1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  56 #include "gc/g1/g1StringDedup.hpp"
  57 #include "gc/g1/g1ThreadLocalData.hpp"
  58 #include "gc/g1/g1YCTypes.hpp"
  59 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  60 #include "gc/g1/heapRegion.inline.hpp"
  61 #include "gc/g1/heapRegionRemSet.hpp"
  62 #include "gc/g1/heapRegionSet.inline.hpp"
  63 #include "gc/g1/vm_operations_g1.hpp"
  64 #include "gc/shared/adaptiveSizePolicy.hpp"
  65 #include "gc/shared/gcBehaviours.hpp"
  66 #include "gc/shared/gcHeapSummary.hpp"
  67 #include "gc/shared/gcId.hpp"
  68 #include "gc/shared/gcLocker.hpp"
  69 #include "gc/shared/gcTimer.hpp"
  70 #include "gc/shared/gcTrace.hpp"
  71 #include "gc/shared/gcTraceTime.inline.hpp"
  72 #include "gc/shared/generationSpec.hpp"
  73 #include "gc/shared/isGCActiveMark.hpp"
  74 #include "gc/shared/oopStorageParState.hpp"
  75 #include "gc/shared/parallelCleaning.hpp"
  76 #include "gc/shared/preservedMarks.inline.hpp"
  77 #include "gc/shared/suspendibleThreadSet.hpp"
  78 #include "gc/shared/referenceProcessor.inline.hpp"
  79 #include "gc/shared/taskqueue.inline.hpp"
  80 #include "gc/shared/weakProcessor.inline.hpp"
  81 #include "logging/log.hpp"
  82 #include "memory/allocation.hpp"
  83 #include "memory/iterator.hpp"
  84 #include "memory/resourceArea.hpp"
  85 #include "oops/access.inline.hpp"
  86 #include "oops/compressedOops.inline.hpp"
  87 #include "oops/oop.inline.hpp"
  88 #include "runtime/atomic.hpp"
  89 #include "runtime/flags/flagSetting.hpp"
  90 #include "runtime/handles.inline.hpp"
  91 #include "runtime/init.hpp"
  92 #include "runtime/orderAccess.hpp"
  93 #include "runtime/threadSMR.hpp"
  94 #include "runtime/vmThread.hpp"
  95 #include "utilities/align.hpp"
  96 #include "utilities/globalDefinitions.hpp"
  97 #include "utilities/stack.inline.hpp"
  98 
  99 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 100 
 101 // INVARIANTS/NOTES
 102 //
 103 // All allocation activity covered by the G1CollectedHeap interface is
 104 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 105 // and allocate_new_tlab, which are the "entry" points to the
 106 // allocation code from the rest of the JVM.  (Note that this does not
 107 // apply to TLAB allocation, which is not part of this interface: it
 108 // is done by clients of this interface.)
 109 
 110 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 111  private:
 112   size_t _num_dirtied;
 113   G1CollectedHeap* _g1h;
 114   G1CardTable* _g1_ct;
 115 
 116   HeapRegion* region_for_card(jbyte* card_ptr) const {
 117     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 118   }
 119 
 120   bool will_become_free(HeapRegion* hr) const {
 121     // A region will be freed by free_collection_set if the region is in the
 122     // collection set and has not had an evacuation failure.
 123     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 124   }
 125 
 126  public:
 127   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 128     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 129 
 130   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 131     HeapRegion* hr = region_for_card(card_ptr);
 132 
 133     // Should only dirty cards in regions that won't be freed.
 134     if (!will_become_free(hr)) {
 135       *card_ptr = G1CardTable::dirty_card_val();
 136       _num_dirtied++;
 137     }
 138 
 139     return true;
 140   }
 141 
 142   size_t num_dirtied()   const { return _num_dirtied; }
 143 };
 144 
 145 
 146 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 147   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 148 }
 149 
 150 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 151   // The from card cache is not the memory that is actually committed. So we cannot
 152   // take advantage of the zero_filled parameter.
 153   reset_from_card_cache(start_idx, num_regions);
 154 }
 155 
 156 
 157 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 158                                              MemRegion mr) {
 159   return new HeapRegion(hrs_index, bot(), mr);
 160 }
 161 
 162 // Private methods.
 163 
 164 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 165   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 166          "the only time we use this to allocate a humongous region is "
 167          "when we are allocating a single humongous region");
 168 
 169   HeapRegion* res = _hrm->allocate_free_region(is_old);
 170 
 171   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 172     // Currently, only attempts to allocate GC alloc regions set
 173     // do_expand to true. So, we should only reach here during a
 174     // safepoint. If this assumption changes we might have to
 175     // reconsider the use of _expand_heap_after_alloc_failure.
 176     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 177 
 178     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 179                               word_size * HeapWordSize);
 180 
 181     if (expand(word_size * HeapWordSize)) {
 182       // Given that expand() succeeded in expanding the heap, and we
 183       // always expand the heap by an amount aligned to the heap
 184       // region size, the free list should in theory not be empty.
 185       // In either case allocate_free_region() will check for NULL.
 186       res = _hrm->allocate_free_region(is_old);
 187     } else {
 188       _expand_heap_after_alloc_failure = false;
 189     }
 190   }
 191   return res;
 192 }
 193 
 194 HeapWord*
 195 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 196                                                            uint num_regions,
 197                                                            size_t word_size) {
 198   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 199   assert(is_humongous(word_size), "word_size should be humongous");
 200   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 201 
 202   // Index of last region in the series.
 203   uint last = first + num_regions - 1;
 204 
 205   // We need to initialize the region(s) we just discovered. This is
 206   // a bit tricky given that it can happen concurrently with
 207   // refinement threads refining cards on these regions and
 208   // potentially wanting to refine the BOT as they are scanning
 209   // those cards (this can happen shortly after a cleanup; see CR
 210   // 6991377). So we have to set up the region(s) carefully and in
 211   // a specific order.
 212 
 213   // The word size sum of all the regions we will allocate.
 214   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 215   assert(word_size <= word_size_sum, "sanity");
 216 
 217   // This will be the "starts humongous" region.
 218   HeapRegion* first_hr = region_at(first);
 219   // The header of the new object will be placed at the bottom of
 220   // the first region.
 221   HeapWord* new_obj = first_hr->bottom();
 222   // This will be the new top of the new object.
 223   HeapWord* obj_top = new_obj + word_size;
 224 
 225   // First, we need to zero the header of the space that we will be
 226   // allocating. When we update top further down, some refinement
 227   // threads might try to scan the region. By zeroing the header we
 228   // ensure that any thread that will try to scan the region will
 229   // come across the zero klass word and bail out.
 230   //
 231   // NOTE: It would not have been correct to have used
 232   // CollectedHeap::fill_with_object() and make the space look like
 233   // an int array. The thread that is doing the allocation will
 234   // later update the object header to a potentially different array
 235   // type and, for a very short period of time, the klass and length
 236   // fields will be inconsistent. This could cause a refinement
 237   // thread to calculate the object size incorrectly.
 238   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 239 
 240   // Next, pad out the unused tail of the last region with filler
 241   // objects, for improved usage accounting.
 242   // How many words we use for filler objects.
 243   size_t word_fill_size = word_size_sum - word_size;
 244 
 245   // How many words memory we "waste" which cannot hold a filler object.
 246   size_t words_not_fillable = 0;
 247 
 248   if (word_fill_size >= min_fill_size()) {
 249     fill_with_objects(obj_top, word_fill_size);
 250   } else if (word_fill_size > 0) {
 251     // We have space to fill, but we cannot fit an object there.
 252     words_not_fillable = word_fill_size;
 253     word_fill_size = 0;
 254   }
 255 
 256   // We will set up the first region as "starts humongous". This
 257   // will also update the BOT covering all the regions to reflect
 258   // that there is a single object that starts at the bottom of the
 259   // first region.
 260   first_hr->set_starts_humongous(obj_top, word_fill_size);
 261   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 262   // Then, if there are any, we will set up the "continues
 263   // humongous" regions.
 264   HeapRegion* hr = NULL;
 265   for (uint i = first + 1; i <= last; ++i) {
 266     hr = region_at(i);
 267     hr->set_continues_humongous(first_hr);
 268     _g1_policy->remset_tracker()->update_at_allocate(hr);
 269   }
 270 
 271   // Up to this point no concurrent thread would have been able to
 272   // do any scanning on any region in this series. All the top
 273   // fields still point to bottom, so the intersection between
 274   // [bottom,top] and [card_start,card_end] will be empty. Before we
 275   // update the top fields, we'll do a storestore to make sure that
 276   // no thread sees the update to top before the zeroing of the
 277   // object header and the BOT initialization.
 278   OrderAccess::storestore();
 279 
 280   // Now, we will update the top fields of the "continues humongous"
 281   // regions except the last one.
 282   for (uint i = first; i < last; ++i) {
 283     hr = region_at(i);
 284     hr->set_top(hr->end());
 285   }
 286 
 287   hr = region_at(last);
 288   // If we cannot fit a filler object, we must set top to the end
 289   // of the humongous object, otherwise we cannot iterate the heap
 290   // and the BOT will not be complete.
 291   hr->set_top(hr->end() - words_not_fillable);
 292 
 293   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 294          "obj_top should be in last region");
 295 
 296   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 297 
 298   assert(words_not_fillable == 0 ||
 299          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 300          "Miscalculation in humongous allocation");
 301 
 302   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 303 
 304   for (uint i = first; i <= last; ++i) {
 305     hr = region_at(i);
 306     _humongous_set.add(hr);
 307     _hr_printer.alloc(hr);
 308   }
 309 
 310   return new_obj;
 311 }
 312 
 313 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 314   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 315   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 316 }
 317 
 318 // If could fit into free regions w/o expansion, try.
 319 // Otherwise, if can expand, do so.
 320 // Otherwise, if using ex regions might help, try with ex given back.
 321 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 322   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 323 
 324   _verifier->verify_region_sets_optional();
 325 
 326   uint first = G1_NO_HRM_INDEX;
 327   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 328 
 329   if (obj_regions == 1) {
 330     // Only one region to allocate, try to use a fast path by directly allocating
 331     // from the free lists. Do not try to expand here, we will potentially do that
 332     // later.
 333     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 334     if (hr != NULL) {
 335       first = hr->hrm_index();
 336     }
 337   } else {
 338     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 339     // are lucky enough to find some.
 340     first = _hrm->find_contiguous_only_empty(obj_regions);
 341     if (first != G1_NO_HRM_INDEX) {
 342       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 343     }
 344   }
 345 
 346   if (first == G1_NO_HRM_INDEX) {
 347     // Policy: We could not find enough regions for the humongous object in the
 348     // free list. Look through the heap to find a mix of free and uncommitted regions.
 349     // If so, try expansion.
 350     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 351     if (first != G1_NO_HRM_INDEX) {
 352       // We found something. Make sure these regions are committed, i.e. expand
 353       // the heap. Alternatively we could do a defragmentation GC.
 354       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 355                                     word_size * HeapWordSize);
 356 
 357       _hrm->expand_at(first, obj_regions, workers());
 358       g1_policy()->record_new_heap_size(num_regions());
 359 
 360 #ifdef ASSERT
 361       for (uint i = first; i < first + obj_regions; ++i) {
 362         HeapRegion* hr = region_at(i);
 363         assert(hr->is_free(), "sanity");
 364         assert(hr->is_empty(), "sanity");
 365         assert(is_on_master_free_list(hr), "sanity");
 366       }
 367 #endif
 368       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 369     } else {
 370       // Policy: Potentially trigger a defragmentation GC.
 371     }
 372   }
 373 
 374   HeapWord* result = NULL;
 375   if (first != G1_NO_HRM_INDEX) {
 376     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 377     assert(result != NULL, "it should always return a valid result");
 378 
 379     // A successful humongous object allocation changes the used space
 380     // information of the old generation so we need to recalculate the
 381     // sizes and update the jstat counters here.
 382     g1mm()->update_sizes();
 383   }
 384 
 385   _verifier->verify_region_sets_optional();
 386 
 387   return result;
 388 }
 389 
 390 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 391                                              size_t requested_size,
 392                                              size_t* actual_size) {
 393   assert_heap_not_locked_and_not_at_safepoint();
 394   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 395 
 396   return attempt_allocation(min_size, requested_size, actual_size);
 397 }
 398 
 399 HeapWord*
 400 G1CollectedHeap::mem_allocate(size_t word_size,
 401                               bool*  gc_overhead_limit_was_exceeded) {
 402   assert_heap_not_locked_and_not_at_safepoint();
 403 
 404   if (is_humongous(word_size)) {
 405     return attempt_allocation_humongous(word_size);
 406   }
 407   size_t dummy = 0;
 408   return attempt_allocation(word_size, word_size, &dummy);
 409 }
 410 
 411 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 412   ResourceMark rm; // For retrieving the thread names in log messages.
 413 
 414   // Make sure you read the note in attempt_allocation_humongous().
 415 
 416   assert_heap_not_locked_and_not_at_safepoint();
 417   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 418          "be called for humongous allocation requests");
 419 
 420   // We should only get here after the first-level allocation attempt
 421   // (attempt_allocation()) failed to allocate.
 422 
 423   // We will loop until a) we manage to successfully perform the
 424   // allocation or b) we successfully schedule a collection which
 425   // fails to perform the allocation. b) is the only case when we'll
 426   // return NULL.
 427   HeapWord* result = NULL;
 428   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 429     bool should_try_gc;
 430     uint gc_count_before;
 431 
 432     {
 433       MutexLockerEx x(Heap_lock);
 434       result = _allocator->attempt_allocation_locked(word_size);
 435       if (result != NULL) {
 436         return result;
 437       }
 438 
 439       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 440       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 441       // waiting because the GCLocker is active to not wait too long.
 442       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 443         // No need for an ergo message here, can_expand_young_list() does this when
 444         // it returns true.
 445         result = _allocator->attempt_allocation_force(word_size);
 446         if (result != NULL) {
 447           return result;
 448         }
 449       }
 450       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 451       // the GCLocker initiated GC has been performed and then retry. This includes
 452       // the case when the GC Locker is not active but has not been performed.
 453       should_try_gc = !GCLocker::needs_gc();
 454       // Read the GC count while still holding the Heap_lock.
 455       gc_count_before = total_collections();
 456     }
 457 
 458     if (should_try_gc) {
 459       bool succeeded;
 460       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 461                                    GCCause::_g1_inc_collection_pause);
 462       if (result != NULL) {
 463         assert(succeeded, "only way to get back a non-NULL result");
 464         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 465                              Thread::current()->name(), p2i(result));
 466         return result;
 467       }
 468 
 469       if (succeeded) {
 470         // We successfully scheduled a collection which failed to allocate. No
 471         // point in trying to allocate further. We'll just return NULL.
 472         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 473                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 474         return NULL;
 475       }
 476       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 477                            Thread::current()->name(), word_size);
 478     } else {
 479       // Failed to schedule a collection.
 480       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 481         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 482                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 483         return NULL;
 484       }
 485       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 486       // The GCLocker is either active or the GCLocker initiated
 487       // GC has not yet been performed. Stall until it is and
 488       // then retry the allocation.
 489       GCLocker::stall_until_clear();
 490       gclocker_retry_count += 1;
 491     }
 492 
 493     // We can reach here if we were unsuccessful in scheduling a
 494     // collection (because another thread beat us to it) or if we were
 495     // stalled due to the GC locker. In either can we should retry the
 496     // allocation attempt in case another thread successfully
 497     // performed a collection and reclaimed enough space. We do the
 498     // first attempt (without holding the Heap_lock) here and the
 499     // follow-on attempt will be at the start of the next loop
 500     // iteration (after taking the Heap_lock).
 501     size_t dummy = 0;
 502     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 503     if (result != NULL) {
 504       return result;
 505     }
 506 
 507     // Give a warning if we seem to be looping forever.
 508     if ((QueuedAllocationWarningCount > 0) &&
 509         (try_count % QueuedAllocationWarningCount == 0)) {
 510       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 511                              Thread::current()->name(), try_count, word_size);
 512     }
 513   }
 514 
 515   ShouldNotReachHere();
 516   return NULL;
 517 }
 518 
 519 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 520   assert_at_safepoint_on_vm_thread();
 521   if (_archive_allocator == NULL) {
 522     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 523   }
 524 }
 525 
 526 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 527   // Allocations in archive regions cannot be of a size that would be considered
 528   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 529   // may be different at archive-restore time.
 530   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 531 }
 532 
 533 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 534   assert_at_safepoint_on_vm_thread();
 535   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 536   if (is_archive_alloc_too_large(word_size)) {
 537     return NULL;
 538   }
 539   return _archive_allocator->archive_mem_allocate(word_size);
 540 }
 541 
 542 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 543                                               size_t end_alignment_in_bytes) {
 544   assert_at_safepoint_on_vm_thread();
 545   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 546 
 547   // Call complete_archive to do the real work, filling in the MemRegion
 548   // array with the archive regions.
 549   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 550   delete _archive_allocator;
 551   _archive_allocator = NULL;
 552 }
 553 
 554 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 555   assert(ranges != NULL, "MemRegion array NULL");
 556   assert(count != 0, "No MemRegions provided");
 557   MemRegion reserved = _hrm->reserved();
 558   for (size_t i = 0; i < count; i++) {
 559     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 560       return false;
 561     }
 562   }
 563   return true;
 564 }
 565 
 566 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 567                                             size_t count,
 568                                             bool open) {
 569   assert(!is_init_completed(), "Expect to be called at JVM init time");
 570   assert(ranges != NULL, "MemRegion array NULL");
 571   assert(count != 0, "No MemRegions provided");
 572   MutexLockerEx x(Heap_lock);
 573 
 574   MemRegion reserved = _hrm->reserved();
 575   HeapWord* prev_last_addr = NULL;
 576   HeapRegion* prev_last_region = NULL;
 577 
 578   // Temporarily disable pretouching of heap pages. This interface is used
 579   // when mmap'ing archived heap data in, so pre-touching is wasted.
 580   FlagSetting fs(AlwaysPreTouch, false);
 581 
 582   // Enable archive object checking used by G1MarkSweep. We have to let it know
 583   // about each archive range, so that objects in those ranges aren't marked.
 584   G1ArchiveAllocator::enable_archive_object_check();
 585 
 586   // For each specified MemRegion range, allocate the corresponding G1
 587   // regions and mark them as archive regions. We expect the ranges
 588   // in ascending starting address order, without overlap.
