1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
  27 
  28 class BiasedLockingCounters;
  29 
  30 // Contains all the definitions needed for x86 assembly code generation.
  31 
  32 // Calling convention
  33 class Argument VALUE_OBJ_CLASS_SPEC {
  34  public:
  35   enum {
  36 #ifdef _LP64
  37 #ifdef _WIN64
  38     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
  39     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
  40 #else
  41     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
  42     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
  43 #endif // _WIN64
  44     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
  45     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
  46 #else
  47     n_register_parameters = 0   // 0 registers used to pass arguments
  48 #endif // _LP64
  49   };
  50 };
  51 
  52 
  53 #ifdef _LP64
  54 // Symbolically name the register arguments used by the c calling convention.
  55 // Windows is different from linux/solaris. So much for standards...
  56 
  57 #ifdef _WIN64
  58 
  59 REGISTER_DECLARATION(Register, c_rarg0, rcx);
  60 REGISTER_DECLARATION(Register, c_rarg1, rdx);
  61 REGISTER_DECLARATION(Register, c_rarg2, r8);
  62 REGISTER_DECLARATION(Register, c_rarg3, r9);
  63 
  64 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  65 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  66 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  67 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  68 
  69 #else
  70 
  71 REGISTER_DECLARATION(Register, c_rarg0, rdi);
  72 REGISTER_DECLARATION(Register, c_rarg1, rsi);
  73 REGISTER_DECLARATION(Register, c_rarg2, rdx);
  74 REGISTER_DECLARATION(Register, c_rarg3, rcx);
  75 REGISTER_DECLARATION(Register, c_rarg4, r8);
  76 REGISTER_DECLARATION(Register, c_rarg5, r9);
  77 
  78 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  79 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  80 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  81 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  82 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
  83 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
  84 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
  85 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
  86 
  87 #endif // _WIN64
  88 
  89 // Symbolically name the register arguments used by the Java calling convention.
  90 // We have control over the convention for java so we can do what we please.
  91 // What pleases us is to offset the java calling convention so that when
  92 // we call a suitable jni method the arguments are lined up and we don't
  93 // have to do little shuffling. A suitable jni method is non-static and a
  94 // small number of arguments (two fewer args on windows)
  95 //
  96 //        |-------------------------------------------------------|
  97 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
  98 //        |-------------------------------------------------------|
  99 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
 100 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
 101 //        |-------------------------------------------------------|
 102 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
 103 //        |-------------------------------------------------------|
 104 
 105 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 106 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 107 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 108 // Windows runs out of register args here
 109 #ifdef _WIN64
 110 REGISTER_DECLARATION(Register, j_rarg3, rdi);
 111 REGISTER_DECLARATION(Register, j_rarg4, rsi);
 112 #else
 113 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 114 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 115 #endif /* _WIN64 */
 116 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
 117 
 118 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
 119 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
 120 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
 121 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
 122 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
 123 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
 124 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
 125 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
 126 
 127 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
 128 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
 129 
 130 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
 131 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
 132 
 133 #else
 134 // rscratch1 will apear in 32bit code that is dead but of course must compile
 135 // Using noreg ensures if the dead code is incorrectly live and executed it
 136 // will cause an assertion failure
 137 #define rscratch1 noreg
 138 #define rscratch2 noreg
 139 
 140 #endif // _LP64
 141 
 142 // JSR 292 fixed register usages:
 143 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
 144 
 145 // Address is an abstraction used to represent a memory location
 146 // using any of the amd64 addressing modes with one object.
 147 //
 148 // Note: A register location is represented via a Register, not
 149 //       via an address for efficiency & simplicity reasons.
 150 
 151 class ArrayAddress;
 152 
 153 class Address VALUE_OBJ_CLASS_SPEC {
 154  public:
 155   enum ScaleFactor {
 156     no_scale = -1,
 157     times_1  =  0,
 158     times_2  =  1,
 159     times_4  =  2,
 160     times_8  =  3,
 161     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
 162   };
 163   static ScaleFactor times(int size) {
 164     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
 165     if (size == 8)  return times_8;
 166     if (size == 4)  return times_4;
 167     if (size == 2)  return times_2;
 168     return times_1;
 169   }
 170   static int scale_size(ScaleFactor scale) {
 171     assert(scale != no_scale, "");
 172     assert(((1 << (int)times_1) == 1 &&
 173             (1 << (int)times_2) == 2 &&
 174             (1 << (int)times_4) == 4 &&
 175             (1 << (int)times_8) == 8), "");
 176     return (1 << (int)scale);
 177   }
 178 
 179  private:
 180   Register         _base;
 181   Register         _index;
 182   ScaleFactor      _scale;
 183   int              _disp;
 184   RelocationHolder _rspec;
 185 
 186   // Easily misused constructors make them private
 187   // %%% can we make these go away?
 188   NOT_LP64(Address(address loc, RelocationHolder spec);)
 189   Address(int disp, address loc, relocInfo::relocType rtype);
 190   Address(int disp, address loc, RelocationHolder spec);
 191 
 192  public:
 193 
 194  int disp() { return _disp; }
 195   // creation
 196   Address()
 197     : _base(noreg),
 198       _index(noreg),
 199       _scale(no_scale),
 200       _disp(0) {
 201   }
 202 
 203   // No default displacement otherwise Register can be implicitly
 204   // converted to 0(Register) which is quite a different animal.
 205 
 206   Address(Register base, int disp)
 207     : _base(base),
 208       _index(noreg),
 209       _scale(no_scale),
 210       _disp(disp) {
 211   }
 212 
 213   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
 214     : _base (base),
 215       _index(index),
 216       _scale(scale),
 217       _disp (disp) {
 218     assert(!index->is_valid() == (scale == Address::no_scale),
 219            "inconsistent address");
 220   }
 221 
 222   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
 223     : _base (base),
 224       _index(index.register_or_noreg()),
 225       _scale(scale),
 226       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
 227     if (!index.is_register())  scale = Address::no_scale;
 228     assert(!_index->is_valid() == (scale == Address::no_scale),
 229            "inconsistent address");
 230   }
 231 
 232   Address plus_disp(int disp) const {
 233     Address a = (*this);
 234     a._disp += disp;
 235     return a;
 236   }
 237   Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
 238     Address a = (*this);
 239     a._disp += disp.constant_or_zero() * scale_size(scale);
 240     if (disp.is_register()) {
 241       assert(!a.index()->is_valid(), "competing indexes");
 242       a._index = disp.as_register();
 243       a._scale = scale;
 244     }
 245     return a;
 246   }
 247   bool is_same_address(Address a) const {
 248     // disregard _rspec
 249     return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
 250   }
 251 
 252   // The following two overloads are used in connection with the
 253   // ByteSize type (see sizes.hpp).  They simplify the use of
 254   // ByteSize'd arguments in assembly code. Note that their equivalent
 255   // for the optimized build are the member functions with int disp
 256   // argument since ByteSize is mapped to an int type in that case.
 257   //
 258   // Note: DO NOT introduce similar overloaded functions for WordSize
 259   // arguments as in the optimized mode, both ByteSize and WordSize
 260   // are mapped to the same type and thus the compiler cannot make a
 261   // distinction anymore (=> compiler errors).
 262 
 263 #ifdef ASSERT
 264   Address(Register base, ByteSize disp)
 265     : _base(base),
 266       _index(noreg),
 267       _scale(no_scale),
 268       _disp(in_bytes(disp)) {
 269   }
 270 
 271   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
 272     : _base(base),
 273       _index(index),
 274       _scale(scale),
 275       _disp(in_bytes(disp)) {
 276     assert(!index->is_valid() == (scale == Address::no_scale),
 277            "inconsistent address");
 278   }
 279 
 280   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
 281     : _base (base),
 282       _index(index.register_or_noreg()),
 283       _scale(scale),
 284       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
 285     if (!index.is_register())  scale = Address::no_scale;
 286     assert(!_index->is_valid() == (scale == Address::no_scale),
 287            "inconsistent address");
 288   }
 289 
 290 #endif // ASSERT
 291 
 292   // accessors
 293   bool        uses(Register reg) const { return _base == reg || _index == reg; }
 294   Register    base()             const { return _base;  }
 295   Register    index()            const { return _index; }
 296   ScaleFactor scale()            const { return _scale; }
 297   int         disp()             const { return _disp;  }
 298 
 299   // Convert the raw encoding form into the form expected by the constructor for
 300   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 301   // that to noreg for the Address constructor.
 302   static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
 303 
 304   static Address make_array(ArrayAddress);
 305 
 306  private:
 307   bool base_needs_rex() const {
 308     return _base != noreg && _base->encoding() >= 8;
 309   }
 310 
 311   bool index_needs_rex() const {
 312     return _index != noreg &&_index->encoding() >= 8;
 313   }
 314 
 315   relocInfo::relocType reloc() const { return _rspec.type(); }
 316 
 317   friend class Assembler;
 318   friend class MacroAssembler;
 319   friend class LIR_Assembler; // base/index/scale/disp
 320 };
 321 
 322 //
 323 // AddressLiteral has been split out from Address because operands of this type
 324 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
 325 // the few instructions that need to deal with address literals are unique and the
 326 // MacroAssembler does not have to implement every instruction in the Assembler
 327 // in order to search for address literals that may need special handling depending
 328 // on the instruction and the platform. As small step on the way to merging i486/amd64
 329 // directories.
 330 //
 331 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 332   friend class ArrayAddress;
 333   RelocationHolder _rspec;
 334   // Typically we use AddressLiterals we want to use their rval
 335   // However in some situations we want the lval (effect address) of the item.
 336   // We provide a special factory for making those lvals.
 337   bool _is_lval;
 338 
 339   // If the target is far we'll need to load the ea of this to
 340   // a register to reach it. Otherwise if near we can do rip
 341   // relative addressing.
 342 
 343   address          _target;
 344 
 345  protected:
 346   // creation
 347   AddressLiteral()
 348     : _is_lval(false),
 349       _target(NULL)
 350   {}
 351 
 352   public:
 353 
 354 
 355   AddressLiteral(address target, relocInfo::relocType rtype);
 356 
 357   AddressLiteral(address target, RelocationHolder const& rspec)
 358     : _rspec(rspec),
 359       _is_lval(false),
 360       _target(target)
 361   {}
 362 
 363   AddressLiteral addr() {
 364     AddressLiteral ret = *this;
 365     ret._is_lval = true;
 366     return ret;
 367   }
 368 
 369 
 370  private:
 371 
 372   address target() { return _target; }
 373   bool is_lval() { return _is_lval; }
 374 
 375   relocInfo::relocType reloc() const { return _rspec.type(); }
 376   const RelocationHolder& rspec() const { return _rspec; }
 377 
 378   friend class Assembler;
 379   friend class MacroAssembler;
 380   friend class Address;
 381   friend class LIR_Assembler;
 382 };
 383 
 384 // Convience classes
 385 class RuntimeAddress: public AddressLiteral {
 386 
 387   public:
 388 
 389   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
 390 
 391 };
 392 
 393 class OopAddress: public AddressLiteral {
 394 
 395   public:
 396 
 397   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
 398 
 399 };
 400 
 401 class ExternalAddress: public AddressLiteral {
 402  private:
 403   static relocInfo::relocType reloc_for_target(address target) {
 404     // Sometimes ExternalAddress is used for values which aren't
 405     // exactly addresses, like the card table base.
