1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  56 #include "gc/g1/g1StringDedup.hpp"
  57 #include "gc/g1/g1ThreadLocalData.hpp"
  58 #include "gc/g1/g1YCTypes.hpp"
  59 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  60 #include "gc/g1/heapRegion.inline.hpp"
  61 #include "gc/g1/heapRegionRemSet.hpp"
  62 #include "gc/g1/heapRegionSet.inline.hpp"
  63 #include "gc/g1/vm_operations_g1.hpp"
  64 #include "gc/shared/adaptiveSizePolicy.hpp"
  65 #include "gc/shared/gcBehaviours.hpp"
  66 #include "gc/shared/gcHeapSummary.hpp"
  67 #include "gc/shared/gcId.hpp"
  68 #include "gc/shared/gcLocker.hpp"
  69 #include "gc/shared/gcTimer.hpp"
  70 #include "gc/shared/gcTrace.hpp"
  71 #include "gc/shared/gcTraceTime.inline.hpp"
  72 #include "gc/shared/generationSpec.hpp"
  73 #include "gc/shared/isGCActiveMark.hpp"
  74 #include "gc/shared/oopStorageParState.hpp"
  75 #include "gc/shared/parallelCleaning.hpp"
  76 #include "gc/shared/preservedMarks.inline.hpp"
  77 #include "gc/shared/suspendibleThreadSet.hpp"
  78 #include "gc/shared/referenceProcessor.inline.hpp"
  79 #include "gc/shared/taskqueue.inline.hpp"
  80 #include "gc/shared/weakProcessor.inline.hpp"
  81 #include "logging/log.hpp"
  82 #include "memory/allocation.hpp"
  83 #include "memory/iterator.hpp"
  84 #include "memory/resourceArea.hpp"
  85 #include "oops/access.inline.hpp"
  86 #include "oops/compressedOops.inline.hpp"
  87 #include "oops/oop.inline.hpp"
  88 #include "runtime/atomic.hpp"
  89 #include "runtime/flags/flagSetting.hpp"
  90 #include "runtime/handles.inline.hpp"
  91 #include "runtime/init.hpp"
  92 #include "runtime/orderAccess.hpp"
  93 #include "runtime/threadSMR.hpp"
  94 #include "runtime/vmThread.hpp"
  95 #include "utilities/align.hpp"
  96 #include "utilities/globalDefinitions.hpp"
  97 #include "utilities/stack.inline.hpp"
  98 
  99 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 100 
 101 // INVARIANTS/NOTES
 102 //
 103 // All allocation activity covered by the G1CollectedHeap interface is
 104 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 105 // and allocate_new_tlab, which are the "entry" points to the
 106 // allocation code from the rest of the JVM.  (Note that this does not
 107 // apply to TLAB allocation, which is not part of this interface: it
 108 // is done by clients of this interface.)
 109 
 110 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 111  private:
 112   size_t _num_dirtied;
 113   G1CollectedHeap* _g1h;
 114   G1CardTable* _g1_ct;
 115 
 116   HeapRegion* region_for_card(jbyte* card_ptr) const {
 117     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 118   }
 119 
 120   bool will_become_free(HeapRegion* hr) const {
 121     // A region will be freed by free_collection_set if the region is in the
 122     // collection set and has not had an evacuation failure.
 123     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 124   }
 125 
 126  public:
 127   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 128     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 129 
 130   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 131     HeapRegion* hr = region_for_card(card_ptr);
 132 
 133     // Should only dirty cards in regions that won't be freed.
 134     if (!will_become_free(hr)) {
 135       *card_ptr = G1CardTable::dirty_card_val();
 136       _num_dirtied++;
 137     }
 138 
 139     return true;
 140   }
 141 
 142   size_t num_dirtied()   const { return _num_dirtied; }
 143 };
 144 
 145 
 146 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 147   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 148 }
 149 
 150 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 151   // The from card cache is not the memory that is actually committed. So we cannot
 152   // take advantage of the zero_filled parameter.
 153   reset_from_card_cache(start_idx, num_regions);
 154 }
 155 
 156 
 157 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 158                                              MemRegion mr) {
 159   return new HeapRegion(hrs_index, bot(), mr);
 160 }
 161 
 162 // Private methods.
 163 
 164 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 165   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 166          "the only time we use this to allocate a humongous region is "
 167          "when we are allocating a single humongous region");
 168 
 169   HeapRegion* res = _hrm->allocate_free_region(is_old);
 170 
 171   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 172     // Currently, only attempts to allocate GC alloc regions set
 173     // do_expand to true. So, we should only reach here during a
 174     // safepoint. If this assumption changes we might have to
 175     // reconsider the use of _expand_heap_after_alloc_failure.
 176     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 177 
 178     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 179                               word_size * HeapWordSize);
 180 
 181     if (expand(word_size * HeapWordSize)) {
 182       // Given that expand() succeeded in expanding the heap, and we
 183       // always expand the heap by an amount aligned to the heap
 184       // region size, the free list should in theory not be empty.
 185       // In either case allocate_free_region() will check for NULL.
 186       res = _hrm->allocate_free_region(is_old);
 187     } else {
 188       _expand_heap_after_alloc_failure = false;
 189     }
 190   }
 191   return res;
 192 }
 193 
 194 HeapWord*
 195 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 196                                                            uint num_regions,
 197                                                            size_t word_size) {
 198   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 199   assert(is_humongous(word_size), "word_size should be humongous");
 200   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 201 
 202   // Index of last region in the series.
 203   uint last = first + num_regions - 1;
 204 
 205   // We need to initialize the region(s) we just discovered. This is
 206   // a bit tricky given that it can happen concurrently with
 207   // refinement threads refining cards on these regions and
 208   // potentially wanting to refine the BOT as they are scanning
 209   // those cards (this can happen shortly after a cleanup; see CR
 210   // 6991377). So we have to set up the region(s) carefully and in
 211   // a specific order.
 212 
 213   // The word size sum of all the regions we will allocate.
 214   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 215   assert(word_size <= word_size_sum, "sanity");
 216 
 217   // This will be the "starts humongous" region.
 218   HeapRegion* first_hr = region_at(first);
 219   // The header of the new object will be placed at the bottom of
 220   // the first region.
 221   HeapWord* new_obj = first_hr->bottom();
 222   // This will be the new top of the new object.
 223   HeapWord* obj_top = new_obj + word_size;
 224 
 225   // First, we need to zero the header of the space that we will be
 226   // allocating. When we update top further down, some refinement
 227   // threads might try to scan the region. By zeroing the header we
 228   // ensure that any thread that will try to scan the region will
 229   // come across the zero klass word and bail out.
 230   //
 231   // NOTE: It would not have been correct to have used
 232   // CollectedHeap::fill_with_object() and make the space look like
 233   // an int array. The thread that is doing the allocation will
 234   // later update the object header to a potentially different array
 235   // type and, for a very short period of time, the klass and length
 236   // fields will be inconsistent. This could cause a refinement
 237   // thread to calculate the object size incorrectly.
 238   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 239 
 240   // Next, pad out the unused tail of the last region with filler
 241   // objects, for improved usage accounting.
 242   // How many words we use for filler objects.
 243   size_t word_fill_size = word_size_sum - word_size;
 244 
 245   // How many words memory we "waste" which cannot hold a filler object.
 246   size_t words_not_fillable = 0;
 247 
 248   if (word_fill_size >= min_fill_size()) {
 249     fill_with_objects(obj_top, word_fill_size);
 250   } else if (word_fill_size > 0) {
 251     // We have space to fill, but we cannot fit an object there.
 252     words_not_fillable = word_fill_size;
 253     word_fill_size = 0;
 254   }
 255 
 256   // We will set up the first region as "starts humongous". This
 257   // will also update the BOT covering all the regions to reflect
 258   // that there is a single object that starts at the bottom of the
 259   // first region.
 260   first_hr->set_starts_humongous(obj_top, word_fill_size);
 261   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 262   // Then, if there are any, we will set up the "continues
 263   // humongous" regions.
 264   HeapRegion* hr = NULL;
 265   for (uint i = first + 1; i <= last; ++i) {
 266     hr = region_at(i);
 267     hr->set_continues_humongous(first_hr);
 268     _g1_policy->remset_tracker()->update_at_allocate(hr);
 269   }
 270 
 271   // Up to this point no concurrent thread would have been able to
 272   // do any scanning on any region in this series. All the top
 273   // fields still point to bottom, so the intersection between
 274   // [bottom,top] and [card_start,card_end] will be empty. Before we
 275   // update the top fields, we'll do a storestore to make sure that
 276   // no thread sees the update to top before the zeroing of the
 277   // object header and the BOT initialization.
 278   OrderAccess::storestore();
 279 
 280   // Now, we will update the top fields of the "continues humongous"
 281   // regions except the last one.
 282   for (uint i = first; i < last; ++i) {
 283     hr = region_at(i);
 284     hr->set_top(hr->end());
 285   }
 286 
 287   hr = region_at(last);
 288   // If we cannot fit a filler object, we must set top to the end
 289   // of the humongous object, otherwise we cannot iterate the heap
 290   // and the BOT will not be complete.
 291   hr->set_top(hr->end() - words_not_fillable);
 292 
 293   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 294          "obj_top should be in last region");
 295 
 296   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 297 
 298   assert(words_not_fillable == 0 ||
 299          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 300          "Miscalculation in humongous allocation");
 301 
 302   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 303 
 304   for (uint i = first; i <= last; ++i) {
 305     hr = region_at(i);
 306     _humongous_set.add(hr);
 307     _hr_printer.alloc(hr);
 308   }
 309 
 310   return new_obj;
 311 }
 312 
 313 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 314   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 315   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 316 }
 317 
 318 // If could fit into free regions w/o expansion, try.
 319 // Otherwise, if can expand, do so.
 320 // Otherwise, if using ex regions might help, try with ex given back.
 321 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 322   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 323 
 324   _verifier->verify_region_sets_optional();
 325 
 326   uint first = G1_NO_HRM_INDEX;
 327   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 328 
 329   if (obj_regions == 1) {
 330     // Only one region to allocate, try to use a fast path by directly allocating
 331     // from the free lists. Do not try to expand here, we will potentially do that
 332     // later.
 333     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 334     if (hr != NULL) {
 335       first = hr->hrm_index();
 336     }
 337   } else {
 338     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 339     // are lucky enough to find some.
 340     first = _hrm->find_contiguous_only_empty(obj_regions);
 341     if (first != G1_NO_HRM_INDEX) {
 342       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 343     }
 344   }
 345 
 346   if (first == G1_NO_HRM_INDEX) {
 347     // Policy: We could not find enough regions for the humongous object in the
 348     // free list. Look through the heap to find a mix of free and uncommitted regions.
 349     // If so, try expansion.
 350     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 351     if (first != G1_NO_HRM_INDEX) {
 352       // We found something. Make sure these regions are committed, i.e. expand
 353       // the heap. Alternatively we could do a defragmentation GC.
 354       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 355                                     word_size * HeapWordSize);
 356 
 357       _hrm->expand_at(first, obj_regions, workers());
 358       g1_policy()->record_new_heap_size(num_regions());
 359 
 360 #ifdef ASSERT
 361       for (uint i = first; i < first + obj_regions; ++i) {
 362         HeapRegion* hr = region_at(i);
 363         assert(hr->is_free(), "sanity");
 364         assert(hr->is_empty(), "sanity");
 365         assert(is_on_master_free_list(hr), "sanity");
 366       }
 367 #endif
 368       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 369     } else {
 370       // Policy: Potentially trigger a defragmentation GC.
 371     }
 372   }
 373 
 374   HeapWord* result = NULL;
 375   if (first != G1_NO_HRM_INDEX) {
 376     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 377     assert(result != NULL, "it should always return a valid result");
 378 
 379     // A successful humongous object allocation changes the used space
 380     // information of the old generation so we need to recalculate the
 381     // sizes and update the jstat counters here.
 382     g1mm()->update_sizes();
 383   }
 384 
 385   _verifier->verify_region_sets_optional();
 386 
 387   return result;
 388 }
 389 
 390 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 391                                              size_t requested_size,
 392                                              size_t* actual_size) {
 393   assert_heap_not_locked_and_not_at_safepoint();
 394   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 395 
 396   return attempt_allocation(min_size, requested_size, actual_size);
 397 }
 398 
 399 HeapWord*
 400 G1CollectedHeap::mem_allocate(size_t word_size,
 401                               bool*  gc_overhead_limit_was_exceeded) {
 402   assert_heap_not_locked_and_not_at_safepoint();
 403 
 404   if (is_humongous(word_size)) {
 405     return attempt_allocation_humongous(word_size);
 406   }
 407   size_t dummy = 0;
 408   return attempt_allocation(word_size, word_size, &dummy);
 409 }
 410 
 411 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 412   ResourceMark rm; // For retrieving the thread names in log messages.
 413 
 414   // Make sure you read the note in attempt_allocation_humongous().
 415 
 416   assert_heap_not_locked_and_not_at_safepoint();
 417   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 418          "be called for humongous allocation requests");
 419 
 420   // We should only get here after the first-level allocation attempt
 421   // (attempt_allocation()) failed to allocate.
 422 
 423   // We will loop until a) we manage to successfully perform the
 424   // allocation or b) we successfully schedule a collection which
 425   // fails to perform the allocation. b) is the only case when we'll
 426   // return NULL.
 427   HeapWord* result = NULL;
 428   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 429     bool should_try_gc;
 430     uint gc_count_before;
 431 
 432     {
 433       MutexLockerEx x(Heap_lock);
 434       result = _allocator->attempt_allocation_locked(word_size);
 435       if (result != NULL) {
 436         return result;
 437       }
 438 
 439       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 440       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 441       // waiting because the GCLocker is active to not wait too long.
 442       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 443         // No need for an ergo message here, can_expand_young_list() does this when
 444         // it returns true.
 445         result = _allocator->attempt_allocation_force(word_size);
 446         if (result != NULL) {
 447           return result;
 448         }
 449       }
 450       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 451       // the GCLocker initiated GC has been performed and then retry. This includes
 452       // the case when the GC Locker is not active but has not been performed.
 453       should_try_gc = !GCLocker::needs_gc();
 454       // Read the GC count while still holding the Heap_lock.
 455       gc_count_before = total_collections();
 456     }
 457 
 458     if (should_try_gc) {
 459       bool succeeded;
 460       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 461                                    GCCause::_g1_inc_collection_pause);
 462       if (result != NULL) {
 463         assert(succeeded, "only way to get back a non-NULL result");
 464         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 465                              Thread::current()->name(), p2i(result));
 466         return result;
 467       }
 468 
 469       if (succeeded) {
 470         // We successfully scheduled a collection which failed to allocate. No
 471         // point in trying to allocate further. We'll just return NULL.
 472         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 473                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 474         return NULL;
 475       }
 476       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 477                            Thread::current()->name(), word_size);
 478     } else {
 479       // Failed to schedule a collection.
 480       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 481         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 482                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 483         return NULL;
 484       }
 485       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 486       // The GCLocker is either active or the GCLocker initiated
 487       // GC has not yet been performed. Stall until it is and
 488       // then retry the allocation.
 489       GCLocker::stall_until_clear();
 490       gclocker_retry_count += 1;
 491     }
 492 
 493     // We can reach here if we were unsuccessful in scheduling a
 494     // collection (because another thread beat us to it) or if we were
 495     // stalled due to the GC locker. In either can we should retry the
 496     // allocation attempt in case another thread successfully
 497     // performed a collection and reclaimed enough space. We do the
 498     // first attempt (without holding the Heap_lock) here and the
 499     // follow-on attempt will be at the start of the next loop
 500     // iteration (after taking the Heap_lock).
 501     size_t dummy = 0;
 502     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 503     if (result != NULL) {
 504       return result;
 505     }
 506 
 507     // Give a warning if we seem to be looping forever.
 508     if ((QueuedAllocationWarningCount > 0) &&
 509         (try_count % QueuedAllocationWarningCount == 0)) {
 510       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 511                              Thread::current()->name(), try_count, word_size);
 512     }
 513   }
 514 
 515   ShouldNotReachHere();
 516   return NULL;
 517 }
 518 
 519 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 520   assert_at_safepoint_on_vm_thread();
 521   if (_archive_allocator == NULL) {
 522     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 523   }
 524 }
 525 
 526 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 527   // Allocations in archive regions cannot be of a size that would be considered
 528   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 529   // may be different at archive-restore time.
 530   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 531 }
 532 
 533 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 534   assert_at_safepoint_on_vm_thread();
 535   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 536   if (is_archive_alloc_too_large(word_size)) {
 537     return NULL;
 538   }
 539   return _archive_allocator->archive_mem_allocate(word_size);
 540 }
 541 
 542 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 543                                               size_t end_alignment_in_bytes) {
 544   assert_at_safepoint_on_vm_thread();
 545   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 546 
 547   // Call complete_archive to do the real work, filling in the MemRegion
 548   // array with the archive regions.
 549   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 550   delete _archive_allocator;
 551   _archive_allocator = NULL;
 552 }
 553 
 554 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 555   assert(ranges != NULL, "MemRegion array NULL");
 556   assert(count != 0, "No MemRegions provided");
 557   MemRegion reserved = _hrm->reserved();
 558   for (size_t i = 0; i < count; i++) {
 559     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 560       return false;
 561     }
 562   }
 563   return true;
 564 }
 565 
 566 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 567                                             size_t count,
 568                                             bool open) {
 569   assert(!is_init_completed(), "Expect to be called at JVM init time");
 570   assert(ranges != NULL, "MemRegion array NULL");
 571   assert(count != 0, "No MemRegions provided");
 572   MutexLockerEx x(Heap_lock);
 573 
 574   MemRegion reserved = _hrm->reserved();
 575   HeapWord* prev_last_addr = NULL;
 576   HeapRegion* prev_last_region = NULL;
 577 
 578   // Temporarily disable pretouching of heap pages. This interface is used
 579   // when mmap'ing archived heap data in, so pre-touching is wasted.
 580   FlagSetting fs(AlwaysPreTouch, false);
 581 
 582   // Enable archive object checking used by G1MarkSweep. We have to let it know
 583   // about each archive range, so that objects in those ranges aren't marked.
 584   G1ArchiveAllocator::enable_archive_object_check();
 585 
 586   // For each specified MemRegion range, allocate the corresponding G1
 587   // regions and mark them as archive regions. We expect the ranges
 588   // in ascending starting address order, without overlap.
