1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  56 #include "gc/g1/g1StringDedup.hpp"
  57 #include "gc/g1/g1ThreadLocalData.hpp"
  58 #include "gc/g1/g1YCTypes.hpp"
  59 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  60 #include "gc/g1/heapRegion.inline.hpp"
  61 #include "gc/g1/heapRegionRemSet.hpp"
  62 #include "gc/g1/heapRegionSet.inline.hpp"
  63 #include "gc/g1/vm_operations_g1.hpp"
  64 #include "gc/shared/adaptiveSizePolicy.hpp"
  65 #include "gc/shared/gcHeapSummary.hpp"
  66 #include "gc/shared/gcId.hpp"
  67 #include "gc/shared/gcLocker.hpp"
  68 #include "gc/shared/gcTimer.hpp"
  69 #include "gc/shared/gcTrace.hpp"
  70 #include "gc/shared/gcTraceTime.inline.hpp"
  71 #include "gc/shared/generationSpec.hpp"
  72 #include "gc/shared/isGCActiveMark.hpp"
  73 #include "gc/shared/oopStorageParState.hpp"
  74 #include "gc/shared/parallelCleaning.hpp"
  75 #include "gc/shared/preservedMarks.inline.hpp"
  76 #include "gc/shared/suspendibleThreadSet.hpp"
  77 #include "gc/shared/referenceProcessor.inline.hpp"
  78 #include "gc/shared/taskqueue.inline.hpp"
  79 #include "gc/shared/weakProcessor.inline.hpp"
  80 #include "logging/log.hpp"
  81 #include "memory/allocation.hpp"
  82 #include "memory/iterator.hpp"
  83 #include "memory/metaspaceShared.inline.hpp"
  84 #include "memory/resourceArea.hpp"
  85 #include "oops/access.inline.hpp"
  86 #include "oops/compressedOops.inline.hpp"
  87 #include "oops/oop.inline.hpp"
  88 #include "runtime/atomic.hpp"
  89 #include "runtime/flags/flagSetting.hpp"
  90 #include "runtime/handles.inline.hpp"
  91 #include "runtime/init.hpp"
  92 #include "runtime/orderAccess.hpp"
  93 #include "runtime/threadSMR.hpp"
  94 #include "runtime/vmThread.hpp"
  95 #include "utilities/align.hpp"
  96 #include "utilities/globalDefinitions.hpp"
  97 #include "utilities/stack.inline.hpp"
  98 
  99 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 100 
 101 // INVARIANTS/NOTES
 102 //
 103 // All allocation activity covered by the G1CollectedHeap interface is
 104 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 105 // and allocate_new_tlab, which are the "entry" points to the
 106 // allocation code from the rest of the JVM.  (Note that this does not
 107 // apply to TLAB allocation, which is not part of this interface: it
 108 // is done by clients of this interface.)
 109 
 110 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 111  private:
 112   size_t _num_dirtied;
 113   G1CollectedHeap* _g1h;
 114   G1CardTable* _g1_ct;
 115 
 116   HeapRegion* region_for_card(jbyte* card_ptr) const {
 117     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 118   }
 119 
 120   bool will_become_free(HeapRegion* hr) const {
 121     // A region will be freed by free_collection_set if the region is in the
 122     // collection set and has not had an evacuation failure.
 123     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 124   }
 125 
 126  public:
 127   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 128     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 129 
 130   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 131     HeapRegion* hr = region_for_card(card_ptr);
 132 
 133     // Should only dirty cards in regions that won't be freed.
 134     if (!will_become_free(hr)) {
 135       *card_ptr = G1CardTable::dirty_card_val();
 136       _num_dirtied++;
 137     }
 138 
 139     return true;
 140   }
 141 
 142   size_t num_dirtied()   const { return _num_dirtied; }
 143 };
 144 
 145 
 146 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 147   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 148 }
 149 
 150 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 151   // The from card cache is not the memory that is actually committed. So we cannot
 152   // take advantage of the zero_filled parameter.
 153   reset_from_card_cache(start_idx, num_regions);
 154 }
 155 
 156 
 157 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 158                                              MemRegion mr) {
 159   return new HeapRegion(hrs_index, bot(), mr);
 160 }
 161 
 162 // Private methods.
 163 
 164 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 165   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 166          "the only time we use this to allocate a humongous region is "
 167          "when we are allocating a single humongous region");
 168 
 169   HeapRegion* res = _hrm->allocate_free_region(is_old);
 170 
 171   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 172     // Currently, only attempts to allocate GC alloc regions set
 173     // do_expand to true. So, we should only reach here during a
 174     // safepoint. If this assumption changes we might have to
 175     // reconsider the use of _expand_heap_after_alloc_failure.
 176     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 177 
 178     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 179                               word_size * HeapWordSize);
 180 
 181     if (expand(word_size * HeapWordSize)) {
 182       // Given that expand() succeeded in expanding the heap, and we
 183       // always expand the heap by an amount aligned to the heap
 184       // region size, the free list should in theory not be empty.
 185       // In either case allocate_free_region() will check for NULL.
 186       res = _hrm->allocate_free_region(is_old);
 187     } else {
 188       _expand_heap_after_alloc_failure = false;
 189     }
 190   }
 191   return res;
 192 }
 193 
 194 HeapWord*
 195 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 196                                                            uint num_regions,
 197                                                            size_t word_size) {
 198   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 199   assert(is_humongous(word_size), "word_size should be humongous");
 200   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 201 
 202   // Index of last region in the series.
 203   uint last = first + num_regions - 1;
 204 
 205   // We need to initialize the region(s) we just discovered. This is
 206   // a bit tricky given that it can happen concurrently with
 207   // refinement threads refining cards on these regions and
 208   // potentially wanting to refine the BOT as they are scanning
 209   // those cards (this can happen shortly after a cleanup; see CR
 210   // 6991377). So we have to set up the region(s) carefully and in
 211   // a specific order.
 212 
 213   // The word size sum of all the regions we will allocate.
 214   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 215   assert(word_size <= word_size_sum, "sanity");
 216 
 217   // This will be the "starts humongous" region.
 218   HeapRegion* first_hr = region_at(first);
 219   // The header of the new object will be placed at the bottom of
 220   // the first region.
 221   HeapWord* new_obj = first_hr->bottom();
 222   // This will be the new top of the new object.
 223   HeapWord* obj_top = new_obj + word_size;
 224 
 225   // First, we need to zero the header of the space that we will be
 226   // allocating. When we update top further down, some refinement
 227   // threads might try to scan the region. By zeroing the header we
 228   // ensure that any thread that will try to scan the region will
 229   // come across the zero klass word and bail out.
 230   //
 231   // NOTE: It would not have been correct to have used
 232   // CollectedHeap::fill_with_object() and make the space look like
 233   // an int array. The thread that is doing the allocation will
 234   // later update the object header to a potentially different array
 235   // type and, for a very short period of time, the klass and length
 236   // fields will be inconsistent. This could cause a refinement
 237   // thread to calculate the object size incorrectly.
 238   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 239 
 240   // Next, pad out the unused tail of the last region with filler
 241   // objects, for improved usage accounting.
 242   // How many words we use for filler objects.
 243   size_t word_fill_size = word_size_sum - word_size;
 244 
 245   // How many words memory we "waste" which cannot hold a filler object.
 246   size_t words_not_fillable = 0;
 247 
 248   if (word_fill_size >= min_fill_size()) {
 249     fill_with_objects(obj_top, word_fill_size);
 250   } else if (word_fill_size > 0) {
 251     // We have space to fill, but we cannot fit an object there.
 252     words_not_fillable = word_fill_size;
 253     word_fill_size = 0;
 254   }
 255 
 256   // We will set up the first region as "starts humongous". This
 257   // will also update the BOT covering all the regions to reflect
 258   // that there is a single object that starts at the bottom of the
 259   // first region.
 260   first_hr->set_starts_humongous(obj_top, word_fill_size);
 261   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 262   // Then, if there are any, we will set up the "continues
 263   // humongous" regions.
 264   HeapRegion* hr = NULL;
 265   for (uint i = first + 1; i <= last; ++i) {
 266     hr = region_at(i);
 267     hr->set_continues_humongous(first_hr);
 268     _g1_policy->remset_tracker()->update_at_allocate(hr);
 269   }
 270 
 271   // Up to this point no concurrent thread would have been able to
 272   // do any scanning on any region in this series. All the top
 273   // fields still point to bottom, so the intersection between
 274   // [bottom,top] and [card_start,card_end] will be empty. Before we
 275   // update the top fields, we'll do a storestore to make sure that
 276   // no thread sees the update to top before the zeroing of the
 277   // object header and the BOT initialization.
 278   OrderAccess::storestore();
 279 
 280   // Now, we will update the top fields of the "continues humongous"
 281   // regions except the last one.
 282   for (uint i = first; i < last; ++i) {
 283     hr = region_at(i);
 284     hr->set_top(hr->end());
 285   }
 286 
 287   hr = region_at(last);
 288   // If we cannot fit a filler object, we must set top to the end
 289   // of the humongous object, otherwise we cannot iterate the heap
 290   // and the BOT will not be complete.
 291   hr->set_top(hr->end() - words_not_fillable);
 292 
 293   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 294          "obj_top should be in last region");
 295 
 296   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 297 
 298   assert(words_not_fillable == 0 ||
 299          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 300          "Miscalculation in humongous allocation");
 301 
 302   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 303 
 304   for (uint i = first; i <= last; ++i) {
 305     hr = region_at(i);
 306     _humongous_set.add(hr);
 307     _hr_printer.alloc(hr);
 308   }
 309 
 310   return new_obj;
 311 }
 312 
 313 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 314   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 315   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 316 }
 317 
 318 // If could fit into free regions w/o expansion, try.
 319 // Otherwise, if can expand, do so.
 320 // Otherwise, if using ex regions might help, try with ex given back.
 321 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 322   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 323 
 324   _verifier->verify_region_sets_optional();
 325 
 326   uint first = G1_NO_HRM_INDEX;
 327   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 328 
 329   if (obj_regions == 1) {
 330     // Only one region to allocate, try to use a fast path by directly allocating
 331     // from the free lists. Do not try to expand here, we will potentially do that
 332     // later.
 333     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 334     if (hr != NULL) {
 335       first = hr->hrm_index();
 336     }
 337   } else {
 338     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 339     // are lucky enough to find some.
 340     first = _hrm->find_contiguous_only_empty(obj_regions);
 341     if (first != G1_NO_HRM_INDEX) {
 342       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 343     }
 344   }
 345 
 346   if (first == G1_NO_HRM_INDEX) {
 347     // Policy: We could not find enough regions for the humongous object in the
 348     // free list. Look through the heap to find a mix of free and uncommitted regions.
 349     // If so, try expansion.
 350     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 351     if (first != G1_NO_HRM_INDEX) {
 352       // We found something. Make sure these regions are committed, i.e. expand
 353       // the heap. Alternatively we could do a defragmentation GC.
 354       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 355                                     word_size * HeapWordSize);
 356 
 357       _hrm->expand_at(first, obj_regions, workers());
 358       g1_policy()->record_new_heap_size(num_regions());
 359 
 360 #ifdef ASSERT
 361       for (uint i = first; i < first + obj_regions; ++i) {
 362         HeapRegion* hr = region_at(i);
 363         assert(hr->is_free(), "sanity");
 364         assert(hr->is_empty(), "sanity");
 365         assert(is_on_master_free_list(hr), "sanity");
 366       }
 367 #endif
 368       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 369     } else {
 370       // Policy: Potentially trigger a defragmentation GC.
 371     }
 372   }
 373 
 374   HeapWord* result = NULL;
 375   if (first != G1_NO_HRM_INDEX) {
 376     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 377     assert(result != NULL, "it should always return a valid result");
 378 
 379     // A successful humongous object allocation changes the used space
 380     // information of the old generation so we need to recalculate the
 381     // sizes and update the jstat counters here.
 382     g1mm()->update_sizes();
 383   }
 384 
 385   _verifier->verify_region_sets_optional();
 386 
 387   return result;
 388 }
 389 
 390 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 391                                              size_t requested_size,
 392                                              size_t* actual_size) {
 393   assert_heap_not_locked_and_not_at_safepoint();
 394   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 395 
 396   return attempt_allocation(min_size, requested_size, actual_size);
 397 }
 398 
 399 HeapWord*
 400 G1CollectedHeap::mem_allocate(size_t word_size,
 401                               bool*  gc_overhead_limit_was_exceeded) {
 402   assert_heap_not_locked_and_not_at_safepoint();
 403 
 404   if (is_humongous(word_size)) {
 405     return attempt_allocation_humongous(word_size);
 406   }
 407   size_t dummy = 0;
 408   return attempt_allocation(word_size, word_size, &dummy);
 409 }
 410 
 411 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 412   ResourceMark rm; // For retrieving the thread names in log messages.
 413 
 414   // Make sure you read the note in attempt_allocation_humongous().
 415 
 416   assert_heap_not_locked_and_not_at_safepoint();
 417   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 418          "be called for humongous allocation requests");
 419 
 420   // We should only get here after the first-level allocation attempt
 421   // (attempt_allocation()) failed to allocate.
 422 
 423   // We will loop until a) we manage to successfully perform the
 424   // allocation or b) we successfully schedule a collection which
 425   // fails to perform the allocation. b) is the only case when we'll
 426   // return NULL.
 427   HeapWord* result = NULL;
 428   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 429     bool should_try_gc;
 430     uint gc_count_before;
 431 
 432     {
 433       MutexLockerEx x(Heap_lock);
 434       result = _allocator->attempt_allocation_locked(word_size);
 435       if (result != NULL) {
 436         return result;
 437       }
 438 
 439       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 440       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 441       // waiting because the GCLocker is active to not wait too long.
 442       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 443         // No need for an ergo message here, can_expand_young_list() does this when
 444         // it returns true.
 445         result = _allocator->attempt_allocation_force(word_size);
 446         if (result != NULL) {
 447           return result;
 448         }
 449       }
 450       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 451       // the GCLocker initiated GC has been performed and then retry. This includes
 452       // the case when the GC Locker is not active but has not been performed.
 453       should_try_gc = !GCLocker::needs_gc();
 454       // Read the GC count while still holding the Heap_lock.
 455       gc_count_before = total_collections();
 456     }
 457 
 458     if (should_try_gc) {
 459       bool succeeded;
 460       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 461                                    GCCause::_g1_inc_collection_pause);
 462       if (result != NULL) {
 463         assert(succeeded, "only way to get back a non-NULL result");
 464         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 465                              Thread::current()->name(), p2i(result));
 466         return result;
 467       }
 468 
 469       if (succeeded) {
 470         // We successfully scheduled a collection which failed to allocate. No
 471         // point in trying to allocate further. We'll just return NULL.
 472         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 473                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 474         return NULL;
 475       }
 476       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 477                            Thread::current()->name(), word_size);
 478     } else {
 479       // Failed to schedule a collection.
 480       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 481         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 482                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 483         return NULL;
 484       }
 485       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 486       // The GCLocker is either active or the GCLocker initiated
 487       // GC has not yet been performed. Stall until it is and
 488       // then retry the allocation.
 489       GCLocker::stall_until_clear();
 490       gclocker_retry_count += 1;
 491     }
 492 
 493     // We can reach here if we were unsuccessful in scheduling a
 494     // collection (because another thread beat us to it) or if we were
 495     // stalled due to the GC locker. In either can we should retry the
 496     // allocation attempt in case another thread successfully
 497     // performed a collection and reclaimed enough space. We do the
 498     // first attempt (without holding the Heap_lock) here and the
 499     // follow-on attempt will be at the start of the next loop
 500     // iteration (after taking the Heap_lock).
 501     size_t dummy = 0;
 502     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 503     if (result != NULL) {
 504       return result;
 505     }
 506 
 507     // Give a warning if we seem to be looping forever.
 508     if ((QueuedAllocationWarningCount > 0) &&
 509         (try_count % QueuedAllocationWarningCount == 0)) {
 510       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 511                              Thread::current()->name(), try_count, word_size);
 512     }
 513   }
 514 
 515   ShouldNotReachHere();
 516   return NULL;
 517 }
 518 
 519 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 520   assert_at_safepoint_on_vm_thread();
 521   if (_archive_allocator == NULL) {
 522     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 523   }
 524 }
 525 
 526 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 527   // Allocations in archive regions cannot be of a size that would be considered
 528   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 529   // may be different at archive-restore time.
 530   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 531 }
 532 
 533 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 534   assert_at_safepoint_on_vm_thread();
 535   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 536   if (is_archive_alloc_too_large(word_size)) {
 537     return NULL;
 538   }
 539   return _archive_allocator->archive_mem_allocate(word_size);
 540 }
 541 
 542 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 543                                               size_t end_alignment_in_bytes) {
 544   assert_at_safepoint_on_vm_thread();
 545   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 546 
 547   // Call complete_archive to do the real work, filling in the MemRegion
 548   // array with the archive regions.
 549   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 550   delete _archive_allocator;
 551   _archive_allocator = NULL;
 552 }
 553 
 554 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 555   assert(ranges != NULL, "MemRegion array NULL");
 556   assert(count != 0, "No MemRegions provided");
 557   MemRegion reserved = _hrm->reserved();
 558   for (size_t i = 0; i < count; i++) {
 559     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 560       return false;
 561     }
 562   }
 563   return true;
 564 }
 565 
 566 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 567                                             size_t count,
 568                                             bool open) {
 569   assert(!is_init_completed(), "Expect to be called at JVM init time");
 570   assert(ranges != NULL, "MemRegion array NULL");
 571   assert(count != 0, "No MemRegions provided");
 572   MutexLockerEx x(Heap_lock);
 573 
 574   MemRegion reserved = _hrm->reserved();
 575   HeapWord* prev_last_addr = NULL;
 576   HeapRegion* prev_last_region = NULL;
 577 
 578   // Temporarily disable pretouching of heap pages. This interface is used
 579   // when mmap'ing archived heap data in, so pre-touching is wasted.
 580   FlagSetting fs(AlwaysPreTouch, false);
 581 
 582   // Enable archive object checking used by G1MarkSweep. We have to let it know
 583   // about each archive range, so that objects in those ranges aren't marked.
 584   G1ArchiveAllocator::enable_archive_object_check();
 585 
 586   // For each specified MemRegion range, allocate the corresponding G1
 587   // regions and mark them as archive regions. We expect the ranges
 588   // in ascending starting address order, without overlap.
