1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  56 #include "gc/g1/g1StringDedup.hpp"
  57 #include "gc/g1/g1ThreadLocalData.hpp"
  58 #include "gc/g1/g1YCTypes.hpp"
  59 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  60 #include "gc/g1/heapRegion.inline.hpp"
  61 #include "gc/g1/heapRegionRemSet.hpp"
  62 #include "gc/g1/heapRegionSet.inline.hpp"
  63 #include "gc/g1/vm_operations_g1.hpp"
  64 #include "gc/shared/adaptiveSizePolicy.hpp"
  65 #include "gc/shared/gcBehaviours.hpp"
  66 #include "gc/shared/gcHeapSummary.hpp"
  67 #include "gc/shared/gcId.hpp"
  68 #include "gc/shared/gcLocker.hpp"
  69 #include "gc/shared/gcTimer.hpp"
  70 #include "gc/shared/gcTrace.hpp"
  71 #include "gc/shared/gcTraceTime.inline.hpp"
  72 #include "gc/shared/generationSpec.hpp"
  73 #include "gc/shared/isGCActiveMark.hpp"
  74 #include "gc/shared/oopStorageParState.hpp"
  75 #include "gc/shared/parallelCleaning.hpp"
  76 #include "gc/shared/preservedMarks.inline.hpp"
  77 #include "gc/shared/suspendibleThreadSet.hpp"
  78 #include "gc/shared/referenceProcessor.inline.hpp"
  79 #include "gc/shared/taskqueue.inline.hpp"
  80 #include "gc/shared/weakProcessor.inline.hpp"
  81 #include "logging/log.hpp"
  82 #include "memory/allocation.hpp"
  83 #include "memory/iterator.hpp"
  84 #include "memory/resourceArea.hpp"
  85 #include "oops/access.inline.hpp"
  86 #include "oops/compressedOops.inline.hpp"
  87 #include "oops/oop.inline.hpp"
  88 #include "runtime/atomic.hpp"
  89 #include "runtime/flags/flagSetting.hpp"
  90 #include "runtime/handles.inline.hpp"
  91 #include "runtime/init.hpp"
  92 #include "runtime/orderAccess.hpp"
  93 #include "runtime/threadSMR.hpp"
  94 #include "runtime/vmThread.hpp"
  95 #include "utilities/align.hpp"
  96 #include "utilities/globalDefinitions.hpp"
  97 #include "utilities/stack.inline.hpp"
  98 
  99 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 100 
 101 // INVARIANTS/NOTES
 102 //
 103 // All allocation activity covered by the G1CollectedHeap interface is
 104 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 105 // and allocate_new_tlab, which are the "entry" points to the
 106 // allocation code from the rest of the JVM.  (Note that this does not
 107 // apply to TLAB allocation, which is not part of this interface: it
 108 // is done by clients of this interface.)
 109 
 110 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 111  private:
 112   size_t _num_dirtied;
 113   G1CollectedHeap* _g1h;
 114   G1CardTable* _g1_ct;
 115 
 116   HeapRegion* region_for_card(jbyte* card_ptr) const {
 117     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 118   }
 119 
 120   bool will_become_free(HeapRegion* hr) const {
 121     // A region will be freed by free_collection_set if the region is in the
 122     // collection set and has not had an evacuation failure.
 123     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 124   }
 125 
 126  public:
 127   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 128     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 129 
 130   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 131     HeapRegion* hr = region_for_card(card_ptr);
 132 
 133     // Should only dirty cards in regions that won't be freed.
 134     if (!will_become_free(hr)) {
 135       *card_ptr = G1CardTable::dirty_card_val();
 136       _num_dirtied++;
 137     }
 138 
 139     return true;
 140   }
 141 
 142   size_t num_dirtied()   const { return _num_dirtied; }
 143 };
 144 
 145 
 146 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 147   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 148 }
 149 
 150 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 151   // The from card cache is not the memory that is actually committed. So we cannot
 152   // take advantage of the zero_filled parameter.
 153   reset_from_card_cache(start_idx, num_regions);
 154 }
 155 
 156 
 157 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 158                                              MemRegion mr) {
 159   return new HeapRegion(hrs_index, bot(), mr);
 160 }
 161 
 162 // Private methods.
 163 
 164 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 165   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 166          "the only time we use this to allocate a humongous region is "
 167          "when we are allocating a single humongous region");
 168 
 169   HeapRegion* res = _hrm->allocate_free_region(is_old);
 170 
 171   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 172     // Currently, only attempts to allocate GC alloc regions set
 173     // do_expand to true. So, we should only reach here during a
 174     // safepoint. If this assumption changes we might have to
 175     // reconsider the use of _expand_heap_after_alloc_failure.
 176     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 177 
 178     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 179                               word_size * HeapWordSize);
 180 
 181     if (expand(word_size * HeapWordSize)) {
 182       // Given that expand() succeeded in expanding the heap, and we
 183       // always expand the heap by an amount aligned to the heap
 184       // region size, the free list should in theory not be empty.
 185       // In either case allocate_free_region() will check for NULL.
 186       res = _hrm->allocate_free_region(is_old);
 187     } else {
 188       _expand_heap_after_alloc_failure = false;
 189     }
 190   }
 191   return res;
 192 }
 193 
 194 HeapWord*
 195 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 196                                                            uint num_regions,
 197                                                            size_t word_size) {
 198   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 199   assert(is_humongous(word_size), "word_size should be humongous");
 200   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 201 
 202   // Index of last region in the series.
 203   uint last = first + num_regions - 1;
 204 
 205   // We need to initialize the region(s) we just discovered. This is
 206   // a bit tricky given that it can happen concurrently with
 207   // refinement threads refining cards on these regions and
 208   // potentially wanting to refine the BOT as they are scanning
 209   // those cards (this can happen shortly after a cleanup; see CR
 210   // 6991377). So we have to set up the region(s) carefully and in
 211   // a specific order.
 212 
 213   // The word size sum of all the regions we will allocate.
 214   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 215   assert(word_size <= word_size_sum, "sanity");
 216 
 217   // This will be the "starts humongous" region.
 218   HeapRegion* first_hr = region_at(first);
 219   // The header of the new object will be placed at the bottom of
 220   // the first region.
 221   HeapWord* new_obj = first_hr->bottom();
 222   // This will be the new top of the new object.
 223   HeapWord* obj_top = new_obj + word_size;
 224 
 225   // First, we need to zero the header of the space that we will be
 226   // allocating. When we update top further down, some refinement
 227   // threads might try to scan the region. By zeroing the header we
 228   // ensure that any thread that will try to scan the region will
 229   // come across the zero klass word and bail out.
 230   //
 231   // NOTE: It would not have been correct to have used
 232   // CollectedHeap::fill_with_object() and make the space look like
 233   // an int array. The thread that is doing the allocation will
 234   // later update the object header to a potentially different array
 235   // type and, for a very short period of time, the klass and length
 236   // fields will be inconsistent. This could cause a refinement
 237   // thread to calculate the object size incorrectly.
 238   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 239 
 240   // Next, pad out the unused tail of the last region with filler
 241   // objects, for improved usage accounting.
 242   // How many words we use for filler objects.
 243   size_t word_fill_size = word_size_sum - word_size;
 244 
 245   // How many words memory we "waste" which cannot hold a filler object.
 246   size_t words_not_fillable = 0;
 247 
 248   if (word_fill_size >= min_fill_size()) {
 249     fill_with_objects(obj_top, word_fill_size);
 250   } else if (word_fill_size > 0) {
 251     // We have space to fill, but we cannot fit an object there.
 252     words_not_fillable = word_fill_size;
 253     word_fill_size = 0;
 254   }
 255 
 256   // We will set up the first region as "starts humongous". This
 257   // will also update the BOT covering all the regions to reflect
 258   // that there is a single object that starts at the bottom of the
 259   // first region.
 260   first_hr->set_starts_humongous(obj_top, word_fill_size);
 261   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 262   // Then, if there are any, we will set up the "continues
 263   // humongous" regions.
 264   HeapRegion* hr = NULL;
 265   for (uint i = first + 1; i <= last; ++i) {
 266     hr = region_at(i);
 267     hr->set_continues_humongous(first_hr);
 268     _g1_policy->remset_tracker()->update_at_allocate(hr);
 269   }
 270 
 271   // Up to this point no concurrent thread would have been able to
 272   // do any scanning on any region in this series. All the top
 273   // fields still point to bottom, so the intersection between
 274   // [bottom,top] and [card_start,card_end] will be empty. Before we
 275   // update the top fields, we'll do a storestore to make sure that
 276   // no thread sees the update to top before the zeroing of the
 277   // object header and the BOT initialization.
 278   OrderAccess::storestore();
 279 
 280   // Now, we will update the top fields of the "continues humongous"
 281   // regions except the last one.
 282   for (uint i = first; i < last; ++i) {
 283     hr = region_at(i);
 284     hr->set_top(hr->end());
 285   }
 286 
 287   hr = region_at(last);
 288   // If we cannot fit a filler object, we must set top to the end
 289   // of the humongous object, otherwise we cannot iterate the heap
 290   // and the BOT will not be complete.
 291   hr->set_top(hr->end() - words_not_fillable);
 292 
 293   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 294          "obj_top should be in last region");
 295 
 296   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 297 
 298   assert(words_not_fillable == 0 ||
 299          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 300          "Miscalculation in humongous allocation");
 301 
 302   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 303 
 304   for (uint i = first; i <= last; ++i) {
 305     hr = region_at(i);
 306     _humongous_set.add(hr);
 307     _hr_printer.alloc(hr);
 308   }
 309 
 310   return new_obj;
 311 }
 312 
 313 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 314   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 315   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 316 }
 317 
 318 // If could fit into free regions w/o expansion, try.
 319 // Otherwise, if can expand, do so.
 320 // Otherwise, if using ex regions might help, try with ex given back.
 321 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 322   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 323 
 324   _verifier->verify_region_sets_optional();
 325 
 326   uint first = G1_NO_HRM_INDEX;
 327   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 328 
 329   if (obj_regions == 1) {
 330     // Only one region to allocate, try to use a fast path by directly allocating
 331     // from the free lists. Do not try to expand here, we will potentially do that
 332     // later.
 333     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 334     if (hr != NULL) {
 335       first = hr->hrm_index();
 336     }
 337   } else {
 338     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 339     // are lucky enough to find some.
 340     first = _hrm->find_contiguous_only_empty(obj_regions);
 341     if (first != G1_NO_HRM_INDEX) {
 342       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 343     }
 344   }
 345 
 346   if (first == G1_NO_HRM_INDEX) {
 347     // Policy: We could not find enough regions for the humongous object in the
 348     // free list. Look through the heap to find a mix of free and uncommitted regions.
 349     // If so, try expansion.
 350     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 351     if (first != G1_NO_HRM_INDEX) {
 352       // We found something. Make sure these regions are committed, i.e. expand
 353       // the heap. Alternatively we could do a defragmentation GC.
 354       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 355                                     word_size * HeapWordSize);
 356 
 357       _hrm->expand_at(first, obj_regions, workers());
 358       g1_policy()->record_new_heap_size(num_regions());
 359 
 360 #ifdef ASSERT
 361       for (uint i = first; i < first + obj_regions; ++i) {
 362         HeapRegion* hr = region_at(i);
 363         assert(hr->is_free(), "sanity");
 364         assert(hr->is_empty(), "sanity");
 365         assert(is_on_master_free_list(hr), "sanity");
 366       }
 367 #endif
 368       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 369     } else {
 370       // Policy: Potentially trigger a defragmentation GC.
 371     }
 372   }
 373 
 374   HeapWord* result = NULL;
 375   if (first != G1_NO_HRM_INDEX) {
 376     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 377     assert(result != NULL, "it should always return a valid result");
 378 
 379     // A successful humongous object allocation changes the used space
 380     // information of the old generation so we need to recalculate the
 381     // sizes and update the jstat counters here.
 382     g1mm()->update_sizes();
 383   }
 384 
 385   _verifier->verify_region_sets_optional();
 386 
 387   return result;
 388 }
 389 
 390 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 391                                              size_t requested_size,
 392                                              size_t* actual_size) {
 393   assert_heap_not_locked_and_not_at_safepoint();
 394   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 395 
 396   return attempt_allocation(min_size, requested_size, actual_size);
 397 }
 398 
 399 HeapWord*
 400 G1CollectedHeap::mem_allocate(size_t word_size,
 401                               bool*  gc_overhead_limit_was_exceeded) {
 402   assert_heap_not_locked_and_not_at_safepoint();
 403 
 404   if (is_humongous(word_size)) {
 405     return attempt_allocation_humongous(word_size);
 406   }
 407   size_t dummy = 0;
 408   return attempt_allocation(word_size, word_size, &dummy);
 409 }
 410 
 411 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 412   ResourceMark rm; // For retrieving the thread names in log messages.
 413 
 414   // Make sure you read the note in attempt_allocation_humongous().
 415 
 416   assert_heap_not_locked_and_not_at_safepoint();
 417   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 418          "be called for humongous allocation requests");
 419 
 420   // We should only get here after the first-level allocation attempt
 421   // (attempt_allocation()) failed to allocate.
 422 
 423   // We will loop until a) we manage to successfully perform the
 424   // allocation or b) we successfully schedule a collection which
 425   // fails to perform the allocation. b) is the only case when we'll
 426   // return NULL.
 427   HeapWord* result = NULL;
 428   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 429     bool should_try_gc;
 430     uint gc_count_before;
 431 
 432     {
 433       MutexLockerEx x(Heap_lock);
 434       result = _allocator->attempt_allocation_locked(word_size);
 435       if (result != NULL) {
 436         return result;
 437       }
 438 
 439       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 440       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 441       // waiting because the GCLocker is active to not wait too long.
 442       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 443         // No need for an ergo message here, can_expand_young_list() does this when
 444         // it returns true.
 445         result = _allocator->attempt_allocation_force(word_size);
 446         if (result != NULL) {
 447           return result;
 448         }
 449       }
 450       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 451       // the GCLocker initiated GC has been performed and then retry. This includes
 452       // the case when the GC Locker is not active but has not been performed.
 453       should_try_gc = !GCLocker::needs_gc();
 454       // Read the GC count while still holding the Heap_lock.
 455       gc_count_before = total_collections();
 456     }
 457 
 458     if (should_try_gc) {
 459       bool succeeded;
 460       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 461                                    GCCause::_g1_inc_collection_pause);
 462       if (result != NULL) {
 463         assert(succeeded, "only way to get back a non-NULL result");
 464         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 465                              Thread::current()->name(), p2i(result));
 466         return result;
 467       }
 468 
 469       if (succeeded) {
 470         // We successfully scheduled a collection which failed to allocate. No
 471         // point in trying to allocate further. We'll just return NULL.
 472         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 473                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 474         return NULL;
 475       }
 476       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 477                            Thread::current()->name(), word_size);
 478     } else {
 479       // Failed to schedule a collection.
 480       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 481         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 482                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 483         return NULL;
 484       }
 485       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 486       // The GCLocker is either active or the GCLocker initiated
 487       // GC has not yet been performed. Stall until it is and
 488       // then retry the allocation.
 489       GCLocker::stall_until_clear();
 490       gclocker_retry_count += 1;
 491     }
 492 
 493     // We can reach here if we were unsuccessful in scheduling a
 494     // collection (because another thread beat us to it) or if we were
 495     // stalled due to the GC locker. In either can we should retry the
 496     // allocation attempt in case another thread successfully
 497     // performed a collection and reclaimed enough space. We do the
 498     // first attempt (without holding the Heap_lock) here and the
 499     // follow-on attempt will be at the start of the next loop
 500     // iteration (after taking the Heap_lock).
 501     size_t dummy = 0;
 502     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 503     if (result != NULL) {
 504       return result;
 505     }
 506 
 507     // Give a warning if we seem to be looping forever.
 508     if ((QueuedAllocationWarningCount > 0) &&
 509         (try_count % QueuedAllocationWarningCount == 0)) {
 510       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 511                              Thread::current()->name(), try_count, word_size);
 512     }
 513   }
 514 
 515   ShouldNotReachHere();
 516   return NULL;
 517 }
 518 
 519 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 520   assert_at_safepoint_on_vm_thread();
 521   if (_archive_allocator == NULL) {
 522     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 523   }
 524 }
 525 
 526 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 527   // Allocations in archive regions cannot be of a size that would be considered
 528   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 529   // may be different at archive-restore time.
 530   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 531 }
 532 
 533 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 534   assert_at_safepoint_on_vm_thread();
 535   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 536   if (is_archive_alloc_too_large(word_size)) {
 537     return NULL;
 538   }
 539   return _archive_allocator->archive_mem_allocate(word_size);
 540 }
 541 
 542 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 543                                               size_t end_alignment_in_bytes) {
 544   assert_at_safepoint_on_vm_thread();
 545   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 546 
 547   // Call complete_archive to do the real work, filling in the MemRegion
 548   // array with the archive regions.
 549   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 550   delete _archive_allocator;
 551   _archive_allocator = NULL;
 552 }
 553 
 554 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 555   assert(ranges != NULL, "MemRegion array NULL");
 556   assert(count != 0, "No MemRegions provided");
 557   MemRegion reserved = _hrm->reserved();
 558   for (size_t i = 0; i < count; i++) {
 559     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 560       return false;
 561     }
 562   }
 563   return true;
 564 }
 565 
 566 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 567                                             size_t count,
 568                                             bool open) {
 569   assert(!is_init_completed(), "Expect to be called at JVM init time");
 570   assert(ranges != NULL, "MemRegion array NULL");
 571   assert(count != 0, "No MemRegions provided");
 572   MutexLockerEx x(Heap_lock);
 573 
 574   MemRegion reserved = _hrm->reserved();
 575   HeapWord* prev_last_addr = NULL;
 576   HeapRegion* prev_last_region = NULL;
 577 
 578   // Temporarily disable pretouching of heap pages. This interface is used
 579   // when mmap'ing archived heap data in, so pre-touching is wasted.
 580   FlagSetting fs(AlwaysPreTouch, false);
 581 
 582   // Enable archive object checking used by G1MarkSweep. We have to let it know
 583   // about each archive range, so that objects in those ranges aren't marked.
 584   G1ArchiveAllocator::enable_archive_object_check();
 585 
 586   // For each specified MemRegion range, allocate the corresponding G1
 587   // regions and mark them as archive regions. We expect the ranges
 588   // in ascending starting address order, without overlap.
