1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP
  26 #define SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP
  27 
  28 #include "gc/parallel/generationSizer.hpp"
  29 #include "gc/parallel/objectStartArray.hpp"
  30 #include "gc/parallel/psGCAdaptivePolicyCounters.hpp"
  31 #include "gc/parallel/psOldGen.hpp"
  32 #include "gc/parallel/psYoungGen.hpp"
  33 #include "gc/shared/cardTableBarrierSet.hpp"
  34 #include "gc/shared/collectedHeap.hpp"
  35 #include "gc/shared/collectorPolicy.hpp"
  36 #include "gc/shared/gcPolicyCounters.hpp"
  37 #include "gc/shared/gcWhen.hpp"
  38 #include "gc/shared/softRefPolicy.hpp"
  39 #include "gc/shared/strongRootsScope.hpp"
  40 #include "memory/metaspace.hpp"
  41 #include "utilities/growableArray.hpp"
  42 #include "utilities/ostream.hpp"
  43 
  44 class AdjoiningGenerations;
  45 class GCHeapSummary;
  46 class GCTaskManager;
  47 class MemoryManager;
  48 class MemoryPool;
  49 class PSAdaptiveSizePolicy;
  50 class PSCardTable;
  51 class PSHeapSummary;
  52 
  53 class ParallelScavengeHeap : public CollectedHeap {
  54   friend class VMStructs;
  55  private:
  56   static PSYoungGen* _young_gen;
  57   static PSOldGen*   _old_gen;
  58 
  59   // Sizing policy for entire heap
  60   static PSAdaptiveSizePolicy*       _size_policy;
  61   static PSGCAdaptivePolicyCounters* _gc_policy_counters;
  62 
  63   GenerationSizer* _collector_policy;
  64   
  65   // is the heap backed by two different memories?
  66   bool _is_hetero_heap;
  67 
  68   SoftRefPolicy _soft_ref_policy;
  69 
  70   // Collection of generations that are adjacent in the
  71   // space reserved for the heap.
  72   AdjoiningGenerations* _gens;
  73   unsigned int _death_march_count;
  74 
  75   // The task manager
  76   static GCTaskManager* _gc_task_manager;
  77 
  78   GCMemoryManager* _young_manager;
  79   GCMemoryManager* _old_manager;
  80 
  81   MemoryPool* _eden_pool;
  82   MemoryPool* _survivor_pool;
  83   MemoryPool* _old_pool;
  84 
  85   virtual void initialize_serviceability();
  86 
  87   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
  88 
  89  protected:
  90   static inline size_t total_invocations();
  91   HeapWord* allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size);
  92 
  93   inline bool should_alloc_in_eden(size_t size) const;
  94   inline void death_march_check(HeapWord* const result, size_t size);
  95   HeapWord* mem_allocate_old_gen(size_t size);
  96 
  97  public:
  98   ParallelScavengeHeap(GenerationSizer* policy) :
  99     CollectedHeap(), _collector_policy(policy), _is_hetero_heap(false), _death_march_count(0) { }
 100 
 101   // For use by VM operations
 102   enum CollectionType {
 103     Scavenge,
 104     MarkSweep
 105   };
 106 
 107   virtual Name kind() const {
 108     return CollectedHeap::Parallel;
 109   }
 110 
 111   virtual const char* name() const {
 112     return "Parallel";
 113   }
 114 
 115   virtual CollectorPolicy* collector_policy() const { return _collector_policy; }
 116 
 117   virtual SoftRefPolicy* soft_ref_policy() { return &_soft_ref_policy; }
 118 
 119   virtual GrowableArray<GCMemoryManager*> memory_managers();
 120   virtual GrowableArray<MemoryPool*> memory_pools();
 121 
 122   static PSYoungGen* young_gen() { return _young_gen; }
 123   static PSOldGen* old_gen()     { return _old_gen; }
 124 
 125   virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; }
 126 
 127   static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; }
 128 
 129   static ParallelScavengeHeap* heap();
 130 
 131   static GCTaskManager* const gc_task_manager() { return _gc_task_manager; }
 132 
 133   CardTableBarrierSet* barrier_set();
 134   PSCardTable* card_table();
 135 
 136   AdjoiningGenerations* gens() { return _gens; }
 137 
 138   // Returns JNI_OK on success
 139   virtual jint initialize();
 140 
 141   void post_initialize();
 142   void update_counters();
 143 
 144   // The alignment used for the various areas
 145   size_t space_alignment()      { return _collector_policy->space_alignment(); }
 146   size_t generation_alignment() { return _collector_policy->gen_alignment(); }
 147 
 148   // Return the (conservative) maximum heap alignment
 149   static size_t conservative_max_heap_alignment() {
 150     return CollectorPolicy::compute_heap_alignment();
 151   }
 152 
 153   // is the heap backed by two different memories?
 154   bool is_hetero_heap() { return _is_hetero_heap; }
 155 
 156   size_t capacity() const;
 157   size_t used() const;
 158 
 159   // Return "true" if all generations have reached the
 160   // maximal committed limit that they can reach, without a garbage
 161   // collection.
 162   virtual bool is_maximal_no_gc() const;
 163 
 164   // Return true if the reference points to an object that
 165   // can be moved in a partial collection.  For currently implemented
 166   // generational collectors that means during a collection of
 167   // the young gen.
 168   virtual bool is_scavengable(oop obj);
 169   virtual void register_nmethod(nmethod* nm);
 170   virtual void verify_nmethod(nmethod* nmethod);
 171 
 172   size_t max_capacity() const;
 173 
 174   // Whether p is in the allocated part of the heap
 175   bool is_in(const void* p) const;
 176 
 177   bool is_in_reserved(const void* p) const;
 178 
 179   bool is_in_young(oop p);  // reserved part
 180   bool is_in_old(oop p);    // reserved part
 181 
 182   // Memory allocation.   "gc_time_limit_was_exceeded" will
 183   // be set to true if the adaptive size policy determine that
 184   // an excessive amount of time is being spent doing collections
 185   // and caused a NULL to be returned.  If a NULL is not returned,
 186   // "gc_time_limit_was_exceeded" has an undefined meaning.