 589   for (size_t i = 0; i < count; i++) {
 590     MemRegion curr_range = ranges[i];
 591     HeapWord* start_address = curr_range.start();
 592     size_t word_size = curr_range.word_size();
 593     HeapWord* last_address = curr_range.last();
 594     size_t commits = 0;
 595 
 596     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 597               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 598               p2i(start_address), p2i(last_address));
 599     guarantee(start_address > prev_last_addr,
 600               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 601               p2i(start_address), p2i(prev_last_addr));
 602     prev_last_addr = last_address;
 603 
 604     // Check for ranges that start in the same G1 region in which the previous
 605     // range ended, and adjust the start address so we don't try to allocate
 606     // the same region again. If the current range is entirely within that
 607     // region, skip it, just adjusting the recorded top.
 608     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 609     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 610       start_address = start_region->end();
 611       if (start_address > last_address) {
 612         increase_used(word_size * HeapWordSize);
 613         start_region->set_top(last_address + 1);
 614         continue;
 615       }
 616       start_region->set_top(start_address);
 617       curr_range = MemRegion(start_address, last_address + 1);
 618       start_region = _hrm->addr_to_region(start_address);
 619     }
 620 
 621     // Perform the actual region allocation, exiting if it fails.
 622     // Then note how much new space we have allocated.
 623     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 624       return false;
 625     }
 626     increase_used(word_size * HeapWordSize);
 627     if (commits != 0) {
 628       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 629                                 HeapRegion::GrainWords * HeapWordSize * commits);
 630 
 631     }
 632 
 633     // Mark each G1 region touched by the range as archive, add it to
 634     // the old set, and set top.
 635     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 636     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 637     prev_last_region = last_region;
 638 
 639     while (curr_region != NULL) {
 640       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 641              "Region already in use (index %u)", curr_region->hrm_index());
 642       if (open) {
 643         curr_region->set_open_archive();
 644       } else {
 645         curr_region->set_closed_archive();
 646       }
 647       _hr_printer.alloc(curr_region);
 648       _archive_set.add(curr_region);
 649       HeapWord* top;
 650       HeapRegion* next_region;
 651       if (curr_region != last_region) {
 652         top = curr_region->end();
 653         next_region = _hrm->next_region_in_heap(curr_region);
 654       } else {
 655         top = last_address + 1;
 656         next_region = NULL;
 657       }
 658       curr_region->set_top(top);
 659       curr_region->set_first_dead(top);
 660       curr_region->set_end_of_live(top);
 661       curr_region = next_region;
 662     }
 663 
 664     // Notify mark-sweep of the archive
 665     G1ArchiveAllocator::set_range_archive(curr_range, open);
 666   }
 667   return true;
 668 }
 669 
 670 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 671   assert(!is_init_completed(), "Expect to be called at JVM init time");
 672   assert(ranges != NULL, "MemRegion array NULL");
 673   assert(count != 0, "No MemRegions provided");
 674   MemRegion reserved = _hrm->reserved();
 675   HeapWord *prev_last_addr = NULL;
 676   HeapRegion* prev_last_region = NULL;
 677 
 678   // For each MemRegion, create filler objects, if needed, in the G1 regions
 679   // that contain the address range. The address range actually within the
 680   // MemRegion will not be modified. That is assumed to have been initialized
 681   // elsewhere, probably via an mmap of archived heap data.
 682   MutexLockerEx x(Heap_lock);
 683   for (size_t i = 0; i < count; i++) {
 684     HeapWord* start_address = ranges[i].start();
 685     HeapWord* last_address = ranges[i].last();
 686 
 687     assert(reserved.contains(start_address) && reserved.contains(last_address),
 688            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 689            p2i(start_address), p2i(last_address));
 690     assert(start_address > prev_last_addr,
 691            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 692            p2i(start_address), p2i(prev_last_addr));
 693 
 694     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 695     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 696     HeapWord* bottom_address = start_region->bottom();
 697 
 698     // Check for a range beginning in the same region in which the
 699     // previous one ended.
 700     if (start_region == prev_last_region) {
 701       bottom_address = prev_last_addr + 1;
 702     }
 703 
 704     // Verify that the regions were all marked as archive regions by
 705     // alloc_archive_regions.
 706     HeapRegion* curr_region = start_region;
 707     while (curr_region != NULL) {
 708       guarantee(curr_region->is_archive(),
 709                 "Expected archive region at index %u", curr_region->hrm_index());
 710       if (curr_region != last_region) {
 711         curr_region = _hrm->next_region_in_heap(curr_region);
 712       } else {
 713         curr_region = NULL;
 714       }
 715     }
 716 
 717     prev_last_addr = last_address;
 718     prev_last_region = last_region;
 719 
 720     // Fill the memory below the allocated range with dummy object(s),
 721     // if the region bottom does not match the range start, or if the previous
 722     // range ended within the same G1 region, and there is a gap.
 723     if (start_address != bottom_address) {
 724       size_t fill_size = pointer_delta(start_address, bottom_address);
 725       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 726       increase_used(fill_size * HeapWordSize);
 727     }
 728   }
 729 }
 730 
 731 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 732                                                      size_t desired_word_size,
 733                                                      size_t* actual_word_size) {
 734   assert_heap_not_locked_and_not_at_safepoint();
 735   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 736          "be called for humongous allocation requests");
 737 
 738   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 739 
 740   if (result == NULL) {
 741     *actual_word_size = desired_word_size;
 742     result = attempt_allocation_slow(desired_word_size);
 743   }
 744 
 745   assert_heap_not_locked();
 746   if (result != NULL) {
 747     assert(*actual_word_size != 0, "Actual size must have been set here");
 748     dirty_young_block(result, *actual_word_size);
 749   } else {
 750     *actual_word_size = 0;
 751   }
 752 
 753   return result;
 754 }
 755 
 756 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 757   assert(!is_init_completed(), "Expect to be called at JVM init time");
 758   assert(ranges != NULL, "MemRegion array NULL");
 759   assert(count != 0, "No MemRegions provided");
 760   MemRegion reserved = _hrm->reserved();
 761   HeapWord* prev_last_addr = NULL;
 762   HeapRegion* prev_last_region = NULL;
 763   size_t size_used = 0;
 764   size_t uncommitted_regions = 0;
 765 
 766   // For each Memregion, free the G1 regions that constitute it, and
 767   // notify mark-sweep that the range is no longer to be considered 'archive.'
 768   MutexLockerEx x(Heap_lock);
 769   for (size_t i = 0; i < count; i++) {
 770     HeapWord* start_address = ranges[i].start();
 771     HeapWord* last_address = ranges[i].last();
 772 
 773     assert(reserved.contains(start_address) && reserved.contains(last_address),
 774            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 775            p2i(start_address), p2i(last_address));
 776     assert(start_address > prev_last_addr,
 777            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 778            p2i(start_address), p2i(prev_last_addr));
 779     size_used += ranges[i].byte_size();
 780     prev_last_addr = last_address;
 781 
 782     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 783     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 784 
 785     // Check for ranges that start in the same G1 region in which the previous
 786     // range ended, and adjust the start address so we don't try to free
 787     // the same region again. If the current range is entirely within that
 788     // region, skip it.
 789     if (start_region == prev_last_region) {
 790       start_address = start_region->end();
 791       if (start_address > last_address) {
 792         continue;
 793       }
 794       start_region = _hrm->addr_to_region(start_address);
 795     }
 796     prev_last_region = last_region;
 797 
 798     // After verifying that each region was marked as an archive region by
 799     // alloc_archive_regions, set it free and empty and uncommit it.
 800     HeapRegion* curr_region = start_region;
 801     while (curr_region != NULL) {
 802       guarantee(curr_region->is_archive(),
 803                 "Expected archive region at index %u", curr_region->hrm_index());
 804       uint curr_index = curr_region->hrm_index();
 805       _archive_set.remove(curr_region);
 806       curr_region->set_free();
 807       curr_region->set_top(curr_region->bottom());
 808       if (curr_region != last_region) {
 809         curr_region = _hrm->next_region_in_heap(curr_region);
 810       } else {
 811         curr_region = NULL;
 812       }
 813       _hrm->shrink_at(curr_index, 1);
 814       uncommitted_regions++;
 815     }
 816 
 817     // Notify mark-sweep that this is no longer an archive range.
 818     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 819   }
 820 
 821   if (uncommitted_regions != 0) {
 822     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 823                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 824   }
 825   decrease_used(size_used);
 826 }
 827 
 828 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 829   assert(obj != NULL, "archived obj is NULL");
 830   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 831 
 832   // Loading an archived object makes it strongly reachable. If it is
 833   // loaded during concurrent marking, it must be enqueued to the SATB
 834   // queue, shading the previously white object gray.
 835   G1BarrierSet::enqueue(obj);
 836 
 837   return obj;
 838 }
 839 
 840 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 841   ResourceMark rm; // For retrieving the thread names in log messages.
 842 
 843   // The structure of this method has a lot of similarities to
 844   // attempt_allocation_slow(). The reason these two were not merged
 845   // into a single one is that such a method would require several "if
 846   // allocation is not humongous do this, otherwise do that"
 847   // conditional paths which would obscure its flow. In fact, an early
 848   // version of this code did use a unified method which was harder to
 849   // follow and, as a result, it had subtle bugs that were hard to
 850   // track down. So keeping these two methods separate allows each to
 851   // be more readable. It will be good to keep these two in sync as
 852   // much as possible.
 853 
 854   assert_heap_not_locked_and_not_at_safepoint();
 855   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 856          "should only be called for humongous allocations");
 857 
 858   // Humongous objects can exhaust the heap quickly, so we should check if we
 859   // need to start a marking cycle at each humongous object allocation. We do
 860   // the check before we do the actual allocation. The reason for doing it
 861   // before the allocation is that we avoid having to keep track of the newly
 862   // allocated memory while we do a GC.
 863   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 864                                            word_size)) {
 865     collect(GCCause::_g1_humongous_allocation);
 866   }
 867 
 868   // We will loop until a) we manage to successfully perform the
 869   // allocation or b) we successfully schedule a collection which
 870   // fails to perform the allocation. b) is the only case when we'll
 871   // return NULL.
 872   HeapWord* result = NULL;
 873   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 874     bool should_try_gc;
 875     uint gc_count_before;
 876 
 877 
 878     {
 879       MutexLockerEx x(Heap_lock);
 880 
 881       // Given that humongous objects are not allocated in young
 882       // regions, we'll first try to do the allocation without doing a
 883       // collection hoping that there's enough space in the heap.
 884       result = humongous_obj_allocate(word_size);
 885       if (result != NULL) {
 886         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 887         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 888         return result;
 889       }
 890 
 891       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 892       // the GCLocker initiated GC has been performed and then retry. This includes
 893       // the case when the GC Locker is not active but has not been performed.
 894       should_try_gc = !GCLocker::needs_gc();
 895       // Read the GC count while still holding the Heap_lock.
 896       gc_count_before = total_collections();
 897     }
 898 
 899     if (should_try_gc) {
 900       bool succeeded;
 901       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 902                                    GCCause::_g1_humongous_allocation);
 903       if (result != NULL) {
 904         assert(succeeded, "only way to get back a non-NULL result");
 905         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 906                              Thread::current()->name(), p2i(result));
 907         return result;
 908       }
 909 
 910       if (succeeded) {
 911         // We successfully scheduled a collection which failed to allocate. No
 912         // point in trying to allocate further. We'll just return NULL.
 913         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 914                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 915         return NULL;
 916       }
 917       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 918                            Thread::current()->name(), word_size);
 919     } else {
 920       // Failed to schedule a collection.
 921       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 922         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 923                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 924         return NULL;
 925       }
 926       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 927       // The GCLocker is either active or the GCLocker initiated
 928       // GC has not yet been performed. Stall until it is and
 929       // then retry the allocation.
 930       GCLocker::stall_until_clear();
 931       gclocker_retry_count += 1;
 932     }
 933 
 934 
 935     // We can reach here if we were unsuccessful in scheduling a
 936     // collection (because another thread beat us to it) or if we were
 937     // stalled due to the GC locker. In either can we should retry the
 938     // allocation attempt in case another thread successfully
 939     // performed a collection and reclaimed enough space.
 940     // Humongous object allocation always needs a lock, so we wait for the retry
 941     // in the next iteration of the loop, unlike for the regular iteration case.
 942     // Give a warning if we seem to be looping forever.
 943 
 944     if ((QueuedAllocationWarningCount > 0) &&
 945         (try_count % QueuedAllocationWarningCount == 0)) {
 946       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 947                              Thread::current()->name(), try_count, word_size);
 948     }
 949   }
 950 
 951   ShouldNotReachHere();
 952   return NULL;
 953 }
 954 
 955 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 956                                                            bool expect_null_mutator_alloc_region) {
 957   assert_at_safepoint_on_vm_thread();
 958   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 959          "the current alloc region was unexpectedly found to be non-NULL");
 960 
 961   if (!is_humongous(word_size)) {
 962     return _allocator->attempt_allocation_locked(word_size);
 963   } else {
 964     HeapWord* result = humongous_obj_allocate(word_size);
 965     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 966       collector_state()->set_initiate_conc_mark_if_possible(true);
 967     }
 968     return result;
 969   }
 970 
 971   ShouldNotReachHere();
 972 }
 973 
 974 class PostCompactionPrinterClosure: public HeapRegionClosure {
 975 private:
 976   G1HRPrinter* _hr_printer;
 977 public:
 978   bool do_heap_region(HeapRegion* hr) {
 979     assert(!hr->is_young(), "not expecting to find young regions");
 980     _hr_printer->post_compaction(hr);
 981     return false;
 982   }
 983 
 984   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 985     : _hr_printer(hr_printer) { }
 986 };
 987 
 988 void G1CollectedHeap::print_hrm_post_compaction() {
 989   if (_hr_printer.is_active()) {
 990     PostCompactionPrinterClosure cl(hr_printer());
 991     heap_region_iterate(&cl);
 992   }
 993 }
 994 
 995 void G1CollectedHeap::abort_concurrent_cycle() {
 996   // If we start the compaction before the CM threads finish
 997   // scanning the root regions we might trip them over as we'll
 998   // be moving objects / updating references. So let's wait until
 999   // they are done. By telling them to abort, they should complete
1000   // early.
1001   _cm->root_regions()->abort();
1002   _cm->root_regions()->wait_until_scan_finished();
1003 
1004   // Disable discovery and empty the discovered lists
1005   // for the CM ref processor.
1006   _ref_processor_cm->disable_discovery();
1007   _ref_processor_cm->abandon_partial_discovery();
1008   _ref_processor_cm->verify_no_references_recorded();
1009 
1010   // Abandon current iterations of concurrent marking and concurrent
1011   // refinement, if any are in progress.
1012   concurrent_mark()->concurrent_cycle_abort();
1013 }
1014 
1015 void G1CollectedHeap::prepare_heap_for_full_collection() {
1016   // Make sure we'll choose a new allocation region afterwards.
1017   _allocator->release_mutator_alloc_region();
1018   _allocator->abandon_gc_alloc_regions();
1019   g1_rem_set()->cleanupHRRS();
1020 
1021   // We may have added regions to the current incremental collection
1022   // set between the last GC or pause and now. We need to clear the
1023   // incremental collection set and then start rebuilding it afresh
1024   // after this full GC.
1025   abandon_collection_set(collection_set());
1026 
1027   tear_down_region_sets(false /* free_list_only */);
1028 
1029   hrm()->prepare_for_full_collection_start();
1030 }
1031 
1032 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1033   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1034   assert(used() == recalculate_used(), "Should be equal");
1035   _verifier->verify_region_sets_optional();
1036   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1037   _verifier->check_bitmaps("Full GC Start");
1038 }
1039 
1040 void G1CollectedHeap::prepare_heap_for_mutators() {
1041   hrm()->prepare_for_full_collection_end();
1042 
1043   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1044   ClassLoaderDataGraph::purge();
1045   MetaspaceUtils::verify_metrics();
1046 
1047   // Prepare heap for normal collections.
1048   assert(num_free_regions() == 0, "we should not have added any free regions");
1049   rebuild_region_sets(false /* free_list_only */);
1050   abort_refinement();
1051   resize_heap_if_necessary();
1052 
1053   // Rebuild the strong code root lists for each region
1054   rebuild_strong_code_roots();
1055 
1056   // Purge code root memory
1057   purge_code_root_memory();
1058 
1059   // Start a new incremental collection set for the next pause
1060   start_new_collection_set();
1061 
1062   _allocator->init_mutator_alloc_region();
1063 
1064   // Post collection state updates.
1065   MetaspaceGC::compute_new_size();
1066 }
1067 
1068 void G1CollectedHeap::abort_refinement() {
1069   if (_hot_card_cache->use_cache()) {
1070     _hot_card_cache->reset_hot_cache();
1071   }
1072 
1073   // Discard all remembered set updates.
1074   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1075   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1076 }
1077 
1078 void G1CollectedHeap::verify_after_full_collection() {
1079   _hrm->verify_optional();
1080   _verifier->verify_region_sets_optional();
1081   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1082   // Clear the previous marking bitmap, if needed for bitmap verification.
1083   // Note we cannot do this when we clear the next marking bitmap in
1084   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1085   // objects marked during a full GC against the previous bitmap.
1086   // But we need to clear it before calling check_bitmaps below since
1087   // the full GC has compacted objects and updated TAMS but not updated
1088   // the prev bitmap.
1089   if (G1VerifyBitmaps) {
1090     GCTraceTime(Debug, gc)("Clear Prev Bitmap for Verification");
1091     _cm->clear_prev_bitmap(workers());
1092   }
1093   // This call implicitly verifies that the next bitmap is clear after Full GC.
1094   _verifier->check_bitmaps("Full GC End");
1095 
1096   // At this point there should be no regions in the
1097   // entire heap tagged as young.
1098   assert(check_young_list_empty(), "young list should be empty at this point");
1099 
1100   // Note: since we've just done a full GC, concurrent
1101   // marking is no longer active. Therefore we need not
1102   // re-enable reference discovery for the CM ref processor.
1103   // That will be done at the start of the next marking cycle.
1104   // We also know that the STW processor should no longer
1105   // discover any new references.
1106   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1107   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1108   _ref_processor_stw->verify_no_references_recorded();
1109   _ref_processor_cm->verify_no_references_recorded();
1110 }
1111 
1112 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1113   // Post collection logging.
1114   // We should do this after we potentially resize the heap so
1115   // that all the COMMIT / UNCOMMIT events are generated before
1116   // the compaction events.
1117   print_hrm_post_compaction();
1118   heap_transition->print();
1119   print_heap_after_gc();
1120   print_heap_regions();
1121 #ifdef TRACESPINNING
1122   ParallelTaskTerminator::print_termination_counts();
1123 #endif
1124 }
1125 
1126 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1127                                          bool clear_all_soft_refs) {
1128   assert_at_safepoint_on_vm_thread();
1129 
1130   if (GCLocker::check_active_before_gc()) {
1131     // Full GC was not completed.