 589   for (size_t i = 0; i < count; i++) {
 590     MemRegion curr_range = ranges[i];
 591     HeapWord* start_address = curr_range.start();
 592     size_t word_size = curr_range.word_size();
 593     HeapWord* last_address = curr_range.last();
 594     size_t commits = 0;
 595 
 596     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 597               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 598               p2i(start_address), p2i(last_address));
 599     guarantee(start_address > prev_last_addr,
 600               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 601               p2i(start_address), p2i(prev_last_addr));
 602     prev_last_addr = last_address;
 603 
 604     // Check for ranges that start in the same G1 region in which the previous
 605     // range ended, and adjust the start address so we don't try to allocate
 606     // the same region again. If the current range is entirely within that
 607     // region, skip it, just adjusting the recorded top.
 608     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 609     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 610       start_address = start_region->end();
 611       if (start_address > last_address) {
 612         increase_used(word_size * HeapWordSize);
 613         start_region->set_top(last_address + 1);
 614         continue;
 615       }
 616       start_region->set_top(start_address);
 617       curr_range = MemRegion(start_address, last_address + 1);
 618       start_region = _hrm->addr_to_region(start_address);
 619     }
 620 
 621     // Perform the actual region allocation, exiting if it fails.
 622     // Then note how much new space we have allocated.
 623     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 624       return false;
 625     }
 626     increase_used(word_size * HeapWordSize);
 627     if (commits != 0) {
 628       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 629                                 HeapRegion::GrainWords * HeapWordSize * commits);
 630 
 631     }
 632 
 633     // Mark each G1 region touched by the range as archive, add it to
 634     // the old set, and set top.
 635     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 636     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 637     prev_last_region = last_region;
 638 
 639     while (curr_region != NULL) {
 640       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 641              "Region already in use (index %u)", curr_region->hrm_index());
 642       if (open) {
 643         curr_region->set_open_archive();
 644       } else {
 645         curr_region->set_closed_archive();
 646       }
 647       _hr_printer.alloc(curr_region);
 648       _archive_set.add(curr_region);
 649       HeapWord* top;
 650       HeapRegion* next_region;
 651       if (curr_region != last_region) {
 652         top = curr_region->end();
 653         next_region = _hrm->next_region_in_heap(curr_region);
 654       } else {
 655         top = last_address + 1;
 656         next_region = NULL;
 657       }
 658       curr_region->set_top(top);
 659       curr_region->set_first_dead(top);
 660       curr_region->set_end_of_live(top);
 661       curr_region = next_region;
 662     }
 663 
 664     // Notify mark-sweep of the archive
 665     G1ArchiveAllocator::set_range_archive(curr_range, open);
 666   }
 667   return true;
 668 }
 669 
 670 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 671   assert(!is_init_completed(), "Expect to be called at JVM init time");
 672   assert(ranges != NULL, "MemRegion array NULL");
 673   assert(count != 0, "No MemRegions provided");
 674   MemRegion reserved = _hrm->reserved();
 675   HeapWord *prev_last_addr = NULL;
 676   HeapRegion* prev_last_region = NULL;
 677 
 678   // For each MemRegion, create filler objects, if needed, in the G1 regions
 679   // that contain the address range. The address range actually within the
 680   // MemRegion will not be modified. That is assumed to have been initialized
 681   // elsewhere, probably via an mmap of archived heap data.
 682   MutexLockerEx x(Heap_lock);
 683   for (size_t i = 0; i < count; i++) {
 684     HeapWord* start_address = ranges[i].start();
 685     HeapWord* last_address = ranges[i].last();
 686 
 687     assert(reserved.contains(start_address) && reserved.contains(last_address),
 688            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 689            p2i(start_address), p2i(last_address));
 690     assert(start_address > prev_last_addr,
 691            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 692            p2i(start_address), p2i(prev_last_addr));
 693 
 694     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 695     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 696     HeapWord* bottom_address = start_region->bottom();
 697 
 698     // Check for a range beginning in the same region in which the
 699     // previous one ended.
 700     if (start_region == prev_last_region) {
 701       bottom_address = prev_last_addr + 1;
 702     }
 703 
 704     // Verify that the regions were all marked as archive regions by
 705     // alloc_archive_regions.
 706     HeapRegion* curr_region = start_region;
 707     while (curr_region != NULL) {
 708       guarantee(curr_region->is_archive(),
 709                 "Expected archive region at index %u", curr_region->hrm_index());
 710       if (curr_region != last_region) {
 711         curr_region = _hrm->next_region_in_heap(curr_region);
 712       } else {
 713         curr_region = NULL;
 714       }
 715     }
 716 
 717     prev_last_addr = last_address;
 718     prev_last_region = last_region;
 719 
 720     // Fill the memory below the allocated range with dummy object(s),
 721     // if the region bottom does not match the range start, or if the previous
 722     // range ended within the same G1 region, and there is a gap.
 723     if (start_address != bottom_address) {
 724       size_t fill_size = pointer_delta(start_address, bottom_address);
 725       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 726       increase_used(fill_size * HeapWordSize);
 727     }
 728   }
 729 }
 730 
 731 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 732                                                      size_t desired_word_size,
 733                                                      size_t* actual_word_size) {
 734   assert_heap_not_locked_and_not_at_safepoint();
 735   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 736          "be called for humongous allocation requests");
 737 
 738   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 739 
 740   if (result == NULL) {
 741     *actual_word_size = desired_word_size;
 742     result = attempt_allocation_slow(desired_word_size);
 743   }
 744 
 745   assert_heap_not_locked();
 746   if (result != NULL) {
 747     assert(*actual_word_size != 0, "Actual size must have been set here");
 748     dirty_young_block(result, *actual_word_size);
 749   } else {
 750     *actual_word_size = 0;
 751   }
 752 
 753   return result;
 754 }
 755 
 756 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 757   assert(!is_init_completed(), "Expect to be called at JVM init time");
 758   assert(ranges != NULL, "MemRegion array NULL");
 759   assert(count != 0, "No MemRegions provided");
 760   MemRegion reserved = _hrm->reserved();
 761   HeapWord* prev_last_addr = NULL;
 762   HeapRegion* prev_last_region = NULL;
 763   size_t size_used = 0;
 764   size_t uncommitted_regions = 0;
 765 
 766   // For each Memregion, free the G1 regions that constitute it, and
 767   // notify mark-sweep that the range is no longer to be considered 'archive.'
 768   MutexLockerEx x(Heap_lock);
 769   for (size_t i = 0; i < count; i++) {
 770     HeapWord* start_address = ranges[i].start();
 771     HeapWord* last_address = ranges[i].last();
 772 
 773     assert(reserved.contains(start_address) && reserved.contains(last_address),
 774            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 775            p2i(start_address), p2i(last_address));
 776     assert(start_address > prev_last_addr,
 777            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 778            p2i(start_address), p2i(prev_last_addr));
 779     size_used += ranges[i].byte_size();
 780     prev_last_addr = last_address;
 781 
 782     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 783     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 784 
 785     // Check for ranges that start in the same G1 region in which the previous
 786     // range ended, and adjust the start address so we don't try to free
 787     // the same region again. If the current range is entirely within that
 788     // region, skip it.
 789     if (start_region == prev_last_region) {
 790       start_address = start_region->end();
 791       if (start_address > last_address) {
 792         continue;
 793       }
 794       start_region = _hrm->addr_to_region(start_address);
 795     }
 796     prev_last_region = last_region;
 797 
 798     // After verifying that each region was marked as an archive region by
 799     // alloc_archive_regions, set it free and empty and uncommit it.
 800     HeapRegion* curr_region = start_region;
 801     while (curr_region != NULL) {
 802       guarantee(curr_region->is_archive(),
 803                 "Expected archive region at index %u", curr_region->hrm_index());
 804       uint curr_index = curr_region->hrm_index();
 805       _archive_set.remove(curr_region);
 806       curr_region->set_free();
 807       curr_region->set_top(curr_region->bottom());
 808       if (curr_region != last_region) {
 809         curr_region = _hrm->next_region_in_heap(curr_region);
 810       } else {
 811         curr_region = NULL;
 812       }
 813       _hrm->shrink_at(curr_index, 1);
 814       uncommitted_regions++;
 815     }
 816 
 817     // Notify mark-sweep that this is no longer an archive range.
 818     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 819   }
 820 
 821   if (uncommitted_regions != 0) {
 822     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 823                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 824   }
 825   decrease_used(size_used);
 826 }
 827 
 828 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 829   assert(obj != NULL, "archived obj is NULL");
 830   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 831 
 832   // Loading an archived object makes it strongly reachable. If it is
 833   // loaded during concurrent marking, it must be enqueued to the SATB
 834   // queue, shading the previously white object gray.
 835   G1BarrierSet::enqueue(obj);
 836 
 837   return obj;
 838 }
 839 
 840 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 841   ResourceMark rm; // For retrieving the thread names in log messages.
 842 
 843   // The structure of this method has a lot of similarities to
 844   // attempt_allocation_slow(). The reason these two were not merged
 845   // into a single one is that such a method would require several "if
 846   // allocation is not humongous do this, otherwise do that"
 847   // conditional paths which would obscure its flow. In fact, an early
 848   // version of this code did use a unified method which was harder to
 849   // follow and, as a result, it had subtle bugs that were hard to
 850   // track down. So keeping these two methods separate allows each to
 851   // be more readable. It will be good to keep these two in sync as
 852   // much as possible.
 853 
 854   assert_heap_not_locked_and_not_at_safepoint();
 855   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 856          "should only be called for humongous allocations");
 857 
 858   // Humongous objects can exhaust the heap quickly, so we should check if we
 859   // need to start a marking cycle at each humongous object allocation. We do
 860   // the check before we do the actual allocation. The reason for doing it
 861   // before the allocation is that we avoid having to keep track of the newly
 862   // allocated memory while we do a GC.
 863   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 864                                            word_size)) {
 865     collect(GCCause::_g1_humongous_allocation);
 866   }
 867 
 868   // We will loop until a) we manage to successfully perform the
 869   // allocation or b) we successfully schedule a collection which
 870   // fails to perform the allocation. b) is the only case when we'll
 871   // return NULL.
 872   HeapWord* result = NULL;
 873   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 874     bool should_try_gc;
 875     uint gc_count_before;
 876 
 877 
 878     {
 879       MutexLockerEx x(Heap_lock);
 880 
 881       // Given that humongous objects are not allocated in young
 882       // regions, we'll first try to do the allocation without doing a
 883       // collection hoping that there's enough space in the heap.
 884       result = humongous_obj_allocate(word_size);
 885       if (result != NULL) {
 886         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 887         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 888         return result;
 889       }
 890 
 891       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 892       // the GCLocker initiated GC has been performed and then retry. This includes
 893       // the case when the GC Locker is not active but has not been performed.
 894       should_try_gc = !GCLocker::needs_gc();
 895       // Read the GC count while still holding the Heap_lock.
 896       gc_count_before = total_collections();
 897     }
 898 
 899     if (should_try_gc) {
 900       bool succeeded;
 901       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 902                                    GCCause::_g1_humongous_allocation);
 903       if (result != NULL) {
 904         assert(succeeded, "only way to get back a non-NULL result");
 905         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 906                              Thread::current()->name(), p2i(result));
 907         return result;
 908       }
 909 
 910       if (succeeded) {
 911         // We successfully scheduled a collection which failed to allocate. No
 912         // point in trying to allocate further. We'll just return NULL.
 913         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 914                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 915         return NULL;
 916       }
 917       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 918                            Thread::current()->name(), word_size);
 919     } else {
 920       // Failed to schedule a collection.
 921       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 922         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 923                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 924         return NULL;
 925       }
 926       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 927       // The GCLocker is either active or the GCLocker initiated
 928       // GC has not yet been performed. Stall until it is and
 929       // then retry the allocation.
 930       GCLocker::stall_until_clear();
 931       gclocker_retry_count += 1;
 932     }
 933 
 934 
 935     // We can reach here if we were unsuccessful in scheduling a
 936     // collection (because another thread beat us to it) or if we were
 937     // stalled due to the GC locker. In either can we should retry the
 938     // allocation attempt in case another thread successfully
 939     // performed a collection and reclaimed enough space.
 940     // Humongous object allocation always needs a lock, so we wait for the retry
 941     // in the next iteration of the loop, unlike for the regular iteration case.
 942     // Give a warning if we seem to be looping forever.
 943 
 944     if ((QueuedAllocationWarningCount > 0) &&
 945         (try_count % QueuedAllocationWarningCount == 0)) {
 946       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 947                              Thread::current()->name(), try_count, word_size);
 948     }
 949   }
 950 
 951   ShouldNotReachHere();
 952   return NULL;
 953 }
 954 
 955 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 956                                                            bool expect_null_mutator_alloc_region) {
 957   assert_at_safepoint_on_vm_thread();
 958   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 959          "the current alloc region was unexpectedly found to be non-NULL");
 960 
 961   if (!is_humongous(word_size)) {
 962     return _allocator->attempt_allocation_locked(word_size);
 963   } else {
 964     HeapWord* result = humongous_obj_allocate(word_size);
 965     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 966       collector_state()->set_initiate_conc_mark_if_possible(true);
 967     }
 968     return result;
 969   }
 970 
 971   ShouldNotReachHere();
 972 }
 973 
 974 class PostCompactionPrinterClosure: public HeapRegionClosure {
 975 private:
 976   G1HRPrinter* _hr_printer;
 977 public:
 978   bool do_heap_region(HeapRegion* hr) {
 979     assert(!hr->is_young(), "not expecting to find young regions");
 980     _hr_printer->post_compaction(hr);
 981     return false;
 982   }
 983 
 984   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 985     : _hr_printer(hr_printer) { }
 986 };
 987 
 988 void G1CollectedHeap::print_hrm_post_compaction() {
 989   if (_hr_printer.is_active()) {
 990     PostCompactionPrinterClosure cl(hr_printer());
 991     heap_region_iterate(&cl);
 992   }
 993 }
 994 
 995 void G1CollectedHeap::abort_concurrent_cycle() {
 996   // If we start the compaction before the CM threads finish
 997   // scanning the root regions we might trip them over as we'll
 998   // be moving objects / updating references. So let's wait until
 999   // they are done. By telling them to abort, they should complete
1000   // early.
1001   _cm->root_regions()->abort();
1002   _cm->root_regions()->wait_until_scan_finished();
1003 
1004   // Disable discovery and empty the discovered lists
1005   // for the CM ref processor.
1006   _ref_processor_cm->disable_discovery();
1007   _ref_processor_cm->abandon_partial_discovery();
1008   _ref_processor_cm->verify_no_references_recorded();
1009 
1010   // Abandon current iterations of concurrent marking and concurrent
1011   // refinement, if any are in progress.
1012   concurrent_mark()->concurrent_cycle_abort();
1013 }
1014 
1015 void G1CollectedHeap::prepare_heap_for_full_collection() {
1016   // Make sure we'll choose a new allocation region afterwards.
1017   _allocator->release_mutator_alloc_region();
1018   _allocator->abandon_gc_alloc_regions();
1019   g1_rem_set()->cleanupHRRS();
1020 
1021   // We may have added regions to the current incremental collection
1022   // set between the last GC or pause and now. We need to clear the
1023   // incremental collection set and then start rebuilding it afresh
1024   // after this full GC.
1025   abandon_collection_set(collection_set());
1026 
1027   tear_down_region_sets(false /* free_list_only */);
1028 
1029   hrm()->prepare_for_full_collection_start();
1030 }
1031 
1032 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1033   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1034   assert(used() == recalculate_used(), "Should be equal");
1035   _verifier->verify_region_sets_optional();
1036   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1037   _verifier->check_bitmaps("Full GC Start");
1038 }
1039 
1040 void G1CollectedHeap::prepare_heap_for_mutators() {
1041   hrm()->prepare_for_full_collection_end();
1042 
1043   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1044   ClassLoaderDataGraph::purge();
1045   MetaspaceUtils::verify_metrics();
1046 
1047   // Prepare heap for normal collections.
1048   assert(num_free_regions() == 0, "we should not have added any free regions");
1049   rebuild_region_sets(false /* free_list_only */);
1050   abort_refinement();
1051   resize_heap_if_necessary();
1052 
1053   // Rebuild the strong code root lists for each region
1054   rebuild_strong_code_roots();
1055 
1056   // Purge code root memory
1057   purge_code_root_memory();
1058 
1059   // Start a new incremental collection set for the next pause
1060   start_new_collection_set();
1061 
1062   _allocator->init_mutator_alloc_region();
1063 
1064   // Post collection state updates.
1065   MetaspaceGC::compute_new_size();
1066 }
1067 
1068 void G1CollectedHeap::abort_refinement() {
1069   if (_hot_card_cache->use_cache()) {
1070     _hot_card_cache->reset_hot_cache();
1071   }
1072 
1073   // Discard all remembered set updates.
1074   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1075   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1076 }
1077 
1078 void G1CollectedHeap::verify_after_full_collection() {
1079   _hrm->verify_optional();
1080   _verifier->verify_region_sets_optional();
1081   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1082   // Clear the previous marking bitmap, if needed for bitmap verification.
1083   // Note we cannot do this when we clear the next marking bitmap in
1084   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1085   // objects marked during a full GC against the previous bitmap.
1086   // But we need to clear it before calling check_bitmaps below since
1087   // the full GC has compacted objects and updated TAMS but not updated
1088   // the prev bitmap.
1089   if (G1VerifyBitmaps) {
1090     GCTraceTime(Debug, gc)("Clear Prev Bitmap for Verification");
1091     _cm->clear_prev_bitmap(workers());
1092   }
1093   // This call implicitly verifies that the next bitmap is clear after Full GC.
1094   _verifier->check_bitmaps("Full GC End");
1095 
1096   // At this point there should be no regions in the
1097   // entire heap tagged as young.
1098   assert(check_young_list_empty(), "young list should be empty at this point");
1099 
1100   // Note: since we've just done a full GC, concurrent
1101   // marking is no longer active. Therefore we need not
1102   // re-enable reference discovery for the CM ref processor.
1103   // That will be done at the start of the next marking cycle.
1104   // We also know that the STW processor should no longer
1105   // discover any new references.
1106   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1107   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1108   _ref_processor_stw->verify_no_references_recorded();
1109   _ref_processor_cm->verify_no_references_recorded();
1110 }
1111 
1112 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1113   // Post collection logging.
1114   // We should do this after we potentially resize the heap so
1115   // that all the COMMIT / UNCOMMIT events are generated before
1116   // the compaction events.
1117   print_hrm_post_compaction();
1118   heap_transition->print();
1119   print_heap_after_gc();
1120   print_heap_regions();
1121 #ifdef TRACESPINNING
1122   ParallelTaskTerminator::print_termination_counts();
1123 #endif
1124 }
1125 
1126 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1127                                          bool clear_all_soft_refs) {
1128   assert_at_safepoint_on_vm_thread();
1129 
1130   if (GCLocker::check_active_before_gc()) {
1131     // Full GC was not completed.
1132     return false;
1133   }
1134 
1135   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1136       soft_ref_policy()->should_clear_all_soft_refs();
1137 
1138   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1139   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1140 
1141   collector.prepare_collection();
1142   collector.collect();
1143   collector.complete_collection();
1144 
1145   // Full collection was successfully completed.
1146   return true;
1147 }
1148 
1149 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1150   // Currently, there is no facility in the do_full_collection(bool) API to notify
1151   // the caller that the collection did not succeed (e.g., because it was locked
1152   // out by the GC locker). So, right now, we'll ignore the return value.
1153   bool dummy = do_full_collection(true,                /* explicit_gc */
1154                                   clear_all_soft_refs);
1155 }
1156 
1157 void G1CollectedHeap::resize_heap_if_necessary() {
1158   // Capacity, free and used after the GC counted as full regions to
1159   // include the waste in the following calculations.
1160   const size_t capacity_after_gc = capacity();
1161   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1162 
1163   // This is enforced in arguments.cpp.
1164   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1165          "otherwise the code below doesn't make sense");
1166 
1167   // We don't have floating point command-line arguments
1168   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1169   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1170   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1171   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1172 
1173   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1174   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1175 
1176   // We have to be careful here as these two calculations can overflow
1177   // 32-bit size_t's.
1178   double used_after_gc_d = (double) used_after_gc;
1179   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1180   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1181 
1182   // Let's make sure that they are both under the max heap size, which
1183   // by default will make them fit into a size_t.
1184   double desired_capacity_upper_bound = (double) max_heap_size;
1185   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1186                                     desired_capacity_upper_bound);
1187   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1188                                     desired_capacity_upper_bound);
1189 
1190   // We can now safely turn them into size_t's.
1191   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1192   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1193 
1194   // This assert only makes sense here, before we adjust them
1195   // with respect to the min and max heap size.
1196   assert(minimum_desired_capacity <= maximum_desired_capacity,
1197          "minimum_desired_capacity = " SIZE_FORMAT ", "
1198          "maximum_desired_capacity = " SIZE_FORMAT,
1199          minimum_desired_capacity, maximum_desired_capacity);
1200 
1201   // Should not be greater than the heap max size. No need to adjust
1202   // it with respect to the heap min size as it's a lower bound (i.e.,
1203   // we'll try to make the capacity larger than it, not smaller).
1204   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1205   // Should not be less than the heap min size. No need to adjust it
1206   // with respect to the heap max size as it's an upper bound (i.e.,
1207   // we'll try to make the capacity smaller than it, not greater).
1208   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1209 
1210   if (capacity_after_gc < minimum_desired_capacity) {
1211     // Don't expand unless it's significant
1212     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1213 
1214     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1215                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1216                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1217                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1218 
1219     expand(expand_bytes, _workers);
1220 
1221     // No expansion, now see if we want to shrink
1222   } else if (capacity_after_gc > maximum_desired_capacity) {
1223     // Capacity too large, compute shrinking size
1224     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1225 
1226     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1227                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1228                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1229                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1230 
1231     shrink(shrink_bytes);
1232   }
1233 }
1234 
1235 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1236                                                             bool do_gc,
1237                                                             bool clear_all_soft_refs,
1238                                                             bool expect_null_mutator_alloc_region,
1239                                                             bool* gc_succeeded) {
1240   *gc_succeeded = true;
1241   // Let's attempt the allocation first.
1242   HeapWord* result =
1243     attempt_allocation_at_safepoint(word_size,
1244                                     expect_null_mutator_alloc_region);
1245   if (result != NULL) {
1246     return result;
1247   }
1248 
1249   // In a G1 heap, we're supposed to keep allocation from failing by
1250   // incremental pauses.  Therefore, at least for now, we'll favor
1251   // expansion over collection.  (This might change in the future if we can
1252   // do something smarter than full collection to satisfy a failed alloc.)
1253   result = expand_and_allocate(word_size);
1254   if (result != NULL) {
1255     return result;
1256   }
1257 
1258   if (do_gc) {
1259     // Expansion didn't work, we'll try to do a Full GC.
1260     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1261                                        clear_all_soft_refs);
1262   }
1263 
1264   return NULL;
1265 }
1266 
1267 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1268                                                      bool* succeeded) {
1269   assert_at_safepoint_on_vm_thread();
1270 
1271   // Attempts to allocate followed by Full GC.
1272   HeapWord* result =
1273     satisfy_failed_allocation_helper(word_size,
1274                                      true,  /* do_gc */
1275                                      false, /* clear_all_soft_refs */
1276                                      false, /* expect_null_mutator_alloc_region */
1277                                      succeeded);
1278 
1279   if (result != NULL || !*succeeded) {
1280     return result;
1281   }
1282 
1283   // Attempts to allocate followed by Full GC that will collect all soft references.
1284   result = satisfy_failed_allocation_helper(word_size,
1285                                             true, /* do_gc */
1286                                             true, /* clear_all_soft_refs */
1287                                             true, /* expect_null_mutator_alloc_region */
1288                                             succeeded);
1289 
1290   if (result != NULL || !*succeeded) {
1291     return result;
1292   }
1293 
1294   // Attempts to allocate, no GC
1295   result = satisfy_failed_allocation_helper(word_size,
1296                                             false, /* do_gc */
1297                                             false, /* clear_all_soft_refs */
1298                                             true,  /* expect_null_mutator_alloc_region */
1299                                             succeeded);
1300 
1301   if (result != NULL) {
1302     return result;
1303   }
1304 
1305   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1306          "Flag should have been handled and cleared prior to this point");
1307 
1308   // What else?  We might try synchronous finalization later.  If the total
1309   // space available is large enough for the allocation, then a more
1310   // complete compaction phase than we've tried so far might be
1311   // appropriate.
1312   return NULL;
1313 }
1314 
1315 // Attempting to expand the heap sufficiently
1316 // to support an allocation of the given "word_size".  If
1317 // successful, perform the allocation and return the address of the
1318 // allocated block, or else "NULL".
1319 
1320 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1321   assert_at_safepoint_on_vm_thread();
1322 
1323   _verifier->verify_region_sets_optional();
1324 
1325   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1326   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1327                             word_size * HeapWordSize);
1328 
1329 
1330   if (expand(expand_bytes, _workers)) {
1331     _hrm->verify_optional();
1332     _verifier->verify_region_sets_optional();
1333     return attempt_allocation_at_safepoint(word_size,
1334                                            false /* expect_null_mutator_alloc_region */);
1335   }
1336   return NULL;
1337 }
1338 
1339 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1340   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1341   aligned_expand_bytes = align_up(aligned_expand_bytes,
1342                                        HeapRegion::GrainBytes);
1343 
1344   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1345                             expand_bytes, aligned_expand_bytes);
1346 
1347   if (is_maximal_no_gc()) {
1348     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1349     return false;
1350   }
1351 
1352   double expand_heap_start_time_sec = os::elapsedTime();
1353   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1354   assert(regions_to_expand > 0, "Must expand by at least one region");
1355 
1356   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1357   if (expand_time_ms != NULL) {
1358     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1359   }
1360 
1361   if (expanded_by > 0) {
1362     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1363     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1364     g1_policy()->record_new_heap_size(num_regions());
1365   } else {
1366     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1367 
1368     // The expansion of the virtual storage space was unsuccessful.
1369     // Let's see if it was because we ran out of swap.
1370     if (G1ExitOnExpansionFailure &&
1371         _hrm->available() >= regions_to_expand) {
1372       // We had head room...
1373       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1374     }
1375   }
1376   return regions_to_expand > 0;
1377 }
1378 
1379 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1380   size_t aligned_shrink_bytes =
1381     ReservedSpace::page_align_size_down(shrink_bytes);
1382   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1383                                          HeapRegion::GrainBytes);
1384   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1385 
1386   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1387   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1388 
1389 
1390   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1391                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1392   if (num_regions_removed > 0) {
1393     g1_policy()->record_new_heap_size(num_regions());
1394   } else {
1395     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1396   }
1397 }
1398 
1399 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1400   _verifier->verify_region_sets_optional();
1401 
1402   // We should only reach here at the end of a Full GC or during Remark which
1403   // means we should not not be holding to any GC alloc regions. The method
1404   // below will make sure of that and do any remaining clean up.
1405   _allocator->abandon_gc_alloc_regions();
1406 
1407   // Instead of tearing down / rebuilding the free lists here, we
1408   // could instead use the remove_all_pending() method on free_list to
1409   // remove only the ones that we need to remove.
1410   tear_down_region_sets(true /* free_list_only */);
1411   shrink_helper(shrink_bytes);
1412   rebuild_region_sets(true /* free_list_only */);
1413 
1414   _hrm->verify_optional();
1415   _verifier->verify_region_sets_optional();
1416 }
1417 
1418 class OldRegionSetChecker : public HeapRegionSetChecker {
1419 public:
1420   void check_mt_safety() {
1421     // Master Old Set MT safety protocol:
1422     // (a) If we're at a safepoint, operations on the master old set
1423     // should be invoked:
1424     // - by the VM thread (which will serialize them), or
1425     // - by the GC workers while holding the FreeList_lock, if we're
1426     //   at a safepoint for an evacuation pause (this lock is taken
1427     //   anyway when an GC alloc region is retired so that a new one
1428     //   is allocated from the free list), or
1429     // - by the GC workers while holding the OldSets_lock, if we're at a
1430     //   safepoint for a cleanup pause.
1431     // (b) If we're not at a safepoint, operations on the master old set
1432     // should be invoked while holding the Heap_lock.
1433 
1434     if (SafepointSynchronize::is_at_safepoint()) {
1435       guarantee(Thread::current()->is_VM_thread() ||
1436                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1437                 "master old set MT safety protocol at a safepoint");
1438     } else {
1439       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1440     }
1441   }
1442   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1443   const char* get_description() { return "Old Regions"; }
1444 };
1445 
1446 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1447 public:
1448   void check_mt_safety() {
1449     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1450               "May only change archive regions during initialization or safepoint.");
1451   }
1452   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1453   const char* get_description() { return "Archive Regions"; }
1454 };
1455 
1456 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1457 public:
1458   void check_mt_safety() {
1459     // Humongous Set MT safety protocol:
1460     // (a) If we're at a safepoint, operations on the master humongous
1461     // set should be invoked by either the VM thread (which will
1462     // serialize them) or by the GC workers while holding the
1463     // OldSets_lock.
1464     // (b) If we're not at a safepoint, operations on the master
1465     // humongous set should be invoked while holding the Heap_lock.
1466 
1467     if (SafepointSynchronize::is_at_safepoint()) {
1468       guarantee(Thread::current()->is_VM_thread() ||
1469                 OldSets_lock->owned_by_self(),
1470                 "master humongous set MT safety protocol at a safepoint");
1471     } else {
1472       guarantee(Heap_lock->owned_by_self(),
1473                 "master humongous set MT safety protocol outside a safepoint");
1474     }
1475   }
1476   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1477   const char* get_description() { return "Humongous Regions"; }
1478 };
1479 
1480 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1481   CollectedHeap(),
1482   _young_gen_sampling_thread(NULL),
1483   _workers(NULL),
1484   _collector_policy(collector_policy),
1485   _card_table(NULL),
1486   _soft_ref_policy(),
1487   _old_set("Old Region Set", new OldRegionSetChecker()),
1488   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1489   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1490   _bot(NULL),
1491   _listener(),
1492   _hrm(NULL),
1493   _is_hetero_heap(AllocateOldGenAt != NULL),
1494   _allocator(NULL),
1495   _verifier(NULL),
1496   _summary_bytes_used(0),
1497   _archive_allocator(NULL),
1498   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1499   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1500   _expand_heap_after_alloc_failure(true),
1501   _g1mm(NULL),
1502   _humongous_reclaim_candidates(),
1503   _has_humongous_reclaim_candidates(false),
1504   _hr_printer(),
1505   _collector_state(),
1506   _old_marking_cycles_started(0),
1507   _old_marking_cycles_completed(0),
1508   _eden(),
1509   _survivor(),
1510   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1511   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1512   _g1_policy(new G1Policy(_gc_timer_stw)),
1513   _heap_sizing_policy(NULL),
1514   _collection_set(this, _g1_policy),
1515   _hot_card_cache(NULL),
1516   _g1_rem_set(NULL),
1517   _dirty_card_queue_set(false),
1518   _cm(NULL),
1519   _cm_thread(NULL),
1520   _cr(NULL),
1521   _task_queues(NULL),
1522   _evacuation_failed(false),
1523   _evacuation_failed_info_array(NULL),
1524   _preserved_marks_set(true /* in_c_heap */),
1525 #ifndef PRODUCT
1526   _evacuation_failure_alot_for_current_gc(false),
1527   _evacuation_failure_alot_gc_number(0),
1528   _evacuation_failure_alot_count(0),
1529 #endif
1530   _ref_processor_stw(NULL),
1531   _is_alive_closure_stw(this),
1532   _is_subject_to_discovery_stw(this),
1533   _ref_processor_cm(NULL),
1534   _is_alive_closure_cm(this),
1535   _is_subject_to_discovery_cm(this),
1536   _in_cset_fast_test() {
1537 
1538   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1539                           true /* are_GC_task_threads */,
1540                           false /* are_ConcurrentGC_threads */);
1541   _workers->initialize_workers();
1542   _verifier = new G1HeapVerifier(this);
1543 
1544   _allocator = new G1Allocator(this);
1545 
1546   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1547 
1548   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1549 
1550   // Override the default _filler_array_max_size so that no humongous filler
1551   // objects are created.
1552   _filler_array_max_size = _humongous_object_threshold_in_words;
1553 
1554   uint n_queues = ParallelGCThreads;
1555   _task_queues = new RefToScanQueueSet(n_queues);
1556 
1557   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1558 
1559   for (uint i = 0; i < n_queues; i++) {
1560     RefToScanQueue* q = new RefToScanQueue();
1561     q->initialize();
1562     _task_queues->register_queue(i, q);
1563     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1564   }
1565 
1566   // Initialize the G1EvacuationFailureALot counters and flags.
1567   NOT_PRODUCT(reset_evacuation_should_fail();)
1568 
1569   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1570 }
1571 
1572 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1573                                                                  size_t size,
1574                                                                  size_t translation_factor) {
1575   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1576   // Allocate a new reserved space, preferring to use large pages.
1577   ReservedSpace rs(size, preferred_page_size);
1578   G1RegionToSpaceMapper* result  =
1579     G1RegionToSpaceMapper::create_mapper(rs,
1580                                          size,
1581                                          rs.alignment(),
1582                                          HeapRegion::GrainBytes,
1583                                          translation_factor,
1584                                          mtGC);
1585 
1586   os::trace_page_sizes_for_requested_size(description,
1587                                           size,
1588                                           preferred_page_size,
1589                                           rs.alignment(),
1590                                           rs.base(),
1591                                           rs.size());
1592 
1593   return result;
1594 }
1595 
1596 jint G1CollectedHeap::initialize_concurrent_refinement() {
1597   jint ecode = JNI_OK;
1598   _cr = G1ConcurrentRefine::create(&ecode);
1599   return ecode;
1600 }
1601 
1602 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1603   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1604   if (_young_gen_sampling_thread->osthread() == NULL) {
1605     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1606     return JNI_ENOMEM;
1607   }
1608   return JNI_OK;
1609 }
1610 
1611 jint G1CollectedHeap::initialize() {
1612   os::enable_vtime();
1613 
1614   // Necessary to satisfy locking discipline assertions.
1615 
1616   MutexLocker x(Heap_lock);
1617 
1618   // While there are no constraints in the GC code that HeapWordSize
1619   // be any particular value, there are multiple other areas in the
1620   // system which believe this to be true (e.g. oop->object_size in some
1621   // cases incorrectly returns the size in wordSize units rather than
1622   // HeapWordSize).
1623   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1624 
1625   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1626   size_t max_byte_size = g1_collector_policy()->heap_reservation_size_bytes();
1627   size_t heap_alignment = collector_policy()->heap_alignment();
1628 
1629   // Ensure that the sizes are properly aligned.
1630   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1631   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1632   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1633 
1634   // Reserve the maximum.
1635 
1636   // When compressed oops are enabled, the preferred heap base
1637   // is calculated by subtracting the requested size from the
1638   // 32Gb boundary and using the result as the base address for
1639   // heap reservation. If the requested size is not aligned to
1640   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1641   // into the ReservedHeapSpace constructor) then the actual
1642   // base of the reserved heap may end up differing from the
1643   // address that was requested (i.e. the preferred heap base).
1644   // If this happens then we could end up using a non-optimal
1645   // compressed oops mode.
1646 
1647   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1648                                                  heap_alignment);
1649 
1650   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1651 
1652   // Create the barrier set for the entire reserved region.
1653   G1CardTable* ct = new G1CardTable(reserved_region());
1654   ct->initialize();
1655   G1BarrierSet* bs = new G1BarrierSet(ct);
1656   bs->initialize();
1657   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1658   BarrierSet::set_barrier_set(bs);
1659   _card_table = ct;
1660 
1661   G1BarrierSet::satb_mark_queue_set().initialize(this,
1662                                                  SATB_Q_CBL_mon,
1663                                                  &bs->satb_mark_queue_buffer_allocator(),
1664                                                  G1SATBProcessCompletedThreshold,
1665                                                  G1SATBBufferEnqueueingThresholdPercent,
1666                                                  Shared_SATB_Q_lock);
1667 
1668   // process_completed_threshold and max_completed_queue are updated
1669   // later, based on the concurrent refinement object.
1670   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1671                                                   &bs->dirty_card_queue_buffer_allocator(),
1672                                                   -1, // temp. never trigger
1673                                                   -1, // temp. no limit
1674                                                   Shared_DirtyCardQ_lock,
1675                                                   true); // init_free_ids
1676 
1677   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1678                                     &bs->dirty_card_queue_buffer_allocator(),
1679                                     -1, // never trigger processing
1680                                     -1, // no limit on length
1681                                     Shared_DirtyCardQ_lock);
1682 
1683   // Create the hot card cache.
1684   _hot_card_cache = new G1HotCardCache(this);
1685 
1686   // Carve out the G1 part of the heap.