 589   for (size_t i = 0; i < count; i++) {
 590     MemRegion curr_range = ranges[i];
 591     HeapWord* start_address = curr_range.start();
 592     size_t word_size = curr_range.word_size();
 593     HeapWord* last_address = curr_range.last();
 594     size_t commits = 0;
 595 
 596     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 597               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 598               p2i(start_address), p2i(last_address));
 599     guarantee(start_address > prev_last_addr,
 600               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 601               p2i(start_address), p2i(prev_last_addr));
 602     prev_last_addr = last_address;
 603 
 604     // Check for ranges that start in the same G1 region in which the previous
 605     // range ended, and adjust the start address so we don't try to allocate
 606     // the same region again. If the current range is entirely within that
 607     // region, skip it, just adjusting the recorded top.
 608     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 609     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 610       start_address = start_region->end();
 611       if (start_address > last_address) {
 612         increase_used(word_size * HeapWordSize);
 613         start_region->set_top(last_address + 1);
 614         continue;
 615       }
 616       start_region->set_top(start_address);
 617       curr_range = MemRegion(start_address, last_address + 1);
 618       start_region = _hrm->addr_to_region(start_address);
 619     }
 620 
 621     // Perform the actual region allocation, exiting if it fails.
 622     // Then note how much new space we have allocated.
 623     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 624       return false;
 625     }
 626     increase_used(word_size * HeapWordSize);
 627     if (commits != 0) {
 628       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 629                                 HeapRegion::GrainWords * HeapWordSize * commits);
 630 
 631     }
 632 
 633     // Mark each G1 region touched by the range as archive, add it to
 634     // the old set, and set top.
 635     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 636     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 637     prev_last_region = last_region;
 638 
 639     while (curr_region != NULL) {
 640       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 641              "Region already in use (index %u)", curr_region->hrm_index());
 642       if (open) {
 643         curr_region->set_open_archive();
 644       } else {
 645         curr_region->set_closed_archive();
 646       }
 647       _hr_printer.alloc(curr_region);
 648       _archive_set.add(curr_region);
 649       HeapWord* top;
 650       HeapRegion* next_region;
 651       if (curr_region != last_region) {
 652         top = curr_region->end();
 653         next_region = _hrm->next_region_in_heap(curr_region);
 654       } else {
 655         top = last_address + 1;
 656         next_region = NULL;
 657       }
 658       curr_region->set_top(top);
 659       curr_region->set_first_dead(top);
 660       curr_region->set_end_of_live(top);
 661       curr_region = next_region;
 662     }
 663 
 664     // Notify mark-sweep of the archive
 665     G1ArchiveAllocator::set_range_archive(curr_range, open);
 666   }
 667   return true;
 668 }
 669 
 670 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 671   assert(!is_init_completed(), "Expect to be called at JVM init time");
 672   assert(ranges != NULL, "MemRegion array NULL");
 673   assert(count != 0, "No MemRegions provided");
 674   MemRegion reserved = _hrm->reserved();
 675   HeapWord *prev_last_addr = NULL;
 676   HeapRegion* prev_last_region = NULL;
 677 
 678   // For each MemRegion, create filler objects, if needed, in the G1 regions
 679   // that contain the address range. The address range actually within the
 680   // MemRegion will not be modified. That is assumed to have been initialized
 681   // elsewhere, probably via an mmap of archived heap data.
 682   MutexLockerEx x(Heap_lock);
 683   for (size_t i = 0; i < count; i++) {
 684     HeapWord* start_address = ranges[i].start();
 685     HeapWord* last_address = ranges[i].last();
 686 
 687     assert(reserved.contains(start_address) && reserved.contains(last_address),
 688            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 689            p2i(start_address), p2i(last_address));
 690     assert(start_address > prev_last_addr,
 691            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 692            p2i(start_address), p2i(prev_last_addr));
 693 
 694     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 695     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 696     HeapWord* bottom_address = start_region->bottom();
 697 
 698     // Check for a range beginning in the same region in which the
 699     // previous one ended.
 700     if (start_region == prev_last_region) {
 701       bottom_address = prev_last_addr + 1;
 702     }
 703 
 704     // Verify that the regions were all marked as archive regions by
 705     // alloc_archive_regions.
 706     HeapRegion* curr_region = start_region;
 707     while (curr_region != NULL) {
 708       guarantee(curr_region->is_archive(),
 709                 "Expected archive region at index %u", curr_region->hrm_index());
 710       if (curr_region != last_region) {
 711         curr_region = _hrm->next_region_in_heap(curr_region);
 712       } else {
 713         curr_region = NULL;
 714       }
 715     }
 716 
 717     prev_last_addr = last_address;
 718     prev_last_region = last_region;
 719 
 720     // Fill the memory below the allocated range with dummy object(s),
 721     // if the region bottom does not match the range start, or if the previous
 722     // range ended within the same G1 region, and there is a gap.
 723     if (start_address != bottom_address) {
 724       size_t fill_size = pointer_delta(start_address, bottom_address);
 725       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 726       increase_used(fill_size * HeapWordSize);
 727     }
 728   }
 729 }
 730 
 731 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 732                                                      size_t desired_word_size,
 733                                                      size_t* actual_word_size) {
 734   assert_heap_not_locked_and_not_at_safepoint();
 735   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 736          "be called for humongous allocation requests");
 737 
 738   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 739 
 740   if (result == NULL) {
 741     *actual_word_size = desired_word_size;
 742     result = attempt_allocation_slow(desired_word_size);
 743   }
 744 
 745   assert_heap_not_locked();
 746   if (result != NULL) {
 747     assert(*actual_word_size != 0, "Actual size must have been set here");
 748     dirty_young_block(result, *actual_word_size);
 749   } else {
 750     *actual_word_size = 0;
 751   }
 752 
 753   return result;
 754 }
 755 
 756 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 757   assert(!is_init_completed(), "Expect to be called at JVM init time");
 758   assert(ranges != NULL, "MemRegion array NULL");
 759   assert(count != 0, "No MemRegions provided");
 760   MemRegion reserved = _hrm->reserved();
 761   HeapWord* prev_last_addr = NULL;
 762   HeapRegion* prev_last_region = NULL;
 763   size_t size_used = 0;
 764   size_t uncommitted_regions = 0;
 765 
 766   // For each Memregion, free the G1 regions that constitute it, and
 767   // notify mark-sweep that the range is no longer to be considered 'archive.'
 768   MutexLockerEx x(Heap_lock);
 769   for (size_t i = 0; i < count; i++) {
 770     HeapWord* start_address = ranges[i].start();
 771     HeapWord* last_address = ranges[i].last();
 772 
 773     assert(reserved.contains(start_address) && reserved.contains(last_address),
 774            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 775            p2i(start_address), p2i(last_address));
 776     assert(start_address > prev_last_addr,
 777            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 778            p2i(start_address), p2i(prev_last_addr));
 779     size_used += ranges[i].byte_size();
 780     prev_last_addr = last_address;
 781 
 782     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 783     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 784 
 785     // Check for ranges that start in the same G1 region in which the previous
 786     // range ended, and adjust the start address so we don't try to free
 787     // the same region again. If the current range is entirely within that
 788     // region, skip it.
 789     if (start_region == prev_last_region) {
 790       start_address = start_region->end();
 791       if (start_address > last_address) {
 792         continue;
 793       }
 794       start_region = _hrm->addr_to_region(start_address);
 795     }
 796     prev_last_region = last_region;
 797 
 798     // After verifying that each region was marked as an archive region by
 799     // alloc_archive_regions, set it free and empty and uncommit it.
 800     HeapRegion* curr_region = start_region;
 801     while (curr_region != NULL) {
 802       guarantee(curr_region->is_archive(),
 803                 "Expected archive region at index %u", curr_region->hrm_index());
 804       uint curr_index = curr_region->hrm_index();
 805       _archive_set.remove(curr_region);
 806       curr_region->set_free();
 807       curr_region->set_top(curr_region->bottom());
 808       if (curr_region != last_region) {
 809         curr_region = _hrm->next_region_in_heap(curr_region);
 810       } else {
 811         curr_region = NULL;
 812       }
 813       _hrm->shrink_at(curr_index, 1);
 814       uncommitted_regions++;
 815     }
 816 
 817     // Notify mark-sweep that this is no longer an archive range.
 818     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 819   }
 820 
 821   if (uncommitted_regions != 0) {
 822     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 823                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 824   }
 825   decrease_used(size_used);
 826 }
 827 
 828 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 829   assert(obj != NULL, "archived obj is NULL");
 830   assert(MetaspaceShared::is_archive_object(obj), "must be archived object");
 831 
 832   // Loading an archived object makes it strongly reachable. If it is
 833   // loaded during concurrent marking, it must be enqueued to the SATB
 834   // queue, shading the previously white object gray.
 835   G1BarrierSet::enqueue(obj);
 836 
 837   return obj;
 838 }
 839 
 840 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 841   ResourceMark rm; // For retrieving the thread names in log messages.
 842 
 843   // The structure of this method has a lot of similarities to
 844   // attempt_allocation_slow(). The reason these two were not merged
 845   // into a single one is that such a method would require several "if
 846   // allocation is not humongous do this, otherwise do that"
 847   // conditional paths which would obscure its flow. In fact, an early
 848   // version of this code did use a unified method which was harder to
 849   // follow and, as a result, it had subtle bugs that were hard to
 850   // track down. So keeping these two methods separate allows each to
 851   // be more readable. It will be good to keep these two in sync as
 852   // much as possible.
 853 
 854   assert_heap_not_locked_and_not_at_safepoint();
 855   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 856          "should only be called for humongous allocations");
 857 
 858   // Humongous objects can exhaust the heap quickly, so we should check if we
 859   // need to start a marking cycle at each humongous object allocation. We do
 860   // the check before we do the actual allocation. The reason for doing it
 861   // before the allocation is that we avoid having to keep track of the newly
 862   // allocated memory while we do a GC.
 863   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 864                                            word_size)) {
 865     collect(GCCause::_g1_humongous_allocation);
 866   }
 867 
 868   // We will loop until a) we manage to successfully perform the
 869   // allocation or b) we successfully schedule a collection which
 870   // fails to perform the allocation. b) is the only case when we'll
 871   // return NULL.
 872   HeapWord* result = NULL;
 873   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 874     bool should_try_gc;
 875     uint gc_count_before;
 876 
 877 
 878     {
 879       MutexLockerEx x(Heap_lock);
 880 
 881       // Given that humongous objects are not allocated in young
 882       // regions, we'll first try to do the allocation without doing a
 883       // collection hoping that there's enough space in the heap.
 884       result = humongous_obj_allocate(word_size);
 885       if (result != NULL) {
 886         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 887         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 888         return result;
 889       }
 890 
 891       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 892       // the GCLocker initiated GC has been performed and then retry. This includes
 893       // the case when the GC Locker is not active but has not been performed.
 894       should_try_gc = !GCLocker::needs_gc();
 895       // Read the GC count while still holding the Heap_lock.
 896       gc_count_before = total_collections();
 897     }
 898 
 899     if (should_try_gc) {
 900       bool succeeded;
 901       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 902                                    GCCause::_g1_humongous_allocation);
 903       if (result != NULL) {
 904         assert(succeeded, "only way to get back a non-NULL result");
 905         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 906                              Thread::current()->name(), p2i(result));
 907         return result;
 908       }
 909 
 910       if (succeeded) {
 911         // We successfully scheduled a collection which failed to allocate. No
 912         // point in trying to allocate further. We'll just return NULL.
 913         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 914                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 915         return NULL;
 916       }
 917       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 918                            Thread::current()->name(), word_size);
 919     } else {
 920       // Failed to schedule a collection.
 921       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 922         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 923                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 924         return NULL;
 925       }
 926       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 927       // The GCLocker is either active or the GCLocker initiated
 928       // GC has not yet been performed. Stall until it is and
 929       // then retry the allocation.
 930       GCLocker::stall_until_clear();
 931       gclocker_retry_count += 1;
 932     }
 933 
 934 
 935     // We can reach here if we were unsuccessful in scheduling a
 936     // collection (because another thread beat us to it) or if we were
 937     // stalled due to the GC locker. In either can we should retry the
 938     // allocation attempt in case another thread successfully
 939     // performed a collection and reclaimed enough space.
 940     // Humongous object allocation always needs a lock, so we wait for the retry
 941     // in the next iteration of the loop, unlike for the regular iteration case.
 942     // Give a warning if we seem to be looping forever.
 943 
 944     if ((QueuedAllocationWarningCount > 0) &&
 945         (try_count % QueuedAllocationWarningCount == 0)) {
 946       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 947                              Thread::current()->name(), try_count, word_size);
 948     }
 949   }
 950 
 951   ShouldNotReachHere();
 952   return NULL;
 953 }
 954 
 955 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 956                                                            bool expect_null_mutator_alloc_region) {
 957   assert_at_safepoint_on_vm_thread();
 958   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 959          "the current alloc region was unexpectedly found to be non-NULL");
 960 
 961   if (!is_humongous(word_size)) {
 962     return _allocator->attempt_allocation_locked(word_size);
 963   } else {
 964     HeapWord* result = humongous_obj_allocate(word_size);
 965     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 966       collector_state()->set_initiate_conc_mark_if_possible(true);
 967     }
 968     return result;
 969   }
 970 
 971   ShouldNotReachHere();
 972 }
 973 
 974 class PostCompactionPrinterClosure: public HeapRegionClosure {
 975 private:
 976   G1HRPrinter* _hr_printer;
 977 public:
 978   bool do_heap_region(HeapRegion* hr) {
 979     assert(!hr->is_young(), "not expecting to find young regions");
 980     _hr_printer->post_compaction(hr);
 981     return false;
 982   }
 983 
 984   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 985     : _hr_printer(hr_printer) { }
 986 };
 987 
 988 void G1CollectedHeap::print_hrm_post_compaction() {
 989   if (_hr_printer.is_active()) {
 990     PostCompactionPrinterClosure cl(hr_printer());
 991     heap_region_iterate(&cl);
 992   }
 993 }
 994 
 995 void G1CollectedHeap::abort_concurrent_cycle() {
 996   // If we start the compaction before the CM threads finish
 997   // scanning the root regions we might trip them over as we'll
 998   // be moving objects / updating references. So let's wait until
 999   // they are done. By telling them to abort, they should complete
1000   // early.
1001   _cm->root_regions()->abort();
1002   _cm->root_regions()->wait_until_scan_finished();
1003 
1004   // Disable discovery and empty the discovered lists
1005   // for the CM ref processor.
1006   _ref_processor_cm->disable_discovery();
1007   _ref_processor_cm->abandon_partial_discovery();
1008   _ref_processor_cm->verify_no_references_recorded();
1009 
1010   // Abandon current iterations of concurrent marking and concurrent
1011   // refinement, if any are in progress.
1012   concurrent_mark()->concurrent_cycle_abort();
1013 }
1014 
1015 void G1CollectedHeap::prepare_heap_for_full_collection() {
1016   // Make sure we'll choose a new allocation region afterwards.
1017   _allocator->release_mutator_alloc_region();
1018   _allocator->abandon_gc_alloc_regions();
1019   g1_rem_set()->cleanupHRRS();
1020 
1021   // We may have added regions to the current incremental collection
1022   // set between the last GC or pause and now. We need to clear the
1023   // incremental collection set and then start rebuilding it afresh
1024   // after this full GC.
1025   abandon_collection_set(collection_set());
1026 
1027   tear_down_region_sets(false /* free_list_only */);
1028 }
1029 
1030 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1031   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1032   assert(used() == recalculate_used(), "Should be equal");
1033   _verifier->verify_region_sets_optional();
1034   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1035   _verifier->check_bitmaps("Full GC Start");
1036 }
1037 
1038 void G1CollectedHeap::prepare_heap_for_mutators() {
1039   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1040   ClassLoaderDataGraph::purge();
1041   MetaspaceUtils::verify_metrics();
1042 
1043   // Prepare heap for normal collections.
1044   assert(num_free_regions() == 0, "we should not have added any free regions");
1045   rebuild_region_sets(false /* free_list_only */);
1046   abort_refinement();
1047   resize_if_necessary_after_full_collection();
1048 
1049   // Rebuild the strong code root lists for each region
1050   rebuild_strong_code_roots();
1051 
1052   // Purge code root memory
1053   purge_code_root_memory();
1054 
1055   // Start a new incremental collection set for the next pause
1056   start_new_collection_set();
1057 
1058   _allocator->init_mutator_alloc_region();
1059 
1060   // Post collection state updates.
1061   MetaspaceGC::compute_new_size();
1062 }
1063 
1064 void G1CollectedHeap::abort_refinement() {
1065   if (_hot_card_cache->use_cache()) {
1066     _hot_card_cache->reset_hot_cache();
1067   }
1068 
1069   // Discard all remembered set updates.
1070   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1071   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1072 }
1073 
1074 void G1CollectedHeap::verify_after_full_collection() {
1075   _hrm->verify_optional();
1076   _verifier->verify_region_sets_optional();
1077   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1078   // Clear the previous marking bitmap, if needed for bitmap verification.
1079   // Note we cannot do this when we clear the next marking bitmap in
1080   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1081   // objects marked during a full GC against the previous bitmap.
1082   // But we need to clear it before calling check_bitmaps below since
1083   // the full GC has compacted objects and updated TAMS but not updated
1084   // the prev bitmap.
1085   if (G1VerifyBitmaps) {
1086     GCTraceTime(Debug, gc)("Clear Prev Bitmap for Verification");
1087     _cm->clear_prev_bitmap(workers());
1088   }
1089   // This call implicitly verifies that the next bitmap is clear after Full GC.
1090   _verifier->check_bitmaps("Full GC End");
1091 
1092   // At this point there should be no regions in the
1093   // entire heap tagged as young.
1094   assert(check_young_list_empty(), "young list should be empty at this point");
1095 
1096   // Note: since we've just done a full GC, concurrent
1097   // marking is no longer active. Therefore we need not
1098   // re-enable reference discovery for the CM ref processor.
1099   // That will be done at the start of the next marking cycle.
1100   // We also know that the STW processor should no longer
1101   // discover any new references.
1102   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1103   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1104   _ref_processor_stw->verify_no_references_recorded();
1105   _ref_processor_cm->verify_no_references_recorded();
1106 }
1107 
1108 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1109   // Post collection logging.
1110   // We should do this after we potentially resize the heap so
1111   // that all the COMMIT / UNCOMMIT events are generated before
1112   // the compaction events.
1113   print_hrm_post_compaction();
1114   heap_transition->print();
1115   print_heap_after_gc();
1116   print_heap_regions();
1117 #ifdef TRACESPINNING
1118   ParallelTaskTerminator::print_termination_counts();
1119 #endif
1120 }
1121 
1122 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1123                                          bool clear_all_soft_refs) {
1124   assert_at_safepoint_on_vm_thread();
1125 
1126   if (GCLocker::check_active_before_gc()) {
1127     // Full GC was not completed.