 187   HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded);
 188 
 189   // Allocation attempt(s) during a safepoint. It should never be called
 190   // to allocate a new TLAB as this allocation might be satisfied out
 191   // of the old generation.
 192   HeapWord* failed_mem_allocate(size_t size);
 193 
 194   // Support for System.gc()
 195   void collect(GCCause::Cause cause);
 196 
 197   // These also should be called by the vm thread at a safepoint (e.g., from a
 198   // VM operation).
 199   //
 200   // The first collects the young generation only, unless the scavenge fails; it
 201   // will then attempt a full gc.  The second collects the entire heap; if
 202   // maximum_compaction is true, it will compact everything and clear all soft
 203   // references.
 204   inline void invoke_scavenge();
 205 
 206   // Perform a full collection
 207   virtual void do_full_collection(bool clear_all_soft_refs);
 208 
 209   bool supports_inline_contig_alloc() const { return !UseNUMA; }
 210 
 211   HeapWord* volatile* top_addr() const { return !UseNUMA ? young_gen()->top_addr() : (HeapWord* volatile*)-1; }
 212   HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : (HeapWord**)-1; }
 213 
 214   void ensure_parsability(bool retire_tlabs);
 215   void resize_all_tlabs();
 216 
 217   bool supports_tlab_allocation() const { return true; }
 218 
 219   size_t tlab_capacity(Thread* thr) const;
 220   size_t tlab_used(Thread* thr) const;
 221   size_t unsafe_max_tlab_alloc(Thread* thr) const;
 222 
 223   void object_iterate(ObjectClosure* cl);
 224   void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); }
 225 
 226   HeapWord* block_start(const void* addr) const;
 227   size_t block_size(const HeapWord* addr) const;
 228   bool block_is_obj(const HeapWord* addr) const;
 229 
 230   jlong millis_since_last_gc();
 231 
 232   void prepare_for_verify();
 233   PSHeapSummary create_ps_heap_summary();
 234   virtual void print_on(outputStream* st) const;
 235   virtual void print_on_error(outputStream* st) const;
 236   virtual void print_gc_threads_on(outputStream* st) const;
 237   virtual void gc_threads_do(ThreadClosure* tc) const;
 238   virtual void print_tracing_info() const;
 239 
 240   void verify(VerifyOption option /* ignored */);
 241 
 242   // Resize the young generation.  The reserved space for the
 243   // generation may be expanded in preparation for the resize.
 244   void resize_young_gen(size_t eden_size, size_t survivor_size);
 245 
 246   // Resize the old generation.  The reserved space for the
 247   // generation may be expanded in preparation for the resize.
 248   void resize_old_gen(size_t desired_free_space);
 249 
 250   // Save the tops of the spaces in all generations
 251   void record_gen_tops_before_GC() PRODUCT_RETURN;
 252 
 253   // Mangle the unused parts of all spaces in the heap
 254   void gen_mangle_unused_area() PRODUCT_RETURN;
 255 
 256   // Call these in sequential code around the processing of strong roots.
 257   class ParStrongRootsScope : public MarkScope {
 258    public:
 259     ParStrongRootsScope();
 260     ~ParStrongRootsScope();
 261   };
 262 
 263   GCMemoryManager* old_gc_manager() const { return _old_manager; }
 264   GCMemoryManager* young_gc_manager() const { return _young_manager; }
 265 };
 266 
 267 // Simple class for storing info about the heap at the start of GC, to be used
 268 // after GC for comparison/printing.
 269 class PreGCValues {
 270 public:
 271   PreGCValues(ParallelScavengeHeap* heap) :
 272       _heap_used(heap->used()),
 273       _young_gen_used(heap->young_gen()->used_in_bytes()),
 274       _old_gen_used(heap->old_gen()->used_in_bytes()),
 275       _metadata_used(MetaspaceUtils::used_bytes()) { };
 276 
 277   size_t heap_used() const      { return _heap_used; }
 278   size_t young_gen_used() const { return _young_gen_used; }
 279   size_t old_gen_used() const   { return _old_gen_used; }
 280   size_t metadata_used() const  { return _metadata_used; }
 281 
 282 private:
 283   size_t _heap_used;
 284   size_t _young_gen_used;
 285   size_t _old_gen_used;
 286   size_t _metadata_used;
 287 };
 288 
 289 // Class that can be used to print information about the
 290 // adaptive size policy at intervals specified by
 291 // AdaptiveSizePolicyOutputInterval.  Only print information
 292 // if an adaptive size policy is in use.
 293 class AdaptiveSizePolicyOutput : AllStatic {
 294   static bool enabled() {
 295     return UseParallelGC &&
 296            UseAdaptiveSizePolicy &&
 297            log_is_enabled(Debug, gc, ergo);
 298   }
 299  public:
 300   static void print() {
 301     if (enabled()) {
 302       ParallelScavengeHeap::heap()->size_policy()->print();
 303     }
 304   }
 305 
 306   static void print(AdaptiveSizePolicy* size_policy, uint count) {
 307     bool do_print =
 308         enabled() &&
 309         (AdaptiveSizePolicyOutputInterval > 0) &&
 310         (count % AdaptiveSizePolicyOutputInterval) == 0;
 311 
 312     if (do_print) {
 313       size_policy->print();
 314     }
 315   }
 316 };
 317 
 318 #endif // SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP