1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Analytics.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1CollectionSet.hpp"
  29 #include "gc/g1/g1ConcurrentMark.hpp"
  30 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  31 #include "gc/g1/g1ConcurrentRefine.hpp"
  32 #include "gc/g1/g1HotCardCache.hpp"
  33 #include "gc/g1/g1IHOPControl.hpp"
  34 #include "gc/g1/g1GCPhaseTimes.hpp"
  35 #include "gc/g1/g1Policy.hpp"
  36 #include "gc/g1/g1SurvivorRegions.hpp"
  37 #include "gc/g1/g1YoungGenSizer.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/shared/gcPolicyCounters.hpp"
  41 #include "logging/logStream.hpp"
  42 #include "runtime/arguments.hpp"
  43 #include "runtime/java.hpp"
  44 #include "runtime/mutexLocker.hpp"
  45 #include "utilities/debug.hpp"
  46 #include "utilities/growableArray.hpp"
  47 #include "utilities/pair.hpp"
  48 
  49 G1Policy::G1Policy(STWGCTimer* gc_timer) :
  50   _predictor(G1ConfidencePercent / 100.0),
  51   _analytics(new G1Analytics(&_predictor)),
  52   _remset_tracker(),
  53   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  54   _ihop_control(create_ihop_control(&_predictor)),
  55   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
  56   _full_collection_start_sec(0.0),
  57   _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC),
  58   _young_list_target_length(0),
  59   _young_list_fixed_length(0),
  60   _young_list_max_length(0),
  61   _short_lived_surv_rate_group(new SurvRateGroup()),
  62   _survivor_surv_rate_group(new SurvRateGroup()),
  63   _reserve_factor((double) G1ReservePercent / 100.0),
  64   _reserve_regions(0),
  65   _young_gen_sizer(),
  66   _free_regions_at_end_of_collection(0),
  67   _max_rs_lengths(0),
  68   _rs_lengths_prediction(0),
  69   _pending_cards(0),
  70   _bytes_allocated_in_old_since_last_gc(0),
  71   _initial_mark_to_mixed(),
  72   _collection_set(NULL),
  73   _bytes_copied_during_gc(0),
  74   _g1h(NULL),
  75   _phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)),
  76   _mark_remark_start_sec(0),
  77   _mark_cleanup_start_sec(0),
  78   _tenuring_threshold(MaxTenuringThreshold),
  79   _max_survivor_regions(0),
  80   _survivors_age_table(true)
  81 {
  82 }
  83 
  84 G1Policy::~G1Policy() {
  85   delete _ihop_control;
  86 }
  87 
  88 G1CollectorState* G1Policy::collector_state() const { return _g1h->collector_state(); }
  89 
  90 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
  91   _g1h = g1h;
  92   _collection_set = collection_set;
  93 
  94   assert(Heap_lock->owned_by_self(), "Locking discipline.");
  95 
  96   if (!adaptive_young_list_length()) {
  97     _young_list_fixed_length = _young_gen_sizer.min_desired_young_length();
  98   }
  99   _young_gen_sizer.adjust_max_new_size(_g1h->max_expandable_regions());
 100 
 101   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 102 
 103   update_young_list_max_and_target_length();
 104   // We may immediately start allocating regions and placing them on the
 105   // collection set list. Initialize the per-collection set info
 106   _collection_set->start_incremental_building();
 107 }
 108 
 109 void G1Policy::note_gc_start() {
 110   phase_times()->note_gc_start();
 111 }
 112 
 113 class G1YoungLengthPredictor {
 114   const bool _during_cm;
 115   const double _base_time_ms;
 116   const double _base_free_regions;
 117   const double _target_pause_time_ms;
 118   const G1Policy* const _policy;
 119 
 120  public:
 121   G1YoungLengthPredictor(bool during_cm,
 122                          double base_time_ms,
 123                          double base_free_regions,
 124                          double target_pause_time_ms,
 125                          const G1Policy* policy) :
 126     _during_cm(during_cm),
 127     _base_time_ms(base_time_ms),
 128     _base_free_regions(base_free_regions),
 129     _target_pause_time_ms(target_pause_time_ms),
 130     _policy(policy) {}
 131 
 132   bool will_fit(uint young_length) const {
 133     if (young_length >= _base_free_regions) {
 134       // end condition 1: not enough space for the young regions
 135       return false;
 136     }
 137 
 138     const double accum_surv_rate = _policy->accum_yg_surv_rate_pred((int) young_length - 1);
 139     const size_t bytes_to_copy =
 140                  (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 141     const double copy_time_ms =
 142       _policy->analytics()->predict_object_copy_time_ms(bytes_to_copy, _during_cm);
 143     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
 144     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
 145     if (pause_time_ms > _target_pause_time_ms) {
 146       // end condition 2: prediction is over the target pause time
 147       return false;
 148     }
 149 
 150     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
 151 
 152     // When copying, we will likely need more bytes free than is live in the region.
 153     // Add some safety margin to factor in the confidence of our guess, and the
 154     // natural expected waste.
 155     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 156     // of the calculation: the lower the confidence, the more headroom.
 157     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 158     // copying due to anticipated waste in the PLABs.
 159     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 160     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 161 
 162     if (expected_bytes_to_copy > free_bytes) {
 163       // end condition 3: out-of-space
 164       return false;
 165     }
 166 
 167     // success!
 168     return true;
 169   }
 170 };
 171 
 172 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
 173   // re-calculate the necessary reserve
 174   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 175   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 176   // smaller than 1.0) we'll get 1.
 177   _reserve_regions = (uint) ceil(reserve_regions_d);
 178 
 179   _young_gen_sizer.heap_size_changed(new_number_of_regions);
 180 
 181   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 182 }
 183 
 184 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
 185   uint desired_min_length = 0;
 186   if (adaptive_young_list_length()) {
 187     if (_analytics->num_alloc_rate_ms() > 3) {
 188       double now_sec = os::elapsedTime();
 189       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 190       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 191       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 192     } else {
 193       // otherwise we don't have enough info to make the prediction
 194     }
 195   }
 196   desired_min_length += base_min_length;
 197   // make sure we don't go below any user-defined minimum bound
 198   return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length);
 199 }
 200 
 201 uint G1Policy::calculate_young_list_desired_max_length() const {
 202   // Here, we might want to also take into account any additional
 203   // constraints (i.e., user-defined minimum bound). Currently, we
 204   // effectively don't set this bound.
 205   return _young_gen_sizer.max_desired_young_length();
 206 }
 207 
 208 uint G1Policy::update_young_list_max_and_target_length() {
 209   return update_young_list_max_and_target_length(_analytics->predict_rs_lengths());
 210 }
 211 
 212 uint G1Policy::update_young_list_max_and_target_length(size_t rs_lengths) {
 213   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 214   update_max_gc_locker_expansion();
 215   return unbounded_target_length;
 216 }
 217 
 218 uint G1Policy::update_young_list_target_length(size_t rs_lengths) {
 219   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 220   _young_list_target_length = young_lengths.first;
 221 
 222   // Resize dram regions set if called after full collection end.
 223   if(_g1h->is_hetero_heap() && (Thread::current()->is_VM_thread() || Heap_lock->owned_by_self())) {
 224     static_cast <HeapRegionManagerForHeteroHeap*>(_g1h->hrm())->resize_dram_regions(_young_list_target_length, _g1h->workers());
 225   }
 226   return young_lengths.second;
 227 }
 228 
 229 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_lengths) const {
 230   YoungTargetLengths result;
 231 
 232   // Calculate the absolute and desired min bounds first.
 233 
 234   // This is how many young regions we already have (currently: the survivors).
 235   const uint base_min_length = _g1h->survivor_regions_count();
 236   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 237   // This is the absolute minimum young length. Ensure that we
 238   // will at least have one eden region available for allocation.
 239   uint absolute_min_length = base_min_length + MAX2(_g1h->eden_regions_count(), (uint)1);
 240   // If we shrank the young list target it should not shrink below the current size.
 241   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 242   // Calculate the absolute and desired max bounds.
 243 
 244   uint desired_max_length = calculate_young_list_desired_max_length();
 245 
 246   uint young_list_target_length = 0;
 247   if (adaptive_young_list_length()) {
 248     if (collector_state()->in_young_only_phase()) {
 249       young_list_target_length =
 250                         calculate_young_list_target_length(rs_lengths,
 251                                                            base_min_length,
 252                                                            desired_min_length,
 253                                                            desired_max_length);
 254     } else {
 255       // Don't calculate anything and let the code below bound it to
 256       // the desired_min_length, i.e., do the next GC as soon as
 257       // possible to maximize how many old regions we can add to it.
 258     }
 259   } else {
 260     // The user asked for a fixed young gen so we'll fix the young gen
 261     // whether the next GC is young or mixed.
 262     young_list_target_length = _young_list_fixed_length;
 263   }
 264 
 265   result.second = young_list_target_length;
 266 
 267   // We will try our best not to "eat" into the reserve.
 268   uint absolute_max_length = 0;
 269   if (_free_regions_at_end_of_collection > _reserve_regions) {
 270     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 271   }
 272   if (desired_max_length > absolute_max_length) {
 273     desired_max_length = absolute_max_length;
 274   }
 275 
 276   // Make sure we don't go over the desired max length, nor under the
 277   // desired min length. In case they clash, desired_min_length wins
 278   // which is why that test is second.
 279   if (young_list_target_length > desired_max_length) {
 280     young_list_target_length = desired_max_length;
 281   }
 282   if (young_list_target_length < desired_min_length) {
 283     young_list_target_length = desired_min_length;
 284   }
 285 
 286   assert(young_list_target_length > base_min_length,
 287          "we should be able to allocate at least one eden region");
 288   assert(young_list_target_length >= absolute_min_length, "post-condition");
 289 
 290   result.first = young_list_target_length;
 291   return result;
 292 }
 293 
 294 uint
 295 G1Policy::calculate_young_list_target_length(size_t rs_lengths,
 296                                                     uint base_min_length,
 297                                                     uint desired_min_length,
 298                                                     uint desired_max_length) const {
 299   assert(adaptive_young_list_length(), "pre-condition");
 300   assert(collector_state()->in_young_only_phase(), "only call this for young GCs");
 301 
 302   // In case some edge-condition makes the desired max length too small...
 303   if (desired_max_length <= desired_min_length) {
 304     return desired_min_length;
 305   }
 306 
 307   // We'll adjust min_young_length and max_young_length not to include
 308   // the already allocated young regions (i.e., so they reflect the
 309   // min and max eden regions we'll allocate). The base_min_length
 310   // will be reflected in the predictions by the
 311   // survivor_regions_evac_time prediction.