1128     return false;
1129   }
1130 
1131   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1132       soft_ref_policy()->should_clear_all_soft_refs();
1133 
1134   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1135   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1136 
1137   collector.prepare_collection();
1138   collector.collect();
1139   collector.complete_collection();
1140 
1141   // Full collection was successfully completed.
1142   return true;
1143 }
1144 
1145 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1146   // Currently, there is no facility in the do_full_collection(bool) API to notify
1147   // the caller that the collection did not succeed (e.g., because it was locked
1148   // out by the GC locker). So, right now, we'll ignore the return value.
1149   bool dummy = do_full_collection(true,                /* explicit_gc */
1150                                   clear_all_soft_refs);
1151 }
1152 
1153 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1154   // Capacity, free and used after the GC counted as full regions to
1155   // include the waste in the following calculations.
1156   const size_t capacity_after_gc = capacity();
1157   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1158 
1159   // This is enforced in arguments.cpp.
1160   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1161          "otherwise the code below doesn't make sense");
1162 
1163   // We don't have floating point command-line arguments
1164   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1165   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1166   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1167   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1168 
1169   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1170   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1171 
1172   // We have to be careful here as these two calculations can overflow
1173   // 32-bit size_t's.
1174   double used_after_gc_d = (double) used_after_gc;
1175   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1176   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1177 
1178   // Let's make sure that they are both under the max heap size, which
1179   // by default will make them fit into a size_t.
1180   double desired_capacity_upper_bound = (double) max_heap_size;
1181   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1182                                     desired_capacity_upper_bound);
1183   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1184                                     desired_capacity_upper_bound);
1185 
1186   // We can now safely turn them into size_t's.
1187   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1188   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1189 
1190   // This assert only makes sense here, before we adjust them
1191   // with respect to the min and max heap size.
1192   assert(minimum_desired_capacity <= maximum_desired_capacity,
1193          "minimum_desired_capacity = " SIZE_FORMAT ", "
1194          "maximum_desired_capacity = " SIZE_FORMAT,
1195          minimum_desired_capacity, maximum_desired_capacity);
1196 
1197   // Should not be greater than the heap max size. No need to adjust
1198   // it with respect to the heap min size as it's a lower bound (i.e.,
1199   // we'll try to make the capacity larger than it, not smaller).
1200   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1201   // Should not be less than the heap min size. No need to adjust it
1202   // with respect to the heap max size as it's an upper bound (i.e.,
1203   // we'll try to make the capacity smaller than it, not greater).
1204   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1205 
1206   if (capacity_after_gc < minimum_desired_capacity) {
1207     // Don't expand unless it's significant
1208     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1209 
1210     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1211                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1212                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1213                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1214 
1215     expand(expand_bytes, _workers);
1216 
1217     // No expansion, now see if we want to shrink
1218   } else if (capacity_after_gc > maximum_desired_capacity) {
1219     // Capacity too large, compute shrinking size
1220     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1221 
1222     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1223                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1224                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1225                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1226 
1227     shrink(shrink_bytes);
1228   }
1229 }
1230 
1231 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1232                                                             bool do_gc,
1233                                                             bool clear_all_soft_refs,
1234                                                             bool expect_null_mutator_alloc_region,
1235                                                             bool* gc_succeeded) {
1236   *gc_succeeded = true;
1237   // Let's attempt the allocation first.
1238   HeapWord* result =
1239     attempt_allocation_at_safepoint(word_size,
1240                                     expect_null_mutator_alloc_region);
1241   if (result != NULL) {
1242     return result;
1243   }
1244 
1245   // In a G1 heap, we're supposed to keep allocation from failing by
1246   // incremental pauses.  Therefore, at least for now, we'll favor
1247   // expansion over collection.  (This might change in the future if we can
1248   // do something smarter than full collection to satisfy a failed alloc.)
1249   result = expand_and_allocate(word_size);
1250   if (result != NULL) {
1251     return result;
1252   }
1253 
1254   if (do_gc) {
1255     // Expansion didn't work, we'll try to do a Full GC.
1256     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1257                                        clear_all_soft_refs);
1258   }
1259 
1260   return NULL;
1261 }
1262 
1263 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1264                                                      bool* succeeded) {
1265   assert_at_safepoint_on_vm_thread();
1266 
1267   // Attempts to allocate followed by Full GC.
1268   HeapWord* result =
1269     satisfy_failed_allocation_helper(word_size,
1270                                      true,  /* do_gc */
1271                                      false, /* clear_all_soft_refs */
1272                                      false, /* expect_null_mutator_alloc_region */
1273                                      succeeded);
1274 
1275   if (result != NULL || !*succeeded) {
1276     return result;
1277   }
1278 
1279   // Attempts to allocate followed by Full GC that will collect all soft references.
1280   result = satisfy_failed_allocation_helper(word_size,
1281                                             true, /* do_gc */
1282                                             true, /* clear_all_soft_refs */
1283                                             true, /* expect_null_mutator_alloc_region */
1284                                             succeeded);
1285 
1286   if (result != NULL || !*succeeded) {
1287     return result;
1288   }
1289 
1290   // Attempts to allocate, no GC
1291   result = satisfy_failed_allocation_helper(word_size,
1292                                             false, /* do_gc */
1293                                             false, /* clear_all_soft_refs */
1294                                             true,  /* expect_null_mutator_alloc_region */
1295                                             succeeded);
1296 
1297   if (result != NULL) {
1298     return result;
1299   }
1300 
1301   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1302          "Flag should have been handled and cleared prior to this point");
1303 
1304   // What else?  We might try synchronous finalization later.  If the total
1305   // space available is large enough for the allocation, then a more
1306   // complete compaction phase than we've tried so far might be
1307   // appropriate.
1308   return NULL;
1309 }
1310 
1311 // Attempting to expand the heap sufficiently
1312 // to support an allocation of the given "word_size".  If
1313 // successful, perform the allocation and return the address of the
1314 // allocated block, or else "NULL".
1315 
1316 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1317   assert_at_safepoint_on_vm_thread();
1318 
1319   _verifier->verify_region_sets_optional();
1320 
1321   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1322   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1323                             word_size * HeapWordSize);
1324 
1325 
1326   if (expand(expand_bytes, _workers)) {
1327     _hrm->verify_optional();
1328     _verifier->verify_region_sets_optional();
1329     return attempt_allocation_at_safepoint(word_size,
1330                                            false /* expect_null_mutator_alloc_region */);
1331   }
1332   return NULL;
1333 }
1334 
1335 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1336   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1337   aligned_expand_bytes = align_up(aligned_expand_bytes,
1338                                        HeapRegion::GrainBytes);
1339 
1340   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1341                             expand_bytes, aligned_expand_bytes);
1342 
1343   if (is_maximal_no_gc()) {
1344     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1345     return false;
1346   }
1347 
1348   double expand_heap_start_time_sec = os::elapsedTime();
1349   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1350   assert(regions_to_expand > 0, "Must expand by at least one region");
1351 
1352   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1353   if (expand_time_ms != NULL) {
1354     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1355   }
1356 
1357   if (expanded_by > 0) {
1358     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1359     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1360     g1_policy()->record_new_heap_size(num_regions());
1361   } else {
1362     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1363 
1364     // The expansion of the virtual storage space was unsuccessful.
1365     // Let's see if it was because we ran out of swap.
1366     if (G1ExitOnExpansionFailure &&
1367         _hrm->available() >= regions_to_expand) {
1368       // We had head room...
1369       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1370     }
1371   }
1372   return regions_to_expand > 0;
1373 }
1374 
1375 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1376   size_t aligned_shrink_bytes =
1377     ReservedSpace::page_align_size_down(shrink_bytes);
1378   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1379                                          HeapRegion::GrainBytes);
1380   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1381 
1382   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1383   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1384 
1385 
1386   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1387                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1388   if (num_regions_removed > 0) {
1389     g1_policy()->record_new_heap_size(num_regions());
1390   } else {
1391     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1392   }
1393 }
1394 
1395 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1396   _verifier->verify_region_sets_optional();
1397 
1398   // We should only reach here at the end of a Full GC which means we
1399   // should not not be holding to any GC alloc regions. The method
1400   // below will make sure of that and do any remaining clean up.
1401   _allocator->abandon_gc_alloc_regions();
1402 
1403   // Instead of tearing down / rebuilding the free lists here, we
1404   // could instead use the remove_all_pending() method on free_list to
1405   // remove only the ones that we need to remove.
1406   tear_down_region_sets(true /* free_list_only */);
1407   shrink_helper(shrink_bytes);
1408   rebuild_region_sets(true /* free_list_only */);
1409 
1410   _hrm->verify_optional();
1411   _verifier->verify_region_sets_optional();
1412 }
1413 
1414 class OldRegionSetChecker : public HeapRegionSetChecker {
1415 public:
1416   void check_mt_safety() {
1417     // Master Old Set MT safety protocol:
1418     // (a) If we're at a safepoint, operations on the master old set
1419     // should be invoked:
1420     // - by the VM thread (which will serialize them), or
1421     // - by the GC workers while holding the FreeList_lock, if we're
1422     //   at a safepoint for an evacuation pause (this lock is taken
1423     //   anyway when an GC alloc region is retired so that a new one
1424     //   is allocated from the free list), or
1425     // - by the GC workers while holding the OldSets_lock, if we're at a
1426     //   safepoint for a cleanup pause.
1427     // (b) If we're not at a safepoint, operations on the master old set
1428     // should be invoked while holding the Heap_lock.
1429 
1430     if (SafepointSynchronize::is_at_safepoint()) {
1431       guarantee(Thread::current()->is_VM_thread() ||
1432                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1433                 "master old set MT safety protocol at a safepoint");
1434     } else {
1435       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1436     }
1437   }
1438   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1439   const char* get_description() { return "Old Regions"; }
1440 };
1441 
1442 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1443 public:
1444   void check_mt_safety() {
1445     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1446               "May only change archive regions during initialization or safepoint.");
1447   }
1448   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1449   const char* get_description() { return "Archive Regions"; }
1450 };
1451 
1452 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1453 public:
1454   void check_mt_safety() {
1455     // Humongous Set MT safety protocol:
1456     // (a) If we're at a safepoint, operations on the master humongous
1457     // set should be invoked by either the VM thread (which will
1458     // serialize them) or by the GC workers while holding the
1459     // OldSets_lock.
1460     // (b) If we're not at a safepoint, operations on the master
1461     // humongous set should be invoked while holding the Heap_lock.
1462 
1463     if (SafepointSynchronize::is_at_safepoint()) {
1464       guarantee(Thread::current()->is_VM_thread() ||
1465                 OldSets_lock->owned_by_self(),
1466                 "master humongous set MT safety protocol at a safepoint");
1467     } else {
1468       guarantee(Heap_lock->owned_by_self(),
1469                 "master humongous set MT safety protocol outside a safepoint");
1470     }
1471   }
1472   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1473   const char* get_description() { return "Humongous Regions"; }
1474 };
1475 
1476 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1477   CollectedHeap(),
1478   _young_gen_sampling_thread(NULL),
1479   _workers(NULL),
1480   _collector_policy(collector_policy),
1481   _card_table(NULL),
1482   _soft_ref_policy(),
1483   _old_set("Old Region Set", new OldRegionSetChecker()),
1484   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1485   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1486   _bot(NULL),
1487   _listener(),
1488   _hrm(NULL),
1489   _is_hetero_heap(false),
1490   _allocator(NULL),
1491   _verifier(NULL),
1492   _summary_bytes_used(0),
1493   _archive_allocator(NULL),
1494   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1495   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1496   _expand_heap_after_alloc_failure(true),
1497   _g1mm(NULL),
1498   _humongous_reclaim_candidates(),
1499   _has_humongous_reclaim_candidates(false),
1500   _hr_printer(),
1501   _collector_state(),
1502   _old_marking_cycles_started(0),
1503   _old_marking_cycles_completed(0),
1504   _eden(),
1505   _survivor(),
1506   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1507   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1508   _g1_policy(new G1Policy(_gc_timer_stw)),
1509   _heap_sizing_policy(NULL),
1510   _collection_set(this, _g1_policy),
1511   _hot_card_cache(NULL),
1512   _g1_rem_set(NULL),
1513   _dirty_card_queue_set(false),
1514   _cm(NULL),
1515   _cm_thread(NULL),
1516   _cr(NULL),
1517   _task_queues(NULL),
1518   _evacuation_failed(false),
1519   _evacuation_failed_info_array(NULL),
1520   _preserved_marks_set(true /* in_c_heap */),
1521 #ifndef PRODUCT
1522   _evacuation_failure_alot_for_current_gc(false),
1523   _evacuation_failure_alot_gc_number(0),
1524   _evacuation_failure_alot_count(0),
1525 #endif
1526   _ref_processor_stw(NULL),
1527   _is_alive_closure_stw(this),
1528   _is_subject_to_discovery_stw(this),
1529   _ref_processor_cm(NULL),
1530   _is_alive_closure_cm(this),
1531   _is_subject_to_discovery_cm(this),
1532   _in_cset_fast_test() {
1533 
1534   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1535                           true /* are_GC_task_threads */,
1536                           false /* are_ConcurrentGC_threads */);
1537   _workers->initialize_workers();
1538   _verifier = new G1HeapVerifier(this);
1539 
1540   _allocator = new G1Allocator(this);
1541 
1542   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1543 
1544   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1545 
1546   // Override the default _filler_array_max_size so that no humongous filler
1547   // objects are created.
1548   _filler_array_max_size = _humongous_object_threshold_in_words;
1549 
1550   uint n_queues = ParallelGCThreads;
1551   _task_queues = new RefToScanQueueSet(n_queues);
1552 
1553   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1554 
1555   for (uint i = 0; i < n_queues; i++) {
1556     RefToScanQueue* q = new RefToScanQueue();
1557     q->initialize();
1558     _task_queues->register_queue(i, q);
1559     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1560   }
1561 
1562   // Initialize the G1EvacuationFailureALot counters and flags.
1563   NOT_PRODUCT(reset_evacuation_should_fail();)
1564 
1565   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1566 }
1567 
1568 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1569                                                                  size_t size,
1570                                                                  size_t translation_factor) {
1571   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1572   // Allocate a new reserved space, preferring to use large pages.
1573   ReservedSpace rs(size, preferred_page_size);
1574   G1RegionToSpaceMapper* result  =
1575     G1RegionToSpaceMapper::create_mapper(rs,
1576                                          size,
1577                                          rs.alignment(),
1578                                          HeapRegion::GrainBytes,
1579                                          translation_factor,
1580                                          mtGC);
1581 
1582   os::trace_page_sizes_for_requested_size(description,
1583                                           size,
1584                                           preferred_page_size,
1585                                           rs.alignment(),
1586                                           rs.base(),
1587                                           rs.size());
1588 
1589   return result;
1590 }
1591 
1592 jint G1CollectedHeap::initialize_concurrent_refinement() {
1593   jint ecode = JNI_OK;
1594   _cr = G1ConcurrentRefine::create(&ecode);
1595   return ecode;
1596 }
1597 
1598 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1599   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1600   if (_young_gen_sampling_thread->osthread() == NULL) {
1601     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1602     return JNI_ENOMEM;
1603   }
1604   return JNI_OK;
1605 }
1606 
1607 jint G1CollectedHeap::initialize() {
1608   os::enable_vtime();
1609 
1610   // Necessary to satisfy locking discipline assertions.
1611 
1612   MutexLocker x(Heap_lock);
1613 
1614   // While there are no constraints in the GC code that HeapWordSize
1615   // be any particular value, there are multiple other areas in the
1616   // system which believe this to be true (e.g. oop->object_size in some
1617   // cases incorrectly returns the size in wordSize units rather than
1618   // HeapWordSize).
1619   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1620 
1621   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1622   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1623   size_t heap_alignment = collector_policy()->heap_alignment();
1624 
1625   // Ensure that the sizes are properly aligned.
1626   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1627   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1628   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1629 
1630   // Reserve the maximum.
1631 
1632   // When compressed oops are enabled, the preferred heap base
1633   // is calculated by subtracting the requested size from the
1634   // 32Gb boundary and using the result as the base address for
1635   // heap reservation. If the requested size is not aligned to
1636   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1637   // into the ReservedHeapSpace constructor) then the actual
1638   // base of the reserved heap may end up differing from the
1639   // address that was requested (i.e. the preferred heap base).
1640   // If this happens then we could end up using a non-optimal
1641   // compressed oops mode.
1642   if (AllocateOldGenAt != NULL) {
1643     _is_hetero_heap = true;
1644     max_byte_size *= 2;
1645   }
1646 
1647   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1648                                                  heap_alignment);
1649 
1650   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1651 
1652   // Create the barrier set for the entire reserved region.
1653   G1CardTable* ct = new G1CardTable(reserved_region());
1654   ct->initialize();
1655   G1BarrierSet* bs = new G1BarrierSet(ct);
1656   bs->initialize();
1657   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1658   BarrierSet::set_barrier_set(bs);
1659   _card_table = ct;
1660 
1661   // Create the hot card cache.
1662   _hot_card_cache = new G1HotCardCache(this);
1663 
1664   // Carve out the G1 part of the heap.
1665   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1666   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1667   G1RegionToSpaceMapper* heap_storage =
1668     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1669                                          g1_rs.size(),
1670                                          page_size,
1671                                          HeapRegion::GrainBytes,
1672                                          1,
1673                                          mtJavaHeap);
1674   os::trace_page_sizes("Heap",
1675                        collector_policy()->min_heap_byte_size(),
1676                        max_byte_size,
1677                        page_size,
1678                        heap_rs.base(),
1679                        heap_rs.size());
1680   heap_storage->set_mapping_changed_listener(&_listener);
1681 
1682   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1683   G1RegionToSpaceMapper* bot_storage =
1684     create_aux_memory_mapper("Block Offset Table",
1685                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1686                              G1BlockOffsetTable::heap_map_factor());
1687 
1688   G1RegionToSpaceMapper* cardtable_storage =
1689     create_aux_memory_mapper("Card Table",
1690                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1691                              G1CardTable::heap_map_factor());
1692 
1693   G1RegionToSpaceMapper* card_counts_storage =
1694     create_aux_memory_mapper("Card Counts Table",
1695                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1696                              G1CardCounts::heap_map_factor());
1697 
1698   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1699   G1RegionToSpaceMapper* prev_bitmap_storage =
1700     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1701   G1RegionToSpaceMapper* next_bitmap_storage =
1702     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1703 
1704   if (is_hetero_heap()) {
1705     _hrm = new HeapRegionManagerForHeteroHeap((uint)((max_byte_size / 2) / HeapRegion::GrainBytes /*heap size as num of regions*/));
1706   }
1707   else {
1708     _hrm = new HeapRegionManager();
1709   }
1710   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1711   _card_table->initialize(cardtable_storage);
1712   // Do later initialization work for concurrent refinement.
1713   _hot_card_cache->initialize(card_counts_storage);
1714 
1715   // 6843694 - ensure that the maximum region index can fit
1716   // in the remembered set structures.
1717   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1718   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1719 
1720   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1721   // start within the first card.
1722   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1723   // Also create a G1 rem set.
1724   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1725   _g1_rem_set->initialize(max_reserved_capacity(), max_regions());
1726 
1727   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1728   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1729   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1730             "too many cards per region");
1731 
1732   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1733 
1734   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1735 
1736   {
1737     HeapWord* start = _hrm->reserved().start();
1738     HeapWord* end = _hrm->reserved().end();
1739     size_t granularity = HeapRegion::GrainBytes;
1740 
1741     _in_cset_fast_test.initialize(start, end, granularity);
1742     _humongous_reclaim_candidates.initialize(start, end, granularity);
1743   }
1744 
1745   // Create the G1ConcurrentMark data structure and thread.
1746   // (Must do this late, so that "max_regions" is defined.)
1747   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1748   if (_cm == NULL || !_cm->completed_initialization()) {
1749     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1750     return JNI_ENOMEM;
1751   }
1752   _cm_thread = _cm->cm_thread();
1753 
1754   // Now expand into the initial heap size.
1755   if (!expand(init_byte_size, _workers)) {
1756     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1757     return JNI_ENOMEM;
1758   }
1759 
1760   // Perform any initialization actions delegated to the policy.
1761   g1_policy()->init(this, &_collection_set);
1762 
1763   G1BarrierSet::satb_mark_queue_set().initialize(this,
1764                                                  SATB_Q_CBL_mon,
1765                                                  SATB_Q_FL_lock,
1766                                                  G1SATBProcessCompletedThreshold,
1767                                                  G1SATBBufferEnqueueingThresholdPercent,
1768                                                  Shared_SATB_Q_lock);
1769 
1770   jint ecode = initialize_concurrent_refinement();
1771   if (ecode != JNI_OK) {
1772     return ecode;
1773   }
1774 
1775   ecode = initialize_young_gen_sampling_thread();
1776   if (ecode != JNI_OK) {
1777     return ecode;
1778   }
1779 
1780   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1781                                                   DirtyCardQ_FL_lock,
1782                                                   (int)concurrent_refine()->yellow_zone(),
1783                                                   (int)concurrent_refine()->red_zone(),
1784                                                   Shared_DirtyCardQ_lock,
1785                                                   NULL,  // fl_owner
1786                                                   true); // init_free_ids
1787 
1788   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1789                                     DirtyCardQ_FL_lock,
1790                                     -1, // never trigger processing
1791                                     -1, // no limit on length
1792                                     Shared_DirtyCardQ_lock,
1793                                     &G1BarrierSet::dirty_card_queue_set());
1794 
1795   // Here we allocate the dummy HeapRegion that is required by the
1796   // G1AllocRegion class.
1797   HeapRegion* dummy_region = _hrm->get_dummy_region();
1798 
1799   // We'll re-use the same region whether the alloc region will
1800   // require BOT updates or not and, if it doesn't, then a non-young
1801   // region will complain that it cannot support allocations without
1802   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1803   dummy_region->set_eden();
1804   // Make sure it's full.
1805   dummy_region->set_top(dummy_region->end());
1806   G1AllocRegion::setup(this, dummy_region);
1807 
1808   _allocator->init_mutator_alloc_region();
1809 
1810   // Do create of the monitoring and management support so that
1811   // values in the heap have been properly initialized.
1812   _g1mm = new G1MonitoringSupport(this);
1813 
1814   G1StringDedup::initialize();
1815 
1816   _preserved_marks_set.init(ParallelGCThreads);
1817 
1818   _collection_set.initialize(max_regions());
1819 
1820   return JNI_OK;
1821 }
1822 
1823 void G1CollectedHeap::stop() {
1824   // Stop all concurrent threads. We do this to make sure these threads
1825   // do not continue to execute and access resources (e.g. logging)
1826   // that are destroyed during shutdown.
1827   _cr->stop();
1828   _young_gen_sampling_thread->stop();
1829   _cm_thread->stop();
1830   if (G1StringDedup::is_enabled()) {
1831     G1StringDedup::stop();
1832   }
1833 }
1834 
1835 void G1CollectedHeap::safepoint_synchronize_begin() {
1836   SuspendibleThreadSet::synchronize();
1837 }
1838 
1839 void G1CollectedHeap::safepoint_synchronize_end() {
1840   SuspendibleThreadSet::desynchronize();
1841 }
1842 
1843 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1844   return HeapRegion::max_region_size();
1845 }
1846 
1847 void G1CollectedHeap::post_initialize() {
1848   CollectedHeap::post_initialize();
1849   ref_processing_init();
1850 }
1851 
1852 void G1CollectedHeap::ref_processing_init() {
1853   // Reference processing in G1 currently works as follows:
1854   //
1855   // * There are two reference processor instances. One is
1856   //   used to record and process discovered references
1857   //   during concurrent marking; the other is used to
1858   //   record and process references during STW pauses
1859   //   (both full and incremental).
1860   // * Both ref processors need to 'span' the entire heap as
1861   //   the regions in the collection set may be dotted around.
1862   //
1863   // * For the concurrent marking ref processor:
1864   //   * Reference discovery is enabled at initial marking.
1865   //   * Reference discovery is disabled and the discovered
1866   //     references processed etc during remarking.
1867   //   * Reference discovery is MT (see below).
1868   //   * Reference discovery requires a barrier (see below).
1869   //   * Reference processing may or may not be MT
1870   //     (depending on the value of ParallelRefProcEnabled
1871   //     and ParallelGCThreads).
1872   //   * A full GC disables reference discovery by the CM
1873   //     ref processor and abandons any entries on it's
1874   //     discovered lists.
1875   //
1876   // * For the STW processor:
1877   //   * Non MT discovery is enabled at the start of a full GC.
1878   //   * Processing and enqueueing during a full GC is non-MT.
1879   //   * During a full GC, references are processed after marking.
1880   //
1881   //   * Discovery (may or may not be MT) is enabled at the start
1882   //     of an incremental evacuation pause.
1883   //   * References are processed near the end of a STW evacuation pause.
1884   //   * For both types of GC:
1885   //     * Discovery is atomic - i.e. not concurrent.
1886   //     * Reference discovery will not need a barrier.
1887 
1888   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1889 
1890   // Concurrent Mark ref processor
1891   _ref_processor_cm =
1892     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1893                            mt_processing,                                  // mt processing
1894                            ParallelGCThreads,                              // degree of mt processing
1895                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1896                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1897                            false,                                          // Reference discovery is not atomic
1898                            &_is_alive_closure_cm,                          // is alive closure
1899                            true);                                          // allow changes to number of processing threads
1900 
1901   // STW ref processor
1902   _ref_processor_stw =
1903     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1904                            mt_processing,                        // mt processing
1905                            ParallelGCThreads,                    // degree of mt processing
1906                            (ParallelGCThreads > 1),              // mt discovery
1907                            ParallelGCThreads,                    // degree of mt discovery
1908                            true,                                 // Reference discovery is atomic
1909                            &_is_alive_closure_stw,               // is alive closure
1910                            true);                                // allow changes to number of processing threads
1911 }
1912 
1913 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1914   return _collector_policy;
1915 }
1916 
1917 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1918   return &_soft_ref_policy;
1919 }
1920 
1921 size_t G1CollectedHeap::capacity() const {
1922   return _hrm->length() * HeapRegion::GrainBytes;
1923 }
1924 
1925 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1926   return _hrm->total_free_bytes();
1927 }
1928 
1929 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1930   _hot_card_cache->drain(cl, worker_i);
1931 }
1932 
1933 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1934   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1935   size_t n_completed_buffers = 0;
1936   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1937     n_completed_buffers++;
1938   }
1939   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1940   dcqs.clear_n_completed_buffers();
1941   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1942 }
1943 
1944 // Computes the sum of the storage used by the various regions.
1945 size_t G1CollectedHeap::used() const {
1946   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1947   if (_archive_allocator != NULL) {
1948     result += _archive_allocator->used();
1949   }
1950   return result;
1951 }
1952 
1953 size_t G1CollectedHeap::used_unlocked() const {
1954   return _summary_bytes_used;
1955 }
1956 
1957 class SumUsedClosure: public HeapRegionClosure {
1958   size_t _used;
1959 public:
1960   SumUsedClosure() : _used(0) {}
1961   bool do_heap_region(HeapRegion* r) {
1962     _used += r->used();
1963     return false;
1964   }
1965   size_t result() { return _used; }
1966 };
1967 
1968 size_t G1CollectedHeap::recalculate_used() const {
1969   SumUsedClosure blk;
1970   heap_region_iterate(&blk);
1971   return blk.result();
1972 }
1973 
1974 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1975   switch (cause) {
1976     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1977     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1978     case GCCause::_wb_conc_mark:                        return true;
1979     default :                                           return false;
1980   }
1981 }
1982 
1983 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1984   switch (cause) {
1985     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1986     case GCCause::_g1_humongous_allocation: return true;
1987     default:                                return is_user_requested_concurrent_full_gc(cause);
1988   }
1989 }
1990 
1991 #ifndef PRODUCT
1992 void G1CollectedHeap::allocate_dummy_regions() {
1993   // Let's fill up most of the region
1994   size_t word_size = HeapRegion::GrainWords - 1024;
1995   // And as a result the region we'll allocate will be humongous.
1996   guarantee(is_humongous(word_size), "sanity");
1997 
1998   // _filler_array_max_size is set to humongous object threshold
1999   // but temporarily change it to use CollectedHeap::fill_with_object().
2000   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2001 
2002   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2003     // Let's use the existing mechanism for the allocation
2004     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2005     if (dummy_obj != NULL) {
2006       MemRegion mr(dummy_obj, word_size);
2007       CollectedHeap::fill_with_object(mr);
2008     } else {
2009       // If we can't allocate once, we probably cannot allocate
2010       // again. Let's get out of the loop.
2011       break;
2012     }
2013   }
2014 }
2015 #endif // !PRODUCT
2016 
2017 void G1CollectedHeap::increment_old_marking_cycles_started() {
2018   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2019          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2020          "Wrong marking cycle count (started: %d, completed: %d)",
2021          _old_marking_cycles_started, _old_marking_cycles_completed);
2022 
2023   _old_marking_cycles_started++;
2024 }
2025 
2026 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2027   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2028 
2029   // We assume that if concurrent == true, then the caller is a
2030   // concurrent thread that was joined the Suspendible Thread
2031   // Set. If there's ever a cheap way to check this, we should add an
2032   // assert here.
2033 
2034   // Given that this method is called at the end of a Full GC or of a
2035   // concurrent cycle, and those can be nested (i.e., a Full GC can
2036   // interrupt a concurrent cycle), the number of full collections
2037   // completed should be either one (in the case where there was no
2038   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2039   // behind the number of full collections started.
2040 
2041   // This is the case for the inner caller, i.e. a Full GC.
2042   assert(concurrent ||
2043          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2044          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2045          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2046          "is inconsistent with _old_marking_cycles_completed = %u",
2047          _old_marking_cycles_started, _old_marking_cycles_completed);
2048 
2049   // This is the case for the outer caller, i.e. the concurrent cycle.
2050   assert(!concurrent ||
2051          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2052          "for outer caller (concurrent cycle): "
2053          "_old_marking_cycles_started = %u "
2054          "is inconsistent with _old_marking_cycles_completed = %u",
2055          _old_marking_cycles_started, _old_marking_cycles_completed);
2056 
2057   _old_marking_cycles_completed += 1;
2058 
2059   // We need to clear the "in_progress" flag in the CM thread before
2060   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2061   // is set) so that if a waiter requests another System.gc() it doesn't
2062   // incorrectly see that a marking cycle is still in progress.
2063   if (concurrent) {
2064     _cm_thread->set_idle();
2065   }
2066 
2067   // This notify_all() will ensure that a thread that called
2068   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2069   // and it's waiting for a full GC to finish will be woken up. It is
2070   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2071   FullGCCount_lock->notify_all();
2072 }
2073 
2074 void G1CollectedHeap::collect(GCCause::Cause cause) {
2075   assert_heap_not_locked();
2076 
2077   uint gc_count_before;
2078   uint old_marking_count_before;
2079   uint full_gc_count_before;
2080   bool retry_gc;
2081 
2082   do {
2083     retry_gc = false;
2084 
2085     {
2086       MutexLocker ml(Heap_lock);
2087 
2088       // Read the GC count while holding the Heap_lock
2089       gc_count_before = total_collections();
2090       full_gc_count_before = total_full_collections();
2091       old_marking_count_before = _old_marking_cycles_started;
2092     }
2093 
2094     if (should_do_concurrent_full_gc(cause)) {
2095       // Schedule an initial-mark evacuation pause that will start a
2096       // concurrent cycle. We're setting word_size to 0 which means that
2097       // we are not requesting a post-GC allocation.
2098       VM_G1CollectForAllocation op(0,     /* word_size */
2099                                    gc_count_before,
2100                                    cause,
2101                                    true,  /* should_initiate_conc_mark */
2102                                    g1_policy()->max_pause_time_ms());
2103       VMThread::execute(&op);
2104       if (!op.pause_succeeded()) {
2105         if (old_marking_count_before == _old_marking_cycles_started) {
2106           retry_gc = op.should_retry_gc();
2107         } else {
2108           // A Full GC happened while we were trying to schedule the
2109           // initial-mark GC. No point in starting a new cycle given
2110           // that the whole heap was collected anyway.
2111         }
2112 
2113         if (retry_gc) {
2114           if (GCLocker::is_active_and_needs_gc()) {
2115             GCLocker::stall_until_clear();
2116           }
2117         }
2118       }
2119     } else {
2120       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2121           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2122 
2123         // Schedule a standard evacuation pause. We're setting word_size
2124         // to 0 which means that we are not requesting a post-GC allocation.
2125         VM_G1CollectForAllocation op(0,     /* word_size */
2126                                      gc_count_before,
2127                                      cause,
2128                                      false, /* should_initiate_conc_mark */
2129                                      g1_policy()->max_pause_time_ms());
2130         VMThread::execute(&op);
2131       } else {
2132         // Schedule a Full GC.
2133         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2134         VMThread::execute(&op);
2135       }
2136     }
2137   } while (retry_gc);
2138 }
2139 
2140 bool G1CollectedHeap::is_in(const void* p) const {
2141   if (_hrm->reserved().contains(p)) {
2142     // Given that we know that p is in the reserved space,
2143     // heap_region_containing() should successfully
2144     // return the containing region.
2145     HeapRegion* hr = heap_region_containing(p);
2146     return hr->is_in(p);
2147   } else {
2148     return false;
2149   }
2150 }
2151 
2152 #ifdef ASSERT
2153 bool G1CollectedHeap::is_in_exact(const void* p) const {
2154   bool contains = reserved_region().contains(p);
2155   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2156   if (contains && available) {
2157     return true;
2158   } else {
2159     return false;
2160   }
2161 }
2162 #endif
2163 
2164 // Iteration functions.
2165 
2166 // Iterates an ObjectClosure over all objects within a HeapRegion.
2167 
2168 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2169   ObjectClosure* _cl;
2170 public:
2171   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2172   bool do_heap_region(HeapRegion* r) {
2173     if (!r->is_continues_humongous()) {
2174       r->object_iterate(_cl);
2175     }
2176     return false;
2177   }
2178 };
2179 
2180 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2181   IterateObjectClosureRegionClosure blk(cl);
2182   heap_region_iterate(&blk);
2183 }
2184 
2185 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2186   _hrm->iterate(cl);
2187 }
2188 
2189 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2190                                                                  HeapRegionClaimer *hrclaimer,
2191                                                                  uint worker_id) const {
2192   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2193 }
2194 
2195 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2196                                                          HeapRegionClaimer *hrclaimer) const {
2197   _hrm->par_iterate(cl, hrclaimer, 0);
2198 }
2199 
2200 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2201   _collection_set.iterate(cl);
2202 }
2203 
2204 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2205   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2206 }
2207 
2208 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2209   HeapRegion* hr = heap_region_containing(addr);
2210   return hr->block_start(addr);
2211 }
2212 
2213 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2214   HeapRegion* hr = heap_region_containing(addr);
2215   return hr->block_size(addr);
2216 }
2217 
2218 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2219   HeapRegion* hr = heap_region_containing(addr);
2220   return hr->block_is_obj(addr);
2221 }
2222 
2223 bool G1CollectedHeap::supports_tlab_allocation() const {
2224   return true;
2225 }
2226 
2227 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2228   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2229 }
2230 
2231 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2232   return _eden.length() * HeapRegion::GrainBytes;
2233 }
2234 
2235 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2236 // must be equal to the humongous object limit.
2237 size_t G1CollectedHeap::max_tlab_size() const {
2238   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2239 }
2240 
2241 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2242   return _allocator->unsafe_max_tlab_alloc();
2243 }
2244 
2245 size_t G1CollectedHeap::max_capacity() const {
2246   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2247 }
2248 
2249 size_t G1CollectedHeap::max_reserved_capacity() const {
2250   return _hrm->max_length() * HeapRegion::GrainBytes;
2251 }
2252 
2253 jlong G1CollectedHeap::millis_since_last_gc() {
2254   // See the notes in GenCollectedHeap::millis_since_last_gc()
2255   // for more information about the implementation.
2256   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2257     _g1_policy->collection_pause_end_millis();
2258   if (ret_val < 0) {
2259     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2260       ". returning zero instead.", ret_val);
2261     return 0;
2262   }
2263   return ret_val;
2264 }
2265 
2266 void G1CollectedHeap::deduplicate_string(oop str) {
2267   assert(java_lang_String::is_instance(str), "invariant");
2268 
2269   if (G1StringDedup::is_enabled()) {
2270     G1StringDedup::deduplicate(str);
2271   }
2272 }
2273 
2274 void G1CollectedHeap::prepare_for_verify() {
2275   _verifier->prepare_for_verify();
2276 }
2277 
2278 void G1CollectedHeap::verify(VerifyOption vo) {
2279   _verifier->verify(vo);
2280 }
2281 
2282 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2283   return true;
2284 }
2285 
2286 const char* const* G1CollectedHeap::concurrent_phases() const {
2287   return _cm_thread->concurrent_phases();
2288 }
2289 
2290 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2291   return _cm_thread->request_concurrent_phase(phase);
2292 }
2293 
2294 class PrintRegionClosure: public HeapRegionClosure {
2295   outputStream* _st;
2296 public:
2297   PrintRegionClosure(outputStream* st) : _st(st) {}
2298   bool do_heap_region(HeapRegion* r) {
2299     r->print_on(_st);
2300     return false;
2301   }
2302 };
2303 
2304 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2305                                        const HeapRegion* hr,
2306                                        const VerifyOption vo) const {
2307   switch (vo) {
2308   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2309   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2310   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2311   default:                            ShouldNotReachHere();
2312   }
2313   return false; // keep some compilers happy
2314 }
2315 
2316 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2317                                        const VerifyOption vo) const {
2318   switch (vo) {
2319   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2320   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2321   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2322   default:                            ShouldNotReachHere();
2323   }
2324   return false; // keep some compilers happy
2325 }
2326 
2327 void G1CollectedHeap::print_heap_regions() const {
2328   LogTarget(Trace, gc, heap, region) lt;
2329   if (lt.is_enabled()) {
2330     LogStream ls(lt);
2331     print_regions_on(&ls);
2332   }
2333 }
2334 
2335 void G1CollectedHeap::print_on(outputStream* st) const {
2336   st->print(" %-20s", "garbage-first heap");
2337   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2338             capacity()/K, used_unlocked()/K);
2339   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2340             p2i(_hrm->reserved().start()),
2341             p2i(_hrm->reserved().end()));
2342   st->cr();
2343   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2344   uint young_regions = young_regions_count();
2345   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2346             (size_t) young_regions * HeapRegion::GrainBytes / K);
2347   uint survivor_regions = survivor_regions_count();
2348   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2349             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2350   st->cr();
2351   MetaspaceUtils::print_on(st);
2352 }
2353 
2354 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2355   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2356                "HS=humongous(starts), HC=humongous(continues), "
2357                "CS=collection set, F=free, A=archive, "
2358                "TAMS=top-at-mark-start (previous, next)");
2359   PrintRegionClosure blk(st);
2360   heap_region_iterate(&blk);
2361 }
2362 
2363 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2364   print_on(st);
2365 
2366   // Print the per-region information.
2367   print_regions_on(st);
2368 }
2369 
2370 void G1CollectedHeap::print_on_error(outputStream* st) const {
2371   this->CollectedHeap::print_on_error(st);
2372 
2373   if (_cm != NULL) {
2374     st->cr();
2375     _cm->print_on_error(st);
2376   }
2377 }
2378 
2379 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2380   workers()->print_worker_threads_on(st);
2381   _cm_thread->print_on(st);
2382   st->cr();
2383   _cm->print_worker_threads_on(st);
2384   _cr->print_threads_on(st);
2385   _young_gen_sampling_thread->print_on(st);
2386   if (G1StringDedup::is_enabled()) {
2387     G1StringDedup::print_worker_threads_on(st);
2388   }
2389 }
2390 
2391 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2392   workers()->threads_do(tc);
2393   tc->do_thread(_cm_thread);
2394   _cm->threads_do(tc);
2395   _cr->threads_do(tc);
2396   tc->do_thread(_young_gen_sampling_thread);
2397   if (G1StringDedup::is_enabled()) {
2398     G1StringDedup::threads_do(tc);
2399   }
2400 }
2401 
2402 void G1CollectedHeap::print_tracing_info() const {
2403   g1_rem_set()->print_summary_info();
2404   concurrent_mark()->print_summary_info();
2405 }
2406 
2407 #ifndef PRODUCT
2408 // Helpful for debugging RSet issues.
2409 
2410 class PrintRSetsClosure : public HeapRegionClosure {
2411 private:
2412   const char* _msg;
2413   size_t _occupied_sum;
2414 
2415 public:
2416   bool do_heap_region(HeapRegion* r) {
2417     HeapRegionRemSet* hrrs = r->rem_set();
2418     size_t occupied = hrrs->occupied();
2419     _occupied_sum += occupied;
2420 
2421     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2422     if (occupied == 0) {
2423       tty->print_cr("  RSet is empty");
2424     } else {
2425       hrrs->print();
2426     }
2427     tty->print_cr("----------");
2428     return false;
2429   }
2430 
2431   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2432     tty->cr();
2433     tty->print_cr("========================================");
2434     tty->print_cr("%s", msg);
2435     tty->cr();
2436   }
2437 
2438   ~PrintRSetsClosure() {
2439     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2440     tty->print_cr("========================================");
2441     tty->cr();
2442   }
2443 };
2444 
2445 void G1CollectedHeap::print_cset_rsets() {
2446   PrintRSetsClosure cl("Printing CSet RSets");
2447   collection_set_iterate(&cl);
2448 }
2449 
2450 void G1CollectedHeap::print_all_rsets() {
2451   PrintRSetsClosure cl("Printing All RSets");;
2452   heap_region_iterate(&cl);
2453 }
2454 #endif // PRODUCT
2455 
2456 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2457 
2458   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2459   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2460   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2461 
2462   size_t eden_capacity_bytes =
2463     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2464 
2465   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2466   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2467                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2468 }
2469 
2470 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2471   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2472                        stats->unused(), stats->used(), stats->region_end_waste(),
2473                        stats->regions_filled(), stats->direct_allocated(),
2474                        stats->failure_used(), stats->failure_waste());
2475 }
2476 
2477 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2478   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2479   gc_tracer->report_gc_heap_summary(when, heap_summary);
2480 
2481   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2482   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2483 }
2484 
2485 G1CollectedHeap* G1CollectedHeap::heap() {
2486   CollectedHeap* heap = Universe::heap();
2487   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2488   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2489   return (G1CollectedHeap*)heap;
2490 }
2491 
2492 void G1CollectedHeap::gc_prologue(bool full) {
2493   // always_do_update_barrier = false;
2494   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2495 
2496   // This summary needs to be printed before incrementing total collections.
2497   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2498 
2499   // Update common counters.
2500   increment_total_collections(full /* full gc */);
2501   if (full) {
2502     increment_old_marking_cycles_started();
2503   }
2504 
2505   // Fill TLAB's and such
2506   double start = os::elapsedTime();
2507   ensure_parsability(true);
2508   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2509 }
2510 
2511 void G1CollectedHeap::gc_epilogue(bool full) {
2512   // Update common counters.
2513   if (full) {
2514     // Update the number of full collections that have been completed.
2515     increment_old_marking_cycles_completed(false /* concurrent */);
2516   }
2517 
2518   // We are at the end of the GC. Total collections has already been increased.
2519   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2520 
2521   // FIXME: what is this about?
2522   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2523   // is set.
2524 #if COMPILER2_OR_JVMCI
2525   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2526 #endif
2527   // always_do_update_barrier = true;
2528 
2529   double start = os::elapsedTime();
2530   resize_all_tlabs();
2531   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2532 
2533   MemoryService::track_memory_usage();
2534   // We have just completed a GC. Update the soft reference
2535   // policy with the new heap occupancy
2536   Universe::update_heap_info_at_gc();
2537 }
2538 
2539 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2540                                                uint gc_count_before,
2541                                                bool* succeeded,
2542                                                GCCause::Cause gc_cause) {
2543   assert_heap_not_locked_and_not_at_safepoint();
2544   VM_G1CollectForAllocation op(word_size,
2545                                gc_count_before,
2546                                gc_cause,
2547                                false, /* should_initiate_conc_mark */
2548                                g1_policy()->max_pause_time_ms());
2549   VMThread::execute(&op);
2550 
2551   HeapWord* result = op.result();
2552   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2553   assert(result == NULL || ret_succeeded,
2554          "the result should be NULL if the VM did not succeed");
2555   *succeeded = ret_succeeded;
2556 
2557   assert_heap_not_locked();
2558   return result;
2559 }
2560 
2561 void G1CollectedHeap::do_concurrent_mark() {
2562   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2563   if (!_cm_thread->in_progress()) {
2564     _cm_thread->set_started();
2565     CGC_lock->notify();
2566   }
2567 }
2568 
2569 size_t G1CollectedHeap::pending_card_num() {
2570   size_t extra_cards = 0;
2571   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2572     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2573     extra_cards += dcq.size();
2574   }
2575   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2576   size_t buffer_size = dcqs.buffer_size();
2577   size_t buffer_num = dcqs.completed_buffers_num();
2578 
2579   return buffer_size * buffer_num + extra_cards;
2580 }
2581 
2582 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2583   // We don't nominate objects with many remembered set entries, on
2584   // the assumption that such objects are likely still live.
2585   HeapRegionRemSet* rem_set = r->rem_set();
2586 
2587   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2588          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2589          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2590 }
2591 
2592 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2593  private:
2594   size_t _total_humongous;
2595   size_t _candidate_humongous;
2596 
2597   DirtyCardQueue _dcq;
2598 
2599   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2600     assert(region->is_starts_humongous(), "Must start a humongous object");
2601 
2602     oop obj = oop(region->bottom());
2603 
2604     // Dead objects cannot be eager reclaim candidates. Due to class
2605     // unloading it is unsafe to query their classes so we return early.
2606     if (g1h->is_obj_dead(obj, region)) {
2607       return false;
2608     }
2609 
2610     // If we do not have a complete remembered set for the region, then we can
2611     // not be sure that we have all references to it.
2612     if (!region->rem_set()->is_complete()) {
2613       return false;
2614     }
2615     // Candidate selection must satisfy the following constraints
2616     // while concurrent marking is in progress:
2617     //
2618     // * In order to maintain SATB invariants, an object must not be
2619     // reclaimed if it was allocated before the start of marking and
2620     // has not had its references scanned.  Such an object must have
2621     // its references (including type metadata) scanned to ensure no
2622     // live objects are missed by the marking process.  Objects
2623     // allocated after the start of concurrent marking don't need to
2624     // be scanned.
2625     //
2626     // * An object must not be reclaimed if it is on the concurrent
2627     // mark stack.  Objects allocated after the start of concurrent
2628     // marking are never pushed on the mark stack.
2629     //
2630     // Nominating only objects allocated after the start of concurrent
2631     // marking is sufficient to meet both constraints.  This may miss
2632     // some objects that satisfy the constraints, but the marking data
2633     // structures don't support efficiently performing the needed
2634     // additional tests or scrubbing of the mark stack.
2635     //
2636     // However, we presently only nominate is_typeArray() objects.
2637     // A humongous object containing references induces remembered
2638     // set entries on other regions.  In order to reclaim such an
2639     // object, those remembered sets would need to be cleaned up.
2640     //
2641     // We also treat is_typeArray() objects specially, allowing them
2642     // to be reclaimed even if allocated before the start of
2643     // concurrent mark.  For this we rely on mark stack insertion to
2644     // exclude is_typeArray() objects, preventing reclaiming an object
2645     // that is in the mark stack.  We also rely on the metadata for
2646     // such objects to be built-in and so ensured to be kept live.
2647     // Frequent allocation and drop of large binary blobs is an
2648     // important use case for eager reclaim, and this special handling
2649     // may reduce needed headroom.
2650 
2651     return obj->is_typeArray() &&
2652            g1h->is_potential_eager_reclaim_candidate(region);
2653   }
2654 
2655  public:
2656   RegisterHumongousWithInCSetFastTestClosure()
2657   : _total_humongous(0),
2658     _candidate_humongous(0),
2659     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2660   }
2661 
2662   virtual bool do_heap_region(HeapRegion* r) {
2663     if (!r->is_starts_humongous()) {
2664       return false;
2665     }
2666     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2667 
2668     bool is_candidate = humongous_region_is_candidate(g1h, r);
2669     uint rindex = r->hrm_index();
2670     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2671     if (is_candidate) {
2672       _candidate_humongous++;
2673       g1h->register_humongous_region_with_cset(rindex);
2674       // Is_candidate already filters out humongous object with large remembered sets.
2675       // If we have a humongous object with a few remembered sets, we simply flush these
2676       // remembered set entries into the DCQS. That will result in automatic
2677       // re-evaluation of their remembered set entries during the following evacuation
2678       // phase.
2679       if (!r->rem_set()->is_empty()) {
2680         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2681                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2682         G1CardTable* ct = g1h->card_table();
2683         HeapRegionRemSetIterator hrrs(r->rem_set());
2684         size_t card_index;
2685         while (hrrs.has_next(card_index)) {
2686           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2687           // The remembered set might contain references to already freed
2688           // regions. Filter out such entries to avoid failing card table
2689           // verification.
2690           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2691             if (*card_ptr != G1CardTable::dirty_card_val()) {
2692               *card_ptr = G1CardTable::dirty_card_val();
2693               _dcq.enqueue(card_ptr);
2694             }
2695           }
2696         }
2697         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2698                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2699                hrrs.n_yielded(), r->rem_set()->occupied());
2700         // We should only clear the card based remembered set here as we will not
2701         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2702         // (and probably never) we do not enter this path if there are other kind of
2703         // remembered sets for this region.
2704         r->rem_set()->clear_locked(true /* only_cardset */);
2705         // Clear_locked() above sets the state to Empty. However we want to continue
2706         // collecting remembered set entries for humongous regions that were not
2707         // reclaimed.
2708         r->rem_set()->set_state_complete();
2709       }
2710       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2711     }
2712     _total_humongous++;
2713 
2714     return false;
2715   }
2716 
2717   size_t total_humongous() const { return _total_humongous; }
2718   size_t candidate_humongous() const { return _candidate_humongous; }
2719 
2720   void flush_rem_set_entries() { _dcq.flush(); }
2721 };
2722 
2723 void G1CollectedHeap::register_humongous_regions_with_cset() {
2724   if (!G1EagerReclaimHumongousObjects) {
2725     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2726     return;
2727   }
2728   double time = os::elapsed_counter();
2729 
2730   // Collect reclaim candidate information and register candidates with cset.
2731   RegisterHumongousWithInCSetFastTestClosure cl;
2732   heap_region_iterate(&cl);
2733 
2734   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2735   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2736                                                                   cl.total_humongous(),
2737                                                                   cl.candidate_humongous());
2738   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2739 
2740   // Finally flush all remembered set entries to re-check into the global DCQS.
2741   cl.flush_rem_set_entries();
2742 }
2743 
2744 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2745   public:
2746     bool do_heap_region(HeapRegion* hr) {
2747       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2748         hr->verify_rem_set();
2749       }
2750       return false;
2751     }
2752 };
2753 
2754 uint G1CollectedHeap::num_task_queues() const {
2755   return _task_queues->size();
2756 }
2757 
2758 #if TASKQUEUE_STATS
2759 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2760   st->print_raw_cr("GC Task Stats");
2761   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2762   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2763 }
2764 
2765 void G1CollectedHeap::print_taskqueue_stats() const {
2766   if (!log_is_enabled(Trace, gc, task, stats)) {
2767     return;
2768   }
2769   Log(gc, task, stats) log;
2770   ResourceMark rm;
2771   LogStream ls(log.trace());
2772   outputStream* st = &ls;
2773 
2774   print_taskqueue_stats_hdr(st);
2775 
2776   TaskQueueStats totals;
2777   const uint n = num_task_queues();
2778   for (uint i = 0; i < n; ++i) {
2779     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2780     totals += task_queue(i)->stats;
2781   }
2782   st->print_raw("tot "); totals.print(st); st->cr();
2783 
2784   DEBUG_ONLY(totals.verify());
2785 }
2786 
2787 void G1CollectedHeap::reset_taskqueue_stats() {
2788   const uint n = num_task_queues();
2789   for (uint i = 0; i < n; ++i) {
2790     task_queue(i)->stats.reset();
2791   }
2792 }
2793 #endif // TASKQUEUE_STATS
2794 
2795 void G1CollectedHeap::wait_for_root_region_scanning() {
2796   double scan_wait_start = os::elapsedTime();
2797   // We have to wait until the CM threads finish scanning the
2798   // root regions as it's the only way to ensure that all the
2799   // objects on them have been correctly scanned before we start
2800   // moving them during the GC.
2801   bool waited = _cm->root_regions()->wait_until_scan_finished();
2802   double wait_time_ms = 0.0;
2803   if (waited) {
2804     double scan_wait_end = os::elapsedTime();
2805     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2806   }
2807   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2808 }
2809 
2810 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2811 private:
2812   G1HRPrinter* _hr_printer;
2813 public:
2814   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2815 
2816   virtual bool do_heap_region(HeapRegion* r) {
2817     _hr_printer->cset(r);
2818     return false;
2819   }
2820 };
2821 
2822 void G1CollectedHeap::start_new_collection_set() {
2823   collection_set()->start_incremental_building();
2824 
2825   clear_cset_fast_test();
2826 
2827   guarantee(_eden.length() == 0, "eden should have been cleared");
2828   g1_policy()->transfer_survivors_to_cset(survivor());
2829 }
2830 
2831 bool
2832 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2833   assert_at_safepoint_on_vm_thread();
2834   guarantee(!is_gc_active(), "collection is not reentrant");
2835 
2836   if (GCLocker::check_active_before_gc()) {
2837     return false;
2838   }
2839 
2840   _gc_timer_stw->register_gc_start();
2841 
2842   GCIdMark gc_id_mark;
2843   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2844 
2845   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2846   ResourceMark rm;
2847 
2848   g1_policy()->note_gc_start();
2849 
2850   wait_for_root_region_scanning();
2851 
2852   print_heap_before_gc();
2853   print_heap_regions();
2854   trace_heap_before_gc(_gc_tracer_stw);
2855 
2856   _verifier->verify_region_sets_optional();
2857   _verifier->verify_dirty_young_regions();
2858 
2859   // We should not be doing initial mark unless the conc mark thread is running
2860   if (!_cm_thread->should_terminate()) {
2861     // This call will decide whether this pause is an initial-mark
2862     // pause. If it is, in_initial_mark_gc() will return true
2863     // for the duration of this pause.
2864     g1_policy()->decide_on_conc_mark_initiation();
2865   }
2866 
2867   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2868   assert(!collector_state()->in_initial_mark_gc() ||
2869           collector_state()->in_young_only_phase(), "sanity");
2870 
2871   // We also do not allow mixed GCs during marking.
2872   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2873 
2874   // Record whether this pause is an initial mark. When the current
2875   // thread has completed its logging output and it's safe to signal
2876   // the CM thread, the flag's value in the policy has been reset.
2877   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2878 
2879   // Inner scope for scope based logging, timers, and stats collection
2880   {
2881     EvacuationInfo evacuation_info;
2882 
2883     if (collector_state()->in_initial_mark_gc()) {
2884       // We are about to start a marking cycle, so we increment the
2885       // full collection counter.
