for rollover.
 692     return NULL;
 693   }
 694 #endif
 695 
 696   // For the test flag -XX:MallocMaxTestWords
 697   if (has_reached_max_malloc_test_peak(size)) {
 698     return NULL;
 699   }
 700 
 701   u_char* ptr;
 702   ptr = (u_char*)::malloc(alloc_size);
 703 
 704 #ifdef ASSERT
 705   if (ptr == NULL) {
 706     return NULL;
 707   }
 708   // Wrap memory with guard
 709   GuardedMemory guarded(ptr, size + nmt_header_size);
 710   ptr = guarded.get_user_ptr();
 711 #endif
 712   if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 713     log_warning(malloc, free)("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
 714     breakpoint();
 715   }
 716   debug_only(if (paranoid) verify_memory(ptr));
 717 
 718   // we do not track guard memory
 719   return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
 720 }
 721 
 722 void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
 723   return os::realloc(memblock, size, flags, CALLER_PC);
 724 }
 725 
 726 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
 727 
 728   // For the test flag -XX:MallocMaxTestWords
 729   if (has_reached_max_malloc_test_peak(size)) {
 730     return NULL;
 731   }
 732 
 733   if (size == 0) {
 734     // return a valid pointer if size is zero
 735     // if NULL is returned the calling functions assume out of memory.
 736     size = 1;
 737   }
 738 
 739 #ifndef ASSERT
 740   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 741   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 742    // NMT support
 743   void* membase = MemTracker::record_free(memblock);
 744   NMT_TrackingLevel level = MemTracker::tracking_level();
 745   size_t  nmt_header_size = MemTracker::malloc_header_size(level);
 746   void* ptr = ::realloc(membase, size + nmt_header_size);
 747   return MemTracker::record_malloc(ptr, size, memflags, stack, level);
 748 #else
 749   if (memblock == NULL) {
 750     return os::malloc(size, memflags, stack);
 751   }
 752   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 753     log_warning(malloc, free)("os::realloc caught " PTR_FORMAT, p2i(memblock));
 754     breakpoint();
 755   }
 756   // NMT support
 757   void* membase = MemTracker::malloc_base(memblock);
 758   verify_memory(membase);
 759   // always move the block
 760   void* ptr = os::malloc(size, memflags, stack);
 761   // Copy to new memory if malloc didn't fail
 762   if (ptr != NULL ) {
 763     GuardedMemory guarded(MemTracker::malloc_base(memblock));
 764     // Guard's user data contains NMT header
 765     size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
 766     memcpy(ptr, memblock, MIN2(size, memblock_size));
 767     if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
 768     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 769       log_warning(malloc, free)("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
 770       breakpoint();
 771     }
 772     os::free(memblock);
 773   }
 774   return ptr;
 775 #endif
 776 }
 777 
 778 
 779 void  os::free(void *memblock) {
 780   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
 781 #ifdef ASSERT
 782   if (memblock == NULL) return;
 783   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 784     log_warning(malloc, free)("os::free caught " PTR_FORMAT, p2i(memblock));
 785     breakpoint();
 786   }
 787   void* membase = MemTracker::record_free(memblock);
 788   verify_memory(membase);
 789 
 790   GuardedMemory guarded(membase);
 791   size_t size = guarded.get_user_size();
 792   inc_stat_counter(&free_bytes, size);
 793   membase = guarded.release_for_freeing();
 794   ::free(membase);
 795 #else
 796   void* membase = MemTracker::record_free(memblock);
 797   ::free(membase);
 798 #endif
 799 }
 800 
 801 void os::init_random(unsigned int initval) {
 802   _rand_seed = initval;
 803 }
 804 
 805 
 806 static int random_helper(unsigned int rand_seed) {
 807   /* standard, well-known linear congruential random generator with
 808    * next_rand = (16807*seed) mod (2**31-1)
 809    * see
 810    * (1) "Random Number Generators: Good Ones Are Hard to Find",
 811    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
 812    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
 813    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
 814   */
 815   const unsigned int a = 16807;
 816   const unsigned int m = 2147483647;
 817   const int q = m / a;        assert(q == 127773, "weird math");
 818   const int r = m % a;        assert(r == 2836, "weird math");
 819 
 820   // compute az=2^31p+q
 821   unsigned int lo = a * (rand_seed & 0xFFFF);
 822   unsigned int hi = a * (rand_seed >> 16);
 823   lo += (hi & 0x7FFF) << 16;
 824 
 825   // if q overflowed, ignore the overflow and increment q
 826   if (lo > m) {
 827     lo &= m;
 828     ++lo;
 829   }
 830   lo += hi >> 15;
 831 
 832   // if (p+q) overflowed, ignore the overflow and increment (p+q)
 833   if (lo > m) {
 834     lo &= m;
 835     ++lo;
 836   }
 837   return lo;
 838 }
 839 
 840 int os::random() {
 841   // Make updating the random seed thread safe.
 842   while (true) {
 843     unsigned int seed = _rand_seed;
 844     unsigned int rand = random_helper(seed);
 845     if (Atomic::cmpxchg(rand, &_rand_seed, seed) == seed) {
 846       return static_cast<int>(rand);
 847     }
 848   }
 849 }
 850 
 851 // The INITIALIZED state is distinguished from the SUSPENDED state because the
 852 // conditions in which a thread is first started are different from those in which
 853 // a suspension is resumed.  These differences make it hard for us to apply the
 854 // tougher checks when starting threads that we want to do when resuming them.
 855 // However, when start_thread is called as a result of Thread.start, on a Java
 856 // thread, the operation is synchronized on the Java Thread object.  So there
 857 // cannot be a race to start the thread and hence for the thread to exit while
 858 // we are working on it.  Non-Java threads that start Java threads either have
 859 // to do so in a context in which races are impossible, or should do appropriate
 860 // locking.
 861 
 862 void os::start_thread(Thread* thread) {
 863   // guard suspend/resume
 864   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
 865   OSThread* osthread = thread->osthread();
 866   osthread->set_state(RUNNABLE);
 867   pd_start_thread(thread);
 868 }
 869 
 870 void os::abort(bool dump_core) {
 871   abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
 872 }
 873 
 874 //---------------------------------------------------------------------------
 875 // Helper functions for fatal error handler
 876 
 877 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
 878   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
 879 
 880   int cols = 0;
 881   int cols_per_line = 0;
 882   switch (unitsize) {
 883     case 1: cols_per_line = 16; break;
 884     case 2: cols_per_line = 8;  break;
 885     case 4: cols_per_line = 4;  break;
 886     case 8: cols_per_line = 2;  break;
 887     default: return;
 888   }
 889 
 890   address p = start;
 891   st->print(PTR_FORMAT ":   ", p2i(start));
 892   while (p < end) {
 893     switch (unitsize) {
 894       case 1: st->print("%02x", *(u1*)p); break;
 895       case 2: st->print("%04x", *(u2*)p); break;
 896       case 4: st->print("%08x", *(u4*)p); break;
 897       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
 898     }
 899     p += unitsize;
 900     cols++;
 901     if (cols >= cols_per_line && p < end) {
 902        cols = 0;
 903        st->cr();
 904        st->print(PTR_FORMAT ":   ", p2i(p));
 905     } else {
 906        st->print(" ");
 907     }
 908   }
 909   st->cr();
 910 }
 911 
 912 void os::print_environment_variables(outputStream* st, const char** env_list) {
 913   if (env_list) {
 914     st->print_cr("Environment Variables:");
 915 
 916     for (int i = 0; env_list[i] != NULL; i++) {
 917       char *envvar = ::getenv(env_list[i]);
 918       if (envvar != NULL) {
 919         st->print("%s", env_list[i]);
 920         st->print("=");
 921         st->print_cr("%s", envvar);
 922       }
 923     }
 924   }
 925 }
 926 
 927 void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
 928   // cpu
 929   st->print("CPU:");
 930   st->print("total %d", os::processor_count());
 931   // It's not safe to query number of active processors after crash
 932   // st->print("(active %d)", os::active_processor_count()); but we can
 933   // print the initial number of active processors.
 934   // We access the raw value here because the assert in the accessor will
 935   // fail if the crash occurs before initialization of this value.
 936   st->print(" (initial active %d)", _initial_active_processor_count);
 937   st->print(" %s", VM_Version::features_string());
 938   st->cr();
 939   pd_print_cpu_info(st, buf, buflen);
 940 }
 941 
 942 // Print a one line string summarizing the cpu, number of cores, memory, and operating system version
 943 void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
 944   st->print("Host: ");
 945 #ifndef PRODUCT
 946   if (get_host_name(buf, buflen)) {
 947     st->print("%s, ", buf);
 948   }
 949 #endif // PRODUCT
 950   get_summary_cpu_info(buf, buflen);
 951   st->print("%s, ", buf);
 952   size_t mem = physical_memory()/G;
 953   if (mem == 0) {  // for low memory systems
 954     mem = physical_memory()/M;
 955     st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
 956   } else {
 957     st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
 958   }
 959   get_summary_os_info(buf, buflen);
 960   st->print_raw(buf);
 961   st->cr();
 962 }
 963 
 964 void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
 965   const int secs_per_day  = 86400;
 966   const int secs_per_hour = 3600;
 967   const int secs_per_min  = 60;
 968 
 969   time_t tloc;
 970   (void)time(&tloc);
 971   char* timestring = ctime(&tloc);  // ctime adds newline.
 972   // edit out the newline
 973   char* nl = strchr(timestring, '\n');
 974   if (nl != NULL) {
 975     *nl = '\0';
 976   }
 977 
 978   struct tm tz;
 979   if (localtime_pd(&tloc, &tz) != NULL) {
 980     ::strftime(buf, buflen, "%Z", &tz);
 981     st->print("Time: %s %s", timestring, buf);
 982   } else {
 983     st->print("Time: %s", timestring);
 984   }
 985 
 986   double t = os::elapsedTime();
 987   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
 988   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
 989   //       before printf. We lost some precision, but who cares?
 990   int eltime = (int)t;  // elapsed time in seconds
 991 
 992   // print elapsed time in a human-readable format:
 993   int eldays = eltime / secs_per_day;
 994   int day_secs = eldays * secs_per_day;
 995   int elhours = (eltime - day_secs) / secs_per_hour;
 996   int hour_secs = elhours * secs_per_hour;
 997   int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
 998   int minute_secs = elmins * secs_per_min;
 999   int elsecs = (eltime - day_secs - hour_secs - minute_secs);
1000   st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
1001 }
1002 
1003 // moved from debug.cpp (used to be find()) but still called from there
1004 // The verbose parameter is only set by the debug code in one case
1005 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
1006   address addr = (address)x;
1007   // Handle NULL first, so later checks don't need to protect against it.