 312   assert(desired_min_length > base_min_length, "invariant");
 313   uint min_young_length = desired_min_length - base_min_length;
 314   assert(desired_max_length > base_min_length, "invariant");
 315   uint max_young_length = desired_max_length - base_min_length;
 316 
 317   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 318   const double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 319   const size_t pending_cards = _analytics->predict_pending_cards();
 320   const size_t adj_rs_lengths = rs_lengths + _analytics->predict_rs_length_diff();
 321   const size_t scanned_cards = _analytics->predict_card_num(adj_rs_lengths, true /* for_young_gc */);
 322   const double base_time_ms =
 323     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 324     survivor_regions_evac_time;
 325   const uint available_free_regions = _free_regions_at_end_of_collection;
 326   const uint base_free_regions =
 327     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
 328 
 329   // Here, we will make sure that the shortest young length that
 330   // makes sense fits within the target pause time.
 331 
 332   G1YoungLengthPredictor p(collector_state()->mark_or_rebuild_in_progress(),
 333                            base_time_ms,
 334                            base_free_regions,
 335                            target_pause_time_ms,
 336                            this);
 337   if (p.will_fit(min_young_length)) {
 338     // The shortest young length will fit into the target pause time;
 339     // we'll now check whether the absolute maximum number of young
 340     // regions will fit in the target pause time. If not, we'll do
 341     // a binary search between min_young_length and max_young_length.
 342     if (p.will_fit(max_young_length)) {
 343       // The maximum young length will fit into the target pause time.
 344       // We are done so set min young length to the maximum length (as
 345       // the result is assumed to be returned in min_young_length).
 346       min_young_length = max_young_length;
 347     } else {
 348       // The maximum possible number of young regions will not fit within
 349       // the target pause time so we'll search for the optimal
 350       // length. The loop invariants are:
 351       //
 352       // min_young_length < max_young_length
 353       // min_young_length is known to fit into the target pause time
 354       // max_young_length is known not to fit into the target pause time
 355       //
 356       // Going into the loop we know the above hold as we've just
 357       // checked them. Every time around the loop we check whether
 358       // the middle value between min_young_length and
 359       // max_young_length fits into the target pause time. If it
 360       // does, it becomes the new min. If it doesn't, it becomes
 361       // the new max. This way we maintain the loop invariants.
 362 
 363       assert(min_young_length < max_young_length, "invariant");
 364       uint diff = (max_young_length - min_young_length) / 2;
 365       while (diff > 0) {
 366         uint young_length = min_young_length + diff;
 367         if (p.will_fit(young_length)) {
 368           min_young_length = young_length;
 369         } else {
 370           max_young_length = young_length;
 371         }
 372         assert(min_young_length <  max_young_length, "invariant");
 373         diff = (max_young_length - min_young_length) / 2;
 374       }
 375       // The results is min_young_length which, according to the
 376       // loop invariants, should fit within the target pause time.
 377 
 378       // These are the post-conditions of the binary search above:
 379       assert(min_young_length < max_young_length,
 380              "otherwise we should have discovered that max_young_length "
 381              "fits into the pause target and not done the binary search");
 382       assert(p.will_fit(min_young_length),
 383              "min_young_length, the result of the binary search, should "
 384              "fit into the pause target");
 385       assert(!p.will_fit(min_young_length + 1),
 386              "min_young_length, the result of the binary search, should be "
 387              "optimal, so no larger length should fit into the pause target");
 388     }
 389   } else {
 390     // Even the minimum length doesn't fit into the pause time
 391     // target, return it as the result nevertheless.
 392   }
 393   return base_min_length + min_young_length;
 394 }
 395 
 396 double G1Policy::predict_survivor_regions_evac_time() const {
 397   double survivor_regions_evac_time = 0.0;
 398   const GrowableArray<HeapRegion*>* survivor_regions = _g1h->survivor()->regions();
 399 
 400   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 401        it != survivor_regions->end();
 402        ++it) {
 403     survivor_regions_evac_time += predict_region_elapsed_time_ms(*it, collector_state()->in_young_only_phase());
 404   }
 405   return survivor_regions_evac_time;
 406 }
 407 
 408 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
 409   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 410 
 411   if (rs_lengths > _rs_lengths_prediction) {
 412     // add 10% to avoid having to recalculate often
 413     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 414     update_rs_lengths_prediction(rs_lengths_prediction);
 415 
 416     update_young_list_max_and_target_length(rs_lengths_prediction);
 417   }
 418 }
 419 
 420 void G1Policy::update_rs_lengths_prediction() {
 421   update_rs_lengths_prediction(_analytics->predict_rs_lengths());
 422 }
 423 
 424 void G1Policy::update_rs_lengths_prediction(size_t prediction) {
 425   if (collector_state()->in_young_only_phase() && adaptive_young_list_length()) {
 426     _rs_lengths_prediction = prediction;
 427   }
 428 }
 429 
 430 void G1Policy::record_full_collection_start() {
 431   _full_collection_start_sec = os::elapsedTime();
 432   // Release the future to-space so that it is available for compaction into.
 433   collector_state()->set_in_young_only_phase(false);
 434   collector_state()->set_in_full_gc(true);
 435   cset_chooser()->clear();
 436 }
 437 
 438 void G1Policy::record_full_collection_end() {
 439   // Consider this like a collection pause for the purposes of allocation
 440   // since last pause.
 441   double end_sec = os::elapsedTime();
 442   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 443   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 444 
 445   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 446 
 447   collector_state()->set_in_full_gc(false);
 448 
 449   // "Nuke" the heuristics that control the young/mixed GC
 450   // transitions and make sure we start with young GCs after the Full GC.