 406     // external_word_type can't be used for values in the first page
 407     // so just skip the reloc in that case.
 408     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 409   }
 410 
 411  public:
 412 
 413   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
 414 
 415 };
 416 
 417 class InternalAddress: public AddressLiteral {
 418 
 419   public:
 420 
 421   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 422 
 423 };
 424 
 425 // x86 can do array addressing as a single operation since disp can be an absolute
 426 // address amd64 can't. We create a class that expresses the concept but does extra
 427 // magic on amd64 to get the final result
 428 
 429 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
 430   private:
 431 
 432   AddressLiteral _base;
 433   Address        _index;
 434 
 435   public:
 436 
 437   ArrayAddress() {};
 438   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
 439   AddressLiteral base() { return _base; }
 440   Address index() { return _index; }
 441 
 442 };
 443 
 444 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
 445 
 446 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 447 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 448 // is what you get. The Assembler is generating code into a CodeBuffer.
 449 
 450 class Assembler : public AbstractAssembler  {
 451   friend class AbstractAssembler; // for the non-virtual hack
 452   friend class LIR_Assembler; // as_Address()
 453   friend class StubGenerator;
 454 
 455  public:
 456   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
 457     zero          = 0x4,
 458     notZero       = 0x5,
 459     equal         = 0x4,
 460     notEqual      = 0x5,
 461     less          = 0xc,
 462     lessEqual     = 0xe,
 463     greater       = 0xf,
 464     greaterEqual  = 0xd,
 465     below         = 0x2,
 466     belowEqual    = 0x6,
 467     above         = 0x7,
 468     aboveEqual    = 0x3,
 469     overflow      = 0x0,
 470     noOverflow    = 0x1,
 471     carrySet      = 0x2,
 472     carryClear    = 0x3,
 473     negative      = 0x8,
 474     positive      = 0x9,
 475     parity        = 0xa,
 476     noParity      = 0xb
 477   };
 478 
 479   enum Prefix {
 480     // segment overrides
 481     CS_segment = 0x2e,
 482     SS_segment = 0x36,
 483     DS_segment = 0x3e,
 484     ES_segment = 0x26,
 485     FS_segment = 0x64,
 486     GS_segment = 0x65,
 487 
 488     REX        = 0x40,
 489 
 490     REX_B      = 0x41,
 491     REX_X      = 0x42,
 492     REX_XB     = 0x43,
 493     REX_R      = 0x44,
 494     REX_RB     = 0x45,
 495     REX_RX     = 0x46,
 496     REX_RXB    = 0x47,
 497 
 498     REX_W      = 0x48,
 499 
 500     REX_WB     = 0x49,
 501     REX_WX     = 0x4A,
 502     REX_WXB    = 0x4B,
 503     REX_WR     = 0x4C,
 504     REX_WRB    = 0x4D,
 505     REX_WRX    = 0x4E,
 506     REX_WRXB   = 0x4F,
 507 
 508     VEX_3bytes = 0xC4,
 509     VEX_2bytes = 0xC5
 510   };
 511 
 512   enum VexPrefix {
 513     VEX_B = 0x20,
 514     VEX_X = 0x40,
 515     VEX_R = 0x80,
 516     VEX_W = 0x80
 517   };
 518 
 519   enum VexSimdPrefix {
 520     VEX_SIMD_NONE = 0x0,
 521     VEX_SIMD_66   = 0x1,
 522     VEX_SIMD_F3   = 0x2,
 523     VEX_SIMD_F2   = 0x3
 524   };
 525 
 526   enum VexOpcode {
 527     VEX_OPCODE_NONE  = 0x0,
 528     VEX_OPCODE_0F    = 0x1,
 529     VEX_OPCODE_0F_38 = 0x2,
 530     VEX_OPCODE_0F_3A = 0x3
 531   };
 532 
 533   enum WhichOperand {
 534     // input to locate_operand, and format code for relocations
 535     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
 536     disp32_operand = 1,          // embedded 32-bit displacement or address
 537     call32_operand = 2,          // embedded 32-bit self-relative displacement
 538 #ifndef _LP64
 539     _WhichOperand_limit = 3
 540 #else
 541      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
 542     _WhichOperand_limit = 4
 543 #endif
 544   };
 545 
 546 
 547 
 548   // NOTE: The general philopsophy of the declarations here is that 64bit versions
 549   // of instructions are freely declared without the need for wrapping them an ifdef.
 550   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
 551   // In the .cpp file the implementations are wrapped so that they are dropped out
 552   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
 553   // to the size it was prior to merging up the 32bit and 64bit assemblers.
 554   //
 555   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
 556   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
 557 
 558 private:
 559 
 560 
 561   // 64bit prefixes
 562   int prefix_and_encode(int reg_enc, bool byteinst = false);
 563   int prefixq_and_encode(int reg_enc);
 564 
 565   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
 566   int prefixq_and_encode(int dst_enc, int src_enc);
 567 
 568   void prefix(Register reg);
 569   void prefix(Address adr);
 570   void prefixq(Address adr);
 571 
 572   void prefix(Address adr, Register reg,  bool byteinst = false);
 573   void prefix(Address adr, XMMRegister reg);
 574   void prefixq(Address adr, Register reg);
 575   void prefixq(Address adr, XMMRegister reg);
 576 
 577   void prefetch_prefix(Address src);
 578 
 579   void rex_prefix(Address adr, XMMRegister xreg,
 580                   VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 581   int  rex_prefix_and_encode(int dst_enc, int src_enc,
 582                              VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 583 
 584   void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
 585                   int nds_enc, VexSimdPrefix pre, VexOpcode opc,
 586                   bool vector256);
 587 
 588   void vex_prefix(Address adr, int nds_enc, int xreg_enc,
 589                   VexSimdPrefix pre, VexOpcode opc,
 590                   bool vex_w, bool vector256);
 591 
 592   void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
 593                   VexSimdPrefix pre, bool vector256 = false) {
 594     int dst_enc = dst->encoding();
 595     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
 596     vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, false, vector256);
 597   }
 598 
 599   int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
 600                              VexSimdPrefix pre, VexOpcode opc,
 601                              bool vex_w, bool vector256);
 602 
 603   int  vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
 604                              VexSimdPrefix pre, bool vector256 = false,
 605                              VexOpcode opc = VEX_OPCODE_0F) {
 606     int src_enc = src->encoding();
 607     int dst_enc = dst->encoding();
 608     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
 609     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, false, vector256);
 610   }
 611 
 612   void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
 613                    VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
 614                    bool rex_w = false, bool vector256 = false);
 615 
 616   void simd_prefix(XMMRegister dst, Address src,
 617                    VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 618     simd_prefix(dst, xnoreg, src, pre, opc);
 619   }
 620 
 621   void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre) {
 622     simd_prefix(src, dst, pre);
 623   }
 624   void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
 625                      VexSimdPrefix pre) {
 626     bool rex_w = true;
 627     simd_prefix(dst, nds, src, pre, VEX_OPCODE_0F, rex_w);
 628   }
 629 
 630   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
 631                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
 632                              bool rex_w = false, bool vector256 = false);
 633 
 634   // Move/convert 32-bit integer value.
 635   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
 636                              VexSimdPrefix pre) {
 637     // It is OK to cast from Register to XMMRegister to pass argument here
 638     // since only encoding is used in simd_prefix_and_encode() and number of
 639     // Gen and Xmm registers are the same.
 640     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre);
 641   }
 642   int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre) {
 643     return simd_prefix_and_encode(dst, xnoreg, src, pre);
 644   }
 645   int simd_prefix_and_encode(Register dst, XMMRegister src,
 646                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 647     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc);
 648   }
 649 
 650   // Move/convert 64-bit integer value.
 651   int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
 652                                VexSimdPrefix pre) {
 653     bool rex_w = true;
 654     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, VEX_OPCODE_0F, rex_w);
 655   }
 656   int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre) {
 657     return simd_prefix_and_encode_q(dst, xnoreg, src, pre);
 658   }
 659   int simd_prefix_and_encode_q(Register dst, XMMRegister src,
 660                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 661     bool rex_w = true;
 662     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc, rex_w);
 663   }
 664 
 665   // Helper functions for groups of instructions
 666   void emit_arith_b(int op1, int op2, Register dst, int imm8);
 667 
 668   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
 669   // Force generation of a 4 byte immediate value even if it fits into 8bit
 670   void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
 671   // only 32bit??
 672   void emit_arith(int op1, int op2, Register dst, jobject obj);
 673   void emit_arith(int op1, int op2, Register dst, Register src);
 674 
 675   void emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
 676   void emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
 677   void emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
 678   void emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
 679   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
 680                       Address src, VexSimdPrefix pre, bool vector256);
 681   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
 682                       XMMRegister src, VexSimdPrefix pre, bool vector256);
 683 
 684   void emit_operand(Register reg,
 685                     Register base, Register index, Address::ScaleFactor scale,
 686                     int disp,
 687                     RelocationHolder const& rspec,
 688                     int rip_relative_correction = 0);
 689 
 690   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
 691 
 692   // operands that only take the original 32bit registers
 693   void emit_operand32(Register reg, Address adr);
 694 
 695   void emit_operand(XMMRegister reg,
 696                     Register base, Register index, Address::ScaleFactor scale,
 697                     int disp,
 698                     RelocationHolder const& rspec);
 699 
 700   void emit_operand(XMMRegister reg, Address adr);
 701 
 702   void emit_operand(MMXRegister reg, Address adr);
 703 
 704   // workaround gcc (3.2.1-7) bug
 705   void emit_operand(Address adr, MMXRegister reg);
 706 
 707 
 708   // Immediate-to-memory forms
 709   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
 710 
 711   void emit_farith(int b1, int b2, int i);
 712 
 713 
 714  protected:
 715   #ifdef ASSERT
 716   void check_relocation(RelocationHolder const& rspec, int format);
 717   #endif
 718 
 719   inline void emit_long64(jlong x);
 720 
 721   void emit_data(jint data, relocInfo::relocType    rtype, int format);
 722   void emit_data(jint data, RelocationHolder const& rspec, int format);
 723   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
 724   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
 725 
 726   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
 727 
 728   // These are all easily abused and hence protected
 729 
 730   // 32BIT ONLY SECTION
 731 #ifndef _LP64
 732   // Make these disappear in 64bit mode since they would never be correct
 733   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
 734   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 735 
 736   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 737   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
 738 
 739   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
 740 #else
 741   // 64BIT ONLY SECTION
 742   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
 743 
 744   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
 745   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
 746 
 747   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
 748   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
 749 #endif // _LP64
 750 
 751   // These are unique in that we are ensured by the caller that the 32bit
 752   // relative in these instructions will always be able to reach the potentially
 753   // 64bit address described by entry. Since they can take a 64bit address they
 754   // don't have the 32 suffix like the other instructions in this class.
 755 
 756   void call_literal(address entry, RelocationHolder const& rspec);
 757   void jmp_literal(address entry, RelocationHolder const& rspec);
 758 
 759   // Avoid using directly section
 760   // Instructions in this section are actually usable by anyone without danger
 761   // of failure but have performance issues that are addressed my enhanced
 762   // instructions which will do the proper thing base on the particular cpu.