1008   if (addr == NULL) {
1009     st->print_cr("0x0 is NULL");
1010     return;
1011   }
1012   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
1013   if (b != NULL) {
1014     if (b->is_buffer_blob()) {
1015       // the interpreter is generated into a buffer blob
1016       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
1017       if (i != NULL) {
1018         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", p2i(addr), (int)(addr - i->code_begin()));
1019         i->print_on(st);
1020         return;
1021       }
1022       if (Interpreter::contains(addr)) {
1023         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
1024                      " (not bytecode specific)", p2i(addr));
1025         return;
1026       }
1027       //
1028       if (AdapterHandlerLibrary::contains(b)) {
1029         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", p2i(addr), (int)(addr - b->code_begin()));
1030         AdapterHandlerLibrary::print_handler_on(st, b);
1031       }
1032       // the stubroutines are generated into a buffer blob
1033       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
1034       if (d != NULL) {
1035         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", p2i(addr), (int)(addr - d->begin()));
1036         d->print_on(st);
1037         st->cr();
1038         return;
1039       }
1040       if (StubRoutines::contains(addr)) {
1041         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", p2i(addr));
1042         return;
1043       }
1044       // the InlineCacheBuffer is using stubs generated into a buffer blob
1045       if (InlineCacheBuffer::contains(addr)) {
1046         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", p2i(addr));
1047         return;
1048       }
1049       VtableStub* v = VtableStubs::stub_containing(addr);
1050       if (v != NULL) {
1051         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", p2i(addr), (int)(addr - v->entry_point()));
1052         v->print_on(st);
1053         st->cr();
1054         return;
1055       }
1056     }
1057     nmethod* nm = b->as_nmethod_or_null();
1058     if (nm != NULL) {
1059       ResourceMark rm;
1060       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
1061                 p2i(addr), (int)(addr - nm->entry_point()), p2i(nm));
1062       if (verbose) {
1063         st->print(" for ");
1064         nm->method()->print_value_on(st);
1065       }
1066       st->cr();
1067       nm->print_nmethod(verbose);
1068       return;
1069     }
1070     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", p2i(addr), (int)(addr - b->code_begin()));
1071     b->print_on(st);
1072     return;
1073   }
1074 
1075   if (Universe::heap()->is_in(addr)) {
1076     HeapWord* p = Universe::heap()->block_start(addr);
1077     bool print = false;
1078     // If we couldn't find it it just may mean that heap wasn't parsable
1079     // See if we were just given an oop directly
1080     if (p != NULL && Universe::heap()->block_is_obj(p)) {
1081       print = true;
1082     } else if (p == NULL && oopDesc::is_oop(oop(addr))) {
1083       p = (HeapWord*) addr;
1084       print = true;
1085     }
1086     if (print) {
1087       if (p == (HeapWord*) addr) {
1088         st->print_cr(INTPTR_FORMAT " is an oop", p2i(addr));
1089       } else {
1090         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, p2i(addr), p2i(p));
1091       }
1092       oop(p)->print_on(st);
1093       return;
1094     }
1095   } else {
1096     if (Universe::heap()->is_in_reserved(addr)) {
1097       st->print_cr(INTPTR_FORMAT " is an unallocated location "
1098                    "in the heap", p2i(addr));
1099       return;
1100     }
1101   }
1102   if (JNIHandles::is_global_handle((jobject) addr)) {
1103     st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
1104     return;
1105   }
1106   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1107     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
1108     return;
1109   }
1110 #ifndef PRODUCT
1111   // we don't keep the block list in product mode
1112   if (JNIHandles::is_local_handle((jobject) addr)) {
1113     st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
1114     return;
1115   }
1116 #endif
1117 
1118   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
1119     // Check for privilege stack
1120     if (thread->privileged_stack_top() != NULL &&
1121         thread->privileged_stack_top()->contains(addr)) {
1122       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1123                    "for thread: " INTPTR_FORMAT, p2i(addr), p2i(thread));
1124       if (verbose) thread->print_on(st);
1125       return;
1126     }
1127     // If the addr is a java thread print information about that.
1128     if (addr == (address)thread) {
1129       if (verbose) {
1130         thread->print_on(st);
1131       } else {
1132         st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
1133       }
1134       return;
1135     }
1136     // If the addr is in the stack region for this thread then report that
1137     // and print thread info
1138     if (thread->on_local_stack(addr)) {
1139       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1140                    INTPTR_FORMAT, p2i(addr), p2i(thread));
1141       if (verbose) thread->print_on(st);
1142       return;
1143     }
1144   }
1145 
1146   // Check if in metaspace and print types that have vptrs (only method now)
1147   if (Metaspace::contains(addr)) {
1148     if (Method::has_method_vptr((const void*)addr)) {
1149       ((Method*)addr)->print_value_on(st);
1150       st->cr();
1151     } else {
1152       // Use addr->print() from the debugger instead (not here)
1153       st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
1154     }
1155     return;
1156   }
1157 
1158   // Try an OS specific find
1159   if (os::find(addr, st)) {
1160     return;
1161   }
1162 
1163   st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
1164 }
1165 
1166 // Looks like all platforms can use the same function to check if C
1167 // stack is walkable beyond current frame. The check for fp() is not
1168 // necessary on Sparc, but it's harmless.
1169 bool os::is_first_C_frame(frame* fr) {
1170   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1171   // Check usp first, because if that's bad the other accessors may fault
1172   // on some architectures.  Ditto ufp second, etc.
1173   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1174   // sp on amd can be 32 bit aligned.
1175   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1176 
1177   uintptr_t usp    = (uintptr_t)fr->sp();
1178   if ((usp & sp_align_mask) != 0) return true;
1179 
1180   uintptr_t ufp    = (uintptr_t)fr->fp();
1181   if ((ufp & fp_align_mask) != 0) return true;
1182 
1183   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1184   if ((old_sp & sp_align_mask) != 0) return true;
1185   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1186 
1187   uintptr_t old_fp = (uintptr_t)fr->link();
1188   if ((old_fp & fp_align_mask) != 0) return true;
1189   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1190 
1191   // stack grows downwards; if old_fp is below current fp or if the stack
1192   // frame is too large, either the stack is corrupted or fp is not saved
1193   // on stack (i.e. on x86, ebp may be used as general register). The stack
1194   // is not walkable beyond current frame.
1195   if (old_fp < ufp) return true;
1196   if (old_fp - ufp > 64 * K) return true;
1197 
1198   return false;
1199 }
1200 
1201 
1202 // Set up the boot classpath.
1203 
1204 char* os::format_boot_path(const char* format_string,
1205                            const char* home,
1206                            int home_len,
1207                            char fileSep,
1208                            char pathSep) {
1209     assert((fileSep == '/' && pathSep == ':') ||
1210            (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1211 
1212     // Scan the format string to determine the length of the actual
1213     // boot classpath, and handle platform dependencies as well.
1214     int formatted_path_len = 0;
1215     const char* p;
1216     for (p = format_string; *p != 0; ++p) {
1217         if (*p == '%') formatted_path_len += home_len - 1;
1218         ++formatted_path_len;
1219     }
1220 
1221     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1222     if (formatted_path == NULL) {
1223         return NULL;
1224     }
1225 
1226     // Create boot classpath from format, substituting separator chars and
1227     // java home directory.
1228     char* q = formatted_path;
1229     for (p = format_string; *p != 0; ++p) {
1230         switch (*p) {
1231         case '%':
1232             strcpy(q, home);
1233             q += home_len;
1234             break;
1235         case '/':
1236             *q++ = fileSep;
1237             break;
1238         case ':':
1239             *q++ = pathSep;
1240             break;
1241         default:
1242             *q++ = *p;
1243         }
1244     }
1245     *q = '\0';
1246 
1247     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1248     return formatted_path;
1249 }
1250 
1251 // This function is a proxy to fopen, it tries to add a non standard flag ('e' or 'N')
1252 // that ensures automatic closing of the file on exec. If it can not find support in
1253 // the underlying c library, it will make an extra system call (fcntl) to ensure automatic
1254 // closing of the file on exec.
1255 FILE* os::fopen(const char* path, const char* mode) {
1256   char modified_mode[20];
1257   assert(strlen(mode) + 1 < sizeof(modified_mode), "mode chars plus one extra must fit in buffer");
1258   sprintf(modified_mode, "%s" LINUX_ONLY("e") BSD_ONLY("e") WINDOWS_ONLY("N"), mode);
1259   FILE* file = ::fopen(path, modified_mode);
1260 
1261 #if !(defined LINUX || defined BSD || defined _WINDOWS)
1262   // assume fcntl FD_CLOEXEC support as a backup solution when 'e' or 'N'
1263   // is not supported as mode in fopen
1264   if (file != NULL) {
1265     int fd = fileno(file);
1266     if (fd != -1) {
1267       int fd_flags = fcntl(fd, F_GETFD);
1268       if (fd_flags != -1) {
1269         fcntl(fd, F_SETFD, fd_flags | FD_CLOEXEC);
1270       }
1271     }
1272   }
1273 #endif
1274 
1275   return file;
1276 }
1277 
1278 bool os::set_boot_path(char fileSep, char pathSep) {
1279   const char* home = Arguments::get_java_home();
1280   int home_len = (int)strlen(home);
1281 
1282   struct stat st;
1283 
1284   // modular image if "modules" jimage exists
1285   char* jimage = format_boot_path("%/lib/" MODULES_IMAGE_NAME, home, home_len, fileSep, pathSep);
1286   if (jimage == NULL) return false;
1287   bool has_jimage = (os::stat(jimage, &st) == 0);
1288   if (has_jimage) {
1289     Arguments::set_sysclasspath(jimage, true);
1290     FREE_C_HEAP_ARRAY(char, jimage);
1291     return true;
1292   }
1293   FREE_C_HEAP_ARRAY(char, jimage);
1294 
1295   // check if developer build with exploded modules
1296   char* base_classes = format_boot_path("%/modules/" JAVA_BASE_NAME, home, home_len, fileSep, pathSep);
1297   if (base_classes == NULL) return false;
1298   if (os::stat(base_classes, &st) == 0) {
1299     Arguments::set_sysclasspath(base_classes, false);
1300     FREE_C_HEAP_ARRAY(char, base_classes);
1301     return true;
1302   }
1303   FREE_C_HEAP_ARRAY(char, base_classes);
1304 
1305   return false;
1306 }
1307 
1308 /*
1309  * Splits a path, based on its separator, the number of
1310  * elements is returned back in n.