1132     return false;
1133   }
1134 
1135   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1136       soft_ref_policy()->should_clear_all_soft_refs();
1137 
1138   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1139   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1140 
1141   collector.prepare_collection();
1142   collector.collect();
1143   collector.complete_collection();
1144 
1145   // Full collection was successfully completed.
1146   return true;
1147 }
1148 
1149 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1150   // Currently, there is no facility in the do_full_collection(bool) API to notify
1151   // the caller that the collection did not succeed (e.g., because it was locked
1152   // out by the GC locker). So, right now, we'll ignore the return value.
1153   bool dummy = do_full_collection(true,                /* explicit_gc */
1154                                   clear_all_soft_refs);
1155 }
1156 
1157 void G1CollectedHeap::resize_heap_if_necessary() {
1158   // Capacity, free and used after the GC counted as full regions to
1159   // include the waste in the following calculations.
1160   const size_t capacity_after_gc = capacity();
1161   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1162 
1163   // This is enforced in arguments.cpp.
1164   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1165          "otherwise the code below doesn't make sense");
1166 
1167   // We don't have floating point command-line arguments
1168   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1169   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1170   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1171   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1172 
1173   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1174   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1175 
1176   // We have to be careful here as these two calculations can overflow
1177   // 32-bit size_t's.
1178   double used_after_gc_d = (double) used_after_gc;
1179   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1180   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1181 
1182   // Let's make sure that they are both under the max heap size, which
1183   // by default will make them fit into a size_t.
1184   double desired_capacity_upper_bound = (double) max_heap_size;
1185   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1186                                     desired_capacity_upper_bound);
1187   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1188                                     desired_capacity_upper_bound);
1189 
1190   // We can now safely turn them into size_t's.
1191   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1192   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1193 
1194   // This assert only makes sense here, before we adjust them
1195   // with respect to the min and max heap size.
1196   assert(minimum_desired_capacity <= maximum_desired_capacity,
1197          "minimum_desired_capacity = " SIZE_FORMAT ", "
1198          "maximum_desired_capacity = " SIZE_FORMAT,
1199          minimum_desired_capacity, maximum_desired_capacity);
1200 
1201   // Should not be greater than the heap max size. No need to adjust
1202   // it with respect to the heap min size as it's a lower bound (i.e.,
1203   // we'll try to make the capacity larger than it, not smaller).
1204   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1205   // Should not be less than the heap min size. No need to adjust it
1206   // with respect to the heap max size as it's an upper bound (i.e.,
1207   // we'll try to make the capacity smaller than it, not greater).
1208   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1209 
1210   if (capacity_after_gc < minimum_desired_capacity) {
1211     // Don't expand unless it's significant
1212     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1213 
1214     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1215                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1216                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1217                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1218 
1219     expand(expand_bytes, _workers);
1220 
1221     // No expansion, now see if we want to shrink
1222   } else if (capacity_after_gc > maximum_desired_capacity) {
1223     // Capacity too large, compute shrinking size
1224     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1225 
1226     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1227                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1228                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1229                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1230 
1231     shrink(shrink_bytes);
1232   }
1233 }
1234 
1235 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1236                                                             bool do_gc,
1237                                                             bool clear_all_soft_refs,
1238                                                             bool expect_null_mutator_alloc_region,
1239                                                             bool* gc_succeeded) {
1240   *gc_succeeded = true;
1241   // Let's attempt the allocation first.
1242   HeapWord* result =
1243     attempt_allocation_at_safepoint(word_size,
1244                                     expect_null_mutator_alloc_region);
1245   if (result != NULL) {
1246     return result;
1247   }
1248 
1249   // In a G1 heap, we're supposed to keep allocation from failing by
1250   // incremental pauses.  Therefore, at least for now, we'll favor
1251   // expansion over collection.  (This might change in the future if we can
1252   // do something smarter than full collection to satisfy a failed alloc.)
1253   result = expand_and_allocate(word_size);
1254   if (result != NULL) {
1255     return result;
1256   }
1257 
1258   if (do_gc) {
1259     // Expansion didn't work, we'll try to do a Full GC.
1260     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1261                                        clear_all_soft_refs);
1262   }
1263 
1264   return NULL;
1265 }
1266 
1267 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1268                                                      bool* succeeded) {
1269   assert_at_safepoint_on_vm_thread();
1270 
1271   // Attempts to allocate followed by Full GC.
1272   HeapWord* result =
1273     satisfy_failed_allocation_helper(word_size,
1274                                      true,  /* do_gc */
1275                                      false, /* clear_all_soft_refs */
1276                                      false, /* expect_null_mutator_alloc_region */
1277                                      succeeded);
1278 
1279   if (result != NULL || !*succeeded) {
1280     return result;
1281   }
1282 
1283   // Attempts to allocate followed by Full GC that will collect all soft references.
1284   result = satisfy_failed_allocation_helper(word_size,
1285                                             true, /* do_gc */
1286                                             true, /* clear_all_soft_refs */
1287                                             true, /* expect_null_mutator_alloc_region */
1288                                             succeeded);
1289 
1290   if (result != NULL || !*succeeded) {
1291     return result;
1292   }
1293 
1294   // Attempts to allocate, no GC
1295   result = satisfy_failed_allocation_helper(word_size,
1296                                             false, /* do_gc */
1297                                             false, /* clear_all_soft_refs */
1298                                             true,  /* expect_null_mutator_alloc_region */
1299                                             succeeded);
1300 
1301   if (result != NULL) {
1302     return result;
1303   }
1304 
1305   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1306          "Flag should have been handled and cleared prior to this point");
1307 
1308   // What else?  We might try synchronous finalization later.  If the total
1309   // space available is large enough for the allocation, then a more
1310   // complete compaction phase than we've tried so far might be
1311   // appropriate.
1312   return NULL;
1313 }
1314 
1315 // Attempting to expand the heap sufficiently
1316 // to support an allocation of the given "word_size".  If
1317 // successful, perform the allocation and return the address of the
1318 // allocated block, or else "NULL".
1319 
1320 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1321   assert_at_safepoint_on_vm_thread();
1322 
1323   _verifier->verify_region_sets_optional();
1324 
1325   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1326   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1327                             word_size * HeapWordSize);
1328 
1329 
1330   if (expand(expand_bytes, _workers)) {
1331     _hrm->verify_optional();
1332     _verifier->verify_region_sets_optional();
1333     return attempt_allocation_at_safepoint(word_size,
1334                                            false /* expect_null_mutator_alloc_region */);
1335   }
1336   return NULL;
1337 }
1338 
1339 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1340   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1341   aligned_expand_bytes = align_up(aligned_expand_bytes,
1342                                        HeapRegion::GrainBytes);
1343 
1344   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1345                             expand_bytes, aligned_expand_bytes);
1346 
1347   if (is_maximal_no_gc()) {
1348     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1349     return false;
1350   }
1351 
1352   double expand_heap_start_time_sec = os::elapsedTime();
1353   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1354   assert(regions_to_expand > 0, "Must expand by at least one region");
1355 
1356   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1357   if (expand_time_ms != NULL) {
1358     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1359   }
1360 
1361   if (expanded_by > 0) {
1362     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1363     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1364     g1_policy()->record_new_heap_size(num_regions());
1365   } else {
1366     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1367 
1368     // The expansion of the virtual storage space was unsuccessful.
1369     // Let's see if it was because we ran out of swap.
1370     if (G1ExitOnExpansionFailure &&
1371         _hrm->available() >= regions_to_expand) {
1372       // We had head room...
1373       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1374     }
1375   }
1376   return regions_to_expand > 0;
1377 }
1378 
1379 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1380   size_t aligned_shrink_bytes =
1381     ReservedSpace::page_align_size_down(shrink_bytes);
1382   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1383                                          HeapRegion::GrainBytes);
1384   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1385 
1386   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1387   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1388 
1389 
1390   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1391                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1392   if (num_regions_removed > 0) {
1393     g1_policy()->record_new_heap_size(num_regions());
1394   } else {
1395     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1396   }
1397 }
1398 
1399 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1400   _verifier->verify_region_sets_optional();
1401 
1402   // We should only reach here at the end of a Full GC or during Remark which
1403   // means we should not not be holding to any GC alloc regions. The method
1404   // below will make sure of that and do any remaining clean up.
1405   _allocator->abandon_gc_alloc_regions();
1406 
1407   // Instead of tearing down / rebuilding the free lists here, we
1408   // could instead use the remove_all_pending() method on free_list to
1409   // remove only the ones that we need to remove.
1410   tear_down_region_sets(true /* free_list_only */);
1411   shrink_helper(shrink_bytes);
1412   rebuild_region_sets(true /* free_list_only */);
1413 
1414   _hrm->verify_optional();
1415   _verifier->verify_region_sets_optional();
1416 }
1417 
1418 class OldRegionSetChecker : public HeapRegionSetChecker {
1419 public:
1420   void check_mt_safety() {
1421     // Master Old Set MT safety protocol:
1422     // (a) If we're at a safepoint, operations on the master old set
1423     // should be invoked:
1424     // - by the VM thread (which will serialize them), or
1425     // - by the GC workers while holding the FreeList_lock, if we're
1426     //   at a safepoint for an evacuation pause (this lock is taken
1427     //   anyway when an GC alloc region is retired so that a new one
1428     //   is allocated from the free list), or
1429     // - by the GC workers while holding the OldSets_lock, if we're at a
1430     //   safepoint for a cleanup pause.
1431     // (b) If we're not at a safepoint, operations on the master old set
1432     // should be invoked while holding the Heap_lock.
1433 
1434     if (SafepointSynchronize::is_at_safepoint()) {
1435       guarantee(Thread::current()->is_VM_thread() ||
1436                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1437                 "master old set MT safety protocol at a safepoint");
1438     } else {
1439       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1440     }
1441   }
1442   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1443   const char* get_description() { return "Old Regions"; }
1444 };
1445 
1446 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1447 public:
1448   void check_mt_safety() {
1449     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1450               "May only change archive regions during initialization or safepoint.");
1451   }
1452   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1453   const char* get_description() { return "Archive Regions"; }
1454 };
1455 
1456 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1457 public:
1458   void check_mt_safety() {
1459     // Humongous Set MT safety protocol:
1460     // (a) If we're at a safepoint, operations on the master humongous
1461     // set should be invoked by either the VM thread (which will
1462     // serialize them) or by the GC workers while holding the
1463     // OldSets_lock.
1464     // (b) If we're not at a safepoint, operations on the master
1465     // humongous set should be invoked while holding the Heap_lock.
1466 
1467     if (SafepointSynchronize::is_at_safepoint()) {
1468       guarantee(Thread::current()->is_VM_thread() ||
1469                 OldSets_lock->owned_by_self(),
1470                 "master humongous set MT safety protocol at a safepoint");
1471     } else {
1472       guarantee(Heap_lock->owned_by_self(),
1473                 "master humongous set MT safety protocol outside a safepoint");
1474     }
1475   }
1476   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1477   const char* get_description() { return "Humongous Regions"; }
1478 };
1479 
1480 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1481   CollectedHeap(),
1482   _young_gen_sampling_thread(NULL),
1483   _workers(NULL),
1484   _collector_policy(collector_policy),
1485   _card_table(NULL),
1486   _soft_ref_policy(),
1487   _old_set("Old Region Set", new OldRegionSetChecker()),
1488   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1489   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1490   _bot(NULL),
1491   _listener(),
1492   _hrm(NULL),
1493   _is_hetero_heap(AllocateOldGenAt != NULL),
1494   _allocator(NULL),
1495   _verifier(NULL),
1496   _summary_bytes_used(0),
1497   _archive_allocator(NULL),
1498   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1499   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1500   _expand_heap_after_alloc_failure(true),
1501   _g1mm(NULL),
1502   _humongous_reclaim_candidates(),
1503   _has_humongous_reclaim_candidates(false),
1504   _hr_printer(),
1505   _collector_state(),
1506   _old_marking_cycles_started(0),
1507   _old_marking_cycles_completed(0),
1508   _eden(),
1509   _survivor(),
1510   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1511   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1512   _g1_policy(new G1Policy(_gc_timer_stw)),
1513   _heap_sizing_policy(NULL),
1514   _collection_set(this, _g1_policy),
1515   _hot_card_cache(NULL),
1516   _g1_rem_set(NULL),
1517   _dirty_card_queue_set(false),
1518   _cm(NULL),
1519   _cm_thread(NULL),
1520   _cr(NULL),
1521   _task_queues(NULL),
1522   _evacuation_failed(false),
1523   _evacuation_failed_info_array(NULL),
1524   _preserved_marks_set(true /* in_c_heap */),
1525 #ifndef PRODUCT
1526   _evacuation_failure_alot_for_current_gc(false),
1527   _evacuation_failure_alot_gc_number(0),
1528   _evacuation_failure_alot_count(0),
1529 #endif
1530   _ref_processor_stw(NULL),
1531   _is_alive_closure_stw(this),
1532   _is_subject_to_discovery_stw(this),
1533   _ref_processor_cm(NULL),
1534   _is_alive_closure_cm(this),
1535   _is_subject_to_discovery_cm(this),
1536   _in_cset_fast_test() {
1537 
1538   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1539                           true /* are_GC_task_threads */,
1540                           false /* are_ConcurrentGC_threads */);
1541   _workers->initialize_workers();
1542   _verifier = new G1HeapVerifier(this);
1543 
1544   _allocator = new G1Allocator(this);
1545 
1546   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1547 
1548   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1549 
1550   // Override the default _filler_array_max_size so that no humongous filler
1551   // objects are created.
1552   _filler_array_max_size = _humongous_object_threshold_in_words;
1553 
1554   uint n_queues = ParallelGCThreads;
1555   _task_queues = new RefToScanQueueSet(n_queues);
1556 
1557   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1558 
1559   for (uint i = 0; i < n_queues; i++) {
1560     RefToScanQueue* q = new RefToScanQueue();
1561     q->initialize();
1562     _task_queues->register_queue(i, q);
1563     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1564   }
1565 
1566   // Initialize the G1EvacuationFailureALot counters and flags.
1567   NOT_PRODUCT(reset_evacuation_should_fail();)
1568 
1569   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1570 }
1571 
1572 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1573                                                                  size_t size,
1574                                                                  size_t translation_factor) {
1575   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1576   // Allocate a new reserved space, preferring to use large pages.
1577   ReservedSpace rs(size, preferred_page_size);
1578   G1RegionToSpaceMapper* result  =
1579     G1RegionToSpaceMapper::create_mapper(rs,
1580                                          size,
1581                                          rs.alignment(),
1582                                          HeapRegion::GrainBytes,
1583                                          translation_factor,
1584                                          mtGC);
1585 
1586   os::trace_page_sizes_for_requested_size(description,
1587                                           size,
1588                                           preferred_page_size,
1589                                           rs.alignment(),
1590                                           rs.base(),
1591                                           rs.size());
1592 
1593   return result;
1594 }
1595 
1596 jint G1CollectedHeap::initialize_concurrent_refinement() {
1597   jint ecode = JNI_OK;
1598   _cr = G1ConcurrentRefine::create(&ecode);
1599   return ecode;
1600 }
1601 
1602 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1603   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1604   if (_young_gen_sampling_thread->osthread() == NULL) {
1605     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1606     return JNI_ENOMEM;
1607   }
1608   return JNI_OK;
1609 }
1610 
1611 jint G1CollectedHeap::initialize() {
1612   os::enable_vtime();
1613 
1614   // Necessary to satisfy locking discipline assertions.
1615 
1616   MutexLocker x(Heap_lock);
1617 
1618   // While there are no constraints in the GC code that HeapWordSize
1619   // be any particular value, there are multiple other areas in the
1620   // system which believe this to be true (e.g. oop->object_size in some
1621   // cases incorrectly returns the size in wordSize units rather than
1622   // HeapWordSize).
1623   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1624 
1625   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1626   size_t max_byte_size = g1_collector_policy()->heap_reservation_size_bytes();
1627   size_t heap_alignment = collector_policy()->heap_alignment();
1628 
1629   // Ensure that the sizes are properly aligned.
1630   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1631   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1632   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1633 
1634   // Reserve the maximum.
1635 
1636   // When compressed oops are enabled, the preferred heap base
1637   // is calculated by subtracting the requested size from the
1638   // 32Gb boundary and using the result as the base address for
1639   // heap reservation. If the requested size is not aligned to
1640   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1641   // into the ReservedHeapSpace constructor) then the actual
1642   // base of the reserved heap may end up differing from the
1643   // address that was requested (i.e. the preferred heap base).
1644   // If this happens then we could end up using a non-optimal
1645   // compressed oops mode.
1646 
1647   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1648                                                  heap_alignment);
1649 
1650   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1651 
1652   // Create the barrier set for the entire reserved region.
1653   G1CardTable* ct = new G1CardTable(reserved_region());
1654   ct->initialize();
1655   G1BarrierSet* bs = new G1BarrierSet(ct);
1656   bs->initialize();
1657   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1658   BarrierSet::set_barrier_set(bs);
1659   _card_table = ct;
1660 
1661   G1BarrierSet::satb_mark_queue_set().initialize(this,
1662                                                  SATB_Q_CBL_mon,
1663                                                  &bs->satb_mark_queue_buffer_allocator(),
1664                                                  G1SATBProcessCompletedThreshold,
1665                                                  G1SATBBufferEnqueueingThresholdPercent,
1666                                                  Shared_SATB_Q_lock);
1667 
1668   // process_completed_threshold and max_completed_queue are updated
1669   // later, based on the concurrent refinement object.
1670   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1671                                                   &bs->dirty_card_queue_buffer_allocator(),
1672                                                   -1, // temp. never trigger
1673                                                   -1, // temp. no limit
1674                                                   Shared_DirtyCardQ_lock,
1675                                                   true); // init_free_ids
1676 
1677   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1678                                     &bs->dirty_card_queue_buffer_allocator(),
1679                                     -1, // never trigger processing
1680                                     -1, // no limit on length
1681                                     Shared_DirtyCardQ_lock);
1682 
1683   // Create the hot card cache.
1684   _hot_card_cache = new G1HotCardCache(this);
1685 
1686   // Carve out the G1 part of the heap.