2886       increment_old_marking_cycles_started();
2887       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2888     }
2889 
2890     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2891 
2892     GCTraceCPUTime tcpu;
2893 
2894     G1HeapVerifier::G1VerifyType verify_type;
2895     FormatBuffer<> gc_string("Pause Young ");
2896     if (collector_state()->in_initial_mark_gc()) {
2897       gc_string.append("(Concurrent Start)");
2898       verify_type = G1HeapVerifier::G1VerifyConcurrentStart;
2899     } else if (collector_state()->in_young_only_phase()) {
2900       if (collector_state()->in_young_gc_before_mixed()) {
2901         gc_string.append("(Prepare Mixed)");
2902       } else {
2903         gc_string.append("(Normal)");
2904       }
2905       verify_type = G1HeapVerifier::G1VerifyYoungNormal;
2906     } else {
2907       gc_string.append("(Mixed)");
2908       verify_type = G1HeapVerifier::G1VerifyMixed;
2909     }
2910     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2911 
2912     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2913                                                                   workers()->active_workers(),
2914                                                                   Threads::number_of_non_daemon_threads());
2915     active_workers = workers()->update_active_workers(active_workers);
2916     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2917 
2918     G1MonitoringScope ms(g1mm(),
2919                          false /* full_gc */,
2920                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
2921 
2922     G1HeapTransition heap_transition(this);
2923     size_t heap_used_bytes_before_gc = used();
2924 
2925     // Don't dynamically change the number of GC threads this early.  A value of
2926     // 0 is used to indicate serial work.  When parallel work is done,
2927     // it will be set.
2928 
2929     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2930       IsGCActiveMark x;
2931 
2932       gc_prologue(false);
2933 
2934       if (VerifyRememberedSets) {
2935         log_info(gc, verify)("[Verifying RemSets before GC]");
2936         VerifyRegionRemSetClosure v_cl;
2937         heap_region_iterate(&v_cl);
2938       }
2939 
2940       _verifier->verify_before_gc(verify_type);
2941 
2942       _verifier->check_bitmaps("GC Start");
2943 
2944 #if COMPILER2_OR_JVMCI
2945       DerivedPointerTable::clear();
2946 #endif
2947 
2948       // Please see comment in g1CollectedHeap.hpp and
2949       // G1CollectedHeap::ref_processing_init() to see how
2950       // reference processing currently works in G1.
2951 
2952       // Enable discovery in the STW reference processor
2953       _ref_processor_stw->enable_discovery();
2954 
2955       {
2956         // We want to temporarily turn off discovery by the
2957         // CM ref processor, if necessary, and turn it back on
2958         // on again later if we do. Using a scoped
2959         // NoRefDiscovery object will do this.
2960         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2961 
2962         // Forget the current alloc region (we might even choose it to be part
2963         // of the collection set!).
2964         _allocator->release_mutator_alloc_region();
2965 
2966         // This timing is only used by the ergonomics to handle our pause target.
2967         // It is unclear why this should not include the full pause. We will
2968         // investigate this in CR 7178365.
2969         //
2970         // Preserving the old comment here if that helps the investigation:
2971         //
2972         // The elapsed time induced by the start time below deliberately elides
2973         // the possible verification above.
2974         double sample_start_time_sec = os::elapsedTime();
2975 
2976         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2977 
2978         if (collector_state()->in_initial_mark_gc()) {
2979           concurrent_mark()->pre_initial_mark();
2980         }
2981 
2982         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2983 
2984         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2985 
2986         // Make sure the remembered sets are up to date. This needs to be
2987         // done before register_humongous_regions_with_cset(), because the
2988         // remembered sets are used there to choose eager reclaim candidates.
2989         // If the remembered sets are not up to date we might miss some
2990         // entries that need to be handled.
2991         g1_rem_set()->cleanupHRRS();
2992 
2993         register_humongous_regions_with_cset();
2994 
2995         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2996 
2997         // We call this after finalize_cset() to
2998         // ensure that the CSet has been finalized.
2999         _cm->verify_no_cset_oops();
3000 
3001         if (_hr_printer.is_active()) {
3002           G1PrintCollectionSetClosure cl(&_hr_printer);
3003           _collection_set.iterate(&cl);
3004         }
3005 
3006         // Initialize the GC alloc regions.
3007         _allocator->init_gc_alloc_regions(evacuation_info);
3008 
3009         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3010         pre_evacuate_collection_set();
3011 
3012         // Actually do the work...
3013         evacuate_collection_set(&per_thread_states);
3014 
3015         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3016 
3017         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3018         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3019 
3020         eagerly_reclaim_humongous_regions();
3021 
3022         record_obj_copy_mem_stats();
3023         _survivor_evac_stats.adjust_desired_plab_sz();
3024         _old_evac_stats.adjust_desired_plab_sz();
3025 
3026         double start = os::elapsedTime();
3027         start_new_collection_set();
3028         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3029 
3030         if (evacuation_failed()) {
3031           double recalculate_used_start = os::elapsedTime();
3032           set_used(recalculate_used());
3033           g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3034 
3035           if (_archive_allocator != NULL) {
3036             _archive_allocator->clear_used();
3037           }
3038           for (uint i = 0; i < ParallelGCThreads; i++) {
3039             if (_evacuation_failed_info_array[i].has_failed()) {
3040               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3041             }
3042           }
3043         } else {
3044           // The "used" of the the collection set have already been subtracted
3045           // when they were freed.  Add in the bytes evacuated.
3046           increase_used(g1_policy()->bytes_copied_during_gc());
3047         }
3048 
3049         if (collector_state()->in_initial_mark_gc()) {
3050           // We have to do this before we notify the CM threads that
3051           // they can start working to make sure that all the
3052           // appropriate initialization is done on the CM object.
3053           concurrent_mark()->post_initial_mark();
3054           // Note that we don't actually trigger the CM thread at
3055           // this point. We do that later when we're sure that
3056           // the current thread has completed its logging output.
3057         }
3058 
3059         allocate_dummy_regions();
3060 
3061         _allocator->init_mutator_alloc_region();
3062 
3063         {
3064           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3065           if (expand_bytes > 0) {
3066             size_t bytes_before = capacity();
3067             // No need for an ergo logging here,
3068             // expansion_amount() does this when it returns a value > 0.
3069             double expand_ms;
3070             if (!expand(expand_bytes, _workers, &expand_ms)) {
3071               // We failed to expand the heap. Cannot do anything about it.
3072             }
3073             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3074           }
3075         }
3076 
3077         // We redo the verification but now wrt to the new CSet which
3078         // has just got initialized after the previous CSet was freed.
3079         _cm->verify_no_cset_oops();
3080 
3081         // This timing is only used by the ergonomics to handle our pause target.
3082         // It is unclear why this should not include the full pause. We will
3083         // investigate this in CR 7178365.
3084         double sample_end_time_sec = os::elapsedTime();
3085         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3086         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3087         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3088 
3089         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3090         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3091 
3092         if (VerifyRememberedSets) {
3093           log_info(gc, verify)("[Verifying RemSets after GC]");
3094           VerifyRegionRemSetClosure v_cl;
3095           heap_region_iterate(&v_cl);
3096         }
3097 
3098         _verifier->verify_after_gc(verify_type);
3099         _verifier->check_bitmaps("GC End");
3100 
3101         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
3102         _ref_processor_stw->verify_no_references_recorded();
3103 
3104         // CM reference discovery will be re-enabled if necessary.
3105       }
3106 
3107 #ifdef TRACESPINNING
3108       ParallelTaskTerminator::print_termination_counts();
3109 #endif
3110 
3111       gc_epilogue(false);
3112     }
3113 
3114     // Print the remainder of the GC log output.
3115     if (evacuation_failed()) {
3116       log_info(gc)("To-space exhausted");
3117     }
3118 
3119     g1_policy()->print_phases();
3120     heap_transition.print();
3121 
3122     // It is not yet to safe to tell the concurrent mark to
3123     // start as we have some optional output below. We don't want the
3124     // output from the concurrent mark thread interfering with this
3125     // logging output either.
3126 
3127     _hrm->verify_optional();
3128     _verifier->verify_region_sets_optional();
3129 
3130     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3131     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3132 
3133     print_heap_after_gc();
3134     print_heap_regions();
3135     trace_heap_after_gc(_gc_tracer_stw);
3136 
3137     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3138     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3139     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3140     // before any GC notifications are raised.
3141     g1mm()->update_sizes();
3142 
3143     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3144     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3145     _gc_timer_stw->register_gc_end();
3146     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3147   }
3148   // It should now be safe to tell the concurrent mark thread to start
3149   // without its logging output interfering with the logging output
3150   // that came from the pause.
3151 
3152   if (should_start_conc_mark) {
3153     // CAUTION: after the doConcurrentMark() call below,
3154     // the concurrent marking thread(s) could be running
3155     // concurrently with us. Make sure that anything after
3156     // this point does not assume that we are the only GC thread
3157     // running. Note: of course, the actual marking work will
3158     // not start until the safepoint itself is released in
3159     // SuspendibleThreadSet::desynchronize().
3160     do_concurrent_mark();
3161   }
3162 
3163   return true;
3164 }
3165 
3166 void G1CollectedHeap::remove_self_forwarding_pointers() {
3167   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3168   workers()->run_task(&rsfp_task);
3169 }
3170 
3171 void G1CollectedHeap::restore_after_evac_failure() {
3172   double remove_self_forwards_start = os::elapsedTime();
3173 
3174   remove_self_forwarding_pointers();
3175   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3176   _preserved_marks_set.restore(&task_executor);
3177 
3178   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3179 }
3180 
3181 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3182   if (!_evacuation_failed) {
3183     _evacuation_failed = true;
3184   }
3185 
3186   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3187   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3188 }
3189 
3190 bool G1ParEvacuateFollowersClosure::offer_termination() {
3191   EventGCPhaseParallel event;
3192   G1ParScanThreadState* const pss = par_scan_state();
3193   start_term_time();
3194   const bool res = terminator()->offer_termination();
3195   end_term_time();
3196   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3197   return res;
3198 }
3199 
3200 void G1ParEvacuateFollowersClosure::do_void() {
3201   EventGCPhaseParallel event;
3202   G1ParScanThreadState* const pss = par_scan_state();
3203   pss->trim_queue();
3204   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ObjCopy));
3205   do {
3206     EventGCPhaseParallel event;
3207     pss->steal_and_trim_queue(queues());
3208     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ObjCopy));
3209   } while (!offer_termination());
3210 }
3211 
3212 class G1ParTask : public AbstractGangTask {
3213 protected:
3214   G1CollectedHeap*         _g1h;
3215   G1ParScanThreadStateSet* _pss;
3216   RefToScanQueueSet*       _queues;
3217   G1RootProcessor*         _root_processor;
3218   ParallelTaskTerminator   _terminator;
3219   uint                     _n_workers;
3220 
3221 public:
3222   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3223     : AbstractGangTask("G1 collection"),
3224       _g1h(g1h),
3225       _pss(per_thread_states),
3226       _queues(task_queues),
3227       _root_processor(root_processor),
3228       _terminator(n_workers, _queues),
3229       _n_workers(n_workers)
3230   {}
3231 
3232   void work(uint worker_id) {
3233     if (worker_id >= _n_workers) return;  // no work needed this round
3234 
3235     double start_sec = os::elapsedTime();
3236     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3237 
3238     {
3239       ResourceMark rm;
3240       HandleMark   hm;
3241 
3242       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3243 
3244       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3245       pss->set_ref_discoverer(rp);
3246 
3247       double start_strong_roots_sec = os::elapsedTime();
3248 
3249       _root_processor->evacuate_roots(pss, worker_id);
3250 
3251       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3252       // treating the nmethods visited to act as roots for concurrent marking.
3253       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3254       // objects copied by the current evacuation.
3255       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3256 
3257       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3258 
3259       double term_sec = 0.0;
3260       size_t evac_term_attempts = 0;
3261       {
3262         double start = os::elapsedTime();
3263         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3264         evac.do_void();
3265 
3266         evac_term_attempts = evac.term_attempts();
3267         term_sec = evac.term_time();
3268         double elapsed_sec = os::elapsedTime() - start;
3269 
3270         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3271         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3272         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3273         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3274       }
3275 
3276       assert(pss->queue_is_empty(), "should be empty");
3277 
3278       if (log_is_enabled(Debug, gc, task, stats)) {
3279         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3280         size_t lab_waste;
3281         size_t lab_undo_waste;
3282         pss->waste(lab_waste, lab_undo_waste);
3283         _g1h->print_termination_stats(worker_id,
3284                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3285                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3286                                       term_sec * 1000.0,                          /* evac term time */
3287                                       evac_term_attempts,                         /* evac term attempts */
3288                                       lab_waste,                                  /* alloc buffer waste */
3289                                       lab_undo_waste                              /* undo waste */
3290                                       );
3291       }
3292 
3293       // Close the inner scope so that the ResourceMark and HandleMark
3294       // destructors are executed here and are included as part of the
3295       // "GC Worker Time".
3296     }
3297     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3298   }
3299 };
3300 
3301 void G1CollectedHeap::print_termination_stats_hdr() {
3302   log_debug(gc, task, stats)("GC Termination Stats");
3303   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3304   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3305   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3306 }
3307 
3308 void G1CollectedHeap::print_termination_stats(uint worker_id,
3309                                               double elapsed_ms,
3310                                               double strong_roots_ms,
3311                                               double term_ms,
3312                                               size_t term_attempts,
3313                                               size_t alloc_buffer_waste,
3314                                               size_t undo_waste) const {
3315   log_debug(gc, task, stats)
3316               ("%3d %9.2f %9.2f %6.2f "
3317                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3318                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3319                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3320                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3321                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3322                alloc_buffer_waste * HeapWordSize / K,
3323                undo_waste * HeapWordSize / K);
3324 }
3325 
3326 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3327                                         bool class_unloading_occurred) {
3328   uint n_workers = workers()->active_workers();
3329 
3330   G1StringDedupUnlinkOrOopsDoClosure dedup_closure(is_alive, NULL, false);
3331   ParallelCleaningTask g1_unlink_task(is_alive, &dedup_closure, n_workers, class_unloading_occurred);
3332   workers()->run_task(&g1_unlink_task);
3333 }
3334 
3335 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3336                                        bool process_strings,
3337                                        bool process_string_dedup) {
3338   if (!process_strings && !process_string_dedup) {
3339     // Nothing to clean.
3340     return;
3341   }
3342 
3343   G1StringDedupUnlinkOrOopsDoClosure dedup_closure(is_alive, NULL, false);
3344   StringCleaningTask g1_unlink_task(is_alive, process_string_dedup ? &dedup_closure : NULL, process_strings);
3345   workers()->run_task(&g1_unlink_task);
3346 }
3347 
3348 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3349  private:
3350   DirtyCardQueueSet* _queue;
3351   G1CollectedHeap* _g1h;
3352  public:
3353   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3354     _queue(queue), _g1h(g1h) { }
3355 
3356   virtual void work(uint worker_id) {
3357     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3358     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3359 
3360     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3361     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3362 
3363     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3364   }
3365 };
3366 
3367 void G1CollectedHeap::redirty_logged_cards() {
3368   double redirty_logged_cards_start = os::elapsedTime();
3369 
3370   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3371   dirty_card_queue_set().reset_for_par_iteration();
3372   workers()->run_task(&redirty_task);
3373 
3374   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3375   dcq.merge_bufferlists(&dirty_card_queue_set());
3376   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3377 
3378   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3379 }
3380 
3381 // Weak Reference Processing support
3382 
3383 bool G1STWIsAliveClosure::do_object_b(oop p) {
3384   // An object is reachable if it is outside the collection set,
3385   // or is inside and copied.
3386   return !_g1h->is_in_cset(p) || p->is_forwarded();
3387 }
3388 
3389 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3390   assert(obj != NULL, "must not be NULL");
3391   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3392   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3393   // may falsely indicate that this is not the case here: however the collection set only
3394   // contains old regions when concurrent mark is not running.
3395   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3396 }
3397 
3398 // Non Copying Keep Alive closure
3399 class G1KeepAliveClosure: public OopClosure {
3400   G1CollectedHeap*_g1h;
3401 public:
3402   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3403   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3404   void do_oop(oop* p) {
3405     oop obj = *p;
3406     assert(obj != NULL, "the caller should have filtered out NULL values");
3407 
3408     const InCSetState cset_state =_g1h->in_cset_state(obj);
3409     if (!cset_state.is_in_cset_or_humongous()) {
3410       return;
3411     }
3412     if (cset_state.is_in_cset()) {
3413       assert( obj->is_forwarded(), "invariant" );
3414       *p = obj->forwardee();
3415     } else {
3416       assert(!obj->is_forwarded(), "invariant" );
3417       assert(cset_state.is_humongous(),
3418              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3419      _g1h->set_humongous_is_live(obj);
3420     }
3421   }
3422 };
3423 
3424 // Copying Keep Alive closure - can be called from both
3425 // serial and parallel code as long as different worker
3426 // threads utilize different G1ParScanThreadState instances
3427 // and different queues.
3428 
3429 class G1CopyingKeepAliveClosure: public OopClosure {
3430   G1CollectedHeap*         _g1h;
3431   G1ParScanThreadState*    _par_scan_state;
3432 
3433 public:
3434   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3435                             G1ParScanThreadState* pss):
3436     _g1h(g1h),
3437     _par_scan_state(pss)
3438   {}
3439 
3440   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3441   virtual void do_oop(      oop* p) { do_oop_work(p); }
3442 
3443   template <class T> void do_oop_work(T* p) {
3444     oop obj = RawAccess<>::oop_load(p);
3445 
3446     if (_g1h->is_in_cset_or_humongous(obj)) {
3447       // If the referent object has been forwarded (either copied
3448       // to a new location or to itself in the event of an
3449       // evacuation failure) then we need to update the reference
3450       // field and, if both reference and referent are in the G1
3451       // heap, update the RSet for the referent.
3452       //
3453       // If the referent has not been forwarded then we have to keep
3454       // it alive by policy. Therefore we have copy the referent.
3455       //
3456       // When the queue is drained (after each phase of reference processing)
3457       // the object and it's followers will be copied, the reference field set
3458       // to point to the new location, and the RSet updated.
3459       _par_scan_state->push_on_queue(p);
3460     }
3461   }
3462 };
3463 
3464 // Serial drain queue closure. Called as the 'complete_gc'
3465 // closure for each discovered list in some of the
3466 // reference processing phases.