 451   collector_state()->set_in_young_only_phase(true);
 452   collector_state()->set_in_young_gc_before_mixed(false);
 453   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 454   collector_state()->set_in_initial_mark_gc(false);
 455   collector_state()->set_mark_or_rebuild_in_progress(false);
 456   collector_state()->set_clearing_next_bitmap(false);
 457 
 458   _short_lived_surv_rate_group->start_adding_regions();
 459   // also call this on any additional surv rate groups
 460 
 461   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 462   // Reset survivors SurvRateGroup.
 463   _survivor_surv_rate_group->reset();
 464   update_young_list_max_and_target_length();
 465   update_rs_lengths_prediction();
 466 
 467   _bytes_allocated_in_old_since_last_gc = 0;
 468 
 469   record_pause(FullGC, _full_collection_start_sec, end_sec);
 470 }
 471 
 472 void G1Policy::record_collection_pause_start(double start_time_sec) {
 473   // We only need to do this here as the policy will only be applied
 474   // to the GC we're about to start. so, no point is calculating this
 475   // every time we calculate / recalculate the target young length.
 476   update_survivors_policy();
 477 
 478   assert(_g1h->used() == _g1h->recalculate_used(),
 479          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 480          _g1h->used(), _g1h->recalculate_used());
 481 
 482   phase_times()->record_cur_collection_start_sec(start_time_sec);
 483   _pending_cards = _g1h->pending_card_num();
 484 
 485   _collection_set->reset_bytes_used_before();
 486   _bytes_copied_during_gc = 0;
 487 
 488   // do that for any other surv rate groups
 489   _short_lived_surv_rate_group->stop_adding_regions();
 490   _survivors_age_table.clear();
 491 
 492   assert(_g1h->collection_set()->verify_young_ages(), "region age verification failed");
 493 }
 494 
 495 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 496   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 497   collector_state()->set_in_initial_mark_gc(false);
 498 }
 499 
 500 void G1Policy::record_concurrent_mark_remark_start() {
 501   _mark_remark_start_sec = os::elapsedTime();
 502 }
 503 
 504 void G1Policy::record_concurrent_mark_remark_end() {
 505   double end_time_sec = os::elapsedTime();
 506   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 507   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 508   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 509 
 510   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 511 }
 512 
 513 void G1Policy::record_concurrent_mark_cleanup_start() {
 514   _mark_cleanup_start_sec = os::elapsedTime();
 515 }
 516 
 517 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 518   return phase_times()->average_time_ms(phase);
 519 }
 520 
 521 double G1Policy::young_other_time_ms() const {
 522   return phase_times()->young_cset_choice_time_ms() +
 523          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
 524 }
 525 
 526 double G1Policy::non_young_other_time_ms() const {
 527   return phase_times()->non_young_cset_choice_time_ms() +
 528          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
 529 }
 530 
 531 double G1Policy::other_time_ms(double pause_time_ms) const {
 532   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 533 }
 534 
 535 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
 536   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms();
 537 }
 538 
 539 CollectionSetChooser* G1Policy::cset_chooser() const {
 540   return _collection_set->cset_chooser();
 541 }
 542 
 543 bool G1Policy::about_to_start_mixed_phase() const {
 544   return _g1h->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->in_young_gc_before_mixed();
 545 }
 546 
 547 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 548   if (about_to_start_mixed_phase()) {
 549     return false;
 550   }
 551 
 552   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 553 
 554   size_t cur_used_bytes = _g1h->non_young_capacity_bytes();
 555   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 556   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 557 
 558   bool result = false;
 559   if (marking_request_bytes > marking_initiating_used_threshold) {
 560     result = collector_state()->in_young_only_phase() && !collector_state()->in_young_gc_before_mixed();
 561     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 562                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 563                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1h->capacity() * 100, source);
 564   }
 565 
 566   return result;
 567 }
 568 
 569 // Anything below that is considered to be zero
 570 #define MIN_TIMER_GRANULARITY 0.0000001
 571 
 572 void G1Policy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 573   double end_time_sec = os::elapsedTime();
 574 
 575   size_t cur_used_bytes = _g1h->used();
 576   assert(cur_used_bytes == _g1h->recalculate_used(), "It should!");
 577   bool this_pause_included_initial_mark = false;
 578   bool this_pause_was_young_only = collector_state()->in_young_only_phase();
 579 
 580   bool update_stats = !_g1h->evacuation_failed();
 581 
 582   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 583 
 584   _collection_pause_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 585 
 586   this_pause_included_initial_mark = collector_state()->in_initial_mark_gc();
 587   if (this_pause_included_initial_mark) {
 588     record_concurrent_mark_init_end(0.0);
 589   } else {
 590     maybe_start_marking();
 591   }
 592 
 593   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 594   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 595     // This usually happens due to the timer not having the required
 596     // granularity. Some Linuxes are the usual culprits.
 597     // We'll just set it to something (arbitrarily) small.
 598     app_time_ms = 1.0;
 599   }
 600 
 601   if (update_stats) {
 602     // We maintain the invariant that all objects allocated by mutator
 603     // threads will be allocated out of eden regions. So, we can use
 604     // the eden region number allocated since the previous GC to
 605     // calculate the application's allocate rate. The only exception
 606     // to that is humongous objects that are allocated separately. But
 607     // given that humongous object allocations do not really affect
 608     // either the pause's duration nor when the next pause will take
 609     // place we can safely ignore them here.