1687   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1688   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1689   G1RegionToSpaceMapper* heap_storage =
1690     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1691                                          g1_rs.size(),
1692                                          page_size,
1693                                          HeapRegion::GrainBytes,
1694                                          1,
1695                                          mtJavaHeap);
1696   if(heap_storage == NULL) {
1697     vm_shutdown_during_initialization("Could not initialize G1 heap");
1698     return JNI_ERR;
1699   }
1700 
1701   os::trace_page_sizes("Heap",
1702                        collector_policy()->min_heap_byte_size(),
1703                        max_byte_size,
1704                        page_size,
1705                        heap_rs.base(),
1706                        heap_rs.size());
1707   heap_storage->set_mapping_changed_listener(&_listener);
1708 
1709   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1710   G1RegionToSpaceMapper* bot_storage =
1711     create_aux_memory_mapper("Block Offset Table",
1712                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1713                              G1BlockOffsetTable::heap_map_factor());
1714 
1715   G1RegionToSpaceMapper* cardtable_storage =
1716     create_aux_memory_mapper("Card Table",
1717                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1718                              G1CardTable::heap_map_factor());
1719 
1720   G1RegionToSpaceMapper* card_counts_storage =
1721     create_aux_memory_mapper("Card Counts Table",
1722                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1723                              G1CardCounts::heap_map_factor());
1724 
1725   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1726   G1RegionToSpaceMapper* prev_bitmap_storage =
1727     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1728   G1RegionToSpaceMapper* next_bitmap_storage =
1729     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1730 
1731   _hrm = HeapRegionManager::create_manager(this, collector_policy());
1732 
1733   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1734   _card_table->initialize(cardtable_storage);
1735   // Do later initialization work for concurrent refinement.
1736   _hot_card_cache->initialize(card_counts_storage);
1737 
1738   // 6843694 - ensure that the maximum region index can fit
1739   // in the remembered set structures.
1740   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1741   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1742 
1743   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1744   // start within the first card.
1745   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1746   // Also create a G1 rem set.
1747   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1748   _g1_rem_set->initialize(max_reserved_capacity(), max_regions());
1749 
1750   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1751   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1752   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1753             "too many cards per region");
1754 
1755   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1756 
1757   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1758 
1759   {
1760     HeapWord* start = _hrm->reserved().start();
1761     HeapWord* end = _hrm->reserved().end();
1762     size_t granularity = HeapRegion::GrainBytes;
1763 
1764     _in_cset_fast_test.initialize(start, end, granularity);
1765     _humongous_reclaim_candidates.initialize(start, end, granularity);
1766   }
1767 
1768   // Create the G1ConcurrentMark data structure and thread.
1769   // (Must do this late, so that "max_regions" is defined.)
1770   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1771   if (_cm == NULL || !_cm->completed_initialization()) {
1772     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1773     return JNI_ENOMEM;
1774   }
1775   _cm_thread = _cm->cm_thread();
1776 
1777   // Now expand into the initial heap size.
1778   if (!expand(init_byte_size, _workers)) {
1779     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1780     return JNI_ENOMEM;
1781   }
1782 
1783   // Perform any initialization actions delegated to the policy.
1784   g1_policy()->init(this, &_collection_set);
1785   // Now we know the target length of young list. So adjust the heap to provision that many regions on dram.
1786   if (is_hetero_heap()) {
1787     static_cast<HeterogeneousHeapRegionManager*>(hrm())->adjust_dram_regions((uint)g1_policy()->young_list_target_length(), workers());
1788   }
1789 
1790   jint ecode = initialize_concurrent_refinement();
1791   if (ecode != JNI_OK) {
1792     return ecode;
1793   }
1794 
1795   ecode = initialize_young_gen_sampling_thread();
1796   if (ecode != JNI_OK) {
1797     return ecode;
1798   }
1799 
1800   {
1801     DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1802     dcqs.set_process_completed_threshold((int)concurrent_refine()->yellow_zone());
1803     dcqs.set_max_completed_queue((int)concurrent_refine()->red_zone());
1804   }
1805 
1806   // Here we allocate the dummy HeapRegion that is required by the
1807   // G1AllocRegion class.
1808   HeapRegion* dummy_region = _hrm->get_dummy_region();
1809 
1810   // We'll re-use the same region whether the alloc region will
1811   // require BOT updates or not and, if it doesn't, then a non-young
1812   // region will complain that it cannot support allocations without
1813   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1814   dummy_region->set_eden();
1815   // Make sure it's full.
1816   dummy_region->set_top(dummy_region->end());
1817   G1AllocRegion::setup(this, dummy_region);
1818 
1819   _allocator->init_mutator_alloc_region();
1820 
1821   // Do create of the monitoring and management support so that
1822   // values in the heap have been properly initialized.
1823   _g1mm = new G1MonitoringSupport(this);
1824 
1825   G1StringDedup::initialize();
1826 
1827   _preserved_marks_set.init(ParallelGCThreads);
1828 
1829   _collection_set.initialize(max_regions());
1830 
1831   return JNI_OK;
1832 }
1833 
1834 void G1CollectedHeap::stop() {
1835   // Stop all concurrent threads. We do this to make sure these threads
1836   // do not continue to execute and access resources (e.g. logging)
1837   // that are destroyed during shutdown.
1838   _cr->stop();
1839   _young_gen_sampling_thread->stop();
1840   _cm_thread->stop();
1841   if (G1StringDedup::is_enabled()) {
1842     G1StringDedup::stop();
1843   }
1844 }
1845 
1846 void G1CollectedHeap::safepoint_synchronize_begin() {
1847   SuspendibleThreadSet::synchronize();
1848 }
1849 
1850 void G1CollectedHeap::safepoint_synchronize_end() {
1851   SuspendibleThreadSet::desynchronize();
1852 }
1853 
1854 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1855   return HeapRegion::max_region_size();
1856 }
1857 
1858 void G1CollectedHeap::post_initialize() {
1859   CollectedHeap::post_initialize();
1860   ref_processing_init();
1861 }
1862 
1863 void G1CollectedHeap::ref_processing_init() {
1864   // Reference processing in G1 currently works as follows:
1865   //
1866   // * There are two reference processor instances. One is
1867   //   used to record and process discovered references
1868   //   during concurrent marking; the other is used to
1869   //   record and process references during STW pauses
1870   //   (both full and incremental).
1871   // * Both ref processors need to 'span' the entire heap as
1872   //   the regions in the collection set may be dotted around.
1873   //
1874   // * For the concurrent marking ref processor:
1875   //   * Reference discovery is enabled at initial marking.
1876   //   * Reference discovery is disabled and the discovered
1877   //     references processed etc during remarking.
1878   //   * Reference discovery is MT (see below).
1879   //   * Reference discovery requires a barrier (see below).
1880   //   * Reference processing may or may not be MT
1881   //     (depending on the value of ParallelRefProcEnabled
1882   //     and ParallelGCThreads).
1883   //   * A full GC disables reference discovery by the CM
1884   //     ref processor and abandons any entries on it's
1885   //     discovered lists.
1886   //
1887   // * For the STW processor:
1888   //   * Non MT discovery is enabled at the start of a full GC.
1889   //   * Processing and enqueueing during a full GC is non-MT.
1890   //   * During a full GC, references are processed after marking.
1891   //
1892   //   * Discovery (may or may not be MT) is enabled at the start
1893   //     of an incremental evacuation pause.
1894   //   * References are processed near the end of a STW evacuation pause.
1895   //   * For both types of GC:
1896   //     * Discovery is atomic - i.e. not concurrent.
1897   //     * Reference discovery will not need a barrier.
1898 
1899   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1900 
1901   // Concurrent Mark ref processor
1902   _ref_processor_cm =
1903     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1904                            mt_processing,                                  // mt processing
1905                            ParallelGCThreads,                              // degree of mt processing
1906                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1907                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1908                            false,                                          // Reference discovery is not atomic
1909                            &_is_alive_closure_cm,                          // is alive closure
1910                            true);                                          // allow changes to number of processing threads
1911 
1912   // STW ref processor
1913   _ref_processor_stw =
1914     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1915                            mt_processing,                        // mt processing
1916                            ParallelGCThreads,                    // degree of mt processing
1917                            (ParallelGCThreads > 1),              // mt discovery
1918                            ParallelGCThreads,                    // degree of mt discovery
1919                            true,                                 // Reference discovery is atomic
1920                            &_is_alive_closure_stw,               // is alive closure
1921                            true);                                // allow changes to number of processing threads
1922 }
1923 
1924 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1925   return _collector_policy;
1926 }
1927 
1928 G1CollectorPolicy* G1CollectedHeap::g1_collector_policy() const {
1929   return _collector_policy;
1930 }
1931 
1932 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1933   return &_soft_ref_policy;
1934 }
1935 
1936 size_t G1CollectedHeap::capacity() const {
1937   return _hrm->length() * HeapRegion::GrainBytes;
1938 }
1939 
1940 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1941   return _hrm->total_free_bytes();
1942 }
1943 
1944 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1945   _hot_card_cache->drain(cl, worker_i);
1946 }
1947 
1948 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1949   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1950   size_t n_completed_buffers = 0;
1951   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1952     n_completed_buffers++;
1953   }
1954   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1955   dcqs.clear_n_completed_buffers();
1956   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1957 }
1958 
1959 // Computes the sum of the storage used by the various regions.
1960 size_t G1CollectedHeap::used() const {
1961   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1962   if (_archive_allocator != NULL) {
1963     result += _archive_allocator->used();
1964   }
1965   return result;
1966 }
1967 
1968 size_t G1CollectedHeap::used_unlocked() const {
1969   return _summary_bytes_used;
1970 }
1971 
1972 class SumUsedClosure: public HeapRegionClosure {
1973   size_t _used;
1974 public:
1975   SumUsedClosure() : _used(0) {}
1976   bool do_heap_region(HeapRegion* r) {
1977     _used += r->used();
1978     return false;
1979   }
1980   size_t result() { return _used; }
1981 };
1982 
1983 size_t G1CollectedHeap::recalculate_used() const {
1984   SumUsedClosure blk;
1985   heap_region_iterate(&blk);
1986   return blk.result();
1987 }
1988 
1989 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1990   switch (cause) {
1991     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1992     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1993     case GCCause::_wb_conc_mark:                        return true;
1994     default :                                           return false;
1995   }
1996 }
1997 
1998 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1999   switch (cause) {
2000     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2001     case GCCause::_g1_humongous_allocation: return true;
2002     default:                                return is_user_requested_concurrent_full_gc(cause);
2003   }
2004 }
2005 
2006 #ifndef PRODUCT
2007 void G1CollectedHeap::allocate_dummy_regions() {
2008   // Let's fill up most of the region
2009   size_t word_size = HeapRegion::GrainWords - 1024;
2010   // And as a result the region we'll allocate will be humongous.
2011   guarantee(is_humongous(word_size), "sanity");
2012 
2013   // _filler_array_max_size is set to humongous object threshold
2014   // but temporarily change it to use CollectedHeap::fill_with_object().
2015   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2016 
2017   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2018     // Let's use the existing mechanism for the allocation
2019     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2020     if (dummy_obj != NULL) {
2021       MemRegion mr(dummy_obj, word_size);
2022       CollectedHeap::fill_with_object(mr);
2023     } else {
2024       // If we can't allocate once, we probably cannot allocate
2025       // again. Let's get out of the loop.
2026       break;
2027     }
2028   }
2029 }
2030 #endif // !PRODUCT
2031 
2032 void G1CollectedHeap::increment_old_marking_cycles_started() {
2033   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2034          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2035          "Wrong marking cycle count (started: %d, completed: %d)",
2036          _old_marking_cycles_started, _old_marking_cycles_completed);
2037 
2038   _old_marking_cycles_started++;
2039 }
2040 
2041 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2042   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2043 
2044   // We assume that if concurrent == true, then the caller is a
2045   // concurrent thread that was joined the Suspendible Thread
2046   // Set. If there's ever a cheap way to check this, we should add an
2047   // assert here.
2048 
2049   // Given that this method is called at the end of a Full GC or of a
2050   // concurrent cycle, and those can be nested (i.e., a Full GC can
2051   // interrupt a concurrent cycle), the number of full collections
2052   // completed should be either one (in the case where there was no
2053   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2054   // behind the number of full collections started.
2055 
2056   // This is the case for the inner caller, i.e. a Full GC.
2057   assert(concurrent ||
2058          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2059          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2060          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2061          "is inconsistent with _old_marking_cycles_completed = %u",
2062          _old_marking_cycles_started, _old_marking_cycles_completed);
2063 
2064   // This is the case for the outer caller, i.e. the concurrent cycle.
2065   assert(!concurrent ||
2066          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2067          "for outer caller (concurrent cycle): "
2068          "_old_marking_cycles_started = %u "
2069          "is inconsistent with _old_marking_cycles_completed = %u",
2070          _old_marking_cycles_started, _old_marking_cycles_completed);
2071 
2072   _old_marking_cycles_completed += 1;
2073 
2074   // We need to clear the "in_progress" flag in the CM thread before
2075   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2076   // is set) so that if a waiter requests another System.gc() it doesn't
2077   // incorrectly see that a marking cycle is still in progress.
2078   if (concurrent) {
2079     _cm_thread->set_idle();
2080   }
2081 
2082   // This notify_all() will ensure that a thread that called
2083   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2084   // and it's waiting for a full GC to finish will be woken up. It is
2085   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2086   FullGCCount_lock->notify_all();
2087 }
2088 
2089 void G1CollectedHeap::collect(GCCause::Cause cause) {
2090   assert_heap_not_locked();
2091 
2092   uint gc_count_before;
2093   uint old_marking_count_before;
2094   uint full_gc_count_before;
2095   bool retry_gc;
2096 
2097   do {
2098     retry_gc = false;
2099 
2100     {
2101       MutexLocker ml(Heap_lock);
2102 
2103       // Read the GC count while holding the Heap_lock
2104       gc_count_before = total_collections();
2105       full_gc_count_before = total_full_collections();
2106       old_marking_count_before = _old_marking_cycles_started;
2107     }
2108 
2109     if (should_do_concurrent_full_gc(cause)) {
2110       // Schedule an initial-mark evacuation pause that will start a
2111       // concurrent cycle. We're setting word_size to 0 which means that
2112       // we are not requesting a post-GC allocation.
2113       VM_G1CollectForAllocation op(0,     /* word_size */
2114                                    gc_count_before,
2115                                    cause,
2116                                    true,  /* should_initiate_conc_mark */
2117                                    g1_policy()->max_pause_time_ms());
2118       VMThread::execute(&op);
2119       if (!op.pause_succeeded()) {
2120         if (old_marking_count_before == _old_marking_cycles_started) {
2121           retry_gc = op.should_retry_gc();
2122         } else {
2123           // A Full GC happened while we were trying to schedule the
2124           // initial-mark GC. No point in starting a new cycle given
2125           // that the whole heap was collected anyway.
2126         }
2127 
2128         if (retry_gc) {
2129           if (GCLocker::is_active_and_needs_gc()) {
2130             GCLocker::stall_until_clear();
2131           }
2132         }
2133       }
2134     } else {
2135       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2136           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2137 
2138         // Schedule a standard evacuation pause. We're setting word_size
2139         // to 0 which means that we are not requesting a post-GC allocation.
2140         VM_G1CollectForAllocation op(0,     /* word_size */
2141                                      gc_count_before,
2142                                      cause,
2143                                      false, /* should_initiate_conc_mark */
2144                                      g1_policy()->max_pause_time_ms());
2145         VMThread::execute(&op);
2146       } else {
2147         // Schedule a Full GC.
2148         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2149         VMThread::execute(&op);
2150       }
2151     }
2152   } while (retry_gc);
2153 }
2154 
2155 bool G1CollectedHeap::is_in(const void* p) const {
2156   if (_hrm->reserved().contains(p)) {
2157     // Given that we know that p is in the reserved space,
2158     // heap_region_containing() should successfully
2159     // return the containing region.
2160     HeapRegion* hr = heap_region_containing(p);
2161     return hr->is_in(p);
2162   } else {
2163     return false;
2164   }
2165 }
2166 
2167 #ifdef ASSERT
2168 bool G1CollectedHeap::is_in_exact(const void* p) const {
2169   bool contains = reserved_region().contains(p);
2170   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2171   if (contains && available) {
2172     return true;
2173   } else {
2174     return false;
2175   }
2176 }
2177 #endif
2178 
2179 // Iteration functions.
2180 
2181 // Iterates an ObjectClosure over all objects within a HeapRegion.
2182 
2183 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2184   ObjectClosure* _cl;
2185 public:
2186   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2187   bool do_heap_region(HeapRegion* r) {
2188     if (!r->is_continues_humongous()) {
2189       r->object_iterate(_cl);
2190     }
2191     return false;
2192   }
2193 };
2194 
2195 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2196   IterateObjectClosureRegionClosure blk(cl);
2197   heap_region_iterate(&blk);
2198 }
2199 
2200 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2201   _hrm->iterate(cl);
2202 }
2203 
2204 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2205                                                                  HeapRegionClaimer *hrclaimer,
2206                                                                  uint worker_id) const {
2207   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2208 }
2209 
2210 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2211                                                          HeapRegionClaimer *hrclaimer) const {
2212   _hrm->par_iterate(cl, hrclaimer, 0);
2213 }
2214 
2215 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2216   _collection_set.iterate(cl);
2217 }
2218 
2219 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2220   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2221 }
2222 
2223 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2224   HeapRegion* hr = heap_region_containing(addr);
2225   return hr->block_start(addr);
2226 }
2227 
2228 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2229   HeapRegion* hr = heap_region_containing(addr);
2230   return hr->block_size(addr);
2231 }
2232 
2233 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2234   HeapRegion* hr = heap_region_containing(addr);
2235   return hr->block_is_obj(addr);
2236 }
2237 
2238 bool G1CollectedHeap::supports_tlab_allocation() const {
2239   return true;
2240 }
2241 
2242 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2243   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2244 }
2245 
2246 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2247   return _eden.length() * HeapRegion::GrainBytes;
2248 }
2249 
2250 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2251 // must be equal to the humongous object limit.
2252 size_t G1CollectedHeap::max_tlab_size() const {
2253   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2254 }
2255 
2256 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2257   return _allocator->unsafe_max_tlab_alloc();
2258 }
2259 
2260 size_t G1CollectedHeap::max_capacity() const {
2261   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2262 }
2263 
2264 size_t G1CollectedHeap::max_reserved_capacity() const {
2265   return _hrm->max_length() * HeapRegion::GrainBytes;
2266 }
2267 
2268 jlong G1CollectedHeap::millis_since_last_gc() {
2269   // See the notes in GenCollectedHeap::millis_since_last_gc()
2270   // for more information about the implementation.
2271   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2272     _g1_policy->collection_pause_end_millis();
2273   if (ret_val < 0) {
2274     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2275       ". returning zero instead.", ret_val);
2276     return 0;
2277   }
2278   return ret_val;
2279 }
2280 
2281 void G1CollectedHeap::deduplicate_string(oop str) {
2282   assert(java_lang_String::is_instance(str), "invariant");
2283 
2284   if (G1StringDedup::is_enabled()) {
2285     G1StringDedup::deduplicate(str);
2286   }
2287 }
2288 
2289 void G1CollectedHeap::prepare_for_verify() {
2290   _verifier->prepare_for_verify();
2291 }
2292 
2293 void G1CollectedHeap::verify(VerifyOption vo) {
2294   _verifier->verify(vo);
2295 }
2296 
2297 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2298   return true;
2299 }
2300 
2301 const char* const* G1CollectedHeap::concurrent_phases() const {
2302   return _cm_thread->concurrent_phases();
2303 }
2304 
2305 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2306   return _cm_thread->request_concurrent_phase(phase);
2307 }
2308 
2309 class PrintRegionClosure: public HeapRegionClosure {
2310   outputStream* _st;
2311 public:
2312   PrintRegionClosure(outputStream* st) : _st(st) {}
2313   bool do_heap_region(HeapRegion* r) {
2314     r->print_on(_st);
2315     return false;
2316   }
2317 };
2318 
2319 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2320                                        const HeapRegion* hr,
2321                                        const VerifyOption vo) const {
2322   switch (vo) {
2323   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2324   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2325   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2326   default:                            ShouldNotReachHere();
2327   }
2328   return false; // keep some compilers happy
2329 }
2330 
2331 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2332                                        const VerifyOption vo) const {
2333   switch (vo) {
2334   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2335   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2336   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2337   default:                            ShouldNotReachHere();
2338   }
2339   return false; // keep some compilers happy
2340 }
2341 
2342 void G1CollectedHeap::print_heap_regions() const {
2343   LogTarget(Trace, gc, heap, region) lt;
2344   if (lt.is_enabled()) {
2345     LogStream ls(lt);
2346     print_regions_on(&ls);
2347   }
2348 }
2349 
2350 void G1CollectedHeap::print_on(outputStream* st) const {
2351   st->print(" %-20s", "garbage-first heap");
2352   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2353             capacity()/K, used_unlocked()/K);
2354   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2355             p2i(_hrm->reserved().start()),
2356             p2i(_hrm->reserved().end()));
2357   st->cr();
2358   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2359   uint young_regions = young_regions_count();
2360   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2361             (size_t) young_regions * HeapRegion::GrainBytes / K);
2362   uint survivor_regions = survivor_regions_count();
2363   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2364             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2365   st->cr();
2366   MetaspaceUtils::print_on(st);
2367 }
2368 
2369 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2370   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2371                "HS=humongous(starts), HC=humongous(continues), "
2372                "CS=collection set, F=free, A=archive, "
2373                "TAMS=top-at-mark-start (previous, next)");
2374   PrintRegionClosure blk(st);
2375   heap_region_iterate(&blk);
2376 }
2377 
2378 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2379   print_on(st);
2380 
2381   // Print the per-region information.
2382   print_regions_on(st);
2383 }
2384 
2385 void G1CollectedHeap::print_on_error(outputStream* st) const {
2386   this->CollectedHeap::print_on_error(st);
2387 
2388   if (_cm != NULL) {
2389     st->cr();
2390     _cm->print_on_error(st);
2391   }
2392 }
2393 
2394 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2395   workers()->print_worker_threads_on(st);
2396   _cm_thread->print_on(st);
2397   st->cr();
2398   _cm->print_worker_threads_on(st);
2399   _cr->print_threads_on(st);
2400   _young_gen_sampling_thread->print_on(st);
2401   if (G1StringDedup::is_enabled()) {
2402     G1StringDedup::print_worker_threads_on(st);
2403   }
2404 }
2405 
2406 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2407   workers()->threads_do(tc);
2408   tc->do_thread(_cm_thread);
2409   _cm->threads_do(tc);
2410   _cr->threads_do(tc);
2411   tc->do_thread(_young_gen_sampling_thread);
2412   if (G1StringDedup::is_enabled()) {
2413     G1StringDedup::threads_do(tc);
2414   }
2415 }
2416 
2417 void G1CollectedHeap::print_tracing_info() const {
2418   g1_rem_set()->print_summary_info();
2419   concurrent_mark()->print_summary_info();
2420 }
2421 
2422 #ifndef PRODUCT
2423 // Helpful for debugging RSet issues.
2424 
2425 class PrintRSetsClosure : public HeapRegionClosure {
2426 private:
2427   const char* _msg;
2428   size_t _occupied_sum;
2429 
2430 public:
2431   bool do_heap_region(HeapRegion* r) {
2432     HeapRegionRemSet* hrrs = r->rem_set();
2433     size_t occupied = hrrs->occupied();
2434     _occupied_sum += occupied;
2435 
2436     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2437     if (occupied == 0) {
2438       tty->print_cr("  RSet is empty");
2439     } else {
2440       hrrs->print();
2441     }
2442     tty->print_cr("----------");
2443     return false;
2444   }
2445 
2446   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2447     tty->cr();
2448     tty->print_cr("========================================");
2449     tty->print_cr("%s", msg);
2450     tty->cr();
2451   }
2452 
2453   ~PrintRSetsClosure() {
2454     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2455     tty->print_cr("========================================");
2456     tty->cr();
2457   }
2458 };
2459 
2460 void G1CollectedHeap::print_cset_rsets() {
2461   PrintRSetsClosure cl("Printing CSet RSets");
2462   collection_set_iterate(&cl);
2463 }
2464 
2465 void G1CollectedHeap::print_all_rsets() {
2466   PrintRSetsClosure cl("Printing All RSets");;
2467   heap_region_iterate(&cl);
2468 }
2469 #endif // PRODUCT
2470 
2471 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2472 
2473   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2474   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2475   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2476 
2477   size_t eden_capacity_bytes =
2478     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2479 
2480   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2481   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2482                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2483 }
2484 
2485 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2486   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2487                        stats->unused(), stats->used(), stats->region_end_waste(),
2488                        stats->regions_filled(), stats->direct_allocated(),
2489                        stats->failure_used(), stats->failure_waste());
2490 }
2491 
2492 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2493   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2494   gc_tracer->report_gc_heap_summary(when, heap_summary);
2495 
2496   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2497   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2498 }
2499 
2500 G1CollectedHeap* G1CollectedHeap::heap() {
2501   CollectedHeap* heap = Universe::heap();
2502   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2503   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2504   return (G1CollectedHeap*)heap;
2505 }
2506 
2507 void G1CollectedHeap::gc_prologue(bool full) {
2508   // always_do_update_barrier = false;
2509   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2510 
2511   // This summary needs to be printed before incrementing total collections.
2512   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2513 
2514   // Update common counters.
2515   increment_total_collections(full /* full gc */);
2516   if (full) {
2517     increment_old_marking_cycles_started();
2518   }
2519 
2520   // Fill TLAB's and such
2521   double start = os::elapsedTime();
2522   ensure_parsability(true);
2523   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2524 }
2525 
2526 void G1CollectedHeap::gc_epilogue(bool full) {
2527   // Update common counters.
2528   if (full) {
2529     // Update the number of full collections that have been completed.
2530     increment_old_marking_cycles_completed(false /* concurrent */);
2531     // Now we know the target length of young list. So adjust the heap to provision that many regions on dram.
2532     if (is_hetero_heap()) {
2533       static_cast<HeterogeneousHeapRegionManager*>(hrm())->adjust_dram_regions((uint)g1_policy()->young_list_target_length(), workers());
2534     }
2535   }
2536 
2537   // We are at the end of the GC. Total collections has already been increased.
2538   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2539 
2540   // FIXME: what is this about?
2541   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2542   // is set.
2543 #if COMPILER2_OR_JVMCI
2544   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2545 #endif
2546   // always_do_update_barrier = true;
2547 
2548   double start = os::elapsedTime();
2549   resize_all_tlabs();
2550   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2551 
2552   MemoryService::track_memory_usage();
2553   // We have just completed a GC. Update the soft reference
2554   // policy with the new heap occupancy
2555   Universe::update_heap_info_at_gc();
2556 }
2557 
2558 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2559                                                uint gc_count_before,
2560                                                bool* succeeded,
2561                                                GCCause::Cause gc_cause) {
2562   assert_heap_not_locked_and_not_at_safepoint();
2563   VM_G1CollectForAllocation op(word_size,
2564                                gc_count_before,
2565                                gc_cause,
2566                                false, /* should_initiate_conc_mark */
2567                                g1_policy()->max_pause_time_ms());
2568   VMThread::execute(&op);
2569 
2570   HeapWord* result = op.result();
2571   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2572   assert(result == NULL || ret_succeeded,
2573          "the result should be NULL if the VM did not succeed");
2574   *succeeded = ret_succeeded;
2575 
2576   assert_heap_not_locked();
2577   return result;
2578 }
2579 
2580 void G1CollectedHeap::do_concurrent_mark() {
2581   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2582   if (!_cm_thread->in_progress()) {
2583     _cm_thread->set_started();
2584     CGC_lock->notify();
2585   }
2586 }
2587 
2588 size_t G1CollectedHeap::pending_card_num() {
2589   size_t extra_cards = 0;
2590   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2591     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2592     extra_cards += dcq.size();
2593   }
2594   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2595   size_t buffer_size = dcqs.buffer_size();
2596   size_t buffer_num = dcqs.completed_buffers_num();
2597 
2598   return buffer_size * buffer_num + extra_cards;
2599 }
2600 
2601 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2602   // We don't nominate objects with many remembered set entries, on
2603   // the assumption that such objects are likely still live.
2604   HeapRegionRemSet* rem_set = r->rem_set();
2605 
2606   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2607          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2608          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2609 }
2610 
2611 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2612  private:
2613   size_t _total_humongous;
2614   size_t _candidate_humongous;
2615 
2616   DirtyCardQueue _dcq;
2617 
2618   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2619     assert(region->is_starts_humongous(), "Must start a humongous object");
2620 
2621     oop obj = oop(region->bottom());
2622 
2623     // Dead objects cannot be eager reclaim candidates. Due to class
2624     // unloading it is unsafe to query their classes so we return early.
2625     if (g1h->is_obj_dead(obj, region)) {
2626       return false;
2627     }
2628 
2629     // If we do not have a complete remembered set for the region, then we can
2630     // not be sure that we have all references to it.
2631     if (!region->rem_set()->is_complete()) {
2632       return false;
2633     }
2634     // Candidate selection must satisfy the following constraints
2635     // while concurrent marking is in progress:
2636     //
2637     // * In order to maintain SATB invariants, an object must not be
2638     // reclaimed if it was allocated before the start of marking and
2639     // has not had its references scanned.  Such an object must have
2640     // its references (including type metadata) scanned to ensure no
2641     // live objects are missed by the marking process.  Objects
2642     // allocated after the start of concurrent marking don't need to
2643     // be scanned.
2644     //
2645     // * An object must not be reclaimed if it is on the concurrent
2646     // mark stack.  Objects allocated after the start of concurrent
2647     // marking are never pushed on the mark stack.
2648     //
2649     // Nominating only objects allocated after the start of concurrent
2650     // marking is sufficient to meet both constraints.  This may miss
2651     // some objects that satisfy the constraints, but the marking data
2652     // structures don't support efficiently performing the needed
2653     // additional tests or scrubbing of the mark stack.
2654     //
2655     // However, we presently only nominate is_typeArray() objects.
2656     // A humongous object containing references induces remembered
2657     // set entries on other regions.  In order to reclaim such an
2658     // object, those remembered sets would need to be cleaned up.
2659     //
2660     // We also treat is_typeArray() objects specially, allowing them
2661     // to be reclaimed even if allocated before the start of
2662     // concurrent mark.  For this we rely on mark stack insertion to
2663     // exclude is_typeArray() objects, preventing reclaiming an object
2664     // that is in the mark stack.  We also rely on the metadata for
2665     // such objects to be built-in and so ensured to be kept live.
2666     // Frequent allocation and drop of large binary blobs is an
2667     // important use case for eager reclaim, and this special handling
2668     // may reduce needed headroom.
2669 
2670     return obj->is_typeArray() &&
2671            g1h->is_potential_eager_reclaim_candidate(region);
2672   }
2673 
2674  public:
2675   RegisterHumongousWithInCSetFastTestClosure()
2676   : _total_humongous(0),
2677     _candidate_humongous(0),
2678     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2679   }
2680 
2681   virtual bool do_heap_region(HeapRegion* r) {
2682     if (!r->is_starts_humongous()) {
2683       return false;
2684     }
2685     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2686 
2687     bool is_candidate = humongous_region_is_candidate(g1h, r);
2688     uint rindex = r->hrm_index();
2689     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2690     if (is_candidate) {
2691       _candidate_humongous++;
2692       g1h->register_humongous_region_with_cset(rindex);
2693       // Is_candidate already filters out humongous object with large remembered sets.
2694       // If we have a humongous object with a few remembered sets, we simply flush these
2695       // remembered set entries into the DCQS. That will result in automatic
2696       // re-evaluation of their remembered set entries during the following evacuation
2697       // phase.
2698       if (!r->rem_set()->is_empty()) {
2699         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2700                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2701         G1CardTable* ct = g1h->card_table();
2702         HeapRegionRemSetIterator hrrs(r->rem_set());
2703         size_t card_index;
2704         while (hrrs.has_next(card_index)) {
2705           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2706           // The remembered set might contain references to already freed
2707           // regions. Filter out such entries to avoid failing card table
2708           // verification.
2709           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2710             if (*card_ptr != G1CardTable::dirty_card_val()) {
2711               *card_ptr = G1CardTable::dirty_card_val();
2712               _dcq.enqueue(card_ptr);
2713             }
2714           }
2715         }
2716         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2717                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2718                hrrs.n_yielded(), r->rem_set()->occupied());
2719         // We should only clear the card based remembered set here as we will not
2720         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2721         // (and probably never) we do not enter this path if there are other kind of
2722         // remembered sets for this region.
2723         r->rem_set()->clear_locked(true /* only_cardset */);
2724         // Clear_locked() above sets the state to Empty. However we want to continue
2725         // collecting remembered set entries for humongous regions that were not
2726         // reclaimed.
2727         r->rem_set()->set_state_complete();
2728       }
2729       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2730     }
2731     _total_humongous++;
2732 
2733     return false;
2734   }
2735 
2736   size_t total_humongous() const { return _total_humongous; }
2737   size_t candidate_humongous() const { return _candidate_humongous; }
2738 
2739   void flush_rem_set_entries() { _dcq.flush(); }
2740 };
2741 
2742 void G1CollectedHeap::register_humongous_regions_with_cset() {
2743   if (!G1EagerReclaimHumongousObjects) {
2744     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2745     return;
2746   }
2747   double time = os::elapsed_counter();
2748 
2749   // Collect reclaim candidate information and register candidates with cset.
2750   RegisterHumongousWithInCSetFastTestClosure cl;
2751   heap_region_iterate(&cl);
2752 
2753   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2754   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2755                                                                   cl.total_humongous(),
2756                                                                   cl.candidate_humongous());
2757   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2758 
2759   // Finally flush all remembered set entries to re-check into the global DCQS.
2760   cl.flush_rem_set_entries();
2761 }
2762 
2763 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2764   public:
2765     bool do_heap_region(HeapRegion* hr) {
2766       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2767         hr->verify_rem_set();
2768       }
2769       return false;
2770     }
2771 };
2772 
2773 uint G1CollectedHeap::num_task_queues() const {
2774   return _task_queues->size();
2775 }
2776 
2777 #if TASKQUEUE_STATS
2778 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2779   st->print_raw_cr("GC Task Stats");
2780   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2781   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2782 }
2783 
2784 void G1CollectedHeap::print_taskqueue_stats() const {
2785   if (!log_is_enabled(Trace, gc, task, stats)) {
2786     return;
2787   }
2788   Log(gc, task, stats) log;
2789   ResourceMark rm;
2790   LogStream ls(log.trace());
2791   outputStream* st = &ls;
2792 
2793   print_taskqueue_stats_hdr(st);
2794 
2795   TaskQueueStats totals;
2796   const uint n = num_task_queues();
2797   for (uint i = 0; i < n; ++i) {
2798     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2799     totals += task_queue(i)->stats;
2800   }
2801   st->print_raw("tot "); totals.print(st); st->cr();
2802 
2803   DEBUG_ONLY(totals.verify());
2804 }
2805 
2806 void G1CollectedHeap::reset_taskqueue_stats() {
2807   const uint n = num_task_queues();
2808   for (uint i = 0; i < n; ++i) {
2809     task_queue(i)->stats.reset();
2810   }
2811 }
2812 #endif // TASKQUEUE_STATS
2813 
2814 void G1CollectedHeap::wait_for_root_region_scanning() {
2815   double scan_wait_start = os::elapsedTime();
2816   // We have to wait until the CM threads finish scanning the
2817   // root regions as it's the only way to ensure that all the
2818   // objects on them have been correctly scanned before we start
2819   // moving them during the GC.
2820   bool waited = _cm->root_regions()->wait_until_scan_finished();
2821   double wait_time_ms = 0.0;
2822   if (waited) {
2823     double scan_wait_end = os::elapsedTime();
2824     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2825   }
2826   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2827 }
2828 
2829 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2830 private:
2831   G1HRPrinter* _hr_printer;
2832 public:
2833   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2834 
2835   virtual bool do_heap_region(HeapRegion* r) {
2836     _hr_printer->cset(r);
2837     return false;
2838   }
2839 };
2840 
2841 void G1CollectedHeap::start_new_collection_set() {
2842   collection_set()->start_incremental_building();
2843 
2844   clear_cset_fast_test();
2845 
2846   guarantee(_eden.length() == 0, "eden should have been cleared");
2847   g1_policy()->transfer_survivors_to_cset(survivor());
2848 }
2849 
2850 bool
2851 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2852   assert_at_safepoint_on_vm_thread();
2853   guarantee(!is_gc_active(), "collection is not reentrant");
2854 
2855   if (GCLocker::check_active_before_gc()) {
2856     return false;
2857   }
2858 
2859   _gc_timer_stw->register_gc_start();
2860 
2861   GCIdMark gc_id_mark;
2862   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2863 
2864   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2865   ResourceMark rm;
2866 
2867   g1_policy()->note_gc_start();
2868 
2869   wait_for_root_region_scanning();
2870 
2871   print_heap_before_gc();
2872   print_heap_regions();
2873   trace_heap_before_gc(_gc_tracer_stw);
2874 
2875   _verifier->verify_region_sets_optional();
2876   _verifier->verify_dirty_young_regions();
2877 
2878   // We should not be doing initial mark unless the conc mark thread is running
2879   if (!_cm_thread->should_terminate()) {
2880     // This call will decide whether this pause is an initial-mark
2881     // pause. If it is, in_initial_mark_gc() will return true
2882     // for the duration of this pause.
2883     g1_policy()->decide_on_conc_mark_initiation();
2884   }
2885 
2886   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2887   assert(!collector_state()->in_initial_mark_gc() ||
2888           collector_state()->in_young_only_phase(), "sanity");
2889 
2890   // We also do not allow mixed GCs during marking.
2891   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2892 
2893   // Record whether this pause is an initial mark. When the current
2894   // thread has completed its logging output and it's safe to signal
2895   // the CM thread, the flag's value in the policy has been reset.
2896   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2897 
2898   // Inner scope for scope based logging, timers, and stats collection
2899   {
2900     EvacuationInfo evacuation_info;
2901 
2902     if (collector_state()->in_initial_mark_gc()) {
2903       // We are about to start a marking cycle, so we increment the
2904       // full collection counter.
2905       increment_old_marking_cycles_started();
2906       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2907     }
2908 
2909     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2910 
2911     GCTraceCPUTime tcpu;
2912 
2913     G1HeapVerifier::G1VerifyType verify_type;
2914     FormatBuffer<> gc_string("Pause Young ");
2915     if (collector_state()->in_initial_mark_gc()) {
2916       gc_string.append("(Concurrent Start)");
2917       verify_type = G1HeapVerifier::G1VerifyConcurrentStart;
2918     } else if (collector_state()->in_young_only_phase()) {
2919       if (collector_state()->in_young_gc_before_mixed()) {
2920         gc_string.append("(Prepare Mixed)");
2921       } else {
2922         gc_string.append("(Normal)");
2923       }
2924       verify_type = G1HeapVerifier::G1VerifyYoungNormal;
2925     } else {
2926       gc_string.append("(Mixed)");
2927       verify_type = G1HeapVerifier::G1VerifyMixed;
2928     }
2929     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2930 
2931     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2932                                                                   workers()->active_workers(),
2933                                                                   Threads::number_of_non_daemon_threads());
2934     active_workers = workers()->update_active_workers(active_workers);
2935     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2936 
2937     G1MonitoringScope ms(g1mm(),
2938                          false /* full_gc */,
2939                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
2940 
2941     G1HeapTransition heap_transition(this);
2942     size_t heap_used_bytes_before_gc = used();
2943 
2944     // Don't dynamically change the number of GC threads this early.  A value of
2945     // 0 is used to indicate serial work.  When parallel work is done,
2946     // it will be set.
2947 
2948     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2949       IsGCActiveMark x;
2950 
2951       gc_prologue(false);
2952 
2953       if (VerifyRememberedSets) {
2954         log_info(gc, verify)("[Verifying RemSets before GC]");
2955         VerifyRegionRemSetClosure v_cl;
2956         heap_region_iterate(&v_cl);
2957       }
2958 
2959       _verifier->verify_before_gc(verify_type);
2960 
2961       _verifier->check_bitmaps("GC Start");
2962 
2963 #if COMPILER2_OR_JVMCI
2964       DerivedPointerTable::clear();
2965 #endif
2966 
2967       // Please see comment in g1CollectedHeap.hpp and
2968       // G1CollectedHeap::ref_processing_init() to see how
2969       // reference processing currently works in G1.
2970 
2971       // Enable discovery in the STW reference processor
2972       _ref_processor_stw->enable_discovery();
2973 
2974       {
2975         // We want to temporarily turn off discovery by the
2976         // CM ref processor, if necessary, and turn it back on
2977         // on again later if we do. Using a scoped
2978         // NoRefDiscovery object will do this.
2979         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2980 
2981         // Forget the current alloc region (we might even choose it to be part
2982         // of the collection set!).
2983         _allocator->release_mutator_alloc_region();
2984 
2985         // This timing is only used by the ergonomics to handle our pause target.
2986         // It is unclear why this should not include the full pause. We will
2987         // investigate this in CR 7178365.
2988         //
2989         // Preserving the old comment here if that helps the investigation:
2990         //
2991         // The elapsed time induced by the start time below deliberately elides
2992         // the possible verification above.
2993         double sample_start_time_sec = os::elapsedTime();
2994 
2995         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2996 
2997         if (collector_state()->in_initial_mark_gc()) {
2998           concurrent_mark()->pre_initial_mark();
2999         }
3000 
3001         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3002 
3003         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3004 
3005         // Make sure the remembered sets are up to date. This needs to be
3006         // done before register_humongous_regions_with_cset(), because the
3007         // remembered sets are used there to choose eager reclaim candidates.
3008         // If the remembered sets are not up to date we might miss some
3009         // entries that need to be handled.
3010         g1_rem_set()->cleanupHRRS();
3011 
3012         register_humongous_regions_with_cset();
3013 
3014         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3015 
3016         // We call this after finalize_cset() to
3017         // ensure that the CSet has been finalized.
3018         _cm->verify_no_cset_oops();
3019 
3020         if (_hr_printer.is_active()) {
3021           G1PrintCollectionSetClosure cl(&_hr_printer);
3022           _collection_set.iterate(&cl);
3023         }
3024 
3025         // Initialize the GC alloc regions.
3026         _allocator->init_gc_alloc_regions(evacuation_info);
3027 
3028         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3029         pre_evacuate_collection_set();
3030 
3031         // Actually do the work...
3032         evacuate_collection_set(&per_thread_states);
3033 
3034         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3035 
3036         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3037         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3038 
3039         eagerly_reclaim_humongous_regions();
3040 
3041         record_obj_copy_mem_stats();
3042         _survivor_evac_stats.adjust_desired_plab_sz();
3043         _old_evac_stats.adjust_desired_plab_sz();
3044 
3045         double start = os::elapsedTime();
3046         start_new_collection_set();
3047         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3048 
3049         if (evacuation_failed()) {
3050           double recalculate_used_start = os::elapsedTime();
3051           set_used(recalculate_used());
3052           g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3053 
3054           if (_archive_allocator != NULL) {
3055             _archive_allocator->clear_used();
3056           }
3057           for (uint i = 0; i < ParallelGCThreads; i++) {
3058             if (_evacuation_failed_info_array[i].has_failed()) {
3059               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3060             }
3061           }
3062         } else {
3063           // The "used" of the the collection set have already been subtracted
3064           // when they were freed.  Add in the bytes evacuated.
3065           increase_used(g1_policy()->bytes_copied_during_gc());
3066         }
3067 
3068         if (collector_state()->in_initial_mark_gc()) {
3069           // We have to do this before we notify the CM threads that
3070           // they can start working to make sure that all the
3071           // appropriate initialization is done on the CM object.
3072           concurrent_mark()->post_initial_mark();
3073           // Note that we don't actually trigger the CM thread at
3074           // this point. We do that later when we're sure that
3075           // the current thread has completed its logging output.
3076         }
3077 
3078         allocate_dummy_regions();
3079 
3080         _allocator->init_mutator_alloc_region();
3081 
3082         {
3083           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3084           if (expand_bytes > 0) {
3085             size_t bytes_before = capacity();
3086             // No need for an ergo logging here,
3087             // expansion_amount() does this when it returns a value > 0.
3088             double expand_ms;
3089             if (!expand(expand_bytes, _workers, &expand_ms)) {
3090               // We failed to expand the heap. Cannot do anything about it.
3091             }
3092             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3093           }
3094         }
3095 
3096         // We redo the verification but now wrt to the new CSet which
3097         // has just got initialized after the previous CSet was freed.
3098         _cm->verify_no_cset_oops();
3099 
3100         // This timing is only used by the ergonomics to handle our pause target.
3101         // It is unclear why this should not include the full pause. We will
3102         // investigate this in CR 7178365.
3103         double sample_end_time_sec = os::elapsedTime();
3104         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3105         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3106         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3107 
3108         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3109         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3110 
3111         if (VerifyRememberedSets) {
3112           log_info(gc, verify)("[Verifying RemSets after GC]");
3113           VerifyRegionRemSetClosure v_cl;
3114           heap_region_iterate(&v_cl);
3115         }
3116 
3117         _verifier->verify_after_gc(verify_type);
3118         _verifier->check_bitmaps("GC End");
3119 
3120         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
3121         _ref_processor_stw->verify_no_references_recorded();
3122 
3123         // CM reference discovery will be re-enabled if necessary.
3124       }
3125 
3126 #ifdef TRACESPINNING
3127       ParallelTaskTerminator::print_termination_counts();
3128 #endif
3129 
3130       gc_epilogue(false);
3131     }
3132 
3133     // Print the remainder of the GC log output.
3134     if (evacuation_failed()) {
3135       log_info(gc)("To-space exhausted");
3136     }
3137 
3138     g1_policy()->print_phases();
3139     heap_transition.print();
3140 
3141     // It is not yet to safe to tell the concurrent mark to
3142     // start as we have some optional output below. We don't want the
3143     // output from the concurrent mark thread interfering with this
3144     // logging output either.
3145 
3146     _hrm->verify_optional();
3147     _verifier->verify_region_sets_optional();
3148 
3149     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3150     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3151 
3152     print_heap_after_gc();
3153     print_heap_regions();
3154     trace_heap_after_gc(_gc_tracer_stw);
3155 
3156     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3157     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3158     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3159     // before any GC notifications are raised.
3160     g1mm()->update_sizes();
3161 
3162     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3163     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3164     _gc_timer_stw->register_gc_end();
3165     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3166   }
3167   // It should now be safe to tell the concurrent mark thread to start
3168   // without its logging output interfering with the logging output
3169   // that came from the pause.
3170 
3171   if (should_start_conc_mark) {
3172     // CAUTION: after the doConcurrentMark() call below,
3173     // the concurrent marking thread(s) could be running
3174     // concurrently with us. Make sure that anything after
3175     // this point does not assume that we are the only GC thread
3176     // running. Note: of course, the actual marking work will
3177     // not start until the safepoint itself is released in
3178     // SuspendibleThreadSet::desynchronize().
3179     do_concurrent_mark();
3180   }
3181 
3182   return true;
3183 }
3184 
3185 void G1CollectedHeap::remove_self_forwarding_pointers() {
3186   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3187   workers()->run_task(&rsfp_task);
3188 }
3189 
3190 void G1CollectedHeap::restore_after_evac_failure() {
3191   double remove_self_forwards_start = os::elapsedTime();
3192 
3193   remove_self_forwarding_pointers();
3194   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3195   _preserved_marks_set.restore(&task_executor);
3196 
3197   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3198 }
3199 
3200 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3201   if (!_evacuation_failed) {
3202     _evacuation_failed = true;
3203   }
3204 
3205   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3206   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3207 }
3208 
3209 bool G1ParEvacuateFollowersClosure::offer_termination() {
3210   EventGCPhaseParallel event;
3211   G1ParScanThreadState* const pss = par_scan_state();
3212   start_term_time();
3213   const bool res = terminator()->offer_termination();
3214   end_term_time();
3215   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3216   return res;
3217 }
3218 
3219 void G1ParEvacuateFollowersClosure::do_void() {
3220   EventGCPhaseParallel event;
3221   G1ParScanThreadState* const pss = par_scan_state();
3222   pss->trim_queue();
3223   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ObjCopy));
3224   do {
3225     EventGCPhaseParallel event;
3226     pss->steal_and_trim_queue(queues());
3227     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ObjCopy));
3228   } while (!offer_termination());
3229 }
3230 
3231 class G1ParTask : public AbstractGangTask {
3232 protected:
3233   G1CollectedHeap*         _g1h;
3234   G1ParScanThreadStateSet* _pss;
3235   RefToScanQueueSet*       _queues;
3236   G1RootProcessor*         _root_processor;
3237   ParallelTaskTerminator   _terminator;
3238   uint                     _n_workers;
3239 
3240 public:
3241   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3242     : AbstractGangTask("G1 collection"),
3243       _g1h(g1h),
3244       _pss(per_thread_states),
3245       _queues(task_queues),
3246       _root_processor(root_processor),
3247       _terminator(n_workers, _queues),
3248       _n_workers(n_workers)
3249   {}
3250 
3251   void work(uint worker_id) {
3252     if (worker_id >= _n_workers) return;  // no work needed this round
3253 
3254     double start_sec = os::elapsedTime();
3255     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3256 
3257     {
3258       ResourceMark rm;
3259       HandleMark   hm;
3260 
3261       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3262 
3263       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3264       pss->set_ref_discoverer(rp);
3265 
3266       double start_strong_roots_sec = os::elapsedTime();
3267 
3268       _root_processor->evacuate_roots(pss, worker_id);
3269 
3270       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3271       // treating the nmethods visited to act as roots for concurrent marking.
3272       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3273       // objects copied by the current evacuation.
3274       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3275 
3276       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3277 
3278       double term_sec = 0.0;
3279       size_t evac_term_attempts = 0;
3280       {
3281         double start = os::elapsedTime();
3282         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3283         evac.do_void();
3284 
3285         evac_term_attempts = evac.term_attempts();
3286         term_sec = evac.term_time();
3287         double elapsed_sec = os::elapsedTime() - start;
3288 
3289         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3290         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3291         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3292         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3293       }
3294 
3295       assert(pss->queue_is_empty(), "should be empty");
3296 
3297       if (log_is_enabled(Debug, gc, task, stats)) {
3298         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3299         size_t lab_waste;
3300         size_t lab_undo_waste;
3301         pss->waste(lab_waste, lab_undo_waste);
3302         _g1h->print_termination_stats(worker_id,
3303                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3304                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3305                                       term_sec * 1000.0,                          /* evac term time */
3306                                       evac_term_attempts,                         /* evac term attempts */
3307                                       lab_waste,                                  /* alloc buffer waste */
3308                                       lab_undo_waste                              /* undo waste */
3309                                       );
3310       }
3311 
3312       // Close the inner scope so that the ResourceMark and HandleMark
3313       // destructors are executed here and are included as part of the
3314       // "GC Worker Time".
3315     }
3316     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3317   }
3318 };
3319 
3320 void G1CollectedHeap::print_termination_stats_hdr() {
3321   log_debug(gc, task, stats)("GC Termination Stats");
3322   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3323   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3324   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3325 }
3326 
3327 void G1CollectedHeap::print_termination_stats(uint worker_id,
3328                                               double elapsed_ms,
3329                                               double strong_roots_ms,
3330                                               double term_ms,
3331                                               size_t term_attempts,
3332                                               size_t alloc_buffer_waste,
3333                                               size_t undo_waste) const {
3334   log_debug(gc, task, stats)
3335               ("%3d %9.2f %9.2f %6.2f "
3336                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3337                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3338                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3339                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3340                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3341                alloc_buffer_waste * HeapWordSize / K,
3342                undo_waste * HeapWordSize / K);
3343 }
3344 
3345 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3346                                         bool class_unloading_occurred) {
3347   uint n_workers = workers()->active_workers();
3348 
3349   G1StringDedupUnlinkOrOopsDoClosure dedup_closure(is_alive, NULL, false);
3350   ParallelCleaningTask g1_unlink_task(is_alive, &dedup_closure, n_workers, class_unloading_occurred);
3351   workers()->run_task(&g1_unlink_task);
3352 }
3353 
3354 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3355                                        bool process_strings,
3356                                        bool process_string_dedup) {
3357   if (!process_strings && !process_string_dedup) {
3358     // Nothing to clean.
3359     return;
3360   }
3361 
3362   G1StringDedupUnlinkOrOopsDoClosure dedup_closure(is_alive, NULL, false);
3363   StringCleaningTask g1_unlink_task(is_alive, process_string_dedup ? &dedup_closure : NULL, process_strings);
3364   workers()->run_task(&g1_unlink_task);
3365 }
3366 
3367 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3368  private:
3369   DirtyCardQueueSet* _queue;
3370   G1CollectedHeap* _g1h;
3371  public:
3372   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3373     _queue(queue), _g1h(g1h) { }
3374 
3375   virtual void work(uint worker_id) {
3376     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3377     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3378 
3379     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3380     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3381 
3382     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3383   }
3384 };
3385 
3386 void G1CollectedHeap::redirty_logged_cards() {
3387   double redirty_logged_cards_start = os::elapsedTime();
3388 
3389   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3390   dirty_card_queue_set().reset_for_par_iteration();
3391   workers()->run_task(&redirty_task);
3392 
3393   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3394   dcq.merge_bufferlists(&dirty_card_queue_set());
3395   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3396 
3397   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3398 }
3399 
3400 // Weak Reference Processing support
3401 
3402 bool G1STWIsAliveClosure::do_object_b(oop p) {
3403   // An object is reachable if it is outside the collection set,
3404   // or is inside and copied.
3405   return !_g1h->is_in_cset(p) || p->is_forwarded();
3406 }
3407 
3408 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3409   assert(obj != NULL, "must not be NULL");
3410   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3411   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3412   // may falsely indicate that this is not the case here: however the collection set only
3413   // contains old regions when concurrent mark is not running.
3414   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3415 }
3416 
3417 // Non Copying Keep Alive closure
3418 class G1KeepAliveClosure: public OopClosure {
3419   G1CollectedHeap*_g1h;
3420 public:
3421   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3422   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3423   void do_oop(oop* p) {
3424     oop obj = *p;
3425     assert(obj != NULL, "the caller should have filtered out NULL values");
3426 
3427     const InCSetState cset_state =_g1h->in_cset_state(obj);
3428     if (!cset_state.is_in_cset_or_humongous()) {
3429       return;
3430     }
3431     if (cset_state.is_in_cset()) {
3432       assert( obj->is_forwarded(), "invariant" );
3433       *p = obj->forwardee();
3434     } else {
3435       assert(!obj->is_forwarded(), "invariant" );
3436       assert(cset_state.is_humongous(),
3437              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3438      _g1h->set_humongous_is_live(obj);
3439     }
3440   }
3441 };
3442 
3443 // Copying Keep Alive closure - can be called from both
3444 // serial and parallel code as long as different worker
3445 // threads utilize different G1ParScanThreadState instances
3446 // and different queues.
3447 
3448 class G1CopyingKeepAliveClosure: public OopClosure {
3449   G1CollectedHeap*         _g1h;
3450   G1ParScanThreadState*    _par_scan_state;
3451 
3452 public:
3453   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3454                             G1ParScanThreadState* pss):
3455     _g1h(g1h),
3456     _par_scan_state(pss)
3457   {}
3458 
3459   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3460   virtual void do_oop(      oop* p) { do_oop_work(p); }
3461 
3462   template <class T> void do_oop_work(T* p) {
3463     oop obj = RawAccess<>::oop_load(p);
3464 
3465     if (_g1h->is_in_cset_or_humongous(obj)) {
3466       // If the referent object has been forwarded (either copied
3467       // to a new location or to itself in the event of an
3468       // evacuation failure) then we need to update the reference
3469       // field and, if both reference and referent are in the G1
3470       // heap, update the RSet for the referent.
3471       //
3472       // If the referent has not been forwarded then we have to keep
3473       // it alive by policy. Therefore we have copy the referent.
3474       //
3475       // When the queue is drained (after each phase of reference processing)
3476       // the object and it's followers will be copied, the reference field set
3477       // to point to the new location, and the RSet updated.
3478       _par_scan_state->push_on_queue(p);
3479     }
3480   }
3481 };
3482 
3483 // Serial drain queue closure. Called as the 'complete_gc'
3484 // closure for each discovered list in some of the
3485 // reference processing phases.
3486 
3487 class G1STWDrainQueueClosure: public VoidClosure {
3488 protected:
3489   G1CollectedHeap* _g1h;
3490   G1ParScanThreadState* _par_scan_state;
3491 
3492   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3493 
3494 public:
3495   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3496     _g1h(g1h),
3497     _par_scan_state(pss)
3498   { }
3499 
3500   void do_void() {
3501     G1ParScanThreadState* const pss = par_scan_state();
3502     pss->trim_queue();
3503   }
3504 };
3505 
3506 // Parallel Reference Processing closures
3507 
3508 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3509 // processing during G1 evacuation pauses.
3510 
3511 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3512 private:
3513   G1CollectedHeap*          _g1h;
3514   G1ParScanThreadStateSet*  _pss;
3515   RefToScanQueueSet*        _queues;
3516   WorkGang*                 _workers;
3517 
3518 public:
3519   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3520                            G1ParScanThreadStateSet* per_thread_states,
3521                            WorkGang* workers,
3522                            RefToScanQueueSet *task_queues) :
3523     _g1h(g1h),
3524     _pss(per_thread_states),
3525     _queues(task_queues),
3526     _workers(workers)
3527   {
3528     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3529   }
3530 
3531   // Executes the given task using concurrent marking worker threads.
3532   virtual void execute(ProcessTask& task, uint ergo_workers);
3533 };
3534 
3535 // Gang task for possibly parallel reference processing
3536 
3537 class G1STWRefProcTaskProxy: public AbstractGangTask {
3538   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3539   ProcessTask&     _proc_task;
3540   G1CollectedHeap* _g1h;
3541   G1ParScanThreadStateSet* _pss;
3542   RefToScanQueueSet* _task_queues;
3543   ParallelTaskTerminator* _terminator;
3544 
3545 public:
3546   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3547                         G1CollectedHeap* g1h,
3548                         G1ParScanThreadStateSet* per_thread_states,
3549                         RefToScanQueueSet *task_queues,
3550                         ParallelTaskTerminator* terminator) :
3551     AbstractGangTask("Process reference objects in parallel"),
3552     _proc_task(proc_task),
3553     _g1h(g1h),
3554     _pss(per_thread_states),
3555     _task_queues(task_queues),
3556     _terminator(terminator)
3557   {}
3558 
3559   virtual void work(uint worker_id) {
3560     // The reference processing task executed by a single worker.
3561     ResourceMark rm;
3562     HandleMark   hm;
3563 
3564     G1STWIsAliveClosure is_alive(_g1h);
3565 
3566     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3567     pss->set_ref_discoverer(NULL);
3568 
3569     // Keep alive closure.
3570     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3571 
3572     // Complete GC closure
3573     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3574 
3575     // Call the reference processing task's work routine.
3576     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3577 
3578     // Note we cannot assert that the refs array is empty here as not all
3579     // of the processing tasks (specifically phase2 - pp2_work) execute
3580     // the complete_gc closure (which ordinarily would drain the queue) so
3581     // the queue may not be empty.
3582   }
3583 };
3584 
3585 // Driver routine for parallel reference processing.
3586 // Creates an instance of the ref processing gang
3587 // task and has the worker threads execute it.
3588 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3589   assert(_workers != NULL, "Need parallel worker threads.");
3590 
3591   assert(_workers->active_workers() >= ergo_workers,
3592          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3593          ergo_workers, _workers->active_workers());
3594   ParallelTaskTerminator terminator(ergo_workers, _queues);
3595   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3596 
3597   _workers->run_task(&proc_task_proxy, ergo_workers);
3598 }
3599 
3600 // End of weak reference support closures
3601 
3602 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3603   double ref_proc_start = os::elapsedTime();
3604 
3605   ReferenceProcessor* rp = _ref_processor_stw;
3606   assert(rp->discovery_enabled(), "should have been enabled");
3607 
3608   // Closure to test whether a referent is alive.
3609   G1STWIsAliveClosure is_alive(this);
3610 
3611   // Even when parallel reference processing is enabled, the processing
3612   // of JNI refs is serial and performed serially by the current thread
3613   // rather than by a worker. The following PSS will be used for processing
3614   // JNI refs.
3615 
3616   // Use only a single queue for this PSS.
3617   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3618   pss->set_ref_discoverer(NULL);
3619   assert(pss->queue_is_empty(), "pre-condition");
3620 
3621   // Keep alive closure.
3622   G1CopyingKeepAliveClosure keep_alive(this, pss);
3623 
3624   // Serial Complete GC closure
3625   G1STWDrainQueueClosure drain_queue(this, pss);
3626 
3627   // Setup the soft refs policy...
3628   rp->setup_policy(false);
3629 
3630   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3631 
3632   ReferenceProcessorStats stats;
3633   if (!rp->processing_is_mt()) {
3634     // Serial reference processing...
3635     stats = rp->process_discovered_references(&is_alive,
3636                                               &keep_alive,
3637                                               &drain_queue,
3638                                               NULL,
3639                                               pt);
3640   } else {
3641     uint no_of_gc_workers = workers()->active_workers();
3642 
3643     // Parallel reference processing
3644     assert(no_of_gc_workers <= rp->max_num_queues(),
3645            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3646            no_of_gc_workers,  rp->max_num_queues());
3647 
3648     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3649     stats = rp->process_discovered_references(&is_alive,
3650                                               &keep_alive,
3651                                               &drain_queue,
3652                                               &par_task_executor,
3653                                               pt);
3654   }
3655 
3656   _gc_tracer_stw->report_gc_reference_stats(stats);
3657 
3658   // We have completed copying any necessary live referent objects.
3659   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3660 
3661   make_pending_list_reachable();
3662 
3663   rp->verify_no_references_recorded();
3664 
3665   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3666   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3667 }
3668 
3669 void G1CollectedHeap::make_pending_list_reachable() {
3670   if (collector_state()->in_initial_mark_gc()) {
3671     oop pll_head = Universe::reference_pending_list();
3672     if (pll_head != NULL) {
3673       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3674       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3675     }
3676   }
3677 }
3678 
3679 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3680   double merge_pss_time_start = os::elapsedTime();
3681   per_thread_states->flush();
3682   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3683 }
3684 
3685 void G1CollectedHeap::pre_evacuate_collection_set() {
3686   _expand_heap_after_alloc_failure = true;
3687   _evacuation_failed = false;
3688 
3689   // Disable the hot card cache.
3690   _hot_card_cache->reset_hot_cache_claimed_index();
3691   _hot_card_cache->set_use_cache(false);
3692 
3693   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3694   _preserved_marks_set.assert_empty();
3695 
3696   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3697 
3698   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3699   if (collector_state()->in_initial_mark_gc()) {
3700     double start_clear_claimed_marks = os::elapsedTime();
3701 
3702     ClassLoaderDataGraph::clear_claimed_marks();
3703 
3704     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3705     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3706   }
3707 }
3708 
3709 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3710   // Should G1EvacuationFailureALot be in effect for this GC?
3711   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3712 
3713   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3714 
3715   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3716 
3717   double start_par_time_sec = os::elapsedTime();
3718   double end_par_time_sec;
3719 
3720   {
3721     const uint n_workers = workers()->active_workers();
3722     G1RootProcessor root_processor(this, n_workers);
3723     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
3724 
3725     print_termination_stats_hdr();
3726 
3727     workers()->run_task(&g1_par_task);
3728     end_par_time_sec = os::elapsedTime();
3729 
3730     // Closing the inner scope will execute the destructor
3731     // for the G1RootProcessor object. We record the current
3732     // elapsed time before closing the scope so that time
3733     // taken for the destructor is NOT included in the
3734     // reported parallel time.
3735   }
3736 
3737   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
3738   phase_times->record_par_time(par_time_ms);
3739 
3740   double code_root_fixup_time_ms =
3741         (os::elapsedTime() - end_par_time_sec) * 1000.0;
3742   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
3743 }
3744 
3745 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3746   // Also cleans the card table from temporary duplicate detection information used
3747   // during UpdateRS/ScanRS.
3748   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
3749 
3750   // Process any discovered reference objects - we have
3751   // to do this _before_ we retire the GC alloc regions
3752   // as we may have to copy some 'reachable' referent
3753   // objects (and their reachable sub-graphs) that were
3754   // not copied during the pause.
3755   process_discovered_references(per_thread_states);
3756 
3757   // FIXME
3758   // CM's reference processing also cleans up the string table.
3759   // Should we do that here also? We could, but it is a serial operation
3760   // and could significantly increase the pause time.
3761 
3762   G1STWIsAliveClosure is_alive(this);
3763   G1KeepAliveClosure keep_alive(this);
3764 
3765   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3766                               g1_policy()->phase_times()->weak_phase_times());
3767 
3768   if (G1StringDedup::is_enabled()) {
3769     double fixup_start = os::elapsedTime();
3770 
3771     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
3772 
3773     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
3774     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
3775   }
3776 
3777   if (evacuation_failed()) {
3778     restore_after_evac_failure();
3779 
3780     // Reset the G1EvacuationFailureALot counters and flags
3781     // Note: the values are reset only when an actual
3782     // evacuation failure occurs.
3783     NOT_PRODUCT(reset_evacuation_should_fail();)
3784   }
3785 
3786   _preserved_marks_set.assert_empty();
3787 
3788   _allocator->release_gc_alloc_regions(evacuation_info);
3789 
3790   merge_per_thread_state_info(per_thread_states);
3791 
3792   // Reset and re-enable the hot card cache.
3793   // Note the counts for the cards in the regions in the
3794   // collection set are reset when the collection set is freed.
3795   _hot_card_cache->reset_hot_cache();
3796   _hot_card_cache->set_use_cache(true);
3797 
3798   purge_code_root_memory();
3799 
3800   redirty_logged_cards();
3801 #if COMPILER2_OR_JVMCI
3802   double start = os::elapsedTime();
3803   DerivedPointerTable::update_pointers();
3804   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3805 #endif
3806   g1_policy()->print_age_table();
3807 }
3808 
3809 void G1CollectedHeap::record_obj_copy_mem_stats() {
3810   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3811 
3812   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3813                                                create_g1_evac_summary(&_old_evac_stats));
3814 }
3815 
3816 void G1CollectedHeap::free_region(HeapRegion* hr,
3817                                   FreeRegionList* free_list,
3818                                   bool skip_remset,
3819                                   bool skip_hot_card_cache,
3820                                   bool locked) {
3821   assert(!hr->is_free(), "the region should not be free");
3822   assert(!hr->is_empty(), "the region should not be empty");
3823   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
3824   assert(free_list != NULL, "pre-condition");
3825 
3826   if (G1VerifyBitmaps) {
3827     MemRegion mr(hr->bottom(), hr->end());
3828     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3829   }
3830 
3831   // Clear the card counts for this region.
3832   // Note: we only need to do this if the region is not young
3833   // (since we don't refine cards in young regions).
3834   if (!skip_hot_card_cache && !hr->is_young()) {
3835     _hot_card_cache->reset_card_counts(hr);
3836   }
3837   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
3838   _g1_policy->remset_tracker()->update_at_free(hr);
3839   free_list->add_ordered(hr);
3840 }
3841 
3842 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3843                                             FreeRegionList* free_list) {
3844   assert(hr->is_humongous(), "this is only for humongous regions");
3845   assert(free_list != NULL, "pre-condition");
3846   hr->clear_humongous();
3847   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
3848 }
3849 
3850 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
3851                                            const uint humongous_regions_removed) {
3852   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
3853     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3854     _old_set.bulk_remove(old_regions_removed);
3855     _humongous_set.bulk_remove(humongous_regions_removed);
3856   }
3857 
3858 }
3859 
3860 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3861   assert(list != NULL, "list can't be null");
3862   if (!list->is_empty()) {
3863     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3864     _hrm->insert_list_into_free_list(list);
3865   }
3866 }
3867 
3868 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3869   decrease_used(bytes);
3870 }
3871 
3872 class G1FreeCollectionSetTask : public AbstractGangTask {
3873 private:
3874 
3875   // Closure applied to all regions in the collection set to do work that needs to
3876   // be done serially in a single thread.
3877   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
3878   private:
3879     EvacuationInfo* _evacuation_info;
3880     const size_t* _surviving_young_words;
3881 
3882     // Bytes used in successfully evacuated regions before the evacuation.
3883     size_t _before_used_bytes;
3884     // Bytes used in unsucessfully evacuated regions before the evacuation
3885     size_t _after_used_bytes;
3886 
3887     size_t _bytes_allocated_in_old_since_last_gc;
3888 
3889     size_t _failure_used_words;
3890     size_t _failure_waste_words;
3891 
3892     FreeRegionList _local_free_list;
3893   public:
3894     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
3895       HeapRegionClosure(),
3896       _evacuation_info(evacuation_info),
3897       _surviving_young_words(surviving_young_words),
3898       _before_used_bytes(0),
3899       _after_used_bytes(0),
3900       _bytes_allocated_in_old_since_last_gc(0),
3901       _failure_used_words(0),
3902       _failure_waste_words(0),
3903       _local_free_list("Local Region List for CSet Freeing") {
3904     }
3905 
3906     virtual bool do_heap_region(HeapRegion* r) {
3907       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3908 
3909       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
3910       g1h->clear_in_cset(r);
3911 
3912       if (r->is_young()) {
3913         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
3914                "Young index %d is wrong for region %u of type %s with %u young regions",
3915                r->young_index_in_cset(),
3916                r->hrm_index(),
3917                r->get_type_str(),
3918                g1h->collection_set()->young_region_length());
3919         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
3920         r->record_surv_words_in_group(words_survived);
3921       }
3922 
3923       if (!r->evacuation_failed()) {
3924         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
3925         _before_used_bytes += r->used();
3926         g1h->free_region(r,
3927                          &_local_free_list,
3928                          true, /* skip_remset */
3929                          true, /* skip_hot_card_cache */
3930                          true  /* locked */);
3931       } else {
3932         r->uninstall_surv_rate_group();
3933         r->set_young_index_in_cset(-1);
3934         r->set_evacuation_failed(false);
3935         // When moving a young gen region to old gen, we "allocate" that whole region
3936         // there. This is in addition to any already evacuated objects. Notify the
3937         // policy about that.
3938         // Old gen regions do not cause an additional allocation: both the objects
3939         // still in the region and the ones already moved are accounted for elsewhere.
3940         if (r->is_young()) {
3941           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
3942         }
3943         // The region is now considered to be old.
3944         if(g1h->is_hetero_heap()) {
3945           if(!r->is_old()) {
3946             // The region was young before, set it as pre-matured old so that next mixed gc can move
3947             // its contents to old region which is on nv-dimm
3948             r->set_premature_old();
3949           }
3950         } else {
3951           r->set_old();
3952         }
3953         // Do some allocation statistics accounting. Regions that failed evacuation
3954         // are always made old, so there is no need to update anything in the young
3955         // gen statistics, but we need to update old gen statistics.
3956         size_t used_words = r->marked_bytes() / HeapWordSize;
3957 
3958         _failure_used_words += used_words;
3959         _failure_waste_words += HeapRegion::GrainWords - used_words;
3960 
3961         g1h->old_set_add(r);
3962         _after_used_bytes += r->used();
3963       }
3964       return false;
3965     }
3966 
3967     void complete_work() {
3968       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3969 
3970       _evacuation_info->set_regions_freed(_local_free_list.length());
3971       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
3972 
3973       g1h->prepend_to_freelist(&_local_free_list);
3974       g1h->decrement_summary_bytes(_before_used_bytes);
3975 
3976       G1Policy* policy = g1h->g1_policy();
3977       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
3978 
3979       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
3980     }
3981   };
3982 
3983   G1CollectionSet* _collection_set;
3984   G1SerialFreeCollectionSetClosure _cl;
3985   const size_t* _surviving_young_words;
3986 
3987   size_t _rs_lengths;
3988 
3989   volatile jint _serial_work_claim;
3990 
3991   struct WorkItem {
3992     uint region_idx;
3993     bool is_young;
3994     bool evacuation_failed;
3995 
3996     WorkItem(HeapRegion* r) {
3997       region_idx = r->hrm_index();
3998       is_young = r->is_young();
3999       evacuation_failed = r->evacuation_failed();
4000     }
4001   };
4002 
4003   volatile size_t _parallel_work_claim;
4004   size_t _num_work_items;
4005   WorkItem* _work_items;
4006 
4007   void do_serial_work() {
4008     // Need to grab the lock to be allowed to modify the old region list.
4009     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4010     _collection_set->iterate(&_cl);
4011   }
4012 
4013   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4014     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4015 
4016     HeapRegion* r = g1h->region_at(region_idx);
4017     assert(!g1h->is_on_master_free_list(r), "sanity");
4018 
4019     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4020 
4021     if (!is_young) {
4022       g1h->_hot_card_cache->reset_card_counts(r);
4023     }
4024 
4025     if (!evacuation_failed) {
4026       r->rem_set()->clear_locked();
4027     }
4028   }
4029 
4030   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4031   private:
4032     size_t _cur_idx;
4033     WorkItem* _work_items;
4034   public:
4035     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4036 
4037     virtual bool do_heap_region(HeapRegion* r) {
4038       _work_items[_cur_idx++] = WorkItem(r);
4039       return false;
4040     }
4041   };
4042 
4043   void prepare_work() {
4044     G1PrepareFreeCollectionSetClosure cl(_work_items);
4045     _collection_set->iterate(&cl);
4046   }
4047 
4048   void complete_work() {
4049     _cl.complete_work();
4050 
4051     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4052     policy->record_max_rs_lengths(_rs_lengths);
4053     policy->cset_regions_freed();
4054   }
4055 public:
4056   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4057     AbstractGangTask("G1 Free Collection Set"),
4058     _collection_set(collection_set),
4059     _cl(evacuation_info, surviving_young_words),
4060     _surviving_young_words(surviving_young_words),
4061     _rs_lengths(0),
4062     _serial_work_claim(0),
4063     _parallel_work_claim(0),
4064     _num_work_items(collection_set->region_length()),
4065     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4066     prepare_work();
4067   }
4068 
4069   ~G1FreeCollectionSetTask() {
4070     complete_work();
4071     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4072   }
4073 
4074   // Chunk size for work distribution. The chosen value has been determined experimentally
4075   // to be a good tradeoff between overhead and achievable parallelism.
4076   static uint chunk_size() { return 32; }
4077 
4078   virtual void work(uint worker_id) {
4079     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4080 
4081     // Claim serial work.
4082     if (_serial_work_claim == 0) {
4083       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4084       if (value == 0) {
4085         double serial_time = os::elapsedTime();
4086         do_serial_work();
4087         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4088       }
4089     }
4090 
4091     // Start parallel work.
4092     double young_time = 0.0;
4093     bool has_young_time = false;
4094     double non_young_time = 0.0;
4095     bool has_non_young_time = false;
4096 
4097     while (true) {
4098       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4099       size_t cur = end - chunk_size();
4100 
4101       if (cur >= _num_work_items) {
4102         break;
4103       }
4104 
4105       EventGCPhaseParallel event;
4106       double start_time = os::elapsedTime();
4107 
4108       end = MIN2(end, _num_work_items);
4109 
4110       for (; cur < end; cur++) {
4111         bool is_young = _work_items[cur].is_young;
4112 
4113         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4114 
4115         double end_time = os::elapsedTime();
4116         double time_taken = end_time - start_time;
4117         if (is_young) {
4118           young_time += time_taken;
4119           has_young_time = true;
4120           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4121         } else {
4122           non_young_time += time_taken;
4123           has_non_young_time = true;
4124           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4125         }
4126         start_time = end_time;
4127       }
4128     }
4129 
4130     if (has_young_time) {
4131       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4132     }
4133     if (has_non_young_time) {
4134       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4135     }
4136   }
4137 };
4138 
4139 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4140   _eden.clear();
4141 
4142   double free_cset_start_time = os::elapsedTime();
4143 
4144   {
4145     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4146     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4147 
4148     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4149 
4150     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4151                         cl.name(),
4152                         num_workers,
4153                         _collection_set.region_length());
4154     workers()->run_task(&cl, num_workers);
4155   }
4156   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4157 
4158   collection_set->clear();
4159 }
4160 
4161 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4162  private:
4163   FreeRegionList* _free_region_list;
4164   HeapRegionSet* _proxy_set;
4165   uint _humongous_objects_reclaimed;
4166   uint _humongous_regions_reclaimed;
4167   size_t _freed_bytes;
4168  public:
4169 
4170   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4171     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4172   }
4173 
4174   virtual bool do_heap_region(HeapRegion* r) {
4175     if (!r->is_starts_humongous()) {
4176       return false;
4177     }
4178 
4179     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4180 
4181     oop obj = (oop)r->bottom();
4182     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4183 
4184     // The following checks whether the humongous object is live are sufficient.
4185     // The main additional check (in addition to having a reference from the roots
4186     // or the young gen) is whether the humongous object has a remembered set entry.
4187     //
4188     // A humongous object cannot be live if there is no remembered set for it
4189     // because:
4190     // - there can be no references from within humongous starts regions referencing
4191     // the object because we never allocate other objects into them.
4192     // (I.e. there are no intra-region references that may be missed by the
4193     // remembered set)
4194     // - as soon there is a remembered set entry to the humongous starts region
4195     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4196     // until the end of a concurrent mark.
4197     //
4198     // It is not required to check whether the object has been found dead by marking
4199     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4200     // all objects allocated during that time are considered live.
4201     // SATB marking is even more conservative than the remembered set.
4202     // So if at this point in the collection there is no remembered set entry,
4203     // nobody has a reference to it.
4204     // At the start of collection we flush all refinement logs, and remembered sets
4205     // are completely up-to-date wrt to references to the humongous object.
4206     //
4207     // Other implementation considerations:
4208     // - never consider object arrays at this time because they would pose
4209     // considerable effort for cleaning up the the remembered sets. This is
4210     // required because stale remembered sets might reference locations that
4211     // are currently allocated into.
4212     uint region_idx = r->hrm_index();
4213     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4214         !r->rem_set()->is_empty()) {
4215       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4216                                region_idx,
4217                                (size_t)obj->size() * HeapWordSize,
4218                                p2i(r->bottom()),
4219                                r->rem_set()->occupied(),
4220                                r->rem_set()->strong_code_roots_list_length(),
4221                                next_bitmap->is_marked(r->bottom()),
4222                                g1h->is_humongous_reclaim_candidate(region_idx),
4223                                obj->is_typeArray()
4224                               );
4225       return false;
4226     }
4227 
4228     guarantee(obj->is_typeArray(),
4229               "Only eagerly reclaiming type arrays is supported, but the object "
4230               PTR_FORMAT " is not.", p2i(r->bottom()));
4231 
4232     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4233                              region_idx,
4234                              (size_t)obj->size() * HeapWordSize,
4235                              p2i(r->bottom()),
4236                              r->rem_set()->occupied(),
4237                              r->rem_set()->strong_code_roots_list_length(),
4238                              next_bitmap->is_marked(r->bottom()),
4239                              g1h->is_humongous_reclaim_candidate(region_idx),
4240                              obj->is_typeArray()
4241                             );
4242 
4243     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4244     cm->humongous_object_eagerly_reclaimed(r);
4245     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4246            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4247            region_idx,
4248            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4249            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4250     _humongous_objects_reclaimed++;
4251     do {
4252       HeapRegion* next = g1h->next_region_in_humongous(r);
4253       _freed_bytes += r->used();
4254       r->set_containing_set(NULL);
4255       _humongous_regions_reclaimed++;
4256       g1h->free_humongous_region(r, _free_region_list);
4257       r = next;
4258     } while (r != NULL);
4259 
4260     return false;
4261   }
4262 
4263   uint humongous_objects_reclaimed() {
4264     return _humongous_objects_reclaimed;
4265   }
4266 
4267   uint humongous_regions_reclaimed() {
4268     return _humongous_regions_reclaimed;
4269   }
4270 
4271   size_t bytes_freed() const {
4272     return _freed_bytes;
4273   }
4274 };
4275 
4276 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4277   assert_at_safepoint_on_vm_thread();
4278 
4279   if (!G1EagerReclaimHumongousObjects ||
4280       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4281     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4282     return;
4283   }
4284 
4285   double start_time = os::elapsedTime();
4286 
4287   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4288 
4289   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4290   heap_region_iterate(&cl);
4291 
4292   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4293 
4294   G1HRPrinter* hrp = hr_printer();
4295   if (hrp->is_active()) {
4296     FreeRegionListIterator iter(&local_cleanup_list);
4297     while (iter.more_available()) {
4298       HeapRegion* hr = iter.get_next();
4299       hrp->cleanup(hr);
4300     }
4301   }
4302 
4303   prepend_to_freelist(&local_cleanup_list);
4304   decrement_summary_bytes(cl.bytes_freed());
4305 
4306   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4307                                                                     cl.humongous_objects_reclaimed());
4308 }
4309 
4310 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4311 public:
4312   virtual bool do_heap_region(HeapRegion* r) {
4313     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4314     G1CollectedHeap::heap()->clear_in_cset(r);
4315     r->set_young_index_in_cset(-1);
4316     return false;
4317   }
4318 };
4319 
4320 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4321   G1AbandonCollectionSetClosure cl;
4322   collection_set->iterate(&cl);
4323 
4324   collection_set->clear();
4325   collection_set->stop_incremental_building();
4326 }
4327 
4328 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4329   return _allocator->is_retained_old_region(hr);
4330 }
4331 
4332 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4333   _eden.add(hr);
4334   _g1_policy->set_region_eden(hr);
4335 }
4336 
4337 #ifdef ASSERT
4338 
4339 class NoYoungRegionsClosure: public HeapRegionClosure {
4340 private:
4341   bool _success;
4342 public:
4343   NoYoungRegionsClosure() : _success(true) { }
4344   bool do_heap_region(HeapRegion* r) {
4345     if (r->is_young()) {
4346       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4347                             p2i(r->bottom()), p2i(r->end()));
4348       _success = false;
4349     }
4350     return false;
4351   }
4352   bool success() { return _success; }
4353 };
4354 
4355 bool G1CollectedHeap::check_young_list_empty() {
4356   bool ret = (young_regions_count() == 0);
4357 
4358   NoYoungRegionsClosure closure;
4359   heap_region_iterate(&closure);
4360   ret = ret && closure.success();
4361 
4362   return ret;
4363 }
4364 
4365 #endif // ASSERT
4366 
4367 class TearDownRegionSetsClosure : public HeapRegionClosure {
4368   HeapRegionSet *_old_set;
4369 
4370 public:
4371   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4372 
4373   bool do_heap_region(HeapRegion* r) {
4374     if (r->is_old()) {
4375       _old_set->remove(r);
4376     } else if(r->is_young()) {
4377       r->uninstall_surv_rate_group();
4378     } else {
4379       // We ignore free regions, we'll empty the free list afterwards.
4380       // We ignore humongous and archive regions, we're not tearing down these
4381       // sets.
4382       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4383              "it cannot be another type");
4384     }
4385     return false;
4386   }
4387 
4388   ~TearDownRegionSetsClosure() {
4389     assert(_old_set->is_empty(), "post-condition");
4390   }
4391 };
4392 
4393 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4394   assert_at_safepoint_on_vm_thread();
4395 
4396   if (!free_list_only) {
4397     TearDownRegionSetsClosure cl(&_old_set);
4398     heap_region_iterate(&cl);
4399 
4400     // Note that emptying the _young_list is postponed and instead done as
4401     // the first step when rebuilding the regions sets again. The reason for
4402     // this is that during a full GC string deduplication needs to know if
4403     // a collected region was young or old when the full GC was initiated.
4404   }
4405   _hrm->remove_all_free_regions();
4406 }
4407 
4408 void G1CollectedHeap::increase_used(size_t bytes) {
4409   _summary_bytes_used += bytes;
4410 }
4411 
4412 void G1CollectedHeap::decrease_used(size_t bytes) {
4413   assert(_summary_bytes_used >= bytes,
4414          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4415          _summary_bytes_used, bytes);
4416   _summary_bytes_used -= bytes;
4417 }
4418 
4419 void G1CollectedHeap::set_used(size_t bytes) {
4420   _summary_bytes_used = bytes;
4421 }
4422 
4423 class RebuildRegionSetsClosure : public HeapRegionClosure {
4424 private:
4425   bool _free_list_only;
4426 
4427   HeapRegionSet* _old_set;
4428   HeapRegionManager* _hrm;
4429 
4430   size_t _total_used;
4431 
4432 public:
4433   RebuildRegionSetsClosure(bool free_list_only,
4434                            HeapRegionSet* old_set,
4435                            HeapRegionManager* hrm) :
4436     _free_list_only(free_list_only),
4437     _old_set(old_set), _hrm(hrm), _total_used(0) {
4438     assert(_hrm->num_free_regions() == 0, "pre-condition");
4439     if (!free_list_only) {
4440       assert(_old_set->is_empty(), "pre-condition");
4441     }
4442   }
4443 
4444   bool do_heap_region(HeapRegion* r) {
4445     if (r->is_empty()) {
4446       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4447       // Add free regions to the free list
4448       r->set_free();
4449       _hrm->insert_into_free_list(r);
4450     } else if (!_free_list_only) {
4451       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4452 
4453       if (r->is_archive() || r->is_humongous()) {
4454         // We ignore archive and humongous regions. We left these sets unchanged.
4455       } else {
4456         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4457         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4458         r->move_to_old();
4459         _old_set->add(r);
4460       }
4461       _total_used += r->used();
4462     }
4463 
4464     return false;
4465   }
4466 
4467   size_t total_used() {
4468     return _total_used;
4469   }
4470 };
4471 
4472 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4473   assert_at_safepoint_on_vm_thread();
4474 
4475   if (!free_list_only) {
4476     _eden.clear();
4477     _survivor.clear();
4478   }
4479 
4480   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4481   heap_region_iterate(&cl);
4482 
4483   if (!free_list_only) {
4484     set_used(cl.total_used());
4485     if (_archive_allocator != NULL) {
4486       _archive_allocator->clear_used();
4487     }
4488   }
4489   assert(used() == recalculate_used(),
4490          "inconsistent used(), value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4491          used(), recalculate_used());
4492 }
4493 
4494 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4495   HeapRegion* hr = heap_region_containing(p);
4496   return hr->is_in(p);
4497 }
4498 
4499 // Methods for the mutator alloc region
4500 
4501 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4502                                                       bool force) {
4503   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4504   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4505   if (force || should_allocate) {
4506     HeapRegion* new_alloc_region = new_region(word_size,
4507                                               false /* is_old */,
4508                                               false /* do_expand */);
4509     if (new_alloc_region != NULL) {
4510       set_region_short_lived_locked(new_alloc_region);
4511       _hr_printer.alloc(new_alloc_region, !should_allocate);
4512       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4513       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4514       return new_alloc_region;
4515     }
4516   }
4517   return NULL;
4518 }
4519 
4520 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4521                                                   size_t allocated_bytes) {
4522   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4523   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4524 
4525   collection_set()->add_eden_region(alloc_region);
4526   increase_used(allocated_bytes);
4527   _hr_printer.retire(alloc_region);
4528   // We update the eden sizes here, when the region is retired,
4529   // instead of when it's allocated, since this is the point that its
4530   // used space has been recorded in _summary_bytes_used.
4531   g1mm()->update_eden_size();
4532 }
4533 
4534 // Methods for the GC alloc regions
4535 
4536 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4537   if (dest.is_old()) {
4538     return true;
4539   } else {
4540     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4541   }
4542 }
4543 
4544 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4545   assert(FreeList_lock->owned_by_self(), "pre-condition");
4546 
4547   if (!has_more_regions(dest)) {
4548     return NULL;
4549   }
4550 
4551   const bool is_survivor = dest.is_young();
4552 
4553   HeapRegion* new_alloc_region = new_region(word_size,
4554                                             !is_survivor,
4555                                             true /* do_expand */);
4556   if (new_alloc_region != NULL) {
4557     if (is_survivor) {
4558       new_alloc_region->set_survivor();
4559       _survivor.add(new_alloc_region);
4560       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4561     } else {
4562       new_alloc_region->set_old();
4563       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4564     }
4565     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4566     _hr_printer.alloc(new_alloc_region);
4567     bool during_im = collector_state()->in_initial_mark_gc();
4568     new_alloc_region->note_start_of_copying(during_im);
4569     return new_alloc_region;
4570   }
4571   return NULL;
4572 }
4573 
4574 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4575                                              size_t allocated_bytes,
4576                                              InCSetState dest) {
4577   bool during_im = collector_state()->in_initial_mark_gc();
4578   alloc_region->note_end_of_copying(during_im);
4579   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4580   if (dest.is_old()) {
4581     old_set_add(alloc_region);
4582   }
4583   _hr_printer.retire(alloc_region);
4584 }
4585 
4586 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4587   bool expanded = false;
4588   uint index = _hrm->find_highest_free(&expanded);
4589 
4590   if (index != G1_NO_HRM_INDEX) {
4591     if (expanded) {
4592       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4593                                 HeapRegion::GrainWords * HeapWordSize);
4594     }
4595     _hrm->allocate_free_regions_starting_at(index, 1);
4596     return region_at(index);
4597   }
4598   return NULL;
4599 }
4600 
4601 // Optimized nmethod scanning
4602 
4603 class RegisterNMethodOopClosure: public OopClosure {
4604   G1CollectedHeap* _g1h;
4605   nmethod* _nm;
4606 
4607   template <class T> void do_oop_work(T* p) {
4608     T heap_oop = RawAccess<>::oop_load(p);
4609     if (!CompressedOops::is_null(heap_oop)) {
4610       oop obj = CompressedOops::decode_not_null(heap_oop);
4611       HeapRegion* hr = _g1h->heap_region_containing(obj);
4612       assert(!hr->is_continues_humongous(),
4613              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4614              " starting at " HR_FORMAT,
4615              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4616 
4617       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4618       hr->add_strong_code_root_locked(_nm);
4619     }
4620   }
4621 
4622 public:
4623   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4624     _g1h(g1h), _nm(nm) {}
4625 
4626   void do_oop(oop* p)       { do_oop_work(p); }
4627   void do_oop(narrowOop* p) { do_oop_work(p); }
4628 };
4629 
4630 class UnregisterNMethodOopClosure: public OopClosure {
4631   G1CollectedHeap* _g1h;
4632   nmethod* _nm;
4633 
4634   template <class T> void do_oop_work(T* p) {
4635     T heap_oop = RawAccess<>::oop_load(p);
4636     if (!CompressedOops::is_null(heap_oop)) {
4637       oop obj = CompressedOops::decode_not_null(heap_oop);
4638       HeapRegion* hr = _g1h->heap_region_containing(obj);
4639       assert(!hr->is_continues_humongous(),
4640              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4641              " starting at " HR_FORMAT,
4642              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4643 
4644       hr->remove_strong_code_root(_nm);
4645     }
4646   }
4647 
4648 public:
4649   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4650     _g1h(g1h), _nm(nm) {}
4651 
4652   void do_oop(oop* p)       { do_oop_work(p); }
4653   void do_oop(narrowOop* p) { do_oop_work(p); }
4654 };
4655 
4656 // Returns true if the reference points to an object that
4657 // can move in an incremental collection.
4658 bool G1CollectedHeap::is_scavengable(oop obj) {
4659   HeapRegion* hr = heap_region_containing(obj);
4660   return !hr->is_pinned();
4661 }
4662 
4663 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4664   guarantee(nm != NULL, "sanity");
4665   RegisterNMethodOopClosure reg_cl(this, nm);
4666   nm->oops_do(&reg_cl);
4667 }
4668 
4669 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4670   guarantee(nm != NULL, "sanity");
4671   UnregisterNMethodOopClosure reg_cl(this, nm);
4672   nm->oops_do(&reg_cl, true);
4673 }
4674 
4675 void G1CollectedHeap::purge_code_root_memory() {
4676   double purge_start = os::elapsedTime();
4677   G1CodeRootSet::purge();
4678   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4679   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4680 }
4681 
4682 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4683   G1CollectedHeap* _g1h;
4684 
4685 public:
4686   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4687     _g1h(g1h) {}
4688 
4689   void do_code_blob(CodeBlob* cb) {
4690     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4691     if (nm == NULL) {
4692       return;
4693     }
4694 
4695     if (ScavengeRootsInCode) {
4696       _g1h->register_nmethod(nm);
4697     }
4698   }
4699 };
4700 
4701 void G1CollectedHeap::rebuild_strong_code_roots() {
4702   RebuildStrongCodeRootClosure blob_cl(this);
4703   CodeCache::blobs_do(&blob_cl);
4704 }
4705 
4706 void G1CollectedHeap::initialize_serviceability() {
4707   _g1mm->initialize_serviceability();
4708 }
4709 
4710 MemoryUsage G1CollectedHeap::memory_usage() {
4711   return _g1mm->memory_usage();
4712 }
4713 
4714 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4715   return _g1mm->memory_managers();
4716 }
4717 
4718 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4719   return _g1mm->memory_pools();
4720 }