1 /* 2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compileLog.hpp" 34 #include "compiler/disassembler.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSet.hpp" 37 #include "gc/shared/c2/barrierSetC2.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "opto/addnode.hpp" 40 #include "opto/block.hpp" 41 #include "opto/c2compiler.hpp" 42 #include "opto/callGenerator.hpp" 43 #include "opto/callnode.hpp" 44 #include "opto/castnode.hpp" 45 #include "opto/cfgnode.hpp" 46 #include "opto/chaitin.hpp" 47 #include "opto/compile.hpp" 48 #include "opto/connode.hpp" 49 #include "opto/convertnode.hpp" 50 #include "opto/divnode.hpp" 51 #include "opto/escape.hpp" 52 #include "opto/idealGraphPrinter.hpp" 53 #include "opto/loopnode.hpp" 54 #include "opto/machnode.hpp" 55 #include "opto/macro.hpp" 56 #include "opto/matcher.hpp" 57 #include "opto/mathexactnode.hpp" 58 #include "opto/memnode.hpp" 59 #include "opto/mulnode.hpp" 60 #include "opto/narrowptrnode.hpp" 61 #include "opto/node.hpp" 62 #include "opto/opcodes.hpp" 63 #include "opto/output.hpp" 64 #include "opto/parse.hpp" 65 #include "opto/phaseX.hpp" 66 #include "opto/rootnode.hpp" 67 #include "opto/runtime.hpp" 68 #include "opto/stringopts.hpp" 69 #include "opto/type.hpp" 70 #include "opto/vectornode.hpp" 71 #include "runtime/arguments.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/signature.hpp" 74 #include "runtime/stubRoutines.hpp" 75 #include "runtime/timer.hpp" 76 #include "utilities/align.hpp" 77 #include "utilities/copy.hpp" 78 #include "utilities/macros.hpp" 79 #if INCLUDE_ZGC 80 #include "gc/z/c2/zBarrierSetC2.hpp" 81 #endif 82 83 84 // -------------------- Compile::mach_constant_base_node ----------------------- 85 // Constant table base node singleton. 86 MachConstantBaseNode* Compile::mach_constant_base_node() { 87 if (_mach_constant_base_node == NULL) { 88 _mach_constant_base_node = new MachConstantBaseNode(); 89 _mach_constant_base_node->add_req(C->root()); 90 } 91 return _mach_constant_base_node; 92 } 93 94 95 /// Support for intrinsics. 96 97 // Return the index at which m must be inserted (or already exists). 98 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 99 class IntrinsicDescPair { 100 private: 101 ciMethod* _m; 102 bool _is_virtual; 103 public: 104 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 105 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 106 ciMethod* m= elt->method(); 107 ciMethod* key_m = key->_m; 108 if (key_m < m) return -1; 109 else if (key_m > m) return 1; 110 else { 111 bool is_virtual = elt->is_virtual(); 112 bool key_virtual = key->_is_virtual; 113 if (key_virtual < is_virtual) return -1; 114 else if (key_virtual > is_virtual) return 1; 115 else return 0; 116 } 117 } 118 }; 119 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 120 #ifdef ASSERT 121 for (int i = 1; i < _intrinsics->length(); i++) { 122 CallGenerator* cg1 = _intrinsics->at(i-1); 123 CallGenerator* cg2 = _intrinsics->at(i); 124 assert(cg1->method() != cg2->method() 125 ? cg1->method() < cg2->method() 126 : cg1->is_virtual() < cg2->is_virtual(), 127 "compiler intrinsics list must stay sorted"); 128 } 129 #endif 130 IntrinsicDescPair pair(m, is_virtual); 131 return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 132 } 133 134 void Compile::register_intrinsic(CallGenerator* cg) { 135 if (_intrinsics == NULL) { 136 _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL); 137 } 138 int len = _intrinsics->length(); 139 bool found = false; 140 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 141 assert(!found, "registering twice"); 142 _intrinsics->insert_before(index, cg); 143 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 144 } 145 146 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 147 assert(m->is_loaded(), "don't try this on unloaded methods"); 148 if (_intrinsics != NULL) { 149 bool found = false; 150 int index = intrinsic_insertion_index(m, is_virtual, found); 151 if (found) { 152 return _intrinsics->at(index); 153 } 154 } 155 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 156 if (m->intrinsic_id() != vmIntrinsics::_none && 157 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 158 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 159 if (cg != NULL) { 160 // Save it for next time: 161 register_intrinsic(cg); 162 return cg; 163 } else { 164 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 165 } 166 } 167 return NULL; 168 } 169 170 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined 171 // in library_call.cpp. 172 173 174 #ifndef PRODUCT 175 // statistics gathering... 176 177 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0}; 178 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0}; 179 180 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 181 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 182 int oflags = _intrinsic_hist_flags[id]; 183 assert(flags != 0, "what happened?"); 184 if (is_virtual) { 185 flags |= _intrinsic_virtual; 186 } 187 bool changed = (flags != oflags); 188 if ((flags & _intrinsic_worked) != 0) { 189 juint count = (_intrinsic_hist_count[id] += 1); 190 if (count == 1) { 191 changed = true; // first time 192 } 193 // increment the overall count also: 194 _intrinsic_hist_count[vmIntrinsics::_none] += 1; 195 } 196 if (changed) { 197 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 198 // Something changed about the intrinsic's virtuality. 199 if ((flags & _intrinsic_virtual) != 0) { 200 // This is the first use of this intrinsic as a virtual call. 201 if (oflags != 0) { 202 // We already saw it as a non-virtual, so note both cases. 203 flags |= _intrinsic_both; 204 } 205 } else if ((oflags & _intrinsic_both) == 0) { 206 // This is the first use of this intrinsic as a non-virtual 207 flags |= _intrinsic_both; 208 } 209 } 210 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags); 211 } 212 // update the overall flags also: 213 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags; 214 return changed; 215 } 216 217 static char* format_flags(int flags, char* buf) { 218 buf[0] = 0; 219 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 220 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 221 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 222 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 223 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 224 if (buf[0] == 0) strcat(buf, ","); 225 assert(buf[0] == ',', "must be"); 226 return &buf[1]; 227 } 228 229 void Compile::print_intrinsic_statistics() { 230 char flagsbuf[100]; 231 ttyLocker ttyl; 232 if (xtty != NULL) xtty->head("statistics type='intrinsic'"); 233 tty->print_cr("Compiler intrinsic usage:"); 234 juint total = _intrinsic_hist_count[vmIntrinsics::_none]; 235 if (total == 0) total = 1; // avoid div0 in case of no successes 236 #define PRINT_STAT_LINE(name, c, f) \ 237 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 238 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) { 239 vmIntrinsics::ID id = (vmIntrinsics::ID) index; 240 int flags = _intrinsic_hist_flags[id]; 241 juint count = _intrinsic_hist_count[id]; 242 if ((flags | count) != 0) { 243 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 244 } 245 } 246 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf)); 247 if (xtty != NULL) xtty->tail("statistics"); 248 } 249 250 void Compile::print_statistics() { 251 { ttyLocker ttyl; 252 if (xtty != NULL) xtty->head("statistics type='opto'"); 253 Parse::print_statistics(); 254 PhaseCCP::print_statistics(); 255 PhaseRegAlloc::print_statistics(); 256 Scheduling::print_statistics(); 257 PhasePeephole::print_statistics(); 258 PhaseIdealLoop::print_statistics(); 259 if (xtty != NULL) xtty->tail("statistics"); 260 } 261 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) { 262 // put this under its own <statistics> element. 263 print_intrinsic_statistics(); 264 } 265 } 266 #endif //PRODUCT 267 268 // Support for bundling info 269 Bundle* Compile::node_bundling(const Node *n) { 270 assert(valid_bundle_info(n), "oob"); 271 return &_node_bundling_base[n->_idx]; 272 } 273 274 bool Compile::valid_bundle_info(const Node *n) { 275 return (_node_bundling_limit > n->_idx); 276 } 277 278 279 void Compile::gvn_replace_by(Node* n, Node* nn) { 280 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 281 Node* use = n->last_out(i); 282 bool is_in_table = initial_gvn()->hash_delete(use); 283 uint uses_found = 0; 284 for (uint j = 0; j < use->len(); j++) { 285 if (use->in(j) == n) { 286 if (j < use->req()) 287 use->set_req(j, nn); 288 else 289 use->set_prec(j, nn); 290 uses_found++; 291 } 292 } 293 if (is_in_table) { 294 // reinsert into table 295 initial_gvn()->hash_find_insert(use); 296 } 297 record_for_igvn(use); 298 i -= uses_found; // we deleted 1 or more copies of this edge 299 } 300 } 301 302 303 static inline bool not_a_node(const Node* n) { 304 if (n == NULL) return true; 305 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 306 if (*(address*)n == badAddress) return true; // kill by Node::destruct 307 return false; 308 } 309 310 // Identify all nodes that are reachable from below, useful. 311 // Use breadth-first pass that records state in a Unique_Node_List, 312 // recursive traversal is slower. 313 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 314 int estimated_worklist_size = live_nodes(); 315 useful.map( estimated_worklist_size, NULL ); // preallocate space 316 317 // Initialize worklist 318 if (root() != NULL) { useful.push(root()); } 319 // If 'top' is cached, declare it useful to preserve cached node 320 if( cached_top_node() ) { useful.push(cached_top_node()); } 321 322 // Push all useful nodes onto the list, breadthfirst 323 for( uint next = 0; next < useful.size(); ++next ) { 324 assert( next < unique(), "Unique useful nodes < total nodes"); 325 Node *n = useful.at(next); 326 uint max = n->len(); 327 for( uint i = 0; i < max; ++i ) { 328 Node *m = n->in(i); 329 if (not_a_node(m)) continue; 330 useful.push(m); 331 } 332 } 333 } 334 335 // Update dead_node_list with any missing dead nodes using useful 336 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 337 void Compile::update_dead_node_list(Unique_Node_List &useful) { 338 uint max_idx = unique(); 339 VectorSet& useful_node_set = useful.member_set(); 340 341 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 342 // If node with index node_idx is not in useful set, 343 // mark it as dead in dead node list. 344 if (! useful_node_set.test(node_idx) ) { 345 record_dead_node(node_idx); 346 } 347 } 348 } 349 350 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 351 int shift = 0; 352 for (int i = 0; i < inlines->length(); i++) { 353 CallGenerator* cg = inlines->at(i); 354 CallNode* call = cg->call_node(); 355 if (shift > 0) { 356 inlines->at_put(i-shift, cg); 357 } 358 if (!useful.member(call)) { 359 shift++; 360 } 361 } 362 inlines->trunc_to(inlines->length()-shift); 363 } 364 365 // Disconnect all useless nodes by disconnecting those at the boundary. 366 void Compile::remove_useless_nodes(Unique_Node_List &useful) { 367 uint next = 0; 368 while (next < useful.size()) { 369 Node *n = useful.at(next++); 370 if (n->is_SafePoint()) { 371 // We're done with a parsing phase. Replaced nodes are not valid 372 // beyond that point. 373 n->as_SafePoint()->delete_replaced_nodes(); 374 } 375 // Use raw traversal of out edges since this code removes out edges 376 int max = n->outcnt(); 377 for (int j = 0; j < max; ++j) { 378 Node* child = n->raw_out(j); 379 if (! useful.member(child)) { 380 assert(!child->is_top() || child != top(), 381 "If top is cached in Compile object it is in useful list"); 382 // Only need to remove this out-edge to the useless node 383 n->raw_del_out(j); 384 --j; 385 --max; 386 } 387 } 388 if (n->outcnt() == 1 && n->has_special_unique_user()) { 389 record_for_igvn(n->unique_out()); 390 } 391 } 392 // Remove useless macro and predicate opaq nodes 393 for (int i = C->macro_count()-1; i >= 0; i--) { 394 Node* n = C->macro_node(i); 395 if (!useful.member(n)) { 396 remove_macro_node(n); 397 } 398 } 399 // Remove useless CastII nodes with range check dependency 400 for (int i = range_check_cast_count() - 1; i >= 0; i--) { 401 Node* cast = range_check_cast_node(i); 402 if (!useful.member(cast)) { 403 remove_range_check_cast(cast); 404 } 405 } 406 // Remove useless expensive nodes 407 for (int i = C->expensive_count()-1; i >= 0; i--) { 408 Node* n = C->expensive_node(i); 409 if (!useful.member(n)) { 410 remove_expensive_node(n); 411 } 412 } 413 // Remove useless Opaque4 nodes 414 for (int i = opaque4_count() - 1; i >= 0; i--) { 415 Node* opaq = opaque4_node(i); 416 if (!useful.member(opaq)) { 417 remove_opaque4_node(opaq); 418 } 419 } 420 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 421 bs->eliminate_useless_gc_barriers(useful, this); 422 // clean up the late inline lists 423 remove_useless_late_inlines(&_string_late_inlines, useful); 424 remove_useless_late_inlines(&_boxing_late_inlines, useful); 425 remove_useless_late_inlines(&_late_inlines, useful); 426 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 427 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 428 } 429 430 //------------------------------frame_size_in_words----------------------------- 431 // frame_slots in units of words 432 int Compile::frame_size_in_words() const { 433 // shift is 0 in LP32 and 1 in LP64 434 const int shift = (LogBytesPerWord - LogBytesPerInt); 435 int words = _frame_slots >> shift; 436 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 437 return words; 438 } 439 440 // To bang the stack of this compiled method we use the stack size 441 // that the interpreter would need in case of a deoptimization. This 442 // removes the need to bang the stack in the deoptimization blob which 443 // in turn simplifies stack overflow handling. 444 int Compile::bang_size_in_bytes() const { 445 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size); 446 } 447 448 // ============================================================================ 449 //------------------------------CompileWrapper--------------------------------- 450 class CompileWrapper : public StackObj { 451 Compile *const _compile; 452 public: 453 CompileWrapper(Compile* compile); 454 455 ~CompileWrapper(); 456 }; 457 458 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 459 // the Compile* pointer is stored in the current ciEnv: 460 ciEnv* env = compile->env(); 461 assert(env == ciEnv::current(), "must already be a ciEnv active"); 462 assert(env->compiler_data() == NULL, "compile already active?"); 463 env->set_compiler_data(compile); 464 assert(compile == Compile::current(), "sanity"); 465 466 compile->set_type_dict(NULL); 467 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 468 compile->clone_map().set_clone_idx(0); 469 compile->set_type_hwm(NULL); 470 compile->set_type_last_size(0); 471 compile->set_last_tf(NULL, NULL); 472 compile->set_indexSet_arena(NULL); 473 compile->set_indexSet_free_block_list(NULL); 474 compile->init_type_arena(); 475 Type::Initialize(compile); 476 _compile->set_scratch_buffer_blob(NULL); 477 _compile->begin_method(); 478 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 479 } 480 CompileWrapper::~CompileWrapper() { 481 _compile->end_method(); 482 if (_compile->scratch_buffer_blob() != NULL) 483 BufferBlob::free(_compile->scratch_buffer_blob()); 484 _compile->env()->set_compiler_data(NULL); 485 } 486 487 488 //----------------------------print_compile_messages--------------------------- 489 void Compile::print_compile_messages() { 490 #ifndef PRODUCT 491 // Check if recompiling 492 if (_subsume_loads == false && PrintOpto) { 493 // Recompiling without allowing machine instructions to subsume loads 494 tty->print_cr("*********************************************************"); 495 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 496 tty->print_cr("*********************************************************"); 497 } 498 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) { 499 // Recompiling without escape analysis 500 tty->print_cr("*********************************************************"); 501 tty->print_cr("** Bailout: Recompile without escape analysis **"); 502 tty->print_cr("*********************************************************"); 503 } 504 if (_eliminate_boxing != EliminateAutoBox && PrintOpto) { 505 // Recompiling without boxing elimination 506 tty->print_cr("*********************************************************"); 507 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 508 tty->print_cr("*********************************************************"); 509 } 510 if (C->directive()->BreakAtCompileOption) { 511 // Open the debugger when compiling this method. 512 tty->print("### Breaking when compiling: "); 513 method()->print_short_name(); 514 tty->cr(); 515 BREAKPOINT; 516 } 517 518 if( PrintOpto ) { 519 if (is_osr_compilation()) { 520 tty->print("[OSR]%3d", _compile_id); 521 } else { 522 tty->print("%3d", _compile_id); 523 } 524 } 525 #endif 526 } 527 528 529 //-----------------------init_scratch_buffer_blob------------------------------ 530 // Construct a temporary BufferBlob and cache it for this compile. 531 void Compile::init_scratch_buffer_blob(int const_size) { 532 // If there is already a scratch buffer blob allocated and the 533 // constant section is big enough, use it. Otherwise free the 534 // current and allocate a new one. 535 BufferBlob* blob = scratch_buffer_blob(); 536 if ((blob != NULL) && (const_size <= _scratch_const_size)) { 537 // Use the current blob. 538 } else { 539 if (blob != NULL) { 540 BufferBlob::free(blob); 541 } 542 543 ResourceMark rm; 544 _scratch_const_size = const_size; 545 int size = C2Compiler::initial_code_buffer_size(const_size); 546 blob = BufferBlob::create("Compile::scratch_buffer", size); 547 // Record the buffer blob for next time. 548 set_scratch_buffer_blob(blob); 549 // Have we run out of code space? 550 if (scratch_buffer_blob() == NULL) { 551 // Let CompilerBroker disable further compilations. 552 record_failure("Not enough space for scratch buffer in CodeCache"); 553 return; 554 } 555 } 556 557 // Initialize the relocation buffers 558 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 559 set_scratch_locs_memory(locs_buf); 560 } 561 562 563 //-----------------------scratch_emit_size------------------------------------- 564 // Helper function that computes size by emitting code 565 uint Compile::scratch_emit_size(const Node* n) { 566 // Start scratch_emit_size section. 567 set_in_scratch_emit_size(true); 568 569 // Emit into a trash buffer and count bytes emitted. 570 // This is a pretty expensive way to compute a size, 571 // but it works well enough if seldom used. 572 // All common fixed-size instructions are given a size 573 // method by the AD file. 574 // Note that the scratch buffer blob and locs memory are 575 // allocated at the beginning of the compile task, and 576 // may be shared by several calls to scratch_emit_size. 577 // The allocation of the scratch buffer blob is particularly 578 // expensive, since it has to grab the code cache lock. 579 BufferBlob* blob = this->scratch_buffer_blob(); 580 assert(blob != NULL, "Initialize BufferBlob at start"); 581 assert(blob->size() > MAX_inst_size, "sanity"); 582 relocInfo* locs_buf = scratch_locs_memory(); 583 address blob_begin = blob->content_begin(); 584 address blob_end = (address)locs_buf; 585 assert(blob->contains(blob_end), "sanity"); 586 CodeBuffer buf(blob_begin, blob_end - blob_begin); 587 buf.initialize_consts_size(_scratch_const_size); 588 buf.initialize_stubs_size(MAX_stubs_size); 589 assert(locs_buf != NULL, "sanity"); 590 int lsize = MAX_locs_size / 3; 591 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 592 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 593 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 594 // Mark as scratch buffer. 595 buf.consts()->set_scratch_emit(); 596 buf.insts()->set_scratch_emit(); 597 buf.stubs()->set_scratch_emit(); 598 599 // Do the emission. 600 601 Label fakeL; // Fake label for branch instructions. 602 Label* saveL = NULL; 603 uint save_bnum = 0; 604 bool is_branch = n->is_MachBranch(); 605 if (is_branch) { 606 MacroAssembler masm(&buf); 607 masm.bind(fakeL); 608 n->as_MachBranch()->save_label(&saveL, &save_bnum); 609 n->as_MachBranch()->label_set(&fakeL, 0); 610 } 611 n->emit(buf, this->regalloc()); 612 613 // Emitting into the scratch buffer should not fail 614 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason()); 615 616 if (is_branch) // Restore label. 617 n->as_MachBranch()->label_set(saveL, save_bnum); 618 619 // End scratch_emit_size section. 620 set_in_scratch_emit_size(false); 621 622 return buf.insts_size(); 623 } 624 625 626 // ============================================================================ 627 //------------------------------Compile standard------------------------------- 628 debug_only( int Compile::_debug_idx = 100000; ) 629 630 // Compile a method. entry_bci is -1 for normal compilations and indicates 631 // the continuation bci for on stack replacement. 632 633 634 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, 635 bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive) 636 : Phase(Compiler), 637 _compile_id(ci_env->compile_id()), 638 _save_argument_registers(false), 639 _subsume_loads(subsume_loads), 640 _do_escape_analysis(do_escape_analysis), 641 _eliminate_boxing(eliminate_boxing), 642 _method(target), 643 _entry_bci(osr_bci), 644 _stub_function(NULL), 645 _stub_name(NULL), 646 _stub_entry_point(NULL), 647 _max_node_limit(MaxNodeLimit), 648 _orig_pc_slot(0), 649 _orig_pc_slot_offset_in_bytes(0), 650 _inlining_progress(false), 651 _inlining_incrementally(false), 652 _do_cleanup(false), 653 _has_reserved_stack_access(target->has_reserved_stack_access()), 654 #ifndef PRODUCT 655 _trace_opto_output(directive->TraceOptoOutputOption), 656 #endif 657 _has_method_handle_invokes(false), 658 _comp_arena(mtCompiler), 659 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 660 _env(ci_env), 661 _directive(directive), 662 _log(ci_env->log()), 663 _failure_reason(NULL), 664 _congraph(NULL), 665 #ifndef PRODUCT 666 _printer(IdealGraphPrinter::printer()), 667 #endif 668 _dead_node_list(comp_arena()), 669 _dead_node_count(0), 670 _node_arena(mtCompiler), 671 _old_arena(mtCompiler), 672 _mach_constant_base_node(NULL), 673 _Compile_types(mtCompiler), 674 _initial_gvn(NULL), 675 _for_igvn(NULL), 676 _warm_calls(NULL), 677 _late_inlines(comp_arena(), 2, 0, NULL), 678 _string_late_inlines(comp_arena(), 2, 0, NULL), 679 _boxing_late_inlines(comp_arena(), 2, 0, NULL), 680 _vector_reboxing_late_inlines(comp_arena(), 2, 0, NULL), 681 _late_inlines_pos(0), 682 _number_of_mh_late_inlines(0), 683 _print_inlining_stream(NULL), 684 _print_inlining_list(NULL), 685 _print_inlining_idx(0), 686 _print_inlining_output(NULL), 687 _replay_inline_data(NULL), 688 _java_calls(0), 689 _inner_loops(0), 690 _interpreter_frame_size(0), 691 _node_bundling_limit(0), 692 _node_bundling_base(NULL), 693 _code_buffer("Compile::Fill_buffer"), 694 _scratch_const_size(-1), 695 _in_scratch_emit_size(false) 696 #ifndef PRODUCT 697 , _in_dump_cnt(0) 698 #endif 699 { 700 C = this; 701 #ifndef PRODUCT 702 if (_printer != NULL) { 703 _printer->set_compile(this); 704 } 705 #endif 706 CompileWrapper cw(this); 707 708 if (CITimeVerbose) { 709 tty->print(" "); 710 target->holder()->name()->print(); 711 tty->print("."); 712 target->print_short_name(); 713 tty->print(" "); 714 } 715 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 716 TraceTime t2(NULL, &_t_methodCompilation, CITime, false); 717 718 #ifndef PRODUCT 719 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 720 if (!print_opto_assembly) { 721 bool print_assembly = directive->PrintAssemblyOption; 722 if (print_assembly && !Disassembler::can_decode()) { 723 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly"); 724 print_opto_assembly = true; 725 } 726 } 727 set_print_assembly(print_opto_assembly); 728 set_parsed_irreducible_loop(false); 729 730 if (directive->ReplayInlineOption) { 731 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 732 } 733 #endif 734 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 735 set_print_intrinsics(directive->PrintIntrinsicsOption); 736 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 737 738 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) { 739 // Make sure the method being compiled gets its own MDO, 740 // so we can at least track the decompile_count(). 741 // Need MDO to record RTM code generation state. 742 method()->ensure_method_data(); 743 } 744 745 Init(::AliasLevel); 746 747 748 print_compile_messages(); 749 750 _ilt = InlineTree::build_inline_tree_root(); 751 752 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 753 assert(num_alias_types() >= AliasIdxRaw, ""); 754 755 #define MINIMUM_NODE_HASH 1023 756 // Node list that Iterative GVN will start with 757 Unique_Node_List for_igvn(comp_arena()); 758 set_for_igvn(&for_igvn); 759 760 // GVN that will be run immediately on new nodes 761 uint estimated_size = method()->code_size()*4+64; 762 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 763 PhaseGVN gvn(node_arena(), estimated_size); 764 set_initial_gvn(&gvn); 765 766 print_inlining_init(); 767 { // Scope for timing the parser 768 TracePhase tp("parse", &timers[_t_parser]); 769 770 // Put top into the hash table ASAP. 771 initial_gvn()->transform_no_reclaim(top()); 772 773 // Set up tf(), start(), and find a CallGenerator. 774 CallGenerator* cg = NULL; 775 if (is_osr_compilation()) { 776 const TypeTuple *domain = StartOSRNode::osr_domain(); 777 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 778 init_tf(TypeFunc::make(domain, range)); 779 StartNode* s = new StartOSRNode(root(), domain); 780 initial_gvn()->set_type_bottom(s); 781 init_start(s); 782 cg = CallGenerator::for_osr(method(), entry_bci()); 783 } else { 784 // Normal case. 785 init_tf(TypeFunc::make(method())); 786 StartNode* s = new StartNode(root(), tf()->domain()); 787 initial_gvn()->set_type_bottom(s); 788 init_start(s); 789 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 790 // With java.lang.ref.reference.get() we must go through the 791 // intrinsic - even when get() is the root 792 // method of the compile - so that, if necessary, the value in 793 // the referent field of the reference object gets recorded by 794 // the pre-barrier code. 795 cg = find_intrinsic(method(), false); 796 } 797 if (cg == NULL) { 798 float past_uses = method()->interpreter_invocation_count(); 799 float expected_uses = past_uses; 800 cg = CallGenerator::for_inline(method(), expected_uses); 801 } 802 } 803 if (failing()) return; 804 if (cg == NULL) { 805 record_method_not_compilable("cannot parse method"); 806 return; 807 } 808 JVMState* jvms = build_start_state(start(), tf()); 809 if ((jvms = cg->generate(jvms)) == NULL) { 810 if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) { 811 record_method_not_compilable("method parse failed"); 812 } 813 return; 814 } 815 GraphKit kit(jvms); 816 817 if (!kit.stopped()) { 818 // Accept return values, and transfer control we know not where. 819 // This is done by a special, unique ReturnNode bound to root. 820 return_values(kit.jvms()); 821 } 822 823 if (kit.has_exceptions()) { 824 // Any exceptions that escape from this call must be rethrown 825 // to whatever caller is dynamically above us on the stack. 826 // This is done by a special, unique RethrowNode bound to root. 827 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 828 } 829 830 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 831 832 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 833 inline_string_calls(true); 834 } 835 836 if (failing()) return; 837 838 print_method(PHASE_BEFORE_REMOVEUSELESS, 3); 839 840 // Remove clutter produced by parsing. 841 if (!failing()) { 842 ResourceMark rm; 843 PhaseRemoveUseless pru(initial_gvn(), &for_igvn); 844 } 845 } 846 847 // Note: Large methods are capped off in do_one_bytecode(). 848 if (failing()) return; 849 850 // After parsing, node notes are no longer automagic. 851 // They must be propagated by register_new_node_with_optimizer(), 852 // clone(), or the like. 853 set_default_node_notes(NULL); 854 855 for (;;) { 856 int successes = Inline_Warm(); 857 if (failing()) return; 858 if (successes == 0) break; 859 } 860 861 // Drain the list. 862 Finish_Warm(); 863 #ifndef PRODUCT 864 if (_printer && _printer->should_print(1)) { 865 _printer->print_inlining(); 866 } 867 #endif 868 869 if (failing()) return; 870 NOT_PRODUCT( verify_graph_edges(); ) 871 872 // Now optimize 873 Optimize(); 874 if (failing()) return; 875 NOT_PRODUCT( verify_graph_edges(); ) 876 877 #ifndef PRODUCT 878 if (PrintIdeal) { 879 ttyLocker ttyl; // keep the following output all in one block 880 // This output goes directly to the tty, not the compiler log. 881 // To enable tools to match it up with the compilation activity, 882 // be sure to tag this tty output with the compile ID. 883 if (xtty != NULL) { 884 xtty->head("ideal compile_id='%d'%s", compile_id(), 885 is_osr_compilation() ? " compile_kind='osr'" : 886 ""); 887 } 888 root()->dump(9999); 889 if (xtty != NULL) { 890 xtty->tail("ideal"); 891 } 892 } 893 #endif 894 895 #ifdef ASSERT 896 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 897 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 898 #endif 899 900 // Dump compilation data to replay it. 901 if (directive->DumpReplayOption) { 902 env()->dump_replay_data(_compile_id); 903 } 904 if (directive->DumpInlineOption && (ilt() != NULL)) { 905 env()->dump_inline_data(_compile_id); 906 } 907 908 // Now that we know the size of all the monitors we can add a fixed slot 909 // for the original deopt pc. 910 911 _orig_pc_slot = fixed_slots(); 912 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size); 913 set_fixed_slots(next_slot); 914 915 // Compute when to use implicit null checks. Used by matching trap based 916 // nodes and NullCheck optimization. 917 set_allowed_deopt_reasons(); 918 919 // Now generate code 920 Code_Gen(); 921 if (failing()) return; 922 923 // Check if we want to skip execution of all compiled code. 924 { 925 #ifndef PRODUCT 926 if (OptoNoExecute) { 927 record_method_not_compilable("+OptoNoExecute"); // Flag as failed 928 return; 929 } 930 #endif 931 TracePhase tp("install_code", &timers[_t_registerMethod]); 932 933 if (is_osr_compilation()) { 934 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 935 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 936 } else { 937 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 938 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 939 } 940 941 env()->register_method(_method, _entry_bci, 942 &_code_offsets, 943 _orig_pc_slot_offset_in_bytes, 944 code_buffer(), 945 frame_size_in_words(), _oop_map_set, 946 &_handler_table, &_inc_table, 947 compiler, 948 has_unsafe_access(), 949 SharedRuntime::is_wide_vector(max_vector_size()), 950 rtm_state() 951 ); 952 953 if (log() != NULL) // Print code cache state into compiler log 954 log()->code_cache_state(); 955 } 956 } 957 958 //------------------------------Compile---------------------------------------- 959 // Compile a runtime stub 960 Compile::Compile( ciEnv* ci_env, 961 TypeFunc_generator generator, 962 address stub_function, 963 const char *stub_name, 964 int is_fancy_jump, 965 bool pass_tls, 966 bool save_arg_registers, 967 bool return_pc, 968 DirectiveSet* directive) 969 : Phase(Compiler), 970 _compile_id(0), 971 _save_argument_registers(save_arg_registers), 972 _subsume_loads(true), 973 _do_escape_analysis(false), 974 _eliminate_boxing(false), 975 _method(NULL), 976 _entry_bci(InvocationEntryBci), 977 _stub_function(stub_function), 978 _stub_name(stub_name), 979 _stub_entry_point(NULL), 980 _max_node_limit(MaxNodeLimit), 981 _orig_pc_slot(0), 982 _orig_pc_slot_offset_in_bytes(0), 983 _inlining_progress(false), 984 _inlining_incrementally(false), 985 _has_reserved_stack_access(false), 986 #ifndef PRODUCT 987 _trace_opto_output(directive->TraceOptoOutputOption), 988 #endif 989 _has_method_handle_invokes(false), 990 _comp_arena(mtCompiler), 991 _env(ci_env), 992 _directive(directive), 993 _log(ci_env->log()), 994 _failure_reason(NULL), 995 _congraph(NULL), 996 #ifndef PRODUCT 997 _printer(NULL), 998 #endif 999 _dead_node_list(comp_arena()), 1000 _dead_node_count(0), 1001 _node_arena(mtCompiler), 1002 _old_arena(mtCompiler), 1003 _mach_constant_base_node(NULL), 1004 _Compile_types(mtCompiler), 1005 _initial_gvn(NULL), 1006 _for_igvn(NULL), 1007 _warm_calls(NULL), 1008 _number_of_mh_late_inlines(0), 1009 _print_inlining_stream(NULL), 1010 _print_inlining_list(NULL), 1011 _print_inlining_idx(0), 1012 _print_inlining_output(NULL), 1013 _replay_inline_data(NULL), 1014 _java_calls(0), 1015 _inner_loops(0), 1016 _interpreter_frame_size(0), 1017 _node_bundling_limit(0), 1018 _node_bundling_base(NULL), 1019 _code_buffer("Compile::Fill_buffer"), 1020 #ifndef PRODUCT 1021 _in_dump_cnt(0), 1022 #endif 1023 _allowed_reasons(0) { 1024 C = this; 1025 1026 TraceTime t1(NULL, &_t_totalCompilation, CITime, false); 1027 TraceTime t2(NULL, &_t_stubCompilation, CITime, false); 1028 1029 #ifndef PRODUCT 1030 set_print_assembly(PrintFrameConverterAssembly); 1031 set_parsed_irreducible_loop(false); 1032 #endif 1033 set_has_irreducible_loop(false); // no loops 1034 1035 CompileWrapper cw(this); 1036 Init(/*AliasLevel=*/ 0); 1037 init_tf((*generator)()); 1038 1039 { 1040 // The following is a dummy for the sake of GraphKit::gen_stub 1041 Unique_Node_List for_igvn(comp_arena()); 1042 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this 1043 PhaseGVN gvn(Thread::current()->resource_area(),255); 1044 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 1045 gvn.transform_no_reclaim(top()); 1046 1047 GraphKit kit; 1048 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 1049 } 1050 1051 NOT_PRODUCT( verify_graph_edges(); ) 1052 Code_Gen(); 1053 if (failing()) return; 1054 1055 1056 // Entry point will be accessed using compile->stub_entry_point(); 1057 if (code_buffer() == NULL) { 1058 Matcher::soft_match_failure(); 1059 } else { 1060 if (PrintAssembly && (WizardMode || Verbose)) 1061 tty->print_cr("### Stub::%s", stub_name); 1062 1063 if (!failing()) { 1064 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs"); 1065 1066 // Make the NMethod 1067 // For now we mark the frame as never safe for profile stackwalking 1068 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 1069 code_buffer(), 1070 CodeOffsets::frame_never_safe, 1071 // _code_offsets.value(CodeOffsets::Frame_Complete), 1072 frame_size_in_words(), 1073 _oop_map_set, 1074 save_arg_registers); 1075 assert(rs != NULL && rs->is_runtime_stub(), "sanity check"); 1076 1077 _stub_entry_point = rs->entry_point(); 1078 } 1079 } 1080 } 1081 1082 //------------------------------Init------------------------------------------- 1083 // Prepare for a single compilation 1084 void Compile::Init(int aliaslevel) { 1085 _unique = 0; 1086 _regalloc = NULL; 1087 1088 _tf = NULL; // filled in later 1089 _top = NULL; // cached later 1090 _matcher = NULL; // filled in later 1091 _cfg = NULL; // filled in later 1092 1093 set_24_bit_selection_and_mode(Use24BitFP, false); 1094 1095 _node_note_array = NULL; 1096 _default_node_notes = NULL; 1097 DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize() 1098 1099 _immutable_memory = NULL; // filled in at first inquiry 1100 1101 // Globally visible Nodes 1102 // First set TOP to NULL to give safe behavior during creation of RootNode 1103 set_cached_top_node(NULL); 1104 set_root(new RootNode()); 1105 // Now that you have a Root to point to, create the real TOP 1106 set_cached_top_node( new ConNode(Type::TOP) ); 1107 set_recent_alloc(NULL, NULL); 1108 1109 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1110 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1111 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1112 env()->set_dependencies(new Dependencies(env())); 1113 1114 _fixed_slots = 0; 1115 set_has_split_ifs(false); 1116 set_has_loops(has_method() && method()->has_loops()); // first approximation 1117 set_has_stringbuilder(false); 1118 set_has_boxed_value(false); 1119 _trap_can_recompile = false; // no traps emitted yet 1120 _major_progress = true; // start out assuming good things will happen 1121 set_has_unsafe_access(false); 1122 set_max_vector_size(0); 1123 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1124 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1125 set_decompile_count(0); 1126 1127 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1128 _loop_opts_cnt = LoopOptsCount; 1129 set_do_inlining(Inline); 1130 set_max_inline_size(MaxInlineSize); 1131 set_freq_inline_size(FreqInlineSize); 1132 set_do_scheduling(OptoScheduling); 1133 set_do_count_invocations(false); 1134 set_do_method_data_update(false); 1135 1136 set_do_vector_loop(false); 1137 1138 if (AllowVectorizeOnDemand) { 1139 if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) { 1140 set_do_vector_loop(true); 1141 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1142 } else if (has_method() && method()->name() != 0 && 1143 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1144 set_do_vector_loop(true); 1145 } 1146 } 1147 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1148 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1149 1150 set_age_code(has_method() && method()->profile_aging()); 1151 set_rtm_state(NoRTM); // No RTM lock eliding by default 1152 _max_node_limit = _directive->MaxNodeLimitOption; 1153 1154 #if INCLUDE_RTM_OPT 1155 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) { 1156 int rtm_state = method()->method_data()->rtm_state(); 1157 if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) { 1158 // Don't generate RTM lock eliding code. 1159 set_rtm_state(NoRTM); 1160 } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) { 1161 // Generate RTM lock eliding code without abort ratio calculation code. 1162 set_rtm_state(UseRTM); 1163 } else if (UseRTMDeopt) { 1164 // Generate RTM lock eliding code and include abort ratio calculation 1165 // code if UseRTMDeopt is on. 1166 set_rtm_state(ProfileRTM); 1167 } 1168 } 1169 #endif 1170 if (debug_info()->recording_non_safepoints()) { 1171 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1172 (comp_arena(), 8, 0, NULL)); 1173 set_default_node_notes(Node_Notes::make(this)); 1174 } 1175 1176 // // -- Initialize types before each compile -- 1177 // // Update cached type information 1178 // if( _method && _method->constants() ) 1179 // Type::update_loaded_types(_method, _method->constants()); 1180 1181 // Init alias_type map. 1182 if (!_do_escape_analysis && aliaslevel == 3) 1183 aliaslevel = 2; // No unique types without escape analysis 1184 _AliasLevel = aliaslevel; 1185 const int grow_ats = 16; 1186 _max_alias_types = grow_ats; 1187 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1188 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1189 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1190 { 1191 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1192 } 1193 // Initialize the first few types. 1194 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL); 1195 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1196 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1197 _num_alias_types = AliasIdxRaw+1; 1198 // Zero out the alias type cache. 1199 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1200 // A NULL adr_type hits in the cache right away. Preload the right answer. 1201 probe_alias_cache(NULL)->_index = AliasIdxTop; 1202 1203 _intrinsics = NULL; 1204 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1205 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1206 _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1207 _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1208 _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1209 register_library_intrinsics(); 1210 } 1211 1212 //---------------------------init_start---------------------------------------- 1213 // Install the StartNode on this compile object. 1214 void Compile::init_start(StartNode* s) { 1215 if (failing()) 1216 return; // already failing 1217 assert(s == start(), ""); 1218 } 1219 1220 /** 1221 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1222 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1223 * the ideal graph. 1224 */ 1225 StartNode* Compile::start() const { 1226 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason()); 1227 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1228 Node* start = root()->fast_out(i); 1229 if (start->is_Start()) { 1230 return start->as_Start(); 1231 } 1232 } 1233 fatal("Did not find Start node!"); 1234 return NULL; 1235 } 1236 1237 //-------------------------------immutable_memory------------------------------------- 1238 // Access immutable memory 1239 Node* Compile::immutable_memory() { 1240 if (_immutable_memory != NULL) { 1241 return _immutable_memory; 1242 } 1243 StartNode* s = start(); 1244 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1245 Node *p = s->fast_out(i); 1246 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1247 _immutable_memory = p; 1248 return _immutable_memory; 1249 } 1250 } 1251 ShouldNotReachHere(); 1252 return NULL; 1253 } 1254 1255 //----------------------set_cached_top_node------------------------------------ 1256 // Install the cached top node, and make sure Node::is_top works correctly. 1257 void Compile::set_cached_top_node(Node* tn) { 1258 if (tn != NULL) verify_top(tn); 1259 Node* old_top = _top; 1260 _top = tn; 1261 // Calling Node::setup_is_top allows the nodes the chance to adjust 1262 // their _out arrays. 1263 if (_top != NULL) _top->setup_is_top(); 1264 if (old_top != NULL) old_top->setup_is_top(); 1265 assert(_top == NULL || top()->is_top(), ""); 1266 } 1267 1268 #ifdef ASSERT 1269 uint Compile::count_live_nodes_by_graph_walk() { 1270 Unique_Node_List useful(comp_arena()); 1271 // Get useful node list by walking the graph. 1272 identify_useful_nodes(useful); 1273 return useful.size(); 1274 } 1275 1276 void Compile::print_missing_nodes() { 1277 1278 // Return if CompileLog is NULL and PrintIdealNodeCount is false. 1279 if ((_log == NULL) && (! PrintIdealNodeCount)) { 1280 return; 1281 } 1282 1283 // This is an expensive function. It is executed only when the user 1284 // specifies VerifyIdealNodeCount option or otherwise knows the 1285 // additional work that needs to be done to identify reachable nodes 1286 // by walking the flow graph and find the missing ones using 1287 // _dead_node_list. 1288 1289 Unique_Node_List useful(comp_arena()); 1290 // Get useful node list by walking the graph. 1291 identify_useful_nodes(useful); 1292 1293 uint l_nodes = C->live_nodes(); 1294 uint l_nodes_by_walk = useful.size(); 1295 1296 if (l_nodes != l_nodes_by_walk) { 1297 if (_log != NULL) { 1298 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1299 _log->stamp(); 1300 _log->end_head(); 1301 } 1302 VectorSet& useful_member_set = useful.member_set(); 1303 int last_idx = l_nodes_by_walk; 1304 for (int i = 0; i < last_idx; i++) { 1305 if (useful_member_set.test(i)) { 1306 if (_dead_node_list.test(i)) { 1307 if (_log != NULL) { 1308 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1309 } 1310 if (PrintIdealNodeCount) { 1311 // Print the log message to tty 1312 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1313 useful.at(i)->dump(); 1314 } 1315 } 1316 } 1317 else if (! _dead_node_list.test(i)) { 1318 if (_log != NULL) { 1319 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1320 } 1321 if (PrintIdealNodeCount) { 1322 // Print the log message to tty 1323 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1324 } 1325 } 1326 } 1327 if (_log != NULL) { 1328 _log->tail("mismatched_nodes"); 1329 } 1330 } 1331 } 1332 void Compile::record_modified_node(Node* n) { 1333 if (_modified_nodes != NULL && !_inlining_incrementally && 1334 n->outcnt() != 0 && !n->is_Con()) { 1335 _modified_nodes->push(n); 1336 } 1337 } 1338 1339 void Compile::remove_modified_node(Node* n) { 1340 if (_modified_nodes != NULL) { 1341 _modified_nodes->remove(n); 1342 } 1343 } 1344 #endif 1345 1346 #ifndef PRODUCT 1347 void Compile::verify_top(Node* tn) const { 1348 if (tn != NULL) { 1349 assert(tn->is_Con(), "top node must be a constant"); 1350 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1351 assert(tn->in(0) != NULL, "must have live top node"); 1352 } 1353 } 1354 #endif 1355 1356 1357 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1358 1359 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1360 guarantee(arr != NULL, ""); 1361 int num_blocks = arr->length(); 1362 if (grow_by < num_blocks) grow_by = num_blocks; 1363 int num_notes = grow_by * _node_notes_block_size; 1364 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1365 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1366 while (num_notes > 0) { 1367 arr->append(notes); 1368 notes += _node_notes_block_size; 1369 num_notes -= _node_notes_block_size; 1370 } 1371 assert(num_notes == 0, "exact multiple, please"); 1372 } 1373 1374 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1375 if (source == NULL || dest == NULL) return false; 1376 1377 if (dest->is_Con()) 1378 return false; // Do not push debug info onto constants. 1379 1380 #ifdef ASSERT 1381 // Leave a bread crumb trail pointing to the original node: 1382 if (dest != NULL && dest != source && dest->debug_orig() == NULL) { 1383 dest->set_debug_orig(source); 1384 } 1385 #endif 1386 1387 if (node_note_array() == NULL) 1388 return false; // Not collecting any notes now. 1389 1390 // This is a copy onto a pre-existing node, which may already have notes. 1391 // If both nodes have notes, do not overwrite any pre-existing notes. 1392 Node_Notes* source_notes = node_notes_at(source->_idx); 1393 if (source_notes == NULL || source_notes->is_clear()) return false; 1394 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1395 if (dest_notes == NULL || dest_notes->is_clear()) { 1396 return set_node_notes_at(dest->_idx, source_notes); 1397 } 1398 1399 Node_Notes merged_notes = (*source_notes); 1400 // The order of operations here ensures that dest notes will win... 1401 merged_notes.update_from(dest_notes); 1402 return set_node_notes_at(dest->_idx, &merged_notes); 1403 } 1404 1405 1406 //--------------------------allow_range_check_smearing------------------------- 1407 // Gating condition for coalescing similar range checks. 1408 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1409 // single covering check that is at least as strong as any of them. 1410 // If the optimization succeeds, the simplified (strengthened) range check 1411 // will always succeed. If it fails, we will deopt, and then give up 1412 // on the optimization. 1413 bool Compile::allow_range_check_smearing() const { 1414 // If this method has already thrown a range-check, 1415 // assume it was because we already tried range smearing 1416 // and it failed. 1417 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1418 return !already_trapped; 1419 } 1420 1421 1422 //------------------------------flatten_alias_type----------------------------- 1423 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1424 int offset = tj->offset(); 1425 TypePtr::PTR ptr = tj->ptr(); 1426 1427 // Known instance (scalarizable allocation) alias only with itself. 1428 bool is_known_inst = tj->isa_oopptr() != NULL && 1429 tj->is_oopptr()->is_known_instance(); 1430 1431 // Process weird unsafe references. 1432 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1433 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops"); 1434 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1435 tj = TypeOopPtr::BOTTOM; 1436 ptr = tj->ptr(); 1437 offset = tj->offset(); 1438 } 1439 1440 // Array pointers need some flattening 1441 const TypeAryPtr *ta = tj->isa_aryptr(); 1442 if (ta && ta->is_stable()) { 1443 // Erase stability property for alias analysis. 1444 tj = ta = ta->cast_to_stable(false); 1445 } 1446 if( ta && is_known_inst ) { 1447 if ( offset != Type::OffsetBot && 1448 offset > arrayOopDesc::length_offset_in_bytes() ) { 1449 offset = Type::OffsetBot; // Flatten constant access into array body only 1450 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id()); 1451 } 1452 } else if( ta && _AliasLevel >= 2 ) { 1453 // For arrays indexed by constant indices, we flatten the alias 1454 // space to include all of the array body. Only the header, klass 1455 // and array length can be accessed un-aliased. 1456 if( offset != Type::OffsetBot ) { 1457 if( ta->const_oop() ) { // MethodData* or Method* 1458 offset = Type::OffsetBot; // Flatten constant access into array body 1459 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset); 1460 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1461 // range is OK as-is. 1462 tj = ta = TypeAryPtr::RANGE; 1463 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1464 tj = TypeInstPtr::KLASS; // all klass loads look alike 1465 ta = TypeAryPtr::RANGE; // generic ignored junk 1466 ptr = TypePtr::BotPTR; 1467 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1468 tj = TypeInstPtr::MARK; 1469 ta = TypeAryPtr::RANGE; // generic ignored junk 1470 ptr = TypePtr::BotPTR; 1471 } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) { 1472 ta = tj->isa_aryptr(); 1473 } else { // Random constant offset into array body 1474 offset = Type::OffsetBot; // Flatten constant access into array body 1475 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset); 1476 } 1477 } 1478 // Arrays of fixed size alias with arrays of unknown size. 1479 if (ta->size() != TypeInt::POS) { 1480 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1481 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset); 1482 } 1483 // Arrays of known objects become arrays of unknown objects. 1484 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1485 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1486 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset); 1487 } 1488 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1489 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1490 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset); 1491 } 1492 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1493 // cannot be distinguished by bytecode alone. 1494 if (ta->elem() == TypeInt::BOOL) { 1495 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1496 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1497 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1498 } 1499 // During the 2nd round of IterGVN, NotNull castings are removed. 1500 // Make sure the Bottom and NotNull variants alias the same. 1501 // Also, make sure exact and non-exact variants alias the same. 1502 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) { 1503 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset); 1504 } 1505 } 1506 1507 // Oop pointers need some flattening 1508 const TypeInstPtr *to = tj->isa_instptr(); 1509 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) { 1510 ciInstanceKlass *k = to->klass()->as_instance_klass(); 1511 if( ptr == TypePtr::Constant ) { 1512 if (to->klass() != ciEnv::current()->Class_klass() || 1513 offset < k->size_helper() * wordSize) { 1514 // No constant oop pointers (such as Strings); they alias with 1515 // unknown strings. 1516 assert(!is_known_inst, "not scalarizable allocation"); 1517 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset); 1518 } 1519 } else if( is_known_inst ) { 1520 tj = to; // Keep NotNull and klass_is_exact for instance type 1521 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1522 // During the 2nd round of IterGVN, NotNull castings are removed. 1523 // Make sure the Bottom and NotNull variants alias the same. 1524 // Also, make sure exact and non-exact variants alias the same. 1525 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset); 1526 } 1527 if (to->speculative() != NULL) { 1528 tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id()); 1529 } 1530 // Canonicalize the holder of this field 1531 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1532 // First handle header references such as a LoadKlassNode, even if the 1533 // object's klass is unloaded at compile time (4965979). 1534 if (!is_known_inst) { // Do it only for non-instance types 1535 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset); 1536 } 1537 } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) { 1538 to = tj->is_instptr(); 1539 } else if (offset < 0 || offset >= k->size_helper() * wordSize) { 1540 // Static fields are in the space above the normal instance 1541 // fields in the java.lang.Class instance. 1542 if (to->klass() != ciEnv::current()->Class_klass()) { 1543 to = NULL; 1544 tj = TypeOopPtr::BOTTOM; 1545 offset = tj->offset(); 1546 } 1547 } else { 1548 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset); 1549 if (!k->equals(canonical_holder) || tj->offset() != offset) { 1550 if( is_known_inst ) { 1551 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id()); 1552 } else { 1553 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset); 1554 } 1555 } 1556 } 1557 } 1558 1559 // Klass pointers to object array klasses need some flattening 1560 const TypeKlassPtr *tk = tj->isa_klassptr(); 1561 if( tk ) { 1562 // If we are referencing a field within a Klass, we need 1563 // to assume the worst case of an Object. Both exact and 1564 // inexact types must flatten to the same alias class so 1565 // use NotNull as the PTR. 1566 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1567 1568 tj = tk = TypeKlassPtr::make(TypePtr::NotNull, 1569 TypeKlassPtr::OBJECT->klass(), 1570 offset); 1571 } 1572 1573 ciKlass* klass = tk->klass(); 1574 if( klass->is_obj_array_klass() ) { 1575 ciKlass* k = TypeAryPtr::OOPS->klass(); 1576 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs 1577 k = TypeInstPtr::BOTTOM->klass(); 1578 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset ); 1579 } 1580 1581 // Check for precise loads from the primary supertype array and force them 1582 // to the supertype cache alias index. Check for generic array loads from 1583 // the primary supertype array and also force them to the supertype cache 1584 // alias index. Since the same load can reach both, we need to merge 1585 // these 2 disparate memories into the same alias class. Since the 1586 // primary supertype array is read-only, there's no chance of confusion 1587 // where we bypass an array load and an array store. 1588 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1589 if (offset == Type::OffsetBot || 1590 (offset >= primary_supers_offset && 1591 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1592 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1593 offset = in_bytes(Klass::secondary_super_cache_offset()); 1594 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset ); 1595 } 1596 } 1597 1598 // Flatten all Raw pointers together. 1599 if (tj->base() == Type::RawPtr) 1600 tj = TypeRawPtr::BOTTOM; 1601 1602 if (tj->base() == Type::AnyPtr) 1603 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1604 1605 // Flatten all to bottom for now 1606 switch( _AliasLevel ) { 1607 case 0: 1608 tj = TypePtr::BOTTOM; 1609 break; 1610 case 1: // Flatten to: oop, static, field or array 1611 switch (tj->base()) { 1612 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break; 1613 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break; 1614 case Type::AryPtr: // do not distinguish arrays at all 1615 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break; 1616 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break; 1617 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it 1618 default: ShouldNotReachHere(); 1619 } 1620 break; 1621 case 2: // No collapsing at level 2; keep all splits 1622 case 3: // No collapsing at level 3; keep all splits 1623 break; 1624 default: 1625 Unimplemented(); 1626 } 1627 1628 offset = tj->offset(); 1629 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1630 1631 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1632 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1633 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1634 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1635 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1636 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1637 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) || 1638 (BarrierSet::barrier_set()->barrier_set_c2()->verify_gc_alias_type(tj, offset)), 1639 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1640 assert( tj->ptr() != TypePtr::TopPTR && 1641 tj->ptr() != TypePtr::AnyNull && 1642 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1643 // assert( tj->ptr() != TypePtr::Constant || 1644 // tj->base() == Type::RawPtr || 1645 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1646 1647 return tj; 1648 } 1649 1650 void Compile::AliasType::Init(int i, const TypePtr* at) { 1651 _index = i; 1652 _adr_type = at; 1653 _field = NULL; 1654 _element = NULL; 1655 _is_rewritable = true; // default 1656 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL; 1657 if (atoop != NULL && atoop->is_known_instance()) { 1658 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1659 _general_index = Compile::current()->get_alias_index(gt); 1660 } else { 1661 _general_index = 0; 1662 } 1663 } 1664 1665 BasicType Compile::AliasType::basic_type() const { 1666 if (element() != NULL) { 1667 const Type* element = adr_type()->is_aryptr()->elem(); 1668 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1669 } if (field() != NULL) { 1670 return field()->layout_type(); 1671 } else { 1672 return T_ILLEGAL; // unknown 1673 } 1674 } 1675 1676 //---------------------------------print_on------------------------------------ 1677 #ifndef PRODUCT 1678 void Compile::AliasType::print_on(outputStream* st) { 1679 if (index() < 10) 1680 st->print("@ <%d> ", index()); 1681 else st->print("@ <%d>", index()); 1682 st->print(is_rewritable() ? " " : " RO"); 1683 int offset = adr_type()->offset(); 1684 if (offset == Type::OffsetBot) 1685 st->print(" +any"); 1686 else st->print(" +%-3d", offset); 1687 st->print(" in "); 1688 adr_type()->dump_on(st); 1689 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1690 if (field() != NULL && tjp) { 1691 if (tjp->klass() != field()->holder() || 1692 tjp->offset() != field()->offset_in_bytes()) { 1693 st->print(" != "); 1694 field()->print(); 1695 st->print(" ***"); 1696 } 1697 } 1698 } 1699 1700 void print_alias_types() { 1701 Compile* C = Compile::current(); 1702 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1703 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1704 C->alias_type(idx)->print_on(tty); 1705 tty->cr(); 1706 } 1707 } 1708 #endif 1709 1710 1711 //----------------------------probe_alias_cache-------------------------------- 1712 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1713 intptr_t key = (intptr_t) adr_type; 1714 key ^= key >> logAliasCacheSize; 1715 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1716 } 1717 1718 1719 //-----------------------------grow_alias_types-------------------------------- 1720 void Compile::grow_alias_types() { 1721 const int old_ats = _max_alias_types; // how many before? 1722 const int new_ats = old_ats; // how many more? 1723 const int grow_ats = old_ats+new_ats; // how many now? 1724 _max_alias_types = grow_ats; 1725 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1726 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1727 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1728 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1729 } 1730 1731 1732 //--------------------------------find_alias_type------------------------------ 1733 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1734 if (_AliasLevel == 0) 1735 return alias_type(AliasIdxBot); 1736 1737 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1738 if (ace->_adr_type == adr_type) { 1739 return alias_type(ace->_index); 1740 } 1741 1742 // Handle special cases. 1743 if (adr_type == NULL) return alias_type(AliasIdxTop); 1744 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1745 1746 // Do it the slow way. 1747 const TypePtr* flat = flatten_alias_type(adr_type); 1748 1749 #ifdef ASSERT 1750 { 1751 ResourceMark rm; 1752 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1753 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1754 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1755 Type::str(adr_type)); 1756 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1757 const TypeOopPtr* foop = flat->is_oopptr(); 1758 // Scalarizable allocations have exact klass always. 1759 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1760 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1761 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1762 Type::str(foop), Type::str(xoop)); 1763 } 1764 } 1765 #endif 1766 1767 int idx = AliasIdxTop; 1768 for (int i = 0; i < num_alias_types(); i++) { 1769 if (alias_type(i)->adr_type() == flat) { 1770 idx = i; 1771 break; 1772 } 1773 } 1774 1775 if (idx == AliasIdxTop) { 1776 if (no_create) return NULL; 1777 // Grow the array if necessary. 1778 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1779 // Add a new alias type. 1780 idx = _num_alias_types++; 1781 _alias_types[idx]->Init(idx, flat); 1782 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1783 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1784 if (flat->isa_instptr()) { 1785 if (flat->offset() == java_lang_Class::klass_offset_in_bytes() 1786 && flat->is_instptr()->klass() == env()->Class_klass()) 1787 alias_type(idx)->set_rewritable(false); 1788 } 1789 if (flat->isa_aryptr()) { 1790 #ifdef ASSERT 1791 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1792 // (T_BYTE has the weakest alignment and size restrictions...) 1793 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1794 #endif 1795 if (flat->offset() == TypePtr::OffsetBot) { 1796 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1797 } 1798 } 1799 if (flat->isa_klassptr()) { 1800 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1801 alias_type(idx)->set_rewritable(false); 1802 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1803 alias_type(idx)->set_rewritable(false); 1804 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1805 alias_type(idx)->set_rewritable(false); 1806 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1807 alias_type(idx)->set_rewritable(false); 1808 } 1809 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1810 // but the base pointer type is not distinctive enough to identify 1811 // references into JavaThread.) 1812 1813 // Check for final fields. 1814 const TypeInstPtr* tinst = flat->isa_instptr(); 1815 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1816 ciField* field; 1817 if (tinst->const_oop() != NULL && 1818 tinst->klass() == ciEnv::current()->Class_klass() && 1819 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) { 1820 // static field 1821 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1822 field = k->get_field_by_offset(tinst->offset(), true); 1823 } else { 1824 ciInstanceKlass *k = tinst->klass()->as_instance_klass(); 1825 field = k->get_field_by_offset(tinst->offset(), false); 1826 } 1827 assert(field == NULL || 1828 original_field == NULL || 1829 (field->holder() == original_field->holder() && 1830 field->offset() == original_field->offset() && 1831 field->is_static() == original_field->is_static()), "wrong field?"); 1832 // Set field() and is_rewritable() attributes. 1833 if (field != NULL) alias_type(idx)->set_field(field); 1834 } 1835 } 1836 1837 // Fill the cache for next time. 1838 ace->_adr_type = adr_type; 1839 ace->_index = idx; 1840 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1841 1842 // Might as well try to fill the cache for the flattened version, too. 1843 AliasCacheEntry* face = probe_alias_cache(flat); 1844 if (face->_adr_type == NULL) { 1845 face->_adr_type = flat; 1846 face->_index = idx; 1847 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1848 } 1849 1850 return alias_type(idx); 1851 } 1852 1853 1854 Compile::AliasType* Compile::alias_type(ciField* field) { 1855 const TypeOopPtr* t; 1856 if (field->is_static()) 1857 t = TypeInstPtr::make(field->holder()->java_mirror()); 1858 else 1859 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1860 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1861 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1862 return atp; 1863 } 1864 1865 1866 //------------------------------have_alias_type-------------------------------- 1867 bool Compile::have_alias_type(const TypePtr* adr_type) { 1868 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1869 if (ace->_adr_type == adr_type) { 1870 return true; 1871 } 1872 1873 // Handle special cases. 1874 if (adr_type == NULL) return true; 1875 if (adr_type == TypePtr::BOTTOM) return true; 1876 1877 return find_alias_type(adr_type, true, NULL) != NULL; 1878 } 1879 1880 //-----------------------------must_alias-------------------------------------- 1881 // True if all values of the given address type are in the given alias category. 1882 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1883 if (alias_idx == AliasIdxBot) return true; // the universal category 1884 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP 1885 if (alias_idx == AliasIdxTop) return false; // the empty category 1886 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1887 1888 // the only remaining possible overlap is identity 1889 int adr_idx = get_alias_index(adr_type); 1890 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1891 assert(adr_idx == alias_idx || 1892 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1893 && adr_type != TypeOopPtr::BOTTOM), 1894 "should not be testing for overlap with an unsafe pointer"); 1895 return adr_idx == alias_idx; 1896 } 1897 1898 //------------------------------can_alias-------------------------------------- 1899 // True if any values of the given address type are in the given alias category. 1900 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1901 if (alias_idx == AliasIdxTop) return false; // the empty category 1902 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP 1903 if (alias_idx == AliasIdxBot) return true; // the universal category 1904 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins 1905 1906 // the only remaining possible overlap is identity 1907 int adr_idx = get_alias_index(adr_type); 1908 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1909 return adr_idx == alias_idx; 1910 } 1911 1912 1913 1914 //---------------------------pop_warm_call------------------------------------- 1915 WarmCallInfo* Compile::pop_warm_call() { 1916 WarmCallInfo* wci = _warm_calls; 1917 if (wci != NULL) _warm_calls = wci->remove_from(wci); 1918 return wci; 1919 } 1920 1921 //----------------------------Inline_Warm-------------------------------------- 1922 int Compile::Inline_Warm() { 1923 // If there is room, try to inline some more warm call sites. 1924 // %%% Do a graph index compaction pass when we think we're out of space? 1925 if (!InlineWarmCalls) return 0; 1926 1927 int calls_made_hot = 0; 1928 int room_to_grow = NodeCountInliningCutoff - unique(); 1929 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep); 1930 int amount_grown = 0; 1931 WarmCallInfo* call; 1932 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) { 1933 int est_size = (int)call->size(); 1934 if (est_size > (room_to_grow - amount_grown)) { 1935 // This one won't fit anyway. Get rid of it. 1936 call->make_cold(); 1937 continue; 1938 } 1939 call->make_hot(); 1940 calls_made_hot++; 1941 amount_grown += est_size; 1942 amount_to_grow -= est_size; 1943 } 1944 1945 if (calls_made_hot > 0) set_major_progress(); 1946 return calls_made_hot; 1947 } 1948 1949 1950 //----------------------------Finish_Warm-------------------------------------- 1951 void Compile::Finish_Warm() { 1952 if (!InlineWarmCalls) return; 1953 if (failing()) return; 1954 if (warm_calls() == NULL) return; 1955 1956 // Clean up loose ends, if we are out of space for inlining. 1957 WarmCallInfo* call; 1958 while ((call = pop_warm_call()) != NULL) { 1959 call->make_cold(); 1960 } 1961 } 1962 1963 //---------------------cleanup_loop_predicates----------------------- 1964 // Remove the opaque nodes that protect the predicates so that all unused 1965 // checks and uncommon_traps will be eliminated from the ideal graph 1966 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) { 1967 if (predicate_count()==0) return; 1968 for (int i = predicate_count(); i > 0; i--) { 1969 Node * n = predicate_opaque1_node(i-1); 1970 assert(n->Opcode() == Op_Opaque1, "must be"); 1971 igvn.replace_node(n, n->in(1)); 1972 } 1973 assert(predicate_count()==0, "should be clean!"); 1974 } 1975 1976 void Compile::add_range_check_cast(Node* n) { 1977 assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency"); 1978 assert(!_range_check_casts->contains(n), "duplicate entry in range check casts"); 1979 _range_check_casts->append(n); 1980 } 1981 1982 // Remove all range check dependent CastIINodes. 1983 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) { 1984 for (int i = range_check_cast_count(); i > 0; i--) { 1985 Node* cast = range_check_cast_node(i-1); 1986 assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency"); 1987 igvn.replace_node(cast, cast->in(1)); 1988 } 1989 assert(range_check_cast_count() == 0, "should be empty"); 1990 } 1991 1992 void Compile::add_opaque4_node(Node* n) { 1993 assert(n->Opcode() == Op_Opaque4, "Opaque4 only"); 1994 assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list"); 1995 _opaque4_nodes->append(n); 1996 } 1997 1998 // Remove all Opaque4 nodes. 1999 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) { 2000 for (int i = opaque4_count(); i > 0; i--) { 2001 Node* opaq = opaque4_node(i-1); 2002 assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only"); 2003 igvn.replace_node(opaq, opaq->in(2)); 2004 } 2005 assert(opaque4_count() == 0, "should be empty"); 2006 } 2007 2008 // StringOpts and late inlining of string methods 2009 void Compile::inline_string_calls(bool parse_time) { 2010 { 2011 // remove useless nodes to make the usage analysis simpler 2012 ResourceMark rm; 2013 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 2014 } 2015 2016 { 2017 ResourceMark rm; 2018 print_method(PHASE_BEFORE_STRINGOPTS, 3); 2019 PhaseStringOpts pso(initial_gvn(), for_igvn()); 2020 print_method(PHASE_AFTER_STRINGOPTS, 3); 2021 } 2022 2023 // now inline anything that we skipped the first time around 2024 if (!parse_time) { 2025 _late_inlines_pos = _late_inlines.length(); 2026 } 2027 2028 while (_string_late_inlines.length() > 0) { 2029 CallGenerator* cg = _string_late_inlines.pop(); 2030 cg->do_late_inline(); 2031 if (failing()) return; 2032 } 2033 _string_late_inlines.trunc_to(0); 2034 } 2035 2036 // Late inlining of boxing methods 2037 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2038 if (_boxing_late_inlines.length() > 0) { 2039 assert(has_boxed_value(), "inconsistent"); 2040 2041 PhaseGVN* gvn = initial_gvn(); 2042 set_inlining_incrementally(true); 2043 2044 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 2045 for_igvn()->clear(); 2046 gvn->replace_with(&igvn); 2047 2048 _late_inlines_pos = _late_inlines.length(); 2049 2050 while (_boxing_late_inlines.length() > 0) { 2051 CallGenerator* cg = _boxing_late_inlines.pop(); 2052 cg->do_late_inline(); 2053 if (failing()) return; 2054 } 2055 _boxing_late_inlines.trunc_to(0); 2056 2057 inline_incrementally_cleanup(igvn); 2058 2059 set_inlining_incrementally(false); 2060 } 2061 } 2062 2063 bool Compile::inline_incrementally_one() { 2064 assert(IncrementalInline, "incremental inlining should be on"); 2065 2066 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]); 2067 set_inlining_progress(false); 2068 set_do_cleanup(false); 2069 int i = 0; 2070 for (; i <_late_inlines.length() && !inlining_progress(); i++) { 2071 CallGenerator* cg = _late_inlines.at(i); 2072 _late_inlines_pos = i+1; 2073 cg->do_late_inline(); 2074 if (failing()) return false; 2075 } 2076 int j = 0; 2077 for (; i < _late_inlines.length(); i++, j++) { 2078 _late_inlines.at_put(j, _late_inlines.at(i)); 2079 } 2080 _late_inlines.trunc_to(j); 2081 assert(inlining_progress() || _late_inlines.length() == 0, ""); 2082 2083 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2084 2085 set_inlining_progress(false); 2086 set_do_cleanup(false); 2087 return (_late_inlines.length() > 0) && !needs_cleanup; 2088 } 2089 2090 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2091 { 2092 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]); 2093 ResourceMark rm; 2094 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 2095 } 2096 { 2097 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 2098 igvn = PhaseIterGVN(initial_gvn()); 2099 igvn.optimize(); 2100 } 2101 } 2102 2103 // Perform incremental inlining until bound on number of live nodes is reached 2104 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2105 TracePhase tp("incrementalInline", &timers[_t_incrInline]); 2106 2107 set_inlining_incrementally(true); 2108 uint low_live_nodes = 0; 2109 2110 while (_late_inlines.length() > 0) { 2111 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2112 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2113 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]); 2114 // PhaseIdealLoop is expensive so we only try it once we are 2115 // out of live nodes and we only try it again if the previous 2116 // helped got the number of nodes down significantly 2117 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2118 if (failing()) return; 2119 low_live_nodes = live_nodes(); 2120 _major_progress = true; 2121 } 2122 2123 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2124 break; // finish 2125 } 2126 } 2127 2128 for_igvn()->clear(); 2129 initial_gvn()->replace_with(&igvn); 2130 2131 while (inline_incrementally_one()) { 2132 assert(!failing(), "inconsistent"); 2133 } 2134 2135 if (failing()) return; 2136 2137 inline_incrementally_cleanup(igvn); 2138 2139 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2140 2141 2142 if (failing()) return; 2143 } 2144 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 2145 2146 if (_string_late_inlines.length() > 0) { 2147 assert(has_stringbuilder(), "inconsistent"); 2148 for_igvn()->clear(); 2149 initial_gvn()->replace_with(&igvn); 2150 2151 inline_string_calls(false); 2152 2153 if (failing()) return; 2154 2155 inline_incrementally_cleanup(igvn); 2156 } 2157 2158 set_inlining_incrementally(false); 2159 } 2160 2161 2162 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2163 if(_loop_opts_cnt > 0) { 2164 debug_only( int cnt = 0; ); 2165 while(major_progress() && (_loop_opts_cnt > 0)) { 2166 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2167 assert( cnt++ < 40, "infinite cycle in loop optimization" ); 2168 PhaseIdealLoop::optimize(igvn, mode); 2169 _loop_opts_cnt--; 2170 if (failing()) return false; 2171 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2172 } 2173 } 2174 return true; 2175 } 2176 2177 // Remove edges from "root" to each SafePoint at a backward branch. 2178 // They were inserted during parsing (see add_safepoint()) to make 2179 // infinite loops without calls or exceptions visible to root, i.e., 2180 // useful. 2181 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2182 Node *r = root(); 2183 if (r != NULL) { 2184 for (uint i = r->req(); i < r->len(); ++i) { 2185 Node *n = r->in(i); 2186 if (n != NULL && n->is_SafePoint()) { 2187 r->rm_prec(i); 2188 if (n->outcnt() == 0) { 2189 igvn.remove_dead_node(n); 2190 } 2191 --i; 2192 } 2193 } 2194 } 2195 } 2196 2197 //------------------------------Optimize--------------------------------------- 2198 // Given a graph, optimize it. 2199 void Compile::Optimize() { 2200 TracePhase tp("optimizer", &timers[_t_optimizer]); 2201 2202 #ifndef PRODUCT 2203 if (_directive->BreakAtCompileOption) { 2204 BREAKPOINT; 2205 } 2206 2207 #endif 2208 2209 #ifdef ASSERT 2210 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2211 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2212 #endif 2213 2214 ResourceMark rm; 2215 2216 print_inlining_reinit(); 2217 2218 NOT_PRODUCT( verify_graph_edges(); ) 2219 2220 print_method(PHASE_AFTER_PARSING); 2221 2222 { 2223 // Iterative Global Value Numbering, including ideal transforms 2224 // Initialize IterGVN with types and values from parse-time GVN 2225 PhaseIterGVN igvn(initial_gvn()); 2226 #ifdef ASSERT 2227 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2228 #endif 2229 { 2230 TracePhase tp("iterGVN", &timers[_t_iterGVN]); 2231 igvn.optimize(); 2232 } 2233 2234 if (failing()) return; 2235 2236 print_method(PHASE_ITER_GVN1, 2); 2237 2238 inline_incrementally(igvn); 2239 2240 print_method(PHASE_INCREMENTAL_INLINE, 2); 2241 2242 if (failing()) return; 2243 2244 if (eliminate_boxing()) { 2245 // Inline valueOf() methods now. 2246 inline_boxing_calls(igvn); 2247 2248 if (AlwaysIncrementalInline) { 2249 inline_incrementally(igvn); 2250 } 2251 if (failing()) return; 2252 2253 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2254 } 2255 2256 // Now that all inlining is over, cut edge from root to loop 2257 // safepoints 2258 remove_root_to_sfpts_edges(igvn); 2259 2260 // Remove the speculative part of types and clean up the graph from 2261 // the extra CastPP nodes whose only purpose is to carry them. Do 2262 // that early so that optimizations are not disrupted by the extra 2263 // CastPP nodes. 2264 remove_speculative_types(igvn); 2265 2266 // No more new expensive nodes will be added to the list from here 2267 // so keep only the actual candidates for optimizations. 2268 cleanup_expensive_nodes(igvn); 2269 2270 if (has_vbox_nodes()) { 2271 TracePhase tp("expandVectorBoxes", &timers[_t_expandVectorBoxes]); 2272 2273 set_inlining_incrementally(true); // FIXME another way to signal GraphKit it's post-parsing phase? 2274 2275 for_igvn()->clear(); 2276 initial_gvn()->replace_with(&igvn); 2277 2278 expand_vunbox_nodes(); 2279 scalarize_vbox_nodes(); 2280 2281 inline_vector_reboxing_calls(); 2282 2283 if (failing()) return; 2284 { 2285 ResourceMark rm; 2286 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 2287 } 2288 igvn = PhaseIterGVN(initial_gvn()); 2289 igvn.optimize(); 2290 2291 print_method(PHASE_ITER_GVN_BEFORE_EA, 2); 2292 2293 if (failing()) return; 2294 2295 //////////////////////////////////////////////////// 2296 2297 for_igvn()->clear(); 2298 initial_gvn()->replace_with(&igvn); 2299 2300 expand_vbox_nodes(); 2301 eliminate_vbox_alloc_nodes(); 2302 2303 if (failing()) return; 2304 { 2305 ResourceMark rm; 2306 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 2307 } 2308 igvn = PhaseIterGVN(initial_gvn()); 2309 igvn.optimize(); 2310 if (failing()) return; 2311 2312 print_method(PHASE_ITER_GVN_BEFORE_EA, 2); 2313 2314 set_inlining_incrementally(false); // FIXME another way to signal GraphKit it's post-parsing phase? 2315 } 2316 2317 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2318 Compile::TracePhase tp("", &timers[_t_renumberLive]); 2319 initial_gvn()->replace_with(&igvn); 2320 for_igvn()->clear(); 2321 Unique_Node_List new_worklist(C->comp_arena()); 2322 { 2323 ResourceMark rm; 2324 PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist); 2325 } 2326 set_for_igvn(&new_worklist); 2327 igvn = PhaseIterGVN(initial_gvn()); 2328 igvn.optimize(); 2329 } 2330 2331 // FIXME for_igvn() is corrupted from here: new_worklist which is set_for_ignv() was allocated on stack. 2332 2333 // Perform escape analysis 2334 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) { 2335 if (has_loops()) { 2336 // Cleanup graph (remove dead nodes). 2337 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2338 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2339 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2340 if (failing()) return; 2341 } 2342 ConnectionGraph::do_analysis(this, &igvn); 2343 2344 if (failing()) return; 2345 2346 // Optimize out fields loads from scalar replaceable allocations. 2347 igvn.optimize(); 2348 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2349 2350 if (failing()) return; 2351 2352 if (congraph() != NULL && macro_count() > 0) { 2353 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]); 2354 PhaseMacroExpand mexp(igvn); 2355 mexp.eliminate_macro_nodes(); 2356 igvn.set_delay_transform(false); 2357 2358 igvn.optimize(); 2359 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2360 2361 if (failing()) return; 2362 } 2363 } 2364 2365 // Loop transforms on the ideal graph. Range Check Elimination, 2366 // peeling, unrolling, etc. 2367 2368 // Set loop opts counter 2369 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2370 { 2371 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2372 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2373 _loop_opts_cnt--; 2374 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2375 if (failing()) return; 2376 } 2377 // Loop opts pass if partial peeling occurred in previous pass 2378 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2379 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2380 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2381 _loop_opts_cnt--; 2382 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2383 if (failing()) return; 2384 } 2385 // Loop opts pass for loop-unrolling before CCP 2386 if(major_progress() && (_loop_opts_cnt > 0)) { 2387 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2388 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2389 _loop_opts_cnt--; 2390 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2391 } 2392 if (!failing()) { 2393 // Verify that last round of loop opts produced a valid graph 2394 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]); 2395 PhaseIdealLoop::verify(igvn); 2396 } 2397 } 2398 if (failing()) return; 2399 2400 // Conditional Constant Propagation; 2401 PhaseCCP ccp( &igvn ); 2402 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2403 { 2404 TracePhase tp("ccp", &timers[_t_ccp]); 2405 ccp.do_transform(); 2406 } 2407 print_method(PHASE_CPP1, 2); 2408 2409 assert( true, "Break here to ccp.dump_old2new_map()"); 2410 2411 // Iterative Global Value Numbering, including ideal transforms 2412 { 2413 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]); 2414 igvn = ccp; 2415 igvn.optimize(); 2416 } 2417 2418 print_method(PHASE_ITER_GVN2, 2); 2419 2420 if (failing()) return; 2421 2422 // Loop transforms on the ideal graph. Range Check Elimination, 2423 // peeling, unrolling, etc. 2424 if (!optimize_loops(igvn, LoopOptsDefault)) { 2425 return; 2426 } 2427 2428 #if INCLUDE_ZGC 2429 if (UseZGC) { 2430 ZBarrierSetC2::find_dominating_barriers(igvn); 2431 } 2432 #endif 2433 2434 if (failing()) return; 2435 2436 // Ensure that major progress is now clear 2437 C->clear_major_progress(); 2438 2439 { 2440 // Verify that all previous optimizations produced a valid graph 2441 // at least to this point, even if no loop optimizations were done. 2442 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]); 2443 PhaseIdealLoop::verify(igvn); 2444 } 2445 2446 if (range_check_cast_count() > 0) { 2447 // No more loop optimizations. Remove all range check dependent CastIINodes. 2448 C->remove_range_check_casts(igvn); 2449 igvn.optimize(); 2450 } 2451 2452 #ifdef ASSERT 2453 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2454 bs->verify_gc_barriers(this, BarrierSetC2::BeforeExpand); 2455 #endif 2456 2457 { 2458 TracePhase tp("macroExpand", &timers[_t_macroExpand]); 2459 PhaseMacroExpand mex(igvn); 2460 print_method(PHASE_BEFORE_MACRO_EXPANSION, 2); 2461 if (mex.expand_macro_nodes()) { 2462 assert(failing(), "must bail out w/ explicit message"); 2463 return; 2464 } 2465 } 2466 2467 { 2468 TracePhase tp("barrierExpand", &timers[_t_barrierExpand]); 2469 print_method(PHASE_BEFORE_BARRIER_EXPAND, 2); 2470 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2471 if (bs->expand_barriers(this, igvn)) { 2472 assert(failing(), "must bail out w/ explicit message"); 2473 return; 2474 } 2475 } 2476 2477 if (opaque4_count() > 0) { 2478 C->remove_opaque4_nodes(igvn); 2479 igvn.optimize(); 2480 } 2481 2482 DEBUG_ONLY( _modified_nodes = NULL; ) 2483 } // (End scope of igvn; run destructor if necessary for asserts.) 2484 2485 process_print_inlining(); 2486 // A method with only infinite loops has no edges entering loops from root 2487 { 2488 TracePhase tp("graphReshape", &timers[_t_graphReshaping]); 2489 if (final_graph_reshaping()) { 2490 assert(failing(), "must bail out w/ explicit message"); 2491 return; 2492 } 2493 } 2494 2495 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2496 } 2497 2498 void Compile::print_method(CompilerPhaseType cpt, Node* n, int level) { 2499 ResourceMark rm; 2500 stringStream ss; 2501 ss.print_raw(CompilerPhaseTypeHelper::to_string(cpt)); 2502 if (n != NULL) { 2503 #ifndef PRODUCT 2504 ss.print(": %s %d", n->Name(), n->_idx); 2505 #else 2506 ss.print(": %d %d", n->Opcode(), n->_idx); 2507 #endif // PRODUCT 2508 } else { 2509 ss.print_raw(": NULL"); 2510 } 2511 C->print_method(cpt, ss.as_string(), level); 2512 } 2513 2514 void Compile::scalarize_vbox_nodes() { 2515 int macro_idx = C->macro_count() - 1; 2516 while(macro_idx >= 0) { 2517 Node * n = C->macro_node(macro_idx); 2518 assert(n->is_macro(), "only macro nodes expected here"); 2519 if (n->Opcode() == Op_VectorBox) { 2520 VectorBoxNode* vbox = static_cast<VectorBoxNode*>(n); 2521 scalarize_vbox_node(vbox); 2522 if (failing()) return; 2523 print_method(PHASE_SCALARIZE_VBOX, vbox); 2524 } 2525 if (C->failing()) return; 2526 macro_idx = MIN2(macro_idx - 1, C->macro_count() - 1); 2527 } 2528 } 2529 2530 void Compile::expand_vbox_nodes() { 2531 int macro_idx = C->macro_count() - 1; 2532 while(macro_idx >= 0) { 2533 Node * n = C->macro_node(macro_idx); 2534 assert(n->is_macro(), "only macro nodes expected here"); 2535 if (n->Opcode() == Op_VectorBox) { 2536 VectorBoxNode* vbox = static_cast<VectorBoxNode*>(n); 2537 expand_vbox_node(vbox); 2538 if (failing()) return; 2539 print_method(PHASE_EXPAND_VBOX, vbox); 2540 } 2541 if (C->failing()) return; 2542 macro_idx = MIN2(macro_idx - 1, C->macro_count() - 1); 2543 } 2544 } 2545 2546 void Compile::expand_vunbox_nodes() { 2547 int macro_idx = C->macro_count() - 1; 2548 while(macro_idx >= 0) { 2549 Node * n = C->macro_node(macro_idx); 2550 assert(n->is_macro(), "only macro nodes expected here"); 2551 if (n->Opcode() == Op_VectorUnbox) { 2552 VectorUnboxNode* vec_unbox = static_cast<VectorUnboxNode*>(n); 2553 expand_vunbox_node(vec_unbox); 2554 if (failing()) return; 2555 print_method(PHASE_EXPAND_VUNBOX, vec_unbox); 2556 } 2557 if (C->failing()) return; 2558 macro_idx = MIN2(macro_idx - 1, C->macro_count() - 1); 2559 } 2560 } 2561 2562 void Compile::eliminate_vbox_alloc_nodes() { 2563 int macro_idx = C->macro_count() - 1; 2564 while(macro_idx >= 0) { 2565 Node * n = C->macro_node(macro_idx); 2566 assert(n->is_macro(), "only macro nodes expected here"); 2567 if (n->Opcode() == Op_VectorBoxAllocate) { 2568 VectorBoxAllocateNode* vbox_alloc = static_cast<VectorBoxAllocateNode*>(n); 2569 eliminate_vbox_alloc_node(vbox_alloc); 2570 if (failing()) return; 2571 print_method(PHASE_ELIMINATE_VBOX_ALLOC, vbox_alloc); 2572 } 2573 if (C->failing()) return; 2574 macro_idx = MIN2(macro_idx - 1, C->macro_count() - 1); 2575 } 2576 } 2577 2578 void Compile::inline_vector_reboxing_calls() { 2579 if (_vector_reboxing_late_inlines.length() > 0) { 2580 PhaseGVN* gvn = initial_gvn(); 2581 2582 _late_inlines_pos = _late_inlines.length(); 2583 while (_vector_reboxing_late_inlines.length() > 0) { 2584 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2585 cg->do_late_inline(); 2586 if (failing()) return; 2587 print_method(PHASE_INLINE_VECTOR_REBOX, cg->call_node()); 2588 } 2589 _vector_reboxing_late_inlines.trunc_to(0); 2590 } 2591 } 2592 2593 bool Compile::has_vbox_nodes() { 2594 if (_vector_reboxing_late_inlines.length() > 0) { 2595 return true; 2596 } 2597 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2598 Node * n = C->macro_node(macro_idx); 2599 assert(n->is_macro(), "only macro nodes expected here"); 2600 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2601 return true; 2602 } 2603 } 2604 return false; 2605 } 2606 2607 static JVMState* clone_jvms(Compile* C, SafePointNode* sfpt) { 2608 JVMState* new_jvms = sfpt->jvms()->clone_shallow(C); 2609 uint size = sfpt->req(); 2610 SafePointNode* map = new SafePointNode(size, new_jvms); 2611 for (uint i = 0; i < size; i++) { 2612 map->init_req(i, sfpt->in(i)); 2613 } 2614 // Make sure the state is a MergeMem for parsing. 2615 // FIXME not needed? 2616 // if (!map->in(TypeFunc::Memory)->is_MergeMem()) { 2617 // Node* mem = MergeMemNode::make(map->in(TypeFunc::Memory)); 2618 // gvn.set_type_bottom(mem); 2619 // map->set_req(TypeFunc::Memory, mem); 2620 // } 2621 new_jvms->set_map(map); 2622 return new_jvms; 2623 } 2624 2625 void Compile::scalarize_vbox_node(VectorBoxNode* vec_box) { 2626 Node* vec_value = vec_box->in(VectorBoxNode::Value); 2627 PhaseGVN& gvn = *initial_gvn(); 2628 2629 // Process merged VBAs 2630 2631 Unique_Node_List calls(C->comp_arena()); 2632 for (DUIterator_Fast imax, i = vec_box->fast_outs(imax); i < imax; i++) { 2633 Node* use = vec_box->fast_out(i); 2634 if (use->is_CallJava()) { 2635 CallJavaNode* call = use->as_CallJava(); 2636 if (call->has_non_debug_use(vec_box) && vec_box->in(VectorBoxNode::Box)->is_Phi()) { 2637 calls.push(call); 2638 } 2639 } 2640 } 2641 2642 while (VectorAPIAggressiveReboxing && calls.size() > 0) { 2643 CallJavaNode* call = calls.pop()->as_CallJava(); 2644 // Attach new VBA to the call and use it instead of Phi (VBA ... VBA). 2645 2646 JVMState* jvms = clone_jvms(C, call); 2647 GraphKit kit(jvms); 2648 PhaseGVN& gvn = kit.gvn(); 2649 2650 // Adjust JVMS from post-call to pre-call state: put args on stack 2651 uint nargs = call->method()->arg_size(); 2652 kit.ensure_stack(kit.sp() + nargs); 2653 for (uint i = TypeFunc::Parms; i < call->tf()->domain()->cnt(); i++) { 2654 kit.push(call->in(i)); 2655 } 2656 jvms = kit.sync_jvms(); 2657 2658 Node* new_vbox = NULL; 2659 { 2660 PreserveReexecuteState prs(&kit); 2661 2662 kit.jvms()->set_should_reexecute(true); 2663 2664 const TypeInstPtr* vbox_type = vec_box->box_type(); 2665 const TypeVect* vect_type = vec_box->vec_type(); 2666 Node* vect = vec_box->in(VectorBoxNode::Value); 2667 2668 VectorBoxAllocateNode* alloc = new VectorBoxAllocateNode(C, vbox_type); 2669 kit.set_edges_for_java_call(alloc, /*must_throw=*/false, /*separate_io_proj=*/true); 2670 kit.make_slow_call_ex(alloc, env()->Throwable_klass(), /*separate_io_proj=*/true, /*deoptimize=*/true); 2671 kit.set_i_o(gvn.transform( new ProjNode(alloc, TypeFunc::I_O) )); 2672 kit.set_all_memory(gvn.transform( new ProjNode(alloc, TypeFunc::Memory) )); 2673 Node* ret = gvn.transform(new ProjNode(alloc, TypeFunc::Parms)); 2674 2675 new_vbox = gvn.transform(new VectorBoxNode(C, ret, vect, vbox_type, vect_type)); 2676 2677 kit.replace_in_map(vec_box, new_vbox); 2678 } 2679 2680 kit.dec_sp(nargs); 2681 jvms = kit.sync_jvms(); 2682 2683 bool found = false; 2684 int cnt = _vector_reboxing_late_inlines.length(); 2685 for (int i = 0; i < cnt; i++) { 2686 CallGenerator* cg = _vector_reboxing_late_inlines.at(i); 2687 if (cg->call_node() == call) { 2688 ciMethod* m = cg->method(); 2689 _vector_reboxing_late_inlines.remove(cg); // remove_at(i); 2690 CallGenerator* new_cg = CallGenerator::for_vector_reboxing_late_inline( 2691 m, 2692 CallGenerator::for_inline(m, m->interpreter_invocation_count())); 2693 2694 JVMState* new_jvms = new_cg->generate(jvms); 2695 2696 Node* new_res = kit.top(); 2697 if (m->return_type()->basic_type() != T_VOID) { 2698 new_res = new_cg->call_node()->proj_out(TypeFunc::Parms); 2699 } 2700 kit.replace_call(call, new_res, /*do_replaced_nodes=*/true); 2701 2702 found = true; 2703 break; 2704 } 2705 } 2706 2707 if (!found) { 2708 // FIXME does it cover all cases? 2709 CallJavaNode* new_call = call->clone()->as_CallJava(); 2710 new_call->set_req(TypeFunc::Control , kit.control()); 2711 new_call->set_req(TypeFunc::I_O , kit.i_o()); 2712 new_call->set_req(TypeFunc::Memory , kit.reset_memory()); 2713 new_call->set_req(TypeFunc::FramePtr , kit.frameptr()); 2714 2715 new_call->replace_edge(vec_box, new_vbox); 2716 new_call = gvn.transform(new_call)->as_CallJava(); 2717 2718 C->gvn_replace_by(call, new_call); 2719 } 2720 call->disconnect_inputs(NULL, C); 2721 } 2722 2723 // Process debug uses at safepoints 2724 Unique_Node_List safepoints(C->comp_arena()); 2725 2726 for (DUIterator_Fast imax, i = vec_box->fast_outs(imax); i < imax; i++) { 2727 Node* use = vec_box->fast_out(i); 2728 if (use->is_SafePoint()) { 2729 SafePointNode* sfpt = use->as_SafePoint(); 2730 if (!sfpt->is_Call() || !sfpt->as_Call()->has_non_debug_use(vec_box)) { 2731 safepoints.push(sfpt); 2732 } 2733 } 2734 } 2735 2736 while (safepoints.size() > 0) { 2737 SafePointNode* sfpt = safepoints.pop()->as_SafePoint(); 2738 2739 uint first_ind = (sfpt->req() - sfpt->jvms()->scloff()); 2740 Node* sobj = new SafePointScalarObjectNode(vec_box->box_type(), 2741 #ifdef ASSERT 2742 NULL, 2743 #endif // ASSERT 2744 first_ind, /*n_fields=*/1); 2745 sobj->init_req(0, C->root()); 2746 sfpt->add_req(vec_value); 2747 2748 sobj = gvn.transform(sobj); 2749 2750 JVMState *jvms = sfpt->jvms(); 2751 2752 jvms->set_endoff(sfpt->req()); 2753 // Now make a pass over the debug information replacing any references 2754 // to the allocated object with "sobj" 2755 int start = jvms->debug_start(); 2756 int end = jvms->debug_end(); 2757 sfpt->replace_edges_in_range(vec_box, sobj, start, end); 2758 } 2759 } 2760 2761 void Compile::expand_vbox_node(VectorBoxNode* vec_box) { 2762 if (vec_box->outcnt() > 0) { 2763 Node* vbox = vec_box->in(VectorBoxNode::Box); 2764 Node* vect = vec_box->in(VectorBoxNode::Value); 2765 Node* result = expand_vbox_node_helper(vbox, vect, vec_box->box_type(), vec_box->vec_type()); 2766 C->gvn_replace_by(vec_box, result); 2767 } 2768 C->remove_macro_node(vec_box); 2769 } 2770 2771 Node* Compile::expand_vbox_node_helper(Node* vbox, 2772 Node* vect, 2773 const TypeInstPtr* box_type, 2774 const TypeVect* vect_type) { 2775 if (vbox->is_Phi() && vect->is_Phi()) { 2776 assert(vbox->as_Phi()->region() == vect->as_Phi()->region(), ""); 2777 Node* new_phi = new PhiNode(vbox->as_Phi()->region(), box_type); 2778 for (uint i = 1; i < vbox->req(); i++) { 2779 Node* new_box = expand_vbox_node_helper(vbox->in(i), vect->in(i), box_type, vect_type); 2780 new_phi->set_req(i, new_box); 2781 } 2782 new_phi = initial_gvn()->transform(new_phi); 2783 return new_phi; 2784 } else if (vbox->is_Proj() && vbox->in(0)->Opcode() == Op_VectorBoxAllocate) { 2785 VectorBoxAllocateNode* vbox_alloc = static_cast<VectorBoxAllocateNode*>(vbox->in(0)); 2786 return expand_vbox_alloc_node(vbox_alloc, vect, box_type, vect_type); 2787 } else { 2788 // TODO: ensure that expanded vbox is initialized with the same value (vect). 2789 return vbox; // already expanded 2790 } 2791 } 2792 2793 static const char * get_field_name(ciInstanceKlass * box_class) { 2794 if(box_class->is_vectormask()) 2795 return "bits"; 2796 else if (box_class->is_vectorshuffle()) 2797 return "reorder"; 2798 else 2799 return "vec"; 2800 } 2801 2802 Node* Compile::expand_vbox_alloc_node(VectorBoxAllocateNode* vbox_alloc, 2803 Node* value, 2804 const TypeInstPtr* box_type, 2805 const TypeVect* vect_type) { 2806 JVMState* jvms = clone_jvms(C, vbox_alloc); 2807 GraphKit kit(jvms); 2808 PhaseGVN& gvn = kit.gvn(); 2809 2810 ciInstanceKlass* box_klass = box_type->klass()->as_instance_klass(); 2811 BasicType bt = vect_type->element_basic_type(); 2812 int num_elem = vect_type->length(); 2813 2814 bool is_mask = box_klass->is_vectormask(); 2815 //assert(!is_mask || vect_type->element_basic_type() == getMaskBasicType(bt), "consistent vector element type expected"); 2816 if (is_mask && bt != T_BOOLEAN) { 2817 value = gvn.transform(new VectorStoreMaskNode(value, bt, num_elem)); 2818 // Although type of mask depends on its definition, in terms of storage everything is stored in boolean array. 2819 bt = T_BOOLEAN; 2820 assert(value->as_Vector()->bottom_type()->is_vect()->element_basic_type() == bt, 2821 "must be consistent with mask representation"); 2822 } 2823 2824 // Generate the allocate for the Vector object. 2825 const TypeKlassPtr* klass_type = box_type->as_klass_type(); 2826 Node* klass_node = kit.makecon(klass_type); 2827 Node* vec_obj = kit.new_instance(klass_node); 2828 2829 // Generate array allocation for the field which holds the values. 2830 const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(bt)); 2831 Node* arr = kit.new_array(kit.makecon(array_klass), kit.intcon(num_elem), 1); 2832 2833 // FIXME convert both stores into initializing stores 2834 2835 // Store the vector value into the array. 2836 Node* arr_adr = kit.array_element_address(arr, kit.intcon(0), bt); 2837 const TypePtr* arr_adr_type = arr_adr->bottom_type()->is_ptr(); 2838 Node* arr_mem = kit.memory(arr_adr); 2839 Node* vstore = gvn.transform(StoreVectorNode::make(0, 2840 kit.control(), 2841 arr_mem, 2842 arr_adr, 2843 arr_adr_type, 2844 value, 2845 num_elem)); 2846 kit.set_memory(vstore, arr_adr_type); 2847 2848 2849 // Store the allocated array into object. 2850 ciField* field = box_klass->get_field_by_name(ciSymbol::make(get_field_name(box_klass)), 2851 ciSymbol::make(TypeArrayKlass::external_name(bt)), 2852 false); 2853 Node* vec_field = kit.basic_plus_adr(vec_obj, field->offset_in_bytes()); 2854 const TypePtr* vec_adr_type = vec_field->bottom_type()->is_ptr(); 2855 Node* field_store = gvn.transform(kit.access_store_at(vec_obj, 2856 vec_field, 2857 vec_adr_type, 2858 arr, 2859 TypeOopPtr::make_from_klass(field->type()->as_klass()), 2860 T_OBJECT, 2861 IN_HEAP)); 2862 2863 kit.set_memory(field_store, vec_adr_type); 2864 2865 kit.replace_call(vbox_alloc, vec_obj, true); 2866 C->remove_macro_node(vbox_alloc); 2867 return vec_obj; 2868 } 2869 2870 void Compile::expand_vunbox_node(VectorUnboxNode* vec_unbox) { 2871 if (vec_unbox->outcnt() > 0) { 2872 GraphKit kit; 2873 PhaseGVN& gvn = kit.gvn(); 2874 2875 Node* obj = vec_unbox->obj(); 2876 const TypeInstPtr* tinst = gvn.type(obj)->isa_instptr(); 2877 ciInstanceKlass* from_kls = tinst->klass()->as_instance_klass(); 2878 BasicType bt = vec_unbox->vect_type()->element_basic_type(); 2879 BasicType masktype = bt; 2880 2881 const char* field_name = "vec"; 2882 if (from_kls->is_vectormask()) { 2883 field_name = "bits"; 2884 bt = T_BOOLEAN; 2885 } else if (from_kls->is_vectorshuffle()) { 2886 field_name = "reorder"; 2887 bt = T_BYTE; 2888 } 2889 2890 ciField* field = from_kls->get_field_by_name(ciSymbol::make(field_name), 2891 ciSymbol::make(TypeArrayKlass::external_name(bt)), false); 2892 2893 int offset = field->offset_in_bytes(); 2894 Node* vec_adr = kit.basic_plus_adr(obj, offset); 2895 2896 Node* mem = vec_unbox->mem(); 2897 Node* ctrl = vec_unbox->in(0); 2898 Node* vec_field_ld = LoadNode::make(gvn, 2899 ctrl, 2900 mem, 2901 vec_adr, 2902 vec_adr->bottom_type()->is_ptr(), 2903 TypeOopPtr::make_from_klass(field->type()->as_klass()), 2904 T_OBJECT, 2905 MemNode::unordered); 2906 vec_field_ld = gvn.transform(vec_field_ld); 2907 2908 Node* adr = kit.array_element_address(vec_field_ld, gvn.intcon(0), bt); 2909 const TypePtr* adr_type = adr->bottom_type()->is_ptr(); 2910 int num_elem = vec_unbox->bottom_type()->is_vect()->length(); 2911 Node* vec_val_load = LoadVectorNode::make(0, 2912 ctrl, 2913 mem, 2914 adr, 2915 adr_type, 2916 num_elem, 2917 bt); 2918 vec_val_load = gvn.transform(vec_val_load); 2919 2920 if (from_kls->is_vectormask() && masktype != T_BOOLEAN) { 2921 assert(vec_unbox->bottom_type()->is_vect()->element_basic_type() == masktype, "expect mask type consistency"); 2922 vec_val_load = gvn.transform(new VectorLoadMaskNode(vec_val_load, TypeVect::make(masktype, num_elem))); 2923 } else if (from_kls->is_vectorshuffle()) { 2924 assert(vec_unbox->bottom_type()->is_vect()->element_basic_type() == masktype, "expect shuffle type consistency"); 2925 vec_val_load = gvn.transform(new VectorLoadShuffleNode(vec_val_load, TypeVect::make(masktype, num_elem))); 2926 } 2927 2928 gvn.hash_delete(vec_unbox); 2929 vec_unbox->disconnect_inputs(NULL, C); 2930 C->gvn_replace_by(vec_unbox, vec_val_load); 2931 } 2932 C->remove_macro_node(vec_unbox); 2933 } 2934 2935 void Compile::eliminate_vbox_alloc_node(VectorBoxAllocateNode* vbox_alloc) { 2936 JVMState* jvms = clone_jvms(C, vbox_alloc); 2937 GraphKit kit(jvms); 2938 // FIXME replace VBA with a safepoint. Otherwise, no safepoints left in tight loops. 2939 kit.replace_call(vbox_alloc, kit.top(), true); 2940 C->remove_macro_node(vbox_alloc); 2941 } 2942 2943 //------------------------------Code_Gen--------------------------------------- 2944 // Given a graph, generate code for it 2945 void Compile::Code_Gen() { 2946 if (failing()) { 2947 return; 2948 } 2949 2950 // Perform instruction selection. You might think we could reclaim Matcher 2951 // memory PDQ, but actually the Matcher is used in generating spill code. 2952 // Internals of the Matcher (including some VectorSets) must remain live 2953 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2954 // set a bit in reclaimed memory. 2955 2956 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2957 // nodes. Mapping is only valid at the root of each matched subtree. 2958 NOT_PRODUCT( verify_graph_edges(); ) 2959 2960 Matcher matcher; 2961 _matcher = &matcher; 2962 { 2963 TracePhase tp("matcher", &timers[_t_matcher]); 2964 matcher.match(); 2965 print_method(PHASE_AFTER_MATCHING, 3); 2966 } 2967 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2968 // nodes. Mapping is only valid at the root of each matched subtree. 2969 NOT_PRODUCT( verify_graph_edges(); ) 2970 2971 // If you have too many nodes, or if matching has failed, bail out 2972 check_node_count(0, "out of nodes matching instructions"); 2973 if (failing()) { 2974 return; 2975 } 2976 2977 print_method(PHASE_MATCHING, 2); 2978 2979 // Build a proper-looking CFG 2980 PhaseCFG cfg(node_arena(), root(), matcher); 2981 _cfg = &cfg; 2982 { 2983 TracePhase tp("scheduler", &timers[_t_scheduler]); 2984 bool success = cfg.do_global_code_motion(); 2985 if (!success) { 2986 return; 2987 } 2988 2989 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2990 NOT_PRODUCT( verify_graph_edges(); ) 2991 debug_only( cfg.verify(); ) 2992 } 2993 2994 PhaseChaitin regalloc(unique(), cfg, matcher, false); 2995 _regalloc = ®alloc; 2996 { 2997 TracePhase tp("regalloc", &timers[_t_registerAllocation]); 2998 // Perform register allocation. After Chaitin, use-def chains are 2999 // no longer accurate (at spill code) and so must be ignored. 3000 // Node->LRG->reg mappings are still accurate. 3001 _regalloc->Register_Allocate(); 3002 3003 // Bail out if the allocator builds too many nodes 3004 if (failing()) { 3005 return; 3006 } 3007 } 3008 3009 // Prior to register allocation we kept empty basic blocks in case the 3010 // the allocator needed a place to spill. After register allocation we 3011 // are not adding any new instructions. If any basic block is empty, we 3012 // can now safely remove it. 3013 { 3014 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]); 3015 cfg.remove_empty_blocks(); 3016 if (do_freq_based_layout()) { 3017 PhaseBlockLayout layout(cfg); 3018 } else { 3019 cfg.set_loop_alignment(); 3020 } 3021 cfg.fixup_flow(); 3022 } 3023 3024 // Apply peephole optimizations 3025 if( OptoPeephole ) { 3026 TracePhase tp("peephole", &timers[_t_peephole]); 3027 PhasePeephole peep( _regalloc, cfg); 3028 peep.do_transform(); 3029 } 3030 3031 // Do late expand if CPU requires this. 3032 if (Matcher::require_postalloc_expand) { 3033 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]); 3034 cfg.postalloc_expand(_regalloc); 3035 } 3036 3037 // Convert Nodes to instruction bits in a buffer 3038 { 3039 TraceTime tp("output", &timers[_t_output], CITime); 3040 Output(); 3041 } 3042 3043 print_method(PHASE_FINAL_CODE); 3044 3045 // He's dead, Jim. 3046 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3047 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3048 } 3049 3050 3051 //------------------------------dump_asm--------------------------------------- 3052 // Dump formatted assembly 3053 #ifndef PRODUCT 3054 void Compile::dump_asm(int *pcs, uint pc_limit) { 3055 bool cut_short = false; 3056 tty->print_cr("#"); 3057 tty->print("# "); _tf->dump(); tty->cr(); 3058 tty->print_cr("#"); 3059 3060 // For all blocks 3061 int pc = 0x0; // Program counter 3062 char starts_bundle = ' '; 3063 _regalloc->dump_frame(); 3064 3065 Node *n = NULL; 3066 for (uint i = 0; i < _cfg->number_of_blocks(); i++) { 3067 if (VMThread::should_terminate()) { 3068 cut_short = true; 3069 break; 3070 } 3071 Block* block = _cfg->get_block(i); 3072 if (block->is_connector() && !Verbose) { 3073 continue; 3074 } 3075 n = block->head(); 3076 if (pcs && n->_idx < pc_limit) { 3077 tty->print("%3.3x ", pcs[n->_idx]); 3078 } else { 3079 tty->print(" "); 3080 } 3081 block->dump_head(_cfg); 3082 if (block->is_connector()) { 3083 tty->print_cr(" # Empty connector block"); 3084 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 3085 tty->print_cr(" # Block is sole successor of call"); 3086 } 3087 3088 // For all instructions 3089 Node *delay = NULL; 3090 for (uint j = 0; j < block->number_of_nodes(); j++) { 3091 if (VMThread::should_terminate()) { 3092 cut_short = true; 3093 break; 3094 } 3095 n = block->get_node(j); 3096 if (valid_bundle_info(n)) { 3097 Bundle* bundle = node_bundling(n); 3098 if (bundle->used_in_unconditional_delay()) { 3099 delay = n; 3100 continue; 3101 } 3102 if (bundle->starts_bundle()) { 3103 starts_bundle = '+'; 3104 } 3105 } 3106 3107 if (WizardMode) { 3108 n->dump(); 3109 } 3110 3111 if( !n->is_Region() && // Dont print in the Assembly 3112 !n->is_Phi() && // a few noisely useless nodes 3113 !n->is_Proj() && 3114 !n->is_MachTemp() && 3115 !n->is_SafePointScalarObject() && 3116 !n->is_Catch() && // Would be nice to print exception table targets 3117 !n->is_MergeMem() && // Not very interesting 3118 !n->is_top() && // Debug info table constants 3119 !(n->is_Con() && !n->is_Mach())// Debug info table constants 3120 ) { 3121 if (pcs && n->_idx < pc_limit) 3122 tty->print("%3.3x", pcs[n->_idx]); 3123 else 3124 tty->print(" "); 3125 tty->print(" %c ", starts_bundle); 3126 starts_bundle = ' '; 3127 tty->print("\t"); 3128 n->format(_regalloc, tty); 3129 tty->cr(); 3130 } 3131 3132 // If we have an instruction with a delay slot, and have seen a delay, 3133 // then back up and print it 3134 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 3135 assert(delay != NULL, "no unconditional delay instruction"); 3136 if (WizardMode) delay->dump(); 3137 3138 if (node_bundling(delay)->starts_bundle()) 3139 starts_bundle = '+'; 3140 if (pcs && n->_idx < pc_limit) 3141 tty->print("%3.3x", pcs[n->_idx]); 3142 else 3143 tty->print(" "); 3144 tty->print(" %c ", starts_bundle); 3145 starts_bundle = ' '; 3146 tty->print("\t"); 3147 delay->format(_regalloc, tty); 3148 tty->cr(); 3149 delay = NULL; 3150 } 3151 3152 // Dump the exception table as well 3153 if( n->is_Catch() && (Verbose || WizardMode) ) { 3154 // Print the exception table for this offset 3155 _handler_table.print_subtable_for(pc); 3156 } 3157 } 3158 3159 if (pcs && n->_idx < pc_limit) 3160 tty->print_cr("%3.3x", pcs[n->_idx]); 3161 else 3162 tty->cr(); 3163 3164 assert(cut_short || delay == NULL, "no unconditional delay branch"); 3165 3166 } // End of per-block dump 3167 tty->cr(); 3168 3169 if (cut_short) tty->print_cr("*** disassembly is cut short ***"); 3170 } 3171 #endif 3172 3173 //------------------------------Final_Reshape_Counts--------------------------- 3174 // This class defines counters to help identify when a method 3175 // may/must be executed using hardware with only 24-bit precision. 3176 struct Final_Reshape_Counts : public StackObj { 3177 int _call_count; // count non-inlined 'common' calls 3178 int _float_count; // count float ops requiring 24-bit precision 3179 int _double_count; // count double ops requiring more precision 3180 int _java_call_count; // count non-inlined 'java' calls 3181 int _inner_loop_count; // count loops which need alignment 3182 VectorSet _visited; // Visitation flags 3183 Node_List _tests; // Set of IfNodes & PCTableNodes 3184 3185 Final_Reshape_Counts() : 3186 _call_count(0), _float_count(0), _double_count(0), 3187 _java_call_count(0), _inner_loop_count(0), 3188 _visited( Thread::current()->resource_area() ) { } 3189 3190 void inc_call_count () { _call_count ++; } 3191 void inc_float_count () { _float_count ++; } 3192 void inc_double_count() { _double_count++; } 3193 void inc_java_call_count() { _java_call_count++; } 3194 void inc_inner_loop_count() { _inner_loop_count++; } 3195 3196 int get_call_count () const { return _call_count ; } 3197 int get_float_count () const { return _float_count ; } 3198 int get_double_count() const { return _double_count; } 3199 int get_java_call_count() const { return _java_call_count; } 3200 int get_inner_loop_count() const { return _inner_loop_count; } 3201 }; 3202 3203 #ifdef ASSERT 3204 static bool oop_offset_is_sane(const TypeInstPtr* tp) { 3205 ciInstanceKlass *k = tp->klass()->as_instance_klass(); 3206 // Make sure the offset goes inside the instance layout. 3207 return k->contains_field_offset(tp->offset()); 3208 // Note that OffsetBot and OffsetTop are very negative. 3209 } 3210 #endif 3211 3212 // Eliminate trivially redundant StoreCMs and accumulate their 3213 // precedence edges. 3214 void Compile::eliminate_redundant_card_marks(Node* n) { 3215 assert(n->Opcode() == Op_StoreCM, "expected StoreCM"); 3216 if (n->in(MemNode::Address)->outcnt() > 1) { 3217 // There are multiple users of the same address so it might be 3218 // possible to eliminate some of the StoreCMs 3219 Node* mem = n->in(MemNode::Memory); 3220 Node* adr = n->in(MemNode::Address); 3221 Node* val = n->in(MemNode::ValueIn); 3222 Node* prev = n; 3223 bool done = false; 3224 // Walk the chain of StoreCMs eliminating ones that match. As 3225 // long as it's a chain of single users then the optimization is 3226 // safe. Eliminating partially redundant StoreCMs would require 3227 // cloning copies down the other paths. 3228 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) { 3229 if (adr == mem->in(MemNode::Address) && 3230 val == mem->in(MemNode::ValueIn)) { 3231 // redundant StoreCM 3232 if (mem->req() > MemNode::OopStore) { 3233 // Hasn't been processed by this code yet. 3234 n->add_prec(mem->in(MemNode::OopStore)); 3235 } else { 3236 // Already converted to precedence edge 3237 for (uint i = mem->req(); i < mem->len(); i++) { 3238 // Accumulate any precedence edges 3239 if (mem->in(i) != NULL) { 3240 n->add_prec(mem->in(i)); 3241 } 3242 } 3243 // Everything above this point has been processed. 3244 done = true; 3245 } 3246 // Eliminate the previous StoreCM 3247 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory)); 3248 assert(mem->outcnt() == 0, "should be dead"); 3249 mem->disconnect_inputs(NULL, this); 3250 } else { 3251 prev = mem; 3252 } 3253 mem = prev->in(MemNode::Memory); 3254 } 3255 } 3256 } 3257 3258 //------------------------------final_graph_reshaping_impl---------------------- 3259 // Implement items 1-5 from final_graph_reshaping below. 3260 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) { 3261 3262 if ( n->outcnt() == 0 ) return; // dead node 3263 uint nop = n->Opcode(); 3264 3265 // Check for 2-input instruction with "last use" on right input. 3266 // Swap to left input. Implements item (2). 3267 if( n->req() == 3 && // two-input instruction 3268 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3269 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3270 n->in(2)->outcnt() == 1 &&// right use IS a last use 3271 !n->in(2)->is_Con() ) { // right use is not a constant 3272 // Check for commutative opcode 3273 switch( nop ) { 3274 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3275 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3276 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3277 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3278 case Op_AndL: case Op_XorL: case Op_OrL: 3279 case Op_AndI: case Op_XorI: case Op_OrI: { 3280 // Move "last use" input to left by swapping inputs 3281 n->swap_edges(1, 2); 3282 break; 3283 } 3284 default: 3285 break; 3286 } 3287 } 3288 3289 #ifdef ASSERT 3290 if( n->is_Mem() ) { 3291 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3292 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw || 3293 // oop will be recorded in oop map if load crosses safepoint 3294 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3295 LoadNode::is_immutable_value(n->in(MemNode::Address))), 3296 "raw memory operations should have control edge"); 3297 } 3298 if (n->is_MemBar()) { 3299 MemBarNode* mb = n->as_MemBar(); 3300 if (mb->trailing_store() || mb->trailing_load_store()) { 3301 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3302 Node* mem = mb->in(MemBarNode::Precedent); 3303 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3304 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3305 } else if (mb->leading()) { 3306 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3307 } 3308 } 3309 #endif 3310 // Count FPU ops and common calls, implements item (3) 3311 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop); 3312 if (!gc_handled) { 3313 final_graph_reshaping_main_switch(n, frc, nop); 3314 } 3315 3316 // Collect CFG split points 3317 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3318 frc._tests.push(n); 3319 } 3320 } 3321 3322 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) { 3323 switch( nop ) { 3324 // Count all float operations that may use FPU 3325 case Op_AddF: 3326 case Op_SubF: 3327 case Op_MulF: 3328 case Op_DivF: 3329 case Op_NegF: 3330 case Op_ModF: 3331 case Op_ConvI2F: 3332 case Op_ConF: 3333 case Op_CmpF: 3334 case Op_CmpF3: 3335 // case Op_ConvL2F: // longs are split into 32-bit halves 3336 frc.inc_float_count(); 3337 break; 3338 3339 case Op_ConvF2D: 3340 case Op_ConvD2F: 3341 frc.inc_float_count(); 3342 frc.inc_double_count(); 3343 break; 3344 3345 // Count all double operations that may use FPU 3346 case Op_AddD: 3347 case Op_SubD: 3348 case Op_MulD: 3349 case Op_DivD: 3350 case Op_NegD: 3351 case Op_ModD: 3352 case Op_ConvI2D: 3353 case Op_ConvD2I: 3354 // case Op_ConvL2D: // handled by leaf call 3355 // case Op_ConvD2L: // handled by leaf call 3356 case Op_ConD: 3357 case Op_CmpD: 3358 case Op_CmpD3: 3359 frc.inc_double_count(); 3360 break; 3361 case Op_Opaque1: // Remove Opaque Nodes before matching 3362 case Op_Opaque2: // Remove Opaque Nodes before matching 3363 case Op_Opaque3: 3364 n->subsume_by(n->in(1), this); 3365 break; 3366 case Op_CallStaticJava: 3367 case Op_CallJava: 3368 case Op_CallDynamicJava: 3369 frc.inc_java_call_count(); // Count java call site; 3370 case Op_CallRuntime: 3371 case Op_CallLeaf: 3372 case Op_CallLeafVector: 3373 case Op_CallLeafNoFP: { 3374 assert (n->is_Call(), ""); 3375 CallNode *call = n->as_Call(); 3376 // Count call sites where the FP mode bit would have to be flipped. 3377 // Do not count uncommon runtime calls: 3378 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3379 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3380 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3381 frc.inc_call_count(); // Count the call site 3382 } else { // See if uncommon argument is shared 3383 Node *n = call->in(TypeFunc::Parms); 3384 int nop = n->Opcode(); 3385 // Clone shared simple arguments to uncommon calls, item (1). 3386 if (n->outcnt() > 1 && 3387 !n->is_Proj() && 3388 nop != Op_CreateEx && 3389 nop != Op_CheckCastPP && 3390 nop != Op_DecodeN && 3391 nop != Op_DecodeNKlass && 3392 !n->is_Mem() && 3393 !n->is_Phi()) { 3394 Node *x = n->clone(); 3395 call->set_req(TypeFunc::Parms, x); 3396 } 3397 } 3398 break; 3399 } 3400 3401 case Op_StoreD: 3402 case Op_LoadD: 3403 case Op_LoadD_unaligned: 3404 frc.inc_double_count(); 3405 goto handle_mem; 3406 case Op_StoreF: 3407 case Op_LoadF: 3408 frc.inc_float_count(); 3409 goto handle_mem; 3410 3411 case Op_StoreCM: 3412 { 3413 // Convert OopStore dependence into precedence edge 3414 Node* prec = n->in(MemNode::OopStore); 3415 n->del_req(MemNode::OopStore); 3416 n->add_prec(prec); 3417 eliminate_redundant_card_marks(n); 3418 } 3419 3420 // fall through 3421 3422 case Op_StoreB: 3423 case Op_StoreC: 3424 case Op_StorePConditional: 3425 case Op_StoreI: 3426 case Op_StoreL: 3427 case Op_StoreIConditional: 3428 case Op_StoreLConditional: 3429 case Op_CompareAndSwapB: 3430 case Op_CompareAndSwapS: 3431 case Op_CompareAndSwapI: 3432 case Op_CompareAndSwapL: 3433 case Op_CompareAndSwapP: 3434 case Op_CompareAndSwapN: 3435 case Op_WeakCompareAndSwapB: 3436 case Op_WeakCompareAndSwapS: 3437 case Op_WeakCompareAndSwapI: 3438 case Op_WeakCompareAndSwapL: 3439 case Op_WeakCompareAndSwapP: 3440 case Op_WeakCompareAndSwapN: 3441 case Op_CompareAndExchangeB: 3442 case Op_CompareAndExchangeS: 3443 case Op_CompareAndExchangeI: 3444 case Op_CompareAndExchangeL: 3445 case Op_CompareAndExchangeP: 3446 case Op_CompareAndExchangeN: 3447 case Op_GetAndAddS: 3448 case Op_GetAndAddB: 3449 case Op_GetAndAddI: 3450 case Op_GetAndAddL: 3451 case Op_GetAndSetS: 3452 case Op_GetAndSetB: 3453 case Op_GetAndSetI: 3454 case Op_GetAndSetL: 3455 case Op_GetAndSetP: 3456 case Op_GetAndSetN: 3457 case Op_StoreP: 3458 case Op_StoreN: 3459 case Op_StoreNKlass: 3460 case Op_LoadB: 3461 case Op_LoadUB: 3462 case Op_LoadUS: 3463 case Op_LoadI: 3464 case Op_LoadKlass: 3465 case Op_LoadNKlass: 3466 case Op_LoadL: 3467 case Op_LoadL_unaligned: 3468 case Op_LoadPLocked: 3469 case Op_LoadP: 3470 case Op_LoadN: 3471 case Op_LoadRange: 3472 case Op_LoadS: { 3473 handle_mem: 3474 #ifdef ASSERT 3475 if( VerifyOptoOopOffsets ) { 3476 MemNode* mem = n->as_Mem(); 3477 // Check to see if address types have grounded out somehow. 3478 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr(); 3479 assert( !tp || oop_offset_is_sane(tp), "" ); 3480 } 3481 #endif 3482 break; 3483 } 3484 3485 case Op_AddP: { // Assert sane base pointers 3486 Node *addp = n->in(AddPNode::Address); 3487 assert( !addp->is_AddP() || 3488 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3489 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3490 "Base pointers must match (addp %u)", addp->_idx ); 3491 #ifdef _LP64 3492 if ((UseCompressedOops || UseCompressedClassPointers) && 3493 addp->Opcode() == Op_ConP && 3494 addp == n->in(AddPNode::Base) && 3495 n->in(AddPNode::Offset)->is_Con()) { 3496 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3497 // on the platform and on the compressed oops mode. 3498 // Use addressing with narrow klass to load with offset on x86. 3499 // Some platforms can use the constant pool to load ConP. 3500 // Do this transformation here since IGVN will convert ConN back to ConP. 3501 const Type* t = addp->bottom_type(); 3502 bool is_oop = t->isa_oopptr() != NULL; 3503 bool is_klass = t->isa_klassptr() != NULL; 3504 3505 if ((is_oop && Matcher::const_oop_prefer_decode() ) || 3506 (is_klass && Matcher::const_klass_prefer_decode())) { 3507 Node* nn = NULL; 3508 3509 int op = is_oop ? Op_ConN : Op_ConNKlass; 3510 3511 // Look for existing ConN node of the same exact type. 3512 Node* r = root(); 3513 uint cnt = r->outcnt(); 3514 for (uint i = 0; i < cnt; i++) { 3515 Node* m = r->raw_out(i); 3516 if (m!= NULL && m->Opcode() == op && 3517 m->bottom_type()->make_ptr() == t) { 3518 nn = m; 3519 break; 3520 } 3521 } 3522 if (nn != NULL) { 3523 // Decode a narrow oop to match address 3524 // [R12 + narrow_oop_reg<<3 + offset] 3525 if (is_oop) { 3526 nn = new DecodeNNode(nn, t); 3527 } else { 3528 nn = new DecodeNKlassNode(nn, t); 3529 } 3530 // Check for succeeding AddP which uses the same Base. 3531 // Otherwise we will run into the assertion above when visiting that guy. 3532 for (uint i = 0; i < n->outcnt(); ++i) { 3533 Node *out_i = n->raw_out(i); 3534 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3535 out_i->set_req(AddPNode::Base, nn); 3536 #ifdef ASSERT 3537 for (uint j = 0; j < out_i->outcnt(); ++j) { 3538 Node *out_j = out_i->raw_out(j); 3539 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3540 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3541 } 3542 #endif 3543 } 3544 } 3545 n->set_req(AddPNode::Base, nn); 3546 n->set_req(AddPNode::Address, nn); 3547 if (addp->outcnt() == 0) { 3548 addp->disconnect_inputs(NULL, this); 3549 } 3550 } 3551 } 3552 } 3553 #endif 3554 // platform dependent reshaping of the address expression 3555 reshape_address(n->as_AddP()); 3556 break; 3557 } 3558 3559 case Op_CastPP: { 3560 // Remove CastPP nodes to gain more freedom during scheduling but 3561 // keep the dependency they encode as control or precedence edges 3562 // (if control is set already) on memory operations. Some CastPP 3563 // nodes don't have a control (don't carry a dependency): skip 3564 // those. 3565 if (n->in(0) != NULL) { 3566 ResourceMark rm; 3567 Unique_Node_List wq; 3568 wq.push(n); 3569 for (uint next = 0; next < wq.size(); ++next) { 3570 Node *m = wq.at(next); 3571 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3572 Node* use = m->fast_out(i); 3573 if (use->is_Mem() || use->is_EncodeNarrowPtr() || use->is_ShenandoahBarrier()) { 3574 use->ensure_control_or_add_prec(n->in(0)); 3575 } else { 3576 switch(use->Opcode()) { 3577 case Op_AddP: 3578 case Op_DecodeN: 3579 case Op_DecodeNKlass: 3580 case Op_CheckCastPP: 3581 case Op_CastPP: 3582 wq.push(use); 3583 break; 3584 } 3585 } 3586 } 3587 } 3588 } 3589 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3590 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3591 Node* in1 = n->in(1); 3592 const Type* t = n->bottom_type(); 3593 Node* new_in1 = in1->clone(); 3594 new_in1->as_DecodeN()->set_type(t); 3595 3596 if (!Matcher::narrow_oop_use_complex_address()) { 3597 // 3598 // x86, ARM and friends can handle 2 adds in addressing mode 3599 // and Matcher can fold a DecodeN node into address by using 3600 // a narrow oop directly and do implicit NULL check in address: 3601 // 3602 // [R12 + narrow_oop_reg<<3 + offset] 3603 // NullCheck narrow_oop_reg 3604 // 3605 // On other platforms (Sparc) we have to keep new DecodeN node and 3606 // use it to do implicit NULL check in address: 3607 // 3608 // decode_not_null narrow_oop_reg, base_reg 3609 // [base_reg + offset] 3610 // NullCheck base_reg 3611 // 3612 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3613 // to keep the information to which NULL check the new DecodeN node 3614 // corresponds to use it as value in implicit_null_check(). 3615 // 3616 new_in1->set_req(0, n->in(0)); 3617 } 3618 3619 n->subsume_by(new_in1, this); 3620 if (in1->outcnt() == 0) { 3621 in1->disconnect_inputs(NULL, this); 3622 } 3623 } else { 3624 n->subsume_by(n->in(1), this); 3625 if (n->outcnt() == 0) { 3626 n->disconnect_inputs(NULL, this); 3627 } 3628 } 3629 break; 3630 } 3631 #ifdef _LP64 3632 case Op_CmpP: 3633 // Do this transformation here to preserve CmpPNode::sub() and 3634 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3635 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3636 Node* in1 = n->in(1); 3637 Node* in2 = n->in(2); 3638 if (!in1->is_DecodeNarrowPtr()) { 3639 in2 = in1; 3640 in1 = n->in(2); 3641 } 3642 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3643 3644 Node* new_in2 = NULL; 3645 if (in2->is_DecodeNarrowPtr()) { 3646 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3647 new_in2 = in2->in(1); 3648 } else if (in2->Opcode() == Op_ConP) { 3649 const Type* t = in2->bottom_type(); 3650 if (t == TypePtr::NULL_PTR) { 3651 assert(in1->is_DecodeN(), "compare klass to null?"); 3652 // Don't convert CmpP null check into CmpN if compressed 3653 // oops implicit null check is not generated. 3654 // This will allow to generate normal oop implicit null check. 3655 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3656 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3657 // 3658 // This transformation together with CastPP transformation above 3659 // will generated code for implicit NULL checks for compressed oops. 3660 // 3661 // The original code after Optimize() 3662 // 3663 // LoadN memory, narrow_oop_reg 3664 // decode narrow_oop_reg, base_reg 3665 // CmpP base_reg, NULL 3666 // CastPP base_reg // NotNull 3667 // Load [base_reg + offset], val_reg 3668 // 3669 // after these transformations will be 3670 // 3671 // LoadN memory, narrow_oop_reg 3672 // CmpN narrow_oop_reg, NULL 3673 // decode_not_null narrow_oop_reg, base_reg 3674 // Load [base_reg + offset], val_reg 3675 // 3676 // and the uncommon path (== NULL) will use narrow_oop_reg directly 3677 // since narrow oops can be used in debug info now (see the code in 3678 // final_graph_reshaping_walk()). 3679 // 3680 // At the end the code will be matched to 3681 // on x86: 3682 // 3683 // Load_narrow_oop memory, narrow_oop_reg 3684 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3685 // NullCheck narrow_oop_reg 3686 // 3687 // and on sparc: 3688 // 3689 // Load_narrow_oop memory, narrow_oop_reg 3690 // decode_not_null narrow_oop_reg, base_reg 3691 // Load [base_reg + offset], val_reg 3692 // NullCheck base_reg 3693 // 3694 } else if (t->isa_oopptr()) { 3695 new_in2 = ConNode::make(t->make_narrowoop()); 3696 } else if (t->isa_klassptr()) { 3697 new_in2 = ConNode::make(t->make_narrowklass()); 3698 } 3699 } 3700 if (new_in2 != NULL) { 3701 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3702 n->subsume_by(cmpN, this); 3703 if (in1->outcnt() == 0) { 3704 in1->disconnect_inputs(NULL, this); 3705 } 3706 if (in2->outcnt() == 0) { 3707 in2->disconnect_inputs(NULL, this); 3708 } 3709 } 3710 } 3711 break; 3712 3713 case Op_DecodeN: 3714 case Op_DecodeNKlass: 3715 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3716 // DecodeN could be pinned when it can't be fold into 3717 // an address expression, see the code for Op_CastPP above. 3718 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3719 break; 3720 3721 case Op_EncodeP: 3722 case Op_EncodePKlass: { 3723 Node* in1 = n->in(1); 3724 if (in1->is_DecodeNarrowPtr()) { 3725 n->subsume_by(in1->in(1), this); 3726 } else if (in1->Opcode() == Op_ConP) { 3727 const Type* t = in1->bottom_type(); 3728 if (t == TypePtr::NULL_PTR) { 3729 assert(t->isa_oopptr(), "null klass?"); 3730 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3731 } else if (t->isa_oopptr()) { 3732 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3733 } else if (t->isa_klassptr()) { 3734 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3735 } 3736 } 3737 if (in1->outcnt() == 0) { 3738 in1->disconnect_inputs(NULL, this); 3739 } 3740 break; 3741 } 3742 3743 case Op_Proj: { 3744 if (OptimizeStringConcat) { 3745 ProjNode* p = n->as_Proj(); 3746 if (p->_is_io_use) { 3747 // Separate projections were used for the exception path which 3748 // are normally removed by a late inline. If it wasn't inlined 3749 // then they will hang around and should just be replaced with 3750 // the original one. 3751 Node* proj = NULL; 3752 // Replace with just one 3753 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) { 3754 Node *use = i.get(); 3755 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) { 3756 proj = use; 3757 break; 3758 } 3759 } 3760 assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop"); 3761 if (proj != NULL) { 3762 p->subsume_by(proj, this); 3763 } 3764 } 3765 } 3766 break; 3767 } 3768 3769 case Op_Phi: 3770 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3771 // The EncodeP optimization may create Phi with the same edges 3772 // for all paths. It is not handled well by Register Allocator. 3773 Node* unique_in = n->in(1); 3774 assert(unique_in != NULL, ""); 3775 uint cnt = n->req(); 3776 for (uint i = 2; i < cnt; i++) { 3777 Node* m = n->in(i); 3778 assert(m != NULL, ""); 3779 if (unique_in != m) 3780 unique_in = NULL; 3781 } 3782 if (unique_in != NULL) { 3783 n->subsume_by(unique_in, this); 3784 } 3785 } 3786 break; 3787 3788 #endif 3789 3790 #ifdef ASSERT 3791 case Op_CastII: 3792 // Verify that all range check dependent CastII nodes were removed. 3793 if (n->isa_CastII()->has_range_check()) { 3794 n->dump(3); 3795 assert(false, "Range check dependent CastII node was not removed"); 3796 } 3797 break; 3798 #endif 3799 3800 case Op_ModI: 3801 if (UseDivMod) { 3802 // Check if a%b and a/b both exist 3803 Node* d = n->find_similar(Op_DivI); 3804 if (d) { 3805 // Replace them with a fused divmod if supported 3806 if (Matcher::has_match_rule(Op_DivModI)) { 3807 DivModINode* divmod = DivModINode::make(n); 3808 d->subsume_by(divmod->div_proj(), this); 3809 n->subsume_by(divmod->mod_proj(), this); 3810 } else { 3811 // replace a%b with a-((a/b)*b) 3812 Node* mult = new MulINode(d, d->in(2)); 3813 Node* sub = new SubINode(d->in(1), mult); 3814 n->subsume_by(sub, this); 3815 } 3816 } 3817 } 3818 break; 3819 3820 case Op_ModL: 3821 if (UseDivMod) { 3822 // Check if a%b and a/b both exist 3823 Node* d = n->find_similar(Op_DivL); 3824 if (d) { 3825 // Replace them with a fused divmod if supported 3826 if (Matcher::has_match_rule(Op_DivModL)) { 3827 DivModLNode* divmod = DivModLNode::make(n); 3828 d->subsume_by(divmod->div_proj(), this); 3829 n->subsume_by(divmod->mod_proj(), this); 3830 } else { 3831 // replace a%b with a-((a/b)*b) 3832 Node* mult = new MulLNode(d, d->in(2)); 3833 Node* sub = new SubLNode(d->in(1), mult); 3834 n->subsume_by(sub, this); 3835 } 3836 } 3837 } 3838 break; 3839 3840 case Op_LoadVector: 3841 case Op_StoreVector: 3842 case Op_LoadVectorGather: 3843 case Op_StoreVectorScatter: 3844 break; 3845 3846 case Op_AddReductionVI: 3847 case Op_AddReductionVL: 3848 case Op_AddReductionVF: 3849 case Op_AddReductionVD: 3850 case Op_MulReductionVI: 3851 case Op_MulReductionVL: 3852 case Op_MulReductionVF: 3853 case Op_MulReductionVD: 3854 case Op_MinReductionV: 3855 case Op_MaxReductionV: 3856 case Op_AndReductionV: 3857 case Op_OrReductionV: 3858 case Op_XorReductionV: 3859 case Op_SubReductionV: 3860 case Op_SubReductionVFP: 3861 break; 3862 3863 case Op_PackB: 3864 case Op_PackS: 3865 case Op_PackI: 3866 case Op_PackF: 3867 case Op_PackL: 3868 case Op_PackD: 3869 if (n->req()-1 > 2) { 3870 // Replace many operand PackNodes with a binary tree for matching 3871 PackNode* p = (PackNode*) n; 3872 Node* btp = p->binary_tree_pack(1, n->req()); 3873 n->subsume_by(btp, this); 3874 } 3875 break; 3876 case Op_Loop: 3877 case Op_CountedLoop: 3878 case Op_OuterStripMinedLoop: 3879 if (n->as_Loop()->is_inner_loop()) { 3880 frc.inc_inner_loop_count(); 3881 } 3882 n->as_Loop()->verify_strip_mined(0); 3883 break; 3884 case Op_LShiftI: 3885 case Op_RShiftI: 3886 case Op_URShiftI: 3887 case Op_LShiftL: 3888 case Op_RShiftL: 3889 case Op_URShiftL: 3890 if (Matcher::need_masked_shift_count) { 3891 // The cpu's shift instructions don't restrict the count to the 3892 // lower 5/6 bits. We need to do the masking ourselves. 3893 Node* in2 = n->in(2); 3894 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3895 const TypeInt* t = in2->find_int_type(); 3896 if (t != NULL && t->is_con()) { 3897 juint shift = t->get_con(); 3898 if (shift > mask) { // Unsigned cmp 3899 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3900 } 3901 } else { 3902 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) { 3903 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3904 n->set_req(2, shift); 3905 } 3906 } 3907 if (in2->outcnt() == 0) { // Remove dead node 3908 in2->disconnect_inputs(NULL, this); 3909 } 3910 } 3911 break; 3912 case Op_MemBarStoreStore: 3913 case Op_MemBarRelease: 3914 // Break the link with AllocateNode: it is no longer useful and 3915 // confuses register allocation. 3916 if (n->req() > MemBarNode::Precedent) { 3917 n->set_req(MemBarNode::Precedent, top()); 3918 } 3919 break; 3920 case Op_MemBarAcquire: { 3921 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3922 // At parse time, the trailing MemBarAcquire for a volatile load 3923 // is created with an edge to the load. After optimizations, 3924 // that input may be a chain of Phis. If those phis have no 3925 // other use, then the MemBarAcquire keeps them alive and 3926 // register allocation can be confused. 3927 ResourceMark rm; 3928 Unique_Node_List wq; 3929 wq.push(n->in(MemBarNode::Precedent)); 3930 n->set_req(MemBarNode::Precedent, top()); 3931 while (wq.size() > 0) { 3932 Node* m = wq.pop(); 3933 if (m->outcnt() == 0) { 3934 for (uint j = 0; j < m->req(); j++) { 3935 Node* in = m->in(j); 3936 if (in != NULL) { 3937 wq.push(in); 3938 } 3939 } 3940 m->disconnect_inputs(NULL, this); 3941 } 3942 } 3943 } 3944 break; 3945 } 3946 case Op_RangeCheck: { 3947 RangeCheckNode* rc = n->as_RangeCheck(); 3948 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3949 n->subsume_by(iff, this); 3950 frc._tests.push(iff); 3951 break; 3952 } 3953 case Op_ConvI2L: { 3954 if (!Matcher::convi2l_type_required) { 3955 // Code generation on some platforms doesn't need accurate 3956 // ConvI2L types. Widening the type can help remove redundant 3957 // address computations. 3958 n->as_Type()->set_type(TypeLong::INT); 3959 ResourceMark rm; 3960 Node_List wq; 3961 wq.push(n); 3962 for (uint next = 0; next < wq.size(); next++) { 3963 Node *m = wq.at(next); 3964 3965 for(;;) { 3966 // Loop over all nodes with identical inputs edges as m 3967 Node* k = m->find_similar(m->Opcode()); 3968 if (k == NULL) { 3969 break; 3970 } 3971 // Push their uses so we get a chance to remove node made 3972 // redundant 3973 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3974 Node* u = k->fast_out(i); 3975 assert(!wq.contains(u), "shouldn't process one node several times"); 3976 if (u->Opcode() == Op_LShiftL || 3977 u->Opcode() == Op_AddL || 3978 u->Opcode() == Op_SubL || 3979 u->Opcode() == Op_AddP) { 3980 wq.push(u); 3981 } 3982 } 3983 // Replace all nodes with identical edges as m with m 3984 k->subsume_by(m, this); 3985 } 3986 } 3987 } 3988 break; 3989 } 3990 case Op_CmpUL: { 3991 if (!Matcher::has_match_rule(Op_CmpUL)) { 3992 // No support for unsigned long comparisons 3993 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3994 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3995 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3996 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3997 Node* andl = new AndLNode(orl, remove_sign_mask); 3998 Node* cmp = new CmpLNode(andl, n->in(2)); 3999 n->subsume_by(cmp, this); 4000 } 4001 break; 4002 } 4003 default: 4004 assert(!n->is_Call(), ""); 4005 assert(!n->is_Mem(), ""); 4006 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 4007 break; 4008 } 4009 } 4010 4011 //------------------------------final_graph_reshaping_walk--------------------- 4012 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 4013 // requires that the walk visits a node's inputs before visiting the node. 4014 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) { 4015 ResourceArea *area = Thread::current()->resource_area(); 4016 Unique_Node_List sfpt(area); 4017 4018 frc._visited.set(root->_idx); // first, mark node as visited 4019 uint cnt = root->req(); 4020 Node *n = root; 4021 uint i = 0; 4022 while (true) { 4023 if (i < cnt) { 4024 // Place all non-visited non-null inputs onto stack 4025 Node* m = n->in(i); 4026 ++i; 4027 if (m != NULL && !frc._visited.test_set(m->_idx)) { 4028 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) { 4029 // compute worst case interpreter size in case of a deoptimization 4030 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 4031 4032 sfpt.push(m); 4033 } 4034 cnt = m->req(); 4035 nstack.push(n, i); // put on stack parent and next input's index 4036 n = m; 4037 i = 0; 4038 } 4039 } else { 4040 // Now do post-visit work 4041 final_graph_reshaping_impl( n, frc ); 4042 if (nstack.is_empty()) 4043 break; // finished 4044 n = nstack.node(); // Get node from stack 4045 cnt = n->req(); 4046 i = nstack.index(); 4047 nstack.pop(); // Shift to the next node on stack 4048 } 4049 } 4050 4051 // Skip next transformation if compressed oops are not used. 4052 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 4053 (!UseCompressedOops && !UseCompressedClassPointers)) 4054 return; 4055 4056 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 4057 // It could be done for an uncommon traps or any safepoints/calls 4058 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 4059 while (sfpt.size() > 0) { 4060 n = sfpt.pop(); 4061 JVMState *jvms = n->as_SafePoint()->jvms(); 4062 assert(jvms != NULL, "sanity"); 4063 int start = jvms->debug_start(); 4064 int end = n->req(); 4065 bool is_uncommon = (n->is_CallStaticJava() && 4066 n->as_CallStaticJava()->uncommon_trap_request() != 0); 4067 for (int j = start; j < end; j++) { 4068 Node* in = n->in(j); 4069 if (in->is_DecodeNarrowPtr()) { 4070 bool safe_to_skip = true; 4071 if (!is_uncommon ) { 4072 // Is it safe to skip? 4073 for (uint i = 0; i < in->outcnt(); i++) { 4074 Node* u = in->raw_out(i); 4075 if (!u->is_SafePoint() || 4076 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 4077 safe_to_skip = false; 4078 } 4079 } 4080 } 4081 if (safe_to_skip) { 4082 n->set_req(j, in->in(1)); 4083 } 4084 if (in->outcnt() == 0) { 4085 in->disconnect_inputs(NULL, this); 4086 } 4087 } 4088 } 4089 } 4090 } 4091 4092 //------------------------------final_graph_reshaping-------------------------- 4093 // Final Graph Reshaping. 4094 // 4095 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 4096 // and not commoned up and forced early. Must come after regular 4097 // optimizations to avoid GVN undoing the cloning. Clone constant 4098 // inputs to Loop Phis; these will be split by the allocator anyways. 4099 // Remove Opaque nodes. 4100 // (2) Move last-uses by commutative operations to the left input to encourage 4101 // Intel update-in-place two-address operations and better register usage 4102 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 4103 // calls canonicalizing them back. 4104 // (3) Count the number of double-precision FP ops, single-precision FP ops 4105 // and call sites. On Intel, we can get correct rounding either by 4106 // forcing singles to memory (requires extra stores and loads after each 4107 // FP bytecode) or we can set a rounding mode bit (requires setting and 4108 // clearing the mode bit around call sites). The mode bit is only used 4109 // if the relative frequency of single FP ops to calls is low enough. 4110 // This is a key transform for SPEC mpeg_audio. 4111 // (4) Detect infinite loops; blobs of code reachable from above but not 4112 // below. Several of the Code_Gen algorithms fail on such code shapes, 4113 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 4114 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 4115 // Detection is by looking for IfNodes where only 1 projection is 4116 // reachable from below or CatchNodes missing some targets. 4117 // (5) Assert for insane oop offsets in debug mode. 4118 4119 bool Compile::final_graph_reshaping() { 4120 // an infinite loop may have been eliminated by the optimizer, 4121 // in which case the graph will be empty. 4122 if (root()->req() == 1) { 4123 record_method_not_compilable("trivial infinite loop"); 4124 return true; 4125 } 4126 4127 // Expensive nodes have their control input set to prevent the GVN 4128 // from freely commoning them. There's no GVN beyond this point so 4129 // no need to keep the control input. We want the expensive nodes to 4130 // be freely moved to the least frequent code path by gcm. 4131 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 4132 for (int i = 0; i < expensive_count(); i++) { 4133 _expensive_nodes->at(i)->set_req(0, NULL); 4134 } 4135 4136 Final_Reshape_Counts frc; 4137 4138 // Visit everybody reachable! 4139 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4140 Node_Stack nstack(live_nodes() >> 1); 4141 final_graph_reshaping_walk(nstack, root(), frc); 4142 4143 // Check for unreachable (from below) code (i.e., infinite loops). 4144 for( uint i = 0; i < frc._tests.size(); i++ ) { 4145 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4146 // Get number of CFG targets. 4147 // Note that PCTables include exception targets after calls. 4148 uint required_outcnt = n->required_outcnt(); 4149 if (n->outcnt() != required_outcnt) { 4150 // Check for a few special cases. Rethrow Nodes never take the 4151 // 'fall-thru' path, so expected kids is 1 less. 4152 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4153 if (n->in(0)->in(0)->is_Call()) { 4154 CallNode *call = n->in(0)->in(0)->as_Call(); 4155 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4156 required_outcnt--; // Rethrow always has 1 less kid 4157 } else if (call->req() > TypeFunc::Parms && 4158 call->is_CallDynamicJava()) { 4159 // Check for null receiver. In such case, the optimizer has 4160 // detected that the virtual call will always result in a null 4161 // pointer exception. The fall-through projection of this CatchNode 4162 // will not be populated. 4163 Node *arg0 = call->in(TypeFunc::Parms); 4164 if (arg0->is_Type() && 4165 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4166 required_outcnt--; 4167 } 4168 } else if (call->entry_point() == OptoRuntime::new_array_Java() && 4169 call->req() > TypeFunc::Parms+1 && 4170 call->is_CallStaticJava()) { 4171 // Check for negative array length. In such case, the optimizer has 4172 // detected that the allocation attempt will always result in an 4173 // exception. There is no fall-through projection of this CatchNode . 4174 Node *arg1 = call->in(TypeFunc::Parms+1); 4175 if (arg1->is_Type() && 4176 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) { 4177 required_outcnt--; 4178 } 4179 } 4180 } 4181 } 4182 // Recheck with a better notion of 'required_outcnt' 4183 if (n->outcnt() != required_outcnt) { 4184 record_method_not_compilable("malformed control flow"); 4185 return true; // Not all targets reachable! 4186 } 4187 } 4188 // Check that I actually visited all kids. Unreached kids 4189 // must be infinite loops. 4190 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4191 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4192 record_method_not_compilable("infinite loop"); 4193 return true; // Found unvisited kid; must be unreach 4194 } 4195 4196 // Here so verification code in final_graph_reshaping_walk() 4197 // always see an OuterStripMinedLoopEnd 4198 if (n->is_OuterStripMinedLoopEnd()) { 4199 IfNode* init_iff = n->as_If(); 4200 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4201 n->subsume_by(iff, this); 4202 } 4203 } 4204 4205 // If original bytecodes contained a mixture of floats and doubles 4206 // check if the optimizer has made it homogenous, item (3). 4207 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 && 4208 frc.get_float_count() > 32 && 4209 frc.get_double_count() == 0 && 4210 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4211 set_24_bit_selection_and_mode( false, true ); 4212 } 4213 4214 set_java_calls(frc.get_java_call_count()); 4215 set_inner_loops(frc.get_inner_loop_count()); 4216 4217 // No infinite loops, no reason to bail out. 4218 return false; 4219 } 4220 4221 //-----------------------------too_many_traps---------------------------------- 4222 // Report if there are too many traps at the current method and bci. 4223 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4224 bool Compile::too_many_traps(ciMethod* method, 4225 int bci, 4226 Deoptimization::DeoptReason reason) { 4227 ciMethodData* md = method->method_data(); 4228 if (md->is_empty()) { 4229 // Assume the trap has not occurred, or that it occurred only 4230 // because of a transient condition during start-up in the interpreter. 4231 return false; 4232 } 4233 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 4234 if (md->has_trap_at(bci, m, reason) != 0) { 4235 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4236 // Also, if there are multiple reasons, or if there is no per-BCI record, 4237 // assume the worst. 4238 if (log()) 4239 log()->elem("observe trap='%s' count='%d'", 4240 Deoptimization::trap_reason_name(reason), 4241 md->trap_count(reason)); 4242 return true; 4243 } else { 4244 // Ignore method/bci and see if there have been too many globally. 4245 return too_many_traps(reason, md); 4246 } 4247 } 4248 4249 // Less-accurate variant which does not require a method and bci. 4250 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4251 ciMethodData* logmd) { 4252 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4253 // Too many traps globally. 4254 // Note that we use cumulative trap_count, not just md->trap_count. 4255 if (log()) { 4256 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason); 4257 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4258 Deoptimization::trap_reason_name(reason), 4259 mcount, trap_count(reason)); 4260 } 4261 return true; 4262 } else { 4263 // The coast is clear. 4264 return false; 4265 } 4266 } 4267 4268 //--------------------------too_many_recompiles-------------------------------- 4269 // Report if there are too many recompiles at the current method and bci. 4270 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4271 // Is not eager to return true, since this will cause the compiler to use 4272 // Action_none for a trap point, to avoid too many recompilations. 4273 bool Compile::too_many_recompiles(ciMethod* method, 4274 int bci, 4275 Deoptimization::DeoptReason reason) { 4276 ciMethodData* md = method->method_data(); 4277 if (md->is_empty()) { 4278 // Assume the trap has not occurred, or that it occurred only 4279 // because of a transient condition during start-up in the interpreter. 4280 return false; 4281 } 4282 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4283 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4284 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4285 Deoptimization::DeoptReason per_bc_reason 4286 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4287 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 4288 if ((per_bc_reason == Deoptimization::Reason_none 4289 || md->has_trap_at(bci, m, reason) != 0) 4290 // The trap frequency measure we care about is the recompile count: 4291 && md->trap_recompiled_at(bci, m) 4292 && md->overflow_recompile_count() >= bc_cutoff) { 4293 // Do not emit a trap here if it has already caused recompilations. 4294 // Also, if there are multiple reasons, or if there is no per-BCI record, 4295 // assume the worst. 4296 if (log()) 4297 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4298 Deoptimization::trap_reason_name(reason), 4299 md->trap_count(reason), 4300 md->overflow_recompile_count()); 4301 return true; 4302 } else if (trap_count(reason) != 0 4303 && decompile_count() >= m_cutoff) { 4304 // Too many recompiles globally, and we have seen this sort of trap. 4305 // Use cumulative decompile_count, not just md->decompile_count. 4306 if (log()) 4307 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4308 Deoptimization::trap_reason_name(reason), 4309 md->trap_count(reason), trap_count(reason), 4310 md->decompile_count(), decompile_count()); 4311 return true; 4312 } else { 4313 // The coast is clear. 4314 return false; 4315 } 4316 } 4317 4318 // Compute when not to trap. Used by matching trap based nodes and 4319 // NullCheck optimization. 4320 void Compile::set_allowed_deopt_reasons() { 4321 _allowed_reasons = 0; 4322 if (is_method_compilation()) { 4323 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4324 assert(rs < BitsPerInt, "recode bit map"); 4325 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4326 _allowed_reasons |= nth_bit(rs); 4327 } 4328 } 4329 } 4330 } 4331 4332 bool Compile::is_compiling_clinit_for(ciKlass* k) { 4333 ciMethod* root = method(); // the root method of compilation 4334 return root->is_static_initializer() && root->holder() == k; // access in the context of clinit 4335 } 4336 4337 #ifndef PRODUCT 4338 //------------------------------verify_graph_edges--------------------------- 4339 // Walk the Graph and verify that there is a one-to-one correspondence 4340 // between Use-Def edges and Def-Use edges in the graph. 4341 void Compile::verify_graph_edges(bool no_dead_code) { 4342 if (VerifyGraphEdges) { 4343 ResourceArea *area = Thread::current()->resource_area(); 4344 Unique_Node_List visited(area); 4345 // Call recursive graph walk to check edges 4346 _root->verify_edges(visited); 4347 if (no_dead_code) { 4348 // Now make sure that no visited node is used by an unvisited node. 4349 bool dead_nodes = false; 4350 Unique_Node_List checked(area); 4351 while (visited.size() > 0) { 4352 Node* n = visited.pop(); 4353 checked.push(n); 4354 for (uint i = 0; i < n->outcnt(); i++) { 4355 Node* use = n->raw_out(i); 4356 if (checked.member(use)) continue; // already checked 4357 if (visited.member(use)) continue; // already in the graph 4358 if (use->is_Con()) continue; // a dead ConNode is OK 4359 // At this point, we have found a dead node which is DU-reachable. 4360 if (!dead_nodes) { 4361 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4362 dead_nodes = true; 4363 } 4364 use->dump(2); 4365 tty->print_cr("---"); 4366 checked.push(use); // No repeats; pretend it is now checked. 4367 } 4368 } 4369 assert(!dead_nodes, "using nodes must be reachable from root"); 4370 } 4371 } 4372 } 4373 #endif 4374 4375 // The Compile object keeps track of failure reasons separately from the ciEnv. 4376 // This is required because there is not quite a 1-1 relation between the 4377 // ciEnv and its compilation task and the Compile object. Note that one 4378 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4379 // to backtrack and retry without subsuming loads. Other than this backtracking 4380 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4381 // by the logic in C2Compiler. 4382 void Compile::record_failure(const char* reason) { 4383 if (log() != NULL) { 4384 log()->elem("failure reason='%s' phase='compile'", reason); 4385 } 4386 if (_failure_reason == NULL) { 4387 // Record the first failure reason. 4388 _failure_reason = reason; 4389 } 4390 4391 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4392 C->print_method(PHASE_FAILURE); 4393 } 4394 _root = NULL; // flush the graph, too 4395 } 4396 4397 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator) 4398 : TraceTime(name, accumulator, CITime, CITimeVerbose), 4399 _phase_name(name), _dolog(CITimeVerbose) 4400 { 4401 if (_dolog) { 4402 C = Compile::current(); 4403 _log = C->log(); 4404 } else { 4405 C = NULL; 4406 _log = NULL; 4407 } 4408 if (_log != NULL) { 4409 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 4410 _log->stamp(); 4411 _log->end_head(); 4412 } 4413 } 4414 4415 Compile::TracePhase::~TracePhase() { 4416 4417 C = Compile::current(); 4418 if (_dolog) { 4419 _log = C->log(); 4420 } else { 4421 _log = NULL; 4422 } 4423 4424 #ifdef ASSERT 4425 if (PrintIdealNodeCount) { 4426 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4427 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk()); 4428 } 4429 4430 if (VerifyIdealNodeCount) { 4431 Compile::current()->print_missing_nodes(); 4432 } 4433 #endif 4434 4435 if (_log != NULL) { 4436 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 4437 } 4438 } 4439 4440 //============================================================================= 4441 // Two Constant's are equal when the type and the value are equal. 4442 bool Compile::Constant::operator==(const Constant& other) { 4443 if (type() != other.type() ) return false; 4444 if (can_be_reused() != other.can_be_reused()) return false; 4445 // For floating point values we compare the bit pattern. 4446 switch (type()) { 4447 case T_INT: 4448 case T_FLOAT: return (_v._value.i == other._v._value.i); 4449 case T_LONG: 4450 case T_DOUBLE: return (_v._value.j == other._v._value.j); 4451 case T_OBJECT: 4452 case T_ADDRESS: return (_v._value.l == other._v._value.l); 4453 case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries 4454 case T_METADATA: return (_v._metadata == other._v._metadata); 4455 default: ShouldNotReachHere(); return false; 4456 } 4457 } 4458 4459 static int type_to_size_in_bytes(BasicType t) { 4460 switch (t) { 4461 case T_INT: return sizeof(jint ); 4462 case T_LONG: return sizeof(jlong ); 4463 case T_FLOAT: return sizeof(jfloat ); 4464 case T_DOUBLE: return sizeof(jdouble); 4465 case T_METADATA: return sizeof(Metadata*); 4466 // We use T_VOID as marker for jump-table entries (labels) which 4467 // need an internal word relocation. 4468 case T_VOID: 4469 case T_ADDRESS: 4470 case T_OBJECT: return sizeof(jobject); 4471 default: 4472 ShouldNotReachHere(); 4473 return -1; 4474 } 4475 } 4476 4477 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) { 4478 // sort descending 4479 if (a->freq() > b->freq()) return -1; 4480 if (a->freq() < b->freq()) return 1; 4481 return 0; 4482 } 4483 4484 void Compile::ConstantTable::calculate_offsets_and_size() { 4485 // First, sort the array by frequencies. 4486 _constants.sort(qsort_comparator); 4487 4488 #ifdef ASSERT 4489 // Make sure all jump-table entries were sorted to the end of the 4490 // array (they have a negative frequency). 4491 bool found_void = false; 4492 for (int i = 0; i < _constants.length(); i++) { 4493 Constant con = _constants.at(i); 4494 if (con.type() == T_VOID) 4495 found_void = true; // jump-tables 4496 else 4497 assert(!found_void, "wrong sorting"); 4498 } 4499 #endif 4500 4501 int offset = 0; 4502 for (int i = 0; i < _constants.length(); i++) { 4503 Constant* con = _constants.adr_at(i); 4504 4505 // Align offset for type. 4506 int typesize = type_to_size_in_bytes(con->type()); 4507 offset = align_up(offset, typesize); 4508 con->set_offset(offset); // set constant's offset 4509 4510 if (con->type() == T_VOID) { 4511 MachConstantNode* n = (MachConstantNode*) con->get_jobject(); 4512 offset = offset + typesize * n->outcnt(); // expand jump-table 4513 } else { 4514 offset = offset + typesize; 4515 } 4516 } 4517 4518 // Align size up to the next section start (which is insts; see 4519 // CodeBuffer::align_at_start). 4520 assert(_size == -1, "already set?"); 4521 _size = align_up(offset, (int)CodeEntryAlignment); 4522 } 4523 4524 void Compile::ConstantTable::emit(CodeBuffer& cb) { 4525 MacroAssembler _masm(&cb); 4526 for (int i = 0; i < _constants.length(); i++) { 4527 Constant con = _constants.at(i); 4528 address constant_addr = NULL; 4529 switch (con.type()) { 4530 case T_INT: constant_addr = _masm.int_constant( con.get_jint() ); break; 4531 case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break; 4532 case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break; 4533 case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break; 4534 case T_OBJECT: { 4535 jobject obj = con.get_jobject(); 4536 int oop_index = _masm.oop_recorder()->find_index(obj); 4537 constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index)); 4538 break; 4539 } 4540 case T_ADDRESS: { 4541 address addr = (address) con.get_jobject(); 4542 constant_addr = _masm.address_constant(addr); 4543 break; 4544 } 4545 // We use T_VOID as marker for jump-table entries (labels) which 4546 // need an internal word relocation. 4547 case T_VOID: { 4548 MachConstantNode* n = (MachConstantNode*) con.get_jobject(); 4549 // Fill the jump-table with a dummy word. The real value is 4550 // filled in later in fill_jump_table. 4551 address dummy = (address) n; 4552 constant_addr = _masm.address_constant(dummy); 4553 // Expand jump-table 4554 for (uint i = 1; i < n->outcnt(); i++) { 4555 address temp_addr = _masm.address_constant(dummy + i); 4556 assert(temp_addr, "consts section too small"); 4557 } 4558 break; 4559 } 4560 case T_METADATA: { 4561 Metadata* obj = con.get_metadata(); 4562 int metadata_index = _masm.oop_recorder()->find_index(obj); 4563 constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index)); 4564 break; 4565 } 4566 default: ShouldNotReachHere(); 4567 } 4568 assert(constant_addr, "consts section too small"); 4569 assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), 4570 "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())); 4571 } 4572 } 4573 4574 int Compile::ConstantTable::find_offset(Constant& con) const { 4575 int idx = _constants.find(con); 4576 guarantee(idx != -1, "constant must be in constant table"); 4577 int offset = _constants.at(idx).offset(); 4578 guarantee(offset != -1, "constant table not emitted yet?"); 4579 return offset; 4580 } 4581 4582 void Compile::ConstantTable::add(Constant& con) { 4583 if (con.can_be_reused()) { 4584 int idx = _constants.find(con); 4585 if (idx != -1 && _constants.at(idx).can_be_reused()) { 4586 _constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value 4587 return; 4588 } 4589 } 4590 (void) _constants.append(con); 4591 } 4592 4593 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) { 4594 Block* b = Compile::current()->cfg()->get_block_for_node(n); 4595 Constant con(type, value, b->_freq); 4596 add(con); 4597 return con; 4598 } 4599 4600 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) { 4601 Constant con(metadata); 4602 add(con); 4603 return con; 4604 } 4605 4606 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) { 4607 jvalue value; 4608 BasicType type = oper->type()->basic_type(); 4609 switch (type) { 4610 case T_LONG: value.j = oper->constantL(); break; 4611 case T_FLOAT: value.f = oper->constantF(); break; 4612 case T_DOUBLE: value.d = oper->constantD(); break; 4613 case T_OBJECT: 4614 case T_ADDRESS: value.l = (jobject) oper->constant(); break; 4615 case T_METADATA: return add((Metadata*)oper->constant()); break; 4616 default: guarantee(false, "unhandled type: %s", type2name(type)); 4617 } 4618 return add(n, type, value); 4619 } 4620 4621 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) { 4622 jvalue value; 4623 // We can use the node pointer here to identify the right jump-table 4624 // as this method is called from Compile::Fill_buffer right before 4625 // the MachNodes are emitted and the jump-table is filled (means the 4626 // MachNode pointers do not change anymore). 4627 value.l = (jobject) n; 4628 Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused. 4629 add(con); 4630 return con; 4631 } 4632 4633 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const { 4634 // If called from Compile::scratch_emit_size do nothing. 4635 if (Compile::current()->in_scratch_emit_size()) return; 4636 4637 assert(labels.is_nonempty(), "must be"); 4638 assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt()); 4639 4640 // Since MachConstantNode::constant_offset() also contains 4641 // table_base_offset() we need to subtract the table_base_offset() 4642 // to get the plain offset into the constant table. 4643 int offset = n->constant_offset() - table_base_offset(); 4644 4645 MacroAssembler _masm(&cb); 4646 address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset); 4647 4648 for (uint i = 0; i < n->outcnt(); i++) { 4649 address* constant_addr = &jump_table_base[i]; 4650 assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)); 4651 *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr); 4652 cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type); 4653 } 4654 } 4655 4656 //----------------------------static_subtype_check----------------------------- 4657 // Shortcut important common cases when superklass is exact: 4658 // (0) superklass is java.lang.Object (can occur in reflective code) 4659 // (1) subklass is already limited to a subtype of superklass => always ok 4660 // (2) subklass does not overlap with superklass => always fail 4661 // (3) superklass has NO subtypes and we can check with a simple compare. 4662 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) { 4663 if (StressReflectiveCode) { 4664 return SSC_full_test; // Let caller generate the general case. 4665 } 4666 4667 if (superk == env()->Object_klass()) { 4668 return SSC_always_true; // (0) this test cannot fail 4669 } 4670 4671 ciType* superelem = superk; 4672 if (superelem->is_array_klass()) 4673 superelem = superelem->as_array_klass()->base_element_type(); 4674 4675 if (!subk->is_interface()) { // cannot trust static interface types yet 4676 if (subk->is_subtype_of(superk)) { 4677 return SSC_always_true; // (1) false path dead; no dynamic test needed 4678 } 4679 if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) && 4680 !superk->is_subtype_of(subk)) { 4681 return SSC_always_false; 4682 } 4683 } 4684 4685 // If casting to an instance klass, it must have no subtypes 4686 if (superk->is_interface()) { 4687 // Cannot trust interfaces yet. 4688 // %%% S.B. superk->nof_implementors() == 1 4689 } else if (superelem->is_instance_klass()) { 4690 ciInstanceKlass* ik = superelem->as_instance_klass(); 4691 if (!ik->has_subklass() && !ik->is_interface()) { 4692 if (!ik->is_final()) { 4693 // Add a dependency if there is a chance of a later subclass. 4694 dependencies()->assert_leaf_type(ik); 4695 } 4696 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4697 } 4698 } else { 4699 // A primitive array type has no subtypes. 4700 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4701 } 4702 4703 return SSC_full_test; 4704 } 4705 4706 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4707 #ifdef _LP64 4708 // The scaled index operand to AddP must be a clean 64-bit value. 4709 // Java allows a 32-bit int to be incremented to a negative 4710 // value, which appears in a 64-bit register as a large 4711 // positive number. Using that large positive number as an 4712 // operand in pointer arithmetic has bad consequences. 4713 // On the other hand, 32-bit overflow is rare, and the possibility 4714 // can often be excluded, if we annotate the ConvI2L node with 4715 // a type assertion that its value is known to be a small positive 4716 // number. (The prior range check has ensured this.) 4717 // This assertion is used by ConvI2LNode::Ideal. 4718 int index_max = max_jint - 1; // array size is max_jint, index is one less 4719 if (sizetype != NULL) index_max = sizetype->_hi - 1; 4720 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4721 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4722 #endif 4723 return idx; 4724 } 4725 4726 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4727 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) { 4728 if (ctrl != NULL) { 4729 // Express control dependency by a CastII node with a narrow type. 4730 value = new CastIINode(value, itype, false, true /* range check dependency */); 4731 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4732 // node from floating above the range check during loop optimizations. Otherwise, the 4733 // ConvI2L node may be eliminated independently of the range check, causing the data path 4734 // to become TOP while the control path is still there (although it's unreachable). 4735 value->set_req(0, ctrl); 4736 // Save CastII node to remove it after loop optimizations. 4737 phase->C->add_range_check_cast(value); 4738 value = phase->transform(value); 4739 } 4740 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4741 return phase->transform(new ConvI2LNode(value, ltype)); 4742 } 4743 4744 // The message about the current inlining is accumulated in 4745 // _print_inlining_stream and transfered into the _print_inlining_list 4746 // once we know whether inlining succeeds or not. For regular 4747 // inlining, messages are appended to the buffer pointed by 4748 // _print_inlining_idx in the _print_inlining_list. For late inlining, 4749 // a new buffer is added after _print_inlining_idx in the list. This 4750 // way we can update the inlining message for late inlining call site 4751 // when the inlining is attempted again. 4752 void Compile::print_inlining_init() { 4753 if (print_inlining() || print_intrinsics()) { 4754 _print_inlining_stream = new stringStream(); 4755 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer()); 4756 } 4757 } 4758 4759 void Compile::print_inlining_reinit() { 4760 if (print_inlining() || print_intrinsics()) { 4761 // Re allocate buffer when we change ResourceMark 4762 _print_inlining_stream = new stringStream(); 4763 } 4764 } 4765 4766 void Compile::print_inlining_reset() { 4767 _print_inlining_stream->reset(); 4768 } 4769 4770 void Compile::print_inlining_commit() { 4771 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 4772 // Transfer the message from _print_inlining_stream to the current 4773 // _print_inlining_list buffer and clear _print_inlining_stream. 4774 _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size()); 4775 print_inlining_reset(); 4776 } 4777 4778 void Compile::print_inlining_push() { 4779 // Add new buffer to the _print_inlining_list at current position 4780 _print_inlining_idx++; 4781 _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer()); 4782 } 4783 4784 Compile::PrintInliningBuffer& Compile::print_inlining_current() { 4785 return _print_inlining_list->at(_print_inlining_idx); 4786 } 4787 4788 void Compile::print_inlining_update(CallGenerator* cg) { 4789 if (print_inlining() || print_intrinsics()) { 4790 if (!cg->is_late_inline()) { 4791 if (print_inlining_current().cg() != NULL) { 4792 print_inlining_push(); 4793 } 4794 print_inlining_commit(); 4795 } else { 4796 if (print_inlining_current().cg() != cg && 4797 (print_inlining_current().cg() != NULL || 4798 print_inlining_current().ss()->size() != 0)) { 4799 print_inlining_push(); 4800 } 4801 print_inlining_commit(); 4802 print_inlining_current().set_cg(cg); 4803 } 4804 } 4805 } 4806 4807 void Compile::print_inlining_move_to(CallGenerator* cg) { 4808 // We resume inlining at a late inlining call site. Locate the 4809 // corresponding inlining buffer so that we can update it. 4810 if (print_inlining()) { 4811 for (int i = 0; i < _print_inlining_list->length(); i++) { 4812 if (_print_inlining_list->adr_at(i)->cg() == cg) { 4813 _print_inlining_idx = i; 4814 return; 4815 } 4816 } 4817 ShouldNotReachHere(); 4818 } 4819 } 4820 4821 void Compile::print_inlining_update_delayed(CallGenerator* cg) { 4822 if (print_inlining()) { 4823 assert(_print_inlining_stream->size() > 0, "missing inlining msg"); 4824 assert(print_inlining_current().cg() == cg, "wrong entry"); 4825 // replace message with new message 4826 _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer()); 4827 print_inlining_commit(); 4828 print_inlining_current().set_cg(cg); 4829 } 4830 } 4831 4832 void Compile::print_inlining_assert_ready() { 4833 assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data"); 4834 } 4835 4836 void Compile::process_print_inlining() { 4837 bool do_print_inlining = print_inlining() || print_intrinsics(); 4838 if (do_print_inlining || log() != NULL) { 4839 // Print inlining message for candidates that we couldn't inline 4840 // for lack of space 4841 for (int i = 0; i < _late_inlines.length(); i++) { 4842 CallGenerator* cg = _late_inlines.at(i); 4843 if (!cg->is_mh_late_inline()) { 4844 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 4845 if (do_print_inlining) { 4846 cg->print_inlining_late(msg); 4847 } 4848 log_late_inline_failure(cg, msg); 4849 } 4850 } 4851 } 4852 if (do_print_inlining) { 4853 ResourceMark rm; 4854 stringStream ss; 4855 for (int i = 0; i < _print_inlining_list->length(); i++) { 4856 ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string()); 4857 } 4858 size_t end = ss.size(); 4859 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1); 4860 strncpy(_print_inlining_output, ss.base(), end+1); 4861 _print_inlining_output[end] = 0; 4862 } 4863 } 4864 4865 void Compile::dump_print_inlining() { 4866 if (_print_inlining_output != NULL) { 4867 tty->print_raw(_print_inlining_output); 4868 } 4869 } 4870 4871 void Compile::log_late_inline(CallGenerator* cg) { 4872 if (log() != NULL) { 4873 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4874 cg->unique_id()); 4875 JVMState* p = cg->call_node()->jvms(); 4876 while (p != NULL) { 4877 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4878 p = p->caller(); 4879 } 4880 log()->tail("late_inline"); 4881 } 4882 } 4883 4884 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4885 log_late_inline(cg); 4886 if (log() != NULL) { 4887 log()->inline_fail(msg); 4888 } 4889 } 4890 4891 void Compile::log_inline_id(CallGenerator* cg) { 4892 if (log() != NULL) { 4893 // The LogCompilation tool needs a unique way to identify late 4894 // inline call sites. This id must be unique for this call site in 4895 // this compilation. Try to have it unique across compilations as 4896 // well because it can be convenient when grepping through the log 4897 // file. 4898 // Distinguish OSR compilations from others in case CICountOSR is 4899 // on. 4900 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4901 cg->set_unique_id(id); 4902 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4903 } 4904 } 4905 4906 void Compile::log_inline_failure(const char* msg) { 4907 if (C->log() != NULL) { 4908 C->log()->inline_fail(msg); 4909 } 4910 } 4911 4912 4913 // Dump inlining replay data to the stream. 4914 // Don't change thread state and acquire any locks. 4915 void Compile::dump_inline_data(outputStream* out) { 4916 InlineTree* inl_tree = ilt(); 4917 if (inl_tree != NULL) { 4918 out->print(" inline %d", inl_tree->count()); 4919 inl_tree->dump_replay_data(out); 4920 } 4921 } 4922 4923 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4924 if (n1->Opcode() < n2->Opcode()) return -1; 4925 else if (n1->Opcode() > n2->Opcode()) return 1; 4926 4927 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4928 for (uint i = 1; i < n1->req(); i++) { 4929 if (n1->in(i) < n2->in(i)) return -1; 4930 else if (n1->in(i) > n2->in(i)) return 1; 4931 } 4932 4933 return 0; 4934 } 4935 4936 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4937 Node* n1 = *n1p; 4938 Node* n2 = *n2p; 4939 4940 return cmp_expensive_nodes(n1, n2); 4941 } 4942 4943 void Compile::sort_expensive_nodes() { 4944 if (!expensive_nodes_sorted()) { 4945 _expensive_nodes->sort(cmp_expensive_nodes); 4946 } 4947 } 4948 4949 bool Compile::expensive_nodes_sorted() const { 4950 for (int i = 1; i < _expensive_nodes->length(); i++) { 4951 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) { 4952 return false; 4953 } 4954 } 4955 return true; 4956 } 4957 4958 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4959 if (_expensive_nodes->length() == 0) { 4960 return false; 4961 } 4962 4963 assert(OptimizeExpensiveOps, "optimization off?"); 4964 4965 // Take this opportunity to remove dead nodes from the list 4966 int j = 0; 4967 for (int i = 0; i < _expensive_nodes->length(); i++) { 4968 Node* n = _expensive_nodes->at(i); 4969 if (!n->is_unreachable(igvn)) { 4970 assert(n->is_expensive(), "should be expensive"); 4971 _expensive_nodes->at_put(j, n); 4972 j++; 4973 } 4974 } 4975 _expensive_nodes->trunc_to(j); 4976 4977 // Then sort the list so that similar nodes are next to each other 4978 // and check for at least two nodes of identical kind with same data 4979 // inputs. 4980 sort_expensive_nodes(); 4981 4982 for (int i = 0; i < _expensive_nodes->length()-1; i++) { 4983 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) { 4984 return true; 4985 } 4986 } 4987 4988 return false; 4989 } 4990 4991 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4992 if (_expensive_nodes->length() == 0) { 4993 return; 4994 } 4995 4996 assert(OptimizeExpensiveOps, "optimization off?"); 4997 4998 // Sort to bring similar nodes next to each other and clear the 4999 // control input of nodes for which there's only a single copy. 5000 sort_expensive_nodes(); 5001 5002 int j = 0; 5003 int identical = 0; 5004 int i = 0; 5005 bool modified = false; 5006 for (; i < _expensive_nodes->length()-1; i++) { 5007 assert(j <= i, "can't write beyond current index"); 5008 if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) { 5009 identical++; 5010 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 5011 continue; 5012 } 5013 if (identical > 0) { 5014 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 5015 identical = 0; 5016 } else { 5017 Node* n = _expensive_nodes->at(i); 5018 igvn.replace_input_of(n, 0, NULL); 5019 igvn.hash_insert(n); 5020 modified = true; 5021 } 5022 } 5023 if (identical > 0) { 5024 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 5025 } else if (_expensive_nodes->length() >= 1) { 5026 Node* n = _expensive_nodes->at(i); 5027 igvn.replace_input_of(n, 0, NULL); 5028 igvn.hash_insert(n); 5029 modified = true; 5030 } 5031 _expensive_nodes->trunc_to(j); 5032 if (modified) { 5033 igvn.optimize(); 5034 } 5035 } 5036 5037 void Compile::add_expensive_node(Node * n) { 5038 assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list"); 5039 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 5040 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 5041 if (OptimizeExpensiveOps) { 5042 _expensive_nodes->append(n); 5043 } else { 5044 // Clear control input and let IGVN optimize expensive nodes if 5045 // OptimizeExpensiveOps is off. 5046 n->set_req(0, NULL); 5047 } 5048 } 5049 5050 /** 5051 * Remove the speculative part of types and clean up the graph 5052 */ 5053 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 5054 if (UseTypeSpeculation) { 5055 Unique_Node_List worklist; 5056 worklist.push(root()); 5057 int modified = 0; 5058 // Go over all type nodes that carry a speculative type, drop the 5059 // speculative part of the type and enqueue the node for an igvn 5060 // which may optimize it out. 5061 for (uint next = 0; next < worklist.size(); ++next) { 5062 Node *n = worklist.at(next); 5063 if (n->is_Type()) { 5064 TypeNode* tn = n->as_Type(); 5065 const Type* t = tn->type(); 5066 const Type* t_no_spec = t->remove_speculative(); 5067 if (t_no_spec != t) { 5068 bool in_hash = igvn.hash_delete(n); 5069 assert(in_hash, "node should be in igvn hash table"); 5070 tn->set_type(t_no_spec); 5071 igvn.hash_insert(n); 5072 igvn._worklist.push(n); // give it a chance to go away 5073 modified++; 5074 } 5075 } 5076 uint max = n->len(); 5077 for( uint i = 0; i < max; ++i ) { 5078 Node *m = n->in(i); 5079 if (not_a_node(m)) continue; 5080 worklist.push(m); 5081 } 5082 } 5083 // Drop the speculative part of all types in the igvn's type table 5084 igvn.remove_speculative_types(); 5085 if (modified > 0) { 5086 igvn.optimize(); 5087 } 5088 #ifdef ASSERT 5089 // Verify that after the IGVN is over no speculative type has resurfaced 5090 worklist.clear(); 5091 worklist.push(root()); 5092 for (uint next = 0; next < worklist.size(); ++next) { 5093 Node *n = worklist.at(next); 5094 const Type* t = igvn.type_or_null(n); 5095 assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types"); 5096 if (n->is_Type()) { 5097 t = n->as_Type()->type(); 5098 assert(t == t->remove_speculative(), "no more speculative types"); 5099 } 5100 uint max = n->len(); 5101 for( uint i = 0; i < max; ++i ) { 5102 Node *m = n->in(i); 5103 if (not_a_node(m)) continue; 5104 worklist.push(m); 5105 } 5106 } 5107 igvn.check_no_speculative_types(); 5108 #endif 5109 } 5110 } 5111 5112 // Auxiliary method to support randomized stressing/fuzzing. 5113 // 5114 // This method can be called the arbitrary number of times, with current count 5115 // as the argument. The logic allows selecting a single candidate from the 5116 // running list of candidates as follows: 5117 // int count = 0; 5118 // Cand* selected = null; 5119 // while(cand = cand->next()) { 5120 // if (randomized_select(++count)) { 5121 // selected = cand; 5122 // } 5123 // } 5124 // 5125 // Including count equalizes the chances any candidate is "selected". 5126 // This is useful when we don't have the complete list of candidates to choose 5127 // from uniformly. In this case, we need to adjust the randomicity of the 5128 // selection, or else we will end up biasing the selection towards the latter 5129 // candidates. 5130 // 5131 // Quick back-envelope calculation shows that for the list of n candidates 5132 // the equal probability for the candidate to persist as "best" can be 5133 // achieved by replacing it with "next" k-th candidate with the probability 5134 // of 1/k. It can be easily shown that by the end of the run, the 5135 // probability for any candidate is converged to 1/n, thus giving the 5136 // uniform distribution among all the candidates. 5137 // 5138 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5139 #define RANDOMIZED_DOMAIN_POW 29 5140 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5141 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5142 bool Compile::randomized_select(int count) { 5143 assert(count > 0, "only positive"); 5144 return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5145 } 5146 5147 CloneMap& Compile::clone_map() { return _clone_map; } 5148 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5149 5150 void NodeCloneInfo::dump() const { 5151 tty->print(" {%d:%d} ", idx(), gen()); 5152 } 5153 5154 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5155 uint64_t val = value(old->_idx); 5156 NodeCloneInfo cio(val); 5157 assert(val != 0, "old node should be in the map"); 5158 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5159 insert(nnn->_idx, cin.get()); 5160 #ifndef PRODUCT 5161 if (is_debug()) { 5162 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5163 } 5164 #endif 5165 } 5166 5167 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5168 NodeCloneInfo cio(value(old->_idx)); 5169 if (cio.get() == 0) { 5170 cio.set(old->_idx, 0); 5171 insert(old->_idx, cio.get()); 5172 #ifndef PRODUCT 5173 if (is_debug()) { 5174 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5175 } 5176 #endif 5177 } 5178 clone(old, nnn, gen); 5179 } 5180 5181 int CloneMap::max_gen() const { 5182 int g = 0; 5183 DictI di(_dict); 5184 for(; di.test(); ++di) { 5185 int t = gen(di._key); 5186 if (g < t) { 5187 g = t; 5188 #ifndef PRODUCT 5189 if (is_debug()) { 5190 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5191 } 5192 #endif 5193 } 5194 } 5195 return g; 5196 } 5197 5198 void CloneMap::dump(node_idx_t key) const { 5199 uint64_t val = value(key); 5200 if (val != 0) { 5201 NodeCloneInfo ni(val); 5202 ni.dump(); 5203 } 5204 }