3467 
3468 class G1STWDrainQueueClosure: public VoidClosure {
3469 protected:
3470   G1CollectedHeap* _g1h;
3471   G1ParScanThreadState* _par_scan_state;
3472 
3473   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3474 
3475 public:
3476   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3477     _g1h(g1h),
3478     _par_scan_state(pss)
3479   { }
3480 
3481   void do_void() {
3482     G1ParScanThreadState* const pss = par_scan_state();
3483     pss->trim_queue();
3484   }
3485 };
3486 
3487 // Parallel Reference Processing closures
3488 
3489 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3490 // processing during G1 evacuation pauses.
3491 
3492 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3493 private:
3494   G1CollectedHeap*          _g1h;
3495   G1ParScanThreadStateSet*  _pss;
3496   RefToScanQueueSet*        _queues;
3497   WorkGang*                 _workers;
3498 
3499 public:
3500   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3501                            G1ParScanThreadStateSet* per_thread_states,
3502                            WorkGang* workers,
3503                            RefToScanQueueSet *task_queues) :
3504     _g1h(g1h),
3505     _pss(per_thread_states),
3506     _queues(task_queues),
3507     _workers(workers)
3508   {
3509     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3510   }
3511 
3512   // Executes the given task using concurrent marking worker threads.
3513   virtual void execute(ProcessTask& task, uint ergo_workers);
3514 };
3515 
3516 // Gang task for possibly parallel reference processing
3517 
3518 class G1STWRefProcTaskProxy: public AbstractGangTask {
3519   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3520   ProcessTask&     _proc_task;
3521   G1CollectedHeap* _g1h;
3522   G1ParScanThreadStateSet* _pss;
3523   RefToScanQueueSet* _task_queues;
3524   ParallelTaskTerminator* _terminator;
3525 
3526 public:
3527   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3528                         G1CollectedHeap* g1h,
3529                         G1ParScanThreadStateSet* per_thread_states,
3530                         RefToScanQueueSet *task_queues,
3531                         ParallelTaskTerminator* terminator) :
3532     AbstractGangTask("Process reference objects in parallel"),
3533     _proc_task(proc_task),
3534     _g1h(g1h),
3535     _pss(per_thread_states),
3536     _task_queues(task_queues),
3537     _terminator(terminator)
3538   {}
3539 
3540   virtual void work(uint worker_id) {
3541     // The reference processing task executed by a single worker.
3542     ResourceMark rm;
3543     HandleMark   hm;
3544 
3545     G1STWIsAliveClosure is_alive(_g1h);
3546 
3547     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3548     pss->set_ref_discoverer(NULL);
3549 
3550     // Keep alive closure.
3551     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3552 
3553     // Complete GC closure
3554     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3555 
3556     // Call the reference processing task's work routine.
3557     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3558 
3559     // Note we cannot assert that the refs array is empty here as not all
3560     // of the processing tasks (specifically phase2 - pp2_work) execute
3561     // the complete_gc closure (which ordinarily would drain the queue) so
3562     // the queue may not be empty.
3563   }
3564 };
3565 
3566 // Driver routine for parallel reference processing.
3567 // Creates an instance of the ref processing gang
3568 // task and has the worker threads execute it.
3569 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3570   assert(_workers != NULL, "Need parallel worker threads.");
3571 
3572   assert(_workers->active_workers() >= ergo_workers,
3573          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3574          ergo_workers, _workers->active_workers());
3575   ParallelTaskTerminator terminator(ergo_workers, _queues);
3576   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3577 
3578   _workers->run_task(&proc_task_proxy, ergo_workers);
3579 }
3580 
3581 // End of weak reference support closures
3582 
3583 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3584   double ref_proc_start = os::elapsedTime();
3585 
3586   ReferenceProcessor* rp = _ref_processor_stw;
3587   assert(rp->discovery_enabled(), "should have been enabled");
3588 
3589   // Closure to test whether a referent is alive.
3590   G1STWIsAliveClosure is_alive(this);
3591 
3592   // Even when parallel reference processing is enabled, the processing
3593   // of JNI refs is serial and performed serially by the current thread
3594   // rather than by a worker. The following PSS will be used for processing
3595   // JNI refs.
3596 
3597   // Use only a single queue for this PSS.
3598   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3599   pss->set_ref_discoverer(NULL);
3600   assert(pss->queue_is_empty(), "pre-condition");
3601 
3602   // Keep alive closure.
3603   G1CopyingKeepAliveClosure keep_alive(this, pss);
3604 
3605   // Serial Complete GC closure
3606   G1STWDrainQueueClosure drain_queue(this, pss);
3607 
3608   // Setup the soft refs policy...
3609   rp->setup_policy(false);
3610 
3611   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3612 
3613   ReferenceProcessorStats stats;
3614   if (!rp->processing_is_mt()) {
3615     // Serial reference processing...
3616     stats = rp->process_discovered_references(&is_alive,
3617                                               &keep_alive,
3618                                               &drain_queue,
3619                                               NULL,
3620                                               pt);
3621   } else {
3622     uint no_of_gc_workers = workers()->active_workers();
3623 
3624     // Parallel reference processing
3625     assert(no_of_gc_workers <= rp->max_num_queues(),
3626            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3627            no_of_gc_workers,  rp->max_num_queues());
3628 
3629     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3630     stats = rp->process_discovered_references(&is_alive,
3631                                               &keep_alive,
3632                                               &drain_queue,
3633                                               &par_task_executor,
3634                                               pt);
3635   }
3636 
3637   _gc_tracer_stw->report_gc_reference_stats(stats);
3638 
3639   // We have completed copying any necessary live referent objects.
3640   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3641 
3642   make_pending_list_reachable();
3643 
3644   rp->verify_no_references_recorded();
3645 
3646   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3647   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3648 }
3649 
3650 void G1CollectedHeap::make_pending_list_reachable() {
3651   if (collector_state()->in_initial_mark_gc()) {
3652     oop pll_head = Universe::reference_pending_list();
3653     if (pll_head != NULL) {
3654       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3655       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3656     }
3657   }
3658 }
3659 
3660 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3661   double merge_pss_time_start = os::elapsedTime();
3662   per_thread_states->flush();
3663   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3664 }
3665 
3666 void G1CollectedHeap::pre_evacuate_collection_set() {
3667   _expand_heap_after_alloc_failure = true;
3668   _evacuation_failed = false;
3669 
3670   // Disable the hot card cache.
3671   _hot_card_cache->reset_hot_cache_claimed_index();
3672   _hot_card_cache->set_use_cache(false);
3673 
3674   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3675   _preserved_marks_set.assert_empty();
3676 
3677   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3678 
3679   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3680   if (collector_state()->in_initial_mark_gc()) {
3681     double start_clear_claimed_marks = os::elapsedTime();
3682 
3683     ClassLoaderDataGraph::clear_claimed_marks();
3684 
3685     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3686     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3687   }
3688 }
3689 
3690 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3691   // Should G1EvacuationFailureALot be in effect for this GC?
3692   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3693 
3694   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3695 
3696   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3697 
3698   double start_par_time_sec = os::elapsedTime();
3699   double end_par_time_sec;
3700 
3701   {
3702     const uint n_workers = workers()->active_workers();
3703     G1RootProcessor root_processor(this, n_workers);
3704     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
3705 
3706     print_termination_stats_hdr();
3707 
3708     workers()->run_task(&g1_par_task);
3709     end_par_time_sec = os::elapsedTime();
3710 
3711     // Closing the inner scope will execute the destructor
3712     // for the G1RootProcessor object. We record the current
3713     // elapsed time before closing the scope so that time
3714     // taken for the destructor is NOT included in the
3715     // reported parallel time.
3716   }
3717 
3718   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
3719   phase_times->record_par_time(par_time_ms);
3720 
3721   double code_root_fixup_time_ms =
3722         (os::elapsedTime() - end_par_time_sec) * 1000.0;
3723   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
3724 }
3725 
3726 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3727   // Also cleans the card table from temporary duplicate detection information used
3728   // during UpdateRS/ScanRS.
3729   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
3730 
3731   // Process any discovered reference objects - we have
3732   // to do this _before_ we retire the GC alloc regions
3733   // as we may have to copy some 'reachable' referent
3734   // objects (and their reachable sub-graphs) that were
3735   // not copied during the pause.
3736   process_discovered_references(per_thread_states);
3737 
3738   // FIXME
3739   // CM's reference processing also cleans up the string table.
3740   // Should we do that here also? We could, but it is a serial operation
3741   // and could significantly increase the pause time.
3742 
3743   G1STWIsAliveClosure is_alive(this);
3744   G1KeepAliveClosure keep_alive(this);
3745 
3746   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3747                               g1_policy()->phase_times()->weak_phase_times());
3748 
3749   if (G1StringDedup::is_enabled()) {
3750     double fixup_start = os::elapsedTime();
3751 
3752     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
3753 
3754     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
3755     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
3756   }
3757 
3758   if (evacuation_failed()) {
3759     restore_after_evac_failure();
3760 
3761     // Reset the G1EvacuationFailureALot counters and flags
3762     // Note: the values are reset only when an actual
3763     // evacuation failure occurs.
3764     NOT_PRODUCT(reset_evacuation_should_fail();)
3765   }
3766 
3767   _preserved_marks_set.assert_empty();
3768 
3769   _allocator->release_gc_alloc_regions(evacuation_info);
3770 
3771   merge_per_thread_state_info(per_thread_states);
3772 
3773   // Reset and re-enable the hot card cache.
3774   // Note the counts for the cards in the regions in the
3775   // collection set are reset when the collection set is freed.
3776   _hot_card_cache->reset_hot_cache();
3777   _hot_card_cache->set_use_cache(true);
3778 
3779   purge_code_root_memory();
3780 
3781   redirty_logged_cards();
3782 #if COMPILER2_OR_JVMCI
3783   double start = os::elapsedTime();
3784   DerivedPointerTable::update_pointers();
3785   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3786 #endif
3787   g1_policy()->print_age_table();
3788 }
3789 
3790 void G1CollectedHeap::record_obj_copy_mem_stats() {
3791   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3792 
3793   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3794                                                create_g1_evac_summary(&_old_evac_stats));
3795 }
3796 
3797 void G1CollectedHeap::free_region(HeapRegion* hr,
3798                                   FreeRegionList* free_list,
3799                                   bool skip_remset,
3800                                   bool skip_hot_card_cache,
3801                                   bool locked) {
3802   assert(!hr->is_free(), "the region should not be free");
3803   assert(!hr->is_empty(), "the region should not be empty");
3804   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
3805   assert(free_list != NULL, "pre-condition");
3806 
3807   if (G1VerifyBitmaps) {
3808     MemRegion mr(hr->bottom(), hr->end());
3809     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3810   }
3811 
3812   // Clear the card counts for this region.
3813   // Note: we only need to do this if the region is not young
3814   // (since we don't refine cards in young regions).
3815   if (!skip_hot_card_cache && !hr->is_young()) {
3816     _hot_card_cache->reset_card_counts(hr);
3817   }
3818   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
3819   _g1_policy->remset_tracker()->update_at_free(hr);
3820   free_list->add_ordered(hr);
3821 }
3822 
3823 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3824                                             FreeRegionList* free_list) {
3825   assert(hr->is_humongous(), "this is only for humongous regions");
3826   assert(free_list != NULL, "pre-condition");
3827   hr->clear_humongous();
3828   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
3829 }
3830 
3831 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
3832                                            const uint humongous_regions_removed) {
3833   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
3834     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3835     _old_set.bulk_remove(old_regions_removed);
3836     _humongous_set.bulk_remove(humongous_regions_removed);
3837   }
3838 
3839 }
3840 
3841 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3842   assert(list != NULL, "list can't be null");
3843   if (!list->is_empty()) {
3844     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3845     _hrm->insert_list_into_free_list(list);
3846   }
3847 }
3848 
3849 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3850   decrease_used(bytes);
3851 }
3852 
3853 class G1FreeCollectionSetTask : public AbstractGangTask {
3854 private:
3855 
3856   // Closure applied to all regions in the collection set to do work that needs to
3857   // be done serially in a single thread.
3858   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
3859   private:
3860     EvacuationInfo* _evacuation_info;
3861     const size_t* _surviving_young_words;
3862 
3863     // Bytes used in successfully evacuated regions before the evacuation.
3864     size_t _before_used_bytes;
3865     // Bytes used in unsucessfully evacuated regions before the evacuation
3866     size_t _after_used_bytes;
3867 
3868     size_t _bytes_allocated_in_old_since_last_gc;
3869 
3870     size_t _failure_used_words;
3871     size_t _failure_waste_words;
3872 
3873     FreeRegionList _local_free_list;
3874   public:
3875     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
3876       HeapRegionClosure(),
3877       _evacuation_info(evacuation_info),
3878       _surviving_young_words(surviving_young_words),
3879       _before_used_bytes(0),
3880       _after_used_bytes(0),
3881       _bytes_allocated_in_old_since_last_gc(0),
3882       _failure_used_words(0),
3883       _failure_waste_words(0),
3884       _local_free_list("Local Region List for CSet Freeing") {
3885     }
3886 
3887     virtual bool do_heap_region(HeapRegion* r) {
3888       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3889 
3890       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
3891       g1h->clear_in_cset(r);
3892 
3893       if (r->is_young()) {
3894         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
3895                "Young index %d is wrong for region %u of type %s with %u young regions",
3896                r->young_index_in_cset(),
3897                r->hrm_index(),
3898                r->get_type_str(),
3899                g1h->collection_set()->young_region_length());
3900         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
3901         r->record_surv_words_in_group(words_survived);
3902       }
3903 
3904       if (!r->evacuation_failed()) {
3905         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
3906         _before_used_bytes += r->used();
3907         g1h->free_region(r,
3908                          &_local_free_list,
3909                          true, /* skip_remset */
3910                          true, /* skip_hot_card_cache */
3911                          true  /* locked */);
3912       } else {
3913         r->uninstall_surv_rate_group();
3914         r->set_young_index_in_cset(-1);
3915         r->set_evacuation_failed(false);
3916         // When moving a young gen region to old gen, we "allocate" that whole region
3917         // there. This is in addition to any already evacuated objects. Notify the
3918         // policy about that.
3919         // Old gen regions do not cause an additional allocation: both the objects
3920         // still in the region and the ones already moved are accounted for elsewhere.
3921         if (r->is_young()) {
3922           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
3923         }
3924         // The region is now considered to be old.
3925         if(g1h->is_hetero_heap()) {
3926           if(!r->is_old()) {
3927             // The region was young before, set it as pre-matured old so that next mixed gc can move
3928             // its contents to old region which is on nv-dimm
3929             r->set_premature_old();
3930           }
3931         } else {
3932           r->set_old();
3933         }
3934         // Do some allocation statistics accounting. Regions that failed evacuation
3935         // are always made old, so there is no need to update anything in the young
3936         // gen statistics, but we need to update old gen statistics.
3937         size_t used_words = r->marked_bytes() / HeapWordSize;
3938 
3939         _failure_used_words += used_words;
3940         _failure_waste_words += HeapRegion::GrainWords - used_words;
3941 
3942         g1h->old_set_add(r);
3943         _after_used_bytes += r->used();
3944       }
3945       return false;
3946     }
3947 
3948     void complete_work() {
3949       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3950 
3951       _evacuation_info->set_regions_freed(_local_free_list.length());
3952       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
3953 
3954       g1h->prepend_to_freelist(&_local_free_list);
3955       g1h->decrement_summary_bytes(_before_used_bytes);
3956 
3957       G1Policy* policy = g1h->g1_policy();
3958       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
3959 
3960       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
3961     }
3962   };
3963 
3964   G1CollectionSet* _collection_set;
3965   G1SerialFreeCollectionSetClosure _cl;
3966   const size_t* _surviving_young_words;
3967 
3968   size_t _rs_lengths;
3969 
3970   volatile jint _serial_work_claim;
3971 
3972   struct WorkItem {
3973     uint region_idx;
3974     bool is_young;
3975     bool evacuation_failed;
3976 
3977     WorkItem(HeapRegion* r) {
3978       region_idx = r->hrm_index();
3979       is_young = r->is_young();
3980       evacuation_failed = r->evacuation_failed();
3981     }
3982   };
3983 
3984   volatile size_t _parallel_work_claim;
3985   size_t _num_work_items;
3986   WorkItem* _work_items;
3987 
3988   void do_serial_work() {
3989     // Need to grab the lock to be allowed to modify the old region list.
3990     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3991     _collection_set->iterate(&_cl);
3992   }
3993 
3994   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
3995     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3996 
3997     HeapRegion* r = g1h->region_at(region_idx);
3998     assert(!g1h->is_on_master_free_list(r), "sanity");
3999 
4000     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4001 
4002     if (!is_young) {
4003       g1h->_hot_card_cache->reset_card_counts(r);
4004     }
4005 
4006     if (!evacuation_failed) {
4007       r->rem_set()->clear_locked();
4008     }
4009   }
4010 
4011   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4012   private:
4013     size_t _cur_idx;
4014     WorkItem* _work_items;
4015   public:
4016     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4017 
4018     virtual bool do_heap_region(HeapRegion* r) {
4019       _work_items[_cur_idx++] = WorkItem(r);
4020       return false;
4021     }
4022   };
4023 
4024   void prepare_work() {
4025     G1PrepareFreeCollectionSetClosure cl(_work_items);
4026     _collection_set->iterate(&cl);
4027   }
4028 
4029   void complete_work() {
4030     _cl.complete_work();
4031 
4032     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4033     policy->record_max_rs_lengths(_rs_lengths);
4034     policy->cset_regions_freed();
4035   }
4036 public:
4037   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4038     AbstractGangTask("G1 Free Collection Set"),
4039     _collection_set(collection_set),
4040     _cl(evacuation_info, surviving_young_words),
4041     _surviving_young_words(surviving_young_words),
4042     _rs_lengths(0),
4043     _serial_work_claim(0),
4044     _parallel_work_claim(0),
4045     _num_work_items(collection_set->region_length()),
4046     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4047     prepare_work();
4048   }
4049 
4050   ~G1FreeCollectionSetTask() {
4051     complete_work();
4052     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4053   }
4054 
4055   // Chunk size for work distribution. The chosen value has been determined experimentally
4056   // to be a good tradeoff between overhead and achievable parallelism.
4057   static uint chunk_size() { return 32; }
4058 
4059   virtual void work(uint worker_id) {
4060     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4061 
4062     // Claim serial work.
4063     if (_serial_work_claim == 0) {
4064       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4065       if (value == 0) {
4066         double serial_time = os::elapsedTime();
4067         do_serial_work();
4068         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4069       }
4070     }
4071 
4072     // Start parallel work.
4073     double young_time = 0.0;
4074     bool has_young_time = false;
4075     double non_young_time = 0.0;
4076     bool has_non_young_time = false;
4077 
4078     while (true) {
4079       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4080       size_t cur = end - chunk_size();
4081 
4082       if (cur >= _num_work_items) {
4083         break;
4084       }
4085 
4086       EventGCPhaseParallel event;
4087       double start_time = os::elapsedTime();
4088 
4089       end = MIN2(end, _num_work_items);
4090 
4091       for (; cur < end; cur++) {
4092         bool is_young = _work_items[cur].is_young;
4093 
4094         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4095 
4096         double end_time = os::elapsedTime();
4097         double time_taken = end_time - start_time;
4098         if (is_young) {
4099           young_time += time_taken;
4100           has_young_time = true;
4101           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4102         } else {
4103           non_young_time += time_taken;
4104           has_non_young_time = true;
4105           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4106         }
4107         start_time = end_time;
4108       }
4109     }
4110 
4111     if (has_young_time) {
4112       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4113     }
4114     if (has_non_young_time) {
4115       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4116     }
4117   }
4118 };
4119 
4120 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4121   _eden.clear();
4122 
4123   double free_cset_start_time = os::elapsedTime();
4124 
4125   {
4126     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4127     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4128 
4129     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4130 
4131     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4132                         cl.name(),
4133                         num_workers,
4134                         _collection_set.region_length());
4135     workers()->run_task(&cl, num_workers);
4136   }
4137   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4138 
4139   collection_set->clear();
4140 }
4141 
4142 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4143  private:
4144   FreeRegionList* _free_region_list;
4145   HeapRegionSet* _proxy_set;
4146   uint _humongous_objects_reclaimed;
4147   uint _humongous_regions_reclaimed;
4148   size_t _freed_bytes;
4149  public:
4150 
4151   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4152     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4153   }
4154 
4155   virtual bool do_heap_region(HeapRegion* r) {
4156     if (!r->is_starts_humongous()) {
4157       return false;
4158     }
4159 
4160     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4161 
4162     oop obj = (oop)r->bottom();
4163     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4164 
4165     // The following checks whether the humongous object is live are sufficient.
4166     // The main additional check (in addition to having a reference from the roots
4167     // or the young gen) is whether the humongous object has a remembered set entry.
4168     //
4169     // A humongous object cannot be live if there is no remembered set for it
4170     // because:
4171     // - there can be no references from within humongous starts regions referencing
4172     // the object because we never allocate other objects into them.
4173     // (I.e. there are no intra-region references that may be missed by the
4174     // remembered set)
4175     // - as soon there is a remembered set entry to the humongous starts region
4176     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4177     // until the end of a concurrent mark.
4178     //
4179     // It is not required to check whether the object has been found dead by marking
4180     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4181     // all objects allocated during that time are considered live.
4182     // SATB marking is even more conservative than the remembered set.
4183     // So if at this point in the collection there is no remembered set entry,
4184     // nobody has a reference to it.
4185     // At the start of collection we flush all refinement logs, and remembered sets
4186     // are completely up-to-date wrt to references to the humongous object.
4187     //
4188     // Other implementation considerations:
4189     // - never consider object arrays at this time because they would pose
4190     // considerable effort for cleaning up the the remembered sets. This is
4191     // required because stale remembered sets might reference locations that
4192     // are currently allocated into.
4193     uint region_idx = r->hrm_index();
4194     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4195         !r->rem_set()->is_empty()) {
4196       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4197                                region_idx,
4198                                (size_t)obj->size() * HeapWordSize,
4199                                p2i(r->bottom()),
4200                                r->rem_set()->occupied(),
4201                                r->rem_set()->strong_code_roots_list_length(),
4202                                next_bitmap->is_marked(r->bottom()),
4203                                g1h->is_humongous_reclaim_candidate(region_idx),
4204                                obj->is_typeArray()
4205                               );
4206       return false;
4207     }
4208 
4209     guarantee(obj->is_typeArray(),
4210               "Only eagerly reclaiming type arrays is supported, but the object "
4211               PTR_FORMAT " is not.", p2i(r->bottom()));
4212 
4213     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4214                              region_idx,
4215                              (size_t)obj->size() * HeapWordSize,
4216                              p2i(r->bottom()),
4217                              r->rem_set()->occupied(),
4218                              r->rem_set()->strong_code_roots_list_length(),
4219                              next_bitmap->is_marked(r->bottom()),
4220                              g1h->is_humongous_reclaim_candidate(region_idx),
4221                              obj->is_typeArray()
4222                             );
4223 
4224     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4225     cm->humongous_object_eagerly_reclaimed(r);
4226     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4227            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4228            region_idx,
4229            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4230            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4231     _humongous_objects_reclaimed++;
4232     do {
4233       HeapRegion* next = g1h->next_region_in_humongous(r);
4234       _freed_bytes += r->used();
4235       r->set_containing_set(NULL);
4236       _humongous_regions_reclaimed++;
4237       g1h->free_humongous_region(r, _free_region_list);
4238       r = next;
4239     } while (r != NULL);
4240 
4241     return false;
4242   }
4243 
4244   uint humongous_objects_reclaimed() {
4245     return _humongous_objects_reclaimed;
4246   }
4247 
4248   uint humongous_regions_reclaimed() {
4249     return _humongous_regions_reclaimed;
4250   }
4251 
4252   size_t bytes_freed() const {
4253     return _freed_bytes;
4254   }
4255 };
4256 
4257 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4258   assert_at_safepoint_on_vm_thread();
4259 
4260   if (!G1EagerReclaimHumongousObjects ||
4261       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4262     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4263     return;
4264   }
4265 
4266   double start_time = os::elapsedTime();
4267 
4268   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4269 
4270   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4271   heap_region_iterate(&cl);
4272 
4273   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4274 
4275   G1HRPrinter* hrp = hr_printer();
4276   if (hrp->is_active()) {
4277     FreeRegionListIterator iter(&local_cleanup_list);
4278     while (iter.more_available()) {
4279       HeapRegion* hr = iter.get_next();
4280       hrp->cleanup(hr);
4281     }
4282   }
4283 
4284   prepend_to_freelist(&local_cleanup_list);
4285   decrement_summary_bytes(cl.bytes_freed());
4286 
4287   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4288                                                                     cl.humongous_objects_reclaimed());
4289 }
4290 
4291 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4292 public:
4293   virtual bool do_heap_region(HeapRegion* r) {
4294     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4295     G1CollectedHeap::heap()->clear_in_cset(r);
4296     r->set_young_index_in_cset(-1);
4297     return false;
4298   }
4299 };
4300 
4301 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4302   G1AbandonCollectionSetClosure cl;
4303   collection_set->iterate(&cl);
4304 
4305   collection_set->clear();
4306   collection_set->stop_incremental_building();
4307 }
4308 
4309 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4310   return _allocator->is_retained_old_region(hr);
4311 }
4312 
4313 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4314   _eden.add(hr);
4315   _g1_policy->set_region_eden(hr);
4316 }
4317 
4318 #ifdef ASSERT
4319 
4320 class NoYoungRegionsClosure: public HeapRegionClosure {
4321 private:
4322   bool _success;
4323 public:
4324   NoYoungRegionsClosure() : _success(true) { }
4325   bool do_heap_region(HeapRegion* r) {
4326     if (r->is_young()) {
4327       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4328                             p2i(r->bottom()), p2i(r->end()));
4329       _success = false;
4330     }
4331     return false;
4332   }
4333   bool success() { return _success; }
4334 };
4335 
4336 bool G1CollectedHeap::check_young_list_empty() {
4337   bool ret = (young_regions_count() == 0);
4338 
4339   NoYoungRegionsClosure closure;
4340   heap_region_iterate(&closure);
4341   ret = ret && closure.success();
4342 
4343   return ret;
4344 }
4345 
4346 #endif // ASSERT
4347 
4348 class TearDownRegionSetsClosure : public HeapRegionClosure {
4349   HeapRegionSet *_old_set;
4350 
4351 public:
4352   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4353 
4354   bool do_heap_region(HeapRegion* r) {
4355     if (r->is_old()) {
4356       _old_set->remove(r);
4357     } else if(r->is_young()) {
4358       r->uninstall_surv_rate_group();
4359     } else {
4360       // We ignore free regions, we'll empty the free list afterwards.
4361       // We ignore humongous and archive regions, we're not tearing down these
4362       // sets.
4363       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4364              "it cannot be another type");
4365     }
4366     return false;
4367   }
4368 
4369   ~TearDownRegionSetsClosure() {
4370     assert(_old_set->is_empty(), "post-condition");
4371   }
4372 };
4373 
4374 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4375   assert_at_safepoint_on_vm_thread();
4376 
4377   if (!free_list_only) {
4378     TearDownRegionSetsClosure cl(&_old_set);
4379     heap_region_iterate(&cl);
4380 
4381     // Note that emptying the _young_list is postponed and instead done as
4382     // the first step when rebuilding the regions sets again. The reason for
4383     // this is that during a full GC string deduplication needs to know if
4384     // a collected region was young or old when the full GC was initiated.
4385   }
4386   _hrm->remove_all_free_regions();
4387 }
4388 
4389 void G1CollectedHeap::increase_used(size_t bytes) {
4390   _summary_bytes_used += bytes;
4391 }
4392 
4393 void G1CollectedHeap::decrease_used(size_t bytes) {
4394   assert(_summary_bytes_used >= bytes,
4395          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4396          _summary_bytes_used, bytes);
4397   _summary_bytes_used -= bytes;
4398 }
4399 
4400 void G1CollectedHeap::set_used(size_t bytes) {
4401   _summary_bytes_used = bytes;
4402 }
4403 
4404 class RebuildRegionSetsClosure : public HeapRegionClosure {
4405 private:
4406   bool _free_list_only;
4407 
4408   HeapRegionSet* _old_set;
4409   HeapRegionManager* _hrm;
4410 
4411   size_t _total_used;
4412 
4413 public:
4414   RebuildRegionSetsClosure(bool free_list_only,
4415                            HeapRegionSet* old_set,
4416                            HeapRegionManager* hrm) :
4417     _free_list_only(free_list_only),
4418     _old_set(old_set), _hrm(hrm), _total_used(0) {
4419     assert(_hrm->num_free_regions() == 0, "pre-condition");
4420     if (!free_list_only) {
4421       assert(_old_set->is_empty(), "pre-condition");
4422     }
4423   }
4424 
4425   bool do_heap_region(HeapRegion* r) {
4426     // After full GC, no region should have a remembered set.
4427     r->rem_set()->clear(true);
4428     if (r->is_empty()) {
4429       // Add free regions to the free list
4430       r->set_free();
4431       _hrm->insert_into_free_list(r);
4432     } else if (!_free_list_only) {
4433 
4434       if (r->is_archive() || r->is_humongous()) {
4435         // We ignore archive and humongous regions. We left these sets unchanged.
4436       } else {
4437         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4438         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4439         r->move_to_old();
4440         _old_set->add(r);
4441       }
4442       _total_used += r->used();
4443     }
4444 
4445     return false;
4446   }
4447 
4448   size_t total_used() {
4449     return _total_used;
4450   }
4451 };
4452 
4453 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4454   assert_at_safepoint_on_vm_thread();
4455 
4456   if (!free_list_only) {
4457     _eden.clear();
4458     _survivor.clear();
4459   }
4460 
4461   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4462   heap_region_iterate(&cl);
4463 
4464   if (!free_list_only) {
4465     set_used(cl.total_used());
4466     if (_archive_allocator != NULL) {
4467       _archive_allocator->clear_used();
4468     }
4469   }
4470   assert(used_unlocked() == recalculate_used(),
4471          "inconsistent used_unlocked(), "
4472          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4473          used_unlocked(), recalculate_used());
4474 }
4475 
4476 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4477   HeapRegion* hr = heap_region_containing(p);
4478   return hr->is_in(p);
4479 }
4480 
4481 // Methods for the mutator alloc region
4482 
4483 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4484                                                       bool force) {
4485   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4486   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4487   if (force || should_allocate) {
4488     HeapRegion* new_alloc_region = new_region(word_size,
4489                                               false /* is_old */,
4490                                               false /* do_expand */);
4491     if (new_alloc_region != NULL) {
4492       set_region_short_lived_locked(new_alloc_region);
4493       _hr_printer.alloc(new_alloc_region, !should_allocate);
4494       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4495       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4496       return new_alloc_region;
4497     }
4498   }
4499   return NULL;
4500 }
4501 
4502 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4503                                                   size_t allocated_bytes) {
4504   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4505   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4506 
4507   collection_set()->add_eden_region(alloc_region);
4508   increase_used(allocated_bytes);
4509   _hr_printer.retire(alloc_region);
4510   // We update the eden sizes here, when the region is retired,
4511   // instead of when it's allocated, since this is the point that its
4512   // used space has been recorded in _summary_bytes_used.
4513   g1mm()->update_eden_size();
4514 }
4515 
4516 // Methods for the GC alloc regions
4517 
4518 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4519   if (dest.is_old()) {
4520     return true;
4521   } else {
4522     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4523   }
4524 }
4525 
4526 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4527   assert(FreeList_lock->owned_by_self(), "pre-condition");
4528 
4529   if (!has_more_regions(dest)) {
4530     return NULL;
4531   }
4532 
4533   const bool is_survivor = dest.is_young();
4534 
4535   HeapRegion* new_alloc_region = new_region(word_size,
4536                                             !is_survivor,
4537                                             true /* do_expand */);
4538   if (new_alloc_region != NULL) {
4539     if (is_survivor) {
4540       new_alloc_region->set_survivor();
4541       _survivor.add(new_alloc_region);
4542       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4543     } else {
4544       new_alloc_region->set_old();
4545       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4546     }
4547     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4548     _hr_printer.alloc(new_alloc_region);
4549     bool during_im = collector_state()->in_initial_mark_gc();
4550     new_alloc_region->note_start_of_copying(during_im);
4551     return new_alloc_region;
4552   }
4553   return NULL;
4554 }
4555 
4556 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4557                                              size_t allocated_bytes,
4558                                              InCSetState dest) {
4559   bool during_im = collector_state()->in_initial_mark_gc();
4560   alloc_region->note_end_of_copying(during_im);
4561   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4562   if (dest.is_old()) {
4563     old_set_add(alloc_region);
4564   }
4565   _hr_printer.retire(alloc_region);
4566 }
4567 
4568 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4569   bool expanded = false;
4570   uint index = _hrm->find_highest_free(&expanded);
4571 
4572   if (index != G1_NO_HRM_INDEX) {
4573     if (expanded) {
4574       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4575                                 HeapRegion::GrainWords * HeapWordSize);
4576     }
4577     _hrm->allocate_free_regions_starting_at(index, 1);
4578     return region_at(index);
4579   }
4580   return NULL;
4581 }
4582 
4583 // Optimized nmethod scanning
4584 
4585 class RegisterNMethodOopClosure: public OopClosure {
4586   G1CollectedHeap* _g1h;
4587   nmethod* _nm;
4588 
4589   template <class T> void do_oop_work(T* p) {
4590     T heap_oop = RawAccess<>::oop_load(p);
4591     if (!CompressedOops::is_null(heap_oop)) {
4592       oop obj = CompressedOops::decode_not_null(heap_oop);
4593       HeapRegion* hr = _g1h->heap_region_containing(obj);
4594       assert(!hr->is_continues_humongous(),
4595              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4596              " starting at " HR_FORMAT,
4597              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4598 
4599       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4600       hr->add_strong_code_root_locked(_nm);
4601     }
4602   }
4603 
4604 public:
4605   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4606     _g1h(g1h), _nm(nm) {}
4607 
4608   void do_oop(oop* p)       { do_oop_work(p); }
4609   void do_oop(narrowOop* p) { do_oop_work(p); }
4610 };
4611 
4612 class UnregisterNMethodOopClosure: public OopClosure {
4613   G1CollectedHeap* _g1h;
4614   nmethod* _nm;
4615 
4616   template <class T> void do_oop_work(T* p) {
4617     T heap_oop = RawAccess<>::oop_load(p);
4618     if (!CompressedOops::is_null(heap_oop)) {
4619       oop obj = CompressedOops::decode_not_null(heap_oop);
4620       HeapRegion* hr = _g1h->heap_region_containing(obj);
4621       assert(!hr->is_continues_humongous(),
4622              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4623              " starting at " HR_FORMAT,
4624              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4625 
4626       hr->remove_strong_code_root(_nm);
4627     }
4628   }
4629 
4630 public:
4631   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4632     _g1h(g1h), _nm(nm) {}
4633 
4634   void do_oop(oop* p)       { do_oop_work(p); }
4635   void do_oop(narrowOop* p) { do_oop_work(p); }
4636 };
4637 
4638 // Returns true if the reference points to an object that
4639 // can move in an incremental collection.
4640 bool G1CollectedHeap::is_scavengable(oop obj) {
4641   HeapRegion* hr = heap_region_containing(obj);
4642   return !hr->is_pinned();
4643 }
4644 
4645 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4646   guarantee(nm != NULL, "sanity");
4647   RegisterNMethodOopClosure reg_cl(this, nm);
4648   nm->oops_do(&reg_cl);
4649 }
4650 
4651 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4652   guarantee(nm != NULL, "sanity");
4653   UnregisterNMethodOopClosure reg_cl(this, nm);
4654   nm->oops_do(&reg_cl, true);
4655 }
4656 
4657 void G1CollectedHeap::purge_code_root_memory() {
4658   double purge_start = os::elapsedTime();
4659   G1CodeRootSet::purge();
4660   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4661   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4662 }
4663 
4664 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4665   G1CollectedHeap* _g1h;
4666 
4667 public:
4668   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4669     _g1h(g1h) {}
4670 
4671   void do_code_blob(CodeBlob* cb) {
4672     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4673     if (nm == NULL) {
4674       return;
4675     }
4676 
4677     if (ScavengeRootsInCode) {
4678       _g1h->register_nmethod(nm);
4679     }
4680   }
4681 };
4682 
4683 void G1CollectedHeap::rebuild_strong_code_roots() {
4684   RebuildStrongCodeRootClosure blob_cl(this);
4685   CodeCache::blobs_do(&blob_cl);
4686 }
4687 
4688 void G1CollectedHeap::initialize_serviceability() {
4689   _g1mm->initialize_serviceability();
4690 }
4691 
4692 MemoryUsage G1CollectedHeap::memory_usage() {
4693   return _g1mm->memory_usage();
4694 }
4695 
4696 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4697   return _g1mm->memory_managers();
4698 }
4699 
4700 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4701   return _g1mm->memory_pools();
4702 }