 610     uint regions_allocated = _collection_set->eden_region_length();
 611     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 612     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 613 
 614     double interval_ms =
 615       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
 616     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 617     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
 618   }
 619 
 620   if (collector_state()->in_young_gc_before_mixed()) {
 621     assert(!this_pause_included_initial_mark, "The young GC before mixed is not allowed to be an initial mark GC");
 622     // This has been the young GC before we start doing mixed GCs. We already
 623     // decided to start mixed GCs much earlier, so there is nothing to do except
 624     // advancing the state.
 625     collector_state()->set_in_young_only_phase(false);
 626     collector_state()->set_in_young_gc_before_mixed(false);
 627   } else if (!this_pause_was_young_only) {
 628     // This is a mixed GC. Here we decide whether to continue doing more
 629     // mixed GCs or not.
 630     if (!next_gc_should_be_mixed("continue mixed GCs",
 631                                  "do not continue mixed GCs")) {
 632       collector_state()->set_in_young_only_phase(true);
 633 
 634       clear_collection_set_candidates();
 635       maybe_start_marking();
 636     }
 637   }
 638 
 639   _short_lived_surv_rate_group->start_adding_regions();
 640   // Do that for any other surv rate groups
 641 
 642   double scan_hcc_time_ms = G1HotCardCache::default_use_cache() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
 643 
 644   if (update_stats) {
 645     double cost_per_card_ms = 0.0;
 646     if (_pending_cards > 0) {
 647       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS)) / (double) _pending_cards;
 648       _analytics->report_cost_per_card_ms(cost_per_card_ms);
 649     }
 650     _analytics->report_cost_scan_hcc(scan_hcc_time_ms);
 651 
 652     double cost_per_entry_ms = 0.0;
 653     if (cards_scanned > 10) {
 654       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
 655       _analytics->report_cost_per_entry_ms(cost_per_entry_ms, this_pause_was_young_only);
 656     }
 657 
 658     if (_max_rs_lengths > 0) {
 659       double cards_per_entry_ratio =
 660         (double) cards_scanned / (double) _max_rs_lengths;
 661       _analytics->report_cards_per_entry_ratio(cards_per_entry_ratio, this_pause_was_young_only);
 662     }
 663 
 664     // This is defensive. For a while _max_rs_lengths could get
 665     // smaller than _recorded_rs_lengths which was causing
 666     // rs_length_diff to get very large and mess up the RSet length
 667     // predictions. The reason was unsafe concurrent updates to the
 668     // _inc_cset_recorded_rs_lengths field which the code below guards
 669     // against (see CR 7118202). This bug has now been fixed (see CR
 670     // 7119027). However, I'm still worried that
 671     // _inc_cset_recorded_rs_lengths might still end up somewhat
 672     // inaccurate. The concurrent refinement thread calculates an
 673     // RSet's length concurrently with other CR threads updating it
 674     // which might cause it to calculate the length incorrectly (if,
 675     // say, it's in mid-coarsening). So I'll leave in the defensive
 676     // conditional below just in case.
 677     size_t rs_length_diff = 0;
 678     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
 679     if (_max_rs_lengths > recorded_rs_lengths) {
 680       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
 681     }
 682     _analytics->report_rs_length_diff((double) rs_length_diff);
 683 
 684     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
 685     size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
 686     double cost_per_byte_ms = 0.0;
 687 
 688     if (copied_bytes > 0) {
 689       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
 690       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->mark_or_rebuild_in_progress());
 691     }
 692 
 693     if (_collection_set->young_region_length() > 0) {
 694       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 695                                                         _collection_set->young_region_length());
 696     }
 697 
 698     if (_collection_set->old_region_length() > 0) {
 699       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 700                                                             _collection_set->old_region_length());
 701     }
 702 
 703     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 704 
 705     // Do not update RS lengths and the number of pending cards with information from mixed gc:
 706     // these are is wildly different to during young only gc and mess up young gen sizing right
 707     // after the mixed gc phase.
 708     // During mixed gc we do not use them for young gen sizing.
 709     if (this_pause_was_young_only) {
 710       _analytics->report_pending_cards((double) _pending_cards);
 711       _analytics->report_rs_lengths((double) _max_rs_lengths);
 712     }
 713   }
 714 
 715   assert(!(this_pause_included_initial_mark && collector_state()->mark_or_rebuild_in_progress()),
 716          "If the last pause has been an initial mark, we should not have been in the marking window");
 717   if (this_pause_included_initial_mark) {
 718     collector_state()->set_mark_or_rebuild_in_progress(true);
 719   }
 720 
 721   _free_regions_at_end_of_collection = _g1h->num_free_regions();
 722   // IHOP control wants to know the expected young gen length if it were not
 723   // restrained by the heap reserve. Using the actual length would make the
 724   // prediction too small and the limit the young gen every time we get to the
 725   // predicted target occupancy.
 726   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 727   update_rs_lengths_prediction();
 728 
 729   update_ihop_prediction(app_time_ms / 1000.0,
 730                          _bytes_allocated_in_old_since_last_gc,
 731                          last_unrestrained_young_length * HeapRegion::GrainBytes,
 732                          this_pause_was_young_only);
 733   _bytes_allocated_in_old_since_last_gc = 0;
 734 
 735   _ihop_control->send_trace_event(_g1h->gc_tracer_stw());
 736 
 737   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 738   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 739 
 740   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
 741     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 742                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
 743                                 update_rs_time_goal_ms, scan_hcc_time_ms);
 744 
 745     update_rs_time_goal_ms = 0;
 746   } else {
 747     update_rs_time_goal_ms -= scan_hcc_time_ms;
 748   }
 749   _g1h->concurrent_refine()->adjust(average_time_ms(G1GCPhaseTimes::UpdateRS),
 750                                     phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
 751                                     update_rs_time_goal_ms);
 752 
 753   cset_chooser()->verify();
 754 }
 755 
 756 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
 757   if (G1UseAdaptiveIHOP) {
 758     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 759                                      predictor,
 760                                      G1ReservePercent,
 761                                      G1HeapWastePercent);
 762   } else {
 763     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 764   }
 765 }
 766 
 767 void G1Policy::update_ihop_prediction(double mutator_time_s,
 768                                       size_t mutator_alloc_bytes,
 769                                       size_t young_gen_size,
 770                                       bool this_gc_was_young_only) {
 771   // Always try to update IHOP prediction. Even evacuation failures give information
 772   // about e.g. whether to start IHOP earlier next time.
 773 
 774   // Avoid using really small application times that might create samples with
 775   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 776   double const min_valid_time = 1e-6;
 777 
 778   bool report = false;
 779 
 780   double marking_to_mixed_time = -1.0;
 781   if (!this_gc_was_young_only && _initial_mark_to_mixed.has_result()) {
 782     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 783     assert(marking_to_mixed_time > 0.0,
 784            "Initial mark to mixed time must be larger than zero but is %.3f",
 785            marking_to_mixed_time);
 786     if (marking_to_mixed_time > min_valid_time) {
 787       _ihop_control->update_marking_length(marking_to_mixed_time);
 788       report = true;
 789     }
 790   }
 791 
 792   // As an approximation for the young gc promotion rates during marking we use
 793   // all of them. In many applications there are only a few if any young gcs during
 794   // marking, which makes any prediction useless. This increases the accuracy of the
 795   // prediction.
 796   if (this_gc_was_young_only && mutator_time_s > min_valid_time) {
 797     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 798     report = true;
 799   }
 800 
 801   if (report) {
 802     report_ihop_statistics();
 803   }
 804 }
 805 
 806 void G1Policy::report_ihop_statistics() {
 807   _ihop_control->print();
 808 }
 809 
 810 void G1Policy::print_phases() {
 811   phase_times()->print();
 812 }
 813 
 814 double G1Policy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
 815   TruncatedSeq* seq = surv_rate_group->get_seq(age);
 816   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
 817   double pred = _predictor.get_new_prediction(seq);
 818   if (pred > 1.0) {
 819     pred = 1.0;
 820   }
 821   return pred;
 822 }
 823 
 824 double G1Policy::accum_yg_surv_rate_pred(int age) const {
 825   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 826 }
 827 
 828 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
 829                                               size_t scanned_cards) const {
 830   return
 831     _analytics->predict_rs_update_time_ms(pending_cards) +
 832     _analytics->predict_rs_scan_time_ms(scanned_cards, collector_state()->in_young_only_phase()) +
 833     _analytics->predict_constant_other_time_ms();
 834 }
 835 
 836 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
 837   size_t rs_length = _analytics->predict_rs_lengths() + _analytics->predict_rs_length_diff();
 838   size_t card_num = _analytics->predict_card_num(rs_length, collector_state()->in_young_only_phase());
 839   return predict_base_elapsed_time_ms(pending_cards, card_num);
 840 }
 841 
 842 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
 843   size_t bytes_to_copy;
 844   if (!hr->is_young()) {
 845     bytes_to_copy = hr->max_live_bytes();
 846   } else {
 847     assert(hr->age_in_surv_rate_group() != -1, "invariant");
 848     int age = hr->age_in_surv_rate_group();
 849     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
 850     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
 851   }
 852   return bytes_to_copy;
 853 }
 854 
 855 double G1Policy::predict_region_elapsed_time_ms(HeapRegion* hr,
 856                                                 bool for_young_gc) const {
 857   size_t rs_length = hr->rem_set()->occupied();
 858   // Predicting the number of cards is based on which type of GC
 859   // we're predicting for.
 860   size_t card_num = _analytics->predict_card_num(rs_length, for_young_gc);
 861   size_t bytes_to_copy = predict_bytes_to_copy(hr);
 862 
 863   double region_elapsed_time_ms =
 864     _analytics->predict_rs_scan_time_ms(card_num, collector_state()->in_young_only_phase()) +
 865     _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->mark_or_rebuild_in_progress());
 866 
 867   // The prediction of the "other" time for this region is based
 868   // upon the region type and NOT the GC type.
 869   if (hr->is_young()) {
 870     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
 871   } else {
 872     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
 873   }
 874   return region_elapsed_time_ms;
 875 }
 876 
 877 bool G1Policy::should_allocate_mutator_region() const {
 878   uint young_list_length = _g1h->young_regions_count();
 879   uint young_list_target_length = _young_list_target_length;
 880   return young_list_length < young_list_target_length;
 881 }
 882 
 883 bool G1Policy::can_expand_young_list() const {
 884   uint young_list_length = _g1h->young_regions_count();
 885   uint young_list_max_length = _young_list_max_length;
 886   return young_list_length < young_list_max_length;
 887 }
 888 
 889 bool G1Policy::adaptive_young_list_length() const {
 890   return _young_gen_sizer.adaptive_young_list_length();
 891 }
 892 
 893 size_t G1Policy::desired_survivor_size() const {
 894   size_t const survivor_capacity = HeapRegion::GrainWords * _max_survivor_regions;
 895   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 896 }
 897 
 898 void G1Policy::print_age_table() {
 899   _survivors_age_table.print_age_table(_tenuring_threshold);
 900 }
 901 
 902 void G1Policy::update_max_gc_locker_expansion() {
 903   uint expansion_region_num = 0;
 904   if (GCLockerEdenExpansionPercent > 0) {
 905     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
 906     double expansion_region_num_d = perc * (double) _young_list_target_length;
 907     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
 908     // less than 1.0) we'll get 1.
 909     expansion_region_num = (uint) ceil(expansion_region_num_d);
 910   } else {
 911     assert(expansion_region_num == 0, "sanity");
 912   }
 913   _young_list_max_length = _young_list_target_length + expansion_region_num;
 914   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
 915 }
 916 
 917 // Calculates survivor space parameters.
 918 void G1Policy::update_survivors_policy() {
 919   double max_survivor_regions_d =
 920                  (double) _young_list_target_length / (double) SurvivorRatio;
 921   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
 922   // smaller than 1.0) we'll get 1.
 923   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
 924 
 925   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(desired_survivor_size());
 926   if (UsePerfData) {
 927     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
 928     _policy_counters->desired_survivor_size()->set_value(desired_survivor_size() * oopSize);
 929   }
 930 }
 931 
 932 bool G1Policy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
 933   // We actually check whether we are marking here and not if we are in a
 934   // reclamation phase. This means that we will schedule a concurrent mark
 935   // even while we are still in the process of reclaiming memory.
 936   bool during_cycle = _g1h->concurrent_mark()->cm_thread()->during_cycle();
 937   if (!during_cycle) {
 938     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
 939     collector_state()->set_initiate_conc_mark_if_possible(true);
 940     return true;
 941   } else {
 942     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
 943     return false;
 944   }
 945 }
 946 
 947 void G1Policy::initiate_conc_mark() {
 948   collector_state()->set_in_initial_mark_gc(true);
 949   collector_state()->set_initiate_conc_mark_if_possible(false);
 950 }
 951 
 952 void G1Policy::decide_on_conc_mark_initiation() {
 953   // We are about to decide on whether this pause will be an
 954   // initial-mark pause.
 955 
 956   // First, collector_state()->in_initial_mark_gc() should not be already set. We
 957   // will set it here if we have to. However, it should be cleared by
 958   // the end of the pause (it's only set for the duration of an
 959   // initial-mark pause).
 960   assert(!collector_state()->in_initial_mark_gc(), "pre-condition");
 961 
 962   if (collector_state()->initiate_conc_mark_if_possible()) {
 963     // We had noticed on a previous pause that the heap occupancy has
 964     // gone over the initiating threshold and we should start a
 965     // concurrent marking cycle. So we might initiate one.
 966 
 967     if (!about_to_start_mixed_phase() && collector_state()->in_young_only_phase()) {
 968       // Initiate a new initial mark if there is no marking or reclamation going on.
 969       initiate_conc_mark();
 970       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
 971     } else if (_g1h->is_user_requested_concurrent_full_gc(_g1h->gc_cause())) {
 972       // Initiate a user requested initial mark. An initial mark must be young only
 973       // GC, so the collector state must be updated to reflect this.
 974       collector_state()->set_in_young_only_phase(true);
 975       collector_state()->set_in_young_gc_before_mixed(false);
 976 
 977       // We might have ended up coming here about to start a mixed phase with a collection set
 978       // active. The following remark might change the change the "evacuation efficiency" of
 979       // the regions in this set, leading to failing asserts later.
 980       // Since the concurrent cycle will recreate the collection set anyway, simply drop it here.
 981       clear_collection_set_candidates();
 982       abort_time_to_mixed_tracking();
 983       initiate_conc_mark();
 984       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
 985     } else {
 986       // The concurrent marking thread is still finishing up the
 987       // previous cycle. If we start one right now the two cycles
 988       // overlap. In particular, the concurrent marking thread might
 989       // be in the process of clearing the next marking bitmap (which
 990       // we will use for the next cycle if we start one). Starting a
 991       // cycle now will be bad given that parts of the marking
 992       // information might get cleared by the marking thread. And we
 993       // cannot wait for the marking thread to finish the cycle as it
 994       // periodically yields while clearing the next marking bitmap
 995       // and, if it's in a yield point, it's waiting for us to
 996       // finish. So, at this point we will not start a cycle and we'll
 997       // let the concurrent marking thread complete the last one.
 998       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
 999     }
1000   }
1001 }
1002 
1003 void G1Policy::record_concurrent_mark_cleanup_end() {
1004   cset_chooser()->rebuild(_g1h->workers(), _g1h->num_regions());
1005 
1006   bool mixed_gc_pending = next_gc_should_be_mixed("request mixed gcs", "request young-only gcs");
1007   if (!mixed_gc_pending) {
1008     clear_collection_set_candidates();
1009     abort_time_to_mixed_tracking();
1010   }
1011   collector_state()->set_in_young_gc_before_mixed(mixed_gc_pending);
1012   collector_state()->set_mark_or_rebuild_in_progress(false);
1013 
1014   double end_sec = os::elapsedTime();
1015   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1016   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1017   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1018 
1019   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1020 }
1021 
1022 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
1023   return percent_of(reclaimable_bytes, _g1h->capacity());
1024 }
1025 
1026 class G1ClearCollectionSetCandidateRemSets : public HeapRegionClosure {
1027   virtual bool do_heap_region(HeapRegion* r) {
1028     r->rem_set()->clear_locked(true /* only_cardset */);
1029     return false;
1030   }
1031 };
1032 
1033 void G1Policy::clear_collection_set_candidates() {
1034   // Clear remembered sets of remaining candidate regions and the actual candidate
1035   // list.
1036   G1ClearCollectionSetCandidateRemSets cl;
1037   cset_chooser()->iterate(&cl);
1038   cset_chooser()->clear();
1039 }
1040 
1041 void G1Policy::maybe_start_marking() {
1042   if (need_to_start_conc_mark("end of GC")) {
1043     // Note: this might have already been set, if during the last
1044     // pause we decided to start a cycle but at the beginning of
1045     // this pause we decided to postpone it. That's OK.
1046     collector_state()->set_initiate_conc_mark_if_possible(true);
1047   }
1048 }
1049 
1050 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
1051   assert(!collector_state()->in_full_gc(), "must be");
1052   if (collector_state()->in_initial_mark_gc()) {
1053     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1054     return InitialMarkGC;
1055   } else if (collector_state()->in_young_gc_before_mixed()) {
1056     assert(!collector_state()->in_initial_mark_gc(), "must be");
1057     return LastYoungGC;
1058   } else if (collector_state()->in_mixed_phase()) {
1059     assert(!collector_state()->in_initial_mark_gc(), "must be");
1060     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1061     return MixedGC;
1062   } else {
1063     assert(!collector_state()->in_initial_mark_gc(), "must be");
1064     assert(!collector_state()->in_young_gc_before_mixed(), "must be");
1065     return YoungOnlyGC;
1066   }
1067 }
1068 
1069 void G1Policy::record_pause(PauseKind kind, double start, double end) {
1070   // Manage the MMU tracker. For some reason it ignores Full GCs.
1071   if (kind != FullGC) {
1072     _mmu_tracker->add_pause(start, end);
1073   }
1074   // Manage the mutator time tracking from initial mark to first mixed gc.
1075   switch (kind) {
1076     case FullGC:
1077       abort_time_to_mixed_tracking();
1078       break;
1079     case Cleanup:
1080     case Remark:
1081     case YoungOnlyGC:
1082     case LastYoungGC:
1083       _initial_mark_to_mixed.add_pause(end - start);
1084       break;
1085     case InitialMarkGC:
1086       _initial_mark_to_mixed.record_initial_mark_end(end);
1087       break;
1088     case MixedGC:
1089       _initial_mark_to_mixed.record_mixed_gc_start(start);
1090       break;
1091     default:
1092       ShouldNotReachHere();
1093   }
1094 }
1095 
1096 void G1Policy::abort_time_to_mixed_tracking() {
1097   _initial_mark_to_mixed.reset();
1098 }
1099 
1100 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
1101                                        const char* false_action_str) const {
1102   if (cset_chooser()->is_empty()) {
1103     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1104     return false;
1105   }
1106 
1107   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1108   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
1109   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
1110   double threshold = (double) G1HeapWastePercent;
1111   if (reclaimable_percent <= threshold) {
1112     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1113                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1114     return false;
1115   }
1116   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1117                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
1118   return true;
1119 }
1120 
1121 uint G1Policy::calc_min_old_cset_length() const {
1122   // The min old CSet region bound is based on the maximum desired
1123   // number of mixed GCs after a cycle. I.e., even if some old regions
1124   // look expensive, we should add them to the CSet anyway to make
1125   // sure we go through the available old regions in no more than the
1126   // maximum desired number of mixed GCs.
1127   //
1128   // The calculation is based on the number of marked regions we added
1129   // to the CSet chooser in the first place, not how many remain, so
1130   // that the result is the same during all mixed GCs that follow a cycle.
1131 
1132   const size_t region_num = (size_t) cset_chooser()->length();
1133   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1134   size_t result = region_num / gc_num;
1135   // emulate ceiling
1136   if (result * gc_num < region_num) {
1137     result += 1;
1138   }
1139   return (uint) result;
1140 }
1141 
1142 uint G1Policy::calc_max_old_cset_length() const {
1143   // The max old CSet region bound is based on the threshold expressed
1144   // as a percentage of the heap size. I.e., it should bound the
1145   // number of old regions added to the CSet irrespective of how many
1146   // of them are available.
1147 
1148   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1149   const size_t region_num = g1h->num_regions();
1150   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1151   size_t result = region_num * perc / 100;
1152   // emulate ceiling
1153   if (100 * result < region_num * perc) {
1154     result += 1;
1155   }
1156   return (uint) result;
1157 }
1158 
1159 void G1Policy::finalize_collection_set(double target_pause_time_ms, G1SurvivorRegions* survivor) {
1160   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms, survivor);
1161   _collection_set->finalize_old_part(time_remaining_ms);
1162 }
1163 
1164 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
1165 
1166   // Add survivor regions to SurvRateGroup.
1167   note_start_adding_survivor_regions();
1168   finished_recalculating_age_indexes(true /* is_survivors */);
1169 
1170   HeapRegion* last = NULL;
1171   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
1172        it != survivors->regions()->end();
1173        ++it) {
1174     HeapRegion* curr = *it;
1175     set_region_survivor(curr);
1176 
1177     // The region is a non-empty survivor so let's add it to
1178     // the incremental collection set for the next evacuation
1179     // pause.
1180     _collection_set->add_survivor_regions(curr);
1181 
1182     last = curr;
1183   }
1184   note_stop_adding_survivor_regions();
1185 
1186   // Don't clear the survivor list handles until the start of
1187   // the next evacuation pause - we need it in order to re-tag
1188   // the survivor regions from this evacuation pause as 'young'
1189   // at the start of the next.
1190 
1191   finished_recalculating_age_indexes(false /* is_survivors */);
1192 }