1687   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1688   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1689   G1RegionToSpaceMapper* heap_storage =
1690     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1691                                          g1_rs.size(),
1692                                          page_size,
1693                                          HeapRegion::GrainBytes,
1694                                          1,
1695                                          mtJavaHeap);
1696   if(heap_storage == NULL) {
1697     vm_shutdown_during_initialization("Could not initialize G1 heap");
1698     return JNI_ERR;
1699   }
1700 
1701   os::trace_page_sizes("Heap",
1702                        collector_policy()->min_heap_byte_size(),
1703                        max_byte_size,
1704                        page_size,
1705                        heap_rs.base(),
1706                        heap_rs.size());
1707   heap_storage->set_mapping_changed_listener(&_listener);
1708 
1709   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1710   G1RegionToSpaceMapper* bot_storage =
1711     create_aux_memory_mapper("Block Offset Table",
1712                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1713                              G1BlockOffsetTable::heap_map_factor());
1714 
1715   G1RegionToSpaceMapper* cardtable_storage =
1716     create_aux_memory_mapper("Card Table",
1717                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1718                              G1CardTable::heap_map_factor());
1719 
1720   G1RegionToSpaceMapper* card_counts_storage =
1721     create_aux_memory_mapper("Card Counts Table",
1722                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1723                              G1CardCounts::heap_map_factor());
1724 
1725   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1726   G1RegionToSpaceMapper* prev_bitmap_storage =
1727     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1728   G1RegionToSpaceMapper* next_bitmap_storage =
1729     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1730 
1731   _hrm = HeapRegionManager::create_manager(this, collector_policy());
1732 
1733   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1734   _card_table->initialize(cardtable_storage);
1735   // Do later initialization work for concurrent refinement.
1736   _hot_card_cache->initialize(card_counts_storage);
1737 
1738   // 6843694 - ensure that the maximum region index can fit
1739   // in the remembered set structures.
1740   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1741   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1742 
1743   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1744   // start within the first card.
1745   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1746   // Also create a G1 rem set.
1747   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1748   _g1_rem_set->initialize(max_reserved_capacity(), max_regions());
1749 
1750   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1751   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1752   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1753             "too many cards per region");
1754 
1755   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1756 
1757   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1758 
1759   {
1760     HeapWord* start = _hrm->reserved().start();
1761     HeapWord* end = _hrm->reserved().end();
1762     size_t granularity = HeapRegion::GrainBytes;
1763 
1764     _in_cset_fast_test.initialize(start, end, granularity);
1765     _humongous_reclaim_candidates.initialize(start, end, granularity);
1766   }
1767 
1768   // Create the G1ConcurrentMark data structure and thread.
1769   // (Must do this late, so that "max_regions" is defined.)
1770   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1771   if (_cm == NULL || !_cm->completed_initialization()) {
1772     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1773     return JNI_ENOMEM;
1774   }
1775   _cm_thread = _cm->cm_thread();
1776 
1777   // Now expand into the initial heap size.
1778   if (!expand(init_byte_size, _workers)) {
1779     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1780     return JNI_ENOMEM;
1781   }
1782 
1783   // Perform any initialization actions delegated to the policy.
1784   g1_policy()->init(this, &_collection_set);
1785 
1786   // Now we know the target length of young list. So adjust the heap to provision that many regions on dram.
1787   if (is_hetero_heap()) {
1788     static_cast<HeterogeneousHeapRegionManager*>(hrm())->adjust_dram_regions((uint)g1_policy()->young_list_target_length(), workers());
1789   }
1790 
1791   jint ecode = initialize_concurrent_refinement();
1792   if (ecode != JNI_OK) {
1793     return ecode;
1794   }
1795 
1796   ecode = initialize_young_gen_sampling_thread();
1797   if (ecode != JNI_OK) {
1798     return ecode;
1799   }
1800 
1801   {
1802     DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1803     dcqs.set_process_completed_threshold((int)concurrent_refine()->yellow_zone());
1804     dcqs.set_max_completed_queue((int)concurrent_refine()->red_zone());
1805   }
1806 
1807   // Here we allocate the dummy HeapRegion that is required by the
1808   // G1AllocRegion class.
1809   HeapRegion* dummy_region = _hrm->get_dummy_region();
1810 
1811   // We'll re-use the same region whether the alloc region will
1812   // require BOT updates or not and, if it doesn't, then a non-young
1813   // region will complain that it cannot support allocations without
1814   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1815   dummy_region->set_eden();
1816   // Make sure it's full.
1817   dummy_region->set_top(dummy_region->end());
1818   G1AllocRegion::setup(this, dummy_region);
1819 
1820   _allocator->init_mutator_alloc_region();
1821 
1822   // Do create of the monitoring and management support so that
1823   // values in the heap have been properly initialized.
1824   _g1mm = new G1MonitoringSupport(this);
1825 
1826   G1StringDedup::initialize();
1827 
1828   _preserved_marks_set.init(ParallelGCThreads);
1829 
1830   _collection_set.initialize(max_regions());
1831 
1832   return JNI_OK;
1833 }
1834 
1835 void G1CollectedHeap::stop() {
1836   // Stop all concurrent threads. We do this to make sure these threads
1837   // do not continue to execute and access resources (e.g. logging)
1838   // that are destroyed during shutdown.
1839   _cr->stop();
1840   _young_gen_sampling_thread->stop();
1841   _cm_thread->stop();
1842   if (G1StringDedup::is_enabled()) {
1843     G1StringDedup::stop();
1844   }
1845 }
1846 
1847 void G1CollectedHeap::safepoint_synchronize_begin() {
1848   SuspendibleThreadSet::synchronize();
1849 }
1850 
1851 void G1CollectedHeap::safepoint_synchronize_end() {
1852   SuspendibleThreadSet::desynchronize();
1853 }
1854 
1855 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1856   return HeapRegion::max_region_size();
1857 }
1858 
1859 void G1CollectedHeap::post_initialize() {
1860   CollectedHeap::post_initialize();
1861   ref_processing_init();
1862 }
1863 
1864 void G1CollectedHeap::ref_processing_init() {
1865   // Reference processing in G1 currently works as follows:
1866   //
1867   // * There are two reference processor instances. One is
1868   //   used to record and process discovered references
1869   //   during concurrent marking; the other is used to
1870   //   record and process references during STW pauses
1871   //   (both full and incremental).
1872   // * Both ref processors need to 'span' the entire heap as
1873   //   the regions in the collection set may be dotted around.
1874   //
1875   // * For the concurrent marking ref processor:
1876   //   * Reference discovery is enabled at initial marking.
1877   //   * Reference discovery is disabled and the discovered
1878   //     references processed etc during remarking.
1879   //   * Reference discovery is MT (see below).
1880   //   * Reference discovery requires a barrier (see below).
1881   //   * Reference processing may or may not be MT
1882   //     (depending on the value of ParallelRefProcEnabled
1883   //     and ParallelGCThreads).
1884   //   * A full GC disables reference discovery by the CM
1885   //     ref processor and abandons any entries on it's
1886   //     discovered lists.
1887   //
1888   // * For the STW processor:
1889   //   * Non MT discovery is enabled at the start of a full GC.
1890   //   * Processing and enqueueing during a full GC is non-MT.
1891   //   * During a full GC, references are processed after marking.
1892   //
1893   //   * Discovery (may or may not be MT) is enabled at the start
1894   //     of an incremental evacuation pause.
1895   //   * References are processed near the end of a STW evacuation pause.
1896   //   * For both types of GC:
1897   //     * Discovery is atomic - i.e. not concurrent.
1898   //     * Reference discovery will not need a barrier.
1899 
1900   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1901 
1902   // Concurrent Mark ref processor
1903   _ref_processor_cm =
1904     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1905                            mt_processing,                                  // mt processing
1906                            ParallelGCThreads,                              // degree of mt processing
1907                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1908                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1909                            false,                                          // Reference discovery is not atomic
1910                            &_is_alive_closure_cm,                          // is alive closure
1911                            true);                                          // allow changes to number of processing threads
1912 
1913   // STW ref processor
1914   _ref_processor_stw =
1915     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1916                            mt_processing,                        // mt processing
1917                            ParallelGCThreads,                    // degree of mt processing
1918                            (ParallelGCThreads > 1),              // mt discovery
1919                            ParallelGCThreads,                    // degree of mt discovery
1920                            true,                                 // Reference discovery is atomic
1921                            &_is_alive_closure_stw,               // is alive closure
1922                            true);                                // allow changes to number of processing threads
1923 }
1924 
1925 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1926   return _collector_policy;
1927 }
1928 
1929 G1CollectorPolicy* G1CollectedHeap::g1_collector_policy() const {
1930   return _collector_policy;
1931 }
1932 
1933 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1934   return &_soft_ref_policy;
1935 }
1936 
1937 size_t G1CollectedHeap::capacity() const {
1938   return _hrm->length() * HeapRegion::GrainBytes;
1939 }
1940 
1941 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1942   return _hrm->total_free_bytes();
1943 }
1944 
1945 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1946   _hot_card_cache->drain(cl, worker_i);
1947 }
1948 
1949 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1950   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1951   size_t n_completed_buffers = 0;
1952   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1953     n_completed_buffers++;
1954   }
1955   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1956   dcqs.clear_n_completed_buffers();
1957   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1958 }
1959 
1960 // Computes the sum of the storage used by the various regions.
1961 size_t G1CollectedHeap::used() const {
1962   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1963   if (_archive_allocator != NULL) {
1964     result += _archive_allocator->used();
1965   }
1966   return result;
1967 }
1968 
1969 size_t G1CollectedHeap::used_unlocked() const {
1970   return _summary_bytes_used;
1971 }
1972 
1973 class SumUsedClosure: public HeapRegionClosure {
1974   size_t _used;
1975 public:
1976   SumUsedClosure() : _used(0) {}
1977   bool do_heap_region(HeapRegion* r) {
1978     _used += r->used();
1979     return false;
1980   }
1981   size_t result() { return _used; }
1982 };
1983 
1984 size_t G1CollectedHeap::recalculate_used() const {
1985   SumUsedClosure blk;
1986   heap_region_iterate(&blk);
1987   return blk.result();
1988 }
1989 
1990 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1991   switch (cause) {
1992     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1993     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1994     case GCCause::_wb_conc_mark:                        return true;
1995     default :                                           return false;
1996   }
1997 }
1998 
1999 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2000   switch (cause) {
2001     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2002     case GCCause::_g1_humongous_allocation: return true;
2003     default:                                return is_user_requested_concurrent_full_gc(cause);
2004   }
2005 }
2006 
2007 #ifndef PRODUCT
2008 void G1CollectedHeap::allocate_dummy_regions() {
2009   // Let's fill up most of the region
2010   size_t word_size = HeapRegion::GrainWords - 1024;
2011   // And as a result the region we'll allocate will be humongous.
2012   guarantee(is_humongous(word_size), "sanity");
2013 
2014   // _filler_array_max_size is set to humongous object threshold
2015   // but temporarily change it to use CollectedHeap::fill_with_object().
2016   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2017 
2018   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2019     // Let's use the existing mechanism for the allocation
2020     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2021     if (dummy_obj != NULL) {
2022       MemRegion mr(dummy_obj, word_size);
2023       CollectedHeap::fill_with_object(mr);
2024     } else {
2025       // If we can't allocate once, we probably cannot allocate
2026       // again. Let's get out of the loop.
2027       break;
2028     }
2029   }
2030 }
2031 #endif // !PRODUCT
2032 
2033 void G1CollectedHeap::increment_old_marking_cycles_started() {
2034   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2035          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2036          "Wrong marking cycle count (started: %d, completed: %d)",
2037          _old_marking_cycles_started, _old_marking_cycles_completed);
2038 
2039   _old_marking_cycles_started++;
2040 }
2041 
2042 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2043   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2044 
2045   // We assume that if concurrent == true, then the caller is a
2046   // concurrent thread that was joined the Suspendible Thread
2047   // Set. If there's ever a cheap way to check this, we should add an
2048   // assert here.
2049 
2050   // Given that this method is called at the end of a Full GC or of a
2051   // concurrent cycle, and those can be nested (i.e., a Full GC can
2052   // interrupt a concurrent cycle), the number of full collections
2053   // completed should be either one (in the case where there was no
2054   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2055   // behind the number of full collections started.
2056 
2057   // This is the case for the inner caller, i.e. a Full GC.
2058   assert(concurrent ||
2059          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2060          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2061          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2062          "is inconsistent with _old_marking_cycles_completed = %u",
2063          _old_marking_cycles_started, _old_marking_cycles_completed);
2064 
2065   // This is the case for the outer caller, i.e. the concurrent cycle.
2066   assert(!concurrent ||
2067          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2068          "for outer caller (concurrent cycle): "
2069          "_old_marking_cycles_started = %u "
2070          "is inconsistent with _old_marking_cycles_completed = %u",
2071          _old_marking_cycles_started, _old_marking_cycles_completed);
2072 
2073   _old_marking_cycles_completed += 1;
2074 
2075   // We need to clear the "in_progress" flag in the CM thread before
2076   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2077   // is set) so that if a waiter requests another System.gc() it doesn't
2078   // incorrectly see that a marking cycle is still in progress.
2079   if (concurrent) {
2080     _cm_thread->set_idle();
2081   }
2082 
2083   // This notify_all() will ensure that a thread that called
2084   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2085   // and it's waiting for a full GC to finish will be woken up. It is
2086   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2087   FullGCCount_lock->notify_all();
2088 }
2089 
2090 void G1CollectedHeap::collect(GCCause::Cause cause) {
2091   assert_heap_not_locked();
2092 
2093   uint gc_count_before;
2094   uint old_marking_count_before;
2095   uint full_gc_count_before;
2096   bool retry_gc;
2097 
2098   do {
2099     retry_gc = false;
2100 
2101     {
2102       MutexLocker ml(Heap_lock);
2103 
2104       // Read the GC count while holding the Heap_lock
2105       gc_count_before = total_collections();
2106       full_gc_count_before = total_full_collections();
2107       old_marking_count_before = _old_marking_cycles_started;
2108     }
2109 
2110     if (should_do_concurrent_full_gc(cause)) {
2111       // Schedule an initial-mark evacuation pause that will start a
2112       // concurrent cycle. We're setting word_size to 0 which means that
2113       // we are not requesting a post-GC allocation.
2114       VM_G1CollectForAllocation op(0,     /* word_size */
2115                                    gc_count_before,
2116                                    cause,
2117                                    true,  /* should_initiate_conc_mark */
2118                                    g1_policy()->max_pause_time_ms());
2119       VMThread::execute(&op);
2120       if (!op.pause_succeeded()) {
2121         if (old_marking_count_before == _old_marking_cycles_started) {
2122           retry_gc = op.should_retry_gc();
2123         } else {
2124           // A Full GC happened while we were trying to schedule the
2125           // initial-mark GC. No point in starting a new cycle given
2126           // that the whole heap was collected anyway.
2127         }
2128 
2129         if (retry_gc) {
2130           if (GCLocker::is_active_and_needs_gc()) {
2131             GCLocker::stall_until_clear();
2132           }
2133         }
2134       }
2135     } else {
2136       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2137           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2138 
2139         // Schedule a standard evacuation pause. We're setting word_size
2140         // to 0 which means that we are not requesting a post-GC allocation.
2141         VM_G1CollectForAllocation op(0,     /* word_size */
2142                                      gc_count_before,
2143                                      cause,
2144                                      false, /* should_initiate_conc_mark */
2145                                      g1_policy()->max_pause_time_ms());
2146         VMThread::execute(&op);
2147       } else {
2148         // Schedule a Full GC.
2149         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2150         VMThread::execute(&op);
2151       }
2152     }
2153   } while (retry_gc);
2154 }
2155 
2156 bool G1CollectedHeap::is_in(const void* p) const {
2157   if (_hrm->reserved().contains(p)) {
2158     // Given that we know that p is in the reserved space,
2159     // heap_region_containing() should successfully
2160     // return the containing region.
2161     HeapRegion* hr = heap_region_containing(p);
2162     return hr->is_in(p);
2163   } else {
2164     return false;
2165   }
2166 }
2167 
2168 #ifdef ASSERT
2169 bool G1CollectedHeap::is_in_exact(const void* p) const {
2170   bool contains = reserved_region().contains(p);
2171   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2172   if (contains && available) {
2173     return true;
2174   } else {
2175     return false;
2176   }
2177 }
2178 #endif
2179 
2180 // Iteration functions.
2181 
2182 // Iterates an ObjectClosure over all objects within a HeapRegion.
2183 
2184 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2185   ObjectClosure* _cl;
2186 public:
2187   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2188   bool do_heap_region(HeapRegion* r) {
2189     if (!r->is_continues_humongous()) {
2190       r->object_iterate(_cl);
2191     }
2192     return false;
2193   }
2194 };
2195 
2196 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2197   IterateObjectClosureRegionClosure blk(cl);
2198   heap_region_iterate(&blk);
2199 }
2200 
2201 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2202   _hrm->iterate(cl);
2203 }
2204 
2205 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2206                                                                  HeapRegionClaimer *hrclaimer,
2207                                                                  uint worker_id) const {
2208   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2209 }
2210 
2211 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2212                                                          HeapRegionClaimer *hrclaimer) const {
2213   _hrm->par_iterate(cl, hrclaimer, 0);
2214 }
2215 
2216 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2217   _collection_set.iterate(cl);
2218 }
2219 
2220 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2221   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2222 }
2223 
2224 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2225   HeapRegion* hr = heap_region_containing(addr);
2226   return hr->block_start(addr);
2227 }
2228 
2229 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2230   HeapRegion* hr = heap_region_containing(addr);
2231   return hr->block_size(addr);
2232 }
2233 
2234 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2235   HeapRegion* hr = heap_region_containing(addr);
2236   return hr->block_is_obj(addr);
2237 }
2238 
2239 bool G1CollectedHeap::supports_tlab_allocation() const {
2240   return true;
2241 }
2242 
2243 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2244   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2245 }
2246 
2247 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2248   return _eden.length() * HeapRegion::GrainBytes;
2249 }
2250 
2251 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2252 // must be equal to the humongous object limit.
2253 size_t G1CollectedHeap::max_tlab_size() const {
2254   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2255 }
2256 
2257 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2258   return _allocator->unsafe_max_tlab_alloc();
2259 }
2260 
2261 size_t G1CollectedHeap::max_capacity() const {
2262   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2263 }
2264 
2265 size_t G1CollectedHeap::max_reserved_capacity() const {
2266   return _hrm->max_length() * HeapRegion::GrainBytes;
2267 }
2268 
2269 jlong G1CollectedHeap::millis_since_last_gc() {
2270   // See the notes in GenCollectedHeap::millis_since_last_gc()
2271   // for more information about the implementation.
2272   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2273     _g1_policy->collection_pause_end_millis();
2274   if (ret_val < 0) {
2275     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2276       ". returning zero instead.", ret_val);
2277     return 0;
2278   }
2279   return ret_val;
2280 }
2281 
2282 void G1CollectedHeap::deduplicate_string(oop str) {
2283   assert(java_lang_String::is_instance(str), "invariant");
2284 
2285   if (G1StringDedup::is_enabled()) {
2286     G1StringDedup::deduplicate(str);
2287   }
2288 }
2289 
2290 void G1CollectedHeap::prepare_for_verify() {
2291   _verifier->prepare_for_verify();
2292 }
2293 
2294 void G1CollectedHeap::verify(VerifyOption vo) {
2295   _verifier->verify(vo);
2296 }
2297 
2298 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2299   return true;
2300 }
2301 
2302 const char* const* G1CollectedHeap::concurrent_phases() const {
2303   return _cm_thread->concurrent_phases();
2304 }
2305 
2306 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2307   return _cm_thread->request_concurrent_phase(phase);
2308 }
2309 
2310 class PrintRegionClosure: public HeapRegionClosure {
2311   outputStream* _st;
2312 public:
2313   PrintRegionClosure(outputStream* st) : _st(st) {}
2314   bool do_heap_region(HeapRegion* r) {
2315     r->print_on(_st);
2316     return false;
2317   }
2318 };
2319 
2320 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2321                                        const HeapRegion* hr,
2322                                        const VerifyOption vo) const {
2323   switch (vo) {
2324   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2325   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2326   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2327   default:                            ShouldNotReachHere();
2328   }
2329   return false; // keep some compilers happy
2330 }
2331 
2332 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2333                                        const VerifyOption vo) const {
2334   switch (vo) {
2335   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2336   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2337   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2338   default:                            ShouldNotReachHere();
2339   }
2340   return false; // keep some compilers happy
2341 }
2342 
2343 void G1CollectedHeap::print_heap_regions() const {
2344   LogTarget(Trace, gc, heap, region) lt;
2345   if (lt.is_enabled()) {
2346     LogStream ls(lt);
2347     print_regions_on(&ls);
2348   }
2349 }
2350 
2351 void G1CollectedHeap::print_on(outputStream* st) const {
2352   st->print(" %-20s", "garbage-first heap");
2353   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2354             capacity()/K, used_unlocked()/K);
2355   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2356             p2i(_hrm->reserved().start()),
2357             p2i(_hrm->reserved().end()));
2358   st->cr();
2359   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2360   uint young_regions = young_regions_count();
2361   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2362             (size_t) young_regions * HeapRegion::GrainBytes / K);
2363   uint survivor_regions = survivor_regions_count();
2364   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2365             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2366   st->cr();
2367   MetaspaceUtils::print_on(st);
2368 }
2369 
2370 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2371   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2372                "HS=humongous(starts), HC=humongous(continues), "
2373                "CS=collection set, F=free, A=archive, "
2374                "TAMS=top-at-mark-start (previous, next)");
2375   PrintRegionClosure blk(st);
2376   heap_region_iterate(&blk);
2377 }
2378 
2379 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2380   print_on(st);
2381 
2382   // Print the per-region information.
2383   print_regions_on(st);
2384 }
2385 
2386 void G1CollectedHeap::print_on_error(outputStream* st) const {
2387   this->CollectedHeap::print_on_error(st);
2388 
2389   if (_cm != NULL) {
2390     st->cr();
2391     _cm->print_on_error(st);
2392   }
2393 }
2394 
2395 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2396   workers()->print_worker_threads_on(st);
2397   _cm_thread->print_on(st);
2398   st->cr();
2399   _cm->print_worker_threads_on(st);
2400   _cr->print_threads_on(st);
2401   _young_gen_sampling_thread->print_on(st);
2402   if (G1StringDedup::is_enabled()) {
2403     G1StringDedup::print_worker_threads_on(st);
2404   }
2405 }
2406 
2407 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2408   workers()->threads_do(tc);
2409   tc->do_thread(_cm_thread);
2410   _cm->threads_do(tc);
2411   _cr->threads_do(tc);
2412   tc->do_thread(_young_gen_sampling_thread);
2413   if (G1StringDedup::is_enabled()) {
2414     G1StringDedup::threads_do(tc);
2415   }
2416 }
2417 
2418 void G1CollectedHeap::print_tracing_info() const {
2419   g1_rem_set()->print_summary_info();
2420   concurrent_mark()->print_summary_info();
2421 }
2422 
2423 #ifndef PRODUCT
2424 // Helpful for debugging RSet issues.
2425 
2426 class PrintRSetsClosure : public HeapRegionClosure {
2427 private:
2428   const char* _msg;
2429   size_t _occupied_sum;
2430 
2431 public:
2432   bool do_heap_region(HeapRegion* r) {
2433     HeapRegionRemSet* hrrs = r->rem_set();
2434     size_t occupied = hrrs->occupied();
2435     _occupied_sum += occupied;
2436 
2437     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2438     if (occupied == 0) {
2439       tty->print_cr("  RSet is empty");
2440     } else {
2441       hrrs->print();
2442     }
2443     tty->print_cr("----------");
2444     return false;
2445   }
2446 
2447   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2448     tty->cr();
2449     tty->print_cr("========================================");
2450     tty->print_cr("%s", msg);
2451     tty->cr();
2452   }
2453 
2454   ~PrintRSetsClosure() {
2455     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2456     tty->print_cr("========================================");
2457     tty->cr();
2458   }
2459 };
2460 
2461 void G1CollectedHeap::print_cset_rsets() {
2462   PrintRSetsClosure cl("Printing CSet RSets");
2463   collection_set_iterate(&cl);
2464 }
2465 
2466 void G1CollectedHeap::print_all_rsets() {
2467   PrintRSetsClosure cl("Printing All RSets");;
2468   heap_region_iterate(&cl);
2469 }
2470 #endif // PRODUCT
2471 
2472 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2473 
2474   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2475   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2476   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2477 
2478   size_t eden_capacity_bytes =
2479     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2480 
2481   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2482   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2483                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2484 }
2485 
2486 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2487   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2488                        stats->unused(), stats->used(), stats->region_end_waste(),
2489                        stats->regions_filled(), stats->direct_allocated(),
2490                        stats->failure_used(), stats->failure_waste());
2491 }
2492 
2493 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2494   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2495   gc_tracer->report_gc_heap_summary(when, heap_summary);
2496 
2497   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2498   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2499 }
2500 
2501 G1CollectedHeap* G1CollectedHeap::heap() {
2502   CollectedHeap* heap = Universe::heap();
2503   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2504   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2505   return (G1CollectedHeap*)heap;
2506 }
2507 
2508 void G1CollectedHeap::gc_prologue(bool full) {
2509   // always_do_update_barrier = false;
2510   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2511 
2512   // This summary needs to be printed before incrementing total collections.
2513   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2514 
2515   // Update common counters.
2516   increment_total_collections(full /* full gc */);
2517   if (full) {
2518     increment_old_marking_cycles_started();
2519   }
2520 
2521   // Fill TLAB's and such
2522   double start = os::elapsedTime();
2523   ensure_parsability(true);
2524   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2525 }
2526 
2527 void G1CollectedHeap::gc_epilogue(bool full) {
2528   // Update common counters.
2529   if (full) {
2530     // Update the number of full collections that have been completed.
2531     increment_old_marking_cycles_completed(false /* concurrent */);
2532     // Now we know the target length of young list. So adjust the heap to provision that many regions on dram.
2533     if (is_hetero_heap()) {
2534       static_cast<HeterogeneousHeapRegionManager*>(hrm())->adjust_dram_regions((uint)g1_policy()->young_list_target_length(), workers());
2535     }
2536   }
2537 
2538   // We are at the end of the GC. Total collections has already been increased.
2539   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2540 
2541   // FIXME: what is this about?
2542   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2543   // is set.
2544 #if COMPILER2_OR_JVMCI
2545   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2546 #endif
2547   // always_do_update_barrier = true;
2548 
2549   double start = os::elapsedTime();
2550   resize_all_tlabs();
2551   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2552 
2553   MemoryService::track_memory_usage();
2554   // We have just completed a GC. Update the soft reference
2555   // policy with the new heap occupancy
2556   Universe::update_heap_info_at_gc();
2557 }
2558 
2559 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2560                                                uint gc_count_before,
2561                                                bool* succeeded,
2562                                                GCCause::Cause gc_cause) {
2563   assert_heap_not_locked_and_not_at_safepoint();
2564   VM_G1CollectForAllocation op(word_size,
2565                                gc_count_before,
2566                                gc_cause,
2567                                false, /* should_initiate_conc_mark */
2568                                g1_policy()->max_pause_time_ms());
2569   VMThread::execute(&op);
2570 
2571   HeapWord* result = op.result();
2572   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2573   assert(result == NULL || ret_succeeded,
2574          "the result should be NULL if the VM did not succeed");
2575   *succeeded = ret_succeeded;
2576 
2577   assert_heap_not_locked();
2578   return result;
2579 }
2580 
2581 void G1CollectedHeap::do_concurrent_mark() {
2582   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2583   if (!_cm_thread->in_progress()) {
2584     _cm_thread->set_started();
2585     CGC_lock->notify();
2586   }
2587 }
2588 
2589 size_t G1CollectedHeap::pending_card_num() {
2590   size_t extra_cards = 0;
2591   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2592     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2593     extra_cards += dcq.size();
2594   }
2595   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2596   size_t buffer_size = dcqs.buffer_size();
2597   size_t buffer_num = dcqs.completed_buffers_num();
2598 
2599   return buffer_size * buffer_num + extra_cards;
2600 }
2601 
2602 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2603   // We don't nominate objects with many remembered set entries, on
2604   // the assumption that such objects are likely still live.
2605   HeapRegionRemSet* rem_set = r->rem_set();
2606 
2607   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2608          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2609          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2610 }
2611 
2612 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2613  private:
2614   size_t _total_humongous;
2615   size_t _candidate_humongous;
2616 
2617   DirtyCardQueue _dcq;
2618 
2619   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2620     assert(region->is_starts_humongous(), "Must start a humongous object");
2621 
2622     oop obj = oop(region->bottom());
2623 
2624     // Dead objects cannot be eager reclaim candidates. Due to class
2625     // unloading it is unsafe to query their classes so we return early.
2626     if (g1h->is_obj_dead(obj, region)) {
2627       return false;
2628     }
2629 
2630     // If we do not have a complete remembered set for the region, then we can
2631     // not be sure that we have all references to it.
2632     if (!region->rem_set()->is_complete()) {
2633       return false;
2634     }
2635     // Candidate selection must satisfy the following constraints
2636     // while concurrent marking is in progress:
2637     //
2638     // * In order to maintain SATB invariants, an object must not be
2639     // reclaimed if it was allocated before the start of marking and
2640     // has not had its references scanned.  Such an object must have
2641     // its references (including type metadata) scanned to ensure no
2642     // live objects are missed by the marking process.  Objects
2643     // allocated after the start of concurrent marking don't need to
2644     // be scanned.
2645     //
2646     // * An object must not be reclaimed if it is on the concurrent
2647     // mark stack.  Objects allocated after the start of concurrent
2648     // marking are never pushed on the mark stack.
2649     //
2650     // Nominating only objects allocated after the start of concurrent
2651     // marking is sufficient to meet both constraints.  This may miss
2652     // some objects that satisfy the constraints, but the marking data
2653     // structures don't support efficiently performing the needed
2654     // additional tests or scrubbing of the mark stack.
2655     //
2656     // However, we presently only nominate is_typeArray() objects.
2657     // A humongous object containing references induces remembered
2658     // set entries on other regions.  In order to reclaim such an
2659     // object, those remembered sets would need to be cleaned up.
2660     //
2661     // We also treat is_typeArray() objects specially, allowing them
2662     // to be reclaimed even if allocated before the start of
2663     // concurrent mark.  For this we rely on mark stack insertion to
2664     // exclude is_typeArray() objects, preventing reclaiming an object
2665     // that is in the mark stack.  We also rely on the metadata for
2666     // such objects to be built-in and so ensured to be kept live.
2667     // Frequent allocation and drop of large binary blobs is an
2668     // important use case for eager reclaim, and this special handling
2669     // may reduce needed headroom.
2670 
2671     return obj->is_typeArray() &&
2672            g1h->is_potential_eager_reclaim_candidate(region);
2673   }
2674 
2675  public:
2676   RegisterHumongousWithInCSetFastTestClosure()
2677   : _total_humongous(0),
2678     _candidate_humongous(0),
2679     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2680   }
2681 
2682   virtual bool do_heap_region(HeapRegion* r) {
2683     if (!r->is_starts_humongous()) {
2684       return false;
2685     }
2686     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2687 
2688     bool is_candidate = humongous_region_is_candidate(g1h, r);
2689     uint rindex = r->hrm_index();
2690     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2691     if (is_candidate) {
2692       _candidate_humongous++;
2693       g1h->register_humongous_region_with_cset(rindex);
2694       // Is_candidate already filters out humongous object with large remembered sets.
2695       // If we have a humongous object with a few remembered sets, we simply flush these
2696       // remembered set entries into the DCQS. That will result in automatic
2697       // re-evaluation of their remembered set entries during the following evacuation
2698       // phase.
2699       if (!r->rem_set()->is_empty()) {
2700         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2701                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2702         G1CardTable* ct = g1h->card_table();
2703         HeapRegionRemSetIterator hrrs(r->rem_set());
2704         size_t card_index;
2705         while (hrrs.has_next(card_index)) {
2706           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2707           // The remembered set might contain references to already freed
2708           // regions. Filter out such entries to avoid failing card table
2709           // verification.
2710           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2711             if (*card_ptr != G1CardTable::dirty_card_val()) {
2712               *card_ptr = G1CardTable::dirty_card_val();
2713               _dcq.enqueue(card_ptr);
2714             }
2715           }
2716         }
2717         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2718                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2719                hrrs.n_yielded(), r->rem_set()->occupied());
2720         // We should only clear the card based remembered set here as we will not
2721         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2722         // (and probably never) we do not enter this path if there are other kind of
2723         // remembered sets for this region.
2724         r->rem_set()->clear_locked(true /* only_cardset */);
2725         // Clear_locked() above sets the state to Empty. However we want to continue
2726         // collecting remembered set entries for humongous regions that were not
2727         // reclaimed.
2728         r->rem_set()->set_state_complete();
2729       }
2730       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2731     }
2732     _total_humongous++;
2733 
2734     return false;
2735   }
2736 
2737   size_t total_humongous() const { return _total_humongous; }
2738   size_t candidate_humongous() const { return _candidate_humongous; }
2739 
2740   void flush_rem_set_entries() { _dcq.flush(); }
2741 };
2742 
2743 void G1CollectedHeap::register_humongous_regions_with_cset() {
2744   if (!G1EagerReclaimHumongousObjects) {
2745     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2746     return;
2747   }
2748   double time = os::elapsed_counter();
2749 
2750   // Collect reclaim candidate information and register candidates with cset.
2751   RegisterHumongousWithInCSetFastTestClosure cl;
2752   heap_region_iterate(&cl);
2753 
2754   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2755   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2756                                                                   cl.total_humongous(),
2757                                                                   cl.candidate_humongous());
2758   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2759 
2760   // Finally flush all remembered set entries to re-check into the global DCQS.
2761   cl.flush_rem_set_entries();
2762 }
2763 
2764 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2765   public:
2766     bool do_heap_region(HeapRegion* hr) {
2767       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2768         hr->verify_rem_set();
2769       }
2770       return false;
2771     }
2772 };
2773 
2774 uint G1CollectedHeap::num_task_queues() const {
2775   return _task_queues->size();
2776 }
2777 
2778 #if TASKQUEUE_STATS
2779 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2780   st->print_raw_cr("GC Task Stats");
2781   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2782   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2783 }
2784 
2785 void G1CollectedHeap::print_taskqueue_stats() const {
2786   if (!log_is_enabled(Trace, gc, task, stats)) {
2787     return;
2788   }
2789   Log(gc, task, stats) log;
2790   ResourceMark rm;
2791   LogStream ls(log.trace());
2792   outputStream* st = &ls;
2793 
2794   print_taskqueue_stats_hdr(st);
2795 
2796   TaskQueueStats totals;
2797   const uint n = num_task_queues();
2798   for (uint i = 0; i < n; ++i) {
2799     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2800     totals += task_queue(i)->stats;
2801   }
2802   st->print_raw("tot "); totals.print(st); st->cr();
2803 
2804   DEBUG_ONLY(totals.verify());
2805 }
2806 
2807 void G1CollectedHeap::reset_taskqueue_stats() {
2808   const uint n = num_task_queues();
2809   for (uint i = 0; i < n; ++i) {
2810     task_queue(i)->stats.reset();
2811   }
2812 }
2813 #endif // TASKQUEUE_STATS
2814 
2815 void G1CollectedHeap::wait_for_root_region_scanning() {
2816   double scan_wait_start = os::elapsedTime();
2817   // We have to wait until the CM threads finish scanning the
2818   // root regions as it's the only way to ensure that all the
2819   // objects on them have been correctly scanned before we start
2820   // moving them during the GC.
2821   bool waited = _cm->root_regions()->wait_until_scan_finished();
2822   double wait_time_ms = 0.0;
2823   if (waited) {
2824     double scan_wait_end = os::elapsedTime();
2825     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2826   }
2827   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2828 }
2829 
2830 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2831 private:
2832   G1HRPrinter* _hr_printer;
2833 public:
2834   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2835 
2836   virtual bool do_heap_region(HeapRegion* r) {
2837     _hr_printer->cset(r);
2838     return false;
2839   }
2840 };
2841 
2842 void G1CollectedHeap::start_new_collection_set() {
2843   collection_set()->start_incremental_building();
2844 
2845   clear_cset_fast_test();
2846 
2847   guarantee(_eden.length() == 0, "eden should have been cleared");
2848   g1_policy()->transfer_survivors_to_cset(survivor());
2849 }
2850 
2851 bool
2852 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2853   assert_at_safepoint_on_vm_thread();
2854   guarantee(!is_gc_active(), "collection is not reentrant");
2855 
2856   if (GCLocker::check_active_before_gc()) {
2857     return false;
2858   }
2859 
2860   _gc_timer_stw->register_gc_start();
2861 
2862   GCIdMark gc_id_mark;
2863   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2864 
2865   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2866   ResourceMark rm;
2867 
2868   g1_policy()->note_gc_start();
2869 
2870   wait_for_root_region_scanning();
2871 
2872   print_heap_before_gc();
2873   print_heap_regions();
2874   trace_heap_before_gc(_gc_tracer_stw);
2875 
2876   _verifier->verify_region_sets_optional();
2877   _verifier->verify_dirty_young_regions();
2878 
2879   // We should not be doing initial mark unless the conc mark thread is running
2880   if (!_cm_thread->should_terminate()) {
2881     // This call will decide whether this pause is an initial-mark
2882     // pause. If it is, in_initial_mark_gc() will return true
2883     // for the duration of this pause.
2884     g1_policy()->decide_on_conc_mark_initiation();
2885   }
2886 
2887   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2888   assert(!collector_state()->in_initial_mark_gc() ||
2889           collector_state()->in_young_only_phase(), "sanity");
2890 
2891   // We also do not allow mixed GCs during marking.