 589   for (size_t i = 0; i < count; i++) {
 590     MemRegion curr_range = ranges[i];
 591     HeapWord* start_address = curr_range.start();
 592     size_t word_size = curr_range.word_size();
 593     HeapWord* last_address = curr_range.last();
 594     size_t commits = 0;
 595 
 596     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 597               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 598               p2i(start_address), p2i(last_address));
 599     guarantee(start_address > prev_last_addr,
 600               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 601               p2i(start_address), p2i(prev_last_addr));
 602     prev_last_addr = last_address;
 603 
 604     // Check for ranges that start in the same G1 region in which the previous
 605     // range ended, and adjust the start address so we don't try to allocate
 606     // the same region again. If the current range is entirely within that
 607     // region, skip it, just adjusting the recorded top.
 608     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 609     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 610       start_address = start_region->end();
 611       if (start_address > last_address) {
 612         increase_used(word_size * HeapWordSize);
 613         start_region->set_top(last_address + 1);
 614         continue;
 615       }
 616       start_region->set_top(start_address);
 617       curr_range = MemRegion(start_address, last_address + 1);
 618       start_region = _hrm->addr_to_region(start_address);
 619     }
 620 
 621     // Perform the actual region allocation, exiting if it fails.
 622     // Then note how much new space we have allocated.
 623     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 624       return false;
 625     }
 626     increase_used(word_size * HeapWordSize);
 627     if (commits != 0) {
 628       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 629                                 HeapRegion::GrainWords * HeapWordSize * commits);
 630 
 631     }
 632 
 633     // Mark each G1 region touched by the range as archive, add it to
 634     // the old set, and set top.
 635     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 636     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 637     prev_last_region = last_region;
 638 
 639     while (curr_region != NULL) {
 640       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 641              "Region already in use (index %u)", curr_region->hrm_index());
 642       if (open) {
 643         curr_region->set_open_archive();
 644       } else {
 645         curr_region->set_closed_archive();
 646       }
 647       _hr_printer.alloc(curr_region);
 648       _archive_set.add(curr_region);
 649       HeapWord* top;
 650       HeapRegion* next_region;
 651       if (curr_region != last_region) {
 652         top = curr_region->end();
 653         next_region = _hrm->next_region_in_heap(curr_region);
 654       } else {
 655         top = last_address + 1;
 656         next_region = NULL;
 657       }
 658       curr_region->set_top(top);
 659       curr_region->set_first_dead(top);
 660       curr_region->set_end_of_live(top);
 661       curr_region = next_region;
 662     }
 663 
 664     // Notify mark-sweep of the archive
 665     G1ArchiveAllocator::set_range_archive(curr_range, open);
 666   }
 667   return true;
 668 }
 669 
 670 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 671   assert(!is_init_completed(), "Expect to be called at JVM init time");
 672   assert(ranges != NULL, "MemRegion array NULL");
 673   assert(count != 0, "No MemRegions provided");
 674   MemRegion reserved = _hrm->reserved();
 675   HeapWord *prev_last_addr = NULL;
 676   HeapRegion* prev_last_region = NULL;
 677 
 678   // For each MemRegion, create filler objects, if needed, in the G1 regions
 679   // that contain the address range. The address range actually within the
 680   // MemRegion will not be modified. That is assumed to have been initialized
 681   // elsewhere, probably via an mmap of archived heap data.
 682   MutexLockerEx x(Heap_lock);
 683   for (size_t i = 0; i < count; i++) {
 684     HeapWord* start_address = ranges[i].start();
 685     HeapWord* last_address = ranges[i].last();
 686 
 687     assert(reserved.contains(start_address) && reserved.contains(last_address),
 688            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 689            p2i(start_address), p2i(last_address));
 690     assert(start_address > prev_last_addr,
 691            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 692            p2i(start_address), p2i(prev_last_addr));
 693 
 694     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 695     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 696     HeapWord* bottom_address = start_region->bottom();
 697 
 698     // Check for a range beginning in the same region in which the
 699     // previous one ended.
 700     if (start_region == prev_last_region) {
 701       bottom_address = prev_last_addr + 1;
 702     }
 703 
 704     // Verify that the regions were all marked as archive regions by
 705     // alloc_archive_regions.
 706     HeapRegion* curr_region = start_region;
 707     while (curr_region != NULL) {
 708       guarantee(curr_region->is_archive(),
 709                 "Expected archive region at index %u", curr_region->hrm_index());
 710       if (curr_region != last_region) {
 711         curr_region = _hrm->next_region_in_heap(curr_region);
 712       } else {
 713         curr_region = NULL;
 714       }
 715     }
 716 
 717     prev_last_addr = last_address;
 718     prev_last_region = last_region;
 719 
 720     // Fill the memory below the allocated range with dummy object(s),
 721     // if the region bottom does not match the range start, or if the previous
 722     // range ended within the same G1 region, and there is a gap.
 723     if (start_address != bottom_address) {
 724       size_t fill_size = pointer_delta(start_address, bottom_address);
 725       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 726       increase_used(fill_size * HeapWordSize);
 727     }
 728   }
 729 }
 730 
 731 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 732                                                      size_t desired_word_size,
 733                                                      size_t* actual_word_size) {
 734   assert_heap_not_locked_and_not_at_safepoint();
 735   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 736          "be called for humongous allocation requests");
 737 
 738   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 739 
 740   if (result == NULL) {
 741     *actual_word_size = desired_word_size;
 742     result = attempt_allocation_slow(desired_word_size);
 743   }
 744 
 745   assert_heap_not_locked();
 746   if (result != NULL) {
 747     assert(*actual_word_size != 0, "Actual size must have been set here");
 748     dirty_young_block(result, *actual_word_size);
 749   } else {
 750     *actual_word_size = 0;
 751   }
 752 
 753   return result;
 754 }
 755 
 756 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 757   assert(!is_init_completed(), "Expect to be called at JVM init time");
 758   assert(ranges != NULL, "MemRegion array NULL");
 759   assert(count != 0, "No MemRegions provided");
 760   MemRegion reserved = _hrm->reserved();
 761   HeapWord* prev_last_addr = NULL;
 762   HeapRegion* prev_last_region = NULL;
 763   size_t size_used = 0;
 764   size_t uncommitted_regions = 0;
 765 
 766   // For each Memregion, free the G1 regions that constitute it, and
 767   // notify mark-sweep that the range is no longer to be considered 'archive.'
 768   MutexLockerEx x(Heap_lock);
 769   for (size_t i = 0; i < count; i++) {
 770     HeapWord* start_address = ranges[i].start();
 771     HeapWord* last_address = ranges[i].last();
 772 
 773     assert(reserved.contains(start_address) && reserved.contains(last_address),
 774            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 775            p2i(start_address), p2i(last_address));
 776     assert(start_address > prev_last_addr,
 777            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 778            p2i(start_address), p2i(prev_last_addr));
 779     size_used += ranges[i].byte_size();
 780     prev_last_addr = last_address;
 781 
 782     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 783     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 784 
 785     // Check for ranges that start in the same G1 region in which the previous
 786     // range ended, and adjust the start address so we don't try to free
 787     // the same region again. If the current range is entirely within that
 788     // region, skip it.
 789     if (start_region == prev_last_region) {
 790       start_address = start_region->end();
 791       if (start_address > last_address) {
 792         continue;
 793       }
 794       start_region = _hrm->addr_to_region(start_address);
 795     }
 796     prev_last_region = last_region;
 797 
 798     // After verifying that each region was marked as an archive region by
 799     // alloc_archive_regions, set it free and empty and uncommit it.
 800     HeapRegion* curr_region = start_region;
 801     while (curr_region != NULL) {
 802       guarantee(curr_region->is_archive(),
 803                 "Expected archive region at index %u", curr_region->hrm_index());
 804       uint curr_index = curr_region->hrm_index();
 805       _archive_set.remove(curr_region);
 806       curr_region->set_free();
 807       curr_region->set_top(curr_region->bottom());
 808       if (curr_region != last_region) {
 809         curr_region = _hrm->next_region_in_heap(curr_region);
 810       } else {
 811         curr_region = NULL;
 812       }
 813       _hrm->shrink_at(curr_index, 1);
 814       uncommitted_regions++;
 815     }
 816 
 817     // Notify mark-sweep that this is no longer an archive range.
 818     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 819   }
 820 
 821   if (uncommitted_regions != 0) {
 822     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 823                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 824   }
 825   decrease_used(size_used);
 826 }
 827 
 828 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 829   assert(obj != NULL, "archived obj is NULL");
 830   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 831 
 832   // Loading an archived object makes it strongly reachable. If it is
 833   // loaded during concurrent marking, it must be enqueued to the SATB
 834   // queue, shading the previously white object gray.
 835   G1BarrierSet::enqueue(obj);
 836 
 837   return obj;
 838 }
 839 
 840 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 841   ResourceMark rm; // For retrieving the thread names in log messages.
 842 
 843   // The structure of this method has a lot of similarities to
 844   // attempt_allocation_slow(). The reason these two were not merged
 845   // into a single one is that such a method would require several "if
 846   // allocation is not humongous do this, otherwise do that"
 847   // conditional paths which would obscure its flow. In fact, an early
 848   // version of this code did use a unified method which was harder to
 849   // follow and, as a result, it had subtle bugs that were hard to
 850   // track down. So keeping these two methods separate allows each to
 851   // be more readable. It will be good to keep these two in sync as
 852   // much as possible.
 853 
 854   assert_heap_not_locked_and_not_at_safepoint();
 855   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 856          "should only be called for humongous allocations");
 857 
 858   // Humongous objects can exhaust the heap quickly, so we should check if we
 859   // need to start a marking cycle at each humongous object allocation. We do
 860   // the check before we do the actual allocation. The reason for doing it
 861   // before the allocation is that we avoid having to keep track of the newly
 862   // allocated memory while we do a GC.
 863   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 864                                            word_size)) {
 865     collect(GCCause::_g1_humongous_allocation);
 866   }
 867 
 868   // We will loop until a) we manage to successfully perform the
 869   // allocation or b) we successfully schedule a collection which
 870   // fails to perform the allocation. b) is the only case when we'll
 871   // return NULL.
 872   HeapWord* result = NULL;
 873   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 874     bool should_try_gc;
 875     uint gc_count_before;
 876 
 877 
 878     {
 879       MutexLockerEx x(Heap_lock);
 880 
 881       // Given that humongous objects are not allocated in young
 882       // regions, we'll first try to do the allocation without doing a
 883       // collection hoping that there's enough space in the heap.
 884       result = humongous_obj_allocate(word_size);
 885       if (result != NULL) {
 886         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 887         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 888         return result;
 889       }
 890 
 891       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 892       // the GCLocker initiated GC has been performed and then retry. This includes
 893       // the case when the GC Locker is not active but has not been performed.
 894       should_try_gc = !GCLocker::needs_gc();
 895       // Read the GC count while still holding the Heap_lock.
 896       gc_count_before = total_collections();
 897     }
 898 
 899     if (should_try_gc) {
 900       bool succeeded;
 901       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 902                                    GCCause::_g1_humongous_allocation);
 903       if (result != NULL) {
 904         assert(succeeded, "only way to get back a non-NULL result");
 905         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 906                              Thread::current()->name(), p2i(result));
 907         return result;
 908       }
 909 
 910       if (succeeded) {
 911         // We successfully scheduled a collection which failed to allocate. No
 912         // point in trying to allocate further. We'll just return NULL.
 913         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 914                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 915         return NULL;
 916       }
 917       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 918                            Thread::current()->name(), word_size);
 919     } else {
 920       // Failed to schedule a collection.
 921       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 922         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 923                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 924         return NULL;
 925       }
 926       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 927       // The GCLocker is either active or the GCLocker initiated
 928       // GC has not yet been performed. Stall until it is and
 929       // then retry the allocation.
 930       GCLocker::stall_until_clear();
 931       gclocker_retry_count += 1;
 932     }
 933 
 934 
 935     // We can reach here if we were unsuccessful in scheduling a
 936     // collection (because another thread beat us to it) or if we were
 937     // stalled due to the GC locker. In either can we should retry the
 938     // allocation attempt in case another thread successfully
 939     // performed a collection and reclaimed enough space.
 940     // Humongous object allocation always needs a lock, so we wait for the retry
 941     // in the next iteration of the loop, unlike for the regular iteration case.
 942     // Give a warning if we seem to be looping forever.
 943 
 944     if ((QueuedAllocationWarningCount > 0) &&
 945         (try_count % QueuedAllocationWarningCount == 0)) {
 946       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 947                              Thread::current()->name(), try_count, word_size);
 948     }
 949   }
 950 
 951   ShouldNotReachHere();
 952   return NULL;
 953 }
 954 
 955 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 956                                                            bool expect_null_mutator_alloc_region) {
 957   assert_at_safepoint_on_vm_thread();
 958   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 959          "the current alloc region was unexpectedly found to be non-NULL");
 960 
 961   if (!is_humongous(word_size)) {
 962     return _allocator->attempt_allocation_locked(word_size);
 963   } else {
 964     HeapWord* result = humongous_obj_allocate(word_size);
 965     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 966       collector_state()->set_initiate_conc_mark_if_possible(true);
 967     }
 968     return result;
 969   }
 970 
 971   ShouldNotReachHere();
 972 }
 973 
 974 class PostCompactionPrinterClosure: public HeapRegionClosure {
 975 private:
 976   G1HRPrinter* _hr_printer;
 977 public:
 978   bool do_heap_region(HeapRegion* hr) {
 979     assert(!hr->is_young(), "not expecting to find young regions");
 980     _hr_printer->post_compaction(hr);
 981     return false;
 982   }
 983 
 984   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 985     : _hr_printer(hr_printer) { }
 986 };
 987 
 988 void G1CollectedHeap::print_hrm_post_compaction() {
 989   if (_hr_printer.is_active()) {
 990     PostCompactionPrinterClosure cl(hr_printer());
 991     heap_region_iterate(&cl);
 992   }
 993 }
 994 
 995 void G1CollectedHeap::abort_concurrent_cycle() {
 996   // If we start the compaction before the CM threads finish
 997   // scanning the root regions we might trip them over as we'll
 998   // be moving objects / updating references. So let's wait until
 999   // they are done. By telling them to abort, they should complete
1000   // early.
1001   _cm->root_regions()->abort();
1002   _cm->root_regions()->wait_until_scan_finished();
1003 
1004   // Disable discovery and empty the discovered lists
1005   // for the CM ref processor.
1006   _ref_processor_cm->disable_discovery();
1007   _ref_processor_cm->abandon_partial_discovery();
1008   _ref_processor_cm->verify_no_references_recorded();
1009 
1010   // Abandon current iterations of concurrent marking and concurrent
1011   // refinement, if any are in progress.
1012   concurrent_mark()->concurrent_cycle_abort();
1013 }
1014 
1015 void G1CollectedHeap::prepare_heap_for_full_collection() {
1016   // Make sure we'll choose a new allocation region afterwards.
1017   _allocator->release_mutator_alloc_region();
1018   _allocator->abandon_gc_alloc_regions();
1019   g1_rem_set()->cleanupHRRS();
1020 
1021   // We may have added regions to the current incremental collection
1022   // set between the last GC or pause and now. We need to clear the
1023   // incremental collection set and then start rebuilding it afresh
1024   // after this full GC.
1025   abandon_collection_set(collection_set());
1026 
1027   tear_down_region_sets(false /* free_list_only */);
1028 }
1029 
1030 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1031   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1032   assert(used() == recalculate_used(), "Should be equal");
1033   _verifier->verify_region_sets_optional();
1034   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1035   _verifier->check_bitmaps("Full GC Start");
1036 }
1037 
1038 void G1CollectedHeap::prepare_heap_for_mutators() {
1039   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1040   ClassLoaderDataGraph::purge();
1041   MetaspaceUtils::verify_metrics();
1042 
1043   // Prepare heap for normal collections.
1044   assert(num_free_regions() == 0, "we should not have added any free regions");
1045   rebuild_region_sets(false /* free_list_only */);
1046   abort_refinement();
1047   resize_heap_if_necessary();
1048 
1049   // Rebuild the strong code root lists for each region
1050   rebuild_strong_code_roots();
1051 
1052   // Purge code root memory
1053   purge_code_root_memory();
1054 
1055   // Start a new incremental collection set for the next pause
1056   start_new_collection_set();
1057 
1058   _allocator->init_mutator_alloc_region();
1059 
1060   // Post collection state updates.
1061   MetaspaceGC::compute_new_size();
1062 }
1063 
1064 void G1CollectedHeap::abort_refinement() {
1065   if (_hot_card_cache->use_cache()) {
1066     _hot_card_cache->reset_hot_cache();
1067   }
1068 
1069   // Discard all remembered set updates.
1070   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1071   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1072 }
1073 
1074 void G1CollectedHeap::verify_after_full_collection() {
1075   _hrm->verify_optional();
1076   _verifier->verify_region_sets_optional();
1077   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1078   // Clear the previous marking bitmap, if needed for bitmap verification.
1079   // Note we cannot do this when we clear the next marking bitmap in
1080   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1081   // objects marked during a full GC against the previous bitmap.
1082   // But we need to clear it before calling check_bitmaps below since
1083   // the full GC has compacted objects and updated TAMS but not updated
1084   // the prev bitmap.
1085   if (G1VerifyBitmaps) {
1086     GCTraceTime(Debug, gc)("Clear Prev Bitmap for Verification");
1087     _cm->clear_prev_bitmap(workers());
1088   }
1089   // This call implicitly verifies that the next bitmap is clear after Full GC.
1090   _verifier->check_bitmaps("Full GC End");
1091 
1092   // At this point there should be no regions in the
1093   // entire heap tagged as young.
1094   assert(check_young_list_empty(), "young list should be empty at this point");
1095 
1096   // Note: since we've just done a full GC, concurrent
1097   // marking is no longer active. Therefore we need not
1098   // re-enable reference discovery for the CM ref processor.
1099   // That will be done at the start of the next marking cycle.
1100   // We also know that the STW processor should no longer
1101   // discover any new references.
1102   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1103   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1104   _ref_processor_stw->verify_no_references_recorded();
1105   _ref_processor_cm->verify_no_references_recorded();
1106 }
1107 
1108 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1109   // Post collection logging.
1110   // We should do this after we potentially resize the heap so
1111   // that all the COMMIT / UNCOMMIT events are generated before
1112   // the compaction events.
1113   print_hrm_post_compaction();
1114   heap_transition->print();
1115   print_heap_after_gc();
1116   print_heap_regions();
1117 #ifdef TRACESPINNING
1118   ParallelTaskTerminator::print_termination_counts();
1119 #endif
1120 }
1121 
1122 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1123                                          bool clear_all_soft_refs) {
1124   assert_at_safepoint_on_vm_thread();
1125 
1126   if (GCLocker::check_active_before_gc()) {
1127     // Full GC was not completed.
1128     return false;
1129   }
1130 
1131   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1132       soft_ref_policy()->should_clear_all_soft_refs();
1133 
1134   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1135   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1136 
1137   collector.prepare_collection();
1138   collector.collect();
1139   collector.complete_collection();
1140 
1141   // Full collection was successfully completed.
1142   return true;
1143 }
1144 
1145 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1146   // Currently, there is no facility in the do_full_collection(bool) API to notify
1147   // the caller that the collection did not succeed (e.g., because it was locked
1148   // out by the GC locker). So, right now, we'll ignore the return value.
1149   bool dummy = do_full_collection(true,                /* explicit_gc */
1150                                   clear_all_soft_refs);
1151 }
1152 
1153 void G1CollectedHeap::resize_heap_if_necessary() {
1154   // Capacity, free and used after the GC counted as full regions to
1155   // include the waste in the following calculations.
1156   const size_t capacity_after_gc = capacity();
1157   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1158 
1159   // This is enforced in arguments.cpp.
1160   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1161          "otherwise the code below doesn't make sense");
1162 
1163   // We don't have floating point command-line arguments
1164   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1165   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1166   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1167   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1168 
1169   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1170   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1171 
1172   // We have to be careful here as these two calculations can overflow
1173   // 32-bit size_t's.
1174   double used_after_gc_d = (double) used_after_gc;
1175   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1176   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1177 
1178   // Let's make sure that they are both under the max heap size, which
1179   // by default will make them fit into a size_t.
1180   double desired_capacity_upper_bound = (double) max_heap_size;
1181   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1182                                     desired_capacity_upper_bound);
1183   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1184                                     desired_capacity_upper_bound);
1185 
1186   // We can now safely turn them into size_t's.
1187   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1188   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1189 
1190   // This assert only makes sense here, before we adjust them
1191   // with respect to the min and max heap size.
1192   assert(minimum_desired_capacity <= maximum_desired_capacity,
1193          "minimum_desired_capacity = " SIZE_FORMAT ", "
1194          "maximum_desired_capacity = " SIZE_FORMAT,
1195          minimum_desired_capacity, maximum_desired_capacity);
1196 
1197   // Should not be greater than the heap max size. No need to adjust
1198   // it with respect to the heap min size as it's a lower bound (i.e.,
1199   // we'll try to make the capacity larger than it, not smaller).
1200   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1201   // Should not be less than the heap min size. No need to adjust it
1202   // with respect to the heap max size as it's an upper bound (i.e.,
1203   // we'll try to make the capacity smaller than it, not greater).
1204   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1205 
1206   if (capacity_after_gc < minimum_desired_capacity) {
1207     // Don't expand unless it's significant
1208     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1209 
1210     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1211                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1212                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1213                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1214 
1215     expand(expand_bytes, _workers);
1216 
1217     // No expansion, now see if we want to shrink
1218   } else if (capacity_after_gc > maximum_desired_capacity) {
1219     // Capacity too large, compute shrinking size
1220     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1221 
1222     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1223                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1224                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1225                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1226 
1227     shrink(shrink_bytes);
1228   }
1229 }
1230 
1231 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1232                                                             bool do_gc,
1233                                                             bool clear_all_soft_refs,
1234                                                             bool expect_null_mutator_alloc_region,
1235                                                             bool* gc_succeeded) {
1236   *gc_succeeded = true;
1237   // Let's attempt the allocation first.
1238   HeapWord* result =
1239     attempt_allocation_at_safepoint(word_size,
1240                                     expect_null_mutator_alloc_region);
1241   if (result != NULL) {
1242     return result;
1243   }
1244 
1245   // In a G1 heap, we're supposed to keep allocation from failing by
1246   // incremental pauses.  Therefore, at least for now, we'll favor
1247   // expansion over collection.  (This might change in the future if we can
1248   // do something smarter than full collection to satisfy a failed alloc.)
1249   result = expand_and_allocate(word_size);
1250   if (result != NULL) {
1251     return result;
1252   }
1253 
1254   if (do_gc) {
1255     // Expansion didn't work, we'll try to do a Full GC.
1256     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1257                                        clear_all_soft_refs);
1258   }
1259 
1260   return NULL;
1261 }
1262 
1263 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1264                                                      bool* succeeded) {
1265   assert_at_safepoint_on_vm_thread();
1266 
1267   // Attempts to allocate followed by Full GC.
1268   HeapWord* result =
1269     satisfy_failed_allocation_helper(word_size,
1270                                      true,  /* do_gc */
1271                                      false, /* clear_all_soft_refs */
1272                                      false, /* expect_null_mutator_alloc_region */
1273                                      succeeded);
1274 
1275   if (result != NULL || !*succeeded) {
1276     return result;
1277   }
1278 
1279   // Attempts to allocate followed by Full GC that will collect all soft references.
1280   result = satisfy_failed_allocation_helper(word_size,
1281                                             true, /* do_gc */
1282                                             true, /* clear_all_soft_refs */
1283                                             true, /* expect_null_mutator_alloc_region */
1284                                             succeeded);
1285 
1286   if (result != NULL || !*succeeded) {
1287     return result;
1288   }
1289 
1290   // Attempts to allocate, no GC
1291   result = satisfy_failed_allocation_helper(word_size,
1292                                             false, /* do_gc */
1293                                             false, /* clear_all_soft_refs */
1294                                             true,  /* expect_null_mutator_alloc_region */
1295                                             succeeded);
1296 
1297   if (result != NULL) {
1298     return result;
1299   }
1300 
1301   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1302          "Flag should have been handled and cleared prior to this point");
1303 
1304   // What else?  We might try synchronous finalization later.  If the total
1305   // space available is large enough for the allocation, then a more
1306   // complete compaction phase than we've tried so far might be
1307   // appropriate.
1308   return NULL;
1309 }
1310 
1311 // Attempting to expand the heap sufficiently
1312 // to support an allocation of the given "word_size".  If
1313 // successful, perform the allocation and return the address of the
1314 // allocated block, or else "NULL".
1315 
1316 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1317   assert_at_safepoint_on_vm_thread();
1318 
1319   _verifier->verify_region_sets_optional();
1320 
1321   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1322   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1323                             word_size * HeapWordSize);
1324 
1325 
1326   if (expand(expand_bytes, _workers)) {
1327     _hrm->verify_optional();
1328     _verifier->verify_region_sets_optional();
1329     return attempt_allocation_at_safepoint(word_size,
1330                                            false /* expect_null_mutator_alloc_region */);
1331   }
1332   return NULL;
1333 }
1334 
1335 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1336   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1337   aligned_expand_bytes = align_up(aligned_expand_bytes,
1338                                        HeapRegion::GrainBytes);
1339 
1340   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1341                             expand_bytes, aligned_expand_bytes);
1342 
1343   if (is_maximal_no_gc()) {
1344     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1345     return false;
1346   }
1347 
1348   double expand_heap_start_time_sec = os::elapsedTime();
1349   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1350   assert(regions_to_expand > 0, "Must expand by at least one region");
1351 
1352   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1353   if (expand_time_ms != NULL) {
1354     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1355   }
1356 
1357   if (expanded_by > 0) {
1358     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1359     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1360     g1_policy()->record_new_heap_size(num_regions());
1361   } else {
1362     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1363 
1364     // The expansion of the virtual storage space was unsuccessful.
1365     // Let's see if it was because we ran out of swap.
1366     if (G1ExitOnExpansionFailure &&
1367         _hrm->available() >= regions_to_expand) {
1368       // We had head room...
1369       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1370     }
1371   }
1372   return regions_to_expand > 0;
1373 }
1374 
1375 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1376   size_t aligned_shrink_bytes =
1377     ReservedSpace::page_align_size_down(shrink_bytes);
1378   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1379                                          HeapRegion::GrainBytes);
1380   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1381 
1382   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1383   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1384 
1385 
1386   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1387                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1388   if (num_regions_removed > 0) {
1389     g1_policy()->record_new_heap_size(num_regions());
1390   } else {
1391     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1392   }
1393 }
1394 
1395 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1396   _verifier->verify_region_sets_optional();
1397 
1398   // We should only reach here at the end of a Full GC or during Remark which
1399   // means we should not not be holding to any GC alloc regions. The method
1400   // below will make sure of that and do any remaining clean up.
1401   _allocator->abandon_gc_alloc_regions();
1402 
1403   // Instead of tearing down / rebuilding the free lists here, we
1404   // could instead use the remove_all_pending() method on free_list to
1405   // remove only the ones that we need to remove.
1406   tear_down_region_sets(true /* free_list_only */);
1407   shrink_helper(shrink_bytes);
1408   rebuild_region_sets(true /* free_list_only */);
1409 
1410   _hrm->verify_optional();
1411   _verifier->verify_region_sets_optional();
1412 }
1413 
1414 class OldRegionSetChecker : public HeapRegionSetChecker {
1415 public:
1416   void check_mt_safety() {
1417     // Master Old Set MT safety protocol:
1418     // (a) If we're at a safepoint, operations on the master old set
1419     // should be invoked:
1420     // - by the VM thread (which will serialize them), or
1421     // - by the GC workers while holding the FreeList_lock, if we're
1422     //   at a safepoint for an evacuation pause (this lock is taken
1423     //   anyway when an GC alloc region is retired so that a new one
1424     //   is allocated from the free list), or
1425     // - by the GC workers while holding the OldSets_lock, if we're at a
1426     //   safepoint for a cleanup pause.
1427     // (b) If we're not at a safepoint, operations on the master old set
1428     // should be invoked while holding the Heap_lock.
1429 
1430     if (SafepointSynchronize::is_at_safepoint()) {
1431       guarantee(Thread::current()->is_VM_thread() ||
1432                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1433                 "master old set MT safety protocol at a safepoint");
1434     } else {
1435       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1436     }
1437   }
1438   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1439   const char* get_description() { return "Old Regions"; }
1440 };
1441 
1442 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1443 public:
1444   void check_mt_safety() {
1445     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1446               "May only change archive regions during initialization or safepoint.");
1447   }
1448   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1449   const char* get_description() { return "Archive Regions"; }
1450 };
1451 
1452 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1453 public:
1454   void check_mt_safety() {
1455     // Humongous Set MT safety protocol:
1456     // (a) If we're at a safepoint, operations on the master humongous
1457     // set should be invoked by either the VM thread (which will
1458     // serialize them) or by the GC workers while holding the
1459     // OldSets_lock.
1460     // (b) If we're not at a safepoint, operations on the master
1461     // humongous set should be invoked while holding the Heap_lock.
1462 
1463     if (SafepointSynchronize::is_at_safepoint()) {
1464       guarantee(Thread::current()->is_VM_thread() ||
1465                 OldSets_lock->owned_by_self(),
1466                 "master humongous set MT safety protocol at a safepoint");
1467     } else {
1468       guarantee(Heap_lock->owned_by_self(),
1469                 "master humongous set MT safety protocol outside a safepoint");
1470     }
1471   }
1472   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1473   const char* get_description() { return "Humongous Regions"; }
1474 };
1475 
1476 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1477   CollectedHeap(),
1478   _young_gen_sampling_thread(NULL),
1479   _workers(NULL),
1480   _collector_policy(collector_policy),
1481   _card_table(NULL),
1482   _soft_ref_policy(),
1483   _old_set("Old Region Set", new OldRegionSetChecker()),
1484   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1485   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1486   _bot(NULL),
1487   _listener(),
1488   _hrm(NULL),
1489   _is_hetero_heap(false),
1490   _allocator(NULL),
1491   _verifier(NULL),
1492   _summary_bytes_used(0),
1493   _archive_allocator(NULL),
1494   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1495   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1496   _expand_heap_after_alloc_failure(true),
1497   _g1mm(NULL),
1498   _humongous_reclaim_candidates(),
1499   _has_humongous_reclaim_candidates(false),
1500   _hr_printer(),
1501   _collector_state(),
1502   _old_marking_cycles_started(0),
1503   _old_marking_cycles_completed(0),
1504   _eden(),
1505   _survivor(),
1506   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1507   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1508   _g1_policy(new G1Policy(_gc_timer_stw)),
1509   _heap_sizing_policy(NULL),
1510   _collection_set(this, _g1_policy),
1511   _hot_card_cache(NULL),
1512   _g1_rem_set(NULL),
1513   _dirty_card_queue_set(false),
1514   _cm(NULL),
1515   _cm_thread(NULL),
1516   _cr(NULL),
1517   _task_queues(NULL),
1518   _evacuation_failed(false),
1519   _evacuation_failed_info_array(NULL),
1520   _preserved_marks_set(true /* in_c_heap */),
1521 #ifndef PRODUCT
1522   _evacuation_failure_alot_for_current_gc(false),
1523   _evacuation_failure_alot_gc_number(0),
1524   _evacuation_failure_alot_count(0),
1525 #endif
1526   _ref_processor_stw(NULL),
1527   _is_alive_closure_stw(this),
1528   _is_subject_to_discovery_stw(this),
1529   _ref_processor_cm(NULL),
1530   _is_alive_closure_cm(this),
1531   _is_subject_to_discovery_cm(this),
1532   _in_cset_fast_test() {
1533 
1534   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1535                           true /* are_GC_task_threads */,
1536                           false /* are_ConcurrentGC_threads */);
1537   _workers->initialize_workers();
1538   _verifier = new G1HeapVerifier(this);
1539 
1540   _allocator = new G1Allocator(this);
1541 
1542   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1543 
1544   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1545 
1546   // Override the default _filler_array_max_size so that no humongous filler
1547   // objects are created.
1548   _filler_array_max_size = _humongous_object_threshold_in_words;
1549 
1550   uint n_queues = ParallelGCThreads;
1551   _task_queues = new RefToScanQueueSet(n_queues);
1552 
1553   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1554 
1555   for (uint i = 0; i < n_queues; i++) {
1556     RefToScanQueue* q = new RefToScanQueue();
1557     q->initialize();
1558     _task_queues->register_queue(i, q);
1559     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1560   }
1561 
1562   // Initialize the G1EvacuationFailureALot counters and flags.
1563   NOT_PRODUCT(reset_evacuation_should_fail();)
1564 
1565   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1566 }
1567 
1568 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1569                                                                  size_t size,
1570                                                                  size_t translation_factor) {
1571   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1572   // Allocate a new reserved space, preferring to use large pages.
1573   ReservedSpace rs(size, preferred_page_size);
1574   G1RegionToSpaceMapper* result  =
1575     G1RegionToSpaceMapper::create_mapper(rs,
1576                                          size,
1577                                          rs.alignment(),
1578                                          HeapRegion::GrainBytes,
1579                                          translation_factor,
1580                                          mtGC);
1581 
1582   os::trace_page_sizes_for_requested_size(description,
1583                                           size,
1584                                           preferred_page_size,
1585                                           rs.alignment(),
1586                                           rs.base(),
1587                                           rs.size());
1588 
1589   return result;
1590 }
1591 
1592 jint G1CollectedHeap::initialize_concurrent_refinement() {
1593   jint ecode = JNI_OK;
1594   _cr = G1ConcurrentRefine::create(&ecode);
1595   return ecode;
1596 }
1597 
1598 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1599   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1600   if (_young_gen_sampling_thread->osthread() == NULL) {
1601     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1602     return JNI_ENOMEM;
1603   }
1604   return JNI_OK;
1605 }
1606 
1607 jint G1CollectedHeap::initialize() {
1608   os::enable_vtime();
1609 
1610   // Necessary to satisfy locking discipline assertions.
1611 
1612   MutexLocker x(Heap_lock);
1613 
1614   // While there are no constraints in the GC code that HeapWordSize
1615   // be any particular value, there are multiple other areas in the
1616   // system which believe this to be true (e.g. oop->object_size in some
1617   // cases incorrectly returns the size in wordSize units rather than
1618   // HeapWordSize).
1619   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1620 
1621   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1622   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1623   size_t heap_alignment = collector_policy()->heap_alignment();
1624 
1625   // Ensure that the sizes are properly aligned.
1626   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1627   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1628   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1629 
1630   // Reserve the maximum.
1631 
1632   // When compressed oops are enabled, the preferred heap base
1633   // is calculated by subtracting the requested size from the
1634   // 32Gb boundary and using the result as the base address for
1635   // heap reservation. If the requested size is not aligned to
1636   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1637   // into the ReservedHeapSpace constructor) then the actual
1638   // base of the reserved heap may end up differing from the
1639   // address that was requested (i.e. the preferred heap base).
1640   // If this happens then we could end up using a non-optimal
1641   // compressed oops mode.
1642   if (AllocateOldGenAt != NULL) {
1643     _is_hetero_heap = true;
1644     max_byte_size *= 2;
1645   }
1646 
1647   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1648                                                  heap_alignment);
1649 
1650   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1651 
1652   // Create the barrier set for the entire reserved region.
1653   G1CardTable* ct = new G1CardTable(reserved_region());
1654   ct->initialize();
1655   G1BarrierSet* bs = new G1BarrierSet(ct);
1656   bs->initialize();
1657   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1658   BarrierSet::set_barrier_set(bs);
1659   _card_table = ct;
1660 
1661   G1BarrierSet::satb_mark_queue_set().initialize(this,
1662                                                  SATB_Q_CBL_mon,
1663                                                  &bs->satb_mark_queue_buffer_allocator(),
1664                                                  G1SATBProcessCompletedThreshold,
1665                                                  G1SATBBufferEnqueueingThresholdPercent,
1666                                                  Shared_SATB_Q_lock);
1667 
1668   // process_completed_threshold and max_completed_queue are updated
1669   // later, based on the concurrent refinement object.
1670   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1671                                                   &bs->dirty_card_queue_buffer_allocator(),
1672                                                   -1, // temp. never trigger
1673                                                   -1, // temp. no limit
1674                                                   Shared_DirtyCardQ_lock,
1675                                                   true); // init_free_ids
1676 
1677   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1678                                     &bs->dirty_card_queue_buffer_allocator(),
1679                                     -1, // never trigger processing
1680                                     -1, // no limit on length
1681                                     Shared_DirtyCardQ_lock);
1682 
1683   // Create the hot card cache.
1684   _hot_card_cache = new G1HotCardCache(this);
1685 
1686   // Carve out the G1 part of the heap.
1687   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1688   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1689   G1RegionToSpaceMapper* heap_storage =
1690     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1691                                          g1_rs.size(),
1692                                          page_size,
1693                                          HeapRegion::GrainBytes,
1694                                          1,
1695                                          mtJavaHeap);
1696   os::trace_page_sizes("Heap",
1697                        collector_policy()->min_heap_byte_size(),
1698                        max_byte_size,
1699                        page_size,
1700                        heap_rs.base(),
1701                        heap_rs.size());
1702   heap_storage->set_mapping_changed_listener(&_listener);
1703 
1704   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1705   G1RegionToSpaceMapper* bot_storage =
1706     create_aux_memory_mapper("Block Offset Table",
1707                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1708                              G1BlockOffsetTable::heap_map_factor());
1709 
1710   G1RegionToSpaceMapper* cardtable_storage =
1711     create_aux_memory_mapper("Card Table",
1712                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1713                              G1CardTable::heap_map_factor());
1714 
1715   G1RegionToSpaceMapper* card_counts_storage =
1716     create_aux_memory_mapper("Card Counts Table",
1717                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1718                              G1CardCounts::heap_map_factor());
1719 
1720   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1721   G1RegionToSpaceMapper* prev_bitmap_storage =
1722     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1723   G1RegionToSpaceMapper* next_bitmap_storage =
1724     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1725 
1726   if (is_hetero_heap()) {
1727     _hrm = new HeapRegionManagerForHeteroHeap((uint)((max_byte_size / 2) / HeapRegion::GrainBytes /*heap size as num of regions*/));
1728   }
1729   else {
1730     _hrm = new HeapRegionManager();
1731   }
1732   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1733   _card_table->initialize(cardtable_storage);
1734   // Do later initialization work for concurrent refinement.
1735   _hot_card_cache->initialize(card_counts_storage);
1736 
1737   // 6843694 - ensure that the maximum region index can fit
1738   // in the remembered set structures.
1739   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1740   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1741 
1742   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1743   // start within the first card.
1744   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1745   // Also create a G1 rem set.
1746   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1747   _g1_rem_set->initialize(max_reserved_capacity(), max_regions());
1748 
1749   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1750   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1751   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1752             "too many cards per region");
1753 
1754   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1755 
1756   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1757 
1758   {
1759     HeapWord* start = _hrm->reserved().start();
1760     HeapWord* end = _hrm->reserved().end();
1761     size_t granularity = HeapRegion::GrainBytes;
1762 
1763     _in_cset_fast_test.initialize(start, end, granularity);
1764     _humongous_reclaim_candidates.initialize(start, end, granularity);
1765   }
1766 
1767   // Create the G1ConcurrentMark data structure and thread.
1768   // (Must do this late, so that "max_regions" is defined.)
1769   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1770   if (_cm == NULL || !_cm->completed_initialization()) {
1771     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1772     return JNI_ENOMEM;
1773   }
1774   _cm_thread = _cm->cm_thread();
1775 
1776   // Now expand into the initial heap size.
1777   if (!expand(init_byte_size, _workers)) {
1778     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1779     return JNI_ENOMEM;
1780   }
1781 
1782   // Perform any initialization actions delegated to the policy.
1783   g1_policy()->init(this, &_collection_set);
1784 
1785   jint ecode = initialize_concurrent_refinement();
1786   if (ecode != JNI_OK) {
1787     return ecode;
1788   }
1789 
1790   ecode = initialize_young_gen_sampling_thread();
1791   if (ecode != JNI_OK) {
1792     return ecode;
1793   }
1794 
1795   {
1796     DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1797     dcqs.set_process_completed_threshold((int)concurrent_refine()->yellow_zone());
1798     dcqs.set_max_completed_queue((int)concurrent_refine()->red_zone());
1799   }
1800 
1801   // Here we allocate the dummy HeapRegion that is required by the
1802   // G1AllocRegion class.
1803   HeapRegion* dummy_region = _hrm->get_dummy_region();
1804 
1805   // We'll re-use the same region whether the alloc region will
1806   // require BOT updates or not and, if it doesn't, then a non-young
1807   // region will complain that it cannot support allocations without
1808   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1809   dummy_region->set_eden();
1810   // Make sure it's full.
1811   dummy_region->set_top(dummy_region->end());
1812   G1AllocRegion::setup(this, dummy_region);
1813 
1814   _allocator->init_mutator_alloc_region();
1815 
1816   // Do create of the monitoring and management support so that
1817   // values in the heap have been properly initialized.
1818   _g1mm = new G1MonitoringSupport(this);
1819 
1820   G1StringDedup::initialize();
1821 
1822   _preserved_marks_set.init(ParallelGCThreads);
1823 
1824   _collection_set.initialize(max_regions());
1825 
1826   return JNI_OK;
1827 }
1828 
1829 void G1CollectedHeap::stop() {
1830   // Stop all concurrent threads. We do this to make sure these threads
1831   // do not continue to execute and access resources (e.g. logging)
1832   // that are destroyed during shutdown.
1833   _cr->stop();
1834   _young_gen_sampling_thread->stop();
1835   _cm_thread->stop();
1836   if (G1StringDedup::is_enabled()) {
1837     G1StringDedup::stop();
1838   }
1839 }
1840 
1841 void G1CollectedHeap::safepoint_synchronize_begin() {
1842   SuspendibleThreadSet::synchronize();
1843 }
1844 
1845 void G1CollectedHeap::safepoint_synchronize_end() {
1846   SuspendibleThreadSet::desynchronize();
1847 }
1848 
1849 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1850   return HeapRegion::max_region_size();
1851 }
1852 
1853 void G1CollectedHeap::post_initialize() {
1854   CollectedHeap::post_initialize();
1855   ref_processing_init();
1856 }
1857 
1858 void G1CollectedHeap::ref_processing_init() {
1859   // Reference processing in G1 currently works as follows:
1860   //
1861   // * There are two reference processor instances. One is
1862   //   used to record and process discovered references
1863   //   during concurrent marking; the other is used to
1864   //   record and process references during STW pauses
1865   //   (both full and incremental).
1866   // * Both ref processors need to 'span' the entire heap as
1867   //   the regions in the collection set may be dotted around.
1868   //
1869   // * For the concurrent marking ref processor:
1870   //   * Reference discovery is enabled at initial marking.
1871   //   * Reference discovery is disabled and the discovered
1872   //     references processed etc during remarking.
1873   //   * Reference discovery is MT (see below).
1874   //   * Reference discovery requires a barrier (see below).
1875   //   * Reference processing may or may not be MT
1876   //     (depending on the value of ParallelRefProcEnabled
1877   //     and ParallelGCThreads).
1878   //   * A full GC disables reference discovery by the CM
1879   //     ref processor and abandons any entries on it's
1880   //     discovered lists.
1881   //
1882   // * For the STW processor:
1883   //   * Non MT discovery is enabled at the start of a full GC.
1884   //   * Processing and enqueueing during a full GC is non-MT.
1885   //   * During a full GC, references are processed after marking.
1886   //
1887   //   * Discovery (may or may not be MT) is enabled at the start
1888   //     of an incremental evacuation pause.
1889   //   * References are processed near the end of a STW evacuation pause.
1890   //   * For both types of GC:
1891   //     * Discovery is atomic - i.e. not concurrent.
1892   //     * Reference discovery will not need a barrier.
1893 
1894   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1895 
1896   // Concurrent Mark ref processor
1897   _ref_processor_cm =
1898     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1899                            mt_processing,                                  // mt processing
1900                            ParallelGCThreads,                              // degree of mt processing
1901                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1902                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1903                            false,                                          // Reference discovery is not atomic
1904                            &_is_alive_closure_cm,                          // is alive closure
1905                            true);                                          // allow changes to number of processing threads
1906 
1907   // STW ref processor
1908   _ref_processor_stw =
1909     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1910                            mt_processing,                        // mt processing
1911                            ParallelGCThreads,                    // degree of mt processing
1912                            (ParallelGCThreads > 1),              // mt discovery
1913                            ParallelGCThreads,                    // degree of mt discovery
1914                            true,                                 // Reference discovery is atomic
1915                            &_is_alive_closure_stw,               // is alive closure
1916                            true);                                // allow changes to number of processing threads
1917 }
1918 
1919 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1920   return _collector_policy;
1921 }
1922 
1923 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1924   return &_soft_ref_policy;
1925 }
1926 
1927 size_t G1CollectedHeap::capacity() const {
1928   return _hrm->length() * HeapRegion::GrainBytes;
1929 }
1930 
1931 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1932   return _hrm->total_free_bytes();
1933 }
1934 
1935 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1936   _hot_card_cache->drain(cl, worker_i);
1937 }
1938 
1939 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1940   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1941   size_t n_completed_buffers = 0;
1942   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1943     n_completed_buffers++;
1944   }
1945   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1946   dcqs.clear_n_completed_buffers();
1947   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1948 }
1949 
1950 // Computes the sum of the storage used by the various regions.
1951 size_t G1CollectedHeap::used() const {
1952   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1953   if (_archive_allocator != NULL) {
1954     result += _archive_allocator->used();
1955   }
1956   return result;
1957 }
1958 
1959 size_t G1CollectedHeap::used_unlocked() const {
1960   return _summary_bytes_used;
1961 }
1962 
1963 class SumUsedClosure: public HeapRegionClosure {
1964   size_t _used;
1965 public:
1966   SumUsedClosure() : _used(0) {}
1967   bool do_heap_region(HeapRegion* r) {
1968     _used += r->used();
1969     return false;
1970   }
1971   size_t result() { return _used; }
1972 };
1973 
1974 size_t G1CollectedHeap::recalculate_used() const {
1975   SumUsedClosure blk;
1976   heap_region_iterate(&blk);
1977   return blk.result();
1978 }
1979 
1980 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1981   switch (cause) {
1982     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1983     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1984     case GCCause::_wb_conc_mark:                        return true;
1985     default :                                           return false;
1986   }
1987 }
1988 
1989 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1990   switch (cause) {
1991     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1992     case GCCause::_g1_humongous_allocation: return true;
1993     default:                                return is_user_requested_concurrent_full_gc(cause);
1994   }
1995 }
1996 
1997 #ifndef PRODUCT
1998 void G1CollectedHeap::allocate_dummy_regions() {
1999   // Let's fill up most of the region
2000   size_t word_size = HeapRegion::GrainWords - 1024;
2001   // And as a result the region we'll allocate will be humongous.
2002   guarantee(is_humongous(word_size), "sanity");
2003 
2004   // _filler_array_max_size is set to humongous object threshold
2005   // but temporarily change it to use CollectedHeap::fill_with_object().
2006   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2007 
2008   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2009     // Let's use the existing mechanism for the allocation
2010     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2011     if (dummy_obj != NULL) {
2012       MemRegion mr(dummy_obj, word_size);
2013       CollectedHeap::fill_with_object(mr);
2014     } else {
2015       // If we can't allocate once, we probably cannot allocate
2016       // again. Let's get out of the loop.
2017       break;
2018     }
2019   }
2020 }
2021 #endif // !PRODUCT
2022 
2023 void G1CollectedHeap::increment_old_marking_cycles_started() {
2024   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2025          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2026          "Wrong marking cycle count (started: %d, completed: %d)",
2027          _old_marking_cycles_started, _old_marking_cycles_completed);
2028 
2029   _old_marking_cycles_started++;
2030 }
2031 
2032 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2033   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2034 
2035   // We assume that if concurrent == true, then the caller is a
2036   // concurrent thread that was joined the Suspendible Thread
2037   // Set. If there's ever a cheap way to check this, we should add an
2038   // assert here.
2039 
2040   // Given that this method is called at the end of a Full GC or of a
2041   // concurrent cycle, and those can be nested (i.e., a Full GC can
2042   // interrupt a concurrent cycle), the number of full collections
2043   // completed should be either one (in the case where there was no
2044   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2045   // behind the number of full collections started.
2046 
2047   // This is the case for the inner caller, i.e. a Full GC.
2048   assert(concurrent ||
2049          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2050          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2051          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2052          "is inconsistent with _old_marking_cycles_completed = %u",
2053          _old_marking_cycles_started, _old_marking_cycles_completed);
2054 
2055   // This is the case for the outer caller, i.e. the concurrent cycle.
2056   assert(!concurrent ||
2057          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2058          "for outer caller (concurrent cycle): "
2059          "_old_marking_cycles_started = %u "
2060          "is inconsistent with _old_marking_cycles_completed = %u",
2061          _old_marking_cycles_started, _old_marking_cycles_completed);
2062 
2063   _old_marking_cycles_completed += 1;
2064 
2065   // We need to clear the "in_progress" flag in the CM thread before
2066   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2067   // is set) so that if a waiter requests another System.gc() it doesn't
2068   // incorrectly see that a marking cycle is still in progress.
2069   if (concurrent) {
2070     _cm_thread->set_idle();
2071   }
2072 
2073   // This notify_all() will ensure that a thread that called
2074   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2075   // and it's waiting for a full GC to finish will be woken up. It is
2076   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2077   FullGCCount_lock->notify_all();
2078 }
2079 
2080 void G1CollectedHeap::collect(GCCause::Cause cause) {
2081   assert_heap_not_locked();
2082 
2083   uint gc_count_before;
2084   uint old_marking_count_before;
2085   uint full_gc_count_before;
2086   bool retry_gc;
2087 
2088   do {
2089     retry_gc = false;
2090 
2091     {
2092       MutexLocker ml(Heap_lock);
2093 
2094       // Read the GC count while holding the Heap_lock
2095       gc_count_before = total_collections();
2096       full_gc_count_before = total_full_collections();
2097       old_marking_count_before = _old_marking_cycles_started;
2098     }
2099 
2100     if (should_do_concurrent_full_gc(cause)) {
2101       // Schedule an initial-mark evacuation pause that will start a
2102       // concurrent cycle. We're setting word_size to 0 which means that
2103       // we are not requesting a post-GC allocation.
2104       VM_G1CollectForAllocation op(0,     /* word_size */
2105                                    gc_count_before,
2106                                    cause,
2107                                    true,  /* should_initiate_conc_mark */
2108                                    g1_policy()->max_pause_time_ms());
2109       VMThread::execute(&op);
2110       if (!op.pause_succeeded()) {
2111         if (old_marking_count_before == _old_marking_cycles_started) {
2112           retry_gc = op.should_retry_gc();
2113         } else {
2114           // A Full GC happened while we were trying to schedule the
2115           // initial-mark GC. No point in starting a new cycle given
2116           // that the whole heap was collected anyway.
2117         }
2118 
2119         if (retry_gc) {
2120           if (GCLocker::is_active_and_needs_gc()) {
2121             GCLocker::stall_until_clear();
2122           }
2123         }
2124       }
2125     } else {
2126       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2127           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2128 
2129         // Schedule a standard evacuation pause. We're setting word_size
2130         // to 0 which means that we are not requesting a post-GC allocation.
2131         VM_G1CollectForAllocation op(0,     /* word_size */
2132                                      gc_count_before,
2133                                      cause,
2134                                      false, /* should_initiate_conc_mark */
2135                                      g1_policy()->max_pause_time_ms());
2136         VMThread::execute(&op);
2137       } else {
2138         // Schedule a Full GC.
2139         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2140         VMThread::execute(&op);
2141       }
2142     }
2143   } while (retry_gc);
2144 }
2145 
2146 bool G1CollectedHeap::is_in(const void* p) const {
2147   if (_hrm->reserved().contains(p)) {
2148     // Given that we know that p is in the reserved space,
2149     // heap_region_containing() should successfully
2150     // return the containing region.
2151     HeapRegion* hr = heap_region_containing(p);
2152     return hr->is_in(p);
2153   } else {
2154     return false;
2155   }
2156 }
2157 
2158 #ifdef ASSERT
2159 bool G1CollectedHeap::is_in_exact(const void* p) const {
2160   bool contains = reserved_region().contains(p);
2161   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2162   if (contains && available) {
2163     return true;
2164   } else {
2165     return false;
2166   }
2167 }
2168 #endif
2169 
2170 // Iteration functions.
2171 
2172 // Iterates an ObjectClosure over all objects within a HeapRegion.
2173 
2174 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2175   ObjectClosure* _cl;
2176 public:
2177   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2178   bool do_heap_region(HeapRegion* r) {
2179     if (!r->is_continues_humongous()) {
2180       r->object_iterate(_cl);
2181     }
2182     return false;
2183   }
2184 };
2185 
2186 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2187   IterateObjectClosureRegionClosure blk(cl);
2188   heap_region_iterate(&blk);
2189 }
2190 
2191 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2192   _hrm->iterate(cl);
2193 }
2194 
2195 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2196                                                                  HeapRegionClaimer *hrclaimer,
2197                                                                  uint worker_id) const {
2198   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2199 }
2200 
2201 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2202                                                          HeapRegionClaimer *hrclaimer) const {
2203   _hrm->par_iterate(cl, hrclaimer, 0);
2204 }
2205 
2206 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2207   _collection_set.iterate(cl);
2208 }
2209 
2210 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2211   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2212 }
2213 
2214 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2215   HeapRegion* hr = heap_region_containing(addr);
2216   return hr->block_start(addr);
2217 }
2218 
2219 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2220   HeapRegion* hr = heap_region_containing(addr);
2221   return hr->block_size(addr);
2222 }
2223 
2224 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2225   HeapRegion* hr = heap_region_containing(addr);
2226   return hr->block_is_obj(addr);
2227 }
2228 
2229 bool G1CollectedHeap::supports_tlab_allocation() const {
2230   return true;
2231 }
2232 
2233 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2234   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2235 }
2236 
2237 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2238   return _eden.length() * HeapRegion::GrainBytes;
2239 }
2240 
2241 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2242 // must be equal to the humongous object limit.
2243 size_t G1CollectedHeap::max_tlab_size() const {
2244   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2245 }
2246 
2247 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2248   return _allocator->unsafe_max_tlab_alloc();
2249 }
2250 
2251 size_t G1CollectedHeap::max_capacity() const {
2252   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2253 }
2254 
2255 size_t G1CollectedHeap::max_reserved_capacity() const {
2256   return _hrm->max_length() * HeapRegion::GrainBytes;
2257 }
2258 
2259 jlong G1CollectedHeap::millis_since_last_gc() {
2260   // See the notes in GenCollectedHeap::millis_since_last_gc()
2261   // for more information about the implementation.
2262   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2263     _g1_policy->collection_pause_end_millis();
2264   if (ret_val < 0) {
2265     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2266       ". returning zero instead.", ret_val);
2267     return 0;
2268   }
2269   return ret_val;
2270 }
2271 
2272 void G1CollectedHeap::deduplicate_string(oop str) {
2273   assert(java_lang_String::is_instance(str), "invariant");
2274 
2275   if (G1StringDedup::is_enabled()) {
2276     G1StringDedup::deduplicate(str);
2277   }
2278 }
2279 
2280 void G1CollectedHeap::prepare_for_verify() {
2281   _verifier->prepare_for_verify();
2282 }
2283 
2284 void G1CollectedHeap::verify(VerifyOption vo) {
2285   _verifier->verify(vo);
2286 }
2287 
2288 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2289   return true;
2290 }
2291 
2292 const char* const* G1CollectedHeap::concurrent_phases() const {
2293   return _cm_thread->concurrent_phases();
2294 }
2295 
2296 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2297   return _cm_thread->request_concurrent_phase(phase);
2298 }
2299 
2300 class PrintRegionClosure: public HeapRegionClosure {
2301   outputStream* _st;
2302 public:
2303   PrintRegionClosure(outputStream* st) : _st(st) {}
2304   bool do_heap_region(HeapRegion* r) {
2305     r->print_on(_st);
2306     return false;
2307   }
2308 };
2309 
2310 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2311                                        const HeapRegion* hr,
2312                                        const VerifyOption vo) const {
2313   switch (vo) {
2314   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2315   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2316   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2317   default:                            ShouldNotReachHere();
2318   }
2319   return false; // keep some compilers happy
2320 }
2321 
2322 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2323                                        const VerifyOption vo) const {
2324   switch (vo) {
2325   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2326   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2327   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2328   default:                            ShouldNotReachHere();
2329   }
2330   return false; // keep some compilers happy
2331 }
2332 
2333 void G1CollectedHeap::print_heap_regions() const {
2334   LogTarget(Trace, gc, heap, region) lt;
2335   if (lt.is_enabled()) {
2336     LogStream ls(lt);
2337     print_regions_on(&ls);
2338   }
2339 }
2340 
2341 void G1CollectedHeap::print_on(outputStream* st) const {
2342   st->print(" %-20s", "garbage-first heap");
2343   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2344             capacity()/K, used_unlocked()/K);
2345   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2346             p2i(_hrm->reserved().start()),
2347             p2i(_hrm->reserved().end()));
2348   st->cr();
2349   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2350   uint young_regions = young_regions_count();
2351   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2352             (size_t) young_regions * HeapRegion::GrainBytes / K);
2353   uint survivor_regions = survivor_regions_count();
2354   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2355             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2356   st->cr();
2357   MetaspaceUtils::print_on(st);
2358 }
2359 
2360 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2361   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2362                "HS=humongous(starts), HC=humongous(continues), "
2363                "CS=collection set, F=free, A=archive, "
2364                "TAMS=top-at-mark-start (previous, next)");
2365   PrintRegionClosure blk(st);
2366   heap_region_iterate(&blk);
2367 }
2368 
2369 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2370   print_on(st);
2371 
2372   // Print the per-region information.
2373   print_regions_on(st);
2374 }
2375 
2376 void G1CollectedHeap::print_on_error(outputStream* st) const {
2377   this->CollectedHeap::print_on_error(st);
2378 
2379   if (_cm != NULL) {
2380     st->cr();
2381     _cm->print_on_error(st);
2382   }
2383 }
2384 
2385 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2386   workers()->print_worker_threads_on(st);
2387   _cm_thread->print_on(st);
2388   st->cr();
2389   _cm->print_worker_threads_on(st);
2390   _cr->print_threads_on(st);
2391   _young_gen_sampling_thread->print_on(st);
2392   if (G1StringDedup::is_enabled()) {
2393     G1StringDedup::print_worker_threads_on(st);
2394   }
2395 }
2396 
2397 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2398   workers()->threads_do(tc);
2399   tc->do_thread(_cm_thread);
2400   _cm->threads_do(tc);
2401   _cr->threads_do(tc);
2402   tc->do_thread(_young_gen_sampling_thread);
2403   if (G1StringDedup::is_enabled()) {
2404     G1StringDedup::threads_do(tc);
2405   }
2406 }
2407 
2408 void G1CollectedHeap::print_tracing_info() const {
2409   g1_rem_set()->print_summary_info();
2410   concurrent_mark()->print_summary_info();
2411 }
2412 
2413 #ifndef PRODUCT
2414 // Helpful for debugging RSet issues.
2415 
2416 class PrintRSetsClosure : public HeapRegionClosure {
2417 private:
2418   const char* _msg;
2419   size_t _occupied_sum;
2420 
2421 public:
2422   bool do_heap_region(HeapRegion* r) {
2423     HeapRegionRemSet* hrrs = r->rem_set();
2424     size_t occupied = hrrs->occupied();
2425     _occupied_sum += occupied;
2426 
2427     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2428     if (occupied == 0) {
2429       tty->print_cr("  RSet is empty");
2430     } else {
2431       hrrs->print();
2432     }
2433     tty->print_cr("----------");
2434     return false;
2435   }
2436 
2437   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2438     tty->cr();
2439     tty->print_cr("========================================");
2440     tty->print_cr("%s", msg);
2441     tty->cr();
2442   }
2443 
2444   ~PrintRSetsClosure() {
2445     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2446     tty->print_cr("========================================");
2447     tty->cr();
2448   }
2449 };
2450 
2451 void G1CollectedHeap::print_cset_rsets() {
2452   PrintRSetsClosure cl("Printing CSet RSets");
2453   collection_set_iterate(&cl);
2454 }
2455 
2456 void G1CollectedHeap::print_all_rsets() {
2457   PrintRSetsClosure cl("Printing All RSets");;
2458   heap_region_iterate(&cl);
2459 }
2460 #endif // PRODUCT
2461 
2462 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2463 
2464   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2465   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2466   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2467 
2468   size_t eden_capacity_bytes =
2469     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2470 
2471   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2472   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2473                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2474 }
2475 
2476 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2477   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2478                        stats->unused(), stats->used(), stats->region_end_waste(),
2479                        stats->regions_filled(), stats->direct_allocated(),
2480                        stats->failure_used(), stats->failure_waste());
2481 }
2482 
2483 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2484   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2485   gc_tracer->report_gc_heap_summary(when, heap_summary);
2486 
2487   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2488   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2489 }
2490 
2491 G1CollectedHeap* G1CollectedHeap::heap() {
2492   CollectedHeap* heap = Universe::heap();
2493   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2494   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2495   return (G1CollectedHeap*)heap;
2496 }
2497 
2498 void G1CollectedHeap::gc_prologue(bool full) {
2499   // always_do_update_barrier = false;
2500   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2501 
2502   // This summary needs to be printed before incrementing total collections.
2503   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2504 
2505   // Update common counters.
2506   increment_total_collections(full /* full gc */);
2507   if (full) {
2508     increment_old_marking_cycles_started();
2509   }
2510 
2511   // Fill TLAB's and such
2512   double start = os::elapsedTime();
2513   ensure_parsability(true);
2514   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2515 }
2516 
2517 void G1CollectedHeap::gc_epilogue(bool full) {
2518   // Update common counters.
2519   if (full) {
2520     // Update the number of full collections that have been completed.
2521     increment_old_marking_cycles_completed(false /* concurrent */);
2522   }
2523 
2524   // We are at the end of the GC. Total collections has already been increased.
2525   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2526 
2527   // FIXME: what is this about?
2528   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2529   // is set.
2530 #if COMPILER2_OR_JVMCI
2531   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2532 #endif
2533   // always_do_update_barrier = true;
2534 
2535   double start = os::elapsedTime();
2536   resize_all_tlabs();
2537   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2538 
2539   MemoryService::track_memory_usage();
2540   // We have just completed a GC. Update the soft reference
2541   // policy with the new heap occupancy
2542   Universe::update_heap_info_at_gc();
2543 }
2544 
2545 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2546                                                uint gc_count_before,
2547                                                bool* succeeded,
2548                                                GCCause::Cause gc_cause) {
2549   assert_heap_not_locked_and_not_at_safepoint();
2550   VM_G1CollectForAllocation op(word_size,
2551                                gc_count_before,
2552                                gc_cause,
2553                                false, /* should_initiate_conc_mark */
2554                                g1_policy()->max_pause_time_ms());
2555   VMThread::execute(&op);
2556 
2557   HeapWord* result = op.result();
2558   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2559   assert(result == NULL || ret_succeeded,
2560          "the result should be NULL if the VM did not succeed");
2561   *succeeded = ret_succeeded;
2562 
2563   assert_heap_not_locked();
2564   return result;
2565 }
2566 
2567 void G1CollectedHeap::do_concurrent_mark() {
2568   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2569   if (!_cm_thread->in_progress()) {
2570     _cm_thread->set_started();
2571     CGC_lock->notify();
2572   }
2573 }
2574 
2575 size_t G1CollectedHeap::pending_card_num() {
2576   size_t extra_cards = 0;
2577   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2578     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2579     extra_cards += dcq.size();
2580   }
2581   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2582   size_t buffer_size = dcqs.buffer_size();
2583   size_t buffer_num = dcqs.completed_buffers_num();
2584 
2585   return buffer_size * buffer_num + extra_cards;
2586 }
2587 
2588 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2589   // We don't nominate objects with many remembered set entries, on
2590   // the assumption that such objects are likely still live.
2591   HeapRegionRemSet* rem_set = r->rem_set();
2592 
2593   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2594          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2595          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2596 }
2597 
2598 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2599  private:
2600   size_t _total_humongous;
2601   size_t _candidate_humongous;
2602 
2603   DirtyCardQueue _dcq;
2604 
2605   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2606     assert(region->is_starts_humongous(), "Must start a humongous object");
2607 
2608     oop obj = oop(region->bottom());
2609 
2610     // Dead objects cannot be eager reclaim candidates. Due to class
2611     // unloading it is unsafe to query their classes so we return early.
2612     if (g1h->is_obj_dead(obj, region)) {
2613       return false;
2614     }
2615 
2616     // If we do not have a complete remembered set for the region, then we can
2617     // not be sure that we have all references to it.
2618     if (!region->rem_set()->is_complete()) {
2619       return false;
2620     }
2621     // Candidate selection must satisfy the following constraints
2622     // while concurrent marking is in progress:
2623     //
2624     // * In order to maintain SATB invariants, an object must not be
2625     // reclaimed if it was allocated before the start of marking and
2626     // has not had its references scanned.  Such an object must have
2627     // its references (including type metadata) scanned to ensure no
2628     // live objects are missed by the marking process.  Objects
2629     // allocated after the start of concurrent marking don't need to
2630     // be scanned.
2631     //
2632     // * An object must not be reclaimed if it is on the concurrent
2633     // mark stack.  Objects allocated after the start of concurrent
2634     // marking are never pushed on the mark stack.
2635     //
2636     // Nominating only objects allocated after the start of concurrent
2637     // marking is sufficient to meet both constraints.  This may miss
2638     // some objects that satisfy the constraints, but the marking data
2639     // structures don't support efficiently performing the needed
2640     // additional tests or scrubbing of the mark stack.
2641     //
2642     // However, we presently only nominate is_typeArray() objects.
2643     // A humongous object containing references induces remembered
2644     // set entries on other regions.  In order to reclaim such an
2645     // object, those remembered sets would need to be cleaned up.
2646     //
2647     // We also treat is_typeArray() objects specially, allowing them
2648     // to be reclaimed even if allocated before the start of
2649     // concurrent mark.  For this we rely on mark stack insertion to
2650     // exclude is_typeArray() objects, preventing reclaiming an object
2651     // that is in the mark stack.  We also rely on the metadata for
2652     // such objects to be built-in and so ensured to be kept live.
2653     // Frequent allocation and drop of large binary blobs is an
2654     // important use case for eager reclaim, and this special handling
2655     // may reduce needed headroom.
2656 
2657     return obj->is_typeArray() &&
2658            g1h->is_potential_eager_reclaim_candidate(region);
2659   }
2660 
2661  public:
2662   RegisterHumongousWithInCSetFastTestClosure()
2663   : _total_humongous(0),
2664     _candidate_humongous(0),
2665     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2666   }
2667 
2668   virtual bool do_heap_region(HeapRegion* r) {
2669     if (!r->is_starts_humongous()) {
2670       return false;
2671     }
2672     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2673 
2674     bool is_candidate = humongous_region_is_candidate(g1h, r);
2675     uint rindex = r->hrm_index();
2676     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2677     if (is_candidate) {
2678       _candidate_humongous++;
2679       g1h->register_humongous_region_with_cset(rindex);
2680       // Is_candidate already filters out humongous object with large remembered sets.
2681       // If we have a humongous object with a few remembered sets, we simply flush these
2682       // remembered set entries into the DCQS. That will result in automatic
2683       // re-evaluation of their remembered set entries during the following evacuation
2684       // phase.
2685       if (!r->rem_set()->is_empty()) {
2686         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2687                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2688         G1CardTable* ct = g1h->card_table();
2689         HeapRegionRemSetIterator hrrs(r->rem_set());
2690         size_t card_index;
2691         while (hrrs.has_next(card_index)) {
2692           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2693           // The remembered set might contain references to already freed
2694           // regions. Filter out such entries to avoid failing card table
2695           // verification.
2696           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2697             if (*card_ptr != G1CardTable::dirty_card_val()) {
2698               *card_ptr = G1CardTable::dirty_card_val();
2699               _dcq.enqueue(card_ptr);
2700             }
2701           }
2702         }
2703         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2704                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2705                hrrs.n_yielded(), r->rem_set()->occupied());
2706         // We should only clear the card based remembered set here as we will not
2707         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2708         // (and probably never) we do not enter this path if there are other kind of
2709         // remembered sets for this region.
2710         r->rem_set()->clear_locked(true /* only_cardset */);
2711         // Clear_locked() above sets the state to Empty. However we want to continue
2712         // collecting remembered set entries for humongous regions that were not
2713         // reclaimed.
2714         r->rem_set()->set_state_complete();
2715       }
2716       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2717     }
2718     _total_humongous++;
2719 
2720     return false;
2721   }
2722 
2723   size_t total_humongous() const { return _total_humongous; }
2724   size_t candidate_humongous() const { return _candidate_humongous; }
2725 
2726   void flush_rem_set_entries() { _dcq.flush(); }
2727 };
2728 
2729 void G1CollectedHeap::register_humongous_regions_with_cset() {
2730   if (!G1EagerReclaimHumongousObjects) {
2731     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2732     return;
2733   }
2734   double time = os::elapsed_counter();
2735 
2736   // Collect reclaim candidate information and register candidates with cset.
2737   RegisterHumongousWithInCSetFastTestClosure cl;
2738   heap_region_iterate(&cl);
2739 
2740   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2741   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2742                                                                   cl.total_humongous(),
2743                                                                   cl.candidate_humongous());
2744   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2745 
2746   // Finally flush all remembered set entries to re-check into the global DCQS.
2747   cl.flush_rem_set_entries();
2748 }
2749 
2750 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2751   public:
2752     bool do_heap_region(HeapRegion* hr) {
2753       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2754         hr->verify_rem_set();
2755       }
2756       return false;
2757     }
2758 };
2759 
2760 uint G1CollectedHeap::num_task_queues() const {
2761   return _task_queues->size();
2762 }
2763 
2764 #if TASKQUEUE_STATS
2765 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2766   st->print_raw_cr("GC Task Stats");
2767   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2768   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2769 }
2770 
2771 void G1CollectedHeap::print_taskqueue_stats() const {
2772   if (!log_is_enabled(Trace, gc, task, stats)) {
2773     return;
2774   }
2775   Log(gc, task, stats) log;
2776   ResourceMark rm;
2777   LogStream ls(log.trace());
2778   outputStream* st = &ls;
2779 
2780   print_taskqueue_stats_hdr(st);
2781 
2782   TaskQueueStats totals;
2783   const uint n = num_task_queues();
2784   for (uint i = 0; i < n; ++i) {
2785     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2786     totals += task_queue(i)->stats;
2787   }
2788   st->print_raw("tot "); totals.print(st); st->cr();
2789 
2790   DEBUG_ONLY(totals.verify());
2791 }
2792 
2793 void G1CollectedHeap::reset_taskqueue_stats() {
2794   const uint n = num_task_queues();
2795   for (uint i = 0; i < n; ++i) {
2796     task_queue(i)->stats.reset();
2797   }
2798 }
2799 #endif // TASKQUEUE_STATS
2800 
2801 void G1CollectedHeap::wait_for_root_region_scanning() {
2802   double scan_wait_start = os::elapsedTime();
2803   // We have to wait until the CM threads finish scanning the
2804   // root regions as it's the only way to ensure that all the
2805   // objects on them have been correctly scanned before we start
2806   // moving them during the GC.
2807   bool waited = _cm->root_regions()->wait_until_scan_finished();
2808   double wait_time_ms = 0.0;
2809   if (waited) {
2810     double scan_wait_end = os::elapsedTime();
2811     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2812   }
2813   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2814 }
2815 
2816 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2817 private:
2818   G1HRPrinter* _hr_printer;
2819 public:
2820   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2821 
2822   virtual bool do_heap_region(HeapRegion* r) {
2823     _hr_printer->cset(r);
2824     return false;
2825   }
2826 };
2827 
2828 void G1CollectedHeap::start_new_collection_set() {
2829   collection_set()->start_incremental_building();
2830 
2831   clear_cset_fast_test();
2832 
2833   guarantee(_eden.length() == 0, "eden should have been cleared");
2834   g1_policy()->transfer_survivors_to_cset(survivor());
2835 }
2836 
2837 bool
2838 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2839   assert_at_safepoint_on_vm_thread();
2840   guarantee(!is_gc_active(), "collection is not reentrant");
2841 
2842   if (GCLocker::check_active_before_gc()) {
2843     return false;
2844   }
2845 
2846   _gc_timer_stw->register_gc_start();
2847 
2848   GCIdMark gc_id_mark;
2849   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2850 
2851   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2852   ResourceMark rm;
2853 
2854   g1_policy()->note_gc_start();
2855 
2856   wait_for_root_region_scanning();
2857 
2858   print_heap_before_gc();
2859   print_heap_regions();
2860   trace_heap_before_gc(_gc_tracer_stw);
2861 
2862   _verifier->verify_region_sets_optional();
2863   _verifier->verify_dirty_young_regions();
2864 
2865   // We should not be doing initial mark unless the conc mark thread is running
2866   if (!_cm_thread->should_terminate()) {
2867     // This call will decide whether this pause is an initial-mark
2868     // pause. If it is, in_initial_mark_gc() will return true
2869     // for the duration of this pause.
2870     g1_policy()->decide_on_conc_mark_initiation();
2871   }
2872 
2873   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2874   assert(!collector_state()->in_initial_mark_gc() ||
2875           collector_state()->in_young_only_phase(), "sanity");
2876 
2877   // We also do not allow mixed GCs during marking.
2878   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2879 
2880   // Record whether this pause is an initial mark. When the current
2881   // thread has completed its logging output and it's safe to signal
2882   // the CM thread, the flag's value in the policy has been reset.
2883   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2884 
2885   // Inner scope for scope based logging, timers, and stats collection
2886   {
2887     EvacuationInfo evacuation_info;
2888 
2889     if (collector_state()->in_initial_mark_gc()) {
2890       // We are about to start a marking cycle, so we increment the
2891       // full collection counter.
2892       increment_old_marking_cycles_started();
2893       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2894     }
2895 
2896     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2897 
2898     GCTraceCPUTime tcpu;
2899 
2900     G1HeapVerifier::G1VerifyType verify_type;
2901     FormatBuffer<> gc_string("Pause Young ");
2902     if (collector_state()->in_initial_mark_gc()) {
2903       gc_string.append("(Concurrent Start)");
2904       verify_type = G1HeapVerifier::G1VerifyConcurrentStart;
2905     } else if (collector_state()->in_young_only_phase()) {
2906       if (collector_state()->in_young_gc_before_mixed()) {
2907         gc_string.append("(Prepare Mixed)");
2908       } else {
2909         gc_string.append("(Normal)");
2910       }
2911       verify_type = G1HeapVerifier::G1VerifyYoungNormal;
2912     } else {
2913       gc_string.append("(Mixed)");
2914       verify_type = G1HeapVerifier::G1VerifyMixed;
2915     }
2916     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2917 
2918     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2919                                                                   workers()->active_workers(),
2920                                                                   Threads::number_of_non_daemon_threads());
2921     active_workers = workers()->update_active_workers(active_workers);
2922     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2923 
2924     G1MonitoringScope ms(g1mm(),
2925                          false /* full_gc */,
2926                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
2927 
2928     G1HeapTransition heap_transition(this);
2929     size_t heap_used_bytes_before_gc = used();
2930 
2931     // Don't dynamically change the number of GC threads this early.  A value of
2932     // 0 is used to indicate serial work.  When parallel work is done,
2933     // it will be set.
2934 
2935     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2936       IsGCActiveMark x;
2937 
2938       gc_prologue(false);
2939 
2940       if (VerifyRememberedSets) {
2941         log_info(gc, verify)("[Verifying RemSets before GC]");
2942         VerifyRegionRemSetClosure v_cl;
2943         heap_region_iterate(&v_cl);
2944       }
2945 
2946       _verifier->verify_before_gc(verify_type);
2947 
2948       _verifier->check_bitmaps("GC Start");
2949 
2950 #if COMPILER2_OR_JVMCI
2951       DerivedPointerTable::clear();
2952 #endif
2953 
2954       // Please see comment in g1CollectedHeap.hpp and
2955       // G1CollectedHeap::ref_processing_init() to see how
2956       // reference processing currently works in G1.
2957 
2958       // Enable discovery in the STW reference processor
2959       _ref_processor_stw->enable_discovery();
2960 
2961       {
2962         // We want to temporarily turn off discovery by the
2963         // CM ref processor, if necessary, and turn it back on
2964         // on again later if we do. Using a scoped
2965         // NoRefDiscovery object will do this.
2966         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2967 
2968         // Forget the current alloc region (we might even choose it to be part
2969         // of the collection set!).
2970         _allocator->release_mutator_alloc_region();
2971 
2972         // This timing is only used by the ergonomics to handle our pause target.
2973         // It is unclear why this should not include the full pause. We will
2974         // investigate this in CR 7178365.
2975         //
2976         // Preserving the old comment here if that helps the investigation:
2977         //
2978         // The elapsed time induced by the start time below deliberately elides
2979         // the possible verification above.
2980         double sample_start_time_sec = os::elapsedTime();
2981 
2982         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2983 
2984         if (collector_state()->in_initial_mark_gc()) {
2985           concurrent_mark()->pre_initial_mark();
2986         }
2987 
2988         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2989 
2990         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2991 
2992         // Make sure the remembered sets are up to date. This needs to be
2993         // done before register_humongous_regions_with_cset(), because the
2994         // remembered sets are used there to choose eager reclaim candidates.
2995         // If the remembered sets are not up to date we might miss some
2996         // entries that need to be handled.
2997         g1_rem_set()->cleanupHRRS();
2998 
2999         register_humongous_regions_with_cset();
3000 
3001         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3002 
3003         // We call this after finalize_cset() to
3004         // ensure that the CSet has been finalized.
3005         _cm->verify_no_cset_oops();
3006 
3007         if (_hr_printer.is_active()) {
3008           G1PrintCollectionSetClosure cl(&_hr_printer);
3009           _collection_set.iterate(&cl);
3010         }
3011 
3012         // Initialize the GC alloc regions.
3013         _allocator->init_gc_alloc_regions(evacuation_info);
3014 
3015         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3016         pre_evacuate_collection_set();
3017 
3018         // Actually do the work...
3019         evacuate_collection_set(&per_thread_states);
3020 
3021         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3022 
3023         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3024         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3025 
3026         eagerly_reclaim_humongous_regions();
3027 
3028         record_obj_copy_mem_stats();
3029         _survivor_evac_stats.adjust_desired_plab_sz();
3030         _old_evac_stats.adjust_desired_plab_sz();
3031 
3032         double start = os::elapsedTime();
3033         start_new_collection_set();
3034         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3035 
3036         if (evacuation_failed()) {
3037           double recalculate_used_start = os::elapsedTime();
3038           set_used(recalculate_used());
3039           g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3040 
3041           if (_archive_allocator != NULL) {
3042             _archive_allocator->clear_used();
3043           }
3044           for (uint i = 0; i < ParallelGCThreads; i++) {
3045             if (_evacuation_failed_info_array[i].has_failed()) {
3046               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3047             }
3048           }
3049         } else {
3050           // The "used" of the the collection set have already been subtracted
3051           // when they were freed.  Add in the bytes evacuated.
3052           increase_used(g1_policy()->bytes_copied_during_gc());
3053         }
3054 
3055         if (collector_state()->in_initial_mark_gc()) {
3056           // We have to do this before we notify the CM threads that
3057           // they can start working to make sure that all the
3058           // appropriate initialization is done on the CM object.
3059           concurrent_mark()->post_initial_mark();
3060           // Note that we don't actually trigger the CM thread at
3061           // this point. We do that later when we're sure that
3062           // the current thread has completed its logging output.
3063         }
3064 
3065         allocate_dummy_regions();
3066 
3067         _allocator->init_mutator_alloc_region();
3068 
3069         {
3070           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3071           if (expand_bytes > 0) {
3072             size_t bytes_before = capacity();
3073             // No need for an ergo logging here,
3074             // expansion_amount() does this when it returns a value > 0.
3075             double expand_ms;
3076             if (!expand(expand_bytes, _workers, &expand_ms)) {
3077               // We failed to expand the heap. Cannot do anything about it.
3078             }
3079             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3080           }
3081         }
3082 
3083         // We redo the verification but now wrt to the new CSet which
3084         // has just got initialized after the previous CSet was freed.
3085         _cm->verify_no_cset_oops();
3086 
3087         // This timing is only used by the ergonomics to handle our pause target.
3088         // It is unclear why this should not include the full pause. We will
3089         // investigate this in CR 7178365.
3090         double sample_end_time_sec = os::elapsedTime();
3091         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3092         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3093         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3094 
3095         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3096         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3097 
3098         if (VerifyRememberedSets) {
3099           log_info(gc, verify)("[Verifying RemSets after GC]");
3100           VerifyRegionRemSetClosure v_cl;
3101           heap_region_iterate(&v_cl);
3102         }
3103 
3104         _verifier->verify_after_gc(verify_type);
3105         _verifier->check_bitmaps("GC End");
3106 
3107         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
3108         _ref_processor_stw->verify_no_references_recorded();
3109 
3110         // CM reference discovery will be re-enabled if necessary.
3111       }
3112 
3113 #ifdef TRACESPINNING
3114       ParallelTaskTerminator::print_termination_counts();
3115 #endif
3116 
3117       gc_epilogue(false);
3118     }
3119 
3120     // Print the remainder of the GC log output.
3121     if (evacuation_failed()) {
3122       log_info(gc)("To-space exhausted");
3123     }
3124 
3125     g1_policy()->print_phases();
3126     heap_transition.print();
3127 
3128     // It is not yet to safe to tell the concurrent mark to
3129     // start as we have some optional output below. We don't want the
3130     // output from the concurrent mark thread interfering with this
3131     // logging output either.
3132 
3133     _hrm->verify_optional();
3134     _verifier->verify_region_sets_optional();
3135 
3136     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3137     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3138 
3139     print_heap_after_gc();
3140     print_heap_regions();
3141     trace_heap_after_gc(_gc_tracer_stw);
3142 
3143     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3144     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3145     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3146     // before any GC notifications are raised.
3147     g1mm()->update_sizes();
3148 
3149     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3150     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3151     _gc_timer_stw->register_gc_end();
3152     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3153   }
3154   // It should now be safe to tell the concurrent mark thread to start
3155   // without its logging output interfering with the logging output
3156   // that came from the pause.
3157 
3158   if (should_start_conc_mark) {
3159     // CAUTION: after the doConcurrentMark() call below,
3160     // the concurrent marking thread(s) could be running
3161     // concurrently with us. Make sure that anything after
3162     // this point does not assume that we are the only GC thread
3163     // running. Note: of course, the actual marking work will
3164     // not start until the safepoint itself is released in
3165     // SuspendibleThreadSet::desynchronize().
3166     do_concurrent_mark();
3167   }
3168 
3169   return true;
3170 }
3171 
3172 void G1CollectedHeap::remove_self_forwarding_pointers() {
3173   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3174   workers()->run_task(&rsfp_task);
3175 }
3176 
3177 void G1CollectedHeap::restore_after_evac_failure() {
3178   double remove_self_forwards_start = os::elapsedTime();
3179 
3180   remove_self_forwarding_pointers();
3181   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3182   _preserved_marks_set.restore(&task_executor);
3183 
3184   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3185 }
3186 
3187 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3188   if (!_evacuation_failed) {
3189     _evacuation_failed = true;
3190   }
3191 
3192   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3193   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3194 }
3195 
3196 bool G1ParEvacuateFollowersClosure::offer_termination() {
3197   EventGCPhaseParallel event;
3198   G1ParScanThreadState* const pss = par_scan_state();
3199   start_term_time();
3200   const bool res = terminator()->offer_termination();
3201   end_term_time();
3202   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3203   return res;
3204 }
3205 
3206 void G1ParEvacuateFollowersClosure::do_void() {
3207   EventGCPhaseParallel event;
3208   G1ParScanThreadState* const pss = par_scan_state();
3209   pss->trim_queue();
3210   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ObjCopy));
3211   do {
3212     EventGCPhaseParallel event;
3213     pss->steal_and_trim_queue(queues());
3214     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ObjCopy));
3215   } while (!offer_termination());
3216 }
3217 
3218 class G1ParTask : public AbstractGangTask {
3219 protected:
3220   G1CollectedHeap*         _g1h;
3221   G1ParScanThreadStateSet* _pss;
3222   RefToScanQueueSet*       _queues;
3223   G1RootProcessor*         _root_processor;
3224   ParallelTaskTerminator   _terminator;
3225   uint                     _n_workers;
3226 
3227 public:
3228   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3229     : AbstractGangTask("G1 collection"),
3230       _g1h(g1h),
3231       _pss(per_thread_states),
3232       _queues(task_queues),
3233       _root_processor(root_processor),
3234       _terminator(n_workers, _queues),
3235       _n_workers(n_workers)
3236   {}
3237 
3238   void work(uint worker_id) {
3239     if (worker_id >= _n_workers) return;  // no work needed this round
3240 
3241     double start_sec = os::elapsedTime();
3242     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3243 
3244     {
3245       ResourceMark rm;
3246       HandleMark   hm;
3247 
3248       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3249 
3250       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3251       pss->set_ref_discoverer(rp);
3252 
3253       double start_strong_roots_sec = os::elapsedTime();
3254 
3255       _root_processor->evacuate_roots(pss, worker_id);
3256 
3257       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3258       // treating the nmethods visited to act as roots for concurrent marking.
3259       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3260       // objects copied by the current evacuation.
3261       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3262 
3263       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3264 
3265       double term_sec = 0.0;
3266       size_t evac_term_attempts = 0;
3267       {
3268         double start = os::elapsedTime();
3269         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3270         evac.do_void();
3271 
3272         evac_term_attempts = evac.term_attempts();
3273         term_sec = evac.term_time();
3274         double elapsed_sec = os::elapsedTime() - start;
3275 
3276         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3277         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3278         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3279         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3280       }
3281 
3282       assert(pss->queue_is_empty(), "should be empty");
3283 
3284       if (log_is_enabled(Debug, gc, task, stats)) {
3285         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3286         size_t lab_waste;
3287         size_t lab_undo_waste;
3288         pss->waste(lab_waste, lab_undo_waste);
3289         _g1h->print_termination_stats(worker_id,
3290                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3291                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3292                                       term_sec * 1000.0,                          /* evac term time */
3293                                       evac_term_attempts,                         /* evac term attempts */
3294                                       lab_waste,                                  /* alloc buffer waste */
3295                                       lab_undo_waste                              /* undo waste */
3296                                       );
3297       }
3298 
3299       // Close the inner scope so that the ResourceMark and HandleMark
3300       // destructors are executed here and are included as part of the
3301       // "GC Worker Time".
3302     }
3303     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3304   }
3305 };
3306 
3307 void G1CollectedHeap::print_termination_stats_hdr() {
3308   log_debug(gc, task, stats)("GC Termination Stats");
3309   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3310   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3311   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3312 }
3313 
3314 void G1CollectedHeap::print_termination_stats(uint worker_id,
3315                                               double elapsed_ms,
3316                                               double strong_roots_ms,
3317                                               double term_ms,
3318                                               size_t term_attempts,
3319                                               size_t alloc_buffer_waste,
3320                                               size_t undo_waste) const {
3321   log_debug(gc, task, stats)
3322               ("%3d %9.2f %9.2f %6.2f "
3323                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3324                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3325                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3326                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3327                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3328                alloc_buffer_waste * HeapWordSize / K,
3329                undo_waste * HeapWordSize / K);
3330 }
3331 
3332 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3333                                         bool class_unloading_occurred) {
3334   uint n_workers = workers()->active_workers();
3335 
3336   G1StringDedupUnlinkOrOopsDoClosure dedup_closure(is_alive, NULL, false);
3337   ParallelCleaningTask g1_unlink_task(is_alive, &dedup_closure, n_workers, class_unloading_occurred);
3338   workers()->run_task(&g1_unlink_task);
3339 }
3340 
3341 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3342                                        bool process_strings,
3343                                        bool process_string_dedup) {
3344   if (!process_strings && !process_string_dedup) {
3345     // Nothing to clean.
3346     return;
3347   }
3348 
3349   G1StringDedupUnlinkOrOopsDoClosure dedup_closure(is_alive, NULL, false);
3350   StringCleaningTask g1_unlink_task(is_alive, process_string_dedup ? &dedup_closure : NULL, process_strings);
3351   workers()->run_task(&g1_unlink_task);
3352 }
3353 
3354 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3355  private:
3356   DirtyCardQueueSet* _queue;
3357   G1CollectedHeap* _g1h;
3358  public:
3359   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3360     _queue(queue), _g1h(g1h) { }
3361 
3362   virtual void work(uint worker_id) {
3363     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3364     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3365 
3366     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3367     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3368 
3369     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3370   }
3371 };
3372 
3373 void G1CollectedHeap::redirty_logged_cards() {
3374   double redirty_logged_cards_start = os::elapsedTime();
3375 
3376   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3377   dirty_card_queue_set().reset_for_par_iteration();
3378   workers()->run_task(&redirty_task);
3379 
3380   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3381   dcq.merge_bufferlists(&dirty_card_queue_set());
3382   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3383 
3384   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3385 }
3386 
3387 // Weak Reference Processing support
3388 
3389 bool G1STWIsAliveClosure::do_object_b(oop p) {
3390   // An object is reachable if it is outside the collection set,
3391   // or is inside and copied.
3392   return !_g1h->is_in_cset(p) || p->is_forwarded();
3393 }
3394 
3395 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3396   assert(obj != NULL, "must not be NULL");
3397   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3398   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3399   // may falsely indicate that this is not the case here: however the collection set only
3400   // contains old regions when concurrent mark is not running.
3401   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3402 }
3403 
3404 // Non Copying Keep Alive closure
3405 class G1KeepAliveClosure: public OopClosure {
3406   G1CollectedHeap*_g1h;
3407 public:
3408   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3409   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3410   void do_oop(oop* p) {
3411     oop obj = *p;
3412     assert(obj != NULL, "the caller should have filtered out NULL values");
3413 
3414     const InCSetState cset_state =_g1h->in_cset_state(obj);
3415     if (!cset_state.is_in_cset_or_humongous()) {
3416       return;
3417     }
3418     if (cset_state.is_in_cset()) {
3419       assert( obj->is_forwarded(), "invariant" );
3420       *p = obj->forwardee();
3421     } else {
3422       assert(!obj->is_forwarded(), "invariant" );
3423       assert(cset_state.is_humongous(),
3424              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3425      _g1h->set_humongous_is_live(obj);
3426     }
3427   }
3428 };
3429 
3430 // Copying Keep Alive closure - can be called from both
3431 // serial and parallel code as long as different worker
3432 // threads utilize different G1ParScanThreadState instances
3433 // and different queues.
3434 
3435 class G1CopyingKeepAliveClosure: public OopClosure {
3436   G1CollectedHeap*         _g1h;
3437   G1ParScanThreadState*    _par_scan_state;
3438 
3439 public:
3440   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3441                             G1ParScanThreadState* pss):
3442     _g1h(g1h),
3443     _par_scan_state(pss)
3444   {}
3445 
3446   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3447   virtual void do_oop(      oop* p) { do_oop_work(p); }
3448 
3449   template <class T> void do_oop_work(T* p) {
3450     oop obj = RawAccess<>::oop_load(p);
3451 
3452     if (_g1h->is_in_cset_or_humongous(obj)) {
3453       // If the referent object has been forwarded (either copied
3454       // to a new location or to itself in the event of an
3455       // evacuation failure) then we need to update the reference
3456       // field and, if both reference and referent are in the G1
3457       // heap, update the RSet for the referent.
3458       //
3459       // If the referent has not been forwarded then we have to keep
3460       // it alive by policy. Therefore we have copy the referent.
3461       //
3462       // When the queue is drained (after each phase of reference processing)
3463       // the object and it's followers will be copied, the reference field set
3464       // to point to the new location, and the RSet updated.
3465       _par_scan_state->push_on_queue(p);
3466     }
3467   }
3468 };
3469 
3470 // Serial drain queue closure. Called as the 'complete_gc'
3471 // closure for each discovered list in some of the
3472 // reference processing phases.
3473 
3474 class G1STWDrainQueueClosure: public VoidClosure {
3475 protected:
3476   G1CollectedHeap* _g1h;
3477   G1ParScanThreadState* _par_scan_state;
3478 
3479   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3480 
3481 public:
3482   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3483     _g1h(g1h),
3484     _par_scan_state(pss)
3485   { }
3486 
3487   void do_void() {
3488     G1ParScanThreadState* const pss = par_scan_state();
3489     pss->trim_queue();
3490   }
3491 };
3492 
3493 // Parallel Reference Processing closures
3494 
3495 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3496 // processing during G1 evacuation pauses.
3497 
3498 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3499 private:
3500   G1CollectedHeap*          _g1h;
3501   G1ParScanThreadStateSet*  _pss;
3502   RefToScanQueueSet*        _queues;
3503   WorkGang*                 _workers;
3504 
3505 public:
3506   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3507                            G1ParScanThreadStateSet* per_thread_states,
3508                            WorkGang* workers,
3509                            RefToScanQueueSet *task_queues) :
3510     _g1h(g1h),
3511     _pss(per_thread_states),
3512     _queues(task_queues),
3513     _workers(workers)
3514   {
3515     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3516   }
3517 
3518   // Executes the given task using concurrent marking worker threads.
3519   virtual void execute(ProcessTask& task, uint ergo_workers);
3520 };
3521 
3522 // Gang task for possibly parallel reference processing
3523 
3524 class G1STWRefProcTaskProxy: public AbstractGangTask {
3525   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3526   ProcessTask&     _proc_task;
3527   G1CollectedHeap* _g1h;
3528   G1ParScanThreadStateSet* _pss;
3529   RefToScanQueueSet* _task_queues;
3530   ParallelTaskTerminator* _terminator;
3531 
3532 public:
3533   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3534                         G1CollectedHeap* g1h,
3535                         G1ParScanThreadStateSet* per_thread_states,
3536                         RefToScanQueueSet *task_queues,
3537                         ParallelTaskTerminator* terminator) :
3538     AbstractGangTask("Process reference objects in parallel"),
3539     _proc_task(proc_task),
3540     _g1h(g1h),
3541     _pss(per_thread_states),
3542     _task_queues(task_queues),
3543     _terminator(terminator)
3544   {}
3545 
3546   virtual void work(uint worker_id) {
3547     // The reference processing task executed by a single worker.
3548     ResourceMark rm;
3549     HandleMark   hm;
3550 
3551     G1STWIsAliveClosure is_alive(_g1h);
3552 
3553     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3554     pss->set_ref_discoverer(NULL);
3555 
3556     // Keep alive closure.
3557     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3558 
3559     // Complete GC closure
3560     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3561 
3562     // Call the reference processing task's work routine.
3563     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3564 
3565     // Note we cannot assert that the refs array is empty here as not all
3566     // of the processing tasks (specifically phase2 - pp2_work) execute
3567     // the complete_gc closure (which ordinarily would drain the queue) so
3568     // the queue may not be empty.
3569   }
3570 };
3571 
3572 // Driver routine for parallel reference processing.
3573 // Creates an instance of the ref processing gang
3574 // task and has the worker threads execute it.
3575 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3576   assert(_workers != NULL, "Need parallel worker threads.");
3577 
3578   assert(_workers->active_workers() >= ergo_workers,
3579          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3580          ergo_workers, _workers->active_workers());
3581   ParallelTaskTerminator terminator(ergo_workers, _queues);
3582   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3583 
3584   _workers->run_task(&proc_task_proxy, ergo_workers);
3585 }
3586 
3587 // End of weak reference support closures
3588 
3589 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3590   double ref_proc_start = os::elapsedTime();
3591 
3592   ReferenceProcessor* rp = _ref_processor_stw;
3593   assert(rp->discovery_enabled(), "should have been enabled");
3594 
3595   // Closure to test whether a referent is alive.
3596   G1STWIsAliveClosure is_alive(this);
3597 
3598   // Even when parallel reference processing is enabled, the processing
3599   // of JNI refs is serial and performed serially by the current thread
3600   // rather than by a worker. The following PSS will be used for processing
3601   // JNI refs.
3602 
3603   // Use only a single queue for this PSS.
3604   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3605   pss->set_ref_discoverer(NULL);
3606   assert(pss->queue_is_empty(), "pre-condition");
3607 
3608   // Keep alive closure.
3609   G1CopyingKeepAliveClosure keep_alive(this, pss);
3610 
3611   // Serial Complete GC closure
3612   G1STWDrainQueueClosure drain_queue(this, pss);
3613 
3614   // Setup the soft refs policy...
3615   rp->setup_policy(false);
3616 
3617   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3618 
3619   ReferenceProcessorStats stats;
3620   if (!rp->processing_is_mt()) {
3621     // Serial reference processing...
3622     stats = rp->process_discovered_references(&is_alive,
3623                                               &keep_alive,
3624                                               &drain_queue,
3625                                               NULL,
3626                                               pt);
3627   } else {
3628     uint no_of_gc_workers = workers()->active_workers();
3629 
3630     // Parallel reference processing
3631     assert(no_of_gc_workers <= rp->max_num_queues(),
3632            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3633            no_of_gc_workers,  rp->max_num_queues());
3634 
3635     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3636     stats = rp->process_discovered_references(&is_alive,
3637                                               &keep_alive,
3638                                               &drain_queue,
3639                                               &par_task_executor,
3640                                               pt);
3641   }
3642 
3643   _gc_tracer_stw->report_gc_reference_stats(stats);
3644 
3645   // We have completed copying any necessary live referent objects.
3646   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3647 
3648   make_pending_list_reachable();
3649 
3650   rp->verify_no_references_recorded();
3651 
3652   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3653   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3654 }
3655 
3656 void G1CollectedHeap::make_pending_list_reachable() {
3657   if (collector_state()->in_initial_mark_gc()) {
3658     oop pll_head = Universe::reference_pending_list();
3659     if (pll_head != NULL) {
3660       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3661       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3662     }
3663   }
3664 }
3665 
3666 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3667   double merge_pss_time_start = os::elapsedTime();
3668   per_thread_states->flush();
3669   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3670 }
3671 
3672 void G1CollectedHeap::pre_evacuate_collection_set() {
3673   _expand_heap_after_alloc_failure = true;
3674   _evacuation_failed = false;
3675 
3676   // Disable the hot card cache.
3677   _hot_card_cache->reset_hot_cache_claimed_index();
3678   _hot_card_cache->set_use_cache(false);
3679 
3680   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3681   _preserved_marks_set.assert_empty();
3682 
3683   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3684 
3685   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3686   if (collector_state()->in_initial_mark_gc()) {
3687     double start_clear_claimed_marks = os::elapsedTime();
3688 
3689     ClassLoaderDataGraph::clear_claimed_marks();
3690 
3691     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3692     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3693   }
3694 }
3695 
3696 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3697   // Should G1EvacuationFailureALot be in effect for this GC?
3698   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3699 
3700   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3701 
3702   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3703 
3704   double start_par_time_sec = os::elapsedTime();
3705   double end_par_time_sec;
3706 
3707   {
3708     const uint n_workers = workers()->active_workers();
3709     G1RootProcessor root_processor(this, n_workers);
3710     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
3711 
3712     print_termination_stats_hdr();
3713 
3714     workers()->run_task(&g1_par_task);
3715     end_par_time_sec = os::elapsedTime();
3716 
3717     // Closing the inner scope will execute the destructor
3718     // for the G1RootProcessor object. We record the current
3719     // elapsed time before closing the scope so that time
3720     // taken for the destructor is NOT included in the
3721     // reported parallel time.
3722   }
3723 
3724   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
3725   phase_times->record_par_time(par_time_ms);
3726 
3727   double code_root_fixup_time_ms =
3728         (os::elapsedTime() - end_par_time_sec) * 1000.0;
3729   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
3730 }
3731 
3732 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3733   // Also cleans the card table from temporary duplicate detection information used
3734   // during UpdateRS/ScanRS.
3735   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
3736 
3737   // Process any discovered reference objects - we have
3738   // to do this _before_ we retire the GC alloc regions
3739   // as we may have to copy some 'reachable' referent
3740   // objects (and their reachable sub-graphs) that were
3741   // not copied during the pause.
3742   process_discovered_references(per_thread_states);
3743 
3744   // FIXME
3745   // CM's reference processing also cleans up the string table.
3746   // Should we do that here also? We could, but it is a serial operation
3747   // and could significantly increase the pause time.
3748 
3749   G1STWIsAliveClosure is_alive(this);
3750   G1KeepAliveClosure keep_alive(this);
3751 
3752   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3753                               g1_policy()->phase_times()->weak_phase_times());
3754 
3755   if (G1StringDedup::is_enabled()) {
3756     double fixup_start = os::elapsedTime();
3757 
3758     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
3759 
3760     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
3761     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
3762   }
3763 
3764   if (evacuation_failed()) {
3765     restore_after_evac_failure();
3766 
3767     // Reset the G1EvacuationFailureALot counters and flags
3768     // Note: the values are reset only when an actual
3769     // evacuation failure occurs.
3770     NOT_PRODUCT(reset_evacuation_should_fail();)
3771   }
3772 
3773   _preserved_marks_set.assert_empty();
3774 
3775   _allocator->release_gc_alloc_regions(evacuation_info);
3776 
3777   merge_per_thread_state_info(per_thread_states);
3778 
3779   // Reset and re-enable the hot card cache.
3780   // Note the counts for the cards in the regions in the
3781   // collection set are reset when the collection set is freed.
3782   _hot_card_cache->reset_hot_cache();
3783   _hot_card_cache->set_use_cache(true);
3784 
3785   purge_code_root_memory();
3786 
3787   redirty_logged_cards();
3788 #if COMPILER2_OR_JVMCI
3789   double start = os::elapsedTime();
3790   DerivedPointerTable::update_pointers();
3791   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3792 #endif
3793   g1_policy()->print_age_table();
3794 }
3795 
3796 void G1CollectedHeap::record_obj_copy_mem_stats() {
3797   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3798 
3799   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3800                                                create_g1_evac_summary(&_old_evac_stats));
3801 }
3802 
3803 void G1CollectedHeap::free_region(HeapRegion* hr,
3804                                   FreeRegionList* free_list,
3805                                   bool skip_remset,
3806                                   bool skip_hot_card_cache,
3807                                   bool locked) {
3808   assert(!hr->is_free(), "the region should not be free");
3809   assert(!hr->is_empty(), "the region should not be empty");
3810   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
3811   assert(free_list != NULL, "pre-condition");
3812 
3813   if (G1VerifyBitmaps) {
3814     MemRegion mr(hr->bottom(), hr->end());
3815     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3816   }
3817 
3818   // Clear the card counts for this region.
3819   // Note: we only need to do this if the region is not young
3820   // (since we don't refine cards in young regions).
3821   if (!skip_hot_card_cache && !hr->is_young()) {
3822     _hot_card_cache->reset_card_counts(hr);
3823   }
3824   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
3825   _g1_policy->remset_tracker()->update_at_free(hr);
3826   free_list->add_ordered(hr);
3827 }
3828 
3829 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3830                                             FreeRegionList* free_list) {
3831   assert(hr->is_humongous(), "this is only for humongous regions");
3832   assert(free_list != NULL, "pre-condition");
3833   hr->clear_humongous();
3834   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
3835 }
3836 
3837 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
3838                                            const uint humongous_regions_removed) {
3839   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
3840     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3841     _old_set.bulk_remove(old_regions_removed);
3842     _humongous_set.bulk_remove(humongous_regions_removed);
3843   }
3844 
3845 }
3846 
3847 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3848   assert(list != NULL, "list can't be null");
3849   if (!list->is_empty()) {
3850     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3851     _hrm->insert_list_into_free_list(list);
3852   }
3853 }
3854 
3855 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3856   decrease_used(bytes);
3857 }
3858 
3859 class G1FreeCollectionSetTask : public AbstractGangTask {
3860 private:
3861 
3862   // Closure applied to all regions in the collection set to do work that needs to
3863   // be done serially in a single thread.
3864   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
3865   private:
3866     EvacuationInfo* _evacuation_info;
3867     const size_t* _surviving_young_words;
3868 
3869     // Bytes used in successfully evacuated regions before the evacuation.
3870     size_t _before_used_bytes;
3871     // Bytes used in unsucessfully evacuated regions before the evacuation
3872     size_t _after_used_bytes;
3873 
3874     size_t _bytes_allocated_in_old_since_last_gc;
3875 
3876     size_t _failure_used_words;
3877     size_t _failure_waste_words;
3878 
3879     FreeRegionList _local_free_list;
3880   public:
3881     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
3882       HeapRegionClosure(),
3883       _evacuation_info(evacuation_info),
3884       _surviving_young_words(surviving_young_words),
3885       _before_used_bytes(0),
3886       _after_used_bytes(0),
3887       _bytes_allocated_in_old_since_last_gc(0),
3888       _failure_used_words(0),
3889       _failure_waste_words(0),
3890       _local_free_list("Local Region List for CSet Freeing") {
3891     }
3892 
3893     virtual bool do_heap_region(HeapRegion* r) {
3894       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3895 
3896       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
3897       g1h->clear_in_cset(r);
3898 
3899       if (r->is_young()) {
3900         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
3901                "Young index %d is wrong for region %u of type %s with %u young regions",
3902                r->young_index_in_cset(),
3903                r->hrm_index(),
3904                r->get_type_str(),
3905                g1h->collection_set()->young_region_length());
3906         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
3907         r->record_surv_words_in_group(words_survived);
3908       }
3909 
3910       if (!r->evacuation_failed()) {
3911         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
3912         _before_used_bytes += r->used();
3913         g1h->free_region(r,
3914                          &_local_free_list,
3915                          true, /* skip_remset */
3916                          true, /* skip_hot_card_cache */
3917                          true  /* locked */);
3918       } else {
3919         r->uninstall_surv_rate_group();
3920         r->set_young_index_in_cset(-1);
3921         r->set_evacuation_failed(false);
3922         // When moving a young gen region to old gen, we "allocate" that whole region
3923         // there. This is in addition to any already evacuated objects. Notify the
3924         // policy about that.
3925         // Old gen regions do not cause an additional allocation: both the objects
3926         // still in the region and the ones already moved are accounted for elsewhere.
3927         if (r->is_young()) {
3928           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
3929         }
3930         // The region is now considered to be old.
3931         if(g1h->is_hetero_heap()) {
3932           if(!r->is_old()) {
3933             // The region was young before, set it as pre-matured old so that next mixed gc can move
3934             // its contents to old region which is on nv-dimm
3935             r->set_premature_old();
3936           }
3937         } else {
3938           r->set_old();
3939         }
3940         // Do some allocation statistics accounting. Regions that failed evacuation
3941         // are always made old, so there is no need to update anything in the young
3942         // gen statistics, but we need to update old gen statistics.
3943         size_t used_words = r->marked_bytes() / HeapWordSize;
3944 
3945         _failure_used_words += used_words;
3946         _failure_waste_words += HeapRegion::GrainWords - used_words;
3947 
3948         g1h->old_set_add(r);
3949         _after_used_bytes += r->used();
3950       }
3951       return false;
3952     }
3953 
3954     void complete_work() {
3955       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3956 
3957       _evacuation_info->set_regions_freed(_local_free_list.length());
3958       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
3959 
3960       g1h->prepend_to_freelist(&_local_free_list);
3961       g1h->decrement_summary_bytes(_before_used_bytes);
3962 
3963       G1Policy* policy = g1h->g1_policy();
3964       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
3965 
3966       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
3967     }
3968   };
3969 
3970   G1CollectionSet* _collection_set;
3971   G1SerialFreeCollectionSetClosure _cl;
3972   const size_t* _surviving_young_words;
3973 
3974   size_t _rs_lengths;
3975 
3976   volatile jint _serial_work_claim;
3977 
3978   struct WorkItem {
3979     uint region_idx;
3980     bool is_young;
3981     bool evacuation_failed;
3982 
3983     WorkItem(HeapRegion* r) {
3984       region_idx = r->hrm_index();
3985       is_young = r->is_young();
3986       evacuation_failed = r->evacuation_failed();
3987     }
3988   };
3989 
3990   volatile size_t _parallel_work_claim;
3991   size_t _num_work_items;
3992   WorkItem* _work_items;
3993 
3994   void do_serial_work() {
3995     // Need to grab the lock to be allowed to modify the old region list.
3996     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3997     _collection_set->iterate(&_cl);
3998   }
3999 
4000   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4001     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4002 
4003     HeapRegion* r = g1h->region_at(region_idx);
4004     assert(!g1h->is_on_master_free_list(r), "sanity");
4005 
4006     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4007 
4008     if (!is_young) {
4009       g1h->_hot_card_cache->reset_card_counts(r);
4010     }
4011 
4012     if (!evacuation_failed) {
4013       r->rem_set()->clear_locked();
4014     }
4015   }
4016 
4017   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4018   private:
4019     size_t _cur_idx;
4020     WorkItem* _work_items;
4021   public:
4022     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4023 
4024     virtual bool do_heap_region(HeapRegion* r) {
4025       _work_items[_cur_idx++] = WorkItem(r);
4026       return false;
4027     }
4028   };
4029 
4030   void prepare_work() {
4031     G1PrepareFreeCollectionSetClosure cl(_work_items);
4032     _collection_set->iterate(&cl);
4033   }
4034 
4035   void complete_work() {
4036     _cl.complete_work();
4037 
4038     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4039     policy->record_max_rs_lengths(_rs_lengths);
4040     policy->cset_regions_freed();
4041   }
4042 public:
4043   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4044     AbstractGangTask("G1 Free Collection Set"),
4045     _collection_set(collection_set),
4046     _cl(evacuation_info, surviving_young_words),
4047     _surviving_young_words(surviving_young_words),
4048     _rs_lengths(0),
4049     _serial_work_claim(0),
4050     _parallel_work_claim(0),
4051     _num_work_items(collection_set->region_length()),
4052     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4053     prepare_work();
4054   }
4055 
4056   ~G1FreeCollectionSetTask() {
4057     complete_work();
4058     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4059   }
4060 
4061   // Chunk size for work distribution. The chosen value has been determined experimentally
4062   // to be a good tradeoff between overhead and achievable parallelism.
4063   static uint chunk_size() { return 32; }
4064 
4065   virtual void work(uint worker_id) {
4066     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4067 
4068     // Claim serial work.
4069     if (_serial_work_claim == 0) {
4070       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4071       if (value == 0) {
4072         double serial_time = os::elapsedTime();
4073         do_serial_work();
4074         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4075       }
4076     }
4077 
4078     // Start parallel work.
4079     double young_time = 0.0;
4080     bool has_young_time = false;
4081     double non_young_time = 0.0;
4082     bool has_non_young_time = false;
4083 
4084     while (true) {
4085       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4086       size_t cur = end - chunk_size();
4087 
4088       if (cur >= _num_work_items) {
4089         break;
4090       }
4091 
4092       EventGCPhaseParallel event;
4093       double start_time = os::elapsedTime();
4094 
4095       end = MIN2(end, _num_work_items);
4096 
4097       for (; cur < end; cur++) {
4098         bool is_young = _work_items[cur].is_young;
4099 
4100         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4101 
4102         double end_time = os::elapsedTime();
4103         double time_taken = end_time - start_time;
4104         if (is_young) {
4105           young_time += time_taken;
4106           has_young_time = true;
4107           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4108         } else {
4109           non_young_time += time_taken;
4110           has_non_young_time = true;
4111           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4112         }
4113         start_time = end_time;
4114       }
4115     }
4116 
4117     if (has_young_time) {
4118       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4119     }
4120     if (has_non_young_time) {
4121       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4122     }
4123   }
4124 };
4125 
4126 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4127   _eden.clear();
4128 
4129   double free_cset_start_time = os::elapsedTime();
4130 
4131   {
4132     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4133     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4134 
4135     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4136 
4137     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4138                         cl.name(),
4139                         num_workers,
4140                         _collection_set.region_length());
4141     workers()->run_task(&cl, num_workers);
4142   }
4143   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4144 
4145   collection_set->clear();
4146 }
4147 
4148 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4149  private:
4150   FreeRegionList* _free_region_list;
4151   HeapRegionSet* _proxy_set;
4152   uint _humongous_objects_reclaimed;
4153   uint _humongous_regions_reclaimed;
4154   size_t _freed_bytes;
4155  public:
4156 
4157   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4158     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4159   }
4160 
4161   virtual bool do_heap_region(HeapRegion* r) {
4162     if (!r->is_starts_humongous()) {
4163       return false;
4164     }
4165 
4166     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4167 
4168     oop obj = (oop)r->bottom();
4169     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4170 
4171     // The following checks whether the humongous object is live are sufficient.
4172     // The main additional check (in addition to having a reference from the roots
4173     // or the young gen) is whether the humongous object has a remembered set entry.
4174     //
4175     // A humongous object cannot be live if there is no remembered set for it
4176     // because:
4177     // - there can be no references from within humongous starts regions referencing
4178     // the object because we never allocate other objects into them.
4179     // (I.e. there are no intra-region references that may be missed by the
4180     // remembered set)
4181     // - as soon there is a remembered set entry to the humongous starts region
4182     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4183     // until the end of a concurrent mark.
4184     //
4185     // It is not required to check whether the object has been found dead by marking
4186     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4187     // all objects allocated during that time are considered live.
4188     // SATB marking is even more conservative than the remembered set.
4189     // So if at this point in the collection there is no remembered set entry,
4190     // nobody has a reference to it.
4191     // At the start of collection we flush all refinement logs, and remembered sets
4192     // are completely up-to-date wrt to references to the humongous object.
4193     //
4194     // Other implementation considerations:
4195     // - never consider object arrays at this time because they would pose
4196     // considerable effort for cleaning up the the remembered sets. This is
4197     // required because stale remembered sets might reference locations that
4198     // are currently allocated into.
4199     uint region_idx = r->hrm_index();
4200     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4201         !r->rem_set()->is_empty()) {
4202       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4203                                region_idx,
4204                                (size_t)obj->size() * HeapWordSize,
4205                                p2i(r->bottom()),
4206                                r->rem_set()->occupied(),
4207                                r->rem_set()->strong_code_roots_list_length(),
4208                                next_bitmap->is_marked(r->bottom()),
4209                                g1h->is_humongous_reclaim_candidate(region_idx),
4210                                obj->is_typeArray()
4211                               );
4212       return false;
4213     }
4214 
4215     guarantee(obj->is_typeArray(),
4216               "Only eagerly reclaiming type arrays is supported, but the object "
4217               PTR_FORMAT " is not.", p2i(r->bottom()));
4218 
4219     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4220                              region_idx,
4221                              (size_t)obj->size() * HeapWordSize,
4222                              p2i(r->bottom()),
4223                              r->rem_set()->occupied(),
4224                              r->rem_set()->strong_code_roots_list_length(),
4225                              next_bitmap->is_marked(r->bottom()),
4226                              g1h->is_humongous_reclaim_candidate(region_idx),
4227                              obj->is_typeArray()
4228                             );
4229 
4230     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4231     cm->humongous_object_eagerly_reclaimed(r);
4232     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4233            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4234            region_idx,
4235            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4236            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4237     _humongous_objects_reclaimed++;
4238     do {
4239       HeapRegion* next = g1h->next_region_in_humongous(r);
4240       _freed_bytes += r->used();
4241       r->set_containing_set(NULL);
4242       _humongous_regions_reclaimed++;
4243       g1h->free_humongous_region(r, _free_region_list);
4244       r = next;
4245     } while (r != NULL);
4246 
4247     return false;
4248   }
4249 
4250   uint humongous_objects_reclaimed() {
4251     return _humongous_objects_reclaimed;
4252   }
4253 
4254   uint humongous_regions_reclaimed() {
4255     return _humongous_regions_reclaimed;
4256   }
4257 
4258   size_t bytes_freed() const {
4259     return _freed_bytes;
4260   }
4261 };
4262 
4263 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4264   assert_at_safepoint_on_vm_thread();
4265 
4266   if (!G1EagerReclaimHumongousObjects ||
4267       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4268     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4269     return;
4270   }
4271 
4272   double start_time = os::elapsedTime();
4273 
4274   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4275 
4276   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4277   heap_region_iterate(&cl);
4278 
4279   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4280 
4281   G1HRPrinter* hrp = hr_printer();
4282   if (hrp->is_active()) {
4283     FreeRegionListIterator iter(&local_cleanup_list);
4284     while (iter.more_available()) {
4285       HeapRegion* hr = iter.get_next();
4286       hrp->cleanup(hr);
4287     }
4288   }
4289 
4290   prepend_to_freelist(&local_cleanup_list);
4291   decrement_summary_bytes(cl.bytes_freed());
4292 
4293   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4294                                                                     cl.humongous_objects_reclaimed());
4295 }
4296 
4297 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4298 public:
4299   virtual bool do_heap_region(HeapRegion* r) {
4300     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4301     G1CollectedHeap::heap()->clear_in_cset(r);
4302     r->set_young_index_in_cset(-1);
4303     return false;
4304   }
4305 };
4306 
4307 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4308   G1AbandonCollectionSetClosure cl;
4309   collection_set->iterate(&cl);
4310 
4311   collection_set->clear();
4312   collection_set->stop_incremental_building();
4313 }
4314 
4315 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4316   return _allocator->is_retained_old_region(hr);
4317 }
4318 
4319 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4320   _eden.add(hr);
4321   _g1_policy->set_region_eden(hr);
4322 }
4323 
4324 #ifdef ASSERT
4325 
4326 class NoYoungRegionsClosure: public HeapRegionClosure {
4327 private:
4328   bool _success;
4329 public:
4330   NoYoungRegionsClosure() : _success(true) { }
4331   bool do_heap_region(HeapRegion* r) {
4332     if (r->is_young()) {
4333       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4334                             p2i(r->bottom()), p2i(r->end()));
4335       _success = false;
4336     }
4337     return false;
4338   }
4339   bool success() { return _success; }
4340 };
4341 
4342 bool G1CollectedHeap::check_young_list_empty() {
4343   bool ret = (young_regions_count() == 0);
4344 
4345   NoYoungRegionsClosure closure;
4346   heap_region_iterate(&closure);
4347   ret = ret && closure.success();
4348 
4349   return ret;
4350 }
4351 
4352 #endif // ASSERT
4353 
4354 class TearDownRegionSetsClosure : public HeapRegionClosure {
4355   HeapRegionSet *_old_set;
4356 
4357 public:
4358   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4359 
4360   bool do_heap_region(HeapRegion* r) {
4361     if (r->is_old()) {
4362       _old_set->remove(r);
4363     } else if(r->is_young()) {
4364       r->uninstall_surv_rate_group();
4365     } else {
4366       // We ignore free regions, we'll empty the free list afterwards.
4367       // We ignore humongous and archive regions, we're not tearing down these
4368       // sets.
4369       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4370              "it cannot be another type");
4371     }
4372     return false;
4373   }
4374 
4375   ~TearDownRegionSetsClosure() {
4376     assert(_old_set->is_empty(), "post-condition");
4377   }
4378 };
4379 
4380 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4381   assert_at_safepoint_on_vm_thread();
4382 
4383   if (!free_list_only) {
4384     TearDownRegionSetsClosure cl(&_old_set);
4385     heap_region_iterate(&cl);
4386 
4387     // Note that emptying the _young_list is postponed and instead done as
4388     // the first step when rebuilding the regions sets again. The reason for
4389     // this is that during a full GC string deduplication needs to know if
4390     // a collected region was young or old when the full GC was initiated.
4391   }
4392   _hrm->remove_all_free_regions();
4393 }
4394 
4395 void G1CollectedHeap::increase_used(size_t bytes) {
4396   _summary_bytes_used += bytes;
4397 }
4398 
4399 void G1CollectedHeap::decrease_used(size_t bytes) {
4400   assert(_summary_bytes_used >= bytes,
4401          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4402          _summary_bytes_used, bytes);
4403   _summary_bytes_used -= bytes;
4404 }
4405 
4406 void G1CollectedHeap::set_used(size_t bytes) {
4407   _summary_bytes_used = bytes;
4408 }
4409 
4410 class RebuildRegionSetsClosure : public HeapRegionClosure {
4411 private:
4412   bool _free_list_only;
4413 
4414   HeapRegionSet* _old_set;
4415   HeapRegionManager* _hrm;
4416 
4417   size_t _total_used;
4418 
4419 public:
4420   RebuildRegionSetsClosure(bool free_list_only,
4421                            HeapRegionSet* old_set,
4422                            HeapRegionManager* hrm) :
4423     _free_list_only(free_list_only),
4424     _old_set(old_set), _hrm(hrm), _total_used(0) {
4425     assert(_hrm->num_free_regions() == 0, "pre-condition");
4426     if (!free_list_only) {
4427       assert(_old_set->is_empty(), "pre-condition");
4428     }
4429   }
4430 
4431   bool do_heap_region(HeapRegion* r) {
4432     if (r->is_empty()) {
4433       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4434       // Add free regions to the free list
4435       r->set_free();
4436       _hrm->insert_into_free_list(r);
4437     } else if (!_free_list_only) {
4438       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4439 
4440       if (r->is_archive() || r->is_humongous()) {
4441         // We ignore archive and humongous regions. We left these sets unchanged.
4442       } else {
4443         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4444         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4445         r->move_to_old();
4446         _old_set->add(r);
4447       }
4448       _total_used += r->used();
4449     }
4450 
4451     return false;
4452   }
4453 
4454   size_t total_used() {
4455     return _total_used;
4456   }
4457 };
4458 
4459 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4460   assert_at_safepoint_on_vm_thread();
4461 
4462   if (!free_list_only) {
4463     _eden.clear();
4464     _survivor.clear();
4465   }
4466 
4467   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4468   heap_region_iterate(&cl);
4469 
4470   if (!free_list_only) {
4471     set_used(cl.total_used());
4472     if (_archive_allocator != NULL) {
4473       _archive_allocator->clear_used();
4474     }
4475   }
4476   assert(used() == recalculate_used(),
4477          "inconsistent used(), value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4478          used(), recalculate_used());
4479 }
4480 
4481 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4482   HeapRegion* hr = heap_region_containing(p);
4483   return hr->is_in(p);
4484 }
4485 
4486 // Methods for the mutator alloc region
4487 
4488 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4489                                                       bool force) {
4490   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4491   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4492   if (force || should_allocate) {
4493     HeapRegion* new_alloc_region = new_region(word_size,
4494                                               false /* is_old */,
4495                                               false /* do_expand */);
4496     if (new_alloc_region != NULL) {
4497       set_region_short_lived_locked(new_alloc_region);
4498       _hr_printer.alloc(new_alloc_region, !should_allocate);
4499       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4500       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4501       return new_alloc_region;
4502     }
4503   }
4504   return NULL;
4505 }
4506 
4507 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4508                                                   size_t allocated_bytes) {
4509   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4510   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4511 
4512   collection_set()->add_eden_region(alloc_region);
4513   increase_used(allocated_bytes);
4514   _hr_printer.retire(alloc_region);
4515   // We update the eden sizes here, when the region is retired,
4516   // instead of when it's allocated, since this is the point that its
4517   // used space has been recorded in _summary_bytes_used.
4518   g1mm()->update_eden_size();
4519 }
4520 
4521 // Methods for the GC alloc regions
4522 
4523 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4524   if (dest.is_old()) {
4525     return true;
4526   } else {
4527     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4528   }
4529 }
4530 
4531 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4532   assert(FreeList_lock->owned_by_self(), "pre-condition");
4533 
4534   if (!has_more_regions(dest)) {
4535     return NULL;
4536   }
4537 
4538   const bool is_survivor = dest.is_young();
4539 
4540   HeapRegion* new_alloc_region = new_region(word_size,
4541                                             !is_survivor,
4542                                             true /* do_expand */);
4543   if (new_alloc_region != NULL) {
4544     if (is_survivor) {
4545       new_alloc_region->set_survivor();
4546       _survivor.add(new_alloc_region);
4547       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4548     } else {
4549       new_alloc_region->set_old();
4550       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4551     }
4552     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4553     _hr_printer.alloc(new_alloc_region);
4554     bool during_im = collector_state()->in_initial_mark_gc();
4555     new_alloc_region->note_start_of_copying(during_im);
4556     return new_alloc_region;
4557   }
4558   return NULL;
4559 }
4560 
4561 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4562                                              size_t allocated_bytes,
4563                                              InCSetState dest) {
4564   bool during_im = collector_state()->in_initial_mark_gc();
4565   alloc_region->note_end_of_copying(during_im);
4566   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4567   if (dest.is_old()) {
4568     old_set_add(alloc_region);
4569   }
4570   _hr_printer.retire(alloc_region);
4571 }
4572 
4573 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4574   bool expanded = false;
4575   uint index = _hrm->find_highest_free(&expanded);
4576 
4577   if (index != G1_NO_HRM_INDEX) {
4578     if (expanded) {
4579       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4580                                 HeapRegion::GrainWords * HeapWordSize);
4581     }
4582     _hrm->allocate_free_regions_starting_at(index, 1);
4583     return region_at(index);
4584   }
4585   return NULL;
4586 }
4587 
4588 // Optimized nmethod scanning
4589 
4590 class RegisterNMethodOopClosure: public OopClosure {
4591   G1CollectedHeap* _g1h;
4592   nmethod* _nm;
4593 
4594   template <class T> void do_oop_work(T* p) {
4595     T heap_oop = RawAccess<>::oop_load(p);
4596     if (!CompressedOops::is_null(heap_oop)) {
4597       oop obj = CompressedOops::decode_not_null(heap_oop);
4598       HeapRegion* hr = _g1h->heap_region_containing(obj);
4599       assert(!hr->is_continues_humongous(),
4600              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4601              " starting at " HR_FORMAT,
4602              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4603 
4604       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4605       hr->add_strong_code_root_locked(_nm);
4606     }
4607   }
4608 
4609 public:
4610   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4611     _g1h(g1h), _nm(nm) {}
4612 
4613   void do_oop(oop* p)       { do_oop_work(p); }
4614   void do_oop(narrowOop* p) { do_oop_work(p); }
4615 };
4616 
4617 class UnregisterNMethodOopClosure: public OopClosure {
4618   G1CollectedHeap* _g1h;
4619   nmethod* _nm;
4620 
4621   template <class T> void do_oop_work(T* p) {
4622     T heap_oop = RawAccess<>::oop_load(p);
4623     if (!CompressedOops::is_null(heap_oop)) {
4624       oop obj = CompressedOops::decode_not_null(heap_oop);
4625       HeapRegion* hr = _g1h->heap_region_containing(obj);
4626       assert(!hr->is_continues_humongous(),
4627              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4628              " starting at " HR_FORMAT,
4629              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4630 
4631       hr->remove_strong_code_root(_nm);
4632     }
4633   }
4634 
4635 public:
4636   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4637     _g1h(g1h), _nm(nm) {}
4638 
4639   void do_oop(oop* p)       { do_oop_work(p); }
4640   void do_oop(narrowOop* p) { do_oop_work(p); }
4641 };
4642 
4643 // Returns true if the reference points to an object that
4644 // can move in an incremental collection.
4645 bool G1CollectedHeap::is_scavengable(oop obj) {
4646   HeapRegion* hr = heap_region_containing(obj);
4647   return !hr->is_pinned();
4648 }
4649 
4650 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4651   guarantee(nm != NULL, "sanity");
4652   RegisterNMethodOopClosure reg_cl(this, nm);
4653   nm->oops_do(&reg_cl);
4654 }
4655 
4656 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4657   guarantee(nm != NULL, "sanity");
4658   UnregisterNMethodOopClosure reg_cl(this, nm);
4659   nm->oops_do(&reg_cl, true);
4660 }
4661 
4662 void G1CollectedHeap::purge_code_root_memory() {
4663   double purge_start = os::elapsedTime();
4664   G1CodeRootSet::purge();
4665   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4666   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4667 }
4668 
4669 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4670   G1CollectedHeap* _g1h;
4671 
4672 public:
4673   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4674     _g1h(g1h) {}
4675 
4676   void do_code_blob(CodeBlob* cb) {
4677     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4678     if (nm == NULL) {
4679       return;
4680     }
4681 
4682     if (ScavengeRootsInCode) {
4683       _g1h->register_nmethod(nm);
4684     }
4685   }
4686 };
4687 
4688 void G1CollectedHeap::rebuild_strong_code_roots() {
4689   RebuildStrongCodeRootClosure blob_cl(this);
4690   CodeCache::blobs_do(&blob_cl);
4691 }
4692 
4693 void G1CollectedHeap::initialize_serviceability() {
4694   _g1mm->initialize_serviceability();
4695 }
4696 
4697 MemoryUsage G1CollectedHeap::memory_usage() {
4698   return _g1mm->memory_usage();
4699 }
4700 
4701 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4702   return _g1mm->memory_managers();
4703 }
4704 
4705 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4706   return _g1mm->memory_pools();
4707 }