1311  * It is the callers responsibility to:
1312  *   a> check the value of n, and n may be 0.
1313  *   b> ignore any empty path elements
1314  *   c> free up the data.
1315  */
1316 char** os::split_path(const char* path, int* n) {
1317   *n = 0;
1318   if (path == NULL || strlen(path) == 0) {
1319     return NULL;
1320   }
1321   const char psepchar = *os::path_separator();
1322   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1323   if (inpath == NULL) {
1324     return NULL;
1325   }
1326   strcpy(inpath, path);
1327   int count = 1;
1328   char* p = strchr(inpath, psepchar);
1329   // Get a count of elements to allocate memory
1330   while (p != NULL) {
1331     count++;
1332     p++;
1333     p = strchr(p, psepchar);
1334   }
1335   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1336   if (opath == NULL) {
1337     return NULL;
1338   }
1339 
1340   // do the actual splitting
1341   p = inpath;
1342   for (int i = 0 ; i < count ; i++) {
1343     size_t len = strcspn(p, os::path_separator());
1344     if (len > JVM_MAXPATHLEN) {
1345       return NULL;
1346     }
1347     // allocate the string and add terminator storage
1348     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1349     if (s == NULL) {
1350       return NULL;
1351     }
1352     strncpy(s, p, len);
1353     s[len] = '\0';
1354     opath[i] = s;
1355     p += len + 1;
1356   }
1357   FREE_C_HEAP_ARRAY(char, inpath);
1358   *n = count;
1359   return opath;
1360 }
1361 
1362 void os::set_memory_serialize_page(address page) {
1363   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1364   _mem_serialize_page = (volatile int32_t *)page;
1365   // We initialize the serialization page shift count here
1366   // We assume a cache line size of 64 bytes
1367   assert(SerializePageShiftCount == count, "JavaThread size changed; "
1368          "SerializePageShiftCount constant should be %d", count);
1369   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1370 }
1371 
1372 static volatile intptr_t SerializePageLock = 0;
1373 
1374 // This method is called from signal handler when SIGSEGV occurs while the current
1375 // thread tries to store to the "read-only" memory serialize page during state
1376 // transition.
1377 void os::block_on_serialize_page_trap() {
1378   log_debug(safepoint)("Block until the serialize page permission restored");
1379 
1380   // When VMThread is holding the SerializePageLock during modifying the
1381   // access permission of the memory serialize page, the following call
1382   // will block until the permission of that page is restored to rw.
1383   // Generally, it is unsafe to manipulate locks in signal handlers, but in
1384   // this case, it's OK as the signal is synchronous and we know precisely when
1385   // it can occur.
1386   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1387   Thread::muxRelease(&SerializePageLock);
1388 }
1389 
1390 // Serialize all thread state variables
1391 void os::serialize_thread_states() {
1392   // On some platforms such as Solaris & Linux, the time duration of the page
1393   // permission restoration is observed to be much longer than expected  due to
1394   // scheduler starvation problem etc. To avoid the long synchronization
1395   // time and expensive page trap spinning, 'SerializePageLock' is used to block
1396   // the mutator thread if such case is encountered. See bug 6546278 for details.
1397   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1398   os::protect_memory((char *)os::get_memory_serialize_page(),
1399                      os::vm_page_size(), MEM_PROT_READ);
1400   os::protect_memory((char *)os::get_memory_serialize_page(),
1401                      os::vm_page_size(), MEM_PROT_RW);
1402   Thread::muxRelease(&SerializePageLock);
1403 }
1404 
1405 // Returns true if the current stack pointer is above the stack shadow
1406 // pages, false otherwise.
1407 bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method, address sp) {
1408   if (!thread->is_Java_thread()) return false;
1409   // Check if we have StackShadowPages above the yellow zone.  This parameter
1410   // is dependent on the depth of the maximum VM call stack possible from
1411   // the handler for stack overflow.  'instanceof' in the stack overflow
1412   // handler or a println uses at least 8k stack of VM and native code
1413   // respectively.