2892   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2893 
2894   // Record whether this pause is an initial mark. When the current
2895   // thread has completed its logging output and it's safe to signal
2896   // the CM thread, the flag's value in the policy has been reset.
2897   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2898 
2899   // Inner scope for scope based logging, timers, and stats collection
2900   {
2901     EvacuationInfo evacuation_info;
2902 
2903     if (collector_state()->in_initial_mark_gc()) {
2904       // We are about to start a marking cycle, so we increment the
2905       // full collection counter.
2906       increment_old_marking_cycles_started();
2907       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2908     }
2909 
2910     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2911 
2912     GCTraceCPUTime tcpu;
2913 
2914     G1HeapVerifier::G1VerifyType verify_type;
2915     FormatBuffer<> gc_string("Pause Young ");
2916     if (collector_state()->in_initial_mark_gc()) {
2917       gc_string.append("(Concurrent Start)");
2918       verify_type = G1HeapVerifier::G1VerifyConcurrentStart;
2919     } else if (collector_state()->in_young_only_phase()) {
2920       if (collector_state()->in_young_gc_before_mixed()) {
2921         gc_string.append("(Prepare Mixed)");
2922       } else {
2923         gc_string.append("(Normal)");
2924       }
2925       verify_type = G1HeapVerifier::G1VerifyYoungNormal;
2926     } else {
2927       gc_string.append("(Mixed)");
2928       verify_type = G1HeapVerifier::G1VerifyMixed;
2929     }
2930     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2931 
2932     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2933                                                                   workers()->active_workers(),
2934                                                                   Threads::number_of_non_daemon_threads());
2935     active_workers = workers()->update_active_workers(active_workers);
2936     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2937 
2938     G1MonitoringScope ms(g1mm(),
2939                          false /* full_gc */,
2940                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
2941 
2942     G1HeapTransition heap_transition(this);
2943     size_t heap_used_bytes_before_gc = used();
2944 
2945     // Don't dynamically change the number of GC threads this early.  A value of
2946     // 0 is used to indicate serial work.  When parallel work is done,
2947     // it will be set.
2948 
2949     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2950       IsGCActiveMark x;
2951 
2952       gc_prologue(false);
2953 
2954       if (VerifyRememberedSets) {
2955         log_info(gc, verify)("[Verifying RemSets before GC]");
2956         VerifyRegionRemSetClosure v_cl;
2957         heap_region_iterate(&v_cl);
2958       }
2959 
2960       _verifier->verify_before_gc(verify_type);
2961 
2962       _verifier->check_bitmaps("GC Start");
2963 
2964 #if COMPILER2_OR_JVMCI
2965       DerivedPointerTable::clear();
2966 #endif
2967 
2968       // Please see comment in g1CollectedHeap.hpp and
2969       // G1CollectedHeap::ref_processing_init() to see how
2970       // reference processing currently works in G1.
2971 
2972       // Enable discovery in the STW reference processor
2973       _ref_processor_stw->enable_discovery();
2974 
2975       {
2976         // We want to temporarily turn off discovery by the
2977         // CM ref processor, if necessary, and turn it back on
2978         // on again later if we do. Using a scoped
2979         // NoRefDiscovery object will do this.
2980         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2981 
2982         // Forget the current alloc region (we might even choose it to be part
2983         // of the collection set!).
2984         _allocator->release_mutator_alloc_region();
2985 
2986         // This timing is only used by the ergonomics to handle our pause target.
2987         // It is unclear why this should not include the full pause. We will
2988         // investigate this in CR 7178365.
2989         //
2990         // Preserving the old comment here if that helps the investigation:
2991         //
2992         // The elapsed time induced by the start time below deliberately elides
2993         // the possible verification above.
2994         double sample_start_time_sec = os::elapsedTime();
2995 
2996         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2997 
2998         if (collector_state()->in_initial_mark_gc()) {
2999           concurrent_mark()->pre_initial_mark();
3000         }
3001 
3002         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3003 
3004         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3005 
3006         // Make sure the remembered sets are up to date. This needs to be
3007         // done before register_humongous_regions_with_cset(), because the
3008         // remembered sets are used there to choose eager reclaim candidates.
3009         // If the remembered sets are not up to date we might miss some
3010         // entries that need to be handled.
3011         g1_rem_set()->cleanupHRRS();
3012 
3013         register_humongous_regions_with_cset();
3014 
3015         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3016 
3017         // We call this after finalize_cset() to
3018         // ensure that the CSet has been finalized.
3019         _cm->verify_no_cset_oops();
3020 
3021         if (_hr_printer.is_active()) {
3022           G1PrintCollectionSetClosure cl(&_hr_printer);
3023           _collection_set.iterate(&cl);
3024         }
3025 
3026         // Initialize the GC alloc regions.
3027         _allocator->init_gc_alloc_regions(evacuation_info);
3028 
3029         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3030         pre_evacuate_collection_set();
3031 
3032         // Actually do the work...
3033         evacuate_collection_set(&per_thread_states);
3034 
3035         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3036 
3037         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3038         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3039 
3040         eagerly_reclaim_humongous_regions();
3041 
3042         record_obj_copy_mem_stats();
3043         _survivor_evac_stats.adjust_desired_plab_sz();
3044         _old_evac_stats.adjust_desired_plab_sz();
3045 
3046         double start = os::elapsedTime();
3047         start_new_collection_set();
3048         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3049 
3050         if (evacuation_failed()) {
3051           double recalculate_used_start = os::elapsedTime();
3052           set_used(recalculate_used());
3053           g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3054 
3055           if (_archive_allocator != NULL) {
3056             _archive_allocator->clear_used();
3057           }
3058           for (uint i = 0; i < ParallelGCThreads; i++) {
3059             if (_evacuation_failed_info_array[i].has_failed()) {
3060               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3061             }
3062           }
3063         } else {
3064           // The "used" of the the collection set have already been subtracted
3065           // when they were freed.  Add in the bytes evacuated.
3066           increase_used(g1_policy()->bytes_copied_during_gc());
3067         }
3068 
3069         if (collector_state()->in_initial_mark_gc()) {
3070           // We have to do this before we notify the CM threads that
3071           // they can start working to make sure that all the
3072           // appropriate initialization is done on the CM object.
3073           concurrent_mark()->post_initial_mark();
3074           // Note that we don't actually trigger the CM thread at
3075           // this point. We do that later when we're sure that
3076           // the current thread has completed its logging output.
3077         }
3078 
3079         allocate_dummy_regions();
3080 
3081         _allocator->init_mutator_alloc_region();
3082 
3083         {
3084           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3085           if (expand_bytes > 0) {
3086             size_t bytes_before = capacity();
3087             // No need for an ergo logging here,
3088             // expansion_amount() does this when it returns a value > 0.
3089             double expand_ms;
3090             if (!expand(expand_bytes, _workers, &expand_ms)) {
3091               // We failed to expand the heap. Cannot do anything about it.
3092             }
3093             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3094           }
3095         }
3096 
3097         // We redo the verification but now wrt to the new CSet which
3098         // has just got initialized after the previous CSet was freed.
3099         _cm->verify_no_cset_oops();
3100 
3101         // This timing is only used by the ergonomics to handle our pause target.
3102         // It is unclear why this should not include the full pause. We will
3103         // investigate this in CR 7178365.
3104         double sample_end_time_sec = os::elapsedTime();
3105         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3106         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3107         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3108 
3109         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3110         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3111 
3112         if (VerifyRememberedSets) {
3113           log_info(gc, verify)("[Verifying RemSets after GC]");
3114           VerifyRegionRemSetClosure v_cl;
3115           heap_region_iterate(&v_cl);
3116         }
3117 
3118         _verifier->verify_after_gc(verify_type);
3119         _verifier->check_bitmaps("GC End");
3120 
3121         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
3122         _ref_processor_stw->verify_no_references_recorded();
3123 
3124         // CM reference discovery will be re-enabled if necessary.
3125       }
3126 
3127 #ifdef TRACESPINNING
3128       ParallelTaskTerminator::print_termination_counts();
3129 #endif
3130 
3131       gc_epilogue(false);
3132     }
3133 
3134     // Print the remainder of the GC log output.
3135     if (evacuation_failed()) {
3136       log_info(gc)("To-space exhausted");
3137     }
3138 
3139     g1_policy()->print_phases();
3140     heap_transition.print();
3141 
3142     // It is not yet to safe to tell the concurrent mark to
3143     // start as we have some optional output below. We don't want the
3144     // output from the concurrent mark thread interfering with this
3145     // logging output either.
3146 
3147     _hrm->verify_optional();
3148     _verifier->verify_region_sets_optional();
3149 
3150     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3151     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3152 
3153     print_heap_after_gc();
3154     print_heap_regions();
3155     trace_heap_after_gc(_gc_tracer_stw);
3156 
3157     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3158     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3159     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3160     // before any GC notifications are raised.
3161     g1mm()->update_sizes();
3162 
3163     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3164     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3165     _gc_timer_stw->register_gc_end();
3166     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3167   }
3168   // It should now be safe to tell the concurrent mark thread to start
3169   // without its logging output interfering with the logging output
3170   // that came from the pause.
3171 
3172   if (should_start_conc_mark) {
3173     // CAUTION: after the doConcurrentMark() call below,
3174     // the concurrent marking thread(s) could be running
3175     // concurrently with us. Make sure that anything after
3176     // this point does not assume that we are the only GC thread
3177     // running. Note: of course, the actual marking work will
3178     // not start until the safepoint itself is released in
3179     // SuspendibleThreadSet::desynchronize().
3180     do_concurrent_mark();
3181   }
3182 
3183   return true;
3184 }
3185 
3186 void G1CollectedHeap::remove_self_forwarding_pointers() {
3187   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3188   workers()->run_task(&rsfp_task);
3189 }
3190 
3191 void G1CollectedHeap::restore_after_evac_failure() {
3192   double remove_self_forwards_start = os::elapsedTime();
3193 
3194   remove_self_forwarding_pointers();
3195   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3196   _preserved_marks_set.restore(&task_executor);
3197 
3198   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3199 }
3200 
3201 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3202   if (!_evacuation_failed) {
3203     _evacuation_failed = true;
3204   }
3205 
3206   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3207   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3208 }
3209 
3210 bool G1ParEvacuateFollowersClosure::offer_termination() {
3211   EventGCPhaseParallel event;
3212   G1ParScanThreadState* const pss = par_scan_state();
3213   start_term_time();
3214   const bool res = terminator()->offer_termination();
3215   end_term_time();
3216   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3217   return res;
3218 }
3219 
3220 void G1ParEvacuateFollowersClosure::do_void() {
3221   EventGCPhaseParallel event;
3222   G1ParScanThreadState* const pss = par_scan_state();
3223   pss->trim_queue();
3224   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ObjCopy));
3225   do {
3226     EventGCPhaseParallel event;
3227     pss->steal_and_trim_queue(queues());
3228     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ObjCopy));
3229   } while (!offer_termination());
3230 }
3231 
3232 class G1ParTask : public AbstractGangTask {
3233 protected:
3234   G1CollectedHeap*         _g1h;
3235   G1ParScanThreadStateSet* _pss;
3236   RefToScanQueueSet*       _queues;
3237   G1RootProcessor*         _root_processor;
3238   ParallelTaskTerminator   _terminator;
3239   uint                     _n_workers;
3240 
3241 public:
3242   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3243     : AbstractGangTask("G1 collection"),
3244       _g1h(g1h),
3245       _pss(per_thread_states),
3246       _queues(task_queues),
3247       _root_processor(root_processor),
3248       _terminator(n_workers, _queues),
3249       _n_workers(n_workers)
3250   {}
3251 
3252   void work(uint worker_id) {
3253     if (worker_id >= _n_workers) return;  // no work needed this round
3254 
3255     double start_sec = os::elapsedTime();
3256     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3257 
3258     {
3259       ResourceMark rm;
3260       HandleMark   hm;
3261 
3262       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3263 
3264       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3265       pss->set_ref_discoverer(rp);
3266 
3267       double start_strong_roots_sec = os::elapsedTime();
3268 
3269       _root_processor->evacuate_roots(pss, worker_id);
3270 
3271       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3272       // treating the nmethods visited to act as roots for concurrent marking.
3273       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3274       // objects copied by the current evacuation.
3275       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3276 
3277       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3278 
3279       double term_sec = 0.0;
3280       size_t evac_term_attempts = 0;
3281       {
3282         double start = os::elapsedTime();
3283         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3284         evac.do_void();
3285 
3286         evac_term_attempts = evac.term_attempts();
3287         term_sec = evac.term_time();
3288         double elapsed_sec = os::elapsedTime() - start;
3289 
3290         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3291         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3292         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3293         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3294       }
3295 
3296       assert(pss->queue_is_empty(), "should be empty");
3297 
3298       if (log_is_enabled(Debug, gc, task, stats)) {
3299         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3300         size_t lab_waste;
3301         size_t lab_undo_waste;
3302         pss->waste(lab_waste, lab_undo_waste);
3303         _g1h->print_termination_stats(worker_id,
3304                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3305                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3306                                       term_sec * 1000.0,                          /* evac term time */
3307                                       evac_term_attempts,                         /* evac term attempts */
3308                                       lab_waste,                                  /* alloc buffer waste */
3309                                       lab_undo_waste                              /* undo waste */
3310                                       );
3311       }
3312 
3313       // Close the inner scope so that the ResourceMark and HandleMark
3314       // destructors are executed here and are included as part of the
3315       // "GC Worker Time".
3316     }
3317     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3318   }
3319 };
3320 
3321 void G1CollectedHeap::print_termination_stats_hdr() {
3322   log_debug(gc, task, stats)("GC Termination Stats");
3323   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3324   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3325   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3326 }
3327 
3328 void G1CollectedHeap::print_termination_stats(uint worker_id,
3329                                               double elapsed_ms,
3330                                               double strong_roots_ms,
3331                                               double term_ms,
3332                                               size_t term_attempts,
3333                                               size_t alloc_buffer_waste,
3334                                               size_t undo_waste) const {
3335   log_debug(gc, task, stats)
3336               ("%3d %9.2f %9.2f %6.2f "
3337                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3338                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3339                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3340                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3341                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3342                alloc_buffer_waste * HeapWordSize / K,
3343                undo_waste * HeapWordSize / K);
3344 }
3345 
3346 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3347                                         bool class_unloading_occurred) {
3348   uint n_workers = workers()->active_workers();
3349 
3350   G1StringDedupUnlinkOrOopsDoClosure dedup_closure(is_alive, NULL, false);
3351   ParallelCleaningTask g1_unlink_task(is_alive, &dedup_closure, n_workers, class_unloading_occurred);
3352   workers()->run_task(&g1_unlink_task);
3353 }
3354 
3355 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3356                                        bool process_strings,
3357                                        bool process_string_dedup) {
3358   if (!process_strings && !process_string_dedup) {
3359     // Nothing to clean.
3360     return;
3361   }
3362 
3363   G1StringDedupUnlinkOrOopsDoClosure dedup_closure(is_alive, NULL, false);
3364   StringCleaningTask g1_unlink_task(is_alive, process_string_dedup ? &dedup_closure : NULL, process_strings);
3365   workers()->run_task(&g1_unlink_task);
3366 }
3367 
3368 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3369  private:
3370   DirtyCardQueueSet* _queue;
3371   G1CollectedHeap* _g1h;
3372  public:
3373   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3374     _queue(queue), _g1h(g1h) { }
3375 
3376   virtual void work(uint worker_id) {
3377     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3378     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3379 
3380     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3381     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3382 
3383     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3384   }
3385 };
3386 
3387 void G1CollectedHeap::redirty_logged_cards() {
3388   double redirty_logged_cards_start = os::elapsedTime();
3389 
3390   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3391   dirty_card_queue_set().reset_for_par_iteration();
3392   workers()->run_task(&redirty_task);
3393 
3394   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3395   dcq.merge_bufferlists(&dirty_card_queue_set());
3396   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3397 
3398   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3399 }
3400 
3401 // Weak Reference Processing support
3402 
3403 bool G1STWIsAliveClosure::do_object_b(oop p) {
3404   // An object is reachable if it is outside the collection set,
3405   // or is inside and copied.
3406   return !_g1h->is_in_cset(p) || p->is_forwarded();
3407 }
3408 
3409 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3410   assert(obj != NULL, "must not be NULL");
3411   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3412   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3413   // may falsely indicate that this is not the case here: however the collection set only
3414   // contains old regions when concurrent mark is not running.
3415   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3416 }
3417 
3418 // Non Copying Keep Alive closure
3419 class G1KeepAliveClosure: public OopClosure {
3420   G1CollectedHeap*_g1h;
3421 public:
3422   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3423   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3424   void do_oop(oop* p) {
3425     oop obj = *p;
3426     assert(obj != NULL, "the caller should have filtered out NULL values");
3427 
3428     const InCSetState cset_state =_g1h->in_cset_state(obj);
3429     if (!cset_state.is_in_cset_or_humongous()) {
3430       return;
3431     }
3432     if (cset_state.is_in_cset()) {
3433       assert( obj->is_forwarded(), "invariant" );
3434       *p = obj->forwardee();
3435     } else {
3436       assert(!obj->is_forwarded(), "invariant" );
3437       assert(cset_state.is_humongous(),
3438              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3439      _g1h->set_humongous_is_live(obj);
3440     }
3441   }
3442 };
3443 
3444 // Copying Keep Alive closure - can be called from both
3445 // serial and parallel code as long as different worker
3446 // threads utilize different G1ParScanThreadState instances
3447 // and different queues.
3448 
3449 class G1CopyingKeepAliveClosure: public OopClosure {
3450   G1CollectedHeap*         _g1h;
3451   G1ParScanThreadState*    _par_scan_state;
3452 
3453 public:
3454   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3455                             G1ParScanThreadState* pss):
3456     _g1h(g1h),
3457     _par_scan_state(pss)
3458   {}
3459 
3460   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3461   virtual void do_oop(      oop* p) { do_oop_work(p); }
3462 
3463   template <class T> void do_oop_work(T* p) {
3464     oop obj = RawAccess<>::oop_load(p);
3465 
3466     if (_g1h->is_in_cset_or_humongous(obj)) {
3467       // If the referent object has been forwarded (either copied
3468       // to a new location or to itself in the event of an
3469       // evacuation failure) then we need to update the reference
3470       // field and, if both reference and referent are in the G1
3471       // heap, update the RSet for the referent.
3472       //
3473       // If the referent has not been forwarded then we have to keep
3474       // it alive by policy. Therefore we have copy the referent.
3475       //
3476       // When the queue is drained (after each phase of reference processing)
3477       // the object and it's followers will be copied, the reference field set
3478       // to point to the new location, and the RSet updated.
3479       _par_scan_state->push_on_queue(p);
3480     }
3481   }
3482 };
3483 
3484 // Serial drain queue closure. Called as the 'complete_gc'
3485 // closure for each discovered list in some of the
3486 // reference processing phases.
3487 
3488 class G1STWDrainQueueClosure: public VoidClosure {
3489 protected:
3490   G1CollectedHeap* _g1h;
3491   G1ParScanThreadState* _par_scan_state;
3492 
3493   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3494 
3495 public:
3496   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3497     _g1h(g1h),
3498     _par_scan_state(pss)
3499   { }
3500 
3501   void do_void() {
3502     G1ParScanThreadState* const pss = par_scan_state();
3503     pss->trim_queue();
3504   }
3505 };
3506 
3507 // Parallel Reference Processing closures
3508 
3509 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3510 // processing during G1 evacuation pauses.
3511 
3512 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3513 private:
3514   G1CollectedHeap*          _g1h;
3515   G1ParScanThreadStateSet*  _pss;
3516   RefToScanQueueSet*        _queues;
3517   WorkGang*                 _workers;
3518 
3519 public:
3520   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3521                            G1ParScanThreadStateSet* per_thread_states,
3522                            WorkGang* workers,
3523                            RefToScanQueueSet *task_queues) :
3524     _g1h(g1h),
3525     _pss(per_thread_states),
3526     _queues(task_queues),
3527     _workers(workers)
3528   {
3529     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3530   }
3531 
3532   // Executes the given task using concurrent marking worker threads.
3533   virtual void execute(ProcessTask& task, uint ergo_workers);
3534 };
3535 
3536 // Gang task for possibly parallel reference processing
3537 
3538 class G1STWRefProcTaskProxy: public AbstractGangTask {
3539   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3540   ProcessTask&     _proc_task;
3541   G1CollectedHeap* _g1h;
3542   G1ParScanThreadStateSet* _pss;
3543   RefToScanQueueSet* _task_queues;
3544   ParallelTaskTerminator* _terminator;
3545 
3546 public:
3547   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3548                         G1CollectedHeap* g1h,
3549                         G1ParScanThreadStateSet* per_thread_states,
3550                         RefToScanQueueSet *task_queues,
3551                         ParallelTaskTerminator* terminator) :
3552     AbstractGangTask("Process reference objects in parallel"),
3553     _proc_task(proc_task),
3554     _g1h(g1h),
3555     _pss(per_thread_states),
3556     _task_queues(task_queues),
3557     _terminator(terminator)
3558   {}
3559 
3560   virtual void work(uint worker_id) {
3561     // The reference processing task executed by a single worker.
3562     ResourceMark rm;
3563     HandleMark   hm;
3564 
3565     G1STWIsAliveClosure is_alive(_g1h);
3566 
3567     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3568     pss->set_ref_discoverer(NULL);
3569 
3570     // Keep alive closure.
3571     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3572 
3573     // Complete GC closure
3574     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3575 
3576     // Call the reference processing task's work routine.
3577     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3578 
3579     // Note we cannot assert that the refs array is empty here as not all
3580     // of the processing tasks (specifically phase2 - pp2_work) execute
3581     // the complete_gc closure (which ordinarily would drain the queue) so
3582     // the queue may not be empty.
3583   }
3584 };
3585 
3586 // Driver routine for parallel reference processing.
3587 // Creates an instance of the ref processing gang
3588 // task and has the worker threads execute it.
3589 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3590   assert(_workers != NULL, "Need parallel worker threads.");
3591 
3592   assert(_workers->active_workers() >= ergo_workers,
3593          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3594          ergo_workers, _workers->active_workers());
3595   ParallelTaskTerminator terminator(ergo_workers, _queues);
3596   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3597 
3598   _workers->run_task(&proc_task_proxy, ergo_workers);
3599 }
3600 
3601 // End of weak reference support closures
3602 
3603 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3604   double ref_proc_start = os::elapsedTime();
3605 
3606   ReferenceProcessor* rp = _ref_processor_stw;
3607   assert(rp->discovery_enabled(), "should have been enabled");
3608 
3609   // Closure to test whether a referent is alive.
3610   G1STWIsAliveClosure is_alive(this);
3611 
3612   // Even when parallel reference processing is enabled, the processing
3613   // of JNI refs is serial and performed serially by the current thread
3614   // rather than by a worker. The following PSS will be used for processing
3615   // JNI refs.
3616 
3617   // Use only a single queue for this PSS.
3618   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3619   pss->set_ref_discoverer(NULL);
3620   assert(pss->queue_is_empty(), "pre-condition");
3621 
3622   // Keep alive closure.
3623   G1CopyingKeepAliveClosure keep_alive(this, pss);
3624 
3625   // Serial Complete GC closure
3626   G1STWDrainQueueClosure drain_queue(this, pss);
3627 
3628   // Setup the soft refs policy...
3629   rp->setup_policy(false);
3630 
3631   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3632 
3633   ReferenceProcessorStats stats;
3634   if (!rp->processing_is_mt()) {
3635     // Serial reference processing...
3636     stats = rp->process_discovered_references(&is_alive,
3637                                               &keep_alive,
3638                                               &drain_queue,
3639                                               NULL,
3640                                               pt);
3641   } else {
3642     uint no_of_gc_workers = workers()->active_workers();
3643 
3644     // Parallel reference processing
3645     assert(no_of_gc_workers <= rp->max_num_queues(),
3646            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3647            no_of_gc_workers,  rp->max_num_queues());
3648 
3649     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3650     stats = rp->process_discovered_references(&is_alive,
3651                                               &keep_alive,
3652                                               &drain_queue,
3653                                               &par_task_executor,
3654                                               pt);
3655   }
3656 
3657   _gc_tracer_stw->report_gc_reference_stats(stats);
3658 
3659   // We have completed copying any necessary live referent objects.
3660   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3661 
3662   make_pending_list_reachable();
3663 
3664   rp->verify_no_references_recorded();
3665 
3666   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3667   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3668 }
3669 
3670 void G1CollectedHeap::make_pending_list_reachable() {
3671   if (collector_state()->in_initial_mark_gc()) {
3672     oop pll_head = Universe::reference_pending_list();
3673     if (pll_head != NULL) {
3674       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3675       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3676     }
3677   }
3678 }
3679 
3680 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3681   double merge_pss_time_start = os::elapsedTime();
3682   per_thread_states->flush();
3683   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3684 }
3685 
3686 void G1CollectedHeap::pre_evacuate_collection_set() {
3687   _expand_heap_after_alloc_failure = true;
3688   _evacuation_failed = false;
3689 
3690   // Disable the hot card cache.
3691   _hot_card_cache->reset_hot_cache_claimed_index();
3692   _hot_card_cache->set_use_cache(false);
3693 
3694   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3695   _preserved_marks_set.assert_empty();
3696 
3697   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3698 
3699   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3700   if (collector_state()->in_initial_mark_gc()) {
3701     double start_clear_claimed_marks = os::elapsedTime();
3702 
3703     ClassLoaderDataGraph::clear_claimed_marks();
3704 
3705     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3706     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3707   }
3708 }
3709 
3710 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3711   // Should G1EvacuationFailureALot be in effect for this GC?
3712   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3713 
3714   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3715 
3716   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3717 
3718   double start_par_time_sec = os::elapsedTime();
3719   double end_par_time_sec;
3720 
3721   {
3722     const uint n_workers = workers()->active_workers();
3723     G1RootProcessor root_processor(this, n_workers);
3724     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
3725 
3726     print_termination_stats_hdr();
3727 
3728     workers()->run_task(&g1_par_task);
3729     end_par_time_sec = os::elapsedTime();
3730 
3731     // Closing the inner scope will execute the destructor
3732     // for the G1RootProcessor object. We record the current
3733     // elapsed time before closing the scope so that time
3734     // taken for the destructor is NOT included in the
3735     // reported parallel time.
3736   }
3737 
3738   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
3739   phase_times->record_par_time(par_time_ms);
3740 
3741   double code_root_fixup_time_ms =
3742         (os::elapsedTime() - end_par_time_sec) * 1000.0;
3743   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
3744 }
3745 
3746 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3747   // Also cleans the card table from temporary duplicate detection information used
3748   // during UpdateRS/ScanRS.
3749   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
3750 
3751   // Process any discovered reference objects - we have
3752   // to do this _before_ we retire the GC alloc regions
3753   // as we may have to copy some 'reachable' referent
3754   // objects (and their reachable sub-graphs) that were
3755   // not copied during the pause.
3756   process_discovered_references(per_thread_states);
3757 
3758   // FIXME
3759   // CM's reference processing also cleans up the string table.
3760   // Should we do that here also? We could, but it is a serial operation
3761   // and could significantly increase the pause time.
3762 
3763   G1STWIsAliveClosure is_alive(this);
3764   G1KeepAliveClosure keep_alive(this);
3765 
3766   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3767                               g1_policy()->phase_times()->weak_phase_times());
3768 
3769   if (G1StringDedup::is_enabled()) {
3770     double fixup_start = os::elapsedTime();
3771 
3772     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
3773 
3774     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
3775     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
3776   }
3777 
3778   if (evacuation_failed()) {
3779     restore_after_evac_failure();
3780 
3781     // Reset the G1EvacuationFailureALot counters and flags
3782     // Note: the values are reset only when an actual
3783     // evacuation failure occurs.
3784     NOT_PRODUCT(reset_evacuation_should_fail();)
3785   }
3786 
3787   _preserved_marks_set.assert_empty();
3788 
3789   _allocator->release_gc_alloc_regions(evacuation_info);
3790 
3791   merge_per_thread_state_info(per_thread_states);
3792 
3793   // Reset and re-enable the hot card cache.
3794   // Note the counts for the cards in the regions in the
3795   // collection set are reset when the collection set is freed.
3796   _hot_card_cache->reset_hot_cache();
3797   _hot_card_cache->set_use_cache(true);
3798 
3799   purge_code_root_memory();
3800 
3801   redirty_logged_cards();
3802 #if COMPILER2_OR_JVMCI
3803   double start = os::elapsedTime();
3804   DerivedPointerTable::update_pointers();
3805   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3806 #endif
3807   g1_policy()->print_age_table();
3808 }
3809 
3810 void G1CollectedHeap::record_obj_copy_mem_stats() {
3811   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3812 
3813   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3814                                                create_g1_evac_summary(&_old_evac_stats));
3815 }
3816 
3817 void G1CollectedHeap::free_region(HeapRegion* hr,
3818                                   FreeRegionList* free_list,
3819                                   bool skip_remset,
3820                                   bool skip_hot_card_cache,
3821                                   bool locked) {
3822   assert(!hr->is_free(), "the region should not be free");
3823   assert(!hr->is_empty(), "the region should not be empty");
3824   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
3825   assert(free_list != NULL, "pre-condition");
3826 
3827   if (G1VerifyBitmaps) {
3828     MemRegion mr(hr->bottom(), hr->end());
3829     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3830   }
3831 
3832   // Clear the card counts for this region.
3833   // Note: we only need to do this if the region is not young
3834   // (since we don't refine cards in young regions).
3835   if (!skip_hot_card_cache && !hr->is_young()) {
3836     _hot_card_cache->reset_card_counts(hr);
3837   }
3838   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
3839   _g1_policy->remset_tracker()->update_at_free(hr);
3840   free_list->add_ordered(hr);
3841 }
3842 
3843 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3844                                             FreeRegionList* free_list) {
3845   assert(hr->is_humongous(), "this is only for humongous regions");
3846   assert(free_list != NULL, "pre-condition");
3847   hr->clear_humongous();
3848   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
3849 }
3850 
3851 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
3852                                            const uint humongous_regions_removed) {
3853   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
3854     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3855     _old_set.bulk_remove(old_regions_removed);
3856     _humongous_set.bulk_remove(humongous_regions_removed);
3857   }
3858 
3859 }
3860 
3861 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3862   assert(list != NULL, "list can't be null");
3863   if (!list->is_empty()) {
3864     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3865     _hrm->insert_list_into_free_list(list);
3866   }
3867 }
3868 
3869 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3870   decrease_used(bytes);
3871 }
3872 
3873 class G1FreeCollectionSetTask : public AbstractGangTask {
3874 private:
3875 
3876   // Closure applied to all regions in the collection set to do work that needs to
3877   // be done serially in a single thread.
3878   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
3879   private:
3880     EvacuationInfo* _evacuation_info;
3881     const size_t* _surviving_young_words;
3882 
3883     // Bytes used in successfully evacuated regions before the evacuation.
3884     size_t _before_used_bytes;
3885     // Bytes used in unsucessfully evacuated regions before the evacuation
3886     size_t _after_used_bytes;
3887 
3888     size_t _bytes_allocated_in_old_since_last_gc;
3889 
3890     size_t _failure_used_words;
3891     size_t _failure_waste_words;
3892 
3893     FreeRegionList _local_free_list;
3894   public:
3895     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
3896       HeapRegionClosure(),
3897       _evacuation_info(evacuation_info),
3898       _surviving_young_words(surviving_young_words),
3899       _before_used_bytes(0),
3900       _after_used_bytes(0),
3901       _bytes_allocated_in_old_since_last_gc(0),
3902       _failure_used_words(0),
3903       _failure_waste_words(0),
3904       _local_free_list("Local Region List for CSet Freeing") {
3905     }
3906 
3907     virtual bool do_heap_region(HeapRegion* r) {
3908       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3909 
3910       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
3911       g1h->clear_in_cset(r);
3912 
3913       if (r->is_young()) {
3914         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
3915                "Young index %d is wrong for region %u of type %s with %u young regions",
3916                r->young_index_in_cset(),
3917                r->hrm_index(),
3918                r->get_type_str(),
3919                g1h->collection_set()->young_region_length());
3920         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
3921         r->record_surv_words_in_group(words_survived);
3922       }
3923 
3924       if (!r->evacuation_failed()) {
3925         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
3926         _before_used_bytes += r->used();
3927         g1h->free_region(r,
3928                          &_local_free_list,
3929                          true, /* skip_remset */
3930                          true, /* skip_hot_card_cache */
3931                          true  /* locked */);
3932       } else {
3933         r->uninstall_surv_rate_group();
3934         r->set_young_index_in_cset(-1);
3935         r->set_evacuation_failed(false);
3936         // When moving a young gen region to old gen, we "allocate" that whole region
3937         // there. This is in addition to any already evacuated objects. Notify the
3938         // policy about that.
3939         // Old gen regions do not cause an additional allocation: both the objects
3940         // still in the region and the ones already moved are accounted for elsewhere.
3941         if (r->is_young()) {
3942           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
3943         }
3944         // The region is now considered to be old.
3945         if(g1h->is_hetero_heap()) {
3946           if(!r->is_old()) {
3947             // The region was young before, set it as pre-matured old so that next mixed gc can move
3948             // its contents to old region which is on nv-dimm
3949             r->set_premature_old();
3950           }
3951         } else {
3952           r->set_old();
3953         }
3954         // Do some allocation statistics accounting. Regions that failed evacuation
3955         // are always made old, so there is no need to update anything in the young
3956         // gen statistics, but we need to update old gen statistics.
3957         size_t used_words = r->marked_bytes() / HeapWordSize;
3958 
3959         _failure_used_words += used_words;
3960         _failure_waste_words += HeapRegion::GrainWords - used_words;
3961 
3962         g1h->old_set_add(r);
3963         _after_used_bytes += r->used();
3964       }
3965       return false;
3966     }
3967 
3968     void complete_work() {
3969       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3970 
3971       _evacuation_info->set_regions_freed(_local_free_list.length());
3972       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
3973 
3974       g1h->prepend_to_freelist(&_local_free_list);
3975       g1h->decrement_summary_bytes(_before_used_bytes);
3976 
3977       G1Policy* policy = g1h->g1_policy();
3978       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
3979 
3980       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
3981     }
3982   };
3983 
3984   G1CollectionSet* _collection_set;
3985   G1SerialFreeCollectionSetClosure _cl;
3986   const size_t* _surviving_young_words;
3987 
3988   size_t _rs_lengths;
3989 
3990   volatile jint _serial_work_claim;
3991 
3992   struct WorkItem {
3993     uint region_idx;
3994     bool is_young;
3995     bool evacuation_failed;
3996 
3997     WorkItem(HeapRegion* r) {
3998       region_idx = r->hrm_index();
3999       is_young = r->is_young();
4000       evacuation_failed = r->evacuation_failed();
4001     }
4002   };
4003 
4004   volatile size_t _parallel_work_claim;
4005   size_t _num_work_items;
4006   WorkItem* _work_items;
4007 
4008   void do_serial_work() {
4009     // Need to grab the lock to be allowed to modify the old region list.
4010     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4011     _collection_set->iterate(&_cl);
4012   }
4013 
4014   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4015     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4016 
4017     HeapRegion* r = g1h->region_at(region_idx);
4018     assert(!g1h->is_on_master_free_list(r), "sanity");
4019 
4020     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4021 
4022     if (!is_young) {
4023       g1h->_hot_card_cache->reset_card_counts(r);
4024     }
4025 
4026     if (!evacuation_failed) {
4027       r->rem_set()->clear_locked();
4028     }
4029   }
4030 
4031   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4032   private:
4033     size_t _cur_idx;
4034     WorkItem* _work_items;
4035   public:
4036     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4037 
4038     virtual bool do_heap_region(HeapRegion* r) {
4039       _work_items[_cur_idx++] = WorkItem(r);
4040       return false;
4041     }
4042   };
4043 
4044   void prepare_work() {
4045     G1PrepareFreeCollectionSetClosure cl(_work_items);
4046     _collection_set->iterate(&cl);
4047   }
4048 
4049   void complete_work() {
4050     _cl.complete_work();
4051 
4052     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4053     policy->record_max_rs_lengths(_rs_lengths);
4054     policy->cset_regions_freed();
4055   }
4056 public:
4057   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4058     AbstractGangTask("G1 Free Collection Set"),
4059     _collection_set(collection_set),
4060     _cl(evacuation_info, surviving_young_words),
4061     _surviving_young_words(surviving_young_words),
4062     _rs_lengths(0),
4063     _serial_work_claim(0),
4064     _parallel_work_claim(0),
4065     _num_work_items(collection_set->region_length()),
4066     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4067     prepare_work();
4068   }
4069 
4070   ~G1FreeCollectionSetTask() {
4071     complete_work();
4072     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4073   }
4074 
4075   // Chunk size for work distribution. The chosen value has been determined experimentally
4076   // to be a good tradeoff between overhead and achievable parallelism.
4077   static uint chunk_size() { return 32; }
4078 
4079   virtual void work(uint worker_id) {
4080     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4081 
4082     // Claim serial work.
4083     if (_serial_work_claim == 0) {
4084       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4085       if (value == 0) {
4086         double serial_time = os::elapsedTime();
4087         do_serial_work();
4088         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4089       }
4090     }
4091 
4092     // Start parallel work.
4093     double young_time = 0.0;
4094     bool has_young_time = false;
4095     double non_young_time = 0.0;
4096     bool has_non_young_time = false;
4097 
4098     while (true) {
4099       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4100       size_t cur = end - chunk_size();
4101 
4102       if (cur >= _num_work_items) {
4103         break;
4104       }
4105 
4106       EventGCPhaseParallel event;
4107       double start_time = os::elapsedTime();
4108 
4109       end = MIN2(end, _num_work_items);
4110 
4111       for (; cur < end; cur++) {
4112         bool is_young = _work_items[cur].is_young;
4113 
4114         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4115 
4116         double end_time = os::elapsedTime();
4117         double time_taken = end_time - start_time;
4118         if (is_young) {
4119           young_time += time_taken;
4120           has_young_time = true;
4121           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4122         } else {
4123           non_young_time += time_taken;
4124           has_non_young_time = true;
4125           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4126         }
4127         start_time = end_time;
4128       }
4129     }
4130 
4131     if (has_young_time) {
4132       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4133     }
4134     if (has_non_young_time) {
4135       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4136     }
4137   }
4138 };
4139 
4140 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4141   _eden.clear();
4142 
4143   double free_cset_start_time = os::elapsedTime();
4144 
4145   {
4146     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4147     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4148 
4149     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4150 
4151     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4152                         cl.name(),
4153                         num_workers,
4154                         _collection_set.region_length());
4155     workers()->run_task(&cl, num_workers);
4156   }
4157   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4158 
4159   collection_set->clear();
4160 }
4161 
4162 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4163  private:
4164   FreeRegionList* _free_region_list;
4165   HeapRegionSet* _proxy_set;
4166   uint _humongous_objects_reclaimed;
4167   uint _humongous_regions_reclaimed;
4168   size_t _freed_bytes;
4169  public:
4170 
4171   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4172     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4173   }
4174 
4175   virtual bool do_heap_region(HeapRegion* r) {
4176     if (!r->is_starts_humongous()) {
4177       return false;
4178     }
4179 
4180     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4181 
4182     oop obj = (oop)r->bottom();
4183     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4184 
4185     // The following checks whether the humongous object is live are sufficient.
4186     // The main additional check (in addition to having a reference from the roots
4187     // or the young gen) is whether the humongous object has a remembered set entry.
4188     //
4189     // A humongous object cannot be live if there is no remembered set for it
4190     // because:
4191     // - there can be no references from within humongous starts regions referencing
4192     // the object because we never allocate other objects into them.
4193     // (I.e. there are no intra-region references that may be missed by the
4194     // remembered set)
4195     // - as soon there is a remembered set entry to the humongous starts region
4196     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4197     // until the end of a concurrent mark.
4198     //
4199     // It is not required to check whether the object has been found dead by marking
4200     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4201     // all objects allocated during that time are considered live.
4202     // SATB marking is even more conservative than the remembered set.
4203     // So if at this point in the collection there is no remembered set entry,
4204     // nobody has a reference to it.
4205     // At the start of collection we flush all refinement logs, and remembered sets
4206     // are completely up-to-date wrt to references to the humongous object.
4207     //
4208     // Other implementation considerations:
4209     // - never consider object arrays at this time because they would pose
4210     // considerable effort for cleaning up the the remembered sets. This is
4211     // required because stale remembered sets might reference locations that
4212     // are currently allocated into.
4213     uint region_idx = r->hrm_index();
4214     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4215         !r->rem_set()->is_empty()) {
4216       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4217                                region_idx,
4218                                (size_t)obj->size() * HeapWordSize,
4219                                p2i(r->bottom()),
4220                                r->rem_set()->occupied(),
4221                                r->rem_set()->strong_code_roots_list_length(),
4222                                next_bitmap->is_marked(r->bottom()),
4223                                g1h->is_humongous_reclaim_candidate(region_idx),
4224                                obj->is_typeArray()
4225                               );
4226       return false;
4227     }
4228 
4229     guarantee(obj->is_typeArray(),
4230               "Only eagerly reclaiming type arrays is supported, but the object "
4231               PTR_FORMAT " is not.", p2i(r->bottom()));
4232 
4233     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4234                              region_idx,
4235                              (size_t)obj->size() * HeapWordSize,
4236                              p2i(r->bottom()),
4237                              r->rem_set()->occupied(),
4238                              r->rem_set()->strong_code_roots_list_length(),
4239                              next_bitmap->is_marked(r->bottom()),
4240                              g1h->is_humongous_reclaim_candidate(region_idx),
4241                              obj->is_typeArray()
4242                             );
4243 
4244     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4245     cm->humongous_object_eagerly_reclaimed(r);
4246     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4247            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4248            region_idx,
4249            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4250            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4251     _humongous_objects_reclaimed++;
4252     do {
4253       HeapRegion* next = g1h->next_region_in_humongous(r);
4254       _freed_bytes += r->used();
4255       r->set_containing_set(NULL);
4256       _humongous_regions_reclaimed++;
4257       g1h->free_humongous_region(r, _free_region_list);
4258       r = next;
4259     } while (r != NULL);
4260 
4261     return false;
4262   }
4263 
4264   uint humongous_objects_reclaimed() {
4265     return _humongous_objects_reclaimed;
4266   }
4267 
4268   uint humongous_regions_reclaimed() {
4269     return _humongous_regions_reclaimed;
4270   }
4271 
4272   size_t bytes_freed() const {
4273     return _freed_bytes;
4274   }
4275 };
4276 
4277 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4278   assert_at_safepoint_on_vm_thread();
4279 
4280   if (!G1EagerReclaimHumongousObjects ||
4281       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4282     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4283     return;
4284   }
4285 
4286   double start_time = os::elapsedTime();
4287 
4288   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4289 
4290   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4291   heap_region_iterate(&cl);
4292 
4293   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4294 
4295   G1HRPrinter* hrp = hr_printer();
4296   if (hrp->is_active()) {
4297     FreeRegionListIterator iter(&local_cleanup_list);
4298     while (iter.more_available()) {
4299       HeapRegion* hr = iter.get_next();
4300       hrp->cleanup(hr);
4301     }
4302   }
4303 
4304   prepend_to_freelist(&local_cleanup_list);
4305   decrement_summary_bytes(cl.bytes_freed());
4306 
4307   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4308                                                                     cl.humongous_objects_reclaimed());
4309 }
4310 
4311 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4312 public:
4313   virtual bool do_heap_region(HeapRegion* r) {
4314     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4315     G1CollectedHeap::heap()->clear_in_cset(r);
4316     r->set_young_index_in_cset(-1);
4317     return false;
4318   }
4319 };
4320 
4321 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4322   G1AbandonCollectionSetClosure cl;
4323   collection_set->iterate(&cl);
4324 
4325   collection_set->clear();
4326   collection_set->stop_incremental_building();
4327 }
4328 
4329 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4330   return _allocator->is_retained_old_region(hr);
4331 }
4332 
4333 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4334   _eden.add(hr);
4335   _g1_policy->set_region_eden(hr);
4336 }
4337 
4338 #ifdef ASSERT
4339 
4340 class NoYoungRegionsClosure: public HeapRegionClosure {
4341 private:
4342   bool _success;
4343 public:
4344   NoYoungRegionsClosure() : _success(true) { }
4345   bool do_heap_region(HeapRegion* r) {
4346     if (r->is_young()) {
4347       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4348                             p2i(r->bottom()), p2i(r->end()));
4349       _success = false;
4350     }
4351     return false;
4352   }
4353   bool success() { return _success; }
4354 };
4355 
4356 bool G1CollectedHeap::check_young_list_empty() {
4357   bool ret = (young_regions_count() == 0);
4358 
4359   NoYoungRegionsClosure closure;
4360   heap_region_iterate(&closure);
4361   ret = ret && closure.success();
4362 
4363   return ret;
4364 }
4365 
4366 #endif // ASSERT
4367 
4368 class TearDownRegionSetsClosure : public HeapRegionClosure {
4369   HeapRegionSet *_old_set;
4370 
4371 public:
4372   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4373 
4374   bool do_heap_region(HeapRegion* r) {
4375     if (r->is_old()) {
4376       _old_set->remove(r);
4377     } else if(r->is_young()) {
4378       r->uninstall_surv_rate_group();
4379     } else {
4380       // We ignore free regions, we'll empty the free list afterwards.
4381       // We ignore humongous and archive regions, we're not tearing down these
4382       // sets.
4383       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4384              "it cannot be another type");
4385     }
4386     return false;
4387   }
4388 
4389   ~TearDownRegionSetsClosure() {
4390     assert(_old_set->is_empty(), "post-condition");
4391   }
4392 };
4393 
4394 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4395   assert_at_safepoint_on_vm_thread();
4396 
4397   if (!free_list_only) {
4398     TearDownRegionSetsClosure cl(&_old_set);
4399     heap_region_iterate(&cl);
4400 
4401     // Note that emptying the _young_list is postponed and instead done as
4402     // the first step when rebuilding the regions sets again. The reason for
4403     // this is that during a full GC string deduplication needs to know if
4404     // a collected region was young or old when the full GC was initiated.
4405   }
4406   _hrm->remove_all_free_regions();
4407 }
4408 
4409 void G1CollectedHeap::increase_used(size_t bytes) {
4410   _summary_bytes_used += bytes;
4411 }
4412 
4413 void G1CollectedHeap::decrease_used(size_t bytes) {
4414   assert(_summary_bytes_used >= bytes,
4415          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4416          _summary_bytes_used, bytes);
4417   _summary_bytes_used -= bytes;
4418 }
4419 
4420 void G1CollectedHeap::set_used(size_t bytes) {
4421   _summary_bytes_used = bytes;
4422 }
4423 
4424 class RebuildRegionSetsClosure : public HeapRegionClosure {
4425 private:
4426   bool _free_list_only;
4427 
4428   HeapRegionSet* _old_set;
4429   HeapRegionManager* _hrm;
4430 
4431   size_t _total_used;
4432 
4433 public:
4434   RebuildRegionSetsClosure(bool free_list_only,
4435                            HeapRegionSet* old_set,
4436                            HeapRegionManager* hrm) :
4437     _free_list_only(free_list_only),
4438     _old_set(old_set), _hrm(hrm), _total_used(0) {
4439     assert(_hrm->num_free_regions() == 0, "pre-condition");
4440     if (!free_list_only) {
4441       assert(_old_set->is_empty(), "pre-condition");
4442     }
4443   }
4444 
4445   bool do_heap_region(HeapRegion* r) {
4446     if (r->is_empty()) {
4447       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4448       // Add free regions to the free list
4449       r->set_free();
4450       _hrm->insert_into_free_list(r);
4451     } else if (!_free_list_only) {
4452       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4453 
4454       if (r->is_archive() || r->is_humongous()) {
4455         // We ignore archive and humongous regions. We left these sets unchanged.
4456       } else {
4457         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4458         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4459         r->move_to_old();
4460         _old_set->add(r);
4461       }
4462       _total_used += r->used();
4463     }
4464 
4465     return false;
4466   }
4467 
4468   size_t total_used() {
4469     return _total_used;
4470   }
4471 };
4472 
4473 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4474   assert_at_safepoint_on_vm_thread();
4475 
4476   if (!free_list_only) {
4477     _eden.clear();
4478     _survivor.clear();
4479   }
4480 
4481   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4482   heap_region_iterate(&cl);
4483 
4484   if (!free_list_only) {
4485     set_used(cl.total_used());
4486     if (_archive_allocator != NULL) {
4487       _archive_allocator->clear_used();
4488     }
4489   }
4490   assert(used() == recalculate_used(),
4491          "inconsistent used(), value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4492          used(), recalculate_used());
4493 }
4494 
4495 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4496   HeapRegion* hr = heap_region_containing(p);
4497   return hr->is_in(p);
4498 }
4499 
4500 // Methods for the mutator alloc region
4501 
4502 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4503                                                       bool force) {
4504   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4505   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4506   if (force || should_allocate) {
4507     HeapRegion* new_alloc_region = new_region(word_size,
4508                                               false /* is_old */,
4509                                               false /* do_expand */);
4510     if (new_alloc_region != NULL) {
4511       set_region_short_lived_locked(new_alloc_region);
4512       _hr_printer.alloc(new_alloc_region, !should_allocate);
4513       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4514       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4515       return new_alloc_region;
4516     }
4517   }
4518   return NULL;
4519 }
4520 
4521 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4522                                                   size_t allocated_bytes) {
4523   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4524   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4525 
4526   collection_set()->add_eden_region(alloc_region);
4527   increase_used(allocated_bytes);
4528   _hr_printer.retire(alloc_region);
4529   // We update the eden sizes here, when the region is retired,
4530   // instead of when it's allocated, since this is the point that its
4531   // used space has been recorded in _summary_bytes_used.
4532   g1mm()->update_eden_size();
4533 }
4534 
4535 // Methods for the GC alloc regions
4536 
4537 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4538   if (dest.is_old()) {
4539     return true;
4540   } else {
4541     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4542   }
4543 }
4544 
4545 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4546   assert(FreeList_lock->owned_by_self(), "pre-condition");
4547 
4548   if (!has_more_regions(dest)) {
4549     return NULL;
4550   }
4551 
4552   const bool is_survivor = dest.is_young();
4553 
4554   HeapRegion* new_alloc_region = new_region(word_size,
4555                                             !is_survivor,
4556                                             true /* do_expand */);
4557   if (new_alloc_region != NULL) {
4558     if (is_survivor) {
4559       new_alloc_region->set_survivor();
4560       _survivor.add(new_alloc_region);
4561       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4562     } else {
4563       new_alloc_region->set_old();
4564       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4565     }
4566     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4567     _hr_printer.alloc(new_alloc_region);
4568     bool during_im = collector_state()->in_initial_mark_gc();
4569     new_alloc_region->note_start_of_copying(during_im);
4570     return new_alloc_region;
4571   }
4572   return NULL;
4573 }
4574 
4575 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4576                                              size_t allocated_bytes,
4577                                              InCSetState dest) {
4578   bool during_im = collector_state()->in_initial_mark_gc();
4579   alloc_region->note_end_of_copying(during_im);
4580   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4581   if (dest.is_old()) {
4582     old_set_add(alloc_region);
4583   }
4584   _hr_printer.retire(alloc_region);
4585 }
4586 
4587 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4588   bool expanded = false;
4589   uint index = _hrm->find_highest_free(&expanded);
4590 
4591   if (index != G1_NO_HRM_INDEX) {
4592     if (expanded) {
4593       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4594                                 HeapRegion::GrainWords * HeapWordSize);
4595     }
4596     _hrm->allocate_free_regions_starting_at(index, 1);
4597     return region_at(index);
4598   }
4599   return NULL;
4600 }
4601 
4602 // Optimized nmethod scanning
4603 
4604 class RegisterNMethodOopClosure: public OopClosure {
4605   G1CollectedHeap* _g1h;
4606   nmethod* _nm;
4607 
4608   template <class T> void do_oop_work(T* p) {
4609     T heap_oop = RawAccess<>::oop_load(p);
4610     if (!CompressedOops::is_null(heap_oop)) {
4611       oop obj = CompressedOops::decode_not_null(heap_oop);
4612       HeapRegion* hr = _g1h->heap_region_containing(obj);
4613       assert(!hr->is_continues_humongous(),
4614              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4615              " starting at " HR_FORMAT,
4616              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4617 
4618       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4619       hr->add_strong_code_root_locked(_nm);
4620     }
4621   }
4622 
4623 public:
4624   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4625     _g1h(g1h), _nm(nm) {}
4626 
4627   void do_oop(oop* p)       { do_oop_work(p); }
4628   void do_oop(narrowOop* p) { do_oop_work(p); }
4629 };
4630 
4631 class UnregisterNMethodOopClosure: public OopClosure {
4632   G1CollectedHeap* _g1h;
4633   nmethod* _nm;
4634 
4635   template <class T> void do_oop_work(T* p) {
4636     T heap_oop = RawAccess<>::oop_load(p);
4637     if (!CompressedOops::is_null(heap_oop)) {
4638       oop obj = CompressedOops::decode_not_null(heap_oop);
4639       HeapRegion* hr = _g1h->heap_region_containing(obj);
4640       assert(!hr->is_continues_humongous(),
4641              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4642              " starting at " HR_FORMAT,
4643              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4644 
4645       hr->remove_strong_code_root(_nm);
4646     }
4647   }
4648 
4649 public:
4650   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4651     _g1h(g1h), _nm(nm) {}
4652 
4653   void do_oop(oop* p)       { do_oop_work(p); }
4654   void do_oop(narrowOop* p) { do_oop_work(p); }
4655 };
4656 
4657 // Returns true if the reference points to an object that
4658 // can move in an incremental collection.
4659 bool G1CollectedHeap::is_scavengable(oop obj) {
4660   HeapRegion* hr = heap_region_containing(obj);
4661   return !hr->is_pinned();
4662 }
4663 
4664 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4665   guarantee(nm != NULL, "sanity");
4666   RegisterNMethodOopClosure reg_cl(this, nm);
4667   nm->oops_do(&reg_cl);
4668 }
4669 
4670 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4671   guarantee(nm != NULL, "sanity");
4672   UnregisterNMethodOopClosure reg_cl(this, nm);
4673   nm->oops_do(&reg_cl, true);
4674 }
4675 
4676 void G1CollectedHeap::purge_code_root_memory() {
4677   double purge_start = os::elapsedTime();
4678   G1CodeRootSet::purge();
4679   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4680   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4681 }
4682 
4683 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4684   G1CollectedHeap* _g1h;
4685 
4686 public:
4687   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4688     _g1h(g1h) {}
4689 
4690   void do_code_blob(CodeBlob* cb) {
4691     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4692     if (nm == NULL) {
4693       return;
4694     }
4695 
4696     if (ScavengeRootsInCode) {
4697       _g1h->register_nmethod(nm);
4698     }
4699   }
4700 };
4701 
4702 void G1CollectedHeap::rebuild_strong_code_roots() {
4703   RebuildStrongCodeRootClosure blob_cl(this);
4704   CodeCache::blobs_do(&blob_cl);
4705 }
4706 
4707 void G1CollectedHeap::initialize_serviceability() {
4708   _g1mm->initialize_serviceability();
4709 }
4710 
4711 MemoryUsage G1CollectedHeap::memory_usage() {
4712   return _g1mm->memory_usage();
4713 }
4714 
4715 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4716   return _g1mm->memory_managers();
4717 }
4718 
4719 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4720   return _g1mm->memory_pools();
4721 }