 763   // We protect them because we don't trust you...
 764 
 765   // Don't use next inc() and dec() methods directly. INC & DEC instructions
 766   // could cause a partial flag stall since they don't set CF flag.
 767   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
 768   // which call inc() & dec() or add() & sub() in accordance with
 769   // the product flag UseIncDec value.
 770 
 771   void decl(Register dst);
 772   void decl(Address dst);
 773   void decq(Register dst);
 774   void decq(Address dst);
 775 
 776   void incl(Register dst);
 777   void incl(Address dst);
 778   void incq(Register dst);
 779   void incq(Address dst);
 780 
 781   // New cpus require use of movsd and movss to avoid partial register stall
 782   // when loading from memory. But for old Opteron use movlpd instead of movsd.
 783   // The selection is done in MacroAssembler::movdbl() and movflt().
 784 
 785   // Move Scalar Single-Precision Floating-Point Values
 786   void movss(XMMRegister dst, Address src);
 787   void movss(XMMRegister dst, XMMRegister src);
 788   void movss(Address dst, XMMRegister src);
 789 
 790   // Move Scalar Double-Precision Floating-Point Values
 791   void movsd(XMMRegister dst, Address src);
 792   void movsd(XMMRegister dst, XMMRegister src);
 793   void movsd(Address dst, XMMRegister src);
 794   void movlpd(XMMRegister dst, Address src);
 795 
 796   // New cpus require use of movaps and movapd to avoid partial register stall
 797   // when moving between registers.
 798   void movaps(XMMRegister dst, XMMRegister src);
 799   void movapd(XMMRegister dst, XMMRegister src);
 800 
 801   // End avoid using directly
 802 
 803 
 804   // Instruction prefixes
 805   void prefix(Prefix p);
 806 
 807   public:
 808 
 809   // Creation
 810   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
 811 
 812   // Decoding
 813   static address locate_operand(address inst, WhichOperand which);
 814   static address locate_next_instruction(address inst);
 815 
 816   // Utilities
 817   static bool is_polling_page_far() NOT_LP64({ return false;});
 818 
 819   // Generic instructions
 820   // Does 32bit or 64bit as needed for the platform. In some sense these
 821   // belong in macro assembler but there is no need for both varieties to exist
 822 
 823   void lea(Register dst, Address src);
 824 
 825   void mov(Register dst, Register src);
 826 
 827   void pusha();
 828   void popa();
 829 
 830   void pushf();
 831   void popf();
 832 
 833   void push(int32_t imm32);
 834 
 835   void push(Register src);
 836 
 837   void pop(Register dst);
 838 
 839   // These are dummies to prevent surprise implicit conversions to Register
 840   void push(void* v);
 841   void pop(void* v);
 842 
 843   // These do register sized moves/scans
 844   void rep_mov();
 845   void rep_set();
 846   void repne_scan();
 847 #ifdef _LP64
 848   void repne_scanl();
 849 #endif
 850 
 851   // Vanilla instructions in lexical order
 852 
 853   void adcl(Address dst, int32_t imm32);
 854   void adcl(Address dst, Register src);
 855   void adcl(Register dst, int32_t imm32);
 856   void adcl(Register dst, Address src);
 857   void adcl(Register dst, Register src);
 858 
 859   void adcq(Register dst, int32_t imm32);
 860   void adcq(Register dst, Address src);
 861   void adcq(Register dst, Register src);
 862 
 863   void addl(Address dst, int32_t imm32);
 864   void addl(Address dst, Register src);
 865   void addl(Register dst, int32_t imm32);
 866   void addl(Register dst, Address src);
 867   void addl(Register dst, Register src);
 868 
 869   void addq(Address dst, int32_t imm32);
 870   void addq(Address dst, Register src);
 871   void addq(Register dst, int32_t imm32);
 872   void addq(Register dst, Address src);
 873   void addq(Register dst, Register src);
 874 
 875   void addr_nop_4();
 876   void addr_nop_5();
 877   void addr_nop_7();
 878   void addr_nop_8();
 879 
 880   // Add Scalar Double-Precision Floating-Point Values
 881   void addsd(XMMRegister dst, Address src);
 882   void addsd(XMMRegister dst, XMMRegister src);
 883 
 884   // Add Scalar Single-Precision Floating-Point Values
 885   void addss(XMMRegister dst, Address src);
 886   void addss(XMMRegister dst, XMMRegister src);
 887 
 888   void andl(Address  dst, int32_t imm32);
 889   void andl(Register dst, int32_t imm32);
 890   void andl(Register dst, Address src);
 891   void andl(Register dst, Register src);
 892 
 893   void andq(Address  dst, int32_t imm32);
 894   void andq(Register dst, int32_t imm32);
 895   void andq(Register dst, Address src);
 896   void andq(Register dst, Register src);
 897 
 898   void bsfl(Register dst, Register src);
 899   void bsrl(Register dst, Register src);
 900 
 901 #ifdef _LP64
 902   void bsfq(Register dst, Register src);
 903   void bsrq(Register dst, Register src);
 904 #endif
 905 
 906   void bswapl(Register reg);
 907 
 908   void bswapq(Register reg);
 909 
 910   void call(Label& L, relocInfo::relocType rtype);
 911   void call(Register reg);  // push pc; pc <- reg
 912   void call(Address adr);   // push pc; pc <- adr
 913 
 914   void cdql();
 915 
 916   void cdqq();
 917 
 918   void cld() { emit_byte(0xfc); }
 919 
 920   void clflush(Address adr);
 921 
 922   void cmovl(Condition cc, Register dst, Register src);
 923   void cmovl(Condition cc, Register dst, Address src);
 924 
 925   void cmovq(Condition cc, Register dst, Register src);
 926   void cmovq(Condition cc, Register dst, Address src);
 927 
 928 
 929   void cmpb(Address dst, int imm8);
 930 
 931   void cmpl(Address dst, int32_t imm32);
 932 
 933   void cmpl(Register dst, int32_t imm32);
 934   void cmpl(Register dst, Register src);
 935   void cmpl(Register dst, Address src);
 936 
 937   void cmpq(Address dst, int32_t imm32);
 938   void cmpq(Address dst, Register src);
 939 
 940   void cmpq(Register dst, int32_t imm32);
 941   void cmpq(Register dst, Register src);
 942   void cmpq(Register dst, Address src);
 943 
 944   // these are dummies used to catch attempting to convert NULL to Register
 945   void cmpl(Register dst, void* junk); // dummy
 946   void cmpq(Register dst, void* junk); // dummy
 947 
 948   void cmpw(Address dst, int imm16);
 949 
 950   void cmpxchg8 (Address adr);
 951 
 952   void cmpxchgl(Register reg, Address adr);
 953 
 954   void cmpxchgq(Register reg, Address adr);
 955 
 956   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
 957   void comisd(XMMRegister dst, Address src);
 958   void comisd(XMMRegister dst, XMMRegister src);
 959 
 960   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
 961   void comiss(XMMRegister dst, Address src);
 962   void comiss(XMMRegister dst, XMMRegister src);
 963 
 964   // Identify processor type and features
 965   void cpuid() {
 966     emit_byte(0x0F);
 967     emit_byte(0xA2);
 968   }
 969 
 970   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
 971   void cvtsd2ss(XMMRegister dst, XMMRegister src);
 972   void cvtsd2ss(XMMRegister dst, Address src);
 973 
 974   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
 975   void cvtsi2sdl(XMMRegister dst, Register src);
 976   void cvtsi2sdl(XMMRegister dst, Address src);
 977   void cvtsi2sdq(XMMRegister dst, Register src);
 978   void cvtsi2sdq(XMMRegister dst, Address src);
 979 
 980   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
 981   void cvtsi2ssl(XMMRegister dst, Register src);
 982   void cvtsi2ssl(XMMRegister dst, Address src);
 983   void cvtsi2ssq(XMMRegister dst, Register src);
 984   void cvtsi2ssq(XMMRegister dst, Address src);
 985 
 986   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
 987   void cvtdq2pd(XMMRegister dst, XMMRegister src);
 988 
 989   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
 990   void cvtdq2ps(XMMRegister dst, XMMRegister src);
 991 
 992   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
 993   void cvtss2sd(XMMRegister dst, XMMRegister src);
 994   void cvtss2sd(XMMRegister dst, Address src);
 995 
 996   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
 997   void cvttsd2sil(Register dst, Address src);
 998   void cvttsd2sil(Register dst, XMMRegister src);
 999   void cvttsd2siq(Register dst, XMMRegister src);
1000 
1001   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
1002   void cvttss2sil(Register dst, XMMRegister src);
1003   void cvttss2siq(Register dst, XMMRegister src);
1004 
1005   // Divide Scalar Double-Precision Floating-Point Values
1006   void divsd(XMMRegister dst, Address src);
1007   void divsd(XMMRegister dst, XMMRegister src);
1008 
1009   // Divide Scalar Single-Precision Floating-Point Values
1010   void divss(XMMRegister dst, Address src);
1011   void divss(XMMRegister dst, XMMRegister src);
1012 
1013   void emms();
1014 
1015   void fabs();
1016 
1017   void fadd(int i);
1018 
1019   void fadd_d(Address src);
1020   void fadd_s(Address src);
1021 
1022   // "Alternate" versions of x87 instructions place result down in FPU
1023   // stack instead of on TOS
1024 
1025   void fadda(int i); // "alternate" fadd
1026   void faddp(int i = 1);
1027 
1028   void fchs();
1029 
1030   void fcom(int i);
1031 
1032   void fcomp(int i = 1);
1033   void fcomp_d(Address src);
1034   void fcomp_s(Address src);
1035 
1036   void fcompp();
1037 
1038   void fcos();
1039 
1040   void fdecstp();
1041 
1042   void fdiv(int i);
1043   void fdiv_d(Address src);
1044   void fdivr_s(Address src);
1045   void fdiva(int i);  // "alternate" fdiv
1046   void fdivp(int i = 1);
1047 
1048   void fdivr(int i);
1049   void fdivr_d(Address src);
1050   void fdiv_s(Address src);
1051 
1052   void fdivra(int i); // "alternate" reversed fdiv
1053 
1054   void fdivrp(int i = 1);
1055 
1056   void ffree(int i = 0);
1057 
1058   void fild_d(Address adr);
1059   void fild_s(Address adr);
1060 
1061   void fincstp();
1062 
1063   void finit();
1064 
1065   void fist_s (Address adr);
1066   void fistp_d(Address adr);
1067   void fistp_s(Address adr);
1068 
1069   void fld1();
1070 
1071   void fld_d(Address adr);
1072   void fld_s(Address adr);
1073   void fld_s(int index);
1074   void fld_x(Address adr);  // extended-precision (80-bit) format
1075 
1076   void fldcw(Address src);
1077 
1078   void fldenv(Address src);
1079 
1080   void fldlg2();
1081 
1082   void fldln2();
1083 
1084   void fldz();
1085 
1086   void flog();
1087   void flog10();
1088 
1089   void fmul(int i);
1090 
1091   void fmul_d(Address src);
1092   void fmul_s(Address src);
1093 
1094   void fmula(int i);  // "alternate" fmul
1095 
1096   void fmulp(int i = 1);
1097 
1098   void fnsave(Address dst);
1099 
1100   void fnstcw(Address src);
1101 
1102   void fnstsw_ax();
1103 
1104   void fprem();
1105   void fprem1();
1106 
1107   void frstor(Address src);
1108 
1109   void fsin();
1110 
1111   void fsqrt();
1112 
1113   void fst_d(Address adr);
1114   void fst_s(Address adr);
1115 
1116   void fstp_d(Address adr);
1117   void fstp_d(int index);
1118   void fstp_s(Address adr);
1119   void fstp_x(Address adr); // extended-precision (80-bit) format
1120 
1121   void fsub(int i);
1122   void fsub_d(Address src);
1123   void fsub_s(Address src);
1124 
1125   void fsuba(int i);  // "alternate" fsub
1126 
1127   void fsubp(int i = 1);
1128 
1129   void fsubr(int i);
1130   void fsubr_d(Address src);
1131   void fsubr_s(Address src);
1132 
1133   void fsubra(int i); // "alternate" reversed fsub
1134 
1135   void fsubrp(int i = 1);
1136 
1137   void ftan();
1138 
1139   void ftst();
1140 
1141   void fucomi(int i = 1);
1142   void fucomip(int i = 1);
1143 
1144   void fwait();
1145 
1146   void fxch(int i = 1);
1147 
1148   void fxrstor(Address src);
1149 
1150   void fxsave(Address dst);
1151 
1152   void fyl2x();
1153   void frndint();
1154   void f2xm1();
1155   void fldl2e();
1156 
1157   void hlt();
1158 
1159   void idivl(Register src);
1160   void divl(Register src); // Unsigned division
1161 
1162   void idivq(Register src);
1163 
1164   void imull(Register dst, Register src);
1165   void imull(Register dst, Register src, int value);
1166 
1167   void imulq(Register dst, Register src);
1168   void imulq(Register dst, Register src, int value);
1169 
1170 
1171   // jcc is the generic conditional branch generator to run-
1172   // time routines, jcc is used for branches to labels. jcc
1173   // takes a branch opcode (cc) and a label (L) and generates
1174   // either a backward branch or a forward branch and links it
1175   // to the label fixup chain. Usage:
1176   //
1177   // Label L;      // unbound label
1178   // jcc(cc, L);   // forward branch to unbound label
1179   // bind(L);      // bind label to the current pc
1180   // jcc(cc, L);   // backward branch to bound label
1181   // bind(L);      // illegal: a label may be bound only once
1182   //
1183   // Note: The same Label can be used for forward and backward branches
1184   // but it may be bound only once.