1414   const int framesize_in_bytes =
1415     Interpreter::size_top_interpreter_activation(method()) * wordSize;
1416 
1417   address limit = ((JavaThread*)thread)->stack_end() +
1418                   (JavaThread::stack_guard_zone_size() + JavaThread::stack_shadow_zone_size());
1419 
1420   return sp > (limit + framesize_in_bytes);
1421 }
1422 
1423 size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
1424   assert(min_pages > 0, "sanity");
1425   if (UseLargePages) {
1426     const size_t max_page_size = region_size / min_pages;
1427 
1428     for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1429       const size_t page_size = _page_sizes[i];
1430       if (page_size <= max_page_size) {
1431         if (!must_be_aligned || is_aligned(region_size, page_size)) {
1432           return page_size;
1433         }
1434       }
1435     }
1436   }
1437 
1438   return vm_page_size();
1439 }
1440 
1441 size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
1442   return page_size_for_region(region_size, min_pages, true);
1443 }
1444 
1445 size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
1446   return page_size_for_region(region_size, min_pages, false);
1447 }
1448 
1449 static const char* errno_to_string (int e, bool short_text) {
1450   #define ALL_SHARED_ENUMS(X) \
1451     X(E2BIG, "Argument list too long") \
1452     X(EACCES, "Permission denied") \
1453     X(EADDRINUSE, "Address in use") \
1454     X(EADDRNOTAVAIL, "Address not available") \
1455     X(EAFNOSUPPORT, "Address family not supported") \
1456     X(EAGAIN, "Resource unavailable, try again") \
1457     X(EALREADY, "Connection already in progress") \
1458     X(EBADF, "Bad file descriptor") \
1459     X(EBADMSG, "Bad message") \
1460     X(EBUSY, "Device or resource busy") \
1461     X(ECANCELED, "Operation canceled") \
1462     X(ECHILD, "No child processes") \
1463     X(ECONNABORTED, "Connection aborted") \
1464     X(ECONNREFUSED, "Connection refused") \
1465     X(ECONNRESET, "Connection reset") \
1466     X(EDEADLK, "Resource deadlock would occur") \
1467     X(EDESTADDRREQ, "Destination address required") \
1468     X(EDOM, "Mathematics argument out of domain of function") \
1469     X(EEXIST, "File exists") \
1470     X(EFAULT, "Bad address") \
1471     X(EFBIG, "File too large") \
1472     X(EHOSTUNREACH, "Host is unreachable") \
1473     X(EIDRM, "Identifier removed") \
1474     X(EILSEQ, "Illegal byte sequence") \
1475     X(EINPROGRESS, "Operation in progress") \
1476     X(EINTR, "Interrupted function") \
1477     X(EINVAL, "Invalid argument") \
1478     X(EIO, "I/O error") \
1479     X(EISCONN, "Socket is connected") \
1480     X(EISDIR, "Is a directory") \
1481     X(ELOOP, "Too many levels of symbolic links") \
1482     X(EMFILE, "Too many open files") \
1483     X(EMLINK, "Too many links") \
1484     X(EMSGSIZE, "Message too large") \
1485     X(ENAMETOOLONG, "Filename too long") \
1486     X(ENETDOWN, "Network is down") \
1487     X(ENETRESET, "Connection aborted by network") \
1488     X(ENETUNREACH, "Network unreachable") \
1489     X(ENFILE, "Too many files open in system") \
1490     X(ENOBUFS, "No buffer space available") \
1491     X(ENODATA, "No message is available on the STREAM head read queue") \
1492     X(ENODEV, "No such device") \
1493     X(ENOENT, "No such file or directory") \
1494     X(ENOEXEC, "Executable file format error") \
1495     X(ENOLCK, "No locks available") \
1496     X(ENOLINK, "Reserved") \
1497     X(ENOMEM, "Not enough space") \
1498     X(ENOMSG, "No message of the desired type") \
1499     X(ENOPROTOOPT, "Protocol not available") \
1500     X(ENOSPC, "No space left on device") \
1501     X(ENOSR, "No STREAM resources") \
1502     X(ENOSTR, "Not a STREAM") \
1503     X(ENOSYS, "Function not supported") \
1504     X(ENOTCONN, "The socket is not connected") \
1505     X(ENOTDIR, "Not a directory") \
1506     X(ENOTEMPTY, "Directory not empty") \
1507     X(ENOTSOCK, "Not a socket") \
1508     X(ENOTSUP, "Not supported") \
1509     X(ENOTTY, "Inappropriate I/O control operation") \
1510     X(ENXIO, "No such device or address") \
1511     X(EOPNOTSUPP, "Operation not supported on socket") \
1512     X(EOVERFLOW, "Value too large to be stored in data type") \
1513     X(EPERM, "Operation not permitted") \
1514     X(EPIPE, "Broken pipe") \
1515     X(EPROTO, "Protocol error") \
1516     X(EPROTONOSUPPORT, "Protocol not supported") \
1517     X(EPROTOTYPE, "Protocol wrong type for socket") \
1518     X(ERANGE, "Result too large") \
1519     X(EROFS, "Read-only file system") \
1520     X(ESPIPE, "Invalid seek") \
1521     X(ESRCH, "No such process") \
1522     X(ETIME, "Stream ioctl() timeout") \
1523     X(ETIMEDOUT, "Connection timed out") \
1524     X(ETXTBSY, "Text file busy") \
1525     X(EWOULDBLOCK, "Operation would block") \
1526     X(EXDEV, "Cross-device link")
1527 
1528   #define DEFINE_ENTRY(e, text) { e, #e, text },
1529 
1530   static const struct {
1531     int v;
1532     const char* short_text;
1533     const char* long_text;
1534   } table [] = {
1535 
1536     ALL_SHARED_ENUMS(DEFINE_ENTRY)
1537 
1538     // The following enums are not defined on all platforms.
1539     #ifdef ESTALE
1540     DEFINE_ENTRY(ESTALE, "Reserved")
1541     #endif
1542     #ifdef EDQUOT
1543     DEFINE_ENTRY(EDQUOT, "Reserved")
1544     #endif
1545     #ifdef EMULTIHOP
1546     DEFINE_ENTRY(EMULTIHOP, "Reserved")
1547     #endif
1548 
1549     // End marker.
1550     { -1, "Unknown errno", "Unknown error" }
1551 
1552   };
1553 
1554   #undef DEFINE_ENTRY
1555   #undef ALL_FLAGS
1556 
1557   int i = 0;
1558   while (table[i].v != -1 && table[i].v != e) {
1559     i ++;
1560   }
1561 
1562   return short_text ? table[i].short_text : table[i].long_text;
1563 
1564 }
1565 
1566 const char* os::strerror(int e) {
1567   return errno_to_string(e, false);
1568 }
1569 
1570 const char* os::errno_name(int e) {
1571   return errno_to_string(e, true);
1572 }
1573 
1574 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count) {
1575   LogTarget(Info, pagesize) log;
1576   if (log.is_enabled()) {
1577     LogStream out(log);
1578 
1579     out.print("%s: ", str);
1580     for (int i = 0; i < count; ++i) {
1581       out.print(" " SIZE_FORMAT, page_sizes[i]);
1582     }
1583     out.cr();
1584   }
1585 }
1586 
1587 #define trace_page_size_params(size) byte_size_in_exact_unit(size), exact_unit_for_byte_size(size)
1588 
1589 void os::trace_page_sizes(const char* str,
1590                           const size_t region_min_size,
1591                           const size_t region_max_size,
1592                           const size_t page_size,
1593                           const char* base,
1594                           const size_t size) {
1595 
1596   log_info(pagesize)("%s: "
1597                      " min=" SIZE_FORMAT "%s"
1598                      " max=" SIZE_FORMAT "%s"
1599                      " base=" PTR_FORMAT
1600                      " page_size=" SIZE_FORMAT "%s"
1601                      " size=" SIZE_FORMAT "%s",
1602                      str,
1603                      trace_page_size_params(region_min_size),
1604                      trace_page_size_params(region_max_size),
1605                      p2i(base),
1606                      trace_page_size_params(page_size),
1607                      trace_page_size_params(size));
1608 }
1609 
1610 void os::trace_page_sizes_for_requested_size(const char* str,
1611                                              const size_t requested_size,
1612                                              const size_t page_size,
1613                                              const size_t alignment,
1614                                              const char* base,
1615                                              const size_t size) {
1616 
1617   log_info(pagesize)("%s:"
1618                      " req_size=" SIZE_FORMAT "%s"
1619                      " base=" PTR_FORMAT
1620                      " page_size=" SIZE_FORMAT "%s"
1621                      " alignment=" SIZE_FORMAT "%s"
1622                      " size=" SIZE_FORMAT "%s",
1623                      str,
1624                      trace_page_size_params(requested_size),
1625                      p2i(base),
1626                      trace_page_size_params(page_size),
1627                      trace_page_size_params(alignment),
1628                      trace_page_size_params(size));
1629 }
1630 
1631 
1632 // This is the working definition of a server class machine:
1633 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
1634 // because the graphics memory (?) sometimes masks physical memory.
1635 // If you want to change the definition of a server class machine
1636 // on some OS or platform, e.g., >=4GB on Windows platforms,
1637 // then you'll have to parameterize this method based on that state,
1638 // as was done for logical processors here, or replicate and
1639 // specialize this method for each platform.  (Or fix os to have
1640 // some inheritance structure and use subclassing.  Sigh.)
1641 // If you want some platform to always or never behave as a server
1642 // class machine, change the setting of AlwaysActAsServerClassMachine
1643 // and NeverActAsServerClassMachine in globals*.hpp.
1644 bool os::is_server_class_machine() {
1645   // First check for the early returns
1646   if (NeverActAsServerClassMachine) {
1647     return false;
1648   }
1649   if (AlwaysActAsServerClassMachine) {
1650     return true;
1651   }
1652   // Then actually look at the machine
1653   bool         result            = false;
1654   const unsigned int    server_processors = 2;
1655   const julong server_memory     = 2UL * G;
1656   // We seem not to get our full complement of memory.
1657   //     We allow some part (1/8?) of the memory to be "missing",
1658   //     based on the sizes of DIMMs, and maybe graphics cards.
1659   const julong missing_memory   = 256UL * M;
1660 
1661   /* Is this a server class machine? */
1662   if ((os::active_processor_count() >= (int)server_processors) &&
1663       (os::physical_memory() >= (server_memory - missing_memory))) {
1664     const unsigned int logical_processors =
1665       VM_Version::logical_processors_per_package();
1666     if (logical_processors > 1) {
1667       const unsigned int physical_packages =
1668         os::active_processor_count() / logical_processors;
1669       if (physical_packages >= server_processors) {
1670         result = true;
1671       }
1672     } else {
1673       result = true;
1674     }
1675   }
1676   return result;
1677 }
1678 
1679 void os::initialize_initial_active_processor_count() {
1680   assert(_initial_active_processor_count == 0, "Initial active processor count already set.");
1681   _initial_active_processor_count = active_processor_count();
1682   log_debug(os)("Initial active processor count set to %d" , _initial_active_processor_count);
1683 }
1684 
1685 void os::SuspendedThreadTask::run() {
1686   internal_do_task();
1687   _done = true;
1688 }
1689 
1690 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1691   return os::pd_create_stack_guard_pages(addr, bytes);
1692 }
1693 
1694 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint, int file_desc) {
1695   char* result = NULL;
1696 
1697   if (file_desc != -1) {
1698     // Could have called pd_reserve_memory() followed by replace_existing_mapping_with_file_mapping(),
1699     // but AIX may use SHM in which case its more trouble to detach the segment and remap memory to the file.
1700     result = os::map_memory_to_file(addr, bytes, file_desc);
1701     if (result != NULL) {
1702       MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1703     }
1704   } else {
1705     result = pd_reserve_memory(bytes, addr, alignment_hint);
1706     if (result != NULL) {
1707       MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1708     }
1709   }
1710 
1711   return result;
1712 }
1713 
1714 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1715    MEMFLAGS flags) {
1716   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1717   if (result != NULL) {
1718     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1719     MemTracker::record_virtual_memory_type((address)result, flags);
1720   }
1721 
1722   return result;
1723 }
1724 
1725 char* os::attempt_reserve_memory_at(size_t bytes, char* addr, int file_desc) {
1726   char* result = NULL;
1727   if (file_desc != -1) {
1728     result = pd_attempt_reserve_memory_at(bytes, addr, file_desc);
1729     if (result != NULL) {
1730       MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1731     }
1732   } else {
1733     result = pd_attempt_reserve_memory_at(bytes, addr);
1734     if (result != NULL) {
1735       MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1736     }
1737   }
1738   return result;
1739 }
1740 
1741 void os::split_reserved_memory(char *base, size_t size,
1742                                  size_t split, bool realloc) {
1743   pd_split_reserved_memory(base, size, split, realloc);
1744 }
1745 
1746 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1747   bool res = pd_commit_memory(addr, bytes, executable);
1748   if (res) {
1749     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1750   }
1751   return res;
1752 }
1753 
1754 bool os::commit_memory(char* addr, size_t size, bool executable, int file_desc, size_t offset) {
1755   
1756   bool res = false;
1757   
1758   if (os::map_memory_to_file(addr, size, file_desc, offset, executable, false) != NULL) {
1759     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1760     return true;
1761   }
1762   return false;
1763 }
1764 
1765 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1766                               bool executable) {
1767   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1768   if (res) {
1769     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1770   }
1771   return res;
1772 }
1773 
1774 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1775                               bool executable, int file_desc, size_t offset) {
1776   
1777   // ignoring alignemnt hint.
1778   bool res = false;
1779   if (os::map_memory_to_file(addr, size, file_desc, offset, executable, false) != NULL) {
1780     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1781     return true;
1782   }
1783   return false;
1784 }
1785 
1786 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1787                                const char* mesg) {
1788   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1789   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1790 }
1791 
1792 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1793                                bool executable, const char* mesg) {
1794   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1795   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1796 }
1797 
1798 bool os::uncommit_memory(char* addr, size_t bytes) {
1799   bool res;
1800   if (MemTracker::tracking_level() > NMT_minimal) {
1801     Tracker tkr(Tracker::uncommit);
1802     res = pd_uncommit_memory(addr, bytes);
1803     if (res) {
1804       tkr.record((address)addr, bytes);
1805     }
1806   } else {
1807     res = pd_uncommit_memory(addr, bytes);
1808   }
1809   return res;
1810 }
1811 
1812 bool os::release_memory(char* addr, size_t bytes) {
1813   bool res;
1814   if (MemTracker::tracking_level() > NMT_minimal) {
1815     Tracker tkr(Tracker::release);
1816     res = pd_release_memory(addr, bytes);
1817     if (res) {
1818       tkr.record((address)addr, bytes);
1819     }
1820   } else {
1821     res = pd_release_memory(addr, bytes);
1822   }
1823   return res;
1824 }
1825 
1826 void os::pretouch_memory(void* start, void* end, size_t page_size) {
1827   for (volatile char *p = (char*)start; p < (char*)end; p += page_size) {
1828     *p = 0;
1829   }
1830 }
1831 
1832 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1833                            char *addr, size_t bytes, bool read_only,
1834                            bool allow_exec) {
1835   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1836   if (result != NULL) {
1837     MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1838   }
1839   return result;
1840 }
1841 
1842 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1843                              char *addr, size_t bytes, bool read_only,
1844                              bool allow_exec) {
1845   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1846                     read_only, allow_exec);
1847 }
1848 
1849 bool os::unmap_memory(char *addr, size_t bytes) {
1850   bool result;
1851   if (MemTracker::tracking_level() > NMT_minimal) {
1852     Tracker tkr(Tracker::release);
1853     result = pd_unmap_memory(addr, bytes);
1854     if (result) {
1855       tkr.record((address)addr, bytes);
1856     }
1857   } else {
1858     result = pd_unmap_memory(addr, bytes);
1859   }
1860   return result;
1861 }
1862 
1863 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1864   pd_free_memory(addr, bytes, alignment_hint);
1865 }
1866 
1867 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1868   pd_realign_memory(addr, bytes, alignment_hint);
1869 }
1870 
1871 #ifndef _WINDOWS
1872 /* try to switch state from state "from" to state "to"
1873  * returns the state set after the method is complete
1874  */
1875 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1876                                                          os::SuspendResume::State to)
1877 {
1878   os::SuspendResume::State result = Atomic::cmpxchg(to, &_state, from);
1879   if (result == from) {
1880     // success
1881     return to;
1882   }
1883   return result;
1884 }
1885 #endif