1185 
1186   void jcc(Condition cc, Label& L, bool maybe_short = true);
1187 
1188   // Conditional jump to a 8-bit offset to L.
1189   // WARNING: be very careful using this for forward jumps.  If the label is
1190   // not bound within an 8-bit offset of this instruction, a run-time error
1191   // will occur.
1192   void jccb(Condition cc, Label& L);
1193 
1194   void jmp(Address entry);    // pc <- entry
1195 
1196   // Label operations & relative jumps (PPUM Appendix D)
1197   void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
1198 
1199   void jmp(Register entry); // pc <- entry
1200 
1201   // Unconditional 8-bit offset jump to L.
1202   // WARNING: be very careful using this for forward jumps.  If the label is
1203   // not bound within an 8-bit offset of this instruction, a run-time error
1204   // will occur.
1205   void jmpb(Label& L);
1206 
1207   void ldmxcsr( Address src );
1208 
1209   void leal(Register dst, Address src);
1210 
1211   void leaq(Register dst, Address src);
1212 
1213   void lfence() {
1214     emit_byte(0x0F);
1215     emit_byte(0xAE);
1216     emit_byte(0xE8);
1217   }
1218 
1219   void lock();
1220 
1221   void lzcntl(Register dst, Register src);
1222 
1223 #ifdef _LP64
1224   void lzcntq(Register dst, Register src);
1225 #endif
1226 
1227   enum Membar_mask_bits {
1228     StoreStore = 1 << 3,
1229     LoadStore  = 1 << 2,
1230     StoreLoad  = 1 << 1,
1231     LoadLoad   = 1 << 0
1232   };
1233 
1234   // Serializes memory and blows flags
1235   void membar(Membar_mask_bits order_constraint) {
1236     if (os::is_MP()) {
1237       // We only have to handle StoreLoad
1238       if (order_constraint & StoreLoad) {
1239         // All usable chips support "locked" instructions which suffice
1240         // as barriers, and are much faster than the alternative of
1241         // using cpuid instruction. We use here a locked add [esp],0.
1242         // This is conveniently otherwise a no-op except for blowing
1243         // flags.
1244         // Any change to this code may need to revisit other places in
1245         // the code where this idiom is used, in particular the
1246         // orderAccess code.
1247         lock();
1248         addl(Address(rsp, 0), 0);// Assert the lock# signal here
1249       }
1250     }
1251   }
1252 
1253   void mfence();
1254 
1255   // Moves
1256 
1257   void mov64(Register dst, int64_t imm64);
1258 
1259   void movb(Address dst, Register src);
1260   void movb(Address dst, int imm8);
1261   void movb(Register dst, Address src);
1262 
1263   void movdl(XMMRegister dst, Register src);
1264   void movdl(Register dst, XMMRegister src);
1265   void movdl(XMMRegister dst, Address src);
1266   void movdl(Address dst, XMMRegister src);
1267 
1268   // Move Double Quadword
1269   void movdq(XMMRegister dst, Register src);
1270   void movdq(Register dst, XMMRegister src);
1271 
1272   // Move Aligned Double Quadword
1273   void movdqa(XMMRegister dst, XMMRegister src);
1274 
1275   // Move Unaligned Double Quadword
1276   void movdqu(Address     dst, XMMRegister src);
1277   void movdqu(XMMRegister dst, Address src);
1278   void movdqu(XMMRegister dst, XMMRegister src);
1279 
1280   // Move Unaligned 256bit Vector
1281   void vmovdqu(Address dst, XMMRegister src);
1282   void vmovdqu(XMMRegister dst, Address src);
1283   void vmovdqu(XMMRegister dst, XMMRegister src);
1284 
1285   // Move lower 64bit to high 64bit in 128bit register
1286   void movlhps(XMMRegister dst, XMMRegister src);
1287 
1288   void movl(Register dst, int32_t imm32);
1289   void movl(Address dst, int32_t imm32);
1290   void movl(Register dst, Register src);
1291   void movl(Register dst, Address src);
1292   void movl(Address dst, Register src);
1293 
1294   // These dummies prevent using movl from converting a zero (like NULL) into Register
1295   // by giving the compiler two choices it can't resolve
1296 
1297   void movl(Address  dst, void* junk);
1298   void movl(Register dst, void* junk);
1299 
1300 #ifdef _LP64
1301   void movq(Register dst, Register src);
1302   void movq(Register dst, Address src);
1303   void movq(Address  dst, Register src);
1304 #endif
1305 
1306   void movq(Address     dst, MMXRegister src );
1307   void movq(MMXRegister dst, Address src );
1308 
1309 #ifdef _LP64
1310   // These dummies prevent using movq from converting a zero (like NULL) into Register
1311   // by giving the compiler two choices it can't resolve
1312 
1313   void movq(Address  dst, void* dummy);
1314   void movq(Register dst, void* dummy);
1315 #endif
1316 
1317   // Move Quadword
1318   void movq(Address     dst, XMMRegister src);
1319   void movq(XMMRegister dst, Address src);
1320 
1321   void movsbl(Register dst, Address src);
1322   void movsbl(Register dst, Register src);
1323 
1324 #ifdef _LP64
1325   void movsbq(Register dst, Address src);
1326   void movsbq(Register dst, Register src);
1327 
1328   // Move signed 32bit immediate to 64bit extending sign
1329   void movslq(Address  dst, int32_t imm64);
1330   void movslq(Register dst, int32_t imm64);
1331 
1332   void movslq(Register dst, Address src);
1333   void movslq(Register dst, Register src);
1334   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1335 #endif
1336 
1337   void movswl(Register dst, Address src);
1338   void movswl(Register dst, Register src);
1339 
1340 #ifdef _LP64
1341   void movswq(Register dst, Address src);
1342   void movswq(Register dst, Register src);
1343 #endif
1344 
1345   void movw(Address dst, int imm16);
1346   void movw(Register dst, Address src);
1347   void movw(Address dst, Register src);
1348 
1349   void movzbl(Register dst, Address src);
1350   void movzbl(Register dst, Register src);
1351 
1352 #ifdef _LP64
1353   void movzbq(Register dst, Address src);
1354   void movzbq(Register dst, Register src);
1355 #endif
1356 
1357   void movzwl(Register dst, Address src);
1358   void movzwl(Register dst, Register src);
1359 
1360 #ifdef _LP64
1361   void movzwq(Register dst, Address src);
1362   void movzwq(Register dst, Register src);
1363 #endif
1364 
1365   void mull(Address src);
1366   void mull(Register src);
1367 
1368   // Multiply Scalar Double-Precision Floating-Point Values
1369   void mulsd(XMMRegister dst, Address src);
1370   void mulsd(XMMRegister dst, XMMRegister src);
1371 
1372   // Multiply Scalar Single-Precision Floating-Point Values
1373   void mulss(XMMRegister dst, Address src);
1374   void mulss(XMMRegister dst, XMMRegister src);
1375 
1376   void negl(Register dst);
1377 
1378 #ifdef _LP64
1379   void negq(Register dst);
1380 #endif
1381 
1382   void nop(int i = 1);
1383 
1384   void notl(Register dst);
1385 
1386 #ifdef _LP64
1387   void notq(Register dst);
1388 #endif
1389 
1390   void orl(Address dst, int32_t imm32);
1391   void orl(Register dst, int32_t imm32);
1392   void orl(Register dst, Address src);
1393   void orl(Register dst, Register src);
1394 
1395   void orq(Address dst, int32_t imm32);
1396   void orq(Register dst, int32_t imm32);
1397   void orq(Register dst, Address src);
1398   void orq(Register dst, Register src);
1399 
1400   // Pack with unsigned saturation
1401   void packuswb(XMMRegister dst, XMMRegister src);
1402   void packuswb(XMMRegister dst, Address src);
1403 
1404   // SSE4.2 string instructions
1405   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1406   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1407 
1408   // SSE4.1 packed move
1409   void pmovzxbw(XMMRegister dst, XMMRegister src);
1410   void pmovzxbw(XMMRegister dst, Address src);
1411 
1412 #ifndef _LP64 // no 32bit push/pop on amd64
1413   void popl(Address dst);
1414 #endif
1415 
1416 #ifdef _LP64
1417   void popq(Address dst);
1418 #endif
1419 
1420   void popcntl(Register dst, Address src);
1421   void popcntl(Register dst, Register src);
1422 
1423 #ifdef _LP64
1424   void popcntq(Register dst, Address src);
1425   void popcntq(Register dst, Register src);
1426 #endif
1427 
1428   // Prefetches (SSE, SSE2, 3DNOW only)
1429 
1430   void prefetchnta(Address src);
1431   void prefetchr(Address src);
1432   void prefetcht0(Address src);
1433   void prefetcht1(Address src);
1434   void prefetcht2(Address src);
1435   void prefetchw(Address src);
1436 
1437   // Shuffle Packed Doublewords
1438   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1439   void pshufd(XMMRegister dst, Address src,     int mode);
1440 
1441   // Shuffle Packed Low Words
1442   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1443   void pshuflw(XMMRegister dst, Address src,     int mode);
1444 
1445   // Shift Right by bytes Logical DoubleQuadword Immediate
1446   void psrldq(XMMRegister dst, int shift);
1447 
1448   // Logical Compare Double Quadword
1449   void ptest(XMMRegister dst, XMMRegister src);
1450   void ptest(XMMRegister dst, Address src);
1451 
1452   // Interleave Low Bytes
1453   void punpcklbw(XMMRegister dst, XMMRegister src);
1454   void punpcklbw(XMMRegister dst, Address src);
1455 
1456   // Interleave Low Doublewords
1457   void punpckldq(XMMRegister dst, XMMRegister src);
1458   void punpckldq(XMMRegister dst, Address src);
1459 
1460   // Interleave Low Quadwords
1461   void punpcklqdq(XMMRegister dst, XMMRegister src);
1462 
1463 #ifndef _LP64 // no 32bit push/pop on amd64
1464   void pushl(Address src);
1465 #endif
1466 
1467   void pushq(Address src);
1468 
1469   void rcll(Register dst, int imm8);
1470 
1471   void rclq(Register dst, int imm8);
1472 
1473   void ret(int imm16);
1474 
1475   void sahf();
1476 
1477   void sarl(Register dst, int imm8);
1478   void sarl(Register dst);
1479 
1480   void sarq(Register dst, int imm8);
1481   void sarq(Register dst);
1482 
1483   void sbbl(Address dst, int32_t imm32);
1484   void sbbl(Register dst, int32_t imm32);
1485   void sbbl(Register dst, Address src);
1486   void sbbl(Register dst, Register src);
1487 
1488   void sbbq(Address dst, int32_t imm32);
1489   void sbbq(Register dst, int32_t imm32);
1490   void sbbq(Register dst, Address src);
1491   void sbbq(Register dst, Register src);
1492 
1493   void setb(Condition cc, Register dst);
1494 
1495   void shldl(Register dst, Register src);
1496 
1497   void shll(Register dst, int imm8);
1498   void shll(Register dst);
1499 
1500   void shlq(Register dst, int imm8);
1501   void shlq(Register dst);
1502 
1503   void shrdl(Register dst, Register src);
1504 
1505   void shrl(Register dst, int imm8);
1506   void shrl(Register dst);
1507 
1508   void shrq(Register dst, int imm8);
1509   void shrq(Register dst);
1510 
1511   void smovl(); // QQQ generic?
1512 
1513   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1514   void sqrtsd(XMMRegister dst, Address src);
1515   void sqrtsd(XMMRegister dst, XMMRegister src);
1516 
1517   // Compute Square Root of Scalar Single-Precision Floating-Point Value
1518   void sqrtss(XMMRegister dst, Address src);
1519   void sqrtss(XMMRegister dst, XMMRegister src);
1520 
1521   void std() { emit_byte(0xfd); }
1522 
1523   void stmxcsr( Address dst );
1524 
1525   void subl(Address dst, int32_t imm32);
1526   void subl(Address dst, Register src);
1527   void subl(Register dst, int32_t imm32);
1528   void subl(Register dst, Address src);
1529   void subl(Register dst, Register src);
1530 
1531   void subq(Address dst, int32_t imm32);
1532   void subq(Address dst, Register src);
1533   void subq(Register dst, int32_t imm32);
1534   void subq(Register dst, Address src);
1535   void subq(Register dst, Register src);
1536 
1537   // Force generation of a 4 byte immediate value even if it fits into 8bit
1538   void subl_imm32(Register dst, int32_t imm32);
1539   void subq_imm32(Register dst, int32_t imm32);
1540 
1541   // Subtract Scalar Double-Precision Floating-Point Values
1542   void subsd(XMMRegister dst, Address src);
1543   void subsd(XMMRegister dst, XMMRegister src);
1544 
1545   // Subtract Scalar Single-Precision Floating-Point Values
1546   void subss(XMMRegister dst, Address src);
1547   void subss(XMMRegister dst, XMMRegister src);
1548 
1549   void testb(Register dst, int imm8);
1550 
1551   void testl(Register dst, int32_t imm32);
1552   void testl(Register dst, Register src);
1553   void testl(Register dst, Address src);
1554 
1555   void testq(Register dst, int32_t imm32);
1556   void testq(Register dst, Register src);
1557 
1558 
1559   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1560   void ucomisd(XMMRegister dst, Address src);
1561   void ucomisd(XMMRegister dst, XMMRegister src);
1562 
1563   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1564   void ucomiss(XMMRegister dst, Address src);
1565   void ucomiss(XMMRegister dst, XMMRegister src);
1566 
1567   void xaddl(Address dst, Register src);
1568 
1569   void xaddq(Address dst, Register src);
1570 
1571   void xchgl(Register reg, Address adr);
1572   void xchgl(Register dst, Register src);
1573 
1574   void xchgq(Register reg, Address adr);
1575   void xchgq(Register dst, Register src);
1576 
1577   // Get Value of Extended Control Register
1578   void xgetbv() {
1579     emit_byte(0x0F);
1580     emit_byte(0x01);
1581     emit_byte(0xD0);
1582   }
1583 
1584   void xorl(Register dst, int32_t imm32);
1585   void xorl(Register dst, Address src);
1586   void xorl(Register dst, Register src);
1587 
1588   void xorq(Register dst, Address src);
1589   void xorq(Register dst, Register src);
1590 
1591   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1592 
1593   // AVX 3-operands scalar instructions (encoded with VEX prefix)
1594 
1595   void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
1596   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1597   void vaddss(XMMRegister dst, XMMRegister nds, Address src);
1598   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1599   void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
1600   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1601   void vdivss(XMMRegister dst, XMMRegister nds, Address src);
1602   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1603   void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
1604   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1605   void vmulss(XMMRegister dst, XMMRegister nds, Address src);
1606   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1607   void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
1608   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1609   void vsubss(XMMRegister dst, XMMRegister nds, Address src);
1610   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1611 
1612 
1613   //====================VECTOR ARITHMETIC=====================================
1614 
1615   // Add Packed Floating-Point Values
1616   void addpd(XMMRegister dst, XMMRegister src);
1617   void addps(XMMRegister dst, XMMRegister src);
1618   void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1619   void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1620   void vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1621   void vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1622 
1623   // Subtract Packed Floating-Point Values
1624   void subpd(XMMRegister dst, XMMRegister src);
1625   void subps(XMMRegister dst, XMMRegister src);
1626   void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1627   void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1628   void vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1629   void vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1630 
1631   // Multiply Packed Floating-Point Values
1632   void mulpd(XMMRegister dst, XMMRegister src);
1633   void mulps(XMMRegister dst, XMMRegister src);
1634   void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1635   void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1636   void vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1637   void vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1638 
1639   // Divide Packed Floating-Point Values
1640   void divpd(XMMRegister dst, XMMRegister src);
1641   void divps(XMMRegister dst, XMMRegister src);
1642   void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1643   void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1644   void vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1645   void vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1646 
1647   // Bitwise Logical AND of Packed Floating-Point Values
1648   void andpd(XMMRegister dst, XMMRegister src);
1649   void andps(XMMRegister dst, XMMRegister src);
1650   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1651   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1652   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1653   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1654 
1655   // Bitwise Logical XOR of Packed Floating-Point Values
1656   void xorpd(XMMRegister dst, XMMRegister src);
1657   void xorps(XMMRegister dst, XMMRegister src);
1658   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1659   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1660   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1661   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1662 
1663   // Add packed integers
1664   void paddb(XMMRegister dst, XMMRegister src);
1665   void paddw(XMMRegister dst, XMMRegister src);
1666   void paddd(XMMRegister dst, XMMRegister src);
1667   void paddq(XMMRegister dst, XMMRegister src);
1668   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1669   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1670   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1671   void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1672   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1673   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1674   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1675   void vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1676 
1677   // Sub packed integers
1678   void psubb(XMMRegister dst, XMMRegister src);
1679   void psubw(XMMRegister dst, XMMRegister src);
1680   void psubd(XMMRegister dst, XMMRegister src);
1681   void psubq(XMMRegister dst, XMMRegister src);
1682   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1683   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1684   void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1685   void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1686   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1687   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1688   void vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1689   void vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1690 
1691   // Multiply packed integers (only shorts and ints)
1692   void pmullw(XMMRegister dst, XMMRegister src);
1693   void pmulld(XMMRegister dst, XMMRegister src);
1694   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1695   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1696   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1697   void vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1698 
1699   // Shift left packed integers
1700   void psllw(XMMRegister dst, int shift);
1701   void pslld(XMMRegister dst, int shift);
1702   void psllq(XMMRegister dst, int shift);
1703   void psllw(XMMRegister dst, XMMRegister shift);
1704   void pslld(XMMRegister dst, XMMRegister shift);
1705   void psllq(XMMRegister dst, XMMRegister shift);
1706   void vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1707   void vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1708   void vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1709   void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1710   void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1711   void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1712 
1713   // Logical shift right packed integers
1714   void psrlw(XMMRegister dst, int shift);
1715   void psrld(XMMRegister dst, int shift);
1716   void psrlq(XMMRegister dst, int shift);
1717   void psrlw(XMMRegister dst, XMMRegister shift);
1718   void psrld(XMMRegister dst, XMMRegister shift);
1719   void psrlq(XMMRegister dst, XMMRegister shift);
1720   void vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1721   void vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1722   void vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1723   void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1724   void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1725   void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1726 
1727   // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
1728   void psraw(XMMRegister dst, int shift);
1729   void psrad(XMMRegister dst, int shift);
1730   void psraw(XMMRegister dst, XMMRegister shift);
1731   void psrad(XMMRegister dst, XMMRegister shift);
1732   void vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1733   void vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1734   void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1735   void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1736 
1737   // And packed integers
1738   void pand(XMMRegister dst, XMMRegister src);
1739   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1740   void vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1741 
1742   // Or packed integers
1743   void por(XMMRegister dst, XMMRegister src);
1744   void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1745   void vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1746 
1747   // Xor packed integers
1748   void pxor(XMMRegister dst, XMMRegister src);
1749   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1750   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1751 
1752   // Copy low 128bit into high 128bit of YMM registers.
1753   void vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
1754   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
1755 
1756   // AVX instruction which is used to clear upper 128 bits of YMM registers and
1757   // to avoid transaction penalty between AVX and SSE states. There is no
1758   // penalty if legacy SSE instructions are encoded using VEX prefix because
1759   // they always clear upper 128 bits. It should be used before calling
1760   // runtime code and native libraries.
1761   void vzeroupper();
1762 
1763  protected:
1764   // Next instructions require address alignment 16 bytes SSE mode.
1765   // They should be called only from corresponding MacroAssembler instructions.
1766   void andpd(XMMRegister dst, Address src);
1767   void andps(XMMRegister dst, Address src);
1768   void xorpd(XMMRegister dst, Address src);
1769   void xorps(XMMRegister dst, Address src);
1770 
1771 };
1772 
1773 
1774 // MacroAssembler extends Assembler by frequently used macros.
1775 //
1776 // Instructions for which a 'better' code sequence exists depending
1777 // on arguments should also go in here.
1778 
1779 class MacroAssembler: public Assembler {
1780   friend class LIR_Assembler;
1781   friend class Runtime1;      // as_Address()
1782 
1783  protected:
1784 
1785   Address as_Address(AddressLiteral adr);
1786   Address as_Address(ArrayAddress adr);
1787 
1788   // Support for VM calls
1789   //
1790   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1791   // may customize this version by overriding it for its purposes (e.g., to save/restore
1792   // additional registers when doing a VM call).
1793 #ifdef CC_INTERP
1794   // c++ interpreter never wants to use interp_masm version of call_VM
1795   #define VIRTUAL
1796 #else
1797   #define VIRTUAL virtual
1798 #endif
1799 
1800   VIRTUAL void call_VM_leaf_base(
1801     address entry_point,               // the entry point
1802     int     number_of_arguments        // the number of arguments to pop after the call
1803   );
1804 
1805   // This is the base routine called by the different versions of call_VM. The interpreter
1806   // may customize this version by overriding it for its purposes (e.g., to save/restore
1807   // additional registers when doing a VM call).
1808   //
1809   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
1810   // returns the register which contains the thread upon return. If a thread register has been
1811   // specified, the return value will correspond to that register. If no last_java_sp is specified
1812   // (noreg) than rsp will be used instead.
1813   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
1814     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
1815     Register java_thread,              // the thread if computed before     ; use noreg otherwise
1816     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
1817     address  entry_point,              // the entry point
1818     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
1819     bool     check_exceptions          // whether to check for pending exceptions after return
1820   );
1821 
1822   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1823   // The implementation is only non-empty for the InterpreterMacroAssembler,
1824   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
1825   virtual void check_and_handle_popframe(Register java_thread);
1826   virtual void check_and_handle_earlyret(Register java_thread);
1827 
1828   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
1829 
1830   // helpers for FPU flag access
1831   // tmp is a temporary register, if none is available use noreg
1832   void save_rax   (Register tmp);
1833   void restore_rax(Register tmp);
1834 
1835  public:
1836   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1837 
1838   // Support for NULL-checks
1839   //
1840   // Generates code that causes a NULL OS exception if the content of reg is NULL.
1841   // If the accessed location is M[reg + offset] and the offset is known, provide the
1842   // offset. No explicit code generation is needed if the offset is within a certain
1843   // range (0 <= offset <= page_size).
1844 
1845   void null_check(Register reg, int offset = -1);
1846   static bool needs_explicit_null_check(intptr_t offset);
1847 
1848   // Required platform-specific helpers for Label::patch_instructions.
1849   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1850   void pd_patch_instruction(address branch, address target);
1851 #ifndef PRODUCT
1852   static void pd_print_patched_instruction(address branch);
1853 #endif
1854 
1855   // The following 4 methods return the offset of the appropriate move instruction
1856 
1857   // Support for fast byte/short loading with zero extension (depending on particular CPU)
1858   int load_unsigned_byte(Register dst, Address src);
1859   int load_unsigned_short(Register dst, Address src);
1860 
1861   // Support for fast byte/short loading with sign extension (depending on particular CPU)
1862   int load_signed_byte(Register dst, Address src);
1863   int load_signed_short(Register dst, Address src);
1864 
1865   // Support for sign-extension (hi:lo = extend_sign(lo))
1866   void extend_sign(Register hi, Register lo);
1867 
1868   // Load and store values by size and signed-ness
1869   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
1870   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
1871 
1872   // Support for inc/dec with optimal instruction selection depending on value
1873 
1874   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
1875   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
1876 
1877   void decrementl(Address dst, int value = 1);
1878   void decrementl(Register reg, int value = 1);
1879 
1880   void decrementq(Register reg, int value = 1);
1881   void decrementq(Address dst, int value = 1);
1882 
1883   void incrementl(Address dst, int value = 1);
1884   void incrementl(Register reg, int value = 1);
1885 
1886   void incrementq(Register reg, int value = 1);
1887   void incrementq(Address dst, int value = 1);
1888 
1889 
1890   // Support optimal SSE move instructions.
1891   void movflt(XMMRegister dst, XMMRegister src) {
1892     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
1893     else                       { movss (dst, src); return; }
1894   }
1895   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
1896   void movflt(XMMRegister dst, AddressLiteral src);
1897   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
1898 
1899   void movdbl(XMMRegister dst, XMMRegister src) {
1900     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
1901     else                       { movsd (dst, src); return; }
1902   }
1903 
1904   void movdbl(XMMRegister dst, AddressLiteral src);
1905 
1906   void movdbl(XMMRegister dst, Address src) {
1907     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
1908     else                         { movlpd(dst, src); return; }
1909   }
1910   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
1911 
1912   void incrementl(AddressLiteral dst);
1913   void incrementl(ArrayAddress dst);
1914 
1915   // Alignment
1916   void align(int modulus);
1917 
1918   // A 5 byte nop that is safe for patching (see patch_verified_entry)
1919   void fat_nop();
1920 
1921   // Stack frame creation/removal
1922   void enter();
1923   void leave();
1924 
1925   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
1926   // The pointer will be loaded into the thread register.
1927   void get_thread(Register thread);
1928 
1929 
1930   // Support for VM calls
1931   //
1932   // It is imperative that all calls into the VM are handled via the call_VM macros.
1933   // They make sure that the stack linkage is setup correctly. call_VM's correspond
1934   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1935 
1936 
1937   void call_VM(Register oop_result,
1938                address entry_point,
1939                bool check_exceptions = true);
1940   void call_VM(Register oop_result,
1941                address entry_point,
1942                Register arg_1,
1943                bool check_exceptions = true);
1944   void call_VM(Register oop_result,
1945                address entry_point,
1946                Register arg_1, Register arg_2,
1947                bool check_exceptions = true);
1948   void call_VM(Register oop_result,
1949                address entry_point,
1950                Register arg_1, Register arg_2, Register arg_3,
1951                bool check_exceptions = true);
1952 
1953   // Overloadings with last_Java_sp
1954   void call_VM(Register oop_result,
1955                Register last_java_sp,
1956                address entry_point,
1957                int number_of_arguments = 0,
1958                bool check_exceptions = true);
1959   void call_VM(Register oop_result,
1960                Register last_java_sp,
1961                address entry_point,
1962                Register arg_1, bool
1963                check_exceptions = true);
1964   void call_VM(Register oop_result,
1965                Register last_java_sp,
1966                address entry_point,
1967                Register arg_1, Register arg_2,
1968                bool check_exceptions = true);
1969   void call_VM(Register oop_result,
1970                Register last_java_sp,
1971                address entry_point,
1972                Register arg_1, Register arg_2, Register arg_3,
1973                bool check_exceptions = true);
1974 
1975   // These always tightly bind to MacroAssembler::call_VM_base
1976   // bypassing the virtual implementation
1977   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
1978   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
1979   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
1980   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
1981   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
1982 
1983   void call_VM_leaf(address entry_point,
1984                     int number_of_arguments = 0);
1985   void call_VM_leaf(address entry_point,
1986                     Register arg_1);
1987   void call_VM_leaf(address entry_point,
1988                     Register arg_1, Register arg_2);
1989   void call_VM_leaf(address entry_point,
1990                     Register arg_1, Register arg_2, Register arg_3);
1991 
1992   // These always tightly bind to MacroAssembler::call_VM_leaf_base
1993   // bypassing the virtual implementation
1994   void super_call_VM_leaf(address entry_point);
1995   void super_call_VM_leaf(address entry_point, Register arg_1);
1996   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
1997   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
1998   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
1999 
2000   // last Java Frame (fills frame anchor)
2001   void set_last_Java_frame(Register thread,
2002                            Register last_java_sp,
2003                            Register last_java_fp,
2004                            address last_java_pc);
2005 
2006   // thread in the default location (r15_thread on 64bit)
2007   void set_last_Java_frame(Register last_java_sp,
2008                            Register last_java_fp,
2009                            address last_java_pc);
2010 
2011   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
2012 
2013   // thread in the default location (r15_thread on 64bit)
2014   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
2015 
2016   // Stores
2017   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
2018   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
2019 
2020 #ifndef SERIALGC
2021 
2022   void g1_write_barrier_pre(Register obj,
2023                             Register pre_val,
2024                             Register thread,
2025                             Register tmp,
2026                             bool tosca_live,
2027                             bool expand_call);
2028 
2029   void g1_write_barrier_post(Register store_addr,
2030                              Register new_val,
2031                              Register thread,
2032                              Register tmp,
2033                              Register tmp2);
2034 
2035 #endif // SERIALGC
2036 
2037   // split store_check(Register obj) to enhance instruction interleaving
2038   void store_check_part_1(Register obj);
2039   void store_check_part_2(Register obj);
2040 
2041   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
2042   void c2bool(Register x);
2043 
2044   // C++ bool manipulation
2045 
2046   void movbool(Register dst, Address src);
2047   void movbool(Address dst, bool boolconst);
2048   void movbool(Address dst, Register src);
2049   void testbool(Register dst);
2050 
2051   // oop manipulations
2052   void load_klass(Register dst, Register src);
2053   void store_klass(Register dst, Register src);
2054 
2055   void load_heap_oop(Register dst, Address src);
2056   void load_heap_oop_not_null(Register dst, Address src);
2057   void store_heap_oop(Address dst, Register src);
2058 
2059   // Used for storing NULL. All other oop constants should be
2060   // stored using routines that take a jobject.
2061   void store_heap_oop_null(Address dst);
2062 
2063   void load_prototype_header(Register dst, Register src);
2064 
2065 #ifdef _LP64
2066   void store_klass_gap(Register dst, Register src);
2067 
2068   // This dummy is to prevent a call to store_heap_oop from
2069   // converting a zero (like NULL) into a Register by giving
2070   // the compiler two choices it can't resolve
2071 
2072   void store_heap_oop(Address dst, void* dummy);
2073 
2074   void encode_heap_oop(Register r);
2075   void decode_heap_oop(Register r);
2076   void encode_heap_oop_not_null(Register r);
2077   void decode_heap_oop_not_null(Register r);
2078   void encode_heap_oop_not_null(Register dst, Register src);
2079   void decode_heap_oop_not_null(Register dst, Register src);
2080 
2081   void set_narrow_oop(Register dst, jobject obj);
2082   void set_narrow_oop(Address dst, jobject obj);
2083   void cmp_narrow_oop(Register dst, jobject obj);
2084   void cmp_narrow_oop(Address dst, jobject obj);
2085 
2086   // if heap base register is used - reinit it with the correct value
2087   void reinit_heapbase();
2088 
2089   DEBUG_ONLY(void verify_heapbase(const char* msg);)
2090 
2091 #endif // _LP64
2092 
2093   // Int division/remainder for Java
2094   // (as idivl, but checks for special case as described in JVM spec.)
2095   // returns idivl instruction offset for implicit exception handling
2096   int corrected_idivl(Register reg);
2097 
2098   // Long division/remainder for Java
2099   // (as idivq, but checks for special case as described in JVM spec.)
2100   // returns idivq instruction offset for implicit exception handling
2101   int corrected_idivq(Register reg);
2102 
2103   void int3();
2104 
2105   // Long operation macros for a 32bit cpu
2106   // Long negation for Java
2107   void lneg(Register hi, Register lo);
2108 
2109   // Long multiplication for Java
2110   // (destroys contents of eax, ebx, ecx and edx)
2111   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
2112 
2113   // Long shifts for Java
2114   // (semantics as described in JVM spec.)
2115   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
2116   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
2117 
2118   // Long compare for Java
2119   // (semantics as described in JVM spec.)
2120   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
2121 
2122 
2123   // misc
2124 
2125   // Sign extension
2126   void sign_extend_short(Register reg);
2127   void sign_extend_byte(Register reg);
2128 
2129   // Division by power of 2, rounding towards 0
2130   void division_with_shift(Register reg, int shift_value);
2131 
2132   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
2133   //
2134   // CF (corresponds to C0) if x < y
2135   // PF (corresponds to C2) if unordered
2136   // ZF (corresponds to C3) if x = y
2137   //
2138   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
2139   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
2140   void fcmp(Register tmp);
2141   // Variant of the above which allows y to be further down the stack
2142   // and which only pops x and y if specified. If pop_right is
2143   // specified then pop_left must also be specified.
2144   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
2145 
2146   // Floating-point comparison for Java
2147   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
2148   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
2149   // (semantics as described in JVM spec.)
2150   void fcmp2int(Register dst, bool unordered_is_less);
2151   // Variant of the above which allows y to be further down the stack
2152   // and which only pops x and y if specified. If pop_right is
2153   // specified then pop_left must also be specified.
2154   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
2155 
2156   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
2157   // tmp is a temporary register, if none is available use noreg
2158   void fremr(Register tmp);
2159 
2160 
2161   // same as fcmp2int, but using SSE2
2162   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
2163   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
2164 
2165   // Inlined sin/cos generator for Java; must not use CPU instruction
2166   // directly on Intel as it does not have high enough precision
2167   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
2168   // number of FPU stack slots in use; all but the topmost will
2169   // require saving if a slow case is necessary. Assumes argument is
2170   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
2171   // this code.
2172   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
2173 
2174   // branch to L if FPU flag C2 is set/not set
2175   // tmp is a temporary register, if none is available use noreg
2176   void jC2 (Register tmp, Label& L);
2177   void jnC2(Register tmp, Label& L);
2178 
2179   // Pop ST (ffree & fincstp combined)
2180   void fpop();
2181 
2182   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
2183   void push_fTOS();
2184 
2185   // pops double TOS element from CPU stack and pushes on FPU stack
2186   void pop_fTOS();
2187 
2188   void empty_FPU_stack();
2189 
2190   void push_IU_state();
2191   void pop_IU_state();
2192 
2193   void push_FPU_state();
2194   void pop_FPU_state();
2195 
2196   void push_CPU_state();
2197   void pop_CPU_state();
2198 
2199   // Round up to a power of two
2200   void round_to(Register reg, int modulus);
2201 
2202   // Callee saved registers handling
2203   void push_callee_saved_registers();
2204   void pop_callee_saved_registers();
2205 
2206   // allocation
2207   void eden_allocate(
2208     Register obj,                      // result: pointer to object after successful allocation
2209     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2210     int      con_size_in_bytes,        // object size in bytes if   known at compile time
2211     Register t1,                       // temp register
2212     Label&   slow_case                 // continuation point if fast allocation fails
2213   );
2214   void tlab_allocate(
2215     Register obj,                      // result: pointer to object after successful allocation
2216     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2217     int      con_size_in_bytes,        // object size in bytes if   known at compile time
2218     Register t1,                       // temp register
2219     Register t2,                       // temp register
2220     Label&   slow_case                 // continuation point if fast allocation fails
2221   );
2222   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
2223   void incr_allocated_bytes(Register thread,
2224                             Register var_size_in_bytes, int con_size_in_bytes,
2225                             Register t1 = noreg);
2226 
2227   // interface method calling
2228   void lookup_interface_method(Register recv_klass,
2229                                Register intf_klass,
2230                                RegisterOrConstant itable_index,
2231                                Register method_result,
2232                                Register scan_temp,
2233                                Label& no_such_interface);
2234 
2235   // Test sub_klass against super_klass, with fast and slow paths.
2236 
2237   // The fast path produces a tri-state answer: yes / no / maybe-slow.
2238   // One of the three labels can be NULL, meaning take the fall-through.
2239   // If super_check_offset is -1, the value is loaded up from super_klass.
2240   // No registers are killed, except temp_reg.
2241   void check_klass_subtype_fast_path(Register sub_klass,
2242                                      Register super_klass,
2243                                      Register temp_reg,
2244                                      Label* L_success,
2245                                      Label* L_failure,
2246                                      Label* L_slow_path,
2247                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
2248 
2249   // The rest of the type check; must be wired to a corresponding fast path.
2250   // It does not repeat the fast path logic, so don't use it standalone.
2251   // The temp_reg and temp2_reg can be noreg, if no temps are available.
2252   // Updates the sub's secondary super cache as necessary.
2253   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
2254   void check_klass_subtype_slow_path(Register sub_klass,
2255                                      Register super_klass,
2256                                      Register temp_reg,
2257                                      Register temp2_reg,
2258                                      Label* L_success,
2259                                      Label* L_failure,
2260                                      bool set_cond_codes = false);
2261 
2262   // Simplified, combined version, good for typical uses.
2263   // Falls through on failure.
2264   void check_klass_subtype(Register sub_klass,
2265                            Register super_klass,
2266                            Register temp_reg,
2267                            Label& L_success);
2268 
2269   // method handles (JSR 292)
2270   void check_method_handle_type(Register mtype_reg, Register mh_reg,
2271                                 Register temp_reg,
2272                                 Label& wrong_method_type);
2273   void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
2274                                   Register temp_reg);
2275   void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
2276   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
2277 
2278 
2279   //----
2280   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
2281 
2282   // Debugging
2283 
2284   // only if +VerifyOops
2285   void verify_oop(Register reg, const char* s = "broken oop");
2286   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
2287 
2288   // only if +VerifyFPU
2289   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
2290 
2291   // prints msg, dumps registers and stops execution
2292   void stop(const char* msg);
2293 
2294   // prints msg and continues
2295   void warn(const char* msg);
2296 
2297   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
2298   static void debug64(char* msg, int64_t pc, int64_t regs[]);
2299 
2300   void os_breakpoint();
2301 
2302   void untested()                                { stop("untested"); }
2303 
2304   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
2305 
2306   void should_not_reach_here()                   { stop("should not reach here"); }
2307 
2308   void print_CPU_state();
2309 
2310   // Stack overflow checking
2311   void bang_stack_with_offset(int offset) {
2312     // stack grows down, caller passes positive offset
2313     assert(offset > 0, "must bang with negative offset");
2314     movl(Address(rsp, (-offset)), rax);
2315   }
2316 
2317   // Writes to stack successive pages until offset reached to check for
2318   // stack overflow + shadow pages.  Also, clobbers tmp
2319   void bang_stack_size(Register size, Register tmp);
2320 
2321   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2322                                                 Register tmp,
2323                                                 int offset);
2324 
2325   // Support for serializing memory accesses between threads
2326   void serialize_memory(Register thread, Register tmp);
2327 
2328   void verify_tlab();
2329 
2330   // Biased locking support
2331   // lock_reg and obj_reg must be loaded up with the appropriate values.
2332   // swap_reg must be rax, and is killed.
2333   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
2334   // be killed; if not supplied, push/pop will be used internally to
2335   // allocate a temporary (inefficient, avoid if possible).
2336   // Optional slow case is for implementations (interpreter and C1) which branch to
2337   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
2338   // Returns offset of first potentially-faulting instruction for null
2339   // check info (currently consumed only by C1). If
2340   // swap_reg_contains_mark is true then returns -1 as it is assumed
2341   // the calling code has already passed any potential faults.
2342   int biased_locking_enter(Register lock_reg, Register obj_reg,
2343                            Register swap_reg, Register tmp_reg,
2344                            bool swap_reg_contains_mark,
2345                            Label& done, Label* slow_case = NULL,
2346                            BiasedLockingCounters* counters = NULL);
2347   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
2348 
2349 
2350   Condition negate_condition(Condition cond);
2351 
2352   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
2353   // operands. In general the names are modified to avoid hiding the instruction in Assembler
2354   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
2355   // here in MacroAssembler. The major exception to this rule is call
2356 
2357   // Arithmetics
2358 
2359 
2360   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
2361   void addptr(Address dst, Register src);
2362 
2363   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
2364   void addptr(Register dst, int32_t src);
2365   void addptr(Register dst, Register src);
2366   void addptr(Register dst, RegisterOrConstant src) {
2367     if (src.is_constant()) addptr(dst, (int) src.as_constant());
2368     else                   addptr(dst,       src.as_register());
2369   }
2370 
2371   void andptr(Register dst, int32_t src);
2372   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
2373 
2374   void cmp8(AddressLiteral src1, int imm);
2375 
2376   // renamed to drag out the casting of address to int32_t/intptr_t
2377   void cmp32(Register src1, int32_t imm);
2378 
2379   void cmp32(AddressLiteral src1, int32_t imm);
2380   // compare reg - mem, or reg - &mem
2381   void cmp32(Register src1, AddressLiteral src2);
2382 
2383   void cmp32(Register src1, Address src2);
2384 
2385 #ifndef _LP64
2386   void cmpoop(Address dst, jobject obj);
2387   void cmpoop(Register dst, jobject obj);
2388 #endif // _LP64
2389 
2390   // NOTE src2 must be the lval. This is NOT an mem-mem compare
2391   void cmpptr(Address src1, AddressLiteral src2);
2392 
2393   void cmpptr(Register src1, AddressLiteral src2);
2394 
2395   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2396   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2397   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2398 
2399   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2400   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2401 
2402   // cmp64 to avoild hiding cmpq
2403   void cmp64(Register src1, AddressLiteral src);
2404 
2405   void cmpxchgptr(Register reg, Address adr);
2406 
2407   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
2408 
2409 
2410   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
2411 
2412 
2413   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
2414 
2415   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
2416 
2417   void shlptr(Register dst, int32_t shift);
2418   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
2419 
2420   void shrptr(Register dst, int32_t shift);
2421   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
2422 
2423   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
2424   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
2425 
2426   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2427 
2428   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2429   void subptr(Register dst, int32_t src);
2430   // Force generation of a 4 byte immediate value even if it fits into 8bit
2431   void subptr_imm32(Register dst, int32_t src);
2432   void subptr(Register dst, Register src);
2433   void subptr(Register dst, RegisterOrConstant src) {
2434     if (src.is_constant()) subptr(dst, (int) src.as_constant());
2435     else                   subptr(dst,       src.as_register());
2436   }
2437 
2438   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2439   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2440 
2441   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2442   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2443 
2444   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
2445 
2446 
2447 
2448   // Helper functions for statistics gathering.
2449   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
2450   void cond_inc32(Condition cond, AddressLiteral counter_addr);
2451   // Unconditional atomic increment.
2452   void atomic_incl(AddressLiteral counter_addr);
2453 
2454   void lea(Register dst, AddressLiteral adr);
2455   void lea(Address dst, AddressLiteral adr);
2456   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
2457 
2458   void leal32(Register dst, Address src) { leal(dst, src); }
2459 
2460   // Import other testl() methods from the parent class or else
2461   // they will be hidden by the following overriding declaration.
2462   using Assembler::testl;
2463   void testl(Register dst, AddressLiteral src);
2464 
2465   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2466   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2467   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2468 
2469   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
2470   void testptr(Register src1, Register src2);
2471 
2472   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2473   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2474 
2475   // Calls
2476 
2477   void call(Label& L, relocInfo::relocType rtype);
2478   void call(Register entry);
2479 
2480   // NOTE: this call tranfers to the effective address of entry NOT
2481   // the address contained by entry. This is because this is more natural
2482   // for jumps/calls.
2483   void call(AddressLiteral entry);
2484 
2485   // Jumps
2486 
2487   // NOTE: these jumps tranfer to the effective address of dst NOT
2488   // the address contained by dst. This is because this is more natural
2489   // for jumps/calls.
2490   void jump(AddressLiteral dst);
2491   void jump_cc(Condition cc, AddressLiteral dst);
2492 
2493   // 32bit can do a case table jump in one instruction but we no longer allow the base
2494   // to be installed in the Address class. This jump will tranfers to the address
2495   // contained in the location described by entry (not the address of entry)
2496   void jump(ArrayAddress entry);
2497 
2498   // Floating
2499 
2500   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
2501   void andpd(XMMRegister dst, AddressLiteral src);
2502 
2503   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
2504   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
2505   void andps(XMMRegister dst, AddressLiteral src);
2506 
2507   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
2508   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
2509   void comiss(XMMRegister dst, AddressLiteral src);
2510 
2511   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
2512   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
2513   void comisd(XMMRegister dst, AddressLiteral src);
2514 
2515   void fadd_s(Address src)        { Assembler::fadd_s(src); }
2516   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
2517 
2518   void fldcw(Address src) { Assembler::fldcw(src); }
2519   void fldcw(AddressLiteral src);
2520 
2521   void fld_s(int index)   { Assembler::fld_s(index); }
2522   void fld_s(Address src) { Assembler::fld_s(src); }
2523   void fld_s(AddressLiteral src);
2524 
2525   void fld_d(Address src) { Assembler::fld_d(src); }
2526   void fld_d(AddressLiteral src);
2527 
2528   void fld_x(Address src) { Assembler::fld_x(src); }
2529   void fld_x(AddressLiteral src);
2530 
2531   void fmul_s(Address src)        { Assembler::fmul_s(src); }
2532   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
2533 
2534   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
2535   void ldmxcsr(AddressLiteral src);
2536 
2537   // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
2538   // all corner cases and may result in NaN and require fallback to a
2539   // runtime call.
2540   void fast_pow();
2541   void fast_exp();
2542   void increase_precision();
2543   void restore_precision();
2544 
2545   // computes exp(x). Fallback to runtime call included.
2546   void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
2547   // computes pow(x,y). Fallback to runtime call included.
2548   void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
2549 
2550 private:
2551 
2552   // call runtime as a fallback for trig functions and pow/exp.
2553   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
2554 
2555   // computes 2^(Ylog2X); Ylog2X in ST(0)
2556   void pow_exp_core_encoding();
2557 
2558   // computes pow(x,y) or exp(x). Fallback to runtime call included.
2559   void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
2560 
2561   // these are private because users should be doing movflt/movdbl
2562 
2563   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
2564   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
2565   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
2566   void movss(XMMRegister dst, AddressLiteral src);
2567 
2568   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
2569   void movlpd(XMMRegister dst, AddressLiteral src);
2570 
2571 public:
2572 
2573   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
2574   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
2575   void addsd(XMMRegister dst, AddressLiteral src);
2576 
2577   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
2578   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
2579   void addss(XMMRegister dst, AddressLiteral src);
2580 
2581   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
2582   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
2583   void divsd(XMMRegister dst, AddressLiteral src);
2584 
2585   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
2586   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
2587   void divss(XMMRegister dst, AddressLiteral src);
2588 
2589   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
2590   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
2591   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
2592   void movsd(XMMRegister dst, AddressLiteral src);
2593 
2594   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
2595   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
2596   void mulsd(XMMRegister dst, AddressLiteral src);
2597 
2598   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
2599   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
2600   void mulss(XMMRegister dst, AddressLiteral src);
2601 
2602   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
2603   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
2604   void sqrtsd(XMMRegister dst, AddressLiteral src);
2605 
2606   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
2607   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
2608   void sqrtss(XMMRegister dst, AddressLiteral src);
2609 
2610   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
2611   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
2612   void subsd(XMMRegister dst, AddressLiteral src);
2613 
2614   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
2615   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
2616   void subss(XMMRegister dst, AddressLiteral src);
2617 
2618   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
2619   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
2620   void ucomiss(XMMRegister dst, AddressLiteral src);
2621 
2622   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
2623   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
2624   void ucomisd(XMMRegister dst, AddressLiteral src);
2625 
2626   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
2627   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
2628   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
2629   void xorpd(XMMRegister dst, AddressLiteral src);
2630 
2631   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
2632   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
2633   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
2634   void xorps(XMMRegister dst, AddressLiteral src);
2635 
2636   // AVX 3-operands instructions
2637 
2638   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
2639   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
2640   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2641 
2642   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
2643   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
2644   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2645 
2646   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
2647   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandpd(dst, nds, src, vector256); }
2648   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
2649 
2650   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
2651   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandps(dst, nds, src, vector256); }
2652   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
2653 
2654   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
2655   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
2656   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2657 
2658   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
2659   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
2660   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2661 
2662   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
2663   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
2664   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2665 
2666   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
2667   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
2668   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2669 
2670   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
2671   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
2672   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2673 
2674   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
2675   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
2676   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
2677 
2678   // AVX Vector instructions
2679 
2680   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
2681   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
2682   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
2683 
2684   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
2685   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
2686   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
2687 
2688   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
2689     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
2690       Assembler::vpxor(dst, nds, src, vector256);
2691     else
2692       Assembler::vxorpd(dst, nds, src, vector256);
2693   }
2694   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
2695     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
2696       Assembler::vpxor(dst, nds, src, vector256);
2697     else
2698       Assembler::vxorpd(dst, nds, src, vector256);
2699   }
2700 
2701   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
2702   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2703     if (UseAVX > 1) // vinserti128h is available only in AVX2
2704       Assembler::vinserti128h(dst, nds, src);
2705     else
2706       Assembler::vinsertf128h(dst, nds, src);
2707   }
2708 
2709   // Data
2710 
2711   void cmov32( Condition cc, Register dst, Address  src);
2712   void cmov32( Condition cc, Register dst, Register src);
2713 
2714   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
2715 
2716   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2717   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
2718 
2719   void movoop(Register dst, jobject obj);
2720   void movoop(Address dst, jobject obj);
2721 
2722   void movptr(ArrayAddress dst, Register src);
2723   // can this do an lea?
2724   void movptr(Register dst, ArrayAddress src);
2725 
2726   void movptr(Register dst, Address src);
2727 
2728   void movptr(Register dst, AddressLiteral src);
2729 
2730   void movptr(Register dst, intptr_t src);
2731   void movptr(Register dst, Register src);
2732   void movptr(Address dst, intptr_t src);
2733 
2734   void movptr(Address dst, Register src);
2735 
2736   void movptr(Register dst, RegisterOrConstant src) {
2737     if (src.is_constant()) movptr(dst, src.as_constant());
2738     else                   movptr(dst, src.as_register());
2739   }
2740 
2741 #ifdef _LP64
2742   // Generally the next two are only used for moving NULL
2743   // Although there are situations in initializing the mark word where
2744   // they could be used. They are dangerous.
2745 
2746   // They only exist on LP64 so that int32_t and intptr_t are not the same
2747   // and we have ambiguous declarations.
2748 
2749   void movptr(Address dst, int32_t imm32);
2750   void movptr(Register dst, int32_t imm32);
2751 #endif // _LP64
2752 
2753   // to avoid hiding movl
2754   void mov32(AddressLiteral dst, Register src);
2755   void mov32(Register dst, AddressLiteral src);
2756 
2757   // to avoid hiding movb
2758   void movbyte(ArrayAddress dst, int src);
2759 
2760   // Import other mov() methods from the parent class or else
2761   // they will be hidden by the following overriding declaration.
2762   using Assembler::movdl;
2763   using Assembler::movq;
2764   void movdl(XMMRegister dst, AddressLiteral src);
2765   void movq(XMMRegister dst, AddressLiteral src);
2766 
2767   // Can push value or effective address
2768   void pushptr(AddressLiteral src);
2769 
2770   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2771   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2772 
2773   void pushoop(jobject obj);
2774 
2775   // sign extend as need a l to ptr sized element
2776   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2777   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2778 
2779   // C2 compiled method's prolog code.
2780   void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);
2781 
2782   // IndexOf strings.
2783   // Small strings are loaded through stack if they cross page boundary.
2784   void string_indexof(Register str1, Register str2,
2785                       Register cnt1, Register cnt2,
2786                       int int_cnt2,  Register result,
2787                       XMMRegister vec, Register tmp);
2788 
2789   // IndexOf for constant substrings with size >= 8 elements
2790   // which don't need to be loaded through stack.
2791   void string_indexofC8(Register str1, Register str2,
2792                       Register cnt1, Register cnt2,
2793                       int int_cnt2,  Register result,
2794                       XMMRegister vec, Register tmp);
2795 
2796     // Smallest code: we don't need to load through stack,
2797     // check string tail.
2798 
2799   // Compare strings.
2800   void string_compare(Register str1, Register str2,
2801                       Register cnt1, Register cnt2, Register result,
2802                       XMMRegister vec1);
2803 
2804   // Compare char[] arrays.
2805   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
2806                           Register limit, Register result, Register chr,
2807                           XMMRegister vec1, XMMRegister vec2);
2808 
2809   // Fill primitive arrays
2810   void generate_fill(BasicType t, bool aligned,
2811                      Register to, Register value, Register count,
2812                      Register rtmp, XMMRegister xtmp);
2813 
2814 #undef VIRTUAL
2815 
2816 };
2817 
2818 /**
2819  * class SkipIfEqual:
2820  *
2821  * Instantiating this class will result in assembly code being output that will
2822  * jump around any code emitted between the creation of the instance and it's
2823  * automatic destruction at the end of a scope block, depending on the value of
2824  * the flag passed to the constructor, which will be checked at run-time.
2825  */
2826 class SkipIfEqual {
2827  private:
2828   MacroAssembler* _masm;
2829   Label _label;
2830 
2831  public:
2832    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
2833    ~SkipIfEqual();
2834 };
2835 
2836 #ifdef ASSERT
2837 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
2838 #endif
2839 
2840 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP