1 //
   2 // Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // X86 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
  64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
  66 
  67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
  68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
  69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
  70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
  71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
  72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
  73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
  74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
  75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
  76 
  77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
  78 // allocator, and only shows up in the encodings.
  79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  81 // Ok so here's the trick FPR1 is really st(0) except in the midst
  82 // of emission of assembly for a machnode. During the emission the fpu stack
  83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
  84 // the stack will not have this element so FPR1 == st(0) from the
  85 // oopMap viewpoint. This same weirdness with numbering causes
  86 // instruction encoding to have to play games with the register
  87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
  88 // where it does flt->flt moves to see an example
  89 //
  90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
  91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
  92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
  93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
  94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
  95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
  96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
  97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
  98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
  99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
 100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
 101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
 102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
 103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
 104 
 105 // Specify priority of register selection within phases of register
 106 // allocation.  Highest priority is first.  A useful heuristic is to
 107 // give registers a low priority when they are required by machine
 108 // instructions, like EAX and EDX.  Registers which are used as
 109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
 110 // For the Intel integer registers, the equivalent Long pairs are
 111 // EDX:EAX, EBX:ECX, and EDI:EBP.
 112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
 113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
 114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
 115                     FPR6L, FPR6H, FPR7L, FPR7H );
 116 
 117 
 118 //----------Architecture Description Register Classes--------------------------
 119 // Several register classes are automatically defined based upon information in
 120 // this architecture description.
 121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 125 //
 126 // Class for all registers
 127 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
 128 // Class for general registers
 129 reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
 130 // Class for general registers which may be used for implicit null checks on win95
 131 // Also safe for use by tailjump. We don't want to allocate in rbp,
 132 reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
 133 // Class of "X" registers
 134 reg_class int_x_reg(EBX, ECX, EDX, EAX);
 135 // Class of registers that can appear in an address with no offset.
 136 // EBP and ESP require an extra instruction byte for zero offset.
 137 // Used in fast-unlock
 138 reg_class p_reg(EDX, EDI, ESI, EBX);
 139 // Class for general registers not including ECX
 140 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
 141 // Class for general registers not including EAX
 142 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
 143 // Class for general registers not including EAX or EBX.
 144 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
 145 // Class of EAX (for multiply and divide operations)
 146 reg_class eax_reg(EAX);
 147 // Class of EBX (for atomic add)
 148 reg_class ebx_reg(EBX);
 149 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
 150 reg_class ecx_reg(ECX);
 151 // Class of EDX (for multiply and divide operations)
 152 reg_class edx_reg(EDX);
 153 // Class of EDI (for synchronization)
 154 reg_class edi_reg(EDI);
 155 // Class of ESI (for synchronization)
 156 reg_class esi_reg(ESI);
 157 // Singleton class for interpreter's stack pointer
 158 reg_class ebp_reg(EBP);
 159 // Singleton class for stack pointer
 160 reg_class sp_reg(ESP);
 161 // Singleton class for instruction pointer
 162 // reg_class ip_reg(EIP);
 163 // Class of integer register pairs
 164 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
 165 // Class of integer register pairs that aligns with calling convention
 166 reg_class eadx_reg( EAX,EDX );
 167 reg_class ebcx_reg( ECX,EBX );
 168 // Not AX or DX, used in divides
 169 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
 170 
 171 // Floating point registers.  Notice FPR0 is not a choice.
 172 // FPR0 is not ever allocated; we use clever encodings to fake
 173 // a 2-address instructions out of Intels FP stack.
 174 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
 175 
 176 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
 177                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
 178                       FPR7L,FPR7H );
 179 
 180 reg_class fp_flt_reg0( FPR1L );
 181 reg_class fp_dbl_reg0( FPR1L,FPR1H );
 182 reg_class fp_dbl_reg1( FPR2L,FPR2H );
 183 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
 184                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
 185 
 186 %}
 187 
 188 
 189 //----------SOURCE BLOCK-------------------------------------------------------
 190 // This is a block of C++ code which provides values, functions, and
 191 // definitions necessary in the rest of the architecture description
 192 source_hpp %{
 193 // Must be visible to the DFA in dfa_x86_32.cpp
 194 extern bool is_operand_hi32_zero(Node* n);
 195 %}
 196 
 197 source %{
 198 #define   RELOC_IMM32    Assembler::imm_operand
 199 #define   RELOC_DISP32   Assembler::disp32_operand
 200 
 201 #define __ _masm.
 202 
 203 // How to find the high register of a Long pair, given the low register
 204 #define   HIGH_FROM_LOW(x) ((x)+2)
 205 
 206 // These masks are used to provide 128-bit aligned bitmasks to the XMM
 207 // instructions, to allow sign-masking or sign-bit flipping.  They allow
 208 // fast versions of NegF/NegD and AbsF/AbsD.
 209 
 210 // Note: 'double' and 'long long' have 32-bits alignment on x86.
 211 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
 212   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
 213   // of 128-bits operands for SSE instructions.
 214   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
 215   // Store the value to a 128-bits operand.
 216   operand[0] = lo;
 217   operand[1] = hi;
 218   return operand;
 219 }
 220 
 221 // Buffer for 128-bits masks used by SSE instructions.
 222 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
 223 
 224 // Static initialization during VM startup.
 225 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
 226 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
 227 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
 228 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
 229 
 230 // Offset hacking within calls.
 231 static int pre_call_FPU_size() {
 232   if (Compile::current()->in_24_bit_fp_mode())
 233     return 6; // fldcw
 234   return 0;
 235 }
 236 
 237 static int preserve_SP_size() {
 238   return 2;  // op, rm(reg/reg)
 239 }
 240 
 241 // !!!!! Special hack to get all type of calls to specify the byte offset
 242 //       from the start of the call to the point where the return address
 243 //       will point.
 244 int MachCallStaticJavaNode::ret_addr_offset() {
 245   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
 246   if (_method_handle_invoke)
 247     offset += preserve_SP_size();
 248   return offset;
 249 }
 250 
 251 int MachCallDynamicJavaNode::ret_addr_offset() {
 252   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
 253 }
 254 
 255 static int sizeof_FFree_Float_Stack_All = -1;
 256 
 257 int MachCallRuntimeNode::ret_addr_offset() {
 258   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
 259   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
 260 }
 261 
 262 // Indicate if the safepoint node needs the polling page as an input.
 263 // Since x86 does have absolute addressing, it doesn't.
 264 bool SafePointNode::needs_polling_address_input() {
 265   return false;
 266 }
 267 
 268 //
 269 // Compute padding required for nodes which need alignment
 270 //
 271 
 272 // The address of the call instruction needs to be 4-byte aligned to
 273 // ensure that it does not span a cache line so that it can be patched.
 274 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
 275   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 276   current_offset += 1;      // skip call opcode byte
 277   return round_to(current_offset, alignment_required()) - current_offset;
 278 }
 279 
 280 // The address of the call instruction needs to be 4-byte aligned to
 281 // ensure that it does not span a cache line so that it can be patched.
 282 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
 283   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 284   current_offset += preserve_SP_size();   // skip mov rbp, rsp
 285   current_offset += 1;      // skip call opcode byte
 286   return round_to(current_offset, alignment_required()) - current_offset;
 287 }
 288 
 289 // The address of the call instruction needs to be 4-byte aligned to
 290 // ensure that it does not span a cache line so that it can be patched.
 291 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
 292   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 293   current_offset += 5;      // skip MOV instruction
 294   current_offset += 1;      // skip call opcode byte
 295   return round_to(current_offset, alignment_required()) - current_offset;
 296 }
 297 
 298 // EMIT_RM()
 299 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 300   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
 301   cbuf.insts()->emit_int8(c);
 302 }
 303 
 304 // EMIT_CC()
 305 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 306   unsigned char c = (unsigned char)( f1 | f2 );
 307   cbuf.insts()->emit_int8(c);
 308 }
 309 
 310 // EMIT_OPCODE()
 311 void emit_opcode(CodeBuffer &cbuf, int code) {
 312   cbuf.insts()->emit_int8((unsigned char) code);
 313 }
 314 
 315 // EMIT_OPCODE() w/ relocation information
 316 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
 317   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
 318   emit_opcode(cbuf, code);
 319 }
 320 
 321 // EMIT_D8()
 322 void emit_d8(CodeBuffer &cbuf, int d8) {
 323   cbuf.insts()->emit_int8((unsigned char) d8);
 324 }
 325 
 326 // EMIT_D16()
 327 void emit_d16(CodeBuffer &cbuf, int d16) {
 328   cbuf.insts()->emit_int16(d16);
 329 }
 330 
 331 // EMIT_D32()
 332 void emit_d32(CodeBuffer &cbuf, int d32) {
 333   cbuf.insts()->emit_int32(d32);
 334 }
 335 
 336 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 337 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
 338         int format) {
 339   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 340   cbuf.insts()->emit_int32(d32);
 341 }
 342 
 343 // emit 32 bit value and construct relocation entry from RelocationHolder
 344 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
 345         int format) {
 346 #ifdef ASSERT
 347   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
 348     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
 349   }
 350 #endif
 351   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 352   cbuf.insts()->emit_int32(d32);
 353 }
 354 
 355 // Access stack slot for load or store
 356 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
 357   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
 358   if( -128 <= disp && disp <= 127 ) {
 359     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
 360     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 361     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
 362   } else {
 363     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
 364     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 365     emit_d32(cbuf, disp);     // Displacement  // R/M byte
 366   }
 367 }
 368 
 369    // rRegI ereg, memory mem) %{    // emit_reg_mem
 370 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
 371   // There is no index & no scale, use form without SIB byte
 372   if ((index == 0x4) &&
 373       (scale == 0) && (base != ESP_enc)) {
 374     // If no displacement, mode is 0x0; unless base is [EBP]
 375     if ( (displace == 0) && (base != EBP_enc) ) {
 376       emit_rm(cbuf, 0x0, reg_encoding, base);
 377     }
 378     else {                    // If 8-bit displacement, mode 0x1
 379       if ((displace >= -128) && (displace <= 127)
 380           && !(displace_is_oop) ) {
 381         emit_rm(cbuf, 0x1, reg_encoding, base);
 382         emit_d8(cbuf, displace);
 383       }
 384       else {                  // If 32-bit displacement
 385         if (base == -1) { // Special flag for absolute address
 386           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
 387           // (manual lies; no SIB needed here)
 388           if ( displace_is_oop ) {
 389             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 390           } else {
 391             emit_d32      (cbuf, displace);
 392           }
 393         }
 394         else {                // Normal base + offset
 395           emit_rm(cbuf, 0x2, reg_encoding, base);
 396           if ( displace_is_oop ) {
 397             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 398           } else {
 399             emit_d32      (cbuf, displace);
 400           }
 401         }
 402       }
 403     }
 404   }
 405   else {                      // Else, encode with the SIB byte
 406     // If no displacement, mode is 0x0; unless base is [EBP]
 407     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
 408       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
 409       emit_rm(cbuf, scale, index, base);
 410     }
 411     else {                    // If 8-bit displacement, mode 0x1
 412       if ((displace >= -128) && (displace <= 127)
 413           && !(displace_is_oop) ) {
 414         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
 415         emit_rm(cbuf, scale, index, base);
 416         emit_d8(cbuf, displace);
 417       }
 418       else {                  // If 32-bit displacement
 419         if (base == 0x04 ) {
 420           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 421           emit_rm(cbuf, scale, index, 0x04);
 422         } else {
 423           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 424           emit_rm(cbuf, scale, index, base);
 425         }
 426         if ( displace_is_oop ) {
 427           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 428         } else {
 429           emit_d32      (cbuf, displace);
 430         }
 431       }
 432     }
 433   }
 434 }
 435 
 436 
 437 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 438   if( dst_encoding == src_encoding ) {
 439     // reg-reg copy, use an empty encoding
 440   } else {
 441     emit_opcode( cbuf, 0x8B );
 442     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
 443   }
 444 }
 445 
 446 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 447   Label exit;
 448   __ jccb(Assembler::noParity, exit);
 449   __ pushf();
 450   //
 451   // comiss/ucomiss instructions set ZF,PF,CF flags and
 452   // zero OF,AF,SF for NaN values.
 453   // Fixup flags by zeroing ZF,PF so that compare of NaN
 454   // values returns 'less than' result (CF is set).
 455   // Leave the rest of flags unchanged.
 456   //
 457   //    7 6 5 4 3 2 1 0
 458   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 459   //    0 0 1 0 1 0 1 1   (0x2B)
 460   //
 461   __ andl(Address(rsp, 0), 0xffffff2b);
 462   __ popf();
 463   __ bind(exit);
 464 }
 465 
 466 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 467   Label done;
 468   __ movl(dst, -1);
 469   __ jcc(Assembler::parity, done);
 470   __ jcc(Assembler::below, done);
 471   __ setb(Assembler::notEqual, dst);
 472   __ movzbl(dst, dst);
 473   __ bind(done);
 474 }
 475 
 476 
 477 //=============================================================================
 478 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 479 
 480 int Compile::ConstantTable::calculate_table_base_offset() const {
 481   return 0;  // absolute addressing, no offset
 482 }
 483 
 484 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 485   // Empty encoding
 486 }
 487 
 488 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 489   return 0;
 490 }
 491 
 492 #ifndef PRODUCT
 493 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 494   st->print("# MachConstantBaseNode (empty encoding)");
 495 }
 496 #endif
 497 
 498 
 499 //=============================================================================
 500 #ifndef PRODUCT
 501 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 502   Compile* C = ra_->C;
 503 
 504   int framesize = C->frame_slots() << LogBytesPerInt;
 505   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 506   // Remove wordSize for return addr which is already pushed.
 507   framesize -= wordSize;
 508 
 509   if (C->need_stack_bang(framesize)) {
 510     framesize -= wordSize;
 511     st->print("# stack bang");
 512     st->print("\n\t");
 513     st->print("PUSH   EBP\t# Save EBP");
 514     if (framesize) {
 515       st->print("\n\t");
 516       st->print("SUB    ESP, #%d\t# Create frame",framesize);
 517     }
 518   } else {
 519     st->print("SUB    ESP, #%d\t# Create frame",framesize);
 520     st->print("\n\t");
 521     framesize -= wordSize;
 522     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
 523   }
 524 
 525   if (VerifyStackAtCalls) {
 526     st->print("\n\t");
 527     framesize -= wordSize;
 528     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
 529   }
 530 
 531   if( C->in_24_bit_fp_mode() ) {
 532     st->print("\n\t");
 533     st->print("FLDCW  \t# load 24 bit fpu control word");
 534   }
 535   if (UseSSE >= 2 && VerifyFPU) {
 536     st->print("\n\t");
 537     st->print("# verify FPU stack (must be clean on entry)");
 538   }
 539 
 540 #ifdef ASSERT
 541   if (VerifyStackAtCalls) {
 542     st->print("\n\t");
 543     st->print("# stack alignment check");
 544   }
 545 #endif
 546   st->cr();
 547 }
 548 #endif
 549 
 550 
 551 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 552   Compile* C = ra_->C;
 553   MacroAssembler _masm(&cbuf);
 554 
 555   int framesize = C->frame_slots() << LogBytesPerInt;
 556 
 557   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
 558 
 559   C->set_frame_complete(cbuf.insts_size());
 560 
 561   if (C->has_mach_constant_base_node()) {
 562     // NOTE: We set the table base offset here because users might be
 563     // emitted before MachConstantBaseNode.
 564     Compile::ConstantTable& constant_table = C->constant_table();
 565     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 566   }
 567 }
 568 
 569 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
 570   return MachNode::size(ra_); // too many variables; just compute it the hard way
 571 }
 572 
 573 int MachPrologNode::reloc() const {
 574   return 0; // a large enough number
 575 }
 576 
 577 //=============================================================================
 578 #ifndef PRODUCT
 579 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 580   Compile *C = ra_->C;
 581   int framesize = C->frame_slots() << LogBytesPerInt;
 582   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 583   // Remove two words for return addr and rbp,
 584   framesize -= 2*wordSize;
 585 
 586   if( C->in_24_bit_fp_mode() ) {
 587     st->print("FLDCW  standard control word");
 588     st->cr(); st->print("\t");
 589   }
 590   if( framesize ) {
 591     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
 592     st->cr(); st->print("\t");
 593   }
 594   st->print_cr("POPL   EBP"); st->print("\t");
 595   if( do_polling() && C->is_method_compilation() ) {
 596     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
 597     st->cr(); st->print("\t");
 598   }
 599 }
 600 #endif
 601 
 602 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 603   Compile *C = ra_->C;
 604 
 605   // If method set FPU control word, restore to standard control word
 606   if( C->in_24_bit_fp_mode() ) {
 607     MacroAssembler masm(&cbuf);
 608     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 609   }
 610 
 611   int framesize = C->frame_slots() << LogBytesPerInt;
 612   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 613   // Remove two words for return addr and rbp,
 614   framesize -= 2*wordSize;
 615 
 616   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 617 
 618   if( framesize >= 128 ) {
 619     emit_opcode(cbuf, 0x81); // add  SP, #framesize
 620     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 621     emit_d32(cbuf, framesize);
 622   }
 623   else if( framesize ) {
 624     emit_opcode(cbuf, 0x83); // add  SP, #framesize
 625     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 626     emit_d8(cbuf, framesize);
 627   }
 628 
 629   emit_opcode(cbuf, 0x58 | EBP_enc);
 630 
 631   if( do_polling() && C->is_method_compilation() ) {
 632     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
 633     emit_opcode(cbuf,0x85);
 634     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
 635     emit_d32(cbuf, (intptr_t)os::get_polling_page());
 636   }
 637 }
 638 
 639 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 640   Compile *C = ra_->C;
 641   // If method set FPU control word, restore to standard control word
 642   int size = C->in_24_bit_fp_mode() ? 6 : 0;
 643   if( do_polling() && C->is_method_compilation() ) size += 6;
 644 
 645   int framesize = C->frame_slots() << LogBytesPerInt;
 646   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 647   // Remove two words for return addr and rbp,
 648   framesize -= 2*wordSize;
 649 
 650   size++; // popl rbp,
 651 
 652   if( framesize >= 128 ) {
 653     size += 6;
 654   } else {
 655     size += framesize ? 3 : 0;
 656   }
 657   return size;
 658 }
 659 
 660 int MachEpilogNode::reloc() const {
 661   return 0; // a large enough number
 662 }
 663 
 664 const Pipeline * MachEpilogNode::pipeline() const {
 665   return MachNode::pipeline_class();
 666 }
 667 
 668 int MachEpilogNode::safepoint_offset() const { return 0; }
 669 
 670 //=============================================================================
 671 
 672 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
 673 static enum RC rc_class( OptoReg::Name reg ) {
 674 
 675   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 676   if (OptoReg::is_stack(reg)) return rc_stack;
 677 
 678   VMReg r = OptoReg::as_VMReg(reg);
 679   if (r->is_Register()) return rc_int;
 680   if (r->is_FloatRegister()) {
 681     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
 682     return rc_float;
 683   }
 684   assert(r->is_XMMRegister(), "must be");
 685   return rc_xmm;
 686 }
 687 
 688 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
 689                         int opcode, const char *op_str, int size, outputStream* st ) {
 690   if( cbuf ) {
 691     emit_opcode  (*cbuf, opcode );
 692     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
 693 #ifndef PRODUCT
 694   } else if( !do_size ) {
 695     if( size != 0 ) st->print("\n\t");
 696     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
 697       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
 698       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
 699     } else { // FLD, FST, PUSH, POP
 700       st->print("%s [ESP + #%d]",op_str,offset);
 701     }
 702 #endif
 703   }
 704   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 705   return size+3+offset_size;
 706 }
 707 
 708 // Helper for XMM registers.  Extra opcode bits, limited syntax.
 709 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
 710                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
 711   if (cbuf) {
 712     MacroAssembler _masm(cbuf);
 713     if (reg_lo+1 == reg_hi) { // double move?
 714       if (is_load) {
 715         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 716       } else {
 717         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 718       }
 719     } else {
 720       if (is_load) {
 721         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 722       } else {
 723         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 724       }
 725     }
 726 #ifndef PRODUCT
 727   } else if (!do_size) {
 728     if (size != 0) st->print("\n\t");
 729     if (reg_lo+1 == reg_hi) { // double move?
 730       if (is_load) st->print("%s %s,[ESP + #%d]",
 731                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
 732                               Matcher::regName[reg_lo], offset);
 733       else         st->print("MOVSD  [ESP + #%d],%s",
 734                               offset, Matcher::regName[reg_lo]);
 735     } else {
 736       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
 737                               Matcher::regName[reg_lo], offset);
 738       else         st->print("MOVSS  [ESP + #%d],%s",
 739                               offset, Matcher::regName[reg_lo]);
 740     }
 741 #endif
 742   }
 743   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 744   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
 745   return size+5+offset_size;
 746 }
 747 
 748 
 749 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 750                             int src_hi, int dst_hi, int size, outputStream* st ) {
 751   if (cbuf) {
 752     MacroAssembler _masm(cbuf);
 753     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 754       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 755                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 756     } else {
 757       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 758                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 759     }
 760 #ifndef PRODUCT
 761   } else if (!do_size) {
 762     if (size != 0) st->print("\n\t");
 763     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
 764       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 765         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 766       } else {
 767         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 768       }
 769     } else {
 770       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 771         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 772       } else {
 773         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 774       }
 775     }
 776 #endif
 777   }
 778   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
 779   // Only MOVAPS SSE prefix uses 1 byte.
 780   int sz = 4;
 781   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
 782       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
 783   return size + sz;
 784 }
 785 
 786 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 787                             int src_hi, int dst_hi, int size, outputStream* st ) {
 788   // 32-bit
 789   if (cbuf) {
 790     MacroAssembler _masm(cbuf);
 791     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 792              as_Register(Matcher::_regEncode[src_lo]));
 793 #ifndef PRODUCT
 794   } else if (!do_size) {
 795     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 796 #endif
 797   }
 798   return 4;
 799 }
 800 
 801 
 802 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 803                                  int src_hi, int dst_hi, int size, outputStream* st ) {
 804   // 32-bit
 805   if (cbuf) {
 806     MacroAssembler _masm(cbuf);
 807     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
 808              as_XMMRegister(Matcher::_regEncode[src_lo]));
 809 #ifndef PRODUCT
 810   } else if (!do_size) {
 811     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 812 #endif
 813   }
 814   return 4;
 815 }
 816 
 817 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
 818   if( cbuf ) {
 819     emit_opcode(*cbuf, 0x8B );
 820     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
 821 #ifndef PRODUCT
 822   } else if( !do_size ) {
 823     if( size != 0 ) st->print("\n\t");
 824     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
 825 #endif
 826   }
 827   return size+2;
 828 }
 829 
 830 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
 831                                  int offset, int size, outputStream* st ) {
 832   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
 833     if( cbuf ) {
 834       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
 835       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
 836 #ifndef PRODUCT
 837     } else if( !do_size ) {
 838       if( size != 0 ) st->print("\n\t");
 839       st->print("FLD    %s",Matcher::regName[src_lo]);
 840 #endif
 841     }
 842     size += 2;
 843   }
 844 
 845   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
 846   const char *op_str;
 847   int op;
 848   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
 849     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
 850     op = 0xDD;
 851   } else {                   // 32-bit store
 852     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
 853     op = 0xD9;
 854     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
 855   }
 856 
 857   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
 858 }
 859 
 860 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
 861 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 862                           int src_hi, int dst_hi, uint ireg, outputStream* st);
 863 
 864 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
 865                             int stack_offset, int reg, uint ireg, outputStream* st);
 866 
 867 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
 868                                      int dst_offset, uint ireg, outputStream* st) {
 869   int calc_size = 0;
 870   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 871   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 872   switch (ireg) {
 873   case Op_VecS:
 874     calc_size = 3+src_offset_size + 3+dst_offset_size;
 875     break;
 876   case Op_VecD:
 877     calc_size = 3+src_offset_size + 3+dst_offset_size;
 878     src_offset += 4;
 879     dst_offset += 4;
 880     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 881     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 882     calc_size += 3+src_offset_size + 3+dst_offset_size;
 883     break;
 884   case Op_VecX:
 885     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 886     break;
 887   case Op_VecY:
 888     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 889     break;
 890   default:
 891     ShouldNotReachHere();
 892   }
 893   if (cbuf) {
 894     MacroAssembler _masm(cbuf);
 895     int offset = __ offset();
 896     switch (ireg) {
 897     case Op_VecS:
 898       __ pushl(Address(rsp, src_offset));
 899       __ popl (Address(rsp, dst_offset));
 900       break;
 901     case Op_VecD:
 902       __ pushl(Address(rsp, src_offset));
 903       __ popl (Address(rsp, dst_offset));
 904       __ pushl(Address(rsp, src_offset+4));
 905       __ popl (Address(rsp, dst_offset+4));
 906       break;
 907     case Op_VecX:
 908       __ movdqu(Address(rsp, -16), xmm0);
 909       __ movdqu(xmm0, Address(rsp, src_offset));
 910       __ movdqu(Address(rsp, dst_offset), xmm0);
 911       __ movdqu(xmm0, Address(rsp, -16));
 912       break;
 913     case Op_VecY:
 914       __ vmovdqu(Address(rsp, -32), xmm0);
 915       __ vmovdqu(xmm0, Address(rsp, src_offset));
 916       __ vmovdqu(Address(rsp, dst_offset), xmm0);
 917       __ vmovdqu(xmm0, Address(rsp, -32));
 918       break;
 919     default:
 920       ShouldNotReachHere();
 921     }
 922     int size = __ offset() - offset;
 923     assert(size == calc_size, "incorrect size calculattion");
 924     return size;
 925 #ifndef PRODUCT
 926   } else if (!do_size) {
 927     switch (ireg) {
 928     case Op_VecS:
 929       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
 930                 "popl    [rsp + #%d]",
 931                 src_offset, dst_offset);
 932       break;
 933     case Op_VecD:
 934       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
 935                 "popq    [rsp + #%d]\n\t"
 936                 "pushl   [rsp + #%d]\n\t"
 937                 "popq    [rsp + #%d]",
 938                 src_offset, dst_offset, src_offset+4, dst_offset+4);
 939       break;
 940      case Op_VecX:
 941       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
 942                 "movdqu  xmm0, [rsp + #%d]\n\t"
 943                 "movdqu  [rsp + #%d], xmm0\n\t"
 944                 "movdqu  xmm0, [rsp - #16]",
 945                 src_offset, dst_offset);
 946       break;
 947     case Op_VecY:
 948       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
 949                 "vmovdqu xmm0, [rsp + #%d]\n\t"
 950                 "vmovdqu [rsp + #%d], xmm0\n\t"
 951                 "vmovdqu xmm0, [rsp - #32]",
 952                 src_offset, dst_offset);
 953       break;
 954     default:
 955       ShouldNotReachHere();
 956     }
 957 #endif
 958   }
 959   return calc_size;
 960 }
 961 
 962 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
 963   // Get registers to move
 964   OptoReg::Name src_second = ra_->get_reg_second(in(1));
 965   OptoReg::Name src_first = ra_->get_reg_first(in(1));
 966   OptoReg::Name dst_second = ra_->get_reg_second(this );
 967   OptoReg::Name dst_first = ra_->get_reg_first(this );
 968 
 969   enum RC src_second_rc = rc_class(src_second);
 970   enum RC src_first_rc = rc_class(src_first);
 971   enum RC dst_second_rc = rc_class(dst_second);
 972   enum RC dst_first_rc = rc_class(dst_first);
 973 
 974   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
 975 
 976   // Generate spill code!
 977   int size = 0;
 978 
 979   if( src_first == dst_first && src_second == dst_second )
 980     return size;            // Self copy, no move
 981 
 982   if (bottom_type()->isa_vect() != NULL) {
 983     uint ireg = ideal_reg();
 984     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
 985     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
 986     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
 987     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
 988       // mem -> mem
 989       int src_offset = ra_->reg2offset(src_first);
 990       int dst_offset = ra_->reg2offset(dst_first);
 991       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
 992     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
 993       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
 994     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
 995       int stack_offset = ra_->reg2offset(dst_first);
 996       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
 997     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
 998       int stack_offset = ra_->reg2offset(src_first);
 999       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
1000     } else {
1001       ShouldNotReachHere();
1002     }
1003   }
1004 
1005   // --------------------------------------
1006   // Check for mem-mem move.  push/pop to move.
1007   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1008     if( src_second == dst_first ) { // overlapping stack copy ranges
1009       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
1010       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1011       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1012       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
1013     }
1014     // move low bits
1015     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
1016     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
1017     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
1018       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1019       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1020     }
1021     return size;
1022   }
1023 
1024   // --------------------------------------
1025   // Check for integer reg-reg copy
1026   if( src_first_rc == rc_int && dst_first_rc == rc_int )
1027     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
1028 
1029   // Check for integer store
1030   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
1031     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
1032 
1033   // Check for integer load
1034   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
1035     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
1036 
1037   // Check for integer reg-xmm reg copy
1038   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
1039     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1040             "no 64 bit integer-float reg moves" );
1041     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1042   }
1043   // --------------------------------------
1044   // Check for float reg-reg copy
1045   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1046     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1047             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
1048     if( cbuf ) {
1049 
1050       // Note the mucking with the register encode to compensate for the 0/1
1051       // indexing issue mentioned in a comment in the reg_def sections
1052       // for FPR registers many lines above here.
1053 
1054       if( src_first != FPR1L_num ) {
1055         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
1056         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
1057         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1058         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1059      } else {
1060         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
1061         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
1062      }
1063 #ifndef PRODUCT
1064     } else if( !do_size ) {
1065       if( size != 0 ) st->print("\n\t");
1066       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
1067       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
1068 #endif
1069     }
1070     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
1071   }
1072 
1073   // Check for float store
1074   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1075     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
1076   }
1077 
1078   // Check for float load
1079   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1080     int offset = ra_->reg2offset(src_first);
1081     const char *op_str;
1082     int op;
1083     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
1084       op_str = "FLD_D";
1085       op = 0xDD;
1086     } else {                   // 32-bit load
1087       op_str = "FLD_S";
1088       op = 0xD9;
1089       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
1090     }
1091     if( cbuf ) {
1092       emit_opcode  (*cbuf, op );
1093       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
1094       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1095       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1096 #ifndef PRODUCT
1097     } else if( !do_size ) {
1098       if( size != 0 ) st->print("\n\t");
1099       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1100 #endif
1101     }
1102     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1103     return size + 3+offset_size+2;
1104   }
1105 
1106   // Check for xmm reg-reg copy
1107   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1108     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1109             (src_first+1 == src_second && dst_first+1 == dst_second),
1110             "no non-adjacent float-moves" );
1111     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1112   }
1113 
1114   // Check for xmm reg-integer reg copy
1115   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
1116     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1117             "no 64 bit float-integer reg moves" );
1118     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1119   }
1120 
1121   // Check for xmm store
1122   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1123     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1124   }
1125 
1126   // Check for float xmm load
1127   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1128     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1129   }
1130 
1131   // Copy from float reg to xmm reg
1132   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1133     // copy to the top of stack from floating point reg
1134     // and use LEA to preserve flags
1135     if( cbuf ) {
1136       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1137       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1138       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1139       emit_d8(*cbuf,0xF8);
1140 #ifndef PRODUCT
1141     } else if( !do_size ) {
1142       if( size != 0 ) st->print("\n\t");
1143       st->print("LEA    ESP,[ESP-8]");
1144 #endif
1145     }
1146     size += 4;
1147 
1148     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1149 
1150     // Copy from the temp memory to the xmm reg.
1151     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1152 
1153     if( cbuf ) {
1154       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1155       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1156       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1157       emit_d8(*cbuf,0x08);
1158 #ifndef PRODUCT
1159     } else if( !do_size ) {
1160       if( size != 0 ) st->print("\n\t");
1161       st->print("LEA    ESP,[ESP+8]");
1162 #endif
1163     }
1164     size += 4;
1165     return size;
1166   }
1167 
1168   assert( size > 0, "missed a case" );
1169 
1170   // --------------------------------------------------------------------
1171   // Check for second bits still needing moving.
1172   if( src_second == dst_second )
1173     return size;               // Self copy; no move
1174   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1175 
1176   // Check for second word int-int move
1177   if( src_second_rc == rc_int && dst_second_rc == rc_int )
1178     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1179 
1180   // Check for second word integer store
1181   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1182     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1183 
1184   // Check for second word integer load
1185   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1186     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1187 
1188 
1189   Unimplemented();
1190 }
1191 
1192 #ifndef PRODUCT
1193 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1194   implementation( NULL, ra_, false, st );
1195 }
1196 #endif
1197 
1198 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1199   implementation( &cbuf, ra_, false, NULL );
1200 }
1201 
1202 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1203   return implementation( NULL, ra_, true, NULL );
1204 }
1205 
1206 
1207 //=============================================================================
1208 #ifndef PRODUCT
1209 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1210   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1211   int reg = ra_->get_reg_first(this);
1212   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1213 }
1214 #endif
1215 
1216 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1217   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1218   int reg = ra_->get_encode(this);
1219   if( offset >= 128 ) {
1220     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1221     emit_rm(cbuf, 0x2, reg, 0x04);
1222     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1223     emit_d32(cbuf, offset);
1224   }
1225   else {
1226     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1227     emit_rm(cbuf, 0x1, reg, 0x04);
1228     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1229     emit_d8(cbuf, offset);
1230   }
1231 }
1232 
1233 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1234   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1235   if( offset >= 128 ) {
1236     return 7;
1237   }
1238   else {
1239     return 4;
1240   }
1241 }
1242 
1243 //=============================================================================
1244 
1245 // emit call stub, compiled java to interpreter
1246 void emit_java_to_interp(CodeBuffer &cbuf ) {
1247   // Stub is fixed up when the corresponding call is converted from calling
1248   // compiled code to calling interpreted code.
1249   // mov rbx,0
1250   // jmp -1
1251 
1252   address mark = cbuf.insts_mark();  // get mark within main instrs section
1253 
1254   // Note that the code buffer's insts_mark is always relative to insts.
1255   // That's why we must use the macroassembler to generate a stub.
1256   MacroAssembler _masm(&cbuf);
1257 
1258   address base =
1259   __ start_a_stub(Compile::MAX_stubs_size);
1260   if (base == NULL)  return;  // CodeBuffer::expand failed
1261   // static stub relocation stores the instruction address of the call
1262   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
1263   // static stub relocation also tags the methodOop in the code-stream.
1264   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
1265   // This is recognized as unresolved by relocs/nativeInst/ic code
1266   __ jump(RuntimeAddress(__ pc()));
1267 
1268   __ end_a_stub();
1269   // Update current stubs pointer and restore insts_end.
1270 }
1271 // size of call stub, compiled java to interpretor
1272 uint size_java_to_interp() {
1273   return 10;  // movl; jmp
1274 }
1275 // relocation entries for call stub, compiled java to interpretor
1276 uint reloc_java_to_interp() {
1277   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
1278 }
1279 
1280 //=============================================================================
1281 #ifndef PRODUCT
1282 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1283   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1284   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1285   st->print_cr("\tNOP");
1286   st->print_cr("\tNOP");
1287   if( !OptoBreakpoint )
1288     st->print_cr("\tNOP");
1289 }
1290 #endif
1291 
1292 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1293   MacroAssembler masm(&cbuf);
1294 #ifdef ASSERT
1295   uint insts_size = cbuf.insts_size();
1296 #endif
1297   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1298   masm.jump_cc(Assembler::notEqual,
1299                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1300   /* WARNING these NOPs are critical so that verified entry point is properly
1301      aligned for patching by NativeJump::patch_verified_entry() */
1302   int nops_cnt = 2;
1303   if( !OptoBreakpoint ) // Leave space for int3
1304      nops_cnt += 1;
1305   masm.nop(nops_cnt);
1306 
1307   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
1308 }
1309 
1310 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1311   return OptoBreakpoint ? 11 : 12;
1312 }
1313 
1314 
1315 //=============================================================================
1316 uint size_exception_handler() {
1317   // NativeCall instruction size is the same as NativeJump.
1318   // exception handler starts out as jump and can be patched to
1319   // a call be deoptimization.  (4932387)
1320   // Note that this value is also credited (in output.cpp) to
1321   // the size of the code section.
1322   return NativeJump::instruction_size;
1323 }
1324 
1325 // Emit exception handler code.  Stuff framesize into a register
1326 // and call a VM stub routine.
1327 int emit_exception_handler(CodeBuffer& cbuf) {
1328 
1329   // Note that the code buffer's insts_mark is always relative to insts.
1330   // That's why we must use the macroassembler to generate a handler.
1331   MacroAssembler _masm(&cbuf);
1332   address base =
1333   __ start_a_stub(size_exception_handler());
1334   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1335   int offset = __ offset();
1336   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
1337   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1338   __ end_a_stub();
1339   return offset;
1340 }
1341 
1342 uint size_deopt_handler() {
1343   // NativeCall instruction size is the same as NativeJump.
1344   // exception handler starts out as jump and can be patched to
1345   // a call be deoptimization.  (4932387)
1346   // Note that this value is also credited (in output.cpp) to
1347   // the size of the code section.
1348   return 5 + NativeJump::instruction_size; // pushl(); jmp;
1349 }
1350 
1351 // Emit deopt handler code.
1352 int emit_deopt_handler(CodeBuffer& cbuf) {
1353 
1354   // Note that the code buffer's insts_mark is always relative to insts.
1355   // That's why we must use the macroassembler to generate a handler.
1356   MacroAssembler _masm(&cbuf);
1357   address base =
1358   __ start_a_stub(size_exception_handler());
1359   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1360   int offset = __ offset();
1361   InternalAddress here(__ pc());
1362   __ pushptr(here.addr());
1363 
1364   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1365   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1366   __ end_a_stub();
1367   return offset;
1368 }
1369 
1370 int Matcher::regnum_to_fpu_offset(int regnum) {
1371   return regnum - 32; // The FP registers are in the second chunk
1372 }
1373 
1374 // This is UltraSparc specific, true just means we have fast l2f conversion
1375 const bool Matcher::convL2FSupported(void) {
1376   return true;
1377 }
1378 
1379 // Is this branch offset short enough that a short branch can be used?
1380 //
1381 // NOTE: If the platform does not provide any short branch variants, then
1382 //       this method should return false for offset 0.
1383 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1384   // The passed offset is relative to address of the branch.
1385   // On 86 a branch displacement is calculated relative to address
1386   // of a next instruction.
1387   offset -= br_size;
1388 
1389   // the short version of jmpConUCF2 contains multiple branches,
1390   // making the reach slightly less
1391   if (rule == jmpConUCF2_rule)
1392     return (-126 <= offset && offset <= 125);
1393   return (-128 <= offset && offset <= 127);
1394 }
1395 
1396 const bool Matcher::isSimpleConstant64(jlong value) {
1397   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1398   return false;
1399 }
1400 
1401 // The ecx parameter to rep stos for the ClearArray node is in dwords.
1402 const bool Matcher::init_array_count_is_in_bytes = false;
1403 
1404 // Threshold size for cleararray.
1405 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1406 
1407 // Needs 2 CMOV's for longs.
1408 const int Matcher::long_cmove_cost() { return 1; }
1409 
1410 // No CMOVF/CMOVD with SSE/SSE2
1411 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
1412 
1413 // Should the Matcher clone shifts on addressing modes, expecting them to
1414 // be subsumed into complex addressing expressions or compute them into
1415 // registers?  True for Intel but false for most RISCs
1416 const bool Matcher::clone_shift_expressions = true;
1417 
1418 // Do we need to mask the count passed to shift instructions or does
1419 // the cpu only look at the lower 5/6 bits anyway?
1420 const bool Matcher::need_masked_shift_count = false;
1421 
1422 bool Matcher::narrow_oop_use_complex_address() {
1423   ShouldNotCallThis();
1424   return true;
1425 }
1426 
1427 
1428 // Is it better to copy float constants, or load them directly from memory?
1429 // Intel can load a float constant from a direct address, requiring no
1430 // extra registers.  Most RISCs will have to materialize an address into a
1431 // register first, so they would do better to copy the constant from stack.
1432 const bool Matcher::rematerialize_float_constants = true;
1433 
1434 // If CPU can load and store mis-aligned doubles directly then no fixup is
1435 // needed.  Else we split the double into 2 integer pieces and move it
1436 // piece-by-piece.  Only happens when passing doubles into C code as the
1437 // Java calling convention forces doubles to be aligned.
1438 const bool Matcher::misaligned_doubles_ok = true;
1439 
1440 
1441 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1442   // Get the memory operand from the node
1443   uint numopnds = node->num_opnds();        // Virtual call for number of operands
1444   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1445   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1446   uint opcnt     = 1;                 // First operand
1447   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1448   while( idx >= skipped+num_edges ) {
1449     skipped += num_edges;
1450     opcnt++;                          // Bump operand count
1451     assert( opcnt < numopnds, "Accessing non-existent operand" );
1452     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1453   }
1454 
1455   MachOper *memory = node->_opnds[opcnt];
1456   MachOper *new_memory = NULL;
1457   switch (memory->opcode()) {
1458   case DIRECT:
1459   case INDOFFSET32X:
1460     // No transformation necessary.
1461     return;
1462   case INDIRECT:
1463     new_memory = new (C) indirect_win95_safeOper( );
1464     break;
1465   case INDOFFSET8:
1466     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1467     break;
1468   case INDOFFSET32:
1469     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1470     break;
1471   case INDINDEXOFFSET:
1472     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1473     break;
1474   case INDINDEXSCALE:
1475     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1476     break;
1477   case INDINDEXSCALEOFFSET:
1478     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1479     break;
1480   case LOAD_LONG_INDIRECT:
1481   case LOAD_LONG_INDOFFSET32:
1482     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1483     return;
1484   default:
1485     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1486     return;
1487   }
1488   node->_opnds[opcnt] = new_memory;
1489 }
1490 
1491 // Advertise here if the CPU requires explicit rounding operations
1492 // to implement the UseStrictFP mode.
1493 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1494 
1495 // Are floats conerted to double when stored to stack during deoptimization?
1496 // On x32 it is stored with convertion only when FPU is used for floats.
1497 bool Matcher::float_in_double() { return (UseSSE == 0); }
1498 
1499 // Do ints take an entire long register or just half?
1500 const bool Matcher::int_in_long = false;
1501 
1502 // Return whether or not this register is ever used as an argument.  This
1503 // function is used on startup to build the trampoline stubs in generateOptoStub.
1504 // Registers not mentioned will be killed by the VM call in the trampoline, and
1505 // arguments in those registers not be available to the callee.
1506 bool Matcher::can_be_java_arg( int reg ) {
1507   if(  reg == ECX_num   || reg == EDX_num   ) return true;
1508   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
1509   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1510   return false;
1511 }
1512 
1513 bool Matcher::is_spillable_arg( int reg ) {
1514   return can_be_java_arg(reg);
1515 }
1516 
1517 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1518   // Use hardware integer DIV instruction when
1519   // it is faster than a code which use multiply.
1520   // Only when constant divisor fits into 32 bit
1521   // (min_jint is excluded to get only correct
1522   // positive 32 bit values from negative).
1523   return VM_Version::has_fast_idiv() &&
1524          (divisor == (int)divisor && divisor != min_jint);
1525 }
1526 
1527 // Register for DIVI projection of divmodI
1528 RegMask Matcher::divI_proj_mask() {
1529   return EAX_REG_mask();
1530 }
1531 
1532 // Register for MODI projection of divmodI
1533 RegMask Matcher::modI_proj_mask() {
1534   return EDX_REG_mask();
1535 }
1536 
1537 // Register for DIVL projection of divmodL
1538 RegMask Matcher::divL_proj_mask() {
1539   ShouldNotReachHere();
1540   return RegMask();
1541 }
1542 
1543 // Register for MODL projection of divmodL
1544 RegMask Matcher::modL_proj_mask() {
1545   ShouldNotReachHere();
1546   return RegMask();
1547 }
1548 
1549 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1550   return EBP_REG_mask();
1551 }
1552 
1553 // Returns true if the high 32 bits of the value is known to be zero.
1554 bool is_operand_hi32_zero(Node* n) {
1555   int opc = n->Opcode();
1556   if (opc == Op_LoadUI2L) {
1557     return true;
1558   }
1559   if (opc == Op_AndL) {
1560     Node* o2 = n->in(2);
1561     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1562       return true;
1563     }
1564   }
1565   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1566     return true;
1567   }
1568   return false;
1569 }
1570 
1571 %}
1572 
1573 //----------ENCODING BLOCK-----------------------------------------------------
1574 // This block specifies the encoding classes used by the compiler to output
1575 // byte streams.  Encoding classes generate functions which are called by
1576 // Machine Instruction Nodes in order to generate the bit encoding of the
1577 // instruction.  Operands specify their base encoding interface with the
1578 // interface keyword.  There are currently supported four interfaces,
1579 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1580 // operand to generate a function which returns its register number when
1581 // queried.   CONST_INTER causes an operand to generate a function which
1582 // returns the value of the constant when queried.  MEMORY_INTER causes an
1583 // operand to generate four functions which return the Base Register, the
1584 // Index Register, the Scale Value, and the Offset Value of the operand when
1585 // queried.  COND_INTER causes an operand to generate six functions which
1586 // return the encoding code (ie - encoding bits for the instruction)
1587 // associated with each basic boolean condition for a conditional instruction.
1588 // Instructions specify two basic values for encoding.  They use the
1589 // ins_encode keyword to specify their encoding class (which must be one of
1590 // the class names specified in the encoding block), and they use the
1591 // opcode keyword to specify, in order, their primary, secondary, and
1592 // tertiary opcode.  Only the opcode sections which a particular instruction
1593 // needs for encoding need to be specified.
1594 encode %{
1595   // Build emit functions for each basic byte or larger field in the intel
1596   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1597   // code in the enc_class source block.  Emit functions will live in the
1598   // main source block for now.  In future, we can generalize this by
1599   // adding a syntax that specifies the sizes of fields in an order,
1600   // so that the adlc can build the emit functions automagically
1601 
1602   // Emit primary opcode
1603   enc_class OpcP %{
1604     emit_opcode(cbuf, $primary);
1605   %}
1606 
1607   // Emit secondary opcode
1608   enc_class OpcS %{
1609     emit_opcode(cbuf, $secondary);
1610   %}
1611 
1612   // Emit opcode directly
1613   enc_class Opcode(immI d8) %{
1614     emit_opcode(cbuf, $d8$$constant);
1615   %}
1616 
1617   enc_class SizePrefix %{
1618     emit_opcode(cbuf,0x66);
1619   %}
1620 
1621   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1622     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1623   %}
1624 
1625   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
1626     emit_opcode(cbuf,$opcode$$constant);
1627     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1628   %}
1629 
1630   enc_class mov_r32_imm0( rRegI dst ) %{
1631     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1632     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1633   %}
1634 
1635   enc_class cdq_enc %{
1636     // Full implementation of Java idiv and irem; checks for
1637     // special case as described in JVM spec., p.243 & p.271.
1638     //
1639     //         normal case                           special case
1640     //
1641     // input : rax,: dividend                         min_int
1642     //         reg: divisor                          -1
1643     //
1644     // output: rax,: quotient  (= rax, idiv reg)       min_int
1645     //         rdx: remainder (= rax, irem reg)       0
1646     //
1647     //  Code sequnce:
1648     //
1649     //  81 F8 00 00 00 80    cmp         rax,80000000h
1650     //  0F 85 0B 00 00 00    jne         normal_case
1651     //  33 D2                xor         rdx,edx
1652     //  83 F9 FF             cmp         rcx,0FFh
1653     //  0F 84 03 00 00 00    je          done
1654     //                  normal_case:
1655     //  99                   cdq
1656     //  F7 F9                idiv        rax,ecx
1657     //                  done:
1658     //
1659     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1660     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1661     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1662     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1663     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1664     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1665     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1666     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1667     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1668     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1669     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1670     // normal_case:
1671     emit_opcode(cbuf,0x99);                                         // cdq
1672     // idiv (note: must be emitted by the user of this rule)
1673     // normal:
1674   %}
1675 
1676   // Dense encoding for older common ops
1677   enc_class Opc_plus(immI opcode, rRegI reg) %{
1678     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1679   %}
1680 
1681 
1682   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1683   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1684     // Check for 8-bit immediate, and set sign extend bit in opcode
1685     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1686       emit_opcode(cbuf, $primary | 0x02);
1687     }
1688     else {                          // If 32-bit immediate
1689       emit_opcode(cbuf, $primary);
1690     }
1691   %}
1692 
1693   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
1694     // Emit primary opcode and set sign-extend bit
1695     // Check for 8-bit immediate, and set sign extend bit in opcode
1696     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1697       emit_opcode(cbuf, $primary | 0x02);    }
1698     else {                          // If 32-bit immediate
1699       emit_opcode(cbuf, $primary);
1700     }
1701     // Emit r/m byte with secondary opcode, after primary opcode.
1702     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1703   %}
1704 
1705   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1706     // Check for 8-bit immediate, and set sign extend bit in opcode
1707     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1708       $$$emit8$imm$$constant;
1709     }
1710     else {                          // If 32-bit immediate
1711       // Output immediate
1712       $$$emit32$imm$$constant;
1713     }
1714   %}
1715 
1716   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1717     // Emit primary opcode and set sign-extend bit
1718     // Check for 8-bit immediate, and set sign extend bit in opcode
1719     int con = (int)$imm$$constant; // Throw away top bits
1720     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1721     // Emit r/m byte with secondary opcode, after primary opcode.
1722     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1723     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1724     else                               emit_d32(cbuf,con);
1725   %}
1726 
1727   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1728     // Emit primary opcode and set sign-extend bit
1729     // Check for 8-bit immediate, and set sign extend bit in opcode
1730     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1731     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1732     // Emit r/m byte with tertiary opcode, after primary opcode.
1733     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1734     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1735     else                               emit_d32(cbuf,con);
1736   %}
1737 
1738   enc_class OpcSReg (rRegI dst) %{    // BSWAP
1739     emit_cc(cbuf, $secondary, $dst$$reg );
1740   %}
1741 
1742   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1743     int destlo = $dst$$reg;
1744     int desthi = HIGH_FROM_LOW(destlo);
1745     // bswap lo
1746     emit_opcode(cbuf, 0x0F);
1747     emit_cc(cbuf, 0xC8, destlo);
1748     // bswap hi
1749     emit_opcode(cbuf, 0x0F);
1750     emit_cc(cbuf, 0xC8, desthi);
1751     // xchg lo and hi
1752     emit_opcode(cbuf, 0x87);
1753     emit_rm(cbuf, 0x3, destlo, desthi);
1754   %}
1755 
1756   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1757     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1758   %}
1759 
1760   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1761     $$$emit8$primary;
1762     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1763   %}
1764 
1765   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
1766     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1767     emit_d8(cbuf, op >> 8 );
1768     emit_d8(cbuf, op & 255);
1769   %}
1770 
1771   // emulate a CMOV with a conditional branch around a MOV
1772   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1773     // Invert sense of branch from sense of CMOV
1774     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1775     emit_d8( cbuf, $brOffs$$constant );
1776   %}
1777 
1778   enc_class enc_PartialSubtypeCheck( ) %{
1779     Register Redi = as_Register(EDI_enc); // result register
1780     Register Reax = as_Register(EAX_enc); // super class
1781     Register Recx = as_Register(ECX_enc); // killed
1782     Register Resi = as_Register(ESI_enc); // sub class
1783     Label miss;
1784 
1785     MacroAssembler _masm(&cbuf);
1786     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1787                                      NULL, &miss,
1788                                      /*set_cond_codes:*/ true);
1789     if ($primary) {
1790       __ xorptr(Redi, Redi);
1791     }
1792     __ bind(miss);
1793   %}
1794 
1795   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1796     MacroAssembler masm(&cbuf);
1797     int start = masm.offset();
1798     if (UseSSE >= 2) {
1799       if (VerifyFPU) {
1800         masm.verify_FPU(0, "must be empty in SSE2+ mode");
1801       }
1802     } else {
1803       // External c_calling_convention expects the FPU stack to be 'clean'.
1804       // Compiled code leaves it dirty.  Do cleanup now.
1805       masm.empty_FPU_stack();
1806     }
1807     if (sizeof_FFree_Float_Stack_All == -1) {
1808       sizeof_FFree_Float_Stack_All = masm.offset() - start;
1809     } else {
1810       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1811     }
1812   %}
1813 
1814   enc_class Verify_FPU_For_Leaf %{
1815     if( VerifyFPU ) {
1816       MacroAssembler masm(&cbuf);
1817       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1818     }
1819   %}
1820 
1821   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1822     // This is the instruction starting address for relocation info.
1823     cbuf.set_insts_mark();
1824     $$$emit8$primary;
1825     // CALL directly to the runtime
1826     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1827                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1828 
1829     if (UseSSE >= 2) {
1830       MacroAssembler _masm(&cbuf);
1831       BasicType rt = tf()->return_type();
1832 
1833       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1834         // A C runtime call where the return value is unused.  In SSE2+
1835         // mode the result needs to be removed from the FPU stack.  It's
1836         // likely that this function call could be removed by the
1837         // optimizer if the C function is a pure function.
1838         __ ffree(0);
1839       } else if (rt == T_FLOAT) {
1840         __ lea(rsp, Address(rsp, -4));
1841         __ fstp_s(Address(rsp, 0));
1842         __ movflt(xmm0, Address(rsp, 0));
1843         __ lea(rsp, Address(rsp,  4));
1844       } else if (rt == T_DOUBLE) {
1845         __ lea(rsp, Address(rsp, -8));
1846         __ fstp_d(Address(rsp, 0));
1847         __ movdbl(xmm0, Address(rsp, 0));
1848         __ lea(rsp, Address(rsp,  8));
1849       }
1850     }
1851   %}
1852 
1853 
1854   enc_class pre_call_FPU %{
1855     // If method sets FPU control word restore it here
1856     debug_only(int off0 = cbuf.insts_size());
1857     if( Compile::current()->in_24_bit_fp_mode() ) {
1858       MacroAssembler masm(&cbuf);
1859       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1860     }
1861     debug_only(int off1 = cbuf.insts_size());
1862     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
1863   %}
1864 
1865   enc_class post_call_FPU %{
1866     // If method sets FPU control word do it here also
1867     if( Compile::current()->in_24_bit_fp_mode() ) {
1868       MacroAssembler masm(&cbuf);
1869       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1870     }
1871   %}
1872 
1873   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1874     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1875     // who we intended to call.
1876     cbuf.set_insts_mark();
1877     $$$emit8$primary;
1878     if ( !_method ) {
1879       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1880                      runtime_call_Relocation::spec(), RELOC_IMM32 );
1881     } else if(_optimized_virtual) {
1882       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1883                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1884     } else {
1885       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1886                      static_call_Relocation::spec(), RELOC_IMM32 );
1887     }
1888     if( _method ) {  // Emit stub for static call
1889       emit_java_to_interp(cbuf);
1890     }
1891   %}
1892 
1893   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1894     // !!!!!
1895     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
1896     // emit_call_dynamic_prologue( cbuf );
1897     cbuf.set_insts_mark();
1898     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
1899     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
1900     address  virtual_call_oop_addr = cbuf.insts_mark();
1901     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1902     // who we intended to call.
1903     cbuf.set_insts_mark();
1904     $$$emit8$primary;
1905     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1906                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
1907   %}
1908 
1909   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1910     int disp = in_bytes(methodOopDesc::from_compiled_offset());
1911     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1912 
1913     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
1914     cbuf.set_insts_mark();
1915     $$$emit8$primary;
1916     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1917     emit_d8(cbuf, disp);             // Displacement
1918 
1919   %}
1920 
1921 //   Following encoding is no longer used, but may be restored if calling
1922 //   convention changes significantly.
1923 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1924 //
1925 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1926 //     // int ic_reg     = Matcher::inline_cache_reg();
1927 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
1928 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1929 //     // int imo_encode = Matcher::_regEncode[imo_reg];
1930 //
1931 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1932 //     // // so we load it immediately before the call
1933 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1934 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1935 //
1936 //     // xor rbp,ebp
1937 //     emit_opcode(cbuf, 0x33);
1938 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1939 //
1940 //     // CALL to interpreter.
1941 //     cbuf.set_insts_mark();
1942 //     $$$emit8$primary;
1943 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
1944 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1945 //   %}
1946 
1947   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1948     $$$emit8$primary;
1949     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1950     $$$emit8$shift$$constant;
1951   %}
1952 
1953   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
1954     // Load immediate does not have a zero or sign extended version
1955     // for 8-bit immediates
1956     emit_opcode(cbuf, 0xB8 + $dst$$reg);
1957     $$$emit32$src$$constant;
1958   %}
1959 
1960   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
1961     // Load immediate does not have a zero or sign extended version
1962     // for 8-bit immediates
1963     emit_opcode(cbuf, $primary + $dst$$reg);
1964     $$$emit32$src$$constant;
1965   %}
1966 
1967   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1968     // Load immediate does not have a zero or sign extended version
1969     // for 8-bit immediates
1970     int dst_enc = $dst$$reg;
1971     int src_con = $src$$constant & 0x0FFFFFFFFL;
1972     if (src_con == 0) {
1973       // xor dst, dst
1974       emit_opcode(cbuf, 0x33);
1975       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1976     } else {
1977       emit_opcode(cbuf, $primary + dst_enc);
1978       emit_d32(cbuf, src_con);
1979     }
1980   %}
1981 
1982   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1983     // Load immediate does not have a zero or sign extended version
1984     // for 8-bit immediates
1985     int dst_enc = $dst$$reg + 2;
1986     int src_con = ((julong)($src$$constant)) >> 32;
1987     if (src_con == 0) {
1988       // xor dst, dst
1989       emit_opcode(cbuf, 0x33);
1990       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1991     } else {
1992       emit_opcode(cbuf, $primary + dst_enc);
1993       emit_d32(cbuf, src_con);
1994     }
1995   %}
1996 
1997 
1998   // Encode a reg-reg copy.  If it is useless, then empty encoding.
1999   enc_class enc_Copy( rRegI dst, rRegI src ) %{
2000     encode_Copy( cbuf, $dst$$reg, $src$$reg );
2001   %}
2002 
2003   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
2004     encode_Copy( cbuf, $dst$$reg, $src$$reg );
2005   %}
2006 
2007   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
2008     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2009   %}
2010 
2011   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2012     $$$emit8$primary;
2013     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2014   %}
2015 
2016   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2017     $$$emit8$secondary;
2018     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2019   %}
2020 
2021   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2022     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2023   %}
2024 
2025   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2026     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2027   %}
2028 
2029   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
2030     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2031   %}
2032 
2033   enc_class Con32 (immI src) %{    // Con32(storeImmI)
2034     // Output immediate
2035     $$$emit32$src$$constant;
2036   %}
2037 
2038   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
2039     // Output Float immediate bits
2040     jfloat jf = $src$$constant;
2041     int    jf_as_bits = jint_cast( jf );
2042     emit_d32(cbuf, jf_as_bits);
2043   %}
2044 
2045   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
2046     // Output Float immediate bits
2047     jfloat jf = $src$$constant;
2048     int    jf_as_bits = jint_cast( jf );
2049     emit_d32(cbuf, jf_as_bits);
2050   %}
2051 
2052   enc_class Con16 (immI src) %{    // Con16(storeImmI)
2053     // Output immediate
2054     $$$emit16$src$$constant;
2055   %}
2056 
2057   enc_class Con_d32(immI src) %{
2058     emit_d32(cbuf,$src$$constant);
2059   %}
2060 
2061   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2062     // Output immediate memory reference
2063     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2064     emit_d32(cbuf, 0x00);
2065   %}
2066 
2067   enc_class lock_prefix( ) %{
2068     if( os::is_MP() )
2069       emit_opcode(cbuf,0xF0);         // [Lock]
2070   %}
2071 
2072   // Cmp-xchg long value.
2073   // Note: we need to swap rbx, and rcx before and after the
2074   //       cmpxchg8 instruction because the instruction uses
2075   //       rcx as the high order word of the new value to store but
2076   //       our register encoding uses rbx,.
2077   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2078 
2079     // XCHG  rbx,ecx
2080     emit_opcode(cbuf,0x87);
2081     emit_opcode(cbuf,0xD9);
2082     // [Lock]
2083     if( os::is_MP() )
2084       emit_opcode(cbuf,0xF0);
2085     // CMPXCHG8 [Eptr]
2086     emit_opcode(cbuf,0x0F);
2087     emit_opcode(cbuf,0xC7);
2088     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2089     // XCHG  rbx,ecx
2090     emit_opcode(cbuf,0x87);
2091     emit_opcode(cbuf,0xD9);
2092   %}
2093 
2094   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2095     // [Lock]
2096     if( os::is_MP() )
2097       emit_opcode(cbuf,0xF0);
2098 
2099     // CMPXCHG [Eptr]
2100     emit_opcode(cbuf,0x0F);
2101     emit_opcode(cbuf,0xB1);
2102     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2103   %}
2104 
2105   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2106     int res_encoding = $res$$reg;
2107 
2108     // MOV  res,0
2109     emit_opcode( cbuf, 0xB8 + res_encoding);
2110     emit_d32( cbuf, 0 );
2111     // JNE,s  fail
2112     emit_opcode(cbuf,0x75);
2113     emit_d8(cbuf, 5 );
2114     // MOV  res,1
2115     emit_opcode( cbuf, 0xB8 + res_encoding);
2116     emit_d32( cbuf, 1 );
2117     // fail:
2118   %}
2119 
2120   enc_class set_instruction_start( ) %{
2121     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
2122   %}
2123 
2124   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
2125     int reg_encoding = $ereg$$reg;
2126     int base  = $mem$$base;
2127     int index = $mem$$index;
2128     int scale = $mem$$scale;
2129     int displace = $mem$$disp;
2130     bool disp_is_oop = $mem->disp_is_oop();
2131     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2132   %}
2133 
2134   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2135     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2136     int base  = $mem$$base;
2137     int index = $mem$$index;
2138     int scale = $mem$$scale;
2139     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2140     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
2141     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
2142   %}
2143 
2144   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2145     int r1, r2;
2146     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2147     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2148     emit_opcode(cbuf,0x0F);
2149     emit_opcode(cbuf,$tertiary);
2150     emit_rm(cbuf, 0x3, r1, r2);
2151     emit_d8(cbuf,$cnt$$constant);
2152     emit_d8(cbuf,$primary);
2153     emit_rm(cbuf, 0x3, $secondary, r1);
2154     emit_d8(cbuf,$cnt$$constant);
2155   %}
2156 
2157   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2158     emit_opcode( cbuf, 0x8B ); // Move
2159     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2160     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2161       emit_d8(cbuf,$primary);
2162       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2163       emit_d8(cbuf,$cnt$$constant-32);
2164     }
2165     emit_d8(cbuf,$primary);
2166     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2167     emit_d8(cbuf,31);
2168   %}
2169 
2170   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2171     int r1, r2;
2172     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2173     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2174 
2175     emit_opcode( cbuf, 0x8B ); // Move r1,r2
2176     emit_rm(cbuf, 0x3, r1, r2);
2177     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2178       emit_opcode(cbuf,$primary);
2179       emit_rm(cbuf, 0x3, $secondary, r1);
2180       emit_d8(cbuf,$cnt$$constant-32);
2181     }
2182     emit_opcode(cbuf,0x33);  // XOR r2,r2
2183     emit_rm(cbuf, 0x3, r2, r2);
2184   %}
2185 
2186   // Clone of RegMem but accepts an extra parameter to access each
2187   // half of a double in memory; it never needs relocation info.
2188   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
2189     emit_opcode(cbuf,$opcode$$constant);
2190     int reg_encoding = $rm_reg$$reg;
2191     int base     = $mem$$base;
2192     int index    = $mem$$index;
2193     int scale    = $mem$$scale;
2194     int displace = $mem$$disp + $disp_for_half$$constant;
2195     bool disp_is_oop = false;
2196     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2197   %}
2198 
2199   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2200   //
2201   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2202   // and it never needs relocation information.
2203   // Frequently used to move data between FPU's Stack Top and memory.
2204   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2205     int rm_byte_opcode = $rm_opcode$$constant;
2206     int base     = $mem$$base;
2207     int index    = $mem$$index;
2208     int scale    = $mem$$scale;
2209     int displace = $mem$$disp;
2210     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
2211     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
2212   %}
2213 
2214   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2215     int rm_byte_opcode = $rm_opcode$$constant;
2216     int base     = $mem$$base;
2217     int index    = $mem$$index;
2218     int scale    = $mem$$scale;
2219     int displace = $mem$$disp;
2220     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2221     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
2222   %}
2223 
2224   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
2225     int reg_encoding = $dst$$reg;
2226     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2227     int index        = 0x04;            // 0x04 indicates no index
2228     int scale        = 0x00;            // 0x00 indicates no scale
2229     int displace     = $src1$$constant; // 0x00 indicates no displacement
2230     bool disp_is_oop = false;
2231     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2232   %}
2233 
2234   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
2235     // Compare dst,src
2236     emit_opcode(cbuf,0x3B);
2237     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2238     // jmp dst < src around move
2239     emit_opcode(cbuf,0x7C);
2240     emit_d8(cbuf,2);
2241     // move dst,src
2242     emit_opcode(cbuf,0x8B);
2243     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2244   %}
2245 
2246   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
2247     // Compare dst,src
2248     emit_opcode(cbuf,0x3B);
2249     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2250     // jmp dst > src around move
2251     emit_opcode(cbuf,0x7F);
2252     emit_d8(cbuf,2);
2253     // move dst,src
2254     emit_opcode(cbuf,0x8B);
2255     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2256   %}
2257 
2258   enc_class enc_FPR_store(memory mem, regDPR src) %{
2259     // If src is FPR1, we can just FST to store it.
2260     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2261     int reg_encoding = 0x2; // Just store
2262     int base  = $mem$$base;
2263     int index = $mem$$index;
2264     int scale = $mem$$scale;
2265     int displace = $mem$$disp;
2266     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2267     if( $src$$reg != FPR1L_enc ) {
2268       reg_encoding = 0x3;  // Store & pop
2269       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2270       emit_d8( cbuf, 0xC0-1+$src$$reg );
2271     }
2272     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2273     emit_opcode(cbuf,$primary);
2274     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2275   %}
2276 
2277   enc_class neg_reg(rRegI dst) %{
2278     // NEG $dst
2279     emit_opcode(cbuf,0xF7);
2280     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2281   %}
2282 
2283   enc_class setLT_reg(eCXRegI dst) %{
2284     // SETLT $dst
2285     emit_opcode(cbuf,0x0F);
2286     emit_opcode(cbuf,0x9C);
2287     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2288   %}
2289 
2290   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2291     int tmpReg = $tmp$$reg;
2292 
2293     // SUB $p,$q
2294     emit_opcode(cbuf,0x2B);
2295     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2296     // SBB $tmp,$tmp
2297     emit_opcode(cbuf,0x1B);
2298     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2299     // AND $tmp,$y
2300     emit_opcode(cbuf,0x23);
2301     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2302     // ADD $p,$tmp
2303     emit_opcode(cbuf,0x03);
2304     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2305   %}
2306 
2307   enc_class enc_cmpLTP_mem(rRegI p, rRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
2308     int tmpReg = $tmp$$reg;
2309 
2310     // SUB $p,$q
2311     emit_opcode(cbuf,0x2B);
2312     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2313     // SBB $tmp,$tmp
2314     emit_opcode(cbuf,0x1B);
2315     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2316     // AND $tmp,$y
2317     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2318     emit_opcode(cbuf,0x23);
2319     int reg_encoding = tmpReg;
2320     int base  = $mem$$base;
2321     int index = $mem$$index;
2322     int scale = $mem$$scale;
2323     int displace = $mem$$disp;
2324     bool disp_is_oop = $mem->disp_is_oop();
2325     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2326     // ADD $p,$tmp
2327     emit_opcode(cbuf,0x03);
2328     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2329   %}
2330 
2331   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2332     // TEST shift,32
2333     emit_opcode(cbuf,0xF7);
2334     emit_rm(cbuf, 0x3, 0, ECX_enc);
2335     emit_d32(cbuf,0x20);
2336     // JEQ,s small
2337     emit_opcode(cbuf, 0x74);
2338     emit_d8(cbuf, 0x04);
2339     // MOV    $dst.hi,$dst.lo
2340     emit_opcode( cbuf, 0x8B );
2341     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2342     // CLR    $dst.lo
2343     emit_opcode(cbuf, 0x33);
2344     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2345 // small:
2346     // SHLD   $dst.hi,$dst.lo,$shift
2347     emit_opcode(cbuf,0x0F);
2348     emit_opcode(cbuf,0xA5);
2349     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2350     // SHL    $dst.lo,$shift"
2351     emit_opcode(cbuf,0xD3);
2352     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2353   %}
2354 
2355   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2356     // TEST shift,32
2357     emit_opcode(cbuf,0xF7);
2358     emit_rm(cbuf, 0x3, 0, ECX_enc);
2359     emit_d32(cbuf,0x20);
2360     // JEQ,s small
2361     emit_opcode(cbuf, 0x74);
2362     emit_d8(cbuf, 0x04);
2363     // MOV    $dst.lo,$dst.hi
2364     emit_opcode( cbuf, 0x8B );
2365     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2366     // CLR    $dst.hi
2367     emit_opcode(cbuf, 0x33);
2368     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2369 // small:
2370     // SHRD   $dst.lo,$dst.hi,$shift
2371     emit_opcode(cbuf,0x0F);
2372     emit_opcode(cbuf,0xAD);
2373     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2374     // SHR    $dst.hi,$shift"
2375     emit_opcode(cbuf,0xD3);
2376     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2377   %}
2378 
2379   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2380     // TEST shift,32
2381     emit_opcode(cbuf,0xF7);
2382     emit_rm(cbuf, 0x3, 0, ECX_enc);
2383     emit_d32(cbuf,0x20);
2384     // JEQ,s small
2385     emit_opcode(cbuf, 0x74);
2386     emit_d8(cbuf, 0x05);
2387     // MOV    $dst.lo,$dst.hi
2388     emit_opcode( cbuf, 0x8B );
2389     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2390     // SAR    $dst.hi,31
2391     emit_opcode(cbuf, 0xC1);
2392     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2393     emit_d8(cbuf, 0x1F );
2394 // small:
2395     // SHRD   $dst.lo,$dst.hi,$shift
2396     emit_opcode(cbuf,0x0F);
2397     emit_opcode(cbuf,0xAD);
2398     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2399     // SAR    $dst.hi,$shift"
2400     emit_opcode(cbuf,0xD3);
2401     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2402   %}
2403 
2404 
2405   // ----------------- Encodings for floating point unit -----------------
2406   // May leave result in FPU-TOS or FPU reg depending on opcodes
2407   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
2408     $$$emit8$primary;
2409     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2410   %}
2411 
2412   // Pop argument in FPR0 with FSTP ST(0)
2413   enc_class PopFPU() %{
2414     emit_opcode( cbuf, 0xDD );
2415     emit_d8( cbuf, 0xD8 );
2416   %}
2417 
2418   // !!!!! equivalent to Pop_Reg_F
2419   enc_class Pop_Reg_DPR( regDPR dst ) %{
2420     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2421     emit_d8( cbuf, 0xD8+$dst$$reg );
2422   %}
2423 
2424   enc_class Push_Reg_DPR( regDPR dst ) %{
2425     emit_opcode( cbuf, 0xD9 );
2426     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2427   %}
2428 
2429   enc_class strictfp_bias1( regDPR dst ) %{
2430     emit_opcode( cbuf, 0xDB );           // FLD m80real
2431     emit_opcode( cbuf, 0x2D );
2432     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2433     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2434     emit_opcode( cbuf, 0xC8+$dst$$reg );
2435   %}
2436 
2437   enc_class strictfp_bias2( regDPR dst ) %{
2438     emit_opcode( cbuf, 0xDB );           // FLD m80real
2439     emit_opcode( cbuf, 0x2D );
2440     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2441     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2442     emit_opcode( cbuf, 0xC8+$dst$$reg );
2443   %}
2444 
2445   // Special case for moving an integer register to a stack slot.
2446   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2447     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2448   %}
2449 
2450   // Special case for moving a register to a stack slot.
2451   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2452     // Opcode already emitted
2453     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2454     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2455     emit_d32(cbuf, $dst$$disp);   // Displacement
2456   %}
2457 
2458   // Push the integer in stackSlot 'src' onto FP-stack
2459   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2460     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2461   %}
2462 
2463   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2464   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2465     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2466   %}
2467 
2468   // Same as Pop_Mem_F except for opcode
2469   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2470   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2471     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2472   %}
2473 
2474   enc_class Pop_Reg_FPR( regFPR dst ) %{
2475     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2476     emit_d8( cbuf, 0xD8+$dst$$reg );
2477   %}
2478 
2479   enc_class Push_Reg_FPR( regFPR dst ) %{
2480     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2481     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2482   %}
2483 
2484   // Push FPU's float to a stack-slot, and pop FPU-stack
2485   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
2486     int pop = 0x02;
2487     if ($src$$reg != FPR1L_enc) {
2488       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2489       emit_d8( cbuf, 0xC0-1+$src$$reg );
2490       pop = 0x03;
2491     }
2492     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2493   %}
2494 
2495   // Push FPU's double to a stack-slot, and pop FPU-stack
2496   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
2497     int pop = 0x02;
2498     if ($src$$reg != FPR1L_enc) {
2499       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2500       emit_d8( cbuf, 0xC0-1+$src$$reg );
2501       pop = 0x03;
2502     }
2503     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2504   %}
2505 
2506   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2507   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
2508     int pop = 0xD0 - 1; // -1 since we skip FLD
2509     if ($src$$reg != FPR1L_enc) {
2510       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2511       emit_d8( cbuf, 0xC0-1+$src$$reg );
2512       pop = 0xD8;
2513     }
2514     emit_opcode( cbuf, 0xDD );
2515     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2516   %}
2517 
2518 
2519   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
2520     // load dst in FPR0
2521     emit_opcode( cbuf, 0xD9 );
2522     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2523     if ($src$$reg != FPR1L_enc) {
2524       // fincstp
2525       emit_opcode (cbuf, 0xD9);
2526       emit_opcode (cbuf, 0xF7);
2527       // swap src with FPR1:
2528       // FXCH FPR1 with src
2529       emit_opcode(cbuf, 0xD9);
2530       emit_d8(cbuf, 0xC8-1+$src$$reg );
2531       // fdecstp
2532       emit_opcode (cbuf, 0xD9);
2533       emit_opcode (cbuf, 0xF6);
2534     }
2535   %}
2536 
2537   enc_class Push_ModD_encoding(regD src0, regD src1) %{
2538     MacroAssembler _masm(&cbuf);
2539     __ subptr(rsp, 8);
2540     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
2541     __ fld_d(Address(rsp, 0));
2542     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
2543     __ fld_d(Address(rsp, 0));
2544   %}
2545 
2546   enc_class Push_ModF_encoding(regF src0, regF src1) %{
2547     MacroAssembler _masm(&cbuf);
2548     __ subptr(rsp, 4);
2549     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
2550     __ fld_s(Address(rsp, 0));
2551     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
2552     __ fld_s(Address(rsp, 0));
2553   %}
2554 
2555   enc_class Push_ResultD(regD dst) %{
2556     MacroAssembler _masm(&cbuf);
2557     __ fstp_d(Address(rsp, 0));
2558     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2559     __ addptr(rsp, 8);
2560   %}
2561 
2562   enc_class Push_ResultF(regF dst, immI d8) %{
2563     MacroAssembler _masm(&cbuf);
2564     __ fstp_s(Address(rsp, 0));
2565     __ movflt($dst$$XMMRegister, Address(rsp, 0));
2566     __ addptr(rsp, $d8$$constant);
2567   %}
2568 
2569   enc_class Push_SrcD(regD src) %{
2570     MacroAssembler _masm(&cbuf);
2571     __ subptr(rsp, 8);
2572     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2573     __ fld_d(Address(rsp, 0));
2574   %}
2575 
2576   enc_class push_stack_temp_qword() %{
2577     MacroAssembler _masm(&cbuf);
2578     __ subptr(rsp, 8);
2579   %}
2580 
2581   enc_class pop_stack_temp_qword() %{
2582     MacroAssembler _masm(&cbuf);
2583     __ addptr(rsp, 8);
2584   %}
2585 
2586   enc_class push_xmm_to_fpr1(regD src) %{
2587     MacroAssembler _masm(&cbuf);
2588     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2589     __ fld_d(Address(rsp, 0));
2590   %}
2591 
2592   enc_class Push_Result_Mod_DPR( regDPR src) %{
2593     if ($src$$reg != FPR1L_enc) {
2594       // fincstp
2595       emit_opcode (cbuf, 0xD9);
2596       emit_opcode (cbuf, 0xF7);
2597       // FXCH FPR1 with src
2598       emit_opcode(cbuf, 0xD9);
2599       emit_d8(cbuf, 0xC8-1+$src$$reg );
2600       // fdecstp
2601       emit_opcode (cbuf, 0xD9);
2602       emit_opcode (cbuf, 0xF6);
2603     }
2604     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2605     // // FSTP   FPR$dst$$reg
2606     // emit_opcode( cbuf, 0xDD );
2607     // emit_d8( cbuf, 0xD8+$dst$$reg );
2608   %}
2609 
2610   enc_class fnstsw_sahf_skip_parity() %{
2611     // fnstsw ax
2612     emit_opcode( cbuf, 0xDF );
2613     emit_opcode( cbuf, 0xE0 );
2614     // sahf
2615     emit_opcode( cbuf, 0x9E );
2616     // jnp  ::skip
2617     emit_opcode( cbuf, 0x7B );
2618     emit_opcode( cbuf, 0x05 );
2619   %}
2620 
2621   enc_class emitModDPR() %{
2622     // fprem must be iterative
2623     // :: loop
2624     // fprem
2625     emit_opcode( cbuf, 0xD9 );
2626     emit_opcode( cbuf, 0xF8 );
2627     // wait
2628     emit_opcode( cbuf, 0x9b );
2629     // fnstsw ax
2630     emit_opcode( cbuf, 0xDF );
2631     emit_opcode( cbuf, 0xE0 );
2632     // sahf
2633     emit_opcode( cbuf, 0x9E );
2634     // jp  ::loop
2635     emit_opcode( cbuf, 0x0F );
2636     emit_opcode( cbuf, 0x8A );
2637     emit_opcode( cbuf, 0xF4 );
2638     emit_opcode( cbuf, 0xFF );
2639     emit_opcode( cbuf, 0xFF );
2640     emit_opcode( cbuf, 0xFF );
2641   %}
2642 
2643   enc_class fpu_flags() %{
2644     // fnstsw_ax
2645     emit_opcode( cbuf, 0xDF);
2646     emit_opcode( cbuf, 0xE0);
2647     // test ax,0x0400
2648     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2649     emit_opcode( cbuf, 0xA9 );
2650     emit_d16   ( cbuf, 0x0400 );
2651     // // // This sequence works, but stalls for 12-16 cycles on PPro
2652     // // test rax,0x0400
2653     // emit_opcode( cbuf, 0xA9 );
2654     // emit_d32   ( cbuf, 0x00000400 );
2655     //
2656     // jz exit (no unordered comparison)
2657     emit_opcode( cbuf, 0x74 );
2658     emit_d8    ( cbuf, 0x02 );
2659     // mov ah,1 - treat as LT case (set carry flag)
2660     emit_opcode( cbuf, 0xB4 );
2661     emit_d8    ( cbuf, 0x01 );
2662     // sahf
2663     emit_opcode( cbuf, 0x9E);
2664   %}
2665 
2666   enc_class cmpF_P6_fixup() %{
2667     // Fixup the integer flags in case comparison involved a NaN
2668     //
2669     // JNP exit (no unordered comparison, P-flag is set by NaN)
2670     emit_opcode( cbuf, 0x7B );
2671     emit_d8    ( cbuf, 0x03 );
2672     // MOV AH,1 - treat as LT case (set carry flag)
2673     emit_opcode( cbuf, 0xB4 );
2674     emit_d8    ( cbuf, 0x01 );
2675     // SAHF
2676     emit_opcode( cbuf, 0x9E);
2677     // NOP     // target for branch to avoid branch to branch
2678     emit_opcode( cbuf, 0x90);
2679   %}
2680 
2681 //     fnstsw_ax();
2682 //     sahf();
2683 //     movl(dst, nan_result);
2684 //     jcc(Assembler::parity, exit);
2685 //     movl(dst, less_result);
2686 //     jcc(Assembler::below, exit);
2687 //     movl(dst, equal_result);
2688 //     jcc(Assembler::equal, exit);
2689 //     movl(dst, greater_result);
2690 
2691 // less_result     =  1;
2692 // greater_result  = -1;
2693 // equal_result    = 0;
2694 // nan_result      = -1;
2695 
2696   enc_class CmpF_Result(rRegI dst) %{
2697     // fnstsw_ax();
2698     emit_opcode( cbuf, 0xDF);
2699     emit_opcode( cbuf, 0xE0);
2700     // sahf
2701     emit_opcode( cbuf, 0x9E);
2702     // movl(dst, nan_result);
2703     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2704     emit_d32( cbuf, -1 );
2705     // jcc(Assembler::parity, exit);
2706     emit_opcode( cbuf, 0x7A );
2707     emit_d8    ( cbuf, 0x13 );
2708     // movl(dst, less_result);
2709     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2710     emit_d32( cbuf, -1 );
2711     // jcc(Assembler::below, exit);
2712     emit_opcode( cbuf, 0x72 );
2713     emit_d8    ( cbuf, 0x0C );
2714     // movl(dst, equal_result);
2715     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2716     emit_d32( cbuf, 0 );
2717     // jcc(Assembler::equal, exit);
2718     emit_opcode( cbuf, 0x74 );
2719     emit_d8    ( cbuf, 0x05 );
2720     // movl(dst, greater_result);
2721     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2722     emit_d32( cbuf, 1 );
2723   %}
2724 
2725 
2726   // Compare the longs and set flags
2727   // BROKEN!  Do Not use as-is
2728   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2729     // CMP    $src1.hi,$src2.hi
2730     emit_opcode( cbuf, 0x3B );
2731     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2732     // JNE,s  done
2733     emit_opcode(cbuf,0x75);
2734     emit_d8(cbuf, 2 );
2735     // CMP    $src1.lo,$src2.lo
2736     emit_opcode( cbuf, 0x3B );
2737     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2738 // done:
2739   %}
2740 
2741   enc_class convert_int_long( regL dst, rRegI src ) %{
2742     // mov $dst.lo,$src
2743     int dst_encoding = $dst$$reg;
2744     int src_encoding = $src$$reg;
2745     encode_Copy( cbuf, dst_encoding  , src_encoding );
2746     // mov $dst.hi,$src
2747     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2748     // sar $dst.hi,31
2749     emit_opcode( cbuf, 0xC1 );
2750     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2751     emit_d8(cbuf, 0x1F );
2752   %}
2753 
2754   enc_class convert_long_double( eRegL src ) %{
2755     // push $src.hi
2756     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2757     // push $src.lo
2758     emit_opcode(cbuf, 0x50+$src$$reg  );
2759     // fild 64-bits at [SP]
2760     emit_opcode(cbuf,0xdf);
2761     emit_d8(cbuf, 0x6C);
2762     emit_d8(cbuf, 0x24);
2763     emit_d8(cbuf, 0x00);
2764     // pop stack
2765     emit_opcode(cbuf, 0x83); // add  SP, #8
2766     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2767     emit_d8(cbuf, 0x8);
2768   %}
2769 
2770   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2771     // IMUL   EDX:EAX,$src1
2772     emit_opcode( cbuf, 0xF7 );
2773     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2774     // SAR    EDX,$cnt-32
2775     int shift_count = ((int)$cnt$$constant) - 32;
2776     if (shift_count > 0) {
2777       emit_opcode(cbuf, 0xC1);
2778       emit_rm(cbuf, 0x3, 7, $dst$$reg );
2779       emit_d8(cbuf, shift_count);
2780     }
2781   %}
2782 
2783   // this version doesn't have add sp, 8
2784   enc_class convert_long_double2( eRegL src ) %{
2785     // push $src.hi
2786     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2787     // push $src.lo
2788     emit_opcode(cbuf, 0x50+$src$$reg  );
2789     // fild 64-bits at [SP]
2790     emit_opcode(cbuf,0xdf);
2791     emit_d8(cbuf, 0x6C);
2792     emit_d8(cbuf, 0x24);
2793     emit_d8(cbuf, 0x00);
2794   %}
2795 
2796   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2797     // Basic idea: long = (long)int * (long)int
2798     // IMUL EDX:EAX, src
2799     emit_opcode( cbuf, 0xF7 );
2800     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
2801   %}
2802 
2803   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
2804     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
2805     // MUL EDX:EAX, src
2806     emit_opcode( cbuf, 0xF7 );
2807     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
2808   %}
2809 
2810   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
2811     // Basic idea: lo(result) = lo(x_lo * y_lo)
2812     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
2813     // MOV    $tmp,$src.lo
2814     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
2815     // IMUL   $tmp,EDX
2816     emit_opcode( cbuf, 0x0F );
2817     emit_opcode( cbuf, 0xAF );
2818     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2819     // MOV    EDX,$src.hi
2820     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
2821     // IMUL   EDX,EAX
2822     emit_opcode( cbuf, 0x0F );
2823     emit_opcode( cbuf, 0xAF );
2824     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2825     // ADD    $tmp,EDX
2826     emit_opcode( cbuf, 0x03 );
2827     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2828     // MUL   EDX:EAX,$src.lo
2829     emit_opcode( cbuf, 0xF7 );
2830     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
2831     // ADD    EDX,ESI
2832     emit_opcode( cbuf, 0x03 );
2833     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
2834   %}
2835 
2836   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
2837     // Basic idea: lo(result) = lo(src * y_lo)
2838     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
2839     // IMUL   $tmp,EDX,$src
2840     emit_opcode( cbuf, 0x6B );
2841     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2842     emit_d8( cbuf, (int)$src$$constant );
2843     // MOV    EDX,$src
2844     emit_opcode(cbuf, 0xB8 + EDX_enc);
2845     emit_d32( cbuf, (int)$src$$constant );
2846     // MUL   EDX:EAX,EDX
2847     emit_opcode( cbuf, 0xF7 );
2848     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
2849     // ADD    EDX,ESI
2850     emit_opcode( cbuf, 0x03 );
2851     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
2852   %}
2853 
2854   enc_class long_div( eRegL src1, eRegL src2 ) %{
2855     // PUSH src1.hi
2856     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2857     // PUSH src1.lo
2858     emit_opcode(cbuf,               0x50+$src1$$reg  );
2859     // PUSH src2.hi
2860     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2861     // PUSH src2.lo
2862     emit_opcode(cbuf,               0x50+$src2$$reg  );
2863     // CALL directly to the runtime
2864     cbuf.set_insts_mark();
2865     emit_opcode(cbuf,0xE8);       // Call into runtime
2866     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2867     // Restore stack
2868     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2869     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2870     emit_d8(cbuf, 4*4);
2871   %}
2872 
2873   enc_class long_mod( eRegL src1, eRegL src2 ) %{
2874     // PUSH src1.hi
2875     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2876     // PUSH src1.lo
2877     emit_opcode(cbuf,               0x50+$src1$$reg  );
2878     // PUSH src2.hi
2879     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2880     // PUSH src2.lo
2881     emit_opcode(cbuf,               0x50+$src2$$reg  );
2882     // CALL directly to the runtime
2883     cbuf.set_insts_mark();
2884     emit_opcode(cbuf,0xE8);       // Call into runtime
2885     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2886     // Restore stack
2887     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2888     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2889     emit_d8(cbuf, 4*4);
2890   %}
2891 
2892   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
2893     // MOV   $tmp,$src.lo
2894     emit_opcode(cbuf, 0x8B);
2895     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2896     // OR    $tmp,$src.hi
2897     emit_opcode(cbuf, 0x0B);
2898     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2899   %}
2900 
2901   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
2902     // CMP    $src1.lo,$src2.lo
2903     emit_opcode( cbuf, 0x3B );
2904     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2905     // JNE,s  skip
2906     emit_cc(cbuf, 0x70, 0x5);
2907     emit_d8(cbuf,2);
2908     // CMP    $src1.hi,$src2.hi
2909     emit_opcode( cbuf, 0x3B );
2910     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2911   %}
2912 
2913   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
2914     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
2915     emit_opcode( cbuf, 0x3B );
2916     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2917     // MOV    $tmp,$src1.hi
2918     emit_opcode( cbuf, 0x8B );
2919     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
2920     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
2921     emit_opcode( cbuf, 0x1B );
2922     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
2923   %}
2924 
2925   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
2926     // XOR    $tmp,$tmp
2927     emit_opcode(cbuf,0x33);  // XOR
2928     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
2929     // CMP    $tmp,$src.lo
2930     emit_opcode( cbuf, 0x3B );
2931     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
2932     // SBB    $tmp,$src.hi
2933     emit_opcode( cbuf, 0x1B );
2934     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
2935   %}
2936 
2937  // Sniff, sniff... smells like Gnu Superoptimizer
2938   enc_class neg_long( eRegL dst ) %{
2939     emit_opcode(cbuf,0xF7);    // NEG hi
2940     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2941     emit_opcode(cbuf,0xF7);    // NEG lo
2942     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
2943     emit_opcode(cbuf,0x83);    // SBB hi,0
2944     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2945     emit_d8    (cbuf,0 );
2946   %}
2947 
2948 
2949   // Because the transitions from emitted code to the runtime
2950   // monitorenter/exit helper stubs are so slow it's critical that
2951   // we inline both the stack-locking fast-path and the inflated fast path.
2952   //
2953   // See also: cmpFastLock and cmpFastUnlock.
2954   //
2955   // What follows is a specialized inline transliteration of the code
2956   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
2957   // another option would be to emit TrySlowEnter and TrySlowExit methods
2958   // at startup-time.  These methods would accept arguments as
2959   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
2960   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
2961   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
2962   // In practice, however, the # of lock sites is bounded and is usually small.
2963   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
2964   // if the processor uses simple bimodal branch predictors keyed by EIP
2965   // Since the helper routines would be called from multiple synchronization
2966   // sites.
2967   //
2968   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
2969   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
2970   // to those specialized methods.  That'd give us a mostly platform-independent
2971   // implementation that the JITs could optimize and inline at their pleasure.
2972   // Done correctly, the only time we'd need to cross to native could would be
2973   // to park() or unpark() threads.  We'd also need a few more unsafe operators
2974   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
2975   // (b) explicit barriers or fence operations.
2976   //
2977   // TODO:
2978   //
2979   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
2980   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
2981   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
2982   //    the lock operators would typically be faster than reifying Self.
2983   //
2984   // *  Ideally I'd define the primitives as:
2985   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
2986   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
2987   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
2988   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
2989   //    Furthermore the register assignments are overconstrained, possibly resulting in
2990   //    sub-optimal code near the synchronization site.
2991   //
2992   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
2993   //    Alternately, use a better sp-proximity test.
2994   //
2995   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
2996   //    Either one is sufficient to uniquely identify a thread.
2997   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
2998   //
2999   // *  Intrinsify notify() and notifyAll() for the common cases where the
3000   //    object is locked by the calling thread but the waitlist is empty.
3001   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
3002   //
3003   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
3004   //    But beware of excessive branch density on AMD Opterons.
3005   //
3006   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
3007   //    or failure of the fast-path.  If the fast-path fails then we pass
3008   //    control to the slow-path, typically in C.  In Fast_Lock and
3009   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
3010   //    will emit a conditional branch immediately after the node.
3011   //    So we have branches to branches and lots of ICC.ZF games.
3012   //    Instead, it might be better to have C2 pass a "FailureLabel"
3013   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
3014   //    will drop through the node.  ICC.ZF is undefined at exit.
3015   //    In the case of failure, the node will branch directly to the
3016   //    FailureLabel
3017 
3018 
3019   // obj: object to lock
3020   // box: on-stack box address (displaced header location) - KILLED
3021   // rax,: tmp -- KILLED
3022   // scr: tmp -- KILLED
3023   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
3024 
3025     Register objReg = as_Register($obj$$reg);
3026     Register boxReg = as_Register($box$$reg);
3027     Register tmpReg = as_Register($tmp$$reg);
3028     Register scrReg = as_Register($scr$$reg);
3029 
3030     // Ensure the register assignents are disjoint
3031     guarantee (objReg != boxReg, "") ;
3032     guarantee (objReg != tmpReg, "") ;
3033     guarantee (objReg != scrReg, "") ;
3034     guarantee (boxReg != tmpReg, "") ;
3035     guarantee (boxReg != scrReg, "") ;
3036     guarantee (tmpReg == as_Register(EAX_enc), "") ;
3037 
3038     MacroAssembler masm(&cbuf);
3039 
3040     if (_counters != NULL) {
3041       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3042     }
3043     if (EmitSync & 1) {
3044         // set box->dhw = unused_mark (3)
3045         // Force all sync thru slow-path: slow_enter() and slow_exit() 
3046         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3047         masm.cmpptr (rsp, (int32_t)0) ;                        
3048     } else 
3049     if (EmitSync & 2) { 
3050         Label DONE_LABEL ;           
3051         if (UseBiasedLocking) {
3052            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3053            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3054         }
3055 
3056         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3057         masm.orptr (tmpReg, 0x1);
3058         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3059         if (os::is_MP()) { masm.lock();  }
3060         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3061         masm.jcc(Assembler::equal, DONE_LABEL);
3062         // Recursive locking
3063         masm.subptr(tmpReg, rsp);
3064         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3065         masm.movptr(Address(boxReg, 0), tmpReg);
3066         masm.bind(DONE_LABEL) ; 
3067     } else {  
3068       // Possible cases that we'll encounter in fast_lock 
3069       // ------------------------------------------------
3070       // * Inflated
3071       //    -- unlocked
3072       //    -- Locked
3073       //       = by self
3074       //       = by other
3075       // * biased
3076       //    -- by Self
3077       //    -- by other
3078       // * neutral
3079       // * stack-locked
3080       //    -- by self
3081       //       = sp-proximity test hits
3082       //       = sp-proximity test generates false-negative
3083       //    -- by other
3084       //
3085 
3086       Label IsInflated, DONE_LABEL, PopDone ;
3087 
3088       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3089       // order to reduce the number of conditional branches in the most common cases.
3090       // Beware -- there's a subtle invariant that fetch of the markword
3091       // at [FETCH], below, will never observe a biased encoding (*101b).
3092       // If this invariant is not held we risk exclusion (safety) failure.
3093       if (UseBiasedLocking && !UseOptoBiasInlining) {
3094         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3095       }
3096 
3097       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3098       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3099       masm.jccb  (Assembler::notZero, IsInflated) ;
3100 
3101       // Attempt stack-locking ...
3102       masm.orptr (tmpReg, 0x1);
3103       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3104       if (os::is_MP()) { masm.lock();  }
3105       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3106       if (_counters != NULL) {
3107         masm.cond_inc32(Assembler::equal,
3108                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3109       }
3110       masm.jccb (Assembler::equal, DONE_LABEL);
3111 
3112       // Recursive locking
3113       masm.subptr(tmpReg, rsp);
3114       masm.andptr(tmpReg, 0xFFFFF003 );
3115       masm.movptr(Address(boxReg, 0), tmpReg);
3116       if (_counters != NULL) {
3117         masm.cond_inc32(Assembler::equal,
3118                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3119       }
3120       masm.jmp  (DONE_LABEL) ;
3121 
3122       masm.bind (IsInflated) ;
3123 
3124       // The object is inflated.
3125       //
3126       // TODO-FIXME: eliminate the ugly use of manifest constants:
3127       //   Use markOopDesc::monitor_value instead of "2".
3128       //   use markOop::unused_mark() instead of "3".
3129       // The tmpReg value is an objectMonitor reference ORed with
3130       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3131       // objectmonitor pointer by masking off the "2" bit or we can just
3132       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3133       // field offsets with "-2" to compensate for and annul the low-order tag bit.
3134       //
3135       // I use the latter as it avoids AGI stalls.
3136       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3137       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3138       //
3139       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3140 
3141       // boxReg refers to the on-stack BasicLock in the current frame.
3142       // We'd like to write:
3143       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3144       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3145       // additional latency as we have another ST in the store buffer that must drain.
3146 
3147       if (EmitSync & 8192) { 
3148          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3149          masm.get_thread (scrReg) ; 
3150          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3151          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3152          if (os::is_MP()) { masm.lock(); } 
3153          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3154       } else 
3155       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3156          masm.movptr(scrReg, boxReg) ; 
3157          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3158 
3159          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3160          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3161             // prefetchw [eax + Offset(_owner)-2]
3162             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3163          }
3164 
3165          if ((EmitSync & 64) == 0) {
3166            // Optimistic form: consider XORL tmpReg,tmpReg
3167            masm.movptr(tmpReg, NULL_WORD) ; 
3168          } else { 
3169            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3170            // Test-And-CAS instead of CAS
3171            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3172            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3173            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3174          }
3175 
3176          // Appears unlocked - try to swing _owner from null to non-null.
3177          // Ideally, I'd manifest "Self" with get_thread and then attempt
3178          // to CAS the register containing Self into m->Owner.
3179          // But we don't have enough registers, so instead we can either try to CAS
3180          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3181          // we later store "Self" into m->Owner.  Transiently storing a stack address
3182          // (rsp or the address of the box) into  m->owner is harmless.
3183          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3184          if (os::is_MP()) { masm.lock();  }
3185          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3186          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3187          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3188          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3189          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3190          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3191                        
3192          // If the CAS fails we can either retry or pass control to the slow-path.  
3193          // We use the latter tactic.  
3194          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3195          // If the CAS was successful ...
3196          //   Self has acquired the lock
3197          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3198          // Intentional fall-through into DONE_LABEL ...
3199       } else {
3200          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3201          masm.movptr(boxReg, tmpReg) ; 
3202 
3203          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3204          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3205             // prefetchw [eax + Offset(_owner)-2]
3206             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3207          }
3208 
3209          if ((EmitSync & 64) == 0) {
3210            // Optimistic form
3211            masm.xorptr  (tmpReg, tmpReg) ; 
3212          } else { 
3213            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3214            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3215            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3216            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3217          }
3218 
3219          // Appears unlocked - try to swing _owner from null to non-null.
3220          // Use either "Self" (in scr) or rsp as thread identity in _owner.
3221          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3222          masm.get_thread (scrReg) ;
3223          if (os::is_MP()) { masm.lock(); }
3224          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3225 
3226          // If the CAS fails we can either retry or pass control to the slow-path.
3227          // We use the latter tactic.
3228          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3229          // If the CAS was successful ...
3230          //   Self has acquired the lock
3231          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3232          // Intentional fall-through into DONE_LABEL ...
3233       }
3234 
3235       // DONE_LABEL is a hot target - we'd really like to place it at the
3236       // start of cache line by padding with NOPs.
3237       // See the AMD and Intel software optimization manuals for the
3238       // most efficient "long" NOP encodings.
3239       // Unfortunately none of our alignment mechanisms suffice.
3240       masm.bind(DONE_LABEL);
3241 
3242       // Avoid branch-to-branch on AMD processors
3243       // This appears to be superstition.
3244       if (EmitSync & 32) masm.nop() ;
3245 
3246 
3247       // At DONE_LABEL the icc ZFlag is set as follows ...
3248       // Fast_Unlock uses the same protocol.
3249       // ZFlag == 1 -> Success
3250       // ZFlag == 0 -> Failure - force control through the slow-path
3251     }
3252   %}
3253 
3254   // obj: object to unlock
3255   // box: box address (displaced header location), killed.  Must be EAX.
3256   // rbx,: killed tmp; cannot be obj nor box.
3257   //
3258   // Some commentary on balanced locking:
3259   //
3260   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3261   // Methods that don't have provably balanced locking are forced to run in the
3262   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3263   // The interpreter provides two properties:
3264   // I1:  At return-time the interpreter automatically and quietly unlocks any
3265   //      objects acquired the current activation (frame).  Recall that the
3266   //      interpreter maintains an on-stack list of locks currently held by
3267   //      a frame.
3268   // I2:  If a method attempts to unlock an object that is not held by the
3269   //      the frame the interpreter throws IMSX.
3270   //
3271   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3272   // B() doesn't have provably balanced locking so it runs in the interpreter.
3273   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3274   // is still locked by A().
3275   //
3276   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3277   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3278   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3279   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3280 
3281   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3282 
3283     Register objReg = as_Register($obj$$reg);
3284     Register boxReg = as_Register($box$$reg);
3285     Register tmpReg = as_Register($tmp$$reg);
3286 
3287     guarantee (objReg != boxReg, "") ;
3288     guarantee (objReg != tmpReg, "") ;
3289     guarantee (boxReg != tmpReg, "") ;
3290     guarantee (boxReg == as_Register(EAX_enc), "") ;
3291     MacroAssembler masm(&cbuf);
3292 
3293     if (EmitSync & 4) {
3294       // Disable - inhibit all inlining.  Force control through the slow-path
3295       masm.cmpptr (rsp, 0) ; 
3296     } else 
3297     if (EmitSync & 8) {
3298       Label DONE_LABEL ;
3299       if (UseBiasedLocking) {
3300          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3301       }
3302       // classic stack-locking code ...
3303       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3304       masm.testptr(tmpReg, tmpReg) ;
3305       masm.jcc   (Assembler::zero, DONE_LABEL) ;
3306       if (os::is_MP()) { masm.lock(); }
3307       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3308       masm.bind(DONE_LABEL);
3309     } else {
3310       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3311 
3312       // Critically, the biased locking test must have precedence over
3313       // and appear before the (box->dhw == 0) recursive stack-lock test.
3314       if (UseBiasedLocking && !UseOptoBiasInlining) {
3315          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3316       }
3317       
3318       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3319       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3320       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3321 
3322       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3323       masm.jccb  (Assembler::zero, Stacked) ;
3324 
3325       masm.bind  (Inflated) ;
3326       // It's inflated.
3327       // Despite our balanced locking property we still check that m->_owner == Self
3328       // as java routines or native JNI code called by this thread might
3329       // have released the lock.
3330       // Refer to the comments in synchronizer.cpp for how we might encode extra
3331       // state in _succ so we can avoid fetching EntryList|cxq.
3332       //
3333       // I'd like to add more cases in fast_lock() and fast_unlock() --
3334       // such as recursive enter and exit -- but we have to be wary of
3335       // I$ bloat, T$ effects and BP$ effects.
3336       //
3337       // If there's no contention try a 1-0 exit.  That is, exit without
3338       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3339       // we detect and recover from the race that the 1-0 exit admits.
3340       //
3341       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3342       // before it STs null into _owner, releasing the lock.  Updates
3343       // to data protected by the critical section must be visible before
3344       // we drop the lock (and thus before any other thread could acquire
3345       // the lock and observe the fields protected by the lock).
3346       // IA32's memory-model is SPO, so STs are ordered with respect to
3347       // each other and there's no need for an explicit barrier (fence).
3348       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3349 
3350       masm.get_thread (boxReg) ;
3351       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3352         // prefetchw [ebx + Offset(_owner)-2]
3353         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3354       }
3355 
3356       // Note that we could employ various encoding schemes to reduce
3357       // the number of loads below (currently 4) to just 2 or 3.
3358       // Refer to the comments in synchronizer.cpp.
3359       // In practice the chain of fetches doesn't seem to impact performance, however.
3360       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3361          // Attempt to reduce branch density - AMD's branch predictor.
3362          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3363          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3364          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3365          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3366          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3367          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3368          masm.jmpb  (DONE_LABEL) ; 
3369       } else { 
3370          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3371          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3372          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3373          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3374          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3375          masm.jccb  (Assembler::notZero, CheckSucc) ; 
3376          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3377          masm.jmpb  (DONE_LABEL) ; 
3378       }
3379 
3380       // The Following code fragment (EmitSync & 65536) improves the performance of
3381       // contended applications and contended synchronization microbenchmarks.
3382       // Unfortunately the emission of the code - even though not executed - causes regressions
3383       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3384       // with an equal number of never-executed NOPs results in the same regression.
3385       // We leave it off by default.
3386 
3387       if ((EmitSync & 65536) != 0) {
3388          Label LSuccess, LGoSlowPath ;
3389 
3390          masm.bind  (CheckSucc) ;
3391 
3392          // Optional pre-test ... it's safe to elide this
3393          if ((EmitSync & 16) == 0) { 
3394             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3395             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3396          }
3397 
3398          // We have a classic Dekker-style idiom:
3399          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3400          // There are a number of ways to implement the barrier:
3401          // (1) lock:andl &m->_owner, 0
3402          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3403          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3404          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3405          // (2) If supported, an explicit MFENCE is appealing.
3406          //     In older IA32 processors MFENCE is slower than lock:add or xchg
3407          //     particularly if the write-buffer is full as might be the case if
3408          //     if stores closely precede the fence or fence-equivalent instruction.
3409          //     In more modern implementations MFENCE appears faster, however.
3410          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3411          //     The $lines underlying the top-of-stack should be in M-state.
3412          //     The locked add instruction is serializing, of course.
3413          // (4) Use xchg, which is serializing
3414          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3415          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3416          //     The integer condition codes will tell us if succ was 0.
3417          //     Since _succ and _owner should reside in the same $line and
3418          //     we just stored into _owner, it's likely that the $line
3419          //     remains in M-state for the lock:orl.
3420          //
3421          // We currently use (3), although it's likely that switching to (2)
3422          // is correct for the future.
3423             
3424          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3425          if (os::is_MP()) { 
3426             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3427               masm.mfence();
3428             } else { 
3429               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3430             }
3431          }
3432          // Ratify _succ remains non-null
3433          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3434          masm.jccb  (Assembler::notZero, LSuccess) ; 
3435 
3436          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3437          if (os::is_MP()) { masm.lock(); }
3438          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3439          masm.jccb  (Assembler::notEqual, LSuccess) ;
3440          // Since we're low on registers we installed rsp as a placeholding in _owner.
3441          // Now install Self over rsp.  This is safe as we're transitioning from
3442          // non-null to non=null
3443          masm.get_thread (boxReg) ;
3444          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3445          // Intentional fall-through into LGoSlowPath ...
3446 
3447          masm.bind  (LGoSlowPath) ; 
3448          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3449          masm.jmpb  (DONE_LABEL) ; 
3450 
3451          masm.bind  (LSuccess) ; 
3452          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3453          masm.jmpb  (DONE_LABEL) ; 
3454       }
3455 
3456       masm.bind (Stacked) ;
3457       // It's not inflated and it's not recursively stack-locked and it's not biased.
3458       // It must be stack-locked.
3459       // Try to reset the header to displaced header.
3460       // The "box" value on the stack is stable, so we can reload
3461       // and be assured we observe the same value as above.
3462       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3463       if (os::is_MP()) {   masm.lock();    }
3464       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3465       // Intention fall-thru into DONE_LABEL
3466 
3467 
3468       // DONE_LABEL is a hot target - we'd really like to place it at the
3469       // start of cache line by padding with NOPs.
3470       // See the AMD and Intel software optimization manuals for the
3471       // most efficient "long" NOP encodings.
3472       // Unfortunately none of our alignment mechanisms suffice.
3473       if ((EmitSync & 65536) == 0) {
3474          masm.bind (CheckSucc) ;
3475       }
3476       masm.bind(DONE_LABEL);
3477 
3478       // Avoid branch to branch on AMD processors
3479       if (EmitSync & 32768) { masm.nop() ; }
3480     }
3481   %}
3482 
3483 
3484   enc_class enc_pop_rdx() %{
3485     emit_opcode(cbuf,0x5A);
3486   %}
3487 
3488   enc_class enc_rethrow() %{
3489     cbuf.set_insts_mark();
3490     emit_opcode(cbuf, 0xE9);        // jmp    entry
3491     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
3492                    runtime_call_Relocation::spec(), RELOC_IMM32 );
3493   %}
3494 
3495 
3496   // Convert a double to an int.  Java semantics require we do complex
3497   // manglelations in the corner cases.  So we set the rounding mode to
3498   // 'zero', store the darned double down as an int, and reset the
3499   // rounding mode to 'nearest'.  The hardware throws an exception which
3500   // patches up the correct value directly to the stack.
3501   enc_class DPR2I_encoding( regDPR src ) %{
3502     // Flip to round-to-zero mode.  We attempted to allow invalid-op
3503     // exceptions here, so that a NAN or other corner-case value will
3504     // thrown an exception (but normal values get converted at full speed).
3505     // However, I2C adapters and other float-stack manglers leave pending
3506     // invalid-op exceptions hanging.  We would have to clear them before
3507     // enabling them and that is more expensive than just testing for the
3508     // invalid value Intel stores down in the corner cases.
3509     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3510     emit_opcode(cbuf,0x2D);
3511     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3512     // Allocate a word
3513     emit_opcode(cbuf,0x83);            // SUB ESP,4
3514     emit_opcode(cbuf,0xEC);
3515     emit_d8(cbuf,0x04);
3516     // Encoding assumes a double has been pushed into FPR0.
3517     // Store down the double as an int, popping the FPU stack
3518     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3519     emit_opcode(cbuf,0x1C);
3520     emit_d8(cbuf,0x24);
3521     // Restore the rounding mode; mask the exception
3522     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3523     emit_opcode(cbuf,0x2D);
3524     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3525         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3526         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3527 
3528     // Load the converted int; adjust CPU stack
3529     emit_opcode(cbuf,0x58);       // POP EAX
3530     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3531     emit_d32   (cbuf,0x80000000); //         0x80000000
3532     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3533     emit_d8    (cbuf,0x07);       // Size of slow_call
3534     // Push src onto stack slow-path
3535     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3536     emit_d8    (cbuf,0xC0-1+$src$$reg );
3537     // CALL directly to the runtime
3538     cbuf.set_insts_mark();
3539     emit_opcode(cbuf,0xE8);       // Call into runtime
3540     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3541     // Carry on here...
3542   %}
3543 
3544   enc_class DPR2L_encoding( regDPR src ) %{
3545     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3546     emit_opcode(cbuf,0x2D);
3547     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3548     // Allocate a word
3549     emit_opcode(cbuf,0x83);            // SUB ESP,8
3550     emit_opcode(cbuf,0xEC);
3551     emit_d8(cbuf,0x08);
3552     // Encoding assumes a double has been pushed into FPR0.
3553     // Store down the double as a long, popping the FPU stack
3554     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3555     emit_opcode(cbuf,0x3C);
3556     emit_d8(cbuf,0x24);
3557     // Restore the rounding mode; mask the exception
3558     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3559     emit_opcode(cbuf,0x2D);
3560     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3561         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3562         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3563 
3564     // Load the converted int; adjust CPU stack
3565     emit_opcode(cbuf,0x58);       // POP EAX
3566     emit_opcode(cbuf,0x5A);       // POP EDX
3567     emit_opcode(cbuf,0x81);       // CMP EDX,imm
3568     emit_d8    (cbuf,0xFA);       // rdx
3569     emit_d32   (cbuf,0x80000000); //         0x80000000
3570     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3571     emit_d8    (cbuf,0x07+4);     // Size of slow_call
3572     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3573     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3574     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3575     emit_d8    (cbuf,0x07);       // Size of slow_call
3576     // Push src onto stack slow-path
3577     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3578     emit_d8    (cbuf,0xC0-1+$src$$reg );
3579     // CALL directly to the runtime
3580     cbuf.set_insts_mark();
3581     emit_opcode(cbuf,0xE8);       // Call into runtime
3582     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3583     // Carry on here...
3584   %}
3585 
3586   enc_class FMul_ST_reg( eRegFPR src1 ) %{
3587     // Operand was loaded from memory into fp ST (stack top)
3588     // FMUL   ST,$src  /* D8 C8+i */
3589     emit_opcode(cbuf, 0xD8);
3590     emit_opcode(cbuf, 0xC8 + $src1$$reg);
3591   %}
3592 
3593   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
3594     // FADDP  ST,src2  /* D8 C0+i */
3595     emit_opcode(cbuf, 0xD8);
3596     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3597     //could use FADDP  src2,fpST  /* DE C0+i */
3598   %}
3599 
3600   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
3601     // FADDP  src2,ST  /* DE C0+i */
3602     emit_opcode(cbuf, 0xDE);
3603     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3604   %}
3605 
3606   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
3607     // Operand has been loaded into fp ST (stack top)
3608       // FSUB   ST,$src1
3609       emit_opcode(cbuf, 0xD8);
3610       emit_opcode(cbuf, 0xE0 + $src1$$reg);
3611 
3612       // FDIV
3613       emit_opcode(cbuf, 0xD8);
3614       emit_opcode(cbuf, 0xF0 + $src2$$reg);
3615   %}
3616 
3617   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
3618     // Operand was loaded from memory into fp ST (stack top)
3619     // FADD   ST,$src  /* D8 C0+i */
3620     emit_opcode(cbuf, 0xD8);
3621     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3622 
3623     // FMUL  ST,src2  /* D8 C*+i */
3624     emit_opcode(cbuf, 0xD8);
3625     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3626   %}
3627 
3628 
3629   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
3630     // Operand was loaded from memory into fp ST (stack top)
3631     // FADD   ST,$src  /* D8 C0+i */
3632     emit_opcode(cbuf, 0xD8);
3633     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3634 
3635     // FMULP  src2,ST  /* DE C8+i */
3636     emit_opcode(cbuf, 0xDE);
3637     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3638   %}
3639 
3640   // Atomically load the volatile long
3641   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
3642     emit_opcode(cbuf,0xDF);
3643     int rm_byte_opcode = 0x05;
3644     int base     = $mem$$base;
3645     int index    = $mem$$index;
3646     int scale    = $mem$$scale;
3647     int displace = $mem$$disp;
3648     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
3649     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
3650     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
3651   %}
3652 
3653   // Volatile Store Long.  Must be atomic, so move it into
3654   // the FP TOS and then do a 64-bit FIST.  Has to probe the
3655   // target address before the store (for null-ptr checks)
3656   // so the memory operand is used twice in the encoding.
3657   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
3658     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
3659     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
3660     emit_opcode(cbuf,0xDF);
3661     int rm_byte_opcode = 0x07;
3662     int base     = $mem$$base;
3663     int index    = $mem$$index;
3664     int scale    = $mem$$scale;
3665     int displace = $mem$$disp;
3666     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
3667     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
3668   %}
3669 
3670   // Safepoint Poll.  This polls the safepoint page, and causes an
3671   // exception if it is not readable. Unfortunately, it kills the condition code
3672   // in the process
3673   // We current use TESTL [spp],EDI
3674   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
3675 
3676   enc_class Safepoint_Poll() %{
3677     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
3678     emit_opcode(cbuf,0x85);
3679     emit_rm (cbuf, 0x0, 0x7, 0x5);
3680     emit_d32(cbuf, (intptr_t)os::get_polling_page());
3681   %}
3682 %}
3683 
3684 
3685 //----------FRAME--------------------------------------------------------------
3686 // Definition of frame structure and management information.
3687 //
3688 //  S T A C K   L A Y O U T    Allocators stack-slot number
3689 //                             |   (to get allocators register number
3690 //  G  Owned by    |        |  v    add OptoReg::stack0())
3691 //  r   CALLER     |        |
3692 //  o     |        +--------+      pad to even-align allocators stack-slot
3693 //  w     V        |  pad0  |        numbers; owned by CALLER
3694 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3695 //  h     ^        |   in   |  5
3696 //        |        |  args  |  4   Holes in incoming args owned by SELF
3697 //  |     |        |        |  3
3698 //  |     |        +--------+
3699 //  V     |        | old out|      Empty on Intel, window on Sparc
3700 //        |    old |preserve|      Must be even aligned.
3701 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
3702 //        |        |   in   |  3   area for Intel ret address
3703 //     Owned by    |preserve|      Empty on Sparc.
3704 //       SELF      +--------+
3705 //        |        |  pad2  |  2   pad to align old SP
3706 //        |        +--------+  1
3707 //        |        | locks  |  0
3708 //        |        +--------+----> OptoReg::stack0(), even aligned
3709 //        |        |  pad1  | 11   pad to align new SP
3710 //        |        +--------+
3711 //        |        |        | 10
3712 //        |        | spills |  9   spills
3713 //        V        |        |  8   (pad0 slot for callee)
3714 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3715 //        ^        |  out   |  7
3716 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3717 //     Owned by    +--------+
3718 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3719 //        |    new |preserve|      Must be even-aligned.
3720 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3721 //        |        |        |
3722 //
3723 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3724 //         known from SELF's arguments and the Java calling convention.
3725 //         Region 6-7 is determined per call site.
3726 // Note 2: If the calling convention leaves holes in the incoming argument
3727 //         area, those holes are owned by SELF.  Holes in the outgoing area
3728 //         are owned by the CALLEE.  Holes should not be nessecary in the
3729 //         incoming area, as the Java calling convention is completely under
3730 //         the control of the AD file.  Doubles can be sorted and packed to
3731 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3732 //         varargs C calling conventions.
3733 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3734 //         even aligned with pad0 as needed.
3735 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3736 //         region 6-11 is even aligned; it may be padded out more so that
3737 //         the region from SP to FP meets the minimum stack alignment.
3738 
3739 frame %{
3740   // What direction does stack grow in (assumed to be same for C & Java)
3741   stack_direction(TOWARDS_LOW);
3742 
3743   // These three registers define part of the calling convention
3744   // between compiled code and the interpreter.
3745   inline_cache_reg(EAX);                // Inline Cache Register
3746   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
3747 
3748   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3749   cisc_spilling_operand_name(indOffset32);
3750 
3751   // Number of stack slots consumed by locking an object
3752   sync_stack_slots(1);
3753 
3754   // Compiled code's Frame Pointer
3755   frame_pointer(ESP);
3756   // Interpreter stores its frame pointer in a register which is
3757   // stored to the stack by I2CAdaptors.
3758   // I2CAdaptors convert from interpreted java to compiled java.
3759   interpreter_frame_pointer(EBP);
3760 
3761   // Stack alignment requirement
3762   // Alignment size in bytes (128-bit -> 16 bytes)
3763   stack_alignment(StackAlignmentInBytes);
3764 
3765   // Number of stack slots between incoming argument block and the start of
3766   // a new frame.  The PROLOG must add this many slots to the stack.  The
3767   // EPILOG must remove this many slots.  Intel needs one slot for
3768   // return address and one for rbp, (must save rbp)
3769   in_preserve_stack_slots(2+VerifyStackAtCalls);
3770 
3771   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3772   // for calls to C.  Supports the var-args backing area for register parms.
3773   varargs_C_out_slots_killed(0);
3774 
3775   // The after-PROLOG location of the return address.  Location of
3776   // return address specifies a type (REG or STACK) and a number
3777   // representing the register number (i.e. - use a register name) or
3778   // stack slot.
3779   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
3780   // Otherwise, it is above the locks and verification slot and alignment word
3781   return_addr(STACK - 1 +
3782               round_to((Compile::current()->in_preserve_stack_slots() +
3783                         Compile::current()->fixed_slots()),
3784                        stack_alignment_in_slots()));
3785 
3786   // Body of function which returns an integer array locating
3787   // arguments either in registers or in stack slots.  Passed an array
3788   // of ideal registers called "sig" and a "length" count.  Stack-slot
3789   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3790   // arguments for a CALLEE.  Incoming stack arguments are
3791   // automatically biased by the preserve_stack_slots field above.
3792   calling_convention %{
3793     // No difference between ingoing/outgoing just pass false
3794     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3795   %}
3796 
3797 
3798   // Body of function which returns an integer array locating
3799   // arguments either in registers or in stack slots.  Passed an array
3800   // of ideal registers called "sig" and a "length" count.  Stack-slot
3801   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3802   // arguments for a CALLEE.  Incoming stack arguments are
3803   // automatically biased by the preserve_stack_slots field above.
3804   c_calling_convention %{
3805     // This is obviously always outgoing
3806     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3807   %}
3808 
3809   // Location of C & interpreter return values
3810   c_return_value %{
3811     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3812     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3813     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3814 
3815     // in SSE2+ mode we want to keep the FPU stack clean so pretend
3816     // that C functions return float and double results in XMM0.
3817     if( ideal_reg == Op_RegD && UseSSE>=2 )
3818       return OptoRegPair(XMM0b_num,XMM0_num);
3819     if( ideal_reg == Op_RegF && UseSSE>=2 )
3820       return OptoRegPair(OptoReg::Bad,XMM0_num);
3821 
3822     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3823   %}
3824 
3825   // Location of return values
3826   return_value %{
3827     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3828     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3829     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3830     if( ideal_reg == Op_RegD && UseSSE>=2 )
3831       return OptoRegPair(XMM0b_num,XMM0_num);
3832     if( ideal_reg == Op_RegF && UseSSE>=1 )
3833       return OptoRegPair(OptoReg::Bad,XMM0_num);
3834     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3835   %}
3836 
3837 %}
3838 
3839 //----------ATTRIBUTES---------------------------------------------------------
3840 //----------Operand Attributes-------------------------------------------------
3841 op_attrib op_cost(0);        // Required cost attribute
3842 
3843 //----------Instruction Attributes---------------------------------------------
3844 ins_attrib ins_cost(100);       // Required cost attribute
3845 ins_attrib ins_size(8);         // Required size attribute (in bits)
3846 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3847                                 // non-matching short branch variant of some
3848                                                             // long branch?
3849 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
3850                                 // specifies the alignment that some part of the instruction (not
3851                                 // necessarily the start) requires.  If > 1, a compute_padding()
3852                                 // function must be provided for the instruction
3853 
3854 //----------OPERANDS-----------------------------------------------------------
3855 // Operand definitions must precede instruction definitions for correct parsing
3856 // in the ADLC because operands constitute user defined types which are used in
3857 // instruction definitions.
3858 
3859 //----------Simple Operands----------------------------------------------------
3860 // Immediate Operands
3861 // Integer Immediate
3862 operand immI() %{
3863   match(ConI);
3864 
3865   op_cost(10);
3866   format %{ %}
3867   interface(CONST_INTER);
3868 %}
3869 
3870 // Constant for test vs zero
3871 operand immI0() %{
3872   predicate(n->get_int() == 0);
3873   match(ConI);
3874 
3875   op_cost(0);
3876   format %{ %}
3877   interface(CONST_INTER);
3878 %}
3879 
3880 // Constant for increment
3881 operand immI1() %{
3882   predicate(n->get_int() == 1);
3883   match(ConI);
3884 
3885   op_cost(0);
3886   format %{ %}
3887   interface(CONST_INTER);
3888 %}
3889 
3890 // Constant for decrement
3891 operand immI_M1() %{
3892   predicate(n->get_int() == -1);
3893   match(ConI);
3894 
3895   op_cost(0);
3896   format %{ %}
3897   interface(CONST_INTER);
3898 %}
3899 
3900 // Valid scale values for addressing modes
3901 operand immI2() %{
3902   predicate(0 <= n->get_int() && (n->get_int() <= 3));
3903   match(ConI);
3904 
3905   format %{ %}
3906   interface(CONST_INTER);
3907 %}
3908 
3909 operand immI8() %{
3910   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
3911   match(ConI);
3912 
3913   op_cost(5);
3914   format %{ %}
3915   interface(CONST_INTER);
3916 %}
3917 
3918 operand immI16() %{
3919   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
3920   match(ConI);
3921 
3922   op_cost(10);
3923   format %{ %}
3924   interface(CONST_INTER);
3925 %}
3926 
3927 // Constant for long shifts
3928 operand immI_32() %{
3929   predicate( n->get_int() == 32 );
3930   match(ConI);
3931 
3932   op_cost(0);
3933   format %{ %}
3934   interface(CONST_INTER);
3935 %}
3936 
3937 operand immI_1_31() %{
3938   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
3939   match(ConI);
3940 
3941   op_cost(0);
3942   format %{ %}
3943   interface(CONST_INTER);
3944 %}
3945 
3946 operand immI_32_63() %{
3947   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
3948   match(ConI);
3949   op_cost(0);
3950 
3951   format %{ %}
3952   interface(CONST_INTER);
3953 %}
3954 
3955 operand immI_1() %{
3956   predicate( n->get_int() == 1 );
3957   match(ConI);
3958 
3959   op_cost(0);
3960   format %{ %}
3961   interface(CONST_INTER);
3962 %}
3963 
3964 operand immI_2() %{
3965   predicate( n->get_int() == 2 );
3966   match(ConI);
3967 
3968   op_cost(0);
3969   format %{ %}
3970   interface(CONST_INTER);
3971 %}
3972 
3973 operand immI_3() %{
3974   predicate( n->get_int() == 3 );
3975   match(ConI);
3976 
3977   op_cost(0);
3978   format %{ %}
3979   interface(CONST_INTER);
3980 %}
3981 
3982 // Pointer Immediate
3983 operand immP() %{
3984   match(ConP);
3985 
3986   op_cost(10);
3987   format %{ %}
3988   interface(CONST_INTER);
3989 %}
3990 
3991 // NULL Pointer Immediate
3992 operand immP0() %{
3993   predicate( n->get_ptr() == 0 );
3994   match(ConP);
3995   op_cost(0);
3996 
3997   format %{ %}
3998   interface(CONST_INTER);
3999 %}
4000 
4001 // Long Immediate
4002 operand immL() %{
4003   match(ConL);
4004 
4005   op_cost(20);
4006   format %{ %}
4007   interface(CONST_INTER);
4008 %}
4009 
4010 // Long Immediate zero
4011 operand immL0() %{
4012   predicate( n->get_long() == 0L );
4013   match(ConL);
4014   op_cost(0);
4015 
4016   format %{ %}
4017   interface(CONST_INTER);
4018 %}
4019 
4020 // Long Immediate zero
4021 operand immL_M1() %{
4022   predicate( n->get_long() == -1L );
4023   match(ConL);
4024   op_cost(0);
4025 
4026   format %{ %}
4027   interface(CONST_INTER);
4028 %}
4029 
4030 // Long immediate from 0 to 127.
4031 // Used for a shorter form of long mul by 10.
4032 operand immL_127() %{
4033   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4034   match(ConL);
4035   op_cost(0);
4036 
4037   format %{ %}
4038   interface(CONST_INTER);
4039 %}
4040 
4041 // Long Immediate: low 32-bit mask
4042 operand immL_32bits() %{
4043   predicate(n->get_long() == 0xFFFFFFFFL);
4044   match(ConL);
4045   op_cost(0);
4046 
4047   format %{ %}
4048   interface(CONST_INTER);
4049 %}
4050 
4051 // Long Immediate: low 32-bit mask
4052 operand immL32() %{
4053   predicate(n->get_long() == (int)(n->get_long()));
4054   match(ConL);
4055   op_cost(20);
4056 
4057   format %{ %}
4058   interface(CONST_INTER);
4059 %}
4060 
4061 //Double Immediate zero
4062 operand immDPR0() %{
4063   // Do additional (and counter-intuitive) test against NaN to work around VC++
4064   // bug that generates code such that NaNs compare equal to 0.0
4065   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4066   match(ConD);
4067 
4068   op_cost(5);
4069   format %{ %}
4070   interface(CONST_INTER);
4071 %}
4072 
4073 // Double Immediate one
4074 operand immDPR1() %{
4075   predicate( UseSSE<=1 && n->getd() == 1.0 );
4076   match(ConD);
4077 
4078   op_cost(5);
4079   format %{ %}
4080   interface(CONST_INTER);
4081 %}
4082 
4083 // Double Immediate
4084 operand immDPR() %{
4085   predicate(UseSSE<=1);
4086   match(ConD);
4087 
4088   op_cost(5);
4089   format %{ %}
4090   interface(CONST_INTER);
4091 %}
4092 
4093 operand immD() %{
4094   predicate(UseSSE>=2);
4095   match(ConD);
4096 
4097   op_cost(5);
4098   format %{ %}
4099   interface(CONST_INTER);
4100 %}
4101 
4102 // Double Immediate zero
4103 operand immD0() %{
4104   // Do additional (and counter-intuitive) test against NaN to work around VC++
4105   // bug that generates code such that NaNs compare equal to 0.0 AND do not
4106   // compare equal to -0.0.
4107   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4108   match(ConD);
4109 
4110   format %{ %}
4111   interface(CONST_INTER);
4112 %}
4113 
4114 // Float Immediate zero
4115 operand immFPR0() %{
4116   predicate(UseSSE == 0 && n->getf() == 0.0F);
4117   match(ConF);
4118 
4119   op_cost(5);
4120   format %{ %}
4121   interface(CONST_INTER);
4122 %}
4123 
4124 // Float Immediate one
4125 operand immFPR1() %{
4126   predicate(UseSSE == 0 && n->getf() == 1.0F);
4127   match(ConF);
4128 
4129   op_cost(5);
4130   format %{ %}
4131   interface(CONST_INTER);
4132 %}
4133 
4134 // Float Immediate
4135 operand immFPR() %{
4136   predicate( UseSSE == 0 );
4137   match(ConF);
4138 
4139   op_cost(5);
4140   format %{ %}
4141   interface(CONST_INTER);
4142 %}
4143 
4144 // Float Immediate
4145 operand immF() %{
4146   predicate(UseSSE >= 1);
4147   match(ConF);
4148 
4149   op_cost(5);
4150   format %{ %}
4151   interface(CONST_INTER);
4152 %}
4153 
4154 // Float Immediate zero.  Zero and not -0.0
4155 operand immF0() %{
4156   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4157   match(ConF);
4158 
4159   op_cost(5);
4160   format %{ %}
4161   interface(CONST_INTER);
4162 %}
4163 
4164 // Immediates for special shifts (sign extend)
4165 
4166 // Constants for increment
4167 operand immI_16() %{
4168   predicate( n->get_int() == 16 );
4169   match(ConI);
4170 
4171   format %{ %}
4172   interface(CONST_INTER);
4173 %}
4174 
4175 operand immI_24() %{
4176   predicate( n->get_int() == 24 );
4177   match(ConI);
4178 
4179   format %{ %}
4180   interface(CONST_INTER);
4181 %}
4182 
4183 // Constant for byte-wide masking
4184 operand immI_255() %{
4185   predicate( n->get_int() == 255 );
4186   match(ConI);
4187 
4188   format %{ %}
4189   interface(CONST_INTER);
4190 %}
4191 
4192 // Constant for short-wide masking
4193 operand immI_65535() %{
4194   predicate(n->get_int() == 65535);
4195   match(ConI);
4196 
4197   format %{ %}
4198   interface(CONST_INTER);
4199 %}
4200 
4201 // Register Operands
4202 // Integer Register
4203 operand rRegI() %{
4204   constraint(ALLOC_IN_RC(int_reg));
4205   match(RegI);
4206   match(xRegI);
4207   match(eAXRegI);
4208   match(eBXRegI);
4209   match(eCXRegI);
4210   match(eDXRegI);
4211   match(eDIRegI);
4212   match(eSIRegI);
4213 
4214   format %{ %}
4215   interface(REG_INTER);
4216 %}
4217 
4218 // Subset of Integer Register
4219 operand xRegI(rRegI reg) %{
4220   constraint(ALLOC_IN_RC(int_x_reg));
4221   match(reg);
4222   match(eAXRegI);
4223   match(eBXRegI);
4224   match(eCXRegI);
4225   match(eDXRegI);
4226 
4227   format %{ %}
4228   interface(REG_INTER);
4229 %}
4230 
4231 // Special Registers
4232 operand eAXRegI(xRegI reg) %{
4233   constraint(ALLOC_IN_RC(eax_reg));
4234   match(reg);
4235   match(rRegI);
4236 
4237   format %{ "EAX" %}
4238   interface(REG_INTER);
4239 %}
4240 
4241 // Special Registers
4242 operand eBXRegI(xRegI reg) %{
4243   constraint(ALLOC_IN_RC(ebx_reg));
4244   match(reg);
4245   match(rRegI);
4246 
4247   format %{ "EBX" %}
4248   interface(REG_INTER);
4249 %}
4250 
4251 operand eCXRegI(xRegI reg) %{
4252   constraint(ALLOC_IN_RC(ecx_reg));
4253   match(reg);
4254   match(rRegI);
4255 
4256   format %{ "ECX" %}
4257   interface(REG_INTER);
4258 %}
4259 
4260 operand eDXRegI(xRegI reg) %{
4261   constraint(ALLOC_IN_RC(edx_reg));
4262   match(reg);
4263   match(rRegI);
4264 
4265   format %{ "EDX" %}
4266   interface(REG_INTER);
4267 %}
4268 
4269 operand eDIRegI(xRegI reg) %{
4270   constraint(ALLOC_IN_RC(edi_reg));
4271   match(reg);
4272   match(rRegI);
4273 
4274   format %{ "EDI" %}
4275   interface(REG_INTER);
4276 %}
4277 
4278 operand naxRegI() %{
4279   constraint(ALLOC_IN_RC(nax_reg));
4280   match(RegI);
4281   match(eCXRegI);
4282   match(eDXRegI);
4283   match(eSIRegI);
4284   match(eDIRegI);
4285 
4286   format %{ %}
4287   interface(REG_INTER);
4288 %}
4289 
4290 operand nadxRegI() %{
4291   constraint(ALLOC_IN_RC(nadx_reg));
4292   match(RegI);
4293   match(eBXRegI);
4294   match(eCXRegI);
4295   match(eSIRegI);
4296   match(eDIRegI);
4297 
4298   format %{ %}
4299   interface(REG_INTER);
4300 %}
4301 
4302 operand ncxRegI() %{
4303   constraint(ALLOC_IN_RC(ncx_reg));
4304   match(RegI);
4305   match(eAXRegI);
4306   match(eDXRegI);
4307   match(eSIRegI);
4308   match(eDIRegI);
4309 
4310   format %{ %}
4311   interface(REG_INTER);
4312 %}
4313 
4314 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
4315 // //
4316 operand eSIRegI(xRegI reg) %{
4317    constraint(ALLOC_IN_RC(esi_reg));
4318    match(reg);
4319    match(rRegI);
4320 
4321    format %{ "ESI" %}
4322    interface(REG_INTER);
4323 %}
4324 
4325 // Pointer Register
4326 operand anyRegP() %{
4327   constraint(ALLOC_IN_RC(any_reg));
4328   match(RegP);
4329   match(eAXRegP);
4330   match(eBXRegP);
4331   match(eCXRegP);
4332   match(eDIRegP);
4333   match(eRegP);
4334 
4335   format %{ %}
4336   interface(REG_INTER);
4337 %}
4338 
4339 operand eRegP() %{
4340   constraint(ALLOC_IN_RC(int_reg));
4341   match(RegP);
4342   match(eAXRegP);
4343   match(eBXRegP);
4344   match(eCXRegP);
4345   match(eDIRegP);
4346 
4347   format %{ %}
4348   interface(REG_INTER);
4349 %}
4350 
4351 // On windows95, EBP is not safe to use for implicit null tests.
4352 operand eRegP_no_EBP() %{
4353   constraint(ALLOC_IN_RC(int_reg_no_rbp));
4354   match(RegP);
4355   match(eAXRegP);
4356   match(eBXRegP);
4357   match(eCXRegP);
4358   match(eDIRegP);
4359 
4360   op_cost(100);
4361   format %{ %}
4362   interface(REG_INTER);
4363 %}
4364 
4365 operand naxRegP() %{
4366   constraint(ALLOC_IN_RC(nax_reg));
4367   match(RegP);
4368   match(eBXRegP);
4369   match(eDXRegP);
4370   match(eCXRegP);
4371   match(eSIRegP);
4372   match(eDIRegP);
4373 
4374   format %{ %}
4375   interface(REG_INTER);
4376 %}
4377 
4378 operand nabxRegP() %{
4379   constraint(ALLOC_IN_RC(nabx_reg));
4380   match(RegP);
4381   match(eCXRegP);
4382   match(eDXRegP);
4383   match(eSIRegP);
4384   match(eDIRegP);
4385 
4386   format %{ %}
4387   interface(REG_INTER);
4388 %}
4389 
4390 operand pRegP() %{
4391   constraint(ALLOC_IN_RC(p_reg));
4392   match(RegP);
4393   match(eBXRegP);
4394   match(eDXRegP);
4395   match(eSIRegP);
4396   match(eDIRegP);
4397 
4398   format %{ %}
4399   interface(REG_INTER);
4400 %}
4401 
4402 // Special Registers
4403 // Return a pointer value
4404 operand eAXRegP(eRegP reg) %{
4405   constraint(ALLOC_IN_RC(eax_reg));
4406   match(reg);
4407   format %{ "EAX" %}
4408   interface(REG_INTER);
4409 %}
4410 
4411 // Used in AtomicAdd
4412 operand eBXRegP(eRegP reg) %{
4413   constraint(ALLOC_IN_RC(ebx_reg));
4414   match(reg);
4415   format %{ "EBX" %}
4416   interface(REG_INTER);
4417 %}
4418 
4419 // Tail-call (interprocedural jump) to interpreter
4420 operand eCXRegP(eRegP reg) %{
4421   constraint(ALLOC_IN_RC(ecx_reg));
4422   match(reg);
4423   format %{ "ECX" %}
4424   interface(REG_INTER);
4425 %}
4426 
4427 operand eSIRegP(eRegP reg) %{
4428   constraint(ALLOC_IN_RC(esi_reg));
4429   match(reg);
4430   format %{ "ESI" %}
4431   interface(REG_INTER);
4432 %}
4433 
4434 // Used in rep stosw
4435 operand eDIRegP(eRegP reg) %{
4436   constraint(ALLOC_IN_RC(edi_reg));
4437   match(reg);
4438   format %{ "EDI" %}
4439   interface(REG_INTER);
4440 %}
4441 
4442 operand eBPRegP() %{
4443   constraint(ALLOC_IN_RC(ebp_reg));
4444   match(RegP);
4445   format %{ "EBP" %}
4446   interface(REG_INTER);
4447 %}
4448 
4449 operand eRegL() %{
4450   constraint(ALLOC_IN_RC(long_reg));
4451   match(RegL);
4452   match(eADXRegL);
4453 
4454   format %{ %}
4455   interface(REG_INTER);
4456 %}
4457 
4458 operand eADXRegL( eRegL reg ) %{
4459   constraint(ALLOC_IN_RC(eadx_reg));
4460   match(reg);
4461 
4462   format %{ "EDX:EAX" %}
4463   interface(REG_INTER);
4464 %}
4465 
4466 operand eBCXRegL( eRegL reg ) %{
4467   constraint(ALLOC_IN_RC(ebcx_reg));
4468   match(reg);
4469 
4470   format %{ "EBX:ECX" %}
4471   interface(REG_INTER);
4472 %}
4473 
4474 // Special case for integer high multiply
4475 operand eADXRegL_low_only() %{
4476   constraint(ALLOC_IN_RC(eadx_reg));
4477   match(RegL);
4478 
4479   format %{ "EAX" %}
4480   interface(REG_INTER);
4481 %}
4482 
4483 // Flags register, used as output of compare instructions
4484 operand eFlagsReg() %{
4485   constraint(ALLOC_IN_RC(int_flags));
4486   match(RegFlags);
4487 
4488   format %{ "EFLAGS" %}
4489   interface(REG_INTER);
4490 %}
4491 
4492 // Flags register, used as output of FLOATING POINT compare instructions
4493 operand eFlagsRegU() %{
4494   constraint(ALLOC_IN_RC(int_flags));
4495   match(RegFlags);
4496 
4497   format %{ "EFLAGS_U" %}
4498   interface(REG_INTER);
4499 %}
4500 
4501 operand eFlagsRegUCF() %{
4502   constraint(ALLOC_IN_RC(int_flags));
4503   match(RegFlags);
4504   predicate(false);
4505 
4506   format %{ "EFLAGS_U_CF" %}
4507   interface(REG_INTER);
4508 %}
4509 
4510 // Condition Code Register used by long compare
4511 operand flagsReg_long_LTGE() %{
4512   constraint(ALLOC_IN_RC(int_flags));
4513   match(RegFlags);
4514   format %{ "FLAGS_LTGE" %}
4515   interface(REG_INTER);
4516 %}
4517 operand flagsReg_long_EQNE() %{
4518   constraint(ALLOC_IN_RC(int_flags));
4519   match(RegFlags);
4520   format %{ "FLAGS_EQNE" %}
4521   interface(REG_INTER);
4522 %}
4523 operand flagsReg_long_LEGT() %{
4524   constraint(ALLOC_IN_RC(int_flags));
4525   match(RegFlags);
4526   format %{ "FLAGS_LEGT" %}
4527   interface(REG_INTER);
4528 %}
4529 
4530 // Float register operands
4531 operand regDPR() %{
4532   predicate( UseSSE < 2 );
4533   constraint(ALLOC_IN_RC(fp_dbl_reg));
4534   match(RegD);
4535   match(regDPR1);
4536   match(regDPR2);
4537   format %{ %}
4538   interface(REG_INTER);
4539 %}
4540 
4541 operand regDPR1(regDPR reg) %{
4542   predicate( UseSSE < 2 );
4543   constraint(ALLOC_IN_RC(fp_dbl_reg0));
4544   match(reg);
4545   format %{ "FPR1" %}
4546   interface(REG_INTER);
4547 %}
4548 
4549 operand regDPR2(regDPR reg) %{
4550   predicate( UseSSE < 2 );
4551   constraint(ALLOC_IN_RC(fp_dbl_reg1));
4552   match(reg);
4553   format %{ "FPR2" %}
4554   interface(REG_INTER);
4555 %}
4556 
4557 operand regnotDPR1(regDPR reg) %{
4558   predicate( UseSSE < 2 );
4559   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
4560   match(reg);
4561   format %{ %}
4562   interface(REG_INTER);
4563 %}
4564 
4565 // Float register operands
4566 operand regFPR() %{
4567   predicate( UseSSE < 2 );
4568   constraint(ALLOC_IN_RC(fp_flt_reg));
4569   match(RegF);
4570   match(regFPR1);
4571   format %{ %}
4572   interface(REG_INTER);
4573 %}
4574 
4575 // Float register operands
4576 operand regFPR1(regFPR reg) %{
4577   predicate( UseSSE < 2 );
4578   constraint(ALLOC_IN_RC(fp_flt_reg0));
4579   match(reg);
4580   format %{ "FPR1" %}
4581   interface(REG_INTER);
4582 %}
4583 
4584 // XMM Float register operands
4585 operand regF() %{
4586   predicate( UseSSE>=1 );
4587   constraint(ALLOC_IN_RC(float_reg));
4588   match(RegF);
4589   format %{ %}
4590   interface(REG_INTER);
4591 %}
4592 
4593 // XMM Double register operands
4594 operand regD() %{
4595   predicate( UseSSE>=2 );
4596   constraint(ALLOC_IN_RC(double_reg));
4597   match(RegD);
4598   format %{ %}
4599   interface(REG_INTER);
4600 %}
4601 
4602 
4603 //----------Memory Operands----------------------------------------------------
4604 // Direct Memory Operand
4605 operand direct(immP addr) %{
4606   match(addr);
4607 
4608   format %{ "[$addr]" %}
4609   interface(MEMORY_INTER) %{
4610     base(0xFFFFFFFF);
4611     index(0x4);
4612     scale(0x0);
4613     disp($addr);
4614   %}
4615 %}
4616 
4617 // Indirect Memory Operand
4618 operand indirect(eRegP reg) %{
4619   constraint(ALLOC_IN_RC(int_reg));
4620   match(reg);
4621 
4622   format %{ "[$reg]" %}
4623   interface(MEMORY_INTER) %{
4624     base($reg);
4625     index(0x4);
4626     scale(0x0);
4627     disp(0x0);
4628   %}
4629 %}
4630 
4631 // Indirect Memory Plus Short Offset Operand
4632 operand indOffset8(eRegP reg, immI8 off) %{
4633   match(AddP reg off);
4634 
4635   format %{ "[$reg + $off]" %}
4636   interface(MEMORY_INTER) %{
4637     base($reg);
4638     index(0x4);
4639     scale(0x0);
4640     disp($off);
4641   %}
4642 %}
4643 
4644 // Indirect Memory Plus Long Offset Operand
4645 operand indOffset32(eRegP reg, immI off) %{
4646   match(AddP reg off);
4647 
4648   format %{ "[$reg + $off]" %}
4649   interface(MEMORY_INTER) %{
4650     base($reg);
4651     index(0x4);
4652     scale(0x0);
4653     disp($off);
4654   %}
4655 %}
4656 
4657 // Indirect Memory Plus Long Offset Operand
4658 operand indOffset32X(rRegI reg, immP off) %{
4659   match(AddP off reg);
4660 
4661   format %{ "[$reg + $off]" %}
4662   interface(MEMORY_INTER) %{
4663     base($reg);
4664     index(0x4);
4665     scale(0x0);
4666     disp($off);
4667   %}
4668 %}
4669 
4670 // Indirect Memory Plus Index Register Plus Offset Operand
4671 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
4672   match(AddP (AddP reg ireg) off);
4673 
4674   op_cost(10);
4675   format %{"[$reg + $off + $ireg]" %}
4676   interface(MEMORY_INTER) %{
4677     base($reg);
4678     index($ireg);
4679     scale(0x0);
4680     disp($off);
4681   %}
4682 %}
4683 
4684 // Indirect Memory Plus Index Register Plus Offset Operand
4685 operand indIndex(eRegP reg, rRegI ireg) %{
4686   match(AddP reg ireg);
4687 
4688   op_cost(10);
4689   format %{"[$reg + $ireg]" %}
4690   interface(MEMORY_INTER) %{
4691     base($reg);
4692     index($ireg);
4693     scale(0x0);
4694     disp(0x0);
4695   %}
4696 %}
4697 
4698 // // -------------------------------------------------------------------------
4699 // // 486 architecture doesn't support "scale * index + offset" with out a base
4700 // // -------------------------------------------------------------------------
4701 // // Scaled Memory Operands
4702 // // Indirect Memory Times Scale Plus Offset Operand
4703 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
4704 //   match(AddP off (LShiftI ireg scale));
4705 //
4706 //   op_cost(10);
4707 //   format %{"[$off + $ireg << $scale]" %}
4708 //   interface(MEMORY_INTER) %{
4709 //     base(0x4);
4710 //     index($ireg);
4711 //     scale($scale);
4712 //     disp($off);
4713 //   %}
4714 // %}
4715 
4716 // Indirect Memory Times Scale Plus Index Register
4717 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
4718   match(AddP reg (LShiftI ireg scale));
4719 
4720   op_cost(10);
4721   format %{"[$reg + $ireg << $scale]" %}
4722   interface(MEMORY_INTER) %{
4723     base($reg);
4724     index($ireg);
4725     scale($scale);
4726     disp(0x0);
4727   %}
4728 %}
4729 
4730 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4731 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
4732   match(AddP (AddP reg (LShiftI ireg scale)) off);
4733 
4734   op_cost(10);
4735   format %{"[$reg + $off + $ireg << $scale]" %}
4736   interface(MEMORY_INTER) %{
4737     base($reg);
4738     index($ireg);
4739     scale($scale);
4740     disp($off);
4741   %}
4742 %}
4743 
4744 //----------Load Long Memory Operands------------------------------------------
4745 // The load-long idiom will use it's address expression again after loading
4746 // the first word of the long.  If the load-long destination overlaps with
4747 // registers used in the addressing expression, the 2nd half will be loaded
4748 // from a clobbered address.  Fix this by requiring that load-long use
4749 // address registers that do not overlap with the load-long target.
4750 
4751 // load-long support
4752 operand load_long_RegP() %{
4753   constraint(ALLOC_IN_RC(esi_reg));
4754   match(RegP);
4755   match(eSIRegP);
4756   op_cost(100);
4757   format %{  %}
4758   interface(REG_INTER);
4759 %}
4760 
4761 // Indirect Memory Operand Long
4762 operand load_long_indirect(load_long_RegP reg) %{
4763   constraint(ALLOC_IN_RC(esi_reg));
4764   match(reg);
4765 
4766   format %{ "[$reg]" %}
4767   interface(MEMORY_INTER) %{
4768     base($reg);
4769     index(0x4);
4770     scale(0x0);
4771     disp(0x0);
4772   %}
4773 %}
4774 
4775 // Indirect Memory Plus Long Offset Operand
4776 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
4777   match(AddP reg off);
4778 
4779   format %{ "[$reg + $off]" %}
4780   interface(MEMORY_INTER) %{
4781     base($reg);
4782     index(0x4);
4783     scale(0x0);
4784     disp($off);
4785   %}
4786 %}
4787 
4788 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
4789 
4790 
4791 //----------Special Memory Operands--------------------------------------------
4792 // Stack Slot Operand - This operand is used for loading and storing temporary
4793 //                      values on the stack where a match requires a value to
4794 //                      flow through memory.
4795 operand stackSlotP(sRegP reg) %{
4796   constraint(ALLOC_IN_RC(stack_slots));
4797   // No match rule because this operand is only generated in matching
4798   format %{ "[$reg]" %}
4799   interface(MEMORY_INTER) %{
4800     base(0x4);   // ESP
4801     index(0x4);  // No Index
4802     scale(0x0);  // No Scale
4803     disp($reg);  // Stack Offset
4804   %}
4805 %}
4806 
4807 operand stackSlotI(sRegI reg) %{
4808   constraint(ALLOC_IN_RC(stack_slots));
4809   // No match rule because this operand is only generated in matching
4810   format %{ "[$reg]" %}
4811   interface(MEMORY_INTER) %{
4812     base(0x4);   // ESP
4813     index(0x4);  // No Index
4814     scale(0x0);  // No Scale
4815     disp($reg);  // Stack Offset
4816   %}
4817 %}
4818 
4819 operand stackSlotF(sRegF reg) %{
4820   constraint(ALLOC_IN_RC(stack_slots));
4821   // No match rule because this operand is only generated in matching
4822   format %{ "[$reg]" %}
4823   interface(MEMORY_INTER) %{
4824     base(0x4);   // ESP
4825     index(0x4);  // No Index
4826     scale(0x0);  // No Scale
4827     disp($reg);  // Stack Offset
4828   %}
4829 %}
4830 
4831 operand stackSlotD(sRegD reg) %{
4832   constraint(ALLOC_IN_RC(stack_slots));
4833   // No match rule because this operand is only generated in matching
4834   format %{ "[$reg]" %}
4835   interface(MEMORY_INTER) %{
4836     base(0x4);   // ESP
4837     index(0x4);  // No Index
4838     scale(0x0);  // No Scale
4839     disp($reg);  // Stack Offset
4840   %}
4841 %}
4842 
4843 operand stackSlotL(sRegL reg) %{
4844   constraint(ALLOC_IN_RC(stack_slots));
4845   // No match rule because this operand is only generated in matching
4846   format %{ "[$reg]" %}
4847   interface(MEMORY_INTER) %{
4848     base(0x4);   // ESP
4849     index(0x4);  // No Index
4850     scale(0x0);  // No Scale
4851     disp($reg);  // Stack Offset
4852   %}
4853 %}
4854 
4855 //----------Memory Operands - Win95 Implicit Null Variants----------------
4856 // Indirect Memory Operand
4857 operand indirect_win95_safe(eRegP_no_EBP reg)
4858 %{
4859   constraint(ALLOC_IN_RC(int_reg));
4860   match(reg);
4861 
4862   op_cost(100);
4863   format %{ "[$reg]" %}
4864   interface(MEMORY_INTER) %{
4865     base($reg);
4866     index(0x4);
4867     scale(0x0);
4868     disp(0x0);
4869   %}
4870 %}
4871 
4872 // Indirect Memory Plus Short Offset Operand
4873 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
4874 %{
4875   match(AddP reg off);
4876 
4877   op_cost(100);
4878   format %{ "[$reg + $off]" %}
4879   interface(MEMORY_INTER) %{
4880     base($reg);
4881     index(0x4);
4882     scale(0x0);
4883     disp($off);
4884   %}
4885 %}
4886 
4887 // Indirect Memory Plus Long Offset Operand
4888 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
4889 %{
4890   match(AddP reg off);
4891 
4892   op_cost(100);
4893   format %{ "[$reg + $off]" %}
4894   interface(MEMORY_INTER) %{
4895     base($reg);
4896     index(0x4);
4897     scale(0x0);
4898     disp($off);
4899   %}
4900 %}
4901 
4902 // Indirect Memory Plus Index Register Plus Offset Operand
4903 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
4904 %{
4905   match(AddP (AddP reg ireg) off);
4906 
4907   op_cost(100);
4908   format %{"[$reg + $off + $ireg]" %}
4909   interface(MEMORY_INTER) %{
4910     base($reg);
4911     index($ireg);
4912     scale(0x0);
4913     disp($off);
4914   %}
4915 %}
4916 
4917 // Indirect Memory Times Scale Plus Index Register
4918 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
4919 %{
4920   match(AddP reg (LShiftI ireg scale));
4921 
4922   op_cost(100);
4923   format %{"[$reg + $ireg << $scale]" %}
4924   interface(MEMORY_INTER) %{
4925     base($reg);
4926     index($ireg);
4927     scale($scale);
4928     disp(0x0);
4929   %}
4930 %}
4931 
4932 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4933 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
4934 %{
4935   match(AddP (AddP reg (LShiftI ireg scale)) off);
4936 
4937   op_cost(100);
4938   format %{"[$reg + $off + $ireg << $scale]" %}
4939   interface(MEMORY_INTER) %{
4940     base($reg);
4941     index($ireg);
4942     scale($scale);
4943     disp($off);
4944   %}
4945 %}
4946 
4947 //----------Conditional Branch Operands----------------------------------------
4948 // Comparison Op  - This is the operation of the comparison, and is limited to
4949 //                  the following set of codes:
4950 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4951 //
4952 // Other attributes of the comparison, such as unsignedness, are specified
4953 // by the comparison instruction that sets a condition code flags register.
4954 // That result is represented by a flags operand whose subtype is appropriate
4955 // to the unsignedness (etc.) of the comparison.
4956 //
4957 // Later, the instruction which matches both the Comparison Op (a Bool) and
4958 // the flags (produced by the Cmp) specifies the coding of the comparison op
4959 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4960 
4961 // Comparision Code
4962 operand cmpOp() %{
4963   match(Bool);
4964 
4965   format %{ "" %}
4966   interface(COND_INTER) %{
4967     equal(0x4, "e");
4968     not_equal(0x5, "ne");
4969     less(0xC, "l");
4970     greater_equal(0xD, "ge");
4971     less_equal(0xE, "le");
4972     greater(0xF, "g");
4973   %}
4974 %}
4975 
4976 // Comparison Code, unsigned compare.  Used by FP also, with
4977 // C2 (unordered) turned into GT or LT already.  The other bits
4978 // C0 and C3 are turned into Carry & Zero flags.
4979 operand cmpOpU() %{
4980   match(Bool);
4981 
4982   format %{ "" %}
4983   interface(COND_INTER) %{
4984     equal(0x4, "e");
4985     not_equal(0x5, "ne");
4986     less(0x2, "b");
4987     greater_equal(0x3, "nb");
4988     less_equal(0x6, "be");
4989     greater(0x7, "nbe");
4990   %}
4991 %}
4992 
4993 // Floating comparisons that don't require any fixup for the unordered case
4994 operand cmpOpUCF() %{
4995   match(Bool);
4996   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4997             n->as_Bool()->_test._test == BoolTest::ge ||
4998             n->as_Bool()->_test._test == BoolTest::le ||
4999             n->as_Bool()->_test._test == BoolTest::gt);
5000   format %{ "" %}
5001   interface(COND_INTER) %{
5002     equal(0x4, "e");
5003     not_equal(0x5, "ne");
5004     less(0x2, "b");
5005     greater_equal(0x3, "nb");
5006     less_equal(0x6, "be");
5007     greater(0x7, "nbe");
5008   %}
5009 %}
5010 
5011 
5012 // Floating comparisons that can be fixed up with extra conditional jumps
5013 operand cmpOpUCF2() %{
5014   match(Bool);
5015   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
5016             n->as_Bool()->_test._test == BoolTest::eq);
5017   format %{ "" %}
5018   interface(COND_INTER) %{
5019     equal(0x4, "e");
5020     not_equal(0x5, "ne");
5021     less(0x2, "b");
5022     greater_equal(0x3, "nb");
5023     less_equal(0x6, "be");
5024     greater(0x7, "nbe");
5025   %}
5026 %}
5027 
5028 // Comparison Code for FP conditional move
5029 operand cmpOp_fcmov() %{
5030   match(Bool);
5031 
5032   format %{ "" %}
5033   interface(COND_INTER) %{
5034     equal        (0x0C8);
5035     not_equal    (0x1C8);
5036     less         (0x0C0);
5037     greater_equal(0x1C0);
5038     less_equal   (0x0D0);
5039     greater      (0x1D0);
5040   %}
5041 %}
5042 
5043 // Comparision Code used in long compares
5044 operand cmpOp_commute() %{
5045   match(Bool);
5046 
5047   format %{ "" %}
5048   interface(COND_INTER) %{
5049     equal(0x4, "e");
5050     not_equal(0x5, "ne");
5051     less(0xF, "g");
5052     greater_equal(0xE, "le");
5053     less_equal(0xD, "ge");
5054     greater(0xC, "l");
5055   %}
5056 %}
5057 
5058 //----------OPERAND CLASSES----------------------------------------------------
5059 // Operand Classes are groups of operands that are used as to simplify
5060 // instruction definitions by not requiring the AD writer to specify separate
5061 // instructions for every form of operand when the instruction accepts
5062 // multiple operand types with the same basic encoding and format.  The classic
5063 // case of this is memory operands.
5064 
5065 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5066                indIndex, indIndexScale, indIndexScaleOffset);
5067 
5068 // Long memory operations are encoded in 2 instructions and a +4 offset.
5069 // This means some kind of offset is always required and you cannot use
5070 // an oop as the offset (done when working on static globals).
5071 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5072                     indIndex, indIndexScale, indIndexScaleOffset);
5073 
5074 
5075 //----------PIPELINE-----------------------------------------------------------
5076 // Rules which define the behavior of the target architectures pipeline.
5077 pipeline %{
5078 
5079 //----------ATTRIBUTES---------------------------------------------------------
5080 attributes %{
5081   variable_size_instructions;        // Fixed size instructions
5082   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5083   instruction_unit_size = 1;         // An instruction is 1 bytes long
5084   instruction_fetch_unit_size = 16;  // The processor fetches one line
5085   instruction_fetch_units = 1;       // of 16 bytes
5086 
5087   // List of nop instructions
5088   nops( MachNop );
5089 %}
5090 
5091 //----------RESOURCES----------------------------------------------------------
5092 // Resources are the functional units available to the machine
5093 
5094 // Generic P2/P3 pipeline
5095 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5096 // 3 instructions decoded per cycle.
5097 // 2 load/store ops per cycle, 1 branch, 1 FPU,
5098 // 2 ALU op, only ALU0 handles mul/div instructions.
5099 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5100            MS0, MS1, MEM = MS0 | MS1,
5101            BR, FPU,
5102            ALU0, ALU1, ALU = ALU0 | ALU1 );
5103 
5104 //----------PIPELINE DESCRIPTION-----------------------------------------------
5105 // Pipeline Description specifies the stages in the machine's pipeline
5106 
5107 // Generic P2/P3 pipeline
5108 pipe_desc(S0, S1, S2, S3, S4, S5);
5109 
5110 //----------PIPELINE CLASSES---------------------------------------------------
5111 // Pipeline Classes describe the stages in which input and output are
5112 // referenced by the hardware pipeline.
5113 
5114 // Naming convention: ialu or fpu
5115 // Then: _reg
5116 // Then: _reg if there is a 2nd register
5117 // Then: _long if it's a pair of instructions implementing a long
5118 // Then: _fat if it requires the big decoder
5119 //   Or: _mem if it requires the big decoder and a memory unit.
5120 
5121 // Integer ALU reg operation
5122 pipe_class ialu_reg(rRegI dst) %{
5123     single_instruction;
5124     dst    : S4(write);
5125     dst    : S3(read);
5126     DECODE : S0;        // any decoder
5127     ALU    : S3;        // any alu
5128 %}
5129 
5130 // Long ALU reg operation
5131 pipe_class ialu_reg_long(eRegL dst) %{
5132     instruction_count(2);
5133     dst    : S4(write);
5134     dst    : S3(read);
5135     DECODE : S0(2);     // any 2 decoders
5136     ALU    : S3(2);     // both alus
5137 %}
5138 
5139 // Integer ALU reg operation using big decoder
5140 pipe_class ialu_reg_fat(rRegI dst) %{
5141     single_instruction;
5142     dst    : S4(write);
5143     dst    : S3(read);
5144     D0     : S0;        // big decoder only
5145     ALU    : S3;        // any alu
5146 %}
5147 
5148 // Long ALU reg operation using big decoder
5149 pipe_class ialu_reg_long_fat(eRegL dst) %{
5150     instruction_count(2);
5151     dst    : S4(write);
5152     dst    : S3(read);
5153     D0     : S0(2);     // big decoder only; twice
5154     ALU    : S3(2);     // any 2 alus
5155 %}
5156 
5157 // Integer ALU reg-reg operation
5158 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
5159     single_instruction;
5160     dst    : S4(write);
5161     src    : S3(read);
5162     DECODE : S0;        // any decoder
5163     ALU    : S3;        // any alu
5164 %}
5165 
5166 // Long ALU reg-reg operation
5167 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5168     instruction_count(2);
5169     dst    : S4(write);
5170     src    : S3(read);
5171     DECODE : S0(2);     // any 2 decoders
5172     ALU    : S3(2);     // both alus
5173 %}
5174 
5175 // Integer ALU reg-reg operation
5176 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
5177     single_instruction;
5178     dst    : S4(write);
5179     src    : S3(read);
5180     D0     : S0;        // big decoder only
5181     ALU    : S3;        // any alu
5182 %}
5183 
5184 // Long ALU reg-reg operation
5185 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5186     instruction_count(2);
5187     dst    : S4(write);
5188     src    : S3(read);
5189     D0     : S0(2);     // big decoder only; twice
5190     ALU    : S3(2);     // both alus
5191 %}
5192 
5193 // Integer ALU reg-mem operation
5194 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
5195     single_instruction;
5196     dst    : S5(write);
5197     mem    : S3(read);
5198     D0     : S0;        // big decoder only
5199     ALU    : S4;        // any alu
5200     MEM    : S3;        // any mem
5201 %}
5202 
5203 // Long ALU reg-mem operation
5204 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5205     instruction_count(2);
5206     dst    : S5(write);
5207     mem    : S3(read);
5208     D0     : S0(2);     // big decoder only; twice
5209     ALU    : S4(2);     // any 2 alus
5210     MEM    : S3(2);     // both mems
5211 %}
5212 
5213 // Integer mem operation (prefetch)
5214 pipe_class ialu_mem(memory mem)
5215 %{
5216     single_instruction;
5217     mem    : S3(read);
5218     D0     : S0;        // big decoder only
5219     MEM    : S3;        // any mem
5220 %}
5221 
5222 // Integer Store to Memory
5223 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
5224     single_instruction;
5225     mem    : S3(read);
5226     src    : S5(read);
5227     D0     : S0;        // big decoder only
5228     ALU    : S4;        // any alu
5229     MEM    : S3;
5230 %}
5231 
5232 // Long Store to Memory
5233 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5234     instruction_count(2);
5235     mem    : S3(read);
5236     src    : S5(read);
5237     D0     : S0(2);     // big decoder only; twice
5238     ALU    : S4(2);     // any 2 alus
5239     MEM    : S3(2);     // Both mems
5240 %}
5241 
5242 // Integer Store to Memory
5243 pipe_class ialu_mem_imm(memory mem) %{
5244     single_instruction;
5245     mem    : S3(read);
5246     D0     : S0;        // big decoder only
5247     ALU    : S4;        // any alu
5248     MEM    : S3;
5249 %}
5250 
5251 // Integer ALU0 reg-reg operation
5252 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
5253     single_instruction;
5254     dst    : S4(write);
5255     src    : S3(read);
5256     D0     : S0;        // Big decoder only
5257     ALU0   : S3;        // only alu0
5258 %}
5259 
5260 // Integer ALU0 reg-mem operation
5261 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
5262     single_instruction;
5263     dst    : S5(write);
5264     mem    : S3(read);
5265     D0     : S0;        // big decoder only
5266     ALU0   : S4;        // ALU0 only
5267     MEM    : S3;        // any mem
5268 %}
5269 
5270 // Integer ALU reg-reg operation
5271 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
5272     single_instruction;
5273     cr     : S4(write);
5274     src1   : S3(read);
5275     src2   : S3(read);
5276     DECODE : S0;        // any decoder
5277     ALU    : S3;        // any alu
5278 %}
5279 
5280 // Integer ALU reg-imm operation
5281 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
5282     single_instruction;
5283     cr     : S4(write);
5284     src1   : S3(read);
5285     DECODE : S0;        // any decoder
5286     ALU    : S3;        // any alu
5287 %}
5288 
5289 // Integer ALU reg-mem operation
5290 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
5291     single_instruction;
5292     cr     : S4(write);
5293     src1   : S3(read);
5294     src2   : S3(read);
5295     D0     : S0;        // big decoder only
5296     ALU    : S4;        // any alu
5297     MEM    : S3;
5298 %}
5299 
5300 // Conditional move reg-reg
5301 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
5302     instruction_count(4);
5303     y      : S4(read);
5304     q      : S3(read);
5305     p      : S3(read);
5306     DECODE : S0(4);     // any decoder
5307 %}
5308 
5309 // Conditional move reg-reg
5310 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
5311     single_instruction;
5312     dst    : S4(write);
5313     src    : S3(read);
5314     cr     : S3(read);
5315     DECODE : S0;        // any decoder
5316 %}
5317 
5318 // Conditional move reg-mem
5319 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
5320     single_instruction;
5321     dst    : S4(write);
5322     src    : S3(read);
5323     cr     : S3(read);
5324     DECODE : S0;        // any decoder
5325     MEM    : S3;
5326 %}
5327 
5328 // Conditional move reg-reg long
5329 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
5330     single_instruction;
5331     dst    : S4(write);
5332     src    : S3(read);
5333     cr     : S3(read);
5334     DECODE : S0(2);     // any 2 decoders
5335 %}
5336 
5337 // Conditional move double reg-reg
5338 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
5339     single_instruction;
5340     dst    : S4(write);
5341     src    : S3(read);
5342     cr     : S3(read);
5343     DECODE : S0;        // any decoder
5344 %}
5345 
5346 // Float reg-reg operation
5347 pipe_class fpu_reg(regDPR dst) %{
5348     instruction_count(2);
5349     dst    : S3(read);
5350     DECODE : S0(2);     // any 2 decoders
5351     FPU    : S3;
5352 %}
5353 
5354 // Float reg-reg operation
5355 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
5356     instruction_count(2);
5357     dst    : S4(write);
5358     src    : S3(read);
5359     DECODE : S0(2);     // any 2 decoders
5360     FPU    : S3;
5361 %}
5362 
5363 // Float reg-reg operation
5364 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
5365     instruction_count(3);
5366     dst    : S4(write);
5367     src1   : S3(read);
5368     src2   : S3(read);
5369     DECODE : S0(3);     // any 3 decoders
5370     FPU    : S3(2);
5371 %}
5372 
5373 // Float reg-reg operation
5374 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
5375     instruction_count(4);
5376     dst    : S4(write);
5377     src1   : S3(read);
5378     src2   : S3(read);
5379     src3   : S3(read);
5380     DECODE : S0(4);     // any 3 decoders
5381     FPU    : S3(2);
5382 %}
5383 
5384 // Float reg-reg operation
5385 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
5386     instruction_count(4);
5387     dst    : S4(write);
5388     src1   : S3(read);
5389     src2   : S3(read);
5390     src3   : S3(read);
5391     DECODE : S1(3);     // any 3 decoders
5392     D0     : S0;        // Big decoder only
5393     FPU    : S3(2);
5394     MEM    : S3;
5395 %}
5396 
5397 // Float reg-mem operation
5398 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
5399     instruction_count(2);
5400     dst    : S5(write);
5401     mem    : S3(read);
5402     D0     : S0;        // big decoder only
5403     DECODE : S1;        // any decoder for FPU POP
5404     FPU    : S4;
5405     MEM    : S3;        // any mem
5406 %}
5407 
5408 // Float reg-mem operation
5409 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
5410     instruction_count(3);
5411     dst    : S5(write);
5412     src1   : S3(read);
5413     mem    : S3(read);
5414     D0     : S0;        // big decoder only
5415     DECODE : S1(2);     // any decoder for FPU POP
5416     FPU    : S4;
5417     MEM    : S3;        // any mem
5418 %}
5419 
5420 // Float mem-reg operation
5421 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
5422     instruction_count(2);
5423     src    : S5(read);
5424     mem    : S3(read);
5425     DECODE : S0;        // any decoder for FPU PUSH
5426     D0     : S1;        // big decoder only
5427     FPU    : S4;
5428     MEM    : S3;        // any mem
5429 %}
5430 
5431 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
5432     instruction_count(3);
5433     src1   : S3(read);
5434     src2   : S3(read);
5435     mem    : S3(read);
5436     DECODE : S0(2);     // any decoder for FPU PUSH
5437     D0     : S1;        // big decoder only
5438     FPU    : S4;
5439     MEM    : S3;        // any mem
5440 %}
5441 
5442 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
5443     instruction_count(3);
5444     src1   : S3(read);
5445     src2   : S3(read);
5446     mem    : S4(read);
5447     DECODE : S0;        // any decoder for FPU PUSH
5448     D0     : S0(2);     // big decoder only
5449     FPU    : S4;
5450     MEM    : S3(2);     // any mem
5451 %}
5452 
5453 pipe_class fpu_mem_mem(memory dst, memory src1) %{
5454     instruction_count(2);
5455     src1   : S3(read);
5456     dst    : S4(read);
5457     D0     : S0(2);     // big decoder only
5458     MEM    : S3(2);     // any mem
5459 %}
5460 
5461 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
5462     instruction_count(3);
5463     src1   : S3(read);
5464     src2   : S3(read);
5465     dst    : S4(read);
5466     D0     : S0(3);     // big decoder only
5467     FPU    : S4;
5468     MEM    : S3(3);     // any mem
5469 %}
5470 
5471 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
5472     instruction_count(3);
5473     src1   : S4(read);
5474     mem    : S4(read);
5475     DECODE : S0;        // any decoder for FPU PUSH
5476     D0     : S0(2);     // big decoder only
5477     FPU    : S4;
5478     MEM    : S3(2);     // any mem
5479 %}
5480 
5481 // Float load constant
5482 pipe_class fpu_reg_con(regDPR dst) %{
5483     instruction_count(2);
5484     dst    : S5(write);
5485     D0     : S0;        // big decoder only for the load
5486     DECODE : S1;        // any decoder for FPU POP
5487     FPU    : S4;
5488     MEM    : S3;        // any mem
5489 %}
5490 
5491 // Float load constant
5492 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
5493     instruction_count(3);
5494     dst    : S5(write);
5495     src    : S3(read);
5496     D0     : S0;        // big decoder only for the load
5497     DECODE : S1(2);     // any decoder for FPU POP
5498     FPU    : S4;
5499     MEM    : S3;        // any mem
5500 %}
5501 
5502 // UnConditional branch
5503 pipe_class pipe_jmp( label labl ) %{
5504     single_instruction;
5505     BR   : S3;
5506 %}
5507 
5508 // Conditional branch
5509 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
5510     single_instruction;
5511     cr    : S1(read);
5512     BR    : S3;
5513 %}
5514 
5515 // Allocation idiom
5516 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
5517     instruction_count(1); force_serialization;
5518     fixed_latency(6);
5519     heap_ptr : S3(read);
5520     DECODE   : S0(3);
5521     D0       : S2;
5522     MEM      : S3;
5523     ALU      : S3(2);
5524     dst      : S5(write);
5525     BR       : S5;
5526 %}
5527 
5528 // Generic big/slow expanded idiom
5529 pipe_class pipe_slow(  ) %{
5530     instruction_count(10); multiple_bundles; force_serialization;
5531     fixed_latency(100);
5532     D0  : S0(2);
5533     MEM : S3(2);
5534 %}
5535 
5536 // The real do-nothing guy
5537 pipe_class empty( ) %{
5538     instruction_count(0);
5539 %}
5540 
5541 // Define the class for the Nop node
5542 define %{
5543    MachNop = empty;
5544 %}
5545 
5546 %}
5547 
5548 //----------INSTRUCTIONS-------------------------------------------------------
5549 //
5550 // match      -- States which machine-independent subtree may be replaced
5551 //               by this instruction.
5552 // ins_cost   -- The estimated cost of this instruction is used by instruction
5553 //               selection to identify a minimum cost tree of machine
5554 //               instructions that matches a tree of machine-independent
5555 //               instructions.
5556 // format     -- A string providing the disassembly for this instruction.
5557 //               The value of an instruction's operand may be inserted
5558 //               by referring to it with a '$' prefix.
5559 // opcode     -- Three instruction opcodes may be provided.  These are referred
5560 //               to within an encode class as $primary, $secondary, and $tertiary
5561 //               respectively.  The primary opcode is commonly used to
5562 //               indicate the type of machine instruction, while secondary
5563 //               and tertiary are often used for prefix options or addressing
5564 //               modes.
5565 // ins_encode -- A list of encode classes with parameters. The encode class
5566 //               name must have been defined in an 'enc_class' specification
5567 //               in the encode section of the architecture description.
5568 
5569 //----------BSWAP-Instruction--------------------------------------------------
5570 instruct bytes_reverse_int(rRegI dst) %{
5571   match(Set dst (ReverseBytesI dst));
5572 
5573   format %{ "BSWAP  $dst" %}
5574   opcode(0x0F, 0xC8);
5575   ins_encode( OpcP, OpcSReg(dst) );
5576   ins_pipe( ialu_reg );
5577 %}
5578 
5579 instruct bytes_reverse_long(eRegL dst) %{
5580   match(Set dst (ReverseBytesL dst));
5581 
5582   format %{ "BSWAP  $dst.lo\n\t"
5583             "BSWAP  $dst.hi\n\t"
5584             "XCHG   $dst.lo $dst.hi" %}
5585 
5586   ins_cost(125);
5587   ins_encode( bswap_long_bytes(dst) );
5588   ins_pipe( ialu_reg_reg);
5589 %}
5590 
5591 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
5592   match(Set dst (ReverseBytesUS dst));
5593   effect(KILL cr);
5594 
5595   format %{ "BSWAP  $dst\n\t" 
5596             "SHR    $dst,16\n\t" %}
5597   ins_encode %{
5598     __ bswapl($dst$$Register);
5599     __ shrl($dst$$Register, 16); 
5600   %}
5601   ins_pipe( ialu_reg );
5602 %}
5603 
5604 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
5605   match(Set dst (ReverseBytesS dst));
5606   effect(KILL cr);
5607 
5608   format %{ "BSWAP  $dst\n\t" 
5609             "SAR    $dst,16\n\t" %}
5610   ins_encode %{
5611     __ bswapl($dst$$Register);
5612     __ sarl($dst$$Register, 16); 
5613   %}
5614   ins_pipe( ialu_reg );
5615 %}
5616 
5617 
5618 //---------- Zeros Count Instructions ------------------------------------------
5619 
5620 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5621   predicate(UseCountLeadingZerosInstruction);
5622   match(Set dst (CountLeadingZerosI src));
5623   effect(KILL cr);
5624 
5625   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
5626   ins_encode %{
5627     __ lzcntl($dst$$Register, $src$$Register);
5628   %}
5629   ins_pipe(ialu_reg);
5630 %}
5631 
5632 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
5633   predicate(!UseCountLeadingZerosInstruction);
5634   match(Set dst (CountLeadingZerosI src));
5635   effect(KILL cr);
5636 
5637   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
5638             "JNZ    skip\n\t"
5639             "MOV    $dst, -1\n"
5640       "skip:\n\t"
5641             "NEG    $dst\n\t"
5642             "ADD    $dst, 31" %}
5643   ins_encode %{
5644     Register Rdst = $dst$$Register;
5645     Register Rsrc = $src$$Register;
5646     Label skip;
5647     __ bsrl(Rdst, Rsrc);
5648     __ jccb(Assembler::notZero, skip);
5649     __ movl(Rdst, -1);
5650     __ bind(skip);
5651     __ negl(Rdst);
5652     __ addl(Rdst, BitsPerInt - 1);
5653   %}
5654   ins_pipe(ialu_reg);
5655 %}
5656 
5657 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5658   predicate(UseCountLeadingZerosInstruction);
5659   match(Set dst (CountLeadingZerosL src));
5660   effect(TEMP dst, KILL cr);
5661 
5662   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
5663             "JNC    done\n\t"
5664             "LZCNT  $dst, $src.lo\n\t"
5665             "ADD    $dst, 32\n"
5666       "done:" %}
5667   ins_encode %{
5668     Register Rdst = $dst$$Register;
5669     Register Rsrc = $src$$Register;
5670     Label done;
5671     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
5672     __ jccb(Assembler::carryClear, done);
5673     __ lzcntl(Rdst, Rsrc);
5674     __ addl(Rdst, BitsPerInt);
5675     __ bind(done);
5676   %}
5677   ins_pipe(ialu_reg);
5678 %}
5679 
5680 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
5681   predicate(!UseCountLeadingZerosInstruction);
5682   match(Set dst (CountLeadingZerosL src));
5683   effect(TEMP dst, KILL cr);
5684 
5685   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
5686             "JZ     msw_is_zero\n\t"
5687             "ADD    $dst, 32\n\t"
5688             "JMP    not_zero\n"
5689       "msw_is_zero:\n\t"
5690             "BSR    $dst, $src.lo\n\t"
5691             "JNZ    not_zero\n\t"
5692             "MOV    $dst, -1\n"
5693       "not_zero:\n\t"
5694             "NEG    $dst\n\t"
5695             "ADD    $dst, 63\n" %}
5696  ins_encode %{
5697     Register Rdst = $dst$$Register;
5698     Register Rsrc = $src$$Register;
5699     Label msw_is_zero;
5700     Label not_zero;
5701     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
5702     __ jccb(Assembler::zero, msw_is_zero);
5703     __ addl(Rdst, BitsPerInt);
5704     __ jmpb(not_zero);
5705     __ bind(msw_is_zero);
5706     __ bsrl(Rdst, Rsrc);
5707     __ jccb(Assembler::notZero, not_zero);
5708     __ movl(Rdst, -1);
5709     __ bind(not_zero);
5710     __ negl(Rdst);
5711     __ addl(Rdst, BitsPerLong - 1);
5712   %}
5713   ins_pipe(ialu_reg);
5714 %}
5715 
5716 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5717   match(Set dst (CountTrailingZerosI src));
5718   effect(KILL cr);
5719 
5720   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
5721             "JNZ    done\n\t"
5722             "MOV    $dst, 32\n"
5723       "done:" %}
5724   ins_encode %{
5725     Register Rdst = $dst$$Register;
5726     Label done;
5727     __ bsfl(Rdst, $src$$Register);
5728     __ jccb(Assembler::notZero, done);
5729     __ movl(Rdst, BitsPerInt);
5730     __ bind(done);
5731   %}
5732   ins_pipe(ialu_reg);
5733 %}
5734 
5735 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5736   match(Set dst (CountTrailingZerosL src));
5737   effect(TEMP dst, KILL cr);
5738 
5739   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
5740             "JNZ    done\n\t"
5741             "BSF    $dst, $src.hi\n\t"
5742             "JNZ    msw_not_zero\n\t"
5743             "MOV    $dst, 32\n"
5744       "msw_not_zero:\n\t"
5745             "ADD    $dst, 32\n"
5746       "done:" %}
5747   ins_encode %{
5748     Register Rdst = $dst$$Register;
5749     Register Rsrc = $src$$Register;
5750     Label msw_not_zero;
5751     Label done;
5752     __ bsfl(Rdst, Rsrc);
5753     __ jccb(Assembler::notZero, done);
5754     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
5755     __ jccb(Assembler::notZero, msw_not_zero);
5756     __ movl(Rdst, BitsPerInt);
5757     __ bind(msw_not_zero);
5758     __ addl(Rdst, BitsPerInt);
5759     __ bind(done);
5760   %}
5761   ins_pipe(ialu_reg);
5762 %}
5763 
5764 
5765 //---------- Population Count Instructions -------------------------------------
5766 
5767 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
5768   predicate(UsePopCountInstruction);
5769   match(Set dst (PopCountI src));
5770   effect(KILL cr);
5771 
5772   format %{ "POPCNT $dst, $src" %}
5773   ins_encode %{
5774     __ popcntl($dst$$Register, $src$$Register);
5775   %}
5776   ins_pipe(ialu_reg);
5777 %}
5778 
5779 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
5780   predicate(UsePopCountInstruction);
5781   match(Set dst (PopCountI (LoadI mem)));
5782   effect(KILL cr);
5783 
5784   format %{ "POPCNT $dst, $mem" %}
5785   ins_encode %{
5786     __ popcntl($dst$$Register, $mem$$Address);
5787   %}
5788   ins_pipe(ialu_reg);
5789 %}
5790 
5791 // Note: Long.bitCount(long) returns an int.
5792 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
5793   predicate(UsePopCountInstruction);
5794   match(Set dst (PopCountL src));
5795   effect(KILL cr, TEMP tmp, TEMP dst);
5796 
5797   format %{ "POPCNT $dst, $src.lo\n\t"
5798             "POPCNT $tmp, $src.hi\n\t"
5799             "ADD    $dst, $tmp" %}
5800   ins_encode %{
5801     __ popcntl($dst$$Register, $src$$Register);
5802     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
5803     __ addl($dst$$Register, $tmp$$Register);
5804   %}
5805   ins_pipe(ialu_reg);
5806 %}
5807 
5808 // Note: Long.bitCount(long) returns an int.
5809 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
5810   predicate(UsePopCountInstruction);
5811   match(Set dst (PopCountL (LoadL mem)));
5812   effect(KILL cr, TEMP tmp, TEMP dst);
5813 
5814   format %{ "POPCNT $dst, $mem\n\t"
5815             "POPCNT $tmp, $mem+4\n\t"
5816             "ADD    $dst, $tmp" %}
5817   ins_encode %{
5818     //__ popcntl($dst$$Register, $mem$$Address$$first);
5819     //__ popcntl($tmp$$Register, $mem$$Address$$second);
5820     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
5821     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
5822     __ addl($dst$$Register, $tmp$$Register);
5823   %}
5824   ins_pipe(ialu_reg);
5825 %}
5826 
5827 
5828 //----------Load/Store/Move Instructions---------------------------------------
5829 //----------Load Instructions--------------------------------------------------
5830 // Load Byte (8bit signed)
5831 instruct loadB(xRegI dst, memory mem) %{
5832   match(Set dst (LoadB mem));
5833 
5834   ins_cost(125);
5835   format %{ "MOVSX8 $dst,$mem\t# byte" %}
5836 
5837   ins_encode %{
5838     __ movsbl($dst$$Register, $mem$$Address);
5839   %}
5840 
5841   ins_pipe(ialu_reg_mem);
5842 %}
5843 
5844 // Load Byte (8bit signed) into Long Register
5845 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5846   match(Set dst (ConvI2L (LoadB mem)));
5847   effect(KILL cr);
5848 
5849   ins_cost(375);
5850   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
5851             "MOV    $dst.hi,$dst.lo\n\t"
5852             "SAR    $dst.hi,7" %}
5853 
5854   ins_encode %{
5855     __ movsbl($dst$$Register, $mem$$Address);
5856     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5857     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
5858   %}
5859 
5860   ins_pipe(ialu_reg_mem);
5861 %}
5862 
5863 // Load Unsigned Byte (8bit UNsigned)
5864 instruct loadUB(xRegI dst, memory mem) %{
5865   match(Set dst (LoadUB mem));
5866 
5867   ins_cost(125);
5868   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
5869 
5870   ins_encode %{
5871     __ movzbl($dst$$Register, $mem$$Address);
5872   %}
5873 
5874   ins_pipe(ialu_reg_mem);
5875 %}
5876 
5877 // Load Unsigned Byte (8 bit UNsigned) into Long Register
5878 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5879   match(Set dst (ConvI2L (LoadUB mem)));
5880   effect(KILL cr);
5881 
5882   ins_cost(250);
5883   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
5884             "XOR    $dst.hi,$dst.hi" %}
5885 
5886   ins_encode %{
5887     Register Rdst = $dst$$Register;
5888     __ movzbl(Rdst, $mem$$Address);
5889     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5890   %}
5891 
5892   ins_pipe(ialu_reg_mem);
5893 %}
5894 
5895 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
5896 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
5897   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5898   effect(KILL cr);
5899 
5900   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
5901             "XOR    $dst.hi,$dst.hi\n\t"
5902             "AND    $dst.lo,$mask" %}
5903   ins_encode %{
5904     Register Rdst = $dst$$Register;
5905     __ movzbl(Rdst, $mem$$Address);
5906     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5907     __ andl(Rdst, $mask$$constant);
5908   %}
5909   ins_pipe(ialu_reg_mem);
5910 %}
5911 
5912 // Load Short (16bit signed)
5913 instruct loadS(rRegI dst, memory mem) %{
5914   match(Set dst (LoadS mem));
5915 
5916   ins_cost(125);
5917   format %{ "MOVSX  $dst,$mem\t# short" %}
5918 
5919   ins_encode %{
5920     __ movswl($dst$$Register, $mem$$Address);
5921   %}
5922 
5923   ins_pipe(ialu_reg_mem);
5924 %}
5925 
5926 // Load Short (16 bit signed) to Byte (8 bit signed)
5927 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5928   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5929 
5930   ins_cost(125);
5931   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
5932   ins_encode %{
5933     __ movsbl($dst$$Register, $mem$$Address);
5934   %}
5935   ins_pipe(ialu_reg_mem);
5936 %}
5937 
5938 // Load Short (16bit signed) into Long Register
5939 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5940   match(Set dst (ConvI2L (LoadS mem)));
5941   effect(KILL cr);
5942 
5943   ins_cost(375);
5944   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
5945             "MOV    $dst.hi,$dst.lo\n\t"
5946             "SAR    $dst.hi,15" %}
5947 
5948   ins_encode %{
5949     __ movswl($dst$$Register, $mem$$Address);
5950     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5951     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
5952   %}
5953 
5954   ins_pipe(ialu_reg_mem);
5955 %}
5956 
5957 // Load Unsigned Short/Char (16bit unsigned)
5958 instruct loadUS(rRegI dst, memory mem) %{
5959   match(Set dst (LoadUS mem));
5960 
5961   ins_cost(125);
5962   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
5963 
5964   ins_encode %{
5965     __ movzwl($dst$$Register, $mem$$Address);
5966   %}
5967 
5968   ins_pipe(ialu_reg_mem);
5969 %}
5970 
5971 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5972 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5973   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5974 
5975   ins_cost(125);
5976   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
5977   ins_encode %{
5978     __ movsbl($dst$$Register, $mem$$Address);
5979   %}
5980   ins_pipe(ialu_reg_mem);
5981 %}
5982 
5983 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
5984 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5985   match(Set dst (ConvI2L (LoadUS mem)));
5986   effect(KILL cr);
5987 
5988   ins_cost(250);
5989   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
5990             "XOR    $dst.hi,$dst.hi" %}
5991 
5992   ins_encode %{
5993     __ movzwl($dst$$Register, $mem$$Address);
5994     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
5995   %}
5996 
5997   ins_pipe(ialu_reg_mem);
5998 %}
5999 
6000 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
6001 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6002   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6003   effect(KILL cr);
6004 
6005   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
6006             "XOR    $dst.hi,$dst.hi" %}
6007   ins_encode %{
6008     Register Rdst = $dst$$Register;
6009     __ movzbl(Rdst, $mem$$Address);
6010     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6011   %}
6012   ins_pipe(ialu_reg_mem);
6013 %}
6014 
6015 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
6016 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
6017   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6018   effect(KILL cr);
6019 
6020   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
6021             "XOR    $dst.hi,$dst.hi\n\t"
6022             "AND    $dst.lo,$mask" %}
6023   ins_encode %{
6024     Register Rdst = $dst$$Register;
6025     __ movzwl(Rdst, $mem$$Address);
6026     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6027     __ andl(Rdst, $mask$$constant);
6028   %}
6029   ins_pipe(ialu_reg_mem);
6030 %}
6031 
6032 // Load Integer
6033 instruct loadI(rRegI dst, memory mem) %{
6034   match(Set dst (LoadI mem));
6035 
6036   ins_cost(125);
6037   format %{ "MOV    $dst,$mem\t# int" %}
6038 
6039   ins_encode %{
6040     __ movl($dst$$Register, $mem$$Address);
6041   %}
6042 
6043   ins_pipe(ialu_reg_mem);
6044 %}
6045 
6046 // Load Integer (32 bit signed) to Byte (8 bit signed)
6047 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
6048   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
6049 
6050   ins_cost(125);
6051   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
6052   ins_encode %{
6053     __ movsbl($dst$$Register, $mem$$Address);
6054   %}
6055   ins_pipe(ialu_reg_mem);
6056 %}
6057 
6058 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
6059 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
6060   match(Set dst (AndI (LoadI mem) mask));
6061 
6062   ins_cost(125);
6063   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
6064   ins_encode %{
6065     __ movzbl($dst$$Register, $mem$$Address);
6066   %}
6067   ins_pipe(ialu_reg_mem);
6068 %}
6069 
6070 // Load Integer (32 bit signed) to Short (16 bit signed)
6071 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
6072   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
6073 
6074   ins_cost(125);
6075   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
6076   ins_encode %{
6077     __ movswl($dst$$Register, $mem$$Address);
6078   %}
6079   ins_pipe(ialu_reg_mem);
6080 %}
6081 
6082 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
6083 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
6084   match(Set dst (AndI (LoadI mem) mask));
6085 
6086   ins_cost(125);
6087   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
6088   ins_encode %{
6089     __ movzwl($dst$$Register, $mem$$Address);
6090   %}
6091   ins_pipe(ialu_reg_mem);
6092 %}
6093 
6094 // Load Integer into Long Register
6095 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6096   match(Set dst (ConvI2L (LoadI mem)));
6097   effect(KILL cr);
6098 
6099   ins_cost(375);
6100   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
6101             "MOV    $dst.hi,$dst.lo\n\t"
6102             "SAR    $dst.hi,31" %}
6103 
6104   ins_encode %{
6105     __ movl($dst$$Register, $mem$$Address);
6106     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6107     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
6108   %}
6109 
6110   ins_pipe(ialu_reg_mem);
6111 %}
6112 
6113 // Load Integer with mask 0xFF into Long Register
6114 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6115   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6116   effect(KILL cr);
6117 
6118   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
6119             "XOR    $dst.hi,$dst.hi" %}
6120   ins_encode %{
6121     Register Rdst = $dst$$Register;
6122     __ movzbl(Rdst, $mem$$Address);
6123     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6124   %}
6125   ins_pipe(ialu_reg_mem);
6126 %}
6127 
6128 // Load Integer with mask 0xFFFF into Long Register
6129 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
6130   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6131   effect(KILL cr);
6132 
6133   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
6134             "XOR    $dst.hi,$dst.hi" %}
6135   ins_encode %{
6136     Register Rdst = $dst$$Register;
6137     __ movzwl(Rdst, $mem$$Address);
6138     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6139   %}
6140   ins_pipe(ialu_reg_mem);
6141 %}
6142 
6143 // Load Integer with 32-bit mask into Long Register
6144 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
6145   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6146   effect(KILL cr);
6147 
6148   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
6149             "XOR    $dst.hi,$dst.hi\n\t"
6150             "AND    $dst.lo,$mask" %}
6151   ins_encode %{
6152     Register Rdst = $dst$$Register;
6153     __ movl(Rdst, $mem$$Address);
6154     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6155     __ andl(Rdst, $mask$$constant);
6156   %}
6157   ins_pipe(ialu_reg_mem);
6158 %}
6159 
6160 // Load Unsigned Integer into Long Register
6161 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6162   match(Set dst (LoadUI2L mem));
6163   effect(KILL cr);
6164 
6165   ins_cost(250);
6166   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
6167             "XOR    $dst.hi,$dst.hi" %}
6168 
6169   ins_encode %{
6170     __ movl($dst$$Register, $mem$$Address);
6171     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6172   %}
6173 
6174   ins_pipe(ialu_reg_mem);
6175 %}
6176 
6177 // Load Long.  Cannot clobber address while loading, so restrict address
6178 // register to ESI
6179 instruct loadL(eRegL dst, load_long_memory mem) %{
6180   predicate(!((LoadLNode*)n)->require_atomic_access());
6181   match(Set dst (LoadL mem));
6182 
6183   ins_cost(250);
6184   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
6185             "MOV    $dst.hi,$mem+4" %}
6186 
6187   ins_encode %{
6188     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
6189     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
6190     __ movl($dst$$Register, Amemlo);
6191     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
6192   %}
6193 
6194   ins_pipe(ialu_reg_long_mem);
6195 %}
6196 
6197 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
6198 // then store it down to the stack and reload on the int
6199 // side.
6200 instruct loadL_volatile(stackSlotL dst, memory mem) %{
6201   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6202   match(Set dst (LoadL mem));
6203 
6204   ins_cost(200);
6205   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6206             "FISTp  $dst" %}
6207   ins_encode(enc_loadL_volatile(mem,dst));
6208   ins_pipe( fpu_reg_mem );
6209 %}
6210 
6211 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
6212   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6213   match(Set dst (LoadL mem));
6214   effect(TEMP tmp);
6215   ins_cost(180);
6216   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6217             "MOVSD  $dst,$tmp" %}
6218   ins_encode %{
6219     __ movdbl($tmp$$XMMRegister, $mem$$Address);
6220     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
6221   %}
6222   ins_pipe( pipe_slow );
6223 %}
6224 
6225 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
6226   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6227   match(Set dst (LoadL mem));
6228   effect(TEMP tmp);
6229   ins_cost(160);
6230   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6231             "MOVD   $dst.lo,$tmp\n\t"
6232             "PSRLQ  $tmp,32\n\t"
6233             "MOVD   $dst.hi,$tmp" %}
6234   ins_encode %{
6235     __ movdbl($tmp$$XMMRegister, $mem$$Address);
6236     __ movdl($dst$$Register, $tmp$$XMMRegister);
6237     __ psrlq($tmp$$XMMRegister, 32);
6238     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
6239   %}
6240   ins_pipe( pipe_slow );
6241 %}
6242 
6243 // Load Range
6244 instruct loadRange(rRegI dst, memory mem) %{
6245   match(Set dst (LoadRange mem));
6246 
6247   ins_cost(125);
6248   format %{ "MOV    $dst,$mem" %}
6249   opcode(0x8B);
6250   ins_encode( OpcP, RegMem(dst,mem));
6251   ins_pipe( ialu_reg_mem );
6252 %}
6253 
6254 
6255 // Load Pointer
6256 instruct loadP(eRegP dst, memory mem) %{
6257   match(Set dst (LoadP mem));
6258 
6259   ins_cost(125);
6260   format %{ "MOV    $dst,$mem" %}
6261   opcode(0x8B);
6262   ins_encode( OpcP, RegMem(dst,mem));
6263   ins_pipe( ialu_reg_mem );
6264 %}
6265 
6266 // Load Klass Pointer
6267 instruct loadKlass(eRegP dst, memory mem) %{
6268   match(Set dst (LoadKlass mem));
6269 
6270   ins_cost(125);
6271   format %{ "MOV    $dst,$mem" %}
6272   opcode(0x8B);
6273   ins_encode( OpcP, RegMem(dst,mem));
6274   ins_pipe( ialu_reg_mem );
6275 %}
6276 
6277 // Load Double
6278 instruct loadDPR(regDPR dst, memory mem) %{
6279   predicate(UseSSE<=1);
6280   match(Set dst (LoadD mem));
6281 
6282   ins_cost(150);
6283   format %{ "FLD_D  ST,$mem\n\t"
6284             "FSTP   $dst" %}
6285   opcode(0xDD);               /* DD /0 */
6286   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6287               Pop_Reg_DPR(dst) );
6288   ins_pipe( fpu_reg_mem );
6289 %}
6290 
6291 // Load Double to XMM
6292 instruct loadD(regD dst, memory mem) %{
6293   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6294   match(Set dst (LoadD mem));
6295   ins_cost(145);
6296   format %{ "MOVSD  $dst,$mem" %}
6297   ins_encode %{
6298     __ movdbl ($dst$$XMMRegister, $mem$$Address);
6299   %}
6300   ins_pipe( pipe_slow );
6301 %}
6302 
6303 instruct loadD_partial(regD dst, memory mem) %{
6304   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6305   match(Set dst (LoadD mem));
6306   ins_cost(145);
6307   format %{ "MOVLPD $dst,$mem" %}
6308   ins_encode %{
6309     __ movdbl ($dst$$XMMRegister, $mem$$Address);
6310   %}
6311   ins_pipe( pipe_slow );
6312 %}
6313 
6314 // Load to XMM register (single-precision floating point)
6315 // MOVSS instruction
6316 instruct loadF(regF dst, memory mem) %{
6317   predicate(UseSSE>=1);
6318   match(Set dst (LoadF mem));
6319   ins_cost(145);
6320   format %{ "MOVSS  $dst,$mem" %}
6321   ins_encode %{
6322     __ movflt ($dst$$XMMRegister, $mem$$Address);
6323   %}
6324   ins_pipe( pipe_slow );
6325 %}
6326 
6327 // Load Float
6328 instruct loadFPR(regFPR dst, memory mem) %{
6329   predicate(UseSSE==0);
6330   match(Set dst (LoadF mem));
6331 
6332   ins_cost(150);
6333   format %{ "FLD_S  ST,$mem\n\t"
6334             "FSTP   $dst" %}
6335   opcode(0xD9);               /* D9 /0 */
6336   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6337               Pop_Reg_FPR(dst) );
6338   ins_pipe( fpu_reg_mem );
6339 %}
6340 
6341 // Load Effective Address
6342 instruct leaP8(eRegP dst, indOffset8 mem) %{
6343   match(Set dst mem);
6344 
6345   ins_cost(110);
6346   format %{ "LEA    $dst,$mem" %}
6347   opcode(0x8D);
6348   ins_encode( OpcP, RegMem(dst,mem));
6349   ins_pipe( ialu_reg_reg_fat );
6350 %}
6351 
6352 instruct leaP32(eRegP dst, indOffset32 mem) %{
6353   match(Set dst mem);
6354 
6355   ins_cost(110);
6356   format %{ "LEA    $dst,$mem" %}
6357   opcode(0x8D);
6358   ins_encode( OpcP, RegMem(dst,mem));
6359   ins_pipe( ialu_reg_reg_fat );
6360 %}
6361 
6362 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
6363   match(Set dst mem);
6364 
6365   ins_cost(110);
6366   format %{ "LEA    $dst,$mem" %}
6367   opcode(0x8D);
6368   ins_encode( OpcP, RegMem(dst,mem));
6369   ins_pipe( ialu_reg_reg_fat );
6370 %}
6371 
6372 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
6373   match(Set dst mem);
6374 
6375   ins_cost(110);
6376   format %{ "LEA    $dst,$mem" %}
6377   opcode(0x8D);
6378   ins_encode( OpcP, RegMem(dst,mem));
6379   ins_pipe( ialu_reg_reg_fat );
6380 %}
6381 
6382 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
6383   match(Set dst mem);
6384 
6385   ins_cost(110);
6386   format %{ "LEA    $dst,$mem" %}
6387   opcode(0x8D);
6388   ins_encode( OpcP, RegMem(dst,mem));
6389   ins_pipe( ialu_reg_reg_fat );
6390 %}
6391 
6392 // Load Constant
6393 instruct loadConI(rRegI dst, immI src) %{
6394   match(Set dst src);
6395 
6396   format %{ "MOV    $dst,$src" %}
6397   ins_encode( LdImmI(dst, src) );
6398   ins_pipe( ialu_reg_fat );
6399 %}
6400 
6401 // Load Constant zero
6402 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
6403   match(Set dst src);
6404   effect(KILL cr);
6405 
6406   ins_cost(50);
6407   format %{ "XOR    $dst,$dst" %}
6408   opcode(0x33);  /* + rd */
6409   ins_encode( OpcP, RegReg( dst, dst ) );
6410   ins_pipe( ialu_reg );
6411 %}
6412 
6413 instruct loadConP(eRegP dst, immP src) %{
6414   match(Set dst src);
6415 
6416   format %{ "MOV    $dst,$src" %}
6417   opcode(0xB8);  /* + rd */
6418   ins_encode( LdImmP(dst, src) );
6419   ins_pipe( ialu_reg_fat );
6420 %}
6421 
6422 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
6423   match(Set dst src);
6424   effect(KILL cr);
6425   ins_cost(200);
6426   format %{ "MOV    $dst.lo,$src.lo\n\t"
6427             "MOV    $dst.hi,$src.hi" %}
6428   opcode(0xB8);
6429   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
6430   ins_pipe( ialu_reg_long_fat );
6431 %}
6432 
6433 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
6434   match(Set dst src);
6435   effect(KILL cr);
6436   ins_cost(150);
6437   format %{ "XOR    $dst.lo,$dst.lo\n\t"
6438             "XOR    $dst.hi,$dst.hi" %}
6439   opcode(0x33,0x33);
6440   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
6441   ins_pipe( ialu_reg_long );
6442 %}
6443 
6444 // The instruction usage is guarded by predicate in operand immFPR().
6445 instruct loadConFPR(regFPR dst, immFPR con) %{
6446   match(Set dst con);
6447   ins_cost(125);
6448   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
6449             "FSTP   $dst" %}
6450   ins_encode %{
6451     __ fld_s($constantaddress($con));
6452     __ fstp_d($dst$$reg);
6453   %}
6454   ins_pipe(fpu_reg_con);
6455 %}
6456 
6457 // The instruction usage is guarded by predicate in operand immFPR0().
6458 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
6459   match(Set dst con);
6460   ins_cost(125);
6461   format %{ "FLDZ   ST\n\t"
6462             "FSTP   $dst" %}
6463   ins_encode %{
6464     __ fldz();
6465     __ fstp_d($dst$$reg);
6466   %}
6467   ins_pipe(fpu_reg_con);
6468 %}
6469 
6470 // The instruction usage is guarded by predicate in operand immFPR1().
6471 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
6472   match(Set dst con);
6473   ins_cost(125);
6474   format %{ "FLD1   ST\n\t"
6475             "FSTP   $dst" %}
6476   ins_encode %{
6477     __ fld1();
6478     __ fstp_d($dst$$reg);
6479   %}
6480   ins_pipe(fpu_reg_con);
6481 %}
6482 
6483 // The instruction usage is guarded by predicate in operand immF().
6484 instruct loadConF(regF dst, immF con) %{
6485   match(Set dst con);
6486   ins_cost(125);
6487   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
6488   ins_encode %{
6489     __ movflt($dst$$XMMRegister, $constantaddress($con));
6490   %}
6491   ins_pipe(pipe_slow);
6492 %}
6493 
6494 // The instruction usage is guarded by predicate in operand immF0().
6495 instruct loadConF0(regF dst, immF0 src) %{
6496   match(Set dst src);
6497   ins_cost(100);
6498   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
6499   ins_encode %{
6500     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
6501   %}
6502   ins_pipe(pipe_slow);
6503 %}
6504 
6505 // The instruction usage is guarded by predicate in operand immDPR().
6506 instruct loadConDPR(regDPR dst, immDPR con) %{
6507   match(Set dst con);
6508   ins_cost(125);
6509 
6510   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
6511             "FSTP   $dst" %}
6512   ins_encode %{
6513     __ fld_d($constantaddress($con));
6514     __ fstp_d($dst$$reg);
6515   %}
6516   ins_pipe(fpu_reg_con);
6517 %}
6518 
6519 // The instruction usage is guarded by predicate in operand immDPR0().
6520 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
6521   match(Set dst con);
6522   ins_cost(125);
6523 
6524   format %{ "FLDZ   ST\n\t"
6525             "FSTP   $dst" %}
6526   ins_encode %{
6527     __ fldz();
6528     __ fstp_d($dst$$reg);
6529   %}
6530   ins_pipe(fpu_reg_con);
6531 %}
6532 
6533 // The instruction usage is guarded by predicate in operand immDPR1().
6534 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
6535   match(Set dst con);
6536   ins_cost(125);
6537 
6538   format %{ "FLD1   ST\n\t"
6539             "FSTP   $dst" %}
6540   ins_encode %{
6541     __ fld1();
6542     __ fstp_d($dst$$reg);
6543   %}
6544   ins_pipe(fpu_reg_con);
6545 %}
6546 
6547 // The instruction usage is guarded by predicate in operand immD().
6548 instruct loadConD(regD dst, immD con) %{
6549   match(Set dst con);
6550   ins_cost(125);
6551   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
6552   ins_encode %{
6553     __ movdbl($dst$$XMMRegister, $constantaddress($con));
6554   %}
6555   ins_pipe(pipe_slow);
6556 %}
6557 
6558 // The instruction usage is guarded by predicate in operand immD0().
6559 instruct loadConD0(regD dst, immD0 src) %{
6560   match(Set dst src);
6561   ins_cost(100);
6562   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
6563   ins_encode %{
6564     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
6565   %}
6566   ins_pipe( pipe_slow );
6567 %}
6568 
6569 // Load Stack Slot
6570 instruct loadSSI(rRegI dst, stackSlotI src) %{
6571   match(Set dst src);
6572   ins_cost(125);
6573 
6574   format %{ "MOV    $dst,$src" %}
6575   opcode(0x8B);
6576   ins_encode( OpcP, RegMem(dst,src));
6577   ins_pipe( ialu_reg_mem );
6578 %}
6579 
6580 instruct loadSSL(eRegL dst, stackSlotL src) %{
6581   match(Set dst src);
6582 
6583   ins_cost(200);
6584   format %{ "MOV    $dst,$src.lo\n\t"
6585             "MOV    $dst+4,$src.hi" %}
6586   opcode(0x8B, 0x8B);
6587   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
6588   ins_pipe( ialu_mem_long_reg );
6589 %}
6590 
6591 // Load Stack Slot
6592 instruct loadSSP(eRegP dst, stackSlotP src) %{
6593   match(Set dst src);
6594   ins_cost(125);
6595 
6596   format %{ "MOV    $dst,$src" %}
6597   opcode(0x8B);
6598   ins_encode( OpcP, RegMem(dst,src));
6599   ins_pipe( ialu_reg_mem );
6600 %}
6601 
6602 // Load Stack Slot
6603 instruct loadSSF(regFPR dst, stackSlotF src) %{
6604   match(Set dst src);
6605   ins_cost(125);
6606 
6607   format %{ "FLD_S  $src\n\t"
6608             "FSTP   $dst" %}
6609   opcode(0xD9);               /* D9 /0, FLD m32real */
6610   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6611               Pop_Reg_FPR(dst) );
6612   ins_pipe( fpu_reg_mem );
6613 %}
6614 
6615 // Load Stack Slot
6616 instruct loadSSD(regDPR dst, stackSlotD src) %{
6617   match(Set dst src);
6618   ins_cost(125);
6619 
6620   format %{ "FLD_D  $src\n\t"
6621             "FSTP   $dst" %}
6622   opcode(0xDD);               /* DD /0, FLD m64real */
6623   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6624               Pop_Reg_DPR(dst) );
6625   ins_pipe( fpu_reg_mem );
6626 %}
6627 
6628 // Prefetch instructions.
6629 // Must be safe to execute with invalid address (cannot fault).
6630 
6631 instruct prefetchr0( memory mem ) %{
6632   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6633   match(PrefetchRead mem);
6634   ins_cost(0);
6635   size(0);
6636   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
6637   ins_encode();
6638   ins_pipe(empty);
6639 %}
6640 
6641 instruct prefetchr( memory mem ) %{
6642   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
6643   match(PrefetchRead mem);
6644   ins_cost(100);
6645 
6646   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
6647   ins_encode %{
6648     __ prefetchr($mem$$Address);
6649   %}
6650   ins_pipe(ialu_mem);
6651 %}
6652 
6653 instruct prefetchrNTA( memory mem ) %{
6654   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
6655   match(PrefetchRead mem);
6656   ins_cost(100);
6657 
6658   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
6659   ins_encode %{
6660     __ prefetchnta($mem$$Address);
6661   %}
6662   ins_pipe(ialu_mem);
6663 %}
6664 
6665 instruct prefetchrT0( memory mem ) %{
6666   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
6667   match(PrefetchRead mem);
6668   ins_cost(100);
6669 
6670   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
6671   ins_encode %{
6672     __ prefetcht0($mem$$Address);
6673   %}
6674   ins_pipe(ialu_mem);
6675 %}
6676 
6677 instruct prefetchrT2( memory mem ) %{
6678   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
6679   match(PrefetchRead mem);
6680   ins_cost(100);
6681 
6682   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
6683   ins_encode %{
6684     __ prefetcht2($mem$$Address);
6685   %}
6686   ins_pipe(ialu_mem);
6687 %}
6688 
6689 instruct prefetchw0( memory mem ) %{
6690   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6691   match(PrefetchWrite mem);
6692   ins_cost(0);
6693   size(0);
6694   format %{ "Prefetch (non-SSE is empty encoding)" %}
6695   ins_encode();
6696   ins_pipe(empty);
6697 %}
6698 
6699 instruct prefetchw( memory mem ) %{
6700   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
6701   match( PrefetchWrite mem );
6702   ins_cost(100);
6703 
6704   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
6705   ins_encode %{
6706     __ prefetchw($mem$$Address);
6707   %}
6708   ins_pipe(ialu_mem);
6709 %}
6710 
6711 instruct prefetchwNTA( memory mem ) %{
6712   predicate(UseSSE>=1);
6713   match(PrefetchWrite mem);
6714   ins_cost(100);
6715 
6716   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
6717   ins_encode %{
6718     __ prefetchnta($mem$$Address);
6719   %}
6720   ins_pipe(ialu_mem);
6721 %}
6722 
6723 // Prefetch instructions for allocation.
6724 
6725 instruct prefetchAlloc0( memory mem ) %{
6726   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
6727   match(PrefetchAllocation mem);
6728   ins_cost(0);
6729   size(0);
6730   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
6731   ins_encode();
6732   ins_pipe(empty);
6733 %}
6734 
6735 instruct prefetchAlloc( memory mem ) %{
6736   predicate(AllocatePrefetchInstr==3);
6737   match( PrefetchAllocation mem );
6738   ins_cost(100);
6739 
6740   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
6741   ins_encode %{
6742     __ prefetchw($mem$$Address);
6743   %}
6744   ins_pipe(ialu_mem);
6745 %}
6746 
6747 instruct prefetchAllocNTA( memory mem ) %{
6748   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
6749   match(PrefetchAllocation mem);
6750   ins_cost(100);
6751 
6752   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
6753   ins_encode %{
6754     __ prefetchnta($mem$$Address);
6755   %}
6756   ins_pipe(ialu_mem);
6757 %}
6758 
6759 instruct prefetchAllocT0( memory mem ) %{
6760   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
6761   match(PrefetchAllocation mem);
6762   ins_cost(100);
6763 
6764   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
6765   ins_encode %{
6766     __ prefetcht0($mem$$Address);
6767   %}
6768   ins_pipe(ialu_mem);
6769 %}
6770 
6771 instruct prefetchAllocT2( memory mem ) %{
6772   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
6773   match(PrefetchAllocation mem);
6774   ins_cost(100);
6775 
6776   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
6777   ins_encode %{
6778     __ prefetcht2($mem$$Address);
6779   %}
6780   ins_pipe(ialu_mem);
6781 %}
6782 
6783 //----------Store Instructions-------------------------------------------------
6784 
6785 // Store Byte
6786 instruct storeB(memory mem, xRegI src) %{
6787   match(Set mem (StoreB mem src));
6788 
6789   ins_cost(125);
6790   format %{ "MOV8   $mem,$src" %}
6791   opcode(0x88);
6792   ins_encode( OpcP, RegMem( src, mem ) );
6793   ins_pipe( ialu_mem_reg );
6794 %}
6795 
6796 // Store Char/Short
6797 instruct storeC(memory mem, rRegI src) %{
6798   match(Set mem (StoreC mem src));
6799 
6800   ins_cost(125);
6801   format %{ "MOV16  $mem,$src" %}
6802   opcode(0x89, 0x66);
6803   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
6804   ins_pipe( ialu_mem_reg );
6805 %}
6806 
6807 // Store Integer
6808 instruct storeI(memory mem, rRegI src) %{
6809   match(Set mem (StoreI mem src));
6810 
6811   ins_cost(125);
6812   format %{ "MOV    $mem,$src" %}
6813   opcode(0x89);
6814   ins_encode( OpcP, RegMem( src, mem ) );
6815   ins_pipe( ialu_mem_reg );
6816 %}
6817 
6818 // Store Long
6819 instruct storeL(long_memory mem, eRegL src) %{
6820   predicate(!((StoreLNode*)n)->require_atomic_access());
6821   match(Set mem (StoreL mem src));
6822 
6823   ins_cost(200);
6824   format %{ "MOV    $mem,$src.lo\n\t"
6825             "MOV    $mem+4,$src.hi" %}
6826   opcode(0x89, 0x89);
6827   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
6828   ins_pipe( ialu_mem_long_reg );
6829 %}
6830 
6831 // Store Long to Integer
6832 instruct storeL2I(memory mem, eRegL src) %{
6833   match(Set mem (StoreI mem (ConvL2I src)));
6834 
6835   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
6836   ins_encode %{
6837     __ movl($mem$$Address, $src$$Register);
6838   %}
6839   ins_pipe(ialu_mem_reg);
6840 %}
6841 
6842 // Volatile Store Long.  Must be atomic, so move it into
6843 // the FP TOS and then do a 64-bit FIST.  Has to probe the
6844 // target address before the store (for null-ptr checks)
6845 // so the memory operand is used twice in the encoding.
6846 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
6847   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
6848   match(Set mem (StoreL mem src));
6849   effect( KILL cr );
6850   ins_cost(400);
6851   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6852             "FILD   $src\n\t"
6853             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
6854   opcode(0x3B);
6855   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
6856   ins_pipe( fpu_reg_mem );
6857 %}
6858 
6859 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
6860   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6861   match(Set mem (StoreL mem src));
6862   effect( TEMP tmp, KILL cr );
6863   ins_cost(380);
6864   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6865             "MOVSD  $tmp,$src\n\t"
6866             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6867   ins_encode %{
6868     __ cmpl(rax, $mem$$Address);
6869     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
6870     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6871   %}
6872   ins_pipe( pipe_slow );
6873 %}
6874 
6875 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
6876   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6877   match(Set mem (StoreL mem src));
6878   effect( TEMP tmp2 , TEMP tmp, KILL cr );
6879   ins_cost(360);
6880   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6881             "MOVD   $tmp,$src.lo\n\t"
6882             "MOVD   $tmp2,$src.hi\n\t"
6883             "PUNPCKLDQ $tmp,$tmp2\n\t"
6884             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6885   ins_encode %{
6886     __ cmpl(rax, $mem$$Address);
6887     __ movdl($tmp$$XMMRegister, $src$$Register);
6888     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
6889     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
6890     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6891   %}
6892   ins_pipe( pipe_slow );
6893 %}
6894 
6895 // Store Pointer; for storing unknown oops and raw pointers
6896 instruct storeP(memory mem, anyRegP src) %{
6897   match(Set mem (StoreP mem src));
6898 
6899   ins_cost(125);
6900   format %{ "MOV    $mem,$src" %}
6901   opcode(0x89);
6902   ins_encode( OpcP, RegMem( src, mem ) );
6903   ins_pipe( ialu_mem_reg );
6904 %}
6905 
6906 // Store Integer Immediate
6907 instruct storeImmI(memory mem, immI src) %{
6908   match(Set mem (StoreI mem src));
6909 
6910   ins_cost(150);
6911   format %{ "MOV    $mem,$src" %}
6912   opcode(0xC7);               /* C7 /0 */
6913   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6914   ins_pipe( ialu_mem_imm );
6915 %}
6916 
6917 // Store Short/Char Immediate
6918 instruct storeImmI16(memory mem, immI16 src) %{
6919   predicate(UseStoreImmI16);
6920   match(Set mem (StoreC mem src));
6921 
6922   ins_cost(150);
6923   format %{ "MOV16  $mem,$src" %}
6924   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
6925   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
6926   ins_pipe( ialu_mem_imm );
6927 %}
6928 
6929 // Store Pointer Immediate; null pointers or constant oops that do not
6930 // need card-mark barriers.
6931 instruct storeImmP(memory mem, immP src) %{
6932   match(Set mem (StoreP mem src));
6933 
6934   ins_cost(150);
6935   format %{ "MOV    $mem,$src" %}
6936   opcode(0xC7);               /* C7 /0 */
6937   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6938   ins_pipe( ialu_mem_imm );
6939 %}
6940 
6941 // Store Byte Immediate
6942 instruct storeImmB(memory mem, immI8 src) %{
6943   match(Set mem (StoreB mem src));
6944 
6945   ins_cost(150);
6946   format %{ "MOV8   $mem,$src" %}
6947   opcode(0xC6);               /* C6 /0 */
6948   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6949   ins_pipe( ialu_mem_imm );
6950 %}
6951 
6952 // Store CMS card-mark Immediate
6953 instruct storeImmCM(memory mem, immI8 src) %{
6954   match(Set mem (StoreCM mem src));
6955 
6956   ins_cost(150);
6957   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
6958   opcode(0xC6);               /* C6 /0 */
6959   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6960   ins_pipe( ialu_mem_imm );
6961 %}
6962 
6963 // Store Double
6964 instruct storeDPR( memory mem, regDPR1 src) %{
6965   predicate(UseSSE<=1);
6966   match(Set mem (StoreD mem src));
6967 
6968   ins_cost(100);
6969   format %{ "FST_D  $mem,$src" %}
6970   opcode(0xDD);       /* DD /2 */
6971   ins_encode( enc_FPR_store(mem,src) );
6972   ins_pipe( fpu_mem_reg );
6973 %}
6974 
6975 // Store double does rounding on x86
6976 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
6977   predicate(UseSSE<=1);
6978   match(Set mem (StoreD mem (RoundDouble src)));
6979 
6980   ins_cost(100);
6981   format %{ "FST_D  $mem,$src\t# round" %}
6982   opcode(0xDD);       /* DD /2 */
6983   ins_encode( enc_FPR_store(mem,src) );
6984   ins_pipe( fpu_mem_reg );
6985 %}
6986 
6987 // Store XMM register to memory (double-precision floating points)
6988 // MOVSD instruction
6989 instruct storeD(memory mem, regD src) %{
6990   predicate(UseSSE>=2);
6991   match(Set mem (StoreD mem src));
6992   ins_cost(95);
6993   format %{ "MOVSD  $mem,$src" %}
6994   ins_encode %{
6995     __ movdbl($mem$$Address, $src$$XMMRegister);
6996   %}
6997   ins_pipe( pipe_slow );
6998 %}
6999 
7000 // Store XMM register to memory (single-precision floating point)
7001 // MOVSS instruction
7002 instruct storeF(memory mem, regF src) %{
7003   predicate(UseSSE>=1);
7004   match(Set mem (StoreF mem src));
7005   ins_cost(95);
7006   format %{ "MOVSS  $mem,$src" %}
7007   ins_encode %{
7008     __ movflt($mem$$Address, $src$$XMMRegister);
7009   %}
7010   ins_pipe( pipe_slow );
7011 %}
7012 
7013 // Store Float
7014 instruct storeFPR( memory mem, regFPR1 src) %{
7015   predicate(UseSSE==0);
7016   match(Set mem (StoreF mem src));
7017 
7018   ins_cost(100);
7019   format %{ "FST_S  $mem,$src" %}
7020   opcode(0xD9);       /* D9 /2 */
7021   ins_encode( enc_FPR_store(mem,src) );
7022   ins_pipe( fpu_mem_reg );
7023 %}
7024 
7025 // Store Float does rounding on x86
7026 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
7027   predicate(UseSSE==0);
7028   match(Set mem (StoreF mem (RoundFloat src)));
7029 
7030   ins_cost(100);
7031   format %{ "FST_S  $mem,$src\t# round" %}
7032   opcode(0xD9);       /* D9 /2 */
7033   ins_encode( enc_FPR_store(mem,src) );
7034   ins_pipe( fpu_mem_reg );
7035 %}
7036 
7037 // Store Float does rounding on x86
7038 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
7039   predicate(UseSSE<=1);
7040   match(Set mem (StoreF mem (ConvD2F src)));
7041 
7042   ins_cost(100);
7043   format %{ "FST_S  $mem,$src\t# D-round" %}
7044   opcode(0xD9);       /* D9 /2 */
7045   ins_encode( enc_FPR_store(mem,src) );
7046   ins_pipe( fpu_mem_reg );
7047 %}
7048 
7049 // Store immediate Float value (it is faster than store from FPU register)
7050 // The instruction usage is guarded by predicate in operand immFPR().
7051 instruct storeFPR_imm( memory mem, immFPR src) %{
7052   match(Set mem (StoreF mem src));
7053 
7054   ins_cost(50);
7055   format %{ "MOV    $mem,$src\t# store float" %}
7056   opcode(0xC7);               /* C7 /0 */
7057   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
7058   ins_pipe( ialu_mem_imm );
7059 %}
7060 
7061 // Store immediate Float value (it is faster than store from XMM register)
7062 // The instruction usage is guarded by predicate in operand immF().
7063 instruct storeF_imm( memory mem, immF src) %{
7064   match(Set mem (StoreF mem src));
7065 
7066   ins_cost(50);
7067   format %{ "MOV    $mem,$src\t# store float" %}
7068   opcode(0xC7);               /* C7 /0 */
7069   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7070   ins_pipe( ialu_mem_imm );
7071 %}
7072 
7073 // Store Integer to stack slot
7074 instruct storeSSI(stackSlotI dst, rRegI src) %{
7075   match(Set dst src);
7076 
7077   ins_cost(100);
7078   format %{ "MOV    $dst,$src" %}
7079   opcode(0x89);
7080   ins_encode( OpcPRegSS( dst, src ) );
7081   ins_pipe( ialu_mem_reg );
7082 %}
7083 
7084 // Store Integer to stack slot
7085 instruct storeSSP(stackSlotP dst, eRegP src) %{
7086   match(Set dst src);
7087 
7088   ins_cost(100);
7089   format %{ "MOV    $dst,$src" %}
7090   opcode(0x89);
7091   ins_encode( OpcPRegSS( dst, src ) );
7092   ins_pipe( ialu_mem_reg );
7093 %}
7094 
7095 // Store Long to stack slot
7096 instruct storeSSL(stackSlotL dst, eRegL src) %{
7097   match(Set dst src);
7098 
7099   ins_cost(200);
7100   format %{ "MOV    $dst,$src.lo\n\t"
7101             "MOV    $dst+4,$src.hi" %}
7102   opcode(0x89, 0x89);
7103   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7104   ins_pipe( ialu_mem_long_reg );
7105 %}
7106 
7107 //----------MemBar Instructions-----------------------------------------------
7108 // Memory barrier flavors
7109 
7110 instruct membar_acquire() %{
7111   match(MemBarAcquire);
7112   ins_cost(400);
7113 
7114   size(0);
7115   format %{ "MEMBAR-acquire ! (empty encoding)" %}
7116   ins_encode();
7117   ins_pipe(empty);
7118 %}
7119 
7120 instruct membar_acquire_lock() %{
7121   match(MemBarAcquireLock);
7122   ins_cost(0);
7123 
7124   size(0);
7125   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7126   ins_encode( );
7127   ins_pipe(empty);
7128 %}
7129 
7130 instruct membar_release() %{
7131   match(MemBarRelease);
7132   ins_cost(400);
7133 
7134   size(0);
7135   format %{ "MEMBAR-release ! (empty encoding)" %}
7136   ins_encode( );
7137   ins_pipe(empty);
7138 %}
7139 
7140 instruct membar_release_lock() %{
7141   match(MemBarReleaseLock);
7142   ins_cost(0);
7143 
7144   size(0);
7145   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7146   ins_encode( );
7147   ins_pipe(empty);
7148 %}
7149 
7150 instruct membar_volatile(eFlagsReg cr) %{
7151   match(MemBarVolatile);
7152   effect(KILL cr);
7153   ins_cost(400);
7154 
7155   format %{ 
7156     $$template
7157     if (os::is_MP()) {
7158       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
7159     } else {
7160       $$emit$$"MEMBAR-volatile ! (empty encoding)"
7161     }
7162   %}
7163   ins_encode %{
7164     __ membar(Assembler::StoreLoad);
7165   %}
7166   ins_pipe(pipe_slow);
7167 %}
7168 
7169 instruct unnecessary_membar_volatile() %{
7170   match(MemBarVolatile);
7171   predicate(Matcher::post_store_load_barrier(n));
7172   ins_cost(0);
7173 
7174   size(0);
7175   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7176   ins_encode( );
7177   ins_pipe(empty);
7178 %}
7179 
7180 instruct membar_storestore() %{
7181   match(MemBarStoreStore);
7182   ins_cost(0);
7183 
7184   size(0);
7185   format %{ "MEMBAR-storestore (empty encoding)" %}
7186   ins_encode( );
7187   ins_pipe(empty);
7188 %}
7189 
7190 //----------Move Instructions--------------------------------------------------
7191 instruct castX2P(eAXRegP dst, eAXRegI src) %{
7192   match(Set dst (CastX2P src));
7193   format %{ "# X2P  $dst, $src" %}
7194   ins_encode( /*empty encoding*/ );
7195   ins_cost(0);
7196   ins_pipe(empty);
7197 %}
7198 
7199 instruct castP2X(rRegI dst, eRegP src ) %{
7200   match(Set dst (CastP2X src));
7201   ins_cost(50);
7202   format %{ "MOV    $dst, $src\t# CastP2X" %}
7203   ins_encode( enc_Copy( dst, src) );
7204   ins_pipe( ialu_reg_reg );
7205 %}
7206 
7207 //----------Conditional Move---------------------------------------------------
7208 // Conditional move
7209 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
7210   predicate(!VM_Version::supports_cmov() );
7211   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7212   ins_cost(200);
7213   format %{ "J$cop,us skip\t# signed cmove\n\t"
7214             "MOV    $dst,$src\n"
7215       "skip:" %}
7216   ins_encode %{
7217     Label Lskip;
7218     // Invert sense of branch from sense of CMOV
7219     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7220     __ movl($dst$$Register, $src$$Register);
7221     __ bind(Lskip);
7222   %}
7223   ins_pipe( pipe_cmov_reg );
7224 %}
7225 
7226 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
7227   predicate(!VM_Version::supports_cmov() );
7228   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7229   ins_cost(200);
7230   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
7231             "MOV    $dst,$src\n"
7232       "skip:" %}
7233   ins_encode %{
7234     Label Lskip;
7235     // Invert sense of branch from sense of CMOV
7236     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7237     __ movl($dst$$Register, $src$$Register);
7238     __ bind(Lskip);
7239   %}
7240   ins_pipe( pipe_cmov_reg );
7241 %}
7242 
7243 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
7244   predicate(VM_Version::supports_cmov() );
7245   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7246   ins_cost(200);
7247   format %{ "CMOV$cop $dst,$src" %}
7248   opcode(0x0F,0x40);
7249   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7250   ins_pipe( pipe_cmov_reg );
7251 %}
7252 
7253 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
7254   predicate(VM_Version::supports_cmov() );
7255   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7256   ins_cost(200);
7257   format %{ "CMOV$cop $dst,$src" %}
7258   opcode(0x0F,0x40);
7259   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7260   ins_pipe( pipe_cmov_reg );
7261 %}
7262 
7263 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
7264   predicate(VM_Version::supports_cmov() );
7265   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7266   ins_cost(200);
7267   expand %{
7268     cmovI_regU(cop, cr, dst, src);
7269   %}
7270 %}
7271 
7272 // Conditional move
7273 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
7274   predicate(VM_Version::supports_cmov() );
7275   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7276   ins_cost(250);
7277   format %{ "CMOV$cop $dst,$src" %}
7278   opcode(0x0F,0x40);
7279   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7280   ins_pipe( pipe_cmov_mem );
7281 %}
7282 
7283 // Conditional move
7284 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
7285   predicate(VM_Version::supports_cmov() );
7286   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7287   ins_cost(250);
7288   format %{ "CMOV$cop $dst,$src" %}
7289   opcode(0x0F,0x40);
7290   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7291   ins_pipe( pipe_cmov_mem );
7292 %}
7293 
7294 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
7295   predicate(VM_Version::supports_cmov() );
7296   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7297   ins_cost(250);
7298   expand %{
7299     cmovI_memU(cop, cr, dst, src);
7300   %}
7301 %}
7302 
7303 // Conditional move
7304 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7305   predicate(VM_Version::supports_cmov() );
7306   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7307   ins_cost(200);
7308   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7309   opcode(0x0F,0x40);
7310   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7311   ins_pipe( pipe_cmov_reg );
7312 %}
7313 
7314 // Conditional move (non-P6 version)
7315 // Note:  a CMoveP is generated for  stubs and native wrappers
7316 //        regardless of whether we are on a P6, so we
7317 //        emulate a cmov here
7318 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7319   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7320   ins_cost(300);
7321   format %{ "Jn$cop   skip\n\t"
7322           "MOV    $dst,$src\t# pointer\n"
7323       "skip:" %}
7324   opcode(0x8b);
7325   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7326   ins_pipe( pipe_cmov_reg );
7327 %}
7328 
7329 // Conditional move
7330 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7331   predicate(VM_Version::supports_cmov() );
7332   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7333   ins_cost(200);
7334   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7335   opcode(0x0F,0x40);
7336   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7337   ins_pipe( pipe_cmov_reg );
7338 %}
7339 
7340 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
7341   predicate(VM_Version::supports_cmov() );
7342   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7343   ins_cost(200);
7344   expand %{
7345     cmovP_regU(cop, cr, dst, src);
7346   %}
7347 %}
7348 
7349 // DISABLED: Requires the ADLC to emit a bottom_type call that
7350 // correctly meets the two pointer arguments; one is an incoming
7351 // register but the other is a memory operand.  ALSO appears to
7352 // be buggy with implicit null checks.
7353 //
7354 //// Conditional move
7355 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7356 //  predicate(VM_Version::supports_cmov() );
7357 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7358 //  ins_cost(250);
7359 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7360 //  opcode(0x0F,0x40);
7361 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7362 //  ins_pipe( pipe_cmov_mem );
7363 //%}
7364 //
7365 //// Conditional move
7366 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
7367 //  predicate(VM_Version::supports_cmov() );
7368 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7369 //  ins_cost(250);
7370 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7371 //  opcode(0x0F,0x40);
7372 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7373 //  ins_pipe( pipe_cmov_mem );
7374 //%}
7375 
7376 // Conditional move
7377 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
7378   predicate(UseSSE<=1);
7379   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7380   ins_cost(200);
7381   format %{ "FCMOV$cop $dst,$src\t# double" %}
7382   opcode(0xDA);
7383   ins_encode( enc_cmov_dpr(cop,src) );
7384   ins_pipe( pipe_cmovDPR_reg );
7385 %}
7386 
7387 // Conditional move
7388 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
7389   predicate(UseSSE==0);
7390   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7391   ins_cost(200);
7392   format %{ "FCMOV$cop $dst,$src\t# float" %}
7393   opcode(0xDA);
7394   ins_encode( enc_cmov_dpr(cop,src) );
7395   ins_pipe( pipe_cmovDPR_reg );
7396 %}
7397 
7398 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7399 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
7400   predicate(UseSSE<=1);
7401   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7402   ins_cost(200);
7403   format %{ "Jn$cop   skip\n\t"
7404             "MOV    $dst,$src\t# double\n"
7405       "skip:" %}
7406   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7407   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
7408   ins_pipe( pipe_cmovDPR_reg );
7409 %}
7410 
7411 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7412 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
7413   predicate(UseSSE==0);
7414   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7415   ins_cost(200);
7416   format %{ "Jn$cop    skip\n\t"
7417             "MOV    $dst,$src\t# float\n"
7418       "skip:" %}
7419   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7420   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
7421   ins_pipe( pipe_cmovDPR_reg );
7422 %}
7423 
7424 // No CMOVE with SSE/SSE2
7425 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
7426   predicate (UseSSE>=1);
7427   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7428   ins_cost(200);
7429   format %{ "Jn$cop   skip\n\t"
7430             "MOVSS  $dst,$src\t# float\n"
7431       "skip:" %}
7432   ins_encode %{
7433     Label skip;
7434     // Invert sense of branch from sense of CMOV
7435     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7436     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7437     __ bind(skip);
7438   %}
7439   ins_pipe( pipe_slow );
7440 %}
7441 
7442 // No CMOVE with SSE/SSE2
7443 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
7444   predicate (UseSSE>=2);
7445   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7446   ins_cost(200);
7447   format %{ "Jn$cop   skip\n\t"
7448             "MOVSD  $dst,$src\t# float\n"
7449       "skip:" %}
7450   ins_encode %{
7451     Label skip;
7452     // Invert sense of branch from sense of CMOV
7453     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7454     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7455     __ bind(skip);
7456   %}
7457   ins_pipe( pipe_slow );
7458 %}
7459 
7460 // unsigned version
7461 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
7462   predicate (UseSSE>=1);
7463   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7464   ins_cost(200);
7465   format %{ "Jn$cop   skip\n\t"
7466             "MOVSS  $dst,$src\t# float\n"
7467       "skip:" %}
7468   ins_encode %{
7469     Label skip;
7470     // Invert sense of branch from sense of CMOV
7471     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7472     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7473     __ bind(skip);
7474   %}
7475   ins_pipe( pipe_slow );
7476 %}
7477 
7478 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
7479   predicate (UseSSE>=1);
7480   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7481   ins_cost(200);
7482   expand %{
7483     fcmovF_regU(cop, cr, dst, src);
7484   %}
7485 %}
7486 
7487 // unsigned version
7488 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
7489   predicate (UseSSE>=2);
7490   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7491   ins_cost(200);
7492   format %{ "Jn$cop   skip\n\t"
7493             "MOVSD  $dst,$src\t# float\n"
7494       "skip:" %}
7495   ins_encode %{
7496     Label skip;
7497     // Invert sense of branch from sense of CMOV
7498     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7499     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7500     __ bind(skip);
7501   %}
7502   ins_pipe( pipe_slow );
7503 %}
7504 
7505 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
7506   predicate (UseSSE>=2);
7507   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7508   ins_cost(200);
7509   expand %{
7510     fcmovD_regU(cop, cr, dst, src);
7511   %}
7512 %}
7513 
7514 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
7515   predicate(VM_Version::supports_cmov() );
7516   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7517   ins_cost(200);
7518   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7519             "CMOV$cop $dst.hi,$src.hi" %}
7520   opcode(0x0F,0x40);
7521   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7522   ins_pipe( pipe_cmov_reg_long );
7523 %}
7524 
7525 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
7526   predicate(VM_Version::supports_cmov() );
7527   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7528   ins_cost(200);
7529   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7530             "CMOV$cop $dst.hi,$src.hi" %}
7531   opcode(0x0F,0x40);
7532   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7533   ins_pipe( pipe_cmov_reg_long );
7534 %}
7535 
7536 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
7537   predicate(VM_Version::supports_cmov() );
7538   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7539   ins_cost(200);
7540   expand %{
7541     cmovL_regU(cop, cr, dst, src);
7542   %}
7543 %}
7544 
7545 //----------Arithmetic Instructions--------------------------------------------
7546 //----------Addition Instructions----------------------------------------------
7547 // Integer Addition Instructions
7548 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7549   match(Set dst (AddI dst src));
7550   effect(KILL cr);
7551 
7552   size(2);
7553   format %{ "ADD    $dst,$src" %}
7554   opcode(0x03);
7555   ins_encode( OpcP, RegReg( dst, src) );
7556   ins_pipe( ialu_reg_reg );
7557 %}
7558 
7559 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7560   match(Set dst (AddI dst src));
7561   effect(KILL cr);
7562 
7563   format %{ "ADD    $dst,$src" %}
7564   opcode(0x81, 0x00); /* /0 id */
7565   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7566   ins_pipe( ialu_reg );
7567 %}
7568 
7569 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
7570   predicate(UseIncDec);
7571   match(Set dst (AddI dst src));
7572   effect(KILL cr);
7573 
7574   size(1);
7575   format %{ "INC    $dst" %}
7576   opcode(0x40); /*  */
7577   ins_encode( Opc_plus( primary, dst ) );
7578   ins_pipe( ialu_reg );
7579 %}
7580 
7581 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
7582   match(Set dst (AddI src0 src1));
7583   ins_cost(110);
7584 
7585   format %{ "LEA    $dst,[$src0 + $src1]" %}
7586   opcode(0x8D); /* 0x8D /r */
7587   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7588   ins_pipe( ialu_reg_reg );
7589 %}
7590 
7591 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
7592   match(Set dst (AddP src0 src1));
7593   ins_cost(110);
7594 
7595   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
7596   opcode(0x8D); /* 0x8D /r */
7597   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7598   ins_pipe( ialu_reg_reg );
7599 %}
7600 
7601 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
7602   predicate(UseIncDec);
7603   match(Set dst (AddI dst src));
7604   effect(KILL cr);
7605 
7606   size(1);
7607   format %{ "DEC    $dst" %}
7608   opcode(0x48); /*  */
7609   ins_encode( Opc_plus( primary, dst ) );
7610   ins_pipe( ialu_reg );
7611 %}
7612 
7613 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
7614   match(Set dst (AddP dst src));
7615   effect(KILL cr);
7616 
7617   size(2);
7618   format %{ "ADD    $dst,$src" %}
7619   opcode(0x03);
7620   ins_encode( OpcP, RegReg( dst, src) );
7621   ins_pipe( ialu_reg_reg );
7622 %}
7623 
7624 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
7625   match(Set dst (AddP dst src));
7626   effect(KILL cr);
7627 
7628   format %{ "ADD    $dst,$src" %}
7629   opcode(0x81,0x00); /* Opcode 81 /0 id */
7630   // ins_encode( RegImm( dst, src) );
7631   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7632   ins_pipe( ialu_reg );
7633 %}
7634 
7635 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7636   match(Set dst (AddI dst (LoadI src)));
7637   effect(KILL cr);
7638 
7639   ins_cost(125);
7640   format %{ "ADD    $dst,$src" %}
7641   opcode(0x03);
7642   ins_encode( OpcP, RegMem( dst, src) );
7643   ins_pipe( ialu_reg_mem );
7644 %}
7645 
7646 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7647   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7648   effect(KILL cr);
7649 
7650   ins_cost(150);
7651   format %{ "ADD    $dst,$src" %}
7652   opcode(0x01);  /* Opcode 01 /r */
7653   ins_encode( OpcP, RegMem( src, dst ) );
7654   ins_pipe( ialu_mem_reg );
7655 %}
7656 
7657 // Add Memory with Immediate
7658 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
7659   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7660   effect(KILL cr);
7661 
7662   ins_cost(125);
7663   format %{ "ADD    $dst,$src" %}
7664   opcode(0x81);               /* Opcode 81 /0 id */
7665   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
7666   ins_pipe( ialu_mem_imm );
7667 %}
7668 
7669 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
7670   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7671   effect(KILL cr);
7672 
7673   ins_cost(125);
7674   format %{ "INC    $dst" %}
7675   opcode(0xFF);               /* Opcode FF /0 */
7676   ins_encode( OpcP, RMopc_Mem(0x00,dst));
7677   ins_pipe( ialu_mem_imm );
7678 %}
7679 
7680 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
7681   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7682   effect(KILL cr);
7683 
7684   ins_cost(125);
7685   format %{ "DEC    $dst" %}
7686   opcode(0xFF);               /* Opcode FF /1 */
7687   ins_encode( OpcP, RMopc_Mem(0x01,dst));
7688   ins_pipe( ialu_mem_imm );
7689 %}
7690 
7691 
7692 instruct checkCastPP( eRegP dst ) %{
7693   match(Set dst (CheckCastPP dst));
7694 
7695   size(0);
7696   format %{ "#checkcastPP of $dst" %}
7697   ins_encode( /*empty encoding*/ );
7698   ins_pipe( empty );
7699 %}
7700 
7701 instruct castPP( eRegP dst ) %{
7702   match(Set dst (CastPP dst));
7703   format %{ "#castPP of $dst" %}
7704   ins_encode( /*empty encoding*/ );
7705   ins_pipe( empty );
7706 %}
7707 
7708 instruct castII( rRegI dst ) %{
7709   match(Set dst (CastII dst));
7710   format %{ "#castII of $dst" %}
7711   ins_encode( /*empty encoding*/ );
7712   ins_cost(0);
7713   ins_pipe( empty );
7714 %}
7715 
7716 
7717 // Load-locked - same as a regular pointer load when used with compare-swap
7718 instruct loadPLocked(eRegP dst, memory mem) %{
7719   match(Set dst (LoadPLocked mem));
7720 
7721   ins_cost(125);
7722   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
7723   opcode(0x8B);
7724   ins_encode( OpcP, RegMem(dst,mem));
7725   ins_pipe( ialu_reg_mem );
7726 %}
7727 
7728 // Conditional-store of the updated heap-top.
7729 // Used during allocation of the shared heap.
7730 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7731 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
7732   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7733   // EAX is killed if there is contention, but then it's also unused.
7734   // In the common case of no contention, EAX holds the new oop address.
7735   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
7736   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
7737   ins_pipe( pipe_cmpxchg );
7738 %}
7739 
7740 // Conditional-store of an int value.
7741 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
7742 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
7743   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7744   effect(KILL oldval);
7745   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
7746   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
7747   ins_pipe( pipe_cmpxchg );
7748 %}
7749 
7750 // Conditional-store of a long value.
7751 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
7752 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7753   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7754   effect(KILL oldval);
7755   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
7756             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
7757             "XCHG   EBX,ECX"
7758   %}
7759   ins_encode %{
7760     // Note: we need to swap rbx, and rcx before and after the
7761     //       cmpxchg8 instruction because the instruction uses
7762     //       rcx as the high order word of the new value to store but
7763     //       our register encoding uses rbx.
7764     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7765     if( os::is_MP() )
7766       __ lock();
7767     __ cmpxchg8($mem$$Address);
7768     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7769   %}
7770   ins_pipe( pipe_cmpxchg );
7771 %}
7772 
7773 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7774 
7775 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7776   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7777   effect(KILL cr, KILL oldval);
7778   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7779             "MOV    $res,0\n\t"
7780             "JNE,s  fail\n\t"
7781             "MOV    $res,1\n"
7782           "fail:" %}
7783   ins_encode( enc_cmpxchg8(mem_ptr),
7784               enc_flags_ne_to_boolean(res) );
7785   ins_pipe( pipe_cmpxchg );
7786 %}
7787 
7788 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
7789   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7790   effect(KILL cr, KILL oldval);
7791   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7792             "MOV    $res,0\n\t"
7793             "JNE,s  fail\n\t"
7794             "MOV    $res,1\n"
7795           "fail:" %}
7796   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7797   ins_pipe( pipe_cmpxchg );
7798 %}
7799 
7800 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
7801   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7802   effect(KILL cr, KILL oldval);
7803   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7804             "MOV    $res,0\n\t"
7805             "JNE,s  fail\n\t"
7806             "MOV    $res,1\n"
7807           "fail:" %}
7808   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7809   ins_pipe( pipe_cmpxchg );
7810 %}
7811 
7812 //----------Subtraction Instructions-------------------------------------------
7813 // Integer Subtraction Instructions
7814 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7815   match(Set dst (SubI dst src));
7816   effect(KILL cr);
7817 
7818   size(2);
7819   format %{ "SUB    $dst,$src" %}
7820   opcode(0x2B);
7821   ins_encode( OpcP, RegReg( dst, src) );
7822   ins_pipe( ialu_reg_reg );
7823 %}
7824 
7825 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7826   match(Set dst (SubI dst src));
7827   effect(KILL cr);
7828 
7829   format %{ "SUB    $dst,$src" %}
7830   opcode(0x81,0x05);  /* Opcode 81 /5 */
7831   // ins_encode( RegImm( dst, src) );
7832   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7833   ins_pipe( ialu_reg );
7834 %}
7835 
7836 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7837   match(Set dst (SubI dst (LoadI src)));
7838   effect(KILL cr);
7839 
7840   ins_cost(125);
7841   format %{ "SUB    $dst,$src" %}
7842   opcode(0x2B);
7843   ins_encode( OpcP, RegMem( dst, src) );
7844   ins_pipe( ialu_reg_mem );
7845 %}
7846 
7847 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7848   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7849   effect(KILL cr);
7850 
7851   ins_cost(150);
7852   format %{ "SUB    $dst,$src" %}
7853   opcode(0x29);  /* Opcode 29 /r */
7854   ins_encode( OpcP, RegMem( src, dst ) );
7855   ins_pipe( ialu_mem_reg );
7856 %}
7857 
7858 // Subtract from a pointer
7859 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
7860   match(Set dst (AddP dst (SubI zero src)));
7861   effect(KILL cr);
7862 
7863   size(2);
7864   format %{ "SUB    $dst,$src" %}
7865   opcode(0x2B);
7866   ins_encode( OpcP, RegReg( dst, src) );
7867   ins_pipe( ialu_reg_reg );
7868 %}
7869 
7870 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
7871   match(Set dst (SubI zero dst));
7872   effect(KILL cr);
7873 
7874   size(2);
7875   format %{ "NEG    $dst" %}
7876   opcode(0xF7,0x03);  // Opcode F7 /3
7877   ins_encode( OpcP, RegOpc( dst ) );
7878   ins_pipe( ialu_reg );
7879 %}
7880 
7881 
7882 //----------Multiplication/Division Instructions-------------------------------
7883 // Integer Multiplication Instructions
7884 // Multiply Register
7885 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7886   match(Set dst (MulI dst src));
7887   effect(KILL cr);
7888 
7889   size(3);
7890   ins_cost(300);
7891   format %{ "IMUL   $dst,$src" %}
7892   opcode(0xAF, 0x0F);
7893   ins_encode( OpcS, OpcP, RegReg( dst, src) );
7894   ins_pipe( ialu_reg_reg_alu0 );
7895 %}
7896 
7897 // Multiply 32-bit Immediate
7898 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
7899   match(Set dst (MulI src imm));
7900   effect(KILL cr);
7901 
7902   ins_cost(300);
7903   format %{ "IMUL   $dst,$src,$imm" %}
7904   opcode(0x69);  /* 69 /r id */
7905   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
7906   ins_pipe( ialu_reg_reg_alu0 );
7907 %}
7908 
7909 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
7910   match(Set dst src);
7911   effect(KILL cr);
7912 
7913   // Note that this is artificially increased to make it more expensive than loadConL
7914   ins_cost(250);
7915   format %{ "MOV    EAX,$src\t// low word only" %}
7916   opcode(0xB8);
7917   ins_encode( LdImmL_Lo(dst, src) );
7918   ins_pipe( ialu_reg_fat );
7919 %}
7920 
7921 // Multiply by 32-bit Immediate, taking the shifted high order results
7922 //  (special case for shift by 32)
7923 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
7924   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7925   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7926              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7927              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7928   effect(USE src1, KILL cr);
7929 
7930   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7931   ins_cost(0*100 + 1*400 - 150);
7932   format %{ "IMUL   EDX:EAX,$src1" %}
7933   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7934   ins_pipe( pipe_slow );
7935 %}
7936 
7937 // Multiply by 32-bit Immediate, taking the shifted high order results
7938 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
7939   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7940   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7941              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7942              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7943   effect(USE src1, KILL cr);
7944 
7945   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7946   ins_cost(1*100 + 1*400 - 150);
7947   format %{ "IMUL   EDX:EAX,$src1\n\t"
7948             "SAR    EDX,$cnt-32" %}
7949   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7950   ins_pipe( pipe_slow );
7951 %}
7952 
7953 // Multiply Memory 32-bit Immediate
7954 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
7955   match(Set dst (MulI (LoadI src) imm));
7956   effect(KILL cr);
7957 
7958   ins_cost(300);
7959   format %{ "IMUL   $dst,$src,$imm" %}
7960   opcode(0x69);  /* 69 /r id */
7961   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
7962   ins_pipe( ialu_reg_mem_alu0 );
7963 %}
7964 
7965 // Multiply Memory
7966 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
7967   match(Set dst (MulI dst (LoadI src)));
7968   effect(KILL cr);
7969 
7970   ins_cost(350);
7971   format %{ "IMUL   $dst,$src" %}
7972   opcode(0xAF, 0x0F);
7973   ins_encode( OpcS, OpcP, RegMem( dst, src) );
7974   ins_pipe( ialu_reg_mem_alu0 );
7975 %}
7976 
7977 // Multiply Register Int to Long
7978 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
7979   // Basic Idea: long = (long)int * (long)int
7980   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
7981   effect(DEF dst, USE src, USE src1, KILL flags);
7982 
7983   ins_cost(300);
7984   format %{ "IMUL   $dst,$src1" %}
7985 
7986   ins_encode( long_int_multiply( dst, src1 ) );
7987   ins_pipe( ialu_reg_reg_alu0 );
7988 %}
7989 
7990 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
7991   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
7992   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
7993   effect(KILL flags);
7994 
7995   ins_cost(300);
7996   format %{ "MUL    $dst,$src1" %}
7997 
7998   ins_encode( long_uint_multiply(dst, src1) );
7999   ins_pipe( ialu_reg_reg_alu0 );
8000 %}
8001 
8002 // Multiply Register Long
8003 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8004   match(Set dst (MulL dst src));
8005   effect(KILL cr, TEMP tmp);
8006   ins_cost(4*100+3*400);
8007 // Basic idea: lo(result) = lo(x_lo * y_lo)
8008 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8009   format %{ "MOV    $tmp,$src.lo\n\t"
8010             "IMUL   $tmp,EDX\n\t"
8011             "MOV    EDX,$src.hi\n\t"
8012             "IMUL   EDX,EAX\n\t"
8013             "ADD    $tmp,EDX\n\t"
8014             "MUL    EDX:EAX,$src.lo\n\t"
8015             "ADD    EDX,$tmp" %}
8016   ins_encode( long_multiply( dst, src, tmp ) );
8017   ins_pipe( pipe_slow );
8018 %}
8019 
8020 // Multiply Register Long where the left operand's high 32 bits are zero
8021 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8022   predicate(is_operand_hi32_zero(n->in(1)));
8023   match(Set dst (MulL dst src));
8024   effect(KILL cr, TEMP tmp);
8025   ins_cost(2*100+2*400);
8026 // Basic idea: lo(result) = lo(x_lo * y_lo)
8027 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
8028   format %{ "MOV    $tmp,$src.hi\n\t"
8029             "IMUL   $tmp,EAX\n\t"
8030             "MUL    EDX:EAX,$src.lo\n\t"
8031             "ADD    EDX,$tmp" %}
8032   ins_encode %{
8033     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
8034     __ imull($tmp$$Register, rax);
8035     __ mull($src$$Register);
8036     __ addl(rdx, $tmp$$Register);
8037   %}
8038   ins_pipe( pipe_slow );
8039 %}
8040 
8041 // Multiply Register Long where the right operand's high 32 bits are zero
8042 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8043   predicate(is_operand_hi32_zero(n->in(2)));
8044   match(Set dst (MulL dst src));
8045   effect(KILL cr, TEMP tmp);
8046   ins_cost(2*100+2*400);
8047 // Basic idea: lo(result) = lo(x_lo * y_lo)
8048 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
8049   format %{ "MOV    $tmp,$src.lo\n\t"
8050             "IMUL   $tmp,EDX\n\t"
8051             "MUL    EDX:EAX,$src.lo\n\t"
8052             "ADD    EDX,$tmp" %}
8053   ins_encode %{
8054     __ movl($tmp$$Register, $src$$Register);
8055     __ imull($tmp$$Register, rdx);
8056     __ mull($src$$Register);
8057     __ addl(rdx, $tmp$$Register);
8058   %}
8059   ins_pipe( pipe_slow );
8060 %}
8061 
8062 // Multiply Register Long where the left and the right operands' high 32 bits are zero
8063 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
8064   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
8065   match(Set dst (MulL dst src));
8066   effect(KILL cr);
8067   ins_cost(1*400);
8068 // Basic idea: lo(result) = lo(x_lo * y_lo)
8069 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
8070   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
8071   ins_encode %{
8072     __ mull($src$$Register);
8073   %}
8074   ins_pipe( pipe_slow );
8075 %}
8076 
8077 // Multiply Register Long by small constant
8078 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
8079   match(Set dst (MulL dst src));
8080   effect(KILL cr, TEMP tmp);
8081   ins_cost(2*100+2*400);
8082   size(12);
8083 // Basic idea: lo(result) = lo(src * EAX)
8084 //             hi(result) = hi(src * EAX) + lo(src * EDX)
8085   format %{ "IMUL   $tmp,EDX,$src\n\t"
8086             "MOV    EDX,$src\n\t"
8087             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8088             "ADD    EDX,$tmp" %}
8089   ins_encode( long_multiply_con( dst, src, tmp ) );
8090   ins_pipe( pipe_slow );
8091 %}
8092 
8093 // Integer DIV with Register
8094 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8095   match(Set rax (DivI rax div));
8096   effect(KILL rdx, KILL cr);
8097   size(26);
8098   ins_cost(30*100+10*100);
8099   format %{ "CMP    EAX,0x80000000\n\t"
8100             "JNE,s  normal\n\t"
8101             "XOR    EDX,EDX\n\t"
8102             "CMP    ECX,-1\n\t"
8103             "JE,s   done\n"
8104     "normal: CDQ\n\t"
8105             "IDIV   $div\n\t"
8106     "done:"        %}
8107   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8108   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8109   ins_pipe( ialu_reg_reg_alu0 );
8110 %}
8111 
8112 // Divide Register Long
8113 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8114   match(Set dst (DivL src1 src2));
8115   effect( KILL cr, KILL cx, KILL bx );
8116   ins_cost(10000);
8117   format %{ "PUSH   $src1.hi\n\t"
8118             "PUSH   $src1.lo\n\t"
8119             "PUSH   $src2.hi\n\t"
8120             "PUSH   $src2.lo\n\t"
8121             "CALL   SharedRuntime::ldiv\n\t"
8122             "ADD    ESP,16" %}
8123   ins_encode( long_div(src1,src2) );
8124   ins_pipe( pipe_slow );
8125 %}
8126 
8127 // Integer DIVMOD with Register, both quotient and mod results
8128 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8129   match(DivModI rax div);
8130   effect(KILL cr);
8131   size(26);
8132   ins_cost(30*100+10*100);
8133   format %{ "CMP    EAX,0x80000000\n\t"
8134             "JNE,s  normal\n\t"
8135             "XOR    EDX,EDX\n\t"
8136             "CMP    ECX,-1\n\t"
8137             "JE,s   done\n"
8138     "normal: CDQ\n\t"
8139             "IDIV   $div\n\t"
8140     "done:"        %}
8141   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8142   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8143   ins_pipe( pipe_slow );
8144 %}
8145 
8146 // Integer MOD with Register
8147 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8148   match(Set rdx (ModI rax div));
8149   effect(KILL rax, KILL cr);
8150 
8151   size(26);
8152   ins_cost(300);
8153   format %{ "CDQ\n\t"
8154             "IDIV   $div" %}
8155   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8156   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8157   ins_pipe( ialu_reg_reg_alu0 );
8158 %}
8159 
8160 // Remainder Register Long
8161 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8162   match(Set dst (ModL src1 src2));
8163   effect( KILL cr, KILL cx, KILL bx );
8164   ins_cost(10000);
8165   format %{ "PUSH   $src1.hi\n\t"
8166             "PUSH   $src1.lo\n\t"
8167             "PUSH   $src2.hi\n\t"
8168             "PUSH   $src2.lo\n\t"
8169             "CALL   SharedRuntime::lrem\n\t"
8170             "ADD    ESP,16" %}
8171   ins_encode( long_mod(src1,src2) );
8172   ins_pipe( pipe_slow );
8173 %}
8174 
8175 // Divide Register Long (no special case since divisor != -1)
8176 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
8177   match(Set dst (DivL dst imm));
8178   effect( TEMP tmp, TEMP tmp2, KILL cr );
8179   ins_cost(1000);
8180   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
8181             "XOR    $tmp2,$tmp2\n\t"
8182             "CMP    $tmp,EDX\n\t"
8183             "JA,s   fast\n\t"
8184             "MOV    $tmp2,EAX\n\t"
8185             "MOV    EAX,EDX\n\t"
8186             "MOV    EDX,0\n\t"
8187             "JLE,s  pos\n\t"
8188             "LNEG   EAX : $tmp2\n\t"
8189             "DIV    $tmp # unsigned division\n\t"
8190             "XCHG   EAX,$tmp2\n\t"
8191             "DIV    $tmp\n\t"
8192             "LNEG   $tmp2 : EAX\n\t"
8193             "JMP,s  done\n"
8194     "pos:\n\t"
8195             "DIV    $tmp\n\t"
8196             "XCHG   EAX,$tmp2\n"
8197     "fast:\n\t"
8198             "DIV    $tmp\n"
8199     "done:\n\t"
8200             "MOV    EDX,$tmp2\n\t"
8201             "NEG    EDX:EAX # if $imm < 0" %}
8202   ins_encode %{
8203     int con = (int)$imm$$constant;
8204     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8205     int pcon = (con > 0) ? con : -con;
8206     Label Lfast, Lpos, Ldone;
8207 
8208     __ movl($tmp$$Register, pcon);
8209     __ xorl($tmp2$$Register,$tmp2$$Register);
8210     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8211     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
8212 
8213     __ movl($tmp2$$Register, $dst$$Register); // save
8214     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8215     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8216     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8217 
8218     // Negative dividend.
8219     // convert value to positive to use unsigned division
8220     __ lneg($dst$$Register, $tmp2$$Register);
8221     __ divl($tmp$$Register);
8222     __ xchgl($dst$$Register, $tmp2$$Register);
8223     __ divl($tmp$$Register);
8224     // revert result back to negative
8225     __ lneg($tmp2$$Register, $dst$$Register);
8226     __ jmpb(Ldone);
8227 
8228     __ bind(Lpos);
8229     __ divl($tmp$$Register); // Use unsigned division
8230     __ xchgl($dst$$Register, $tmp2$$Register);
8231     // Fallthrow for final divide, tmp2 has 32 bit hi result
8232 
8233     __ bind(Lfast);
8234     // fast path: src is positive
8235     __ divl($tmp$$Register); // Use unsigned division
8236 
8237     __ bind(Ldone);
8238     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
8239     if (con < 0) {
8240       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
8241     }
8242   %}
8243   ins_pipe( pipe_slow );
8244 %}
8245 
8246 // Remainder Register Long (remainder fit into 32 bits)
8247 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
8248   match(Set dst (ModL dst imm));
8249   effect( TEMP tmp, TEMP tmp2, KILL cr );
8250   ins_cost(1000);
8251   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
8252             "CMP    $tmp,EDX\n\t"
8253             "JA,s   fast\n\t"
8254             "MOV    $tmp2,EAX\n\t"
8255             "MOV    EAX,EDX\n\t"
8256             "MOV    EDX,0\n\t"
8257             "JLE,s  pos\n\t"
8258             "LNEG   EAX : $tmp2\n\t"
8259             "DIV    $tmp # unsigned division\n\t"
8260             "MOV    EAX,$tmp2\n\t"
8261             "DIV    $tmp\n\t"
8262             "NEG    EDX\n\t"
8263             "JMP,s  done\n"
8264     "pos:\n\t"
8265             "DIV    $tmp\n\t"
8266             "MOV    EAX,$tmp2\n"
8267     "fast:\n\t"
8268             "DIV    $tmp\n"
8269     "done:\n\t"
8270             "MOV    EAX,EDX\n\t"
8271             "SAR    EDX,31\n\t" %}
8272   ins_encode %{
8273     int con = (int)$imm$$constant;
8274     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8275     int pcon = (con > 0) ? con : -con;
8276     Label  Lfast, Lpos, Ldone;
8277 
8278     __ movl($tmp$$Register, pcon);
8279     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8280     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
8281 
8282     __ movl($tmp2$$Register, $dst$$Register); // save
8283     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8284     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8285     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8286 
8287     // Negative dividend.
8288     // convert value to positive to use unsigned division
8289     __ lneg($dst$$Register, $tmp2$$Register);
8290     __ divl($tmp$$Register);
8291     __ movl($dst$$Register, $tmp2$$Register);
8292     __ divl($tmp$$Register);
8293     // revert remainder back to negative
8294     __ negl(HIGH_FROM_LOW($dst$$Register));
8295     __ jmpb(Ldone);
8296 
8297     __ bind(Lpos);
8298     __ divl($tmp$$Register);
8299     __ movl($dst$$Register, $tmp2$$Register);
8300 
8301     __ bind(Lfast);
8302     // fast path: src is positive
8303     __ divl($tmp$$Register);
8304 
8305     __ bind(Ldone);
8306     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8307     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
8308 
8309   %}
8310   ins_pipe( pipe_slow );
8311 %}
8312 
8313 // Integer Shift Instructions
8314 // Shift Left by one
8315 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8316   match(Set dst (LShiftI dst shift));
8317   effect(KILL cr);
8318 
8319   size(2);
8320   format %{ "SHL    $dst,$shift" %}
8321   opcode(0xD1, 0x4);  /* D1 /4 */
8322   ins_encode( OpcP, RegOpc( dst ) );
8323   ins_pipe( ialu_reg );
8324 %}
8325 
8326 // Shift Left by 8-bit immediate
8327 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8328   match(Set dst (LShiftI dst shift));
8329   effect(KILL cr);
8330 
8331   size(3);
8332   format %{ "SHL    $dst,$shift" %}
8333   opcode(0xC1, 0x4);  /* C1 /4 ib */
8334   ins_encode( RegOpcImm( dst, shift) );
8335   ins_pipe( ialu_reg );
8336 %}
8337 
8338 // Shift Left by variable
8339 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8340   match(Set dst (LShiftI dst shift));
8341   effect(KILL cr);
8342 
8343   size(2);
8344   format %{ "SHL    $dst,$shift" %}
8345   opcode(0xD3, 0x4);  /* D3 /4 */
8346   ins_encode( OpcP, RegOpc( dst ) );
8347   ins_pipe( ialu_reg_reg );
8348 %}
8349 
8350 // Arithmetic shift right by one
8351 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8352   match(Set dst (RShiftI dst shift));
8353   effect(KILL cr);
8354 
8355   size(2);
8356   format %{ "SAR    $dst,$shift" %}
8357   opcode(0xD1, 0x7);  /* D1 /7 */
8358   ins_encode( OpcP, RegOpc( dst ) );
8359   ins_pipe( ialu_reg );
8360 %}
8361 
8362 // Arithmetic shift right by one
8363 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
8364   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8365   effect(KILL cr);
8366   format %{ "SAR    $dst,$shift" %}
8367   opcode(0xD1, 0x7);  /* D1 /7 */
8368   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
8369   ins_pipe( ialu_mem_imm );
8370 %}
8371 
8372 // Arithmetic Shift Right by 8-bit immediate
8373 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8374   match(Set dst (RShiftI dst shift));
8375   effect(KILL cr);
8376 
8377   size(3);
8378   format %{ "SAR    $dst,$shift" %}
8379   opcode(0xC1, 0x7);  /* C1 /7 ib */
8380   ins_encode( RegOpcImm( dst, shift ) );
8381   ins_pipe( ialu_mem_imm );
8382 %}
8383 
8384 // Arithmetic Shift Right by 8-bit immediate
8385 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
8386   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8387   effect(KILL cr);
8388 
8389   format %{ "SAR    $dst,$shift" %}
8390   opcode(0xC1, 0x7);  /* C1 /7 ib */
8391   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
8392   ins_pipe( ialu_mem_imm );
8393 %}
8394 
8395 // Arithmetic Shift Right by variable
8396 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8397   match(Set dst (RShiftI dst shift));
8398   effect(KILL cr);
8399 
8400   size(2);
8401   format %{ "SAR    $dst,$shift" %}
8402   opcode(0xD3, 0x7);  /* D3 /7 */
8403   ins_encode( OpcP, RegOpc( dst ) );
8404   ins_pipe( ialu_reg_reg );
8405 %}
8406 
8407 // Logical shift right by one
8408 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8409   match(Set dst (URShiftI dst shift));
8410   effect(KILL cr);
8411 
8412   size(2);
8413   format %{ "SHR    $dst,$shift" %}
8414   opcode(0xD1, 0x5);  /* D1 /5 */
8415   ins_encode( OpcP, RegOpc( dst ) );
8416   ins_pipe( ialu_reg );
8417 %}
8418 
8419 // Logical Shift Right by 8-bit immediate
8420 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8421   match(Set dst (URShiftI dst shift));
8422   effect(KILL cr);
8423 
8424   size(3);
8425   format %{ "SHR    $dst,$shift" %}
8426   opcode(0xC1, 0x5);  /* C1 /5 ib */
8427   ins_encode( RegOpcImm( dst, shift) );
8428   ins_pipe( ialu_reg );
8429 %}
8430 
8431 
8432 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8433 // This idiom is used by the compiler for the i2b bytecode.
8434 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
8435   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8436 
8437   size(3);
8438   format %{ "MOVSX  $dst,$src :8" %}
8439   ins_encode %{
8440     __ movsbl($dst$$Register, $src$$Register);
8441   %}
8442   ins_pipe(ialu_reg_reg);
8443 %}
8444 
8445 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8446 // This idiom is used by the compiler the i2s bytecode.
8447 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
8448   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8449 
8450   size(3);
8451   format %{ "MOVSX  $dst,$src :16" %}
8452   ins_encode %{
8453     __ movswl($dst$$Register, $src$$Register);
8454   %}
8455   ins_pipe(ialu_reg_reg);
8456 %}
8457 
8458 
8459 // Logical Shift Right by variable
8460 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8461   match(Set dst (URShiftI dst shift));
8462   effect(KILL cr);
8463 
8464   size(2);
8465   format %{ "SHR    $dst,$shift" %}
8466   opcode(0xD3, 0x5);  /* D3 /5 */
8467   ins_encode( OpcP, RegOpc( dst ) );
8468   ins_pipe( ialu_reg_reg );
8469 %}
8470 
8471 
8472 //----------Logical Instructions-----------------------------------------------
8473 //----------Integer Logical Instructions---------------------------------------
8474 // And Instructions
8475 // And Register with Register
8476 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8477   match(Set dst (AndI dst src));
8478   effect(KILL cr);
8479 
8480   size(2);
8481   format %{ "AND    $dst,$src" %}
8482   opcode(0x23);
8483   ins_encode( OpcP, RegReg( dst, src) );
8484   ins_pipe( ialu_reg_reg );
8485 %}
8486 
8487 // And Register with Immediate
8488 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8489   match(Set dst (AndI dst src));
8490   effect(KILL cr);
8491 
8492   format %{ "AND    $dst,$src" %}
8493   opcode(0x81,0x04);  /* Opcode 81 /4 */
8494   // ins_encode( RegImm( dst, src) );
8495   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8496   ins_pipe( ialu_reg );
8497 %}
8498 
8499 // And Register with Memory
8500 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8501   match(Set dst (AndI dst (LoadI src)));
8502   effect(KILL cr);
8503 
8504   ins_cost(125);
8505   format %{ "AND    $dst,$src" %}
8506   opcode(0x23);
8507   ins_encode( OpcP, RegMem( dst, src) );
8508   ins_pipe( ialu_reg_mem );
8509 %}
8510 
8511 // And Memory with Register
8512 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8513   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8514   effect(KILL cr);
8515 
8516   ins_cost(150);
8517   format %{ "AND    $dst,$src" %}
8518   opcode(0x21);  /* Opcode 21 /r */
8519   ins_encode( OpcP, RegMem( src, dst ) );
8520   ins_pipe( ialu_mem_reg );
8521 %}
8522 
8523 // And Memory with Immediate
8524 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8525   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8526   effect(KILL cr);
8527 
8528   ins_cost(125);
8529   format %{ "AND    $dst,$src" %}
8530   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
8531   // ins_encode( MemImm( dst, src) );
8532   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8533   ins_pipe( ialu_mem_imm );
8534 %}
8535 
8536 // Or Instructions
8537 // Or Register with Register
8538 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8539   match(Set dst (OrI dst src));
8540   effect(KILL cr);
8541 
8542   size(2);
8543   format %{ "OR     $dst,$src" %}
8544   opcode(0x0B);
8545   ins_encode( OpcP, RegReg( dst, src) );
8546   ins_pipe( ialu_reg_reg );
8547 %}
8548 
8549 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
8550   match(Set dst (OrI dst (CastP2X src)));
8551   effect(KILL cr);
8552 
8553   size(2);
8554   format %{ "OR     $dst,$src" %}
8555   opcode(0x0B);
8556   ins_encode( OpcP, RegReg( dst, src) );
8557   ins_pipe( ialu_reg_reg );
8558 %}
8559 
8560 
8561 // Or Register with Immediate
8562 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8563   match(Set dst (OrI dst src));
8564   effect(KILL cr);
8565 
8566   format %{ "OR     $dst,$src" %}
8567   opcode(0x81,0x01);  /* Opcode 81 /1 id */
8568   // ins_encode( RegImm( dst, src) );
8569   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8570   ins_pipe( ialu_reg );
8571 %}
8572 
8573 // Or Register with Memory
8574 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8575   match(Set dst (OrI dst (LoadI src)));
8576   effect(KILL cr);
8577 
8578   ins_cost(125);
8579   format %{ "OR     $dst,$src" %}
8580   opcode(0x0B);
8581   ins_encode( OpcP, RegMem( dst, src) );
8582   ins_pipe( ialu_reg_mem );
8583 %}
8584 
8585 // Or Memory with Register
8586 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8587   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8588   effect(KILL cr);
8589 
8590   ins_cost(150);
8591   format %{ "OR     $dst,$src" %}
8592   opcode(0x09);  /* Opcode 09 /r */
8593   ins_encode( OpcP, RegMem( src, dst ) );
8594   ins_pipe( ialu_mem_reg );
8595 %}
8596 
8597 // Or Memory with Immediate
8598 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8599   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8600   effect(KILL cr);
8601 
8602   ins_cost(125);
8603   format %{ "OR     $dst,$src" %}
8604   opcode(0x81,0x1);  /* Opcode 81 /1 id */
8605   // ins_encode( MemImm( dst, src) );
8606   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8607   ins_pipe( ialu_mem_imm );
8608 %}
8609 
8610 // ROL/ROR
8611 // ROL expand
8612 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8613   effect(USE_DEF dst, USE shift, KILL cr);
8614 
8615   format %{ "ROL    $dst, $shift" %}
8616   opcode(0xD1, 0x0); /* Opcode D1 /0 */
8617   ins_encode( OpcP, RegOpc( dst ));
8618   ins_pipe( ialu_reg );
8619 %}
8620 
8621 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8622   effect(USE_DEF dst, USE shift, KILL cr);
8623 
8624   format %{ "ROL    $dst, $shift" %}
8625   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
8626   ins_encode( RegOpcImm(dst, shift) );
8627   ins_pipe(ialu_reg);
8628 %}
8629 
8630 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
8631   effect(USE_DEF dst, USE shift, KILL cr);
8632 
8633   format %{ "ROL    $dst, $shift" %}
8634   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
8635   ins_encode(OpcP, RegOpc(dst));
8636   ins_pipe( ialu_reg_reg );
8637 %}
8638 // end of ROL expand
8639 
8640 // ROL 32bit by one once
8641 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
8642   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8643 
8644   expand %{
8645     rolI_eReg_imm1(dst, lshift, cr);
8646   %}
8647 %}
8648 
8649 // ROL 32bit var by imm8 once
8650 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
8651   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8652   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8653 
8654   expand %{
8655     rolI_eReg_imm8(dst, lshift, cr);
8656   %}
8657 %}
8658 
8659 // ROL 32bit var by var once
8660 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8661   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8662 
8663   expand %{
8664     rolI_eReg_CL(dst, shift, cr);
8665   %}
8666 %}
8667 
8668 // ROL 32bit var by var once
8669 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8670   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8671 
8672   expand %{
8673     rolI_eReg_CL(dst, shift, cr);
8674   %}
8675 %}
8676 
8677 // ROR expand
8678 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8679   effect(USE_DEF dst, USE shift, KILL cr);
8680 
8681   format %{ "ROR    $dst, $shift" %}
8682   opcode(0xD1,0x1);  /* Opcode D1 /1 */
8683   ins_encode( OpcP, RegOpc( dst ) );
8684   ins_pipe( ialu_reg );
8685 %}
8686 
8687 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8688   effect (USE_DEF dst, USE shift, KILL cr);
8689 
8690   format %{ "ROR    $dst, $shift" %}
8691   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
8692   ins_encode( RegOpcImm(dst, shift) );
8693   ins_pipe( ialu_reg );
8694 %}
8695 
8696 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
8697   effect(USE_DEF dst, USE shift, KILL cr);
8698 
8699   format %{ "ROR    $dst, $shift" %}
8700   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
8701   ins_encode(OpcP, RegOpc(dst));
8702   ins_pipe( ialu_reg_reg );
8703 %}
8704 // end of ROR expand
8705 
8706 // ROR right once
8707 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
8708   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8709 
8710   expand %{
8711     rorI_eReg_imm1(dst, rshift, cr);
8712   %}
8713 %}
8714 
8715 // ROR 32bit by immI8 once
8716 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
8717   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8718   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8719 
8720   expand %{
8721     rorI_eReg_imm8(dst, rshift, cr);
8722   %}
8723 %}
8724 
8725 // ROR 32bit var by var once
8726 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8727   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8728 
8729   expand %{
8730     rorI_eReg_CL(dst, shift, cr);
8731   %}
8732 %}
8733 
8734 // ROR 32bit var by var once
8735 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8736   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8737 
8738   expand %{
8739     rorI_eReg_CL(dst, shift, cr);
8740   %}
8741 %}
8742 
8743 // Xor Instructions
8744 // Xor Register with Register
8745 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8746   match(Set dst (XorI dst src));
8747   effect(KILL cr);
8748 
8749   size(2);
8750   format %{ "XOR    $dst,$src" %}
8751   opcode(0x33);
8752   ins_encode( OpcP, RegReg( dst, src) );
8753   ins_pipe( ialu_reg_reg );
8754 %}
8755 
8756 // Xor Register with Immediate -1
8757 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
8758   match(Set dst (XorI dst imm));  
8759 
8760   size(2);
8761   format %{ "NOT    $dst" %}  
8762   ins_encode %{
8763      __ notl($dst$$Register);
8764   %}
8765   ins_pipe( ialu_reg );
8766 %}
8767 
8768 // Xor Register with Immediate
8769 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8770   match(Set dst (XorI dst src));
8771   effect(KILL cr);
8772 
8773   format %{ "XOR    $dst,$src" %}
8774   opcode(0x81,0x06);  /* Opcode 81 /6 id */
8775   // ins_encode( RegImm( dst, src) );
8776   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8777   ins_pipe( ialu_reg );
8778 %}
8779 
8780 // Xor Register with Memory
8781 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8782   match(Set dst (XorI dst (LoadI src)));
8783   effect(KILL cr);
8784 
8785   ins_cost(125);
8786   format %{ "XOR    $dst,$src" %}
8787   opcode(0x33);
8788   ins_encode( OpcP, RegMem(dst, src) );
8789   ins_pipe( ialu_reg_mem );
8790 %}
8791 
8792 // Xor Memory with Register
8793 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8794   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8795   effect(KILL cr);
8796 
8797   ins_cost(150);
8798   format %{ "XOR    $dst,$src" %}
8799   opcode(0x31);  /* Opcode 31 /r */
8800   ins_encode( OpcP, RegMem( src, dst ) );
8801   ins_pipe( ialu_mem_reg );
8802 %}
8803 
8804 // Xor Memory with Immediate
8805 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8806   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8807   effect(KILL cr);
8808 
8809   ins_cost(125);
8810   format %{ "XOR    $dst,$src" %}
8811   opcode(0x81,0x6);  /* Opcode 81 /6 id */
8812   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8813   ins_pipe( ialu_mem_imm );
8814 %}
8815 
8816 //----------Convert Int to Boolean---------------------------------------------
8817 
8818 instruct movI_nocopy(rRegI dst, rRegI src) %{
8819   effect( DEF dst, USE src );
8820   format %{ "MOV    $dst,$src" %}
8821   ins_encode( enc_Copy( dst, src) );
8822   ins_pipe( ialu_reg_reg );
8823 %}
8824 
8825 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
8826   effect( USE_DEF dst, USE src, KILL cr );
8827 
8828   size(4);
8829   format %{ "NEG    $dst\n\t"
8830             "ADC    $dst,$src" %}
8831   ins_encode( neg_reg(dst),
8832               OpcRegReg(0x13,dst,src) );
8833   ins_pipe( ialu_reg_reg_long );
8834 %}
8835 
8836 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
8837   match(Set dst (Conv2B src));
8838 
8839   expand %{
8840     movI_nocopy(dst,src);
8841     ci2b(dst,src,cr);
8842   %}
8843 %}
8844 
8845 instruct movP_nocopy(rRegI dst, eRegP src) %{
8846   effect( DEF dst, USE src );
8847   format %{ "MOV    $dst,$src" %}
8848   ins_encode( enc_Copy( dst, src) );
8849   ins_pipe( ialu_reg_reg );
8850 %}
8851 
8852 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
8853   effect( USE_DEF dst, USE src, KILL cr );
8854   format %{ "NEG    $dst\n\t"
8855             "ADC    $dst,$src" %}
8856   ins_encode( neg_reg(dst),
8857               OpcRegReg(0x13,dst,src) );
8858   ins_pipe( ialu_reg_reg_long );
8859 %}
8860 
8861 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
8862   match(Set dst (Conv2B src));
8863 
8864   expand %{
8865     movP_nocopy(dst,src);
8866     cp2b(dst,src,cr);
8867   %}
8868 %}
8869 
8870 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
8871   match(Set dst (CmpLTMask p q));
8872   effect( KILL cr );
8873   ins_cost(400);
8874 
8875   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
8876   format %{ "XOR    $dst,$dst\n\t"
8877             "CMP    $p,$q\n\t"
8878             "SETlt  $dst\n\t"
8879             "NEG    $dst" %}
8880   ins_encode( OpcRegReg(0x33,dst,dst),
8881               OpcRegReg(0x3B,p,q),
8882               setLT_reg(dst), neg_reg(dst) );
8883   ins_pipe( pipe_slow );
8884 %}
8885 
8886 instruct cmpLTMask0( rRegI dst, immI0 zero, eFlagsReg cr ) %{
8887   match(Set dst (CmpLTMask dst zero));
8888   effect( DEF dst, KILL cr );
8889   ins_cost(100);
8890 
8891   format %{ "SAR    $dst,31" %}
8892   opcode(0xC1, 0x7);  /* C1 /7 ib */
8893   ins_encode( RegOpcImm( dst, 0x1F ) );
8894   ins_pipe( ialu_reg );
8895 %}
8896 
8897 
8898 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
8899   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8900   effect( KILL tmp, KILL cr );
8901   ins_cost(400);
8902   // annoyingly, $tmp has no edges so you cant ask for it in
8903   // any format or encoding
8904   format %{ "SUB    $p,$q\n\t"
8905             "SBB    ECX,ECX\n\t"
8906             "AND    ECX,$y\n\t"
8907             "ADD    $p,ECX" %}
8908   ins_encode( enc_cmpLTP(p,q,y,tmp) );
8909   ins_pipe( pipe_cmplt );
8910 %}
8911 
8912 /* If I enable this, I encourage spilling in the inner loop of compress.
8913 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
8914   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
8915   effect( USE_KILL tmp, KILL cr );
8916   ins_cost(400);
8917 
8918   format %{ "SUB    $p,$q\n\t"
8919             "SBB    ECX,ECX\n\t"
8920             "AND    ECX,$y\n\t"
8921             "ADD    $p,ECX" %}
8922   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
8923 %}
8924 */
8925 
8926 //----------Long Instructions------------------------------------------------
8927 // Add Long Register with Register
8928 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8929   match(Set dst (AddL dst src));
8930   effect(KILL cr);
8931   ins_cost(200);
8932   format %{ "ADD    $dst.lo,$src.lo\n\t"
8933             "ADC    $dst.hi,$src.hi" %}
8934   opcode(0x03, 0x13);
8935   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8936   ins_pipe( ialu_reg_reg_long );
8937 %}
8938 
8939 // Add Long Register with Immediate
8940 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8941   match(Set dst (AddL dst src));
8942   effect(KILL cr);
8943   format %{ "ADD    $dst.lo,$src.lo\n\t"
8944             "ADC    $dst.hi,$src.hi" %}
8945   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
8946   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8947   ins_pipe( ialu_reg_long );
8948 %}
8949 
8950 // Add Long Register with Memory
8951 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8952   match(Set dst (AddL dst (LoadL mem)));
8953   effect(KILL cr);
8954   ins_cost(125);
8955   format %{ "ADD    $dst.lo,$mem\n\t"
8956             "ADC    $dst.hi,$mem+4" %}
8957   opcode(0x03, 0x13);
8958   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8959   ins_pipe( ialu_reg_long_mem );
8960 %}
8961 
8962 // Subtract Long Register with Register.
8963 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8964   match(Set dst (SubL dst src));
8965   effect(KILL cr);
8966   ins_cost(200);
8967   format %{ "SUB    $dst.lo,$src.lo\n\t"
8968             "SBB    $dst.hi,$src.hi" %}
8969   opcode(0x2B, 0x1B);
8970   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8971   ins_pipe( ialu_reg_reg_long );
8972 %}
8973 
8974 // Subtract Long Register with Immediate
8975 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8976   match(Set dst (SubL dst src));
8977   effect(KILL cr);
8978   format %{ "SUB    $dst.lo,$src.lo\n\t"
8979             "SBB    $dst.hi,$src.hi" %}
8980   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
8981   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8982   ins_pipe( ialu_reg_long );
8983 %}
8984 
8985 // Subtract Long Register with Memory
8986 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8987   match(Set dst (SubL dst (LoadL mem)));
8988   effect(KILL cr);
8989   ins_cost(125);
8990   format %{ "SUB    $dst.lo,$mem\n\t"
8991             "SBB    $dst.hi,$mem+4" %}
8992   opcode(0x2B, 0x1B);
8993   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8994   ins_pipe( ialu_reg_long_mem );
8995 %}
8996 
8997 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
8998   match(Set dst (SubL zero dst));
8999   effect(KILL cr);
9000   ins_cost(300);
9001   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9002   ins_encode( neg_long(dst) );
9003   ins_pipe( ialu_reg_reg_long );
9004 %}
9005 
9006 // And Long Register with Register
9007 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9008   match(Set dst (AndL dst src));
9009   effect(KILL cr);
9010   format %{ "AND    $dst.lo,$src.lo\n\t"
9011             "AND    $dst.hi,$src.hi" %}
9012   opcode(0x23,0x23);
9013   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9014   ins_pipe( ialu_reg_reg_long );
9015 %}
9016 
9017 // And Long Register with Immediate
9018 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9019   match(Set dst (AndL dst src));
9020   effect(KILL cr);
9021   format %{ "AND    $dst.lo,$src.lo\n\t"
9022             "AND    $dst.hi,$src.hi" %}
9023   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9024   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9025   ins_pipe( ialu_reg_long );
9026 %}
9027 
9028 // And Long Register with Memory
9029 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9030   match(Set dst (AndL dst (LoadL mem)));
9031   effect(KILL cr);
9032   ins_cost(125);
9033   format %{ "AND    $dst.lo,$mem\n\t"
9034             "AND    $dst.hi,$mem+4" %}
9035   opcode(0x23, 0x23);
9036   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9037   ins_pipe( ialu_reg_long_mem );
9038 %}
9039 
9040 // Or Long Register with Register
9041 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9042   match(Set dst (OrL dst src));
9043   effect(KILL cr);
9044   format %{ "OR     $dst.lo,$src.lo\n\t"
9045             "OR     $dst.hi,$src.hi" %}
9046   opcode(0x0B,0x0B);
9047   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9048   ins_pipe( ialu_reg_reg_long );
9049 %}
9050 
9051 // Or Long Register with Immediate
9052 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9053   match(Set dst (OrL dst src));
9054   effect(KILL cr);
9055   format %{ "OR     $dst.lo,$src.lo\n\t"
9056             "OR     $dst.hi,$src.hi" %}
9057   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9058   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9059   ins_pipe( ialu_reg_long );
9060 %}
9061 
9062 // Or Long Register with Memory
9063 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9064   match(Set dst (OrL dst (LoadL mem)));
9065   effect(KILL cr);
9066   ins_cost(125);
9067   format %{ "OR     $dst.lo,$mem\n\t"
9068             "OR     $dst.hi,$mem+4" %}
9069   opcode(0x0B,0x0B);
9070   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9071   ins_pipe( ialu_reg_long_mem );
9072 %}
9073 
9074 // Xor Long Register with Register
9075 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9076   match(Set dst (XorL dst src));
9077   effect(KILL cr);
9078   format %{ "XOR    $dst.lo,$src.lo\n\t"
9079             "XOR    $dst.hi,$src.hi" %}
9080   opcode(0x33,0x33);
9081   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9082   ins_pipe( ialu_reg_reg_long );
9083 %}
9084 
9085 // Xor Long Register with Immediate -1
9086 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9087   match(Set dst (XorL dst imm));  
9088   format %{ "NOT    $dst.lo\n\t"
9089             "NOT    $dst.hi" %}
9090   ins_encode %{
9091      __ notl($dst$$Register);
9092      __ notl(HIGH_FROM_LOW($dst$$Register));
9093   %}
9094   ins_pipe( ialu_reg_long );
9095 %}
9096 
9097 // Xor Long Register with Immediate
9098 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9099   match(Set dst (XorL dst src));
9100   effect(KILL cr);
9101   format %{ "XOR    $dst.lo,$src.lo\n\t"
9102             "XOR    $dst.hi,$src.hi" %}
9103   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9104   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9105   ins_pipe( ialu_reg_long );
9106 %}
9107 
9108 // Xor Long Register with Memory
9109 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9110   match(Set dst (XorL dst (LoadL mem)));
9111   effect(KILL cr);
9112   ins_cost(125);
9113   format %{ "XOR    $dst.lo,$mem\n\t"
9114             "XOR    $dst.hi,$mem+4" %}
9115   opcode(0x33,0x33);
9116   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9117   ins_pipe( ialu_reg_long_mem );
9118 %}
9119 
9120 // Shift Left Long by 1
9121 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9122   predicate(UseNewLongLShift);
9123   match(Set dst (LShiftL dst cnt));
9124   effect(KILL cr);
9125   ins_cost(100);
9126   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9127             "ADC    $dst.hi,$dst.hi" %}
9128   ins_encode %{
9129     __ addl($dst$$Register,$dst$$Register);
9130     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9131   %}
9132   ins_pipe( ialu_reg_long );
9133 %}
9134 
9135 // Shift Left Long by 2
9136 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9137   predicate(UseNewLongLShift);
9138   match(Set dst (LShiftL dst cnt));
9139   effect(KILL cr);
9140   ins_cost(100);
9141   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9142             "ADC    $dst.hi,$dst.hi\n\t" 
9143             "ADD    $dst.lo,$dst.lo\n\t"
9144             "ADC    $dst.hi,$dst.hi" %}
9145   ins_encode %{
9146     __ addl($dst$$Register,$dst$$Register);
9147     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9148     __ addl($dst$$Register,$dst$$Register);
9149     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9150   %}
9151   ins_pipe( ialu_reg_long );
9152 %}
9153 
9154 // Shift Left Long by 3
9155 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9156   predicate(UseNewLongLShift);
9157   match(Set dst (LShiftL dst cnt));
9158   effect(KILL cr);
9159   ins_cost(100);
9160   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9161             "ADC    $dst.hi,$dst.hi\n\t" 
9162             "ADD    $dst.lo,$dst.lo\n\t"
9163             "ADC    $dst.hi,$dst.hi\n\t" 
9164             "ADD    $dst.lo,$dst.lo\n\t"
9165             "ADC    $dst.hi,$dst.hi" %}
9166   ins_encode %{
9167     __ addl($dst$$Register,$dst$$Register);
9168     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9169     __ addl($dst$$Register,$dst$$Register);
9170     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9171     __ addl($dst$$Register,$dst$$Register);
9172     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9173   %}
9174   ins_pipe( ialu_reg_long );
9175 %}
9176 
9177 // Shift Left Long by 1-31
9178 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9179   match(Set dst (LShiftL dst cnt));
9180   effect(KILL cr);
9181   ins_cost(200);
9182   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9183             "SHL    $dst.lo,$cnt" %}
9184   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9185   ins_encode( move_long_small_shift(dst,cnt) );
9186   ins_pipe( ialu_reg_long );
9187 %}
9188 
9189 // Shift Left Long by 32-63
9190 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9191   match(Set dst (LShiftL dst cnt));
9192   effect(KILL cr);
9193   ins_cost(300);
9194   format %{ "MOV    $dst.hi,$dst.lo\n"
9195           "\tSHL    $dst.hi,$cnt-32\n"
9196           "\tXOR    $dst.lo,$dst.lo" %}
9197   opcode(0xC1, 0x4);  /* C1 /4 ib */
9198   ins_encode( move_long_big_shift_clr(dst,cnt) );
9199   ins_pipe( ialu_reg_long );
9200 %}
9201 
9202 // Shift Left Long by variable
9203 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9204   match(Set dst (LShiftL dst shift));
9205   effect(KILL cr);
9206   ins_cost(500+200);
9207   size(17);
9208   format %{ "TEST   $shift,32\n\t"
9209             "JEQ,s  small\n\t"
9210             "MOV    $dst.hi,$dst.lo\n\t"
9211             "XOR    $dst.lo,$dst.lo\n"
9212     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9213             "SHL    $dst.lo,$shift" %}
9214   ins_encode( shift_left_long( dst, shift ) );
9215   ins_pipe( pipe_slow );
9216 %}
9217 
9218 // Shift Right Long by 1-31
9219 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9220   match(Set dst (URShiftL dst cnt));
9221   effect(KILL cr);
9222   ins_cost(200);
9223   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9224             "SHR    $dst.hi,$cnt" %}
9225   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9226   ins_encode( move_long_small_shift(dst,cnt) );
9227   ins_pipe( ialu_reg_long );
9228 %}
9229 
9230 // Shift Right Long by 32-63
9231 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9232   match(Set dst (URShiftL dst cnt));
9233   effect(KILL cr);
9234   ins_cost(300);
9235   format %{ "MOV    $dst.lo,$dst.hi\n"
9236           "\tSHR    $dst.lo,$cnt-32\n"
9237           "\tXOR    $dst.hi,$dst.hi" %}
9238   opcode(0xC1, 0x5);  /* C1 /5 ib */
9239   ins_encode( move_long_big_shift_clr(dst,cnt) );
9240   ins_pipe( ialu_reg_long );
9241 %}
9242 
9243 // Shift Right Long by variable
9244 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9245   match(Set dst (URShiftL dst shift));
9246   effect(KILL cr);
9247   ins_cost(600);
9248   size(17);
9249   format %{ "TEST   $shift,32\n\t"
9250             "JEQ,s  small\n\t"
9251             "MOV    $dst.lo,$dst.hi\n\t"
9252             "XOR    $dst.hi,$dst.hi\n"
9253     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9254             "SHR    $dst.hi,$shift" %}
9255   ins_encode( shift_right_long( dst, shift ) );
9256   ins_pipe( pipe_slow );
9257 %}
9258 
9259 // Shift Right Long by 1-31
9260 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9261   match(Set dst (RShiftL dst cnt));
9262   effect(KILL cr);
9263   ins_cost(200);
9264   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9265             "SAR    $dst.hi,$cnt" %}
9266   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9267   ins_encode( move_long_small_shift(dst,cnt) );
9268   ins_pipe( ialu_reg_long );
9269 %}
9270 
9271 // Shift Right Long by 32-63
9272 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9273   match(Set dst (RShiftL dst cnt));
9274   effect(KILL cr);
9275   ins_cost(300);
9276   format %{ "MOV    $dst.lo,$dst.hi\n"
9277           "\tSAR    $dst.lo,$cnt-32\n"
9278           "\tSAR    $dst.hi,31" %}
9279   opcode(0xC1, 0x7);  /* C1 /7 ib */
9280   ins_encode( move_long_big_shift_sign(dst,cnt) );
9281   ins_pipe( ialu_reg_long );
9282 %}
9283 
9284 // Shift Right arithmetic Long by variable
9285 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9286   match(Set dst (RShiftL dst shift));
9287   effect(KILL cr);
9288   ins_cost(600);
9289   size(18);
9290   format %{ "TEST   $shift,32\n\t"
9291             "JEQ,s  small\n\t"
9292             "MOV    $dst.lo,$dst.hi\n\t"
9293             "SAR    $dst.hi,31\n"
9294     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9295             "SAR    $dst.hi,$shift" %}
9296   ins_encode( shift_right_arith_long( dst, shift ) );
9297   ins_pipe( pipe_slow );
9298 %}
9299 
9300 
9301 //----------Double Instructions------------------------------------------------
9302 // Double Math
9303 
9304 // Compare & branch
9305 
9306 // P6 version of float compare, sets condition codes in EFLAGS
9307 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9308   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9309   match(Set cr (CmpD src1 src2));
9310   effect(KILL rax);
9311   ins_cost(150);
9312   format %{ "FLD    $src1\n\t"
9313             "FUCOMIP ST,$src2  // P6 instruction\n\t"
9314             "JNP    exit\n\t"
9315             "MOV    ah,1       // saw a NaN, set CF\n\t"
9316             "SAHF\n"
9317      "exit:\tNOP               // avoid branch to branch" %}
9318   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9319   ins_encode( Push_Reg_DPR(src1),
9320               OpcP, RegOpc(src2),
9321               cmpF_P6_fixup );
9322   ins_pipe( pipe_slow );
9323 %}
9324 
9325 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
9326   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9327   match(Set cr (CmpD src1 src2));
9328   ins_cost(150);
9329   format %{ "FLD    $src1\n\t"
9330             "FUCOMIP ST,$src2  // P6 instruction" %}
9331   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9332   ins_encode( Push_Reg_DPR(src1),
9333               OpcP, RegOpc(src2));
9334   ins_pipe( pipe_slow );
9335 %}
9336 
9337 // Compare & branch
9338 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9339   predicate(UseSSE<=1);
9340   match(Set cr (CmpD src1 src2));
9341   effect(KILL rax);
9342   ins_cost(200);
9343   format %{ "FLD    $src1\n\t"
9344             "FCOMp  $src2\n\t"
9345             "FNSTSW AX\n\t"
9346             "TEST   AX,0x400\n\t"
9347             "JZ,s   flags\n\t"
9348             "MOV    AH,1\t# unordered treat as LT\n"
9349     "flags:\tSAHF" %}
9350   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9351   ins_encode( Push_Reg_DPR(src1),
9352               OpcP, RegOpc(src2),
9353               fpu_flags);
9354   ins_pipe( pipe_slow );
9355 %}
9356 
9357 // Compare vs zero into -1,0,1
9358 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
9359   predicate(UseSSE<=1);
9360   match(Set dst (CmpD3 src1 zero));
9361   effect(KILL cr, KILL rax);
9362   ins_cost(280);
9363   format %{ "FTSTD  $dst,$src1" %}
9364   opcode(0xE4, 0xD9);
9365   ins_encode( Push_Reg_DPR(src1),
9366               OpcS, OpcP, PopFPU,
9367               CmpF_Result(dst));
9368   ins_pipe( pipe_slow );
9369 %}
9370 
9371 // Compare into -1,0,1
9372 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
9373   predicate(UseSSE<=1);
9374   match(Set dst (CmpD3 src1 src2));
9375   effect(KILL cr, KILL rax);
9376   ins_cost(300);
9377   format %{ "FCMPD  $dst,$src1,$src2" %}
9378   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9379   ins_encode( Push_Reg_DPR(src1),
9380               OpcP, RegOpc(src2),
9381               CmpF_Result(dst));
9382   ins_pipe( pipe_slow );
9383 %}
9384 
9385 // float compare and set condition codes in EFLAGS by XMM regs
9386 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
9387   predicate(UseSSE>=2);
9388   match(Set cr (CmpD src1 src2));
9389   ins_cost(145);
9390   format %{ "UCOMISD $src1,$src2\n\t"
9391             "JNP,s   exit\n\t"
9392             "PUSHF\t# saw NaN, set CF\n\t"
9393             "AND     [rsp], #0xffffff2b\n\t"
9394             "POPF\n"
9395     "exit:" %}
9396   ins_encode %{
9397     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9398     emit_cmpfp_fixup(_masm);
9399   %}
9400   ins_pipe( pipe_slow );
9401 %}
9402 
9403 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
9404   predicate(UseSSE>=2);
9405   match(Set cr (CmpD src1 src2));
9406   ins_cost(100);
9407   format %{ "UCOMISD $src1,$src2" %}
9408   ins_encode %{
9409     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9410   %}
9411   ins_pipe( pipe_slow );
9412 %}
9413 
9414 // float compare and set condition codes in EFLAGS by XMM regs
9415 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
9416   predicate(UseSSE>=2);
9417   match(Set cr (CmpD src1 (LoadD src2)));
9418   ins_cost(145);
9419   format %{ "UCOMISD $src1,$src2\n\t"
9420             "JNP,s   exit\n\t"
9421             "PUSHF\t# saw NaN, set CF\n\t"
9422             "AND     [rsp], #0xffffff2b\n\t"
9423             "POPF\n"
9424     "exit:" %}
9425   ins_encode %{
9426     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9427     emit_cmpfp_fixup(_masm);
9428   %}
9429   ins_pipe( pipe_slow );
9430 %}
9431 
9432 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
9433   predicate(UseSSE>=2);
9434   match(Set cr (CmpD src1 (LoadD src2)));
9435   ins_cost(100);
9436   format %{ "UCOMISD $src1,$src2" %}
9437   ins_encode %{
9438     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9439   %}
9440   ins_pipe( pipe_slow );
9441 %}
9442 
9443 // Compare into -1,0,1 in XMM
9444 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
9445   predicate(UseSSE>=2);
9446   match(Set dst (CmpD3 src1 src2));
9447   effect(KILL cr);
9448   ins_cost(255);
9449   format %{ "UCOMISD $src1, $src2\n\t"
9450             "MOV     $dst, #-1\n\t"
9451             "JP,s    done\n\t"
9452             "JB,s    done\n\t"
9453             "SETNE   $dst\n\t"
9454             "MOVZB   $dst, $dst\n"
9455     "done:" %}
9456   ins_encode %{
9457     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9458     emit_cmpfp3(_masm, $dst$$Register);
9459   %}
9460   ins_pipe( pipe_slow );
9461 %}
9462 
9463 // Compare into -1,0,1 in XMM and memory
9464 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
9465   predicate(UseSSE>=2);
9466   match(Set dst (CmpD3 src1 (LoadD src2)));
9467   effect(KILL cr);
9468   ins_cost(275);
9469   format %{ "UCOMISD $src1, $src2\n\t"
9470             "MOV     $dst, #-1\n\t"
9471             "JP,s    done\n\t"
9472             "JB,s    done\n\t"
9473             "SETNE   $dst\n\t"
9474             "MOVZB   $dst, $dst\n"
9475     "done:" %}
9476   ins_encode %{
9477     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9478     emit_cmpfp3(_masm, $dst$$Register);
9479   %}
9480   ins_pipe( pipe_slow );
9481 %}
9482 
9483 
9484 instruct subDPR_reg(regDPR dst, regDPR src) %{
9485   predicate (UseSSE <=1);
9486   match(Set dst (SubD dst src));
9487 
9488   format %{ "FLD    $src\n\t"
9489             "DSUBp  $dst,ST" %}
9490   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9491   ins_cost(150);
9492   ins_encode( Push_Reg_DPR(src),
9493               OpcP, RegOpc(dst) );
9494   ins_pipe( fpu_reg_reg );
9495 %}
9496 
9497 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9498   predicate (UseSSE <=1);
9499   match(Set dst (RoundDouble (SubD src1 src2)));
9500   ins_cost(250);
9501 
9502   format %{ "FLD    $src2\n\t"
9503             "DSUB   ST,$src1\n\t"
9504             "FSTP_D $dst\t# D-round" %}
9505   opcode(0xD8, 0x5);
9506   ins_encode( Push_Reg_DPR(src2),
9507               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9508   ins_pipe( fpu_mem_reg_reg );
9509 %}
9510 
9511 
9512 instruct subDPR_reg_mem(regDPR dst, memory src) %{
9513   predicate (UseSSE <=1);
9514   match(Set dst (SubD dst (LoadD src)));
9515   ins_cost(150);
9516 
9517   format %{ "FLD    $src\n\t"
9518             "DSUBp  $dst,ST" %}
9519   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9520   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9521               OpcP, RegOpc(dst) );
9522   ins_pipe( fpu_reg_mem );
9523 %}
9524 
9525 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
9526   predicate (UseSSE<=1);
9527   match(Set dst (AbsD src));
9528   ins_cost(100);
9529   format %{ "FABS" %}
9530   opcode(0xE1, 0xD9);
9531   ins_encode( OpcS, OpcP );
9532   ins_pipe( fpu_reg_reg );
9533 %}
9534 
9535 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
9536   predicate(UseSSE<=1);
9537   match(Set dst (NegD src));
9538   ins_cost(100);
9539   format %{ "FCHS" %}
9540   opcode(0xE0, 0xD9);
9541   ins_encode( OpcS, OpcP );
9542   ins_pipe( fpu_reg_reg );
9543 %}
9544 
9545 instruct addDPR_reg(regDPR dst, regDPR src) %{
9546   predicate(UseSSE<=1);
9547   match(Set dst (AddD dst src));
9548   format %{ "FLD    $src\n\t"
9549             "DADD   $dst,ST" %}
9550   size(4);
9551   ins_cost(150);
9552   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
9553   ins_encode( Push_Reg_DPR(src),
9554               OpcP, RegOpc(dst) );
9555   ins_pipe( fpu_reg_reg );
9556 %}
9557 
9558 
9559 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9560   predicate(UseSSE<=1);
9561   match(Set dst (RoundDouble (AddD src1 src2)));
9562   ins_cost(250);
9563 
9564   format %{ "FLD    $src2\n\t"
9565             "DADD   ST,$src1\n\t"
9566             "FSTP_D $dst\t# D-round" %}
9567   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
9568   ins_encode( Push_Reg_DPR(src2),
9569               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9570   ins_pipe( fpu_mem_reg_reg );
9571 %}
9572 
9573 
9574 instruct addDPR_reg_mem(regDPR dst, memory src) %{
9575   predicate(UseSSE<=1);
9576   match(Set dst (AddD dst (LoadD src)));
9577   ins_cost(150);
9578 
9579   format %{ "FLD    $src\n\t"
9580             "DADDp  $dst,ST" %}
9581   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9582   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9583               OpcP, RegOpc(dst) );
9584   ins_pipe( fpu_reg_mem );
9585 %}
9586 
9587 // add-to-memory
9588 instruct addDPR_mem_reg(memory dst, regDPR src) %{
9589   predicate(UseSSE<=1);
9590   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
9591   ins_cost(150);
9592 
9593   format %{ "FLD_D  $dst\n\t"
9594             "DADD   ST,$src\n\t"
9595             "FST_D  $dst" %}
9596   opcode(0xDD, 0x0);
9597   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
9598               Opcode(0xD8), RegOpc(src),
9599               set_instruction_start,
9600               Opcode(0xDD), RMopc_Mem(0x03,dst) );
9601   ins_pipe( fpu_reg_mem );
9602 %}
9603 
9604 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
9605   predicate(UseSSE<=1);
9606   match(Set dst (AddD dst con));
9607   ins_cost(125);
9608   format %{ "FLD1\n\t"
9609             "DADDp  $dst,ST" %}
9610   ins_encode %{
9611     __ fld1();
9612     __ faddp($dst$$reg);
9613   %}
9614   ins_pipe(fpu_reg);
9615 %}
9616 
9617 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
9618   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9619   match(Set dst (AddD dst con));
9620   ins_cost(200);
9621   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9622             "DADDp  $dst,ST" %}
9623   ins_encode %{
9624     __ fld_d($constantaddress($con));
9625     __ faddp($dst$$reg);
9626   %}
9627   ins_pipe(fpu_reg_mem);
9628 %}
9629 
9630 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
9631   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
9632   match(Set dst (RoundDouble (AddD src con)));
9633   ins_cost(200);
9634   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9635             "DADD   ST,$src\n\t"
9636             "FSTP_D $dst\t# D-round" %}
9637   ins_encode %{
9638     __ fld_d($constantaddress($con));
9639     __ fadd($src$$reg);
9640     __ fstp_d(Address(rsp, $dst$$disp));
9641   %}
9642   ins_pipe(fpu_mem_reg_con);
9643 %}
9644 
9645 instruct mulDPR_reg(regDPR dst, regDPR src) %{
9646   predicate(UseSSE<=1);
9647   match(Set dst (MulD dst src));
9648   format %{ "FLD    $src\n\t"
9649             "DMULp  $dst,ST" %}
9650   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9651   ins_cost(150);
9652   ins_encode( Push_Reg_DPR(src),
9653               OpcP, RegOpc(dst) );
9654   ins_pipe( fpu_reg_reg );
9655 %}
9656 
9657 // Strict FP instruction biases argument before multiply then
9658 // biases result to avoid double rounding of subnormals.
9659 //
9660 // scale arg1 by multiplying arg1 by 2^(-15360)
9661 // load arg2
9662 // multiply scaled arg1 by arg2
9663 // rescale product by 2^(15360)
9664 //
9665 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9666   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9667   match(Set dst (MulD dst src));
9668   ins_cost(1);   // Select this instruction for all strict FP double multiplies
9669 
9670   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9671             "DMULp  $dst,ST\n\t"
9672             "FLD    $src\n\t"
9673             "DMULp  $dst,ST\n\t"
9674             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9675             "DMULp  $dst,ST\n\t" %}
9676   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9677   ins_encode( strictfp_bias1(dst),
9678               Push_Reg_DPR(src),
9679               OpcP, RegOpc(dst),
9680               strictfp_bias2(dst) );
9681   ins_pipe( fpu_reg_reg );
9682 %}
9683 
9684 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
9685   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9686   match(Set dst (MulD dst con));
9687   ins_cost(200);
9688   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9689             "DMULp  $dst,ST" %}
9690   ins_encode %{
9691     __ fld_d($constantaddress($con));
9692     __ fmulp($dst$$reg);
9693   %}
9694   ins_pipe(fpu_reg_mem);
9695 %}
9696 
9697 
9698 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
9699   predicate( UseSSE<=1 );
9700   match(Set dst (MulD dst (LoadD src)));
9701   ins_cost(200);
9702   format %{ "FLD_D  $src\n\t"
9703             "DMULp  $dst,ST" %}
9704   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
9705   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9706               OpcP, RegOpc(dst) );
9707   ins_pipe( fpu_reg_mem );
9708 %}
9709 
9710 //
9711 // Cisc-alternate to reg-reg multiply
9712 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
9713   predicate( UseSSE<=1 );
9714   match(Set dst (MulD src (LoadD mem)));
9715   ins_cost(250);
9716   format %{ "FLD_D  $mem\n\t"
9717             "DMUL   ST,$src\n\t"
9718             "FSTP_D $dst" %}
9719   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
9720   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
9721               OpcReg_FPR(src),
9722               Pop_Reg_DPR(dst) );
9723   ins_pipe( fpu_reg_reg_mem );
9724 %}
9725 
9726 
9727 // MACRO3 -- addDPR a mulDPR
9728 // This instruction is a '2-address' instruction in that the result goes
9729 // back to src2.  This eliminates a move from the macro; possibly the
9730 // register allocator will have to add it back (and maybe not).
9731 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9732   predicate( UseSSE<=1 );
9733   match(Set src2 (AddD (MulD src0 src1) src2));
9734   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9735             "DMUL   ST,$src1\n\t"
9736             "DADDp  $src2,ST" %}
9737   ins_cost(250);
9738   opcode(0xDD); /* LoadD DD /0 */
9739   ins_encode( Push_Reg_FPR(src0),
9740               FMul_ST_reg(src1),
9741               FAddP_reg_ST(src2) );
9742   ins_pipe( fpu_reg_reg_reg );
9743 %}
9744 
9745 
9746 // MACRO3 -- subDPR a mulDPR
9747 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9748   predicate( UseSSE<=1 );
9749   match(Set src2 (SubD (MulD src0 src1) src2));
9750   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9751             "DMUL   ST,$src1\n\t"
9752             "DSUBRp $src2,ST" %}
9753   ins_cost(250);
9754   ins_encode( Push_Reg_FPR(src0),
9755               FMul_ST_reg(src1),
9756               Opcode(0xDE), Opc_plus(0xE0,src2));
9757   ins_pipe( fpu_reg_reg_reg );
9758 %}
9759 
9760 
9761 instruct divDPR_reg(regDPR dst, regDPR src) %{
9762   predicate( UseSSE<=1 );
9763   match(Set dst (DivD dst src));
9764 
9765   format %{ "FLD    $src\n\t"
9766             "FDIVp  $dst,ST" %}
9767   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9768   ins_cost(150);
9769   ins_encode( Push_Reg_DPR(src),
9770               OpcP, RegOpc(dst) );
9771   ins_pipe( fpu_reg_reg );
9772 %}
9773 
9774 // Strict FP instruction biases argument before division then
9775 // biases result, to avoid double rounding of subnormals.
9776 //
9777 // scale dividend by multiplying dividend by 2^(-15360)
9778 // load divisor
9779 // divide scaled dividend by divisor
9780 // rescale quotient by 2^(15360)
9781 //
9782 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9783   predicate (UseSSE<=1);
9784   match(Set dst (DivD dst src));
9785   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9786   ins_cost(01);
9787 
9788   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9789             "DMULp  $dst,ST\n\t"
9790             "FLD    $src\n\t"
9791             "FDIVp  $dst,ST\n\t"
9792             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9793             "DMULp  $dst,ST\n\t" %}
9794   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9795   ins_encode( strictfp_bias1(dst),
9796               Push_Reg_DPR(src),
9797               OpcP, RegOpc(dst),
9798               strictfp_bias2(dst) );
9799   ins_pipe( fpu_reg_reg );
9800 %}
9801 
9802 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9803   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
9804   match(Set dst (RoundDouble (DivD src1 src2)));
9805 
9806   format %{ "FLD    $src1\n\t"
9807             "FDIV   ST,$src2\n\t"
9808             "FSTP_D $dst\t# D-round" %}
9809   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
9810   ins_encode( Push_Reg_DPR(src1),
9811               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
9812   ins_pipe( fpu_mem_reg_reg );
9813 %}
9814 
9815 
9816 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
9817   predicate(UseSSE<=1);
9818   match(Set dst (ModD dst src));
9819   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
9820 
9821   format %{ "DMOD   $dst,$src" %}
9822   ins_cost(250);
9823   ins_encode(Push_Reg_Mod_DPR(dst, src),
9824               emitModDPR(),
9825               Push_Result_Mod_DPR(src),
9826               Pop_Reg_DPR(dst));
9827   ins_pipe( pipe_slow );
9828 %}
9829 
9830 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
9831   predicate(UseSSE>=2);
9832   match(Set dst (ModD src0 src1));
9833   effect(KILL rax, KILL cr);
9834 
9835   format %{ "SUB    ESP,8\t # DMOD\n"
9836           "\tMOVSD  [ESP+0],$src1\n"
9837           "\tFLD_D  [ESP+0]\n"
9838           "\tMOVSD  [ESP+0],$src0\n"
9839           "\tFLD_D  [ESP+0]\n"
9840      "loop:\tFPREM\n"
9841           "\tFWAIT\n"
9842           "\tFNSTSW AX\n"
9843           "\tSAHF\n"
9844           "\tJP     loop\n"
9845           "\tFSTP_D [ESP+0]\n"
9846           "\tMOVSD  $dst,[ESP+0]\n"
9847           "\tADD    ESP,8\n"
9848           "\tFSTP   ST0\t # Restore FPU Stack"
9849     %}
9850   ins_cost(250);
9851   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
9852   ins_pipe( pipe_slow );
9853 %}
9854 
9855 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
9856   predicate (UseSSE<=1);
9857   match(Set dst (SinD src));
9858   ins_cost(1800);
9859   format %{ "DSIN   $dst" %}
9860   opcode(0xD9, 0xFE);
9861   ins_encode( OpcP, OpcS );
9862   ins_pipe( pipe_slow );
9863 %}
9864 
9865 instruct sinD_reg(regD dst, eFlagsReg cr) %{
9866   predicate (UseSSE>=2);
9867   match(Set dst (SinD dst));
9868   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9869   ins_cost(1800);
9870   format %{ "DSIN   $dst" %}
9871   opcode(0xD9, 0xFE);
9872   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
9873   ins_pipe( pipe_slow );
9874 %}
9875 
9876 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
9877   predicate (UseSSE<=1);
9878   match(Set dst (CosD src));
9879   ins_cost(1800);
9880   format %{ "DCOS   $dst" %}
9881   opcode(0xD9, 0xFF);
9882   ins_encode( OpcP, OpcS );
9883   ins_pipe( pipe_slow );
9884 %}
9885 
9886 instruct cosD_reg(regD dst, eFlagsReg cr) %{
9887   predicate (UseSSE>=2);
9888   match(Set dst (CosD dst));
9889   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9890   ins_cost(1800);
9891   format %{ "DCOS   $dst" %}
9892   opcode(0xD9, 0xFF);
9893   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
9894   ins_pipe( pipe_slow );
9895 %}
9896 
9897 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
9898   predicate (UseSSE<=1);
9899   match(Set dst(TanD src));
9900   format %{ "DTAN   $dst" %}
9901   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
9902               Opcode(0xDD), Opcode(0xD8));   // fstp st
9903   ins_pipe( pipe_slow );
9904 %}
9905 
9906 instruct tanD_reg(regD dst, eFlagsReg cr) %{
9907   predicate (UseSSE>=2);
9908   match(Set dst(TanD dst));
9909   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9910   format %{ "DTAN   $dst" %}
9911   ins_encode( Push_SrcD(dst),
9912               Opcode(0xD9), Opcode(0xF2),    // fptan
9913               Opcode(0xDD), Opcode(0xD8),   // fstp st
9914               Push_ResultD(dst) );
9915   ins_pipe( pipe_slow );
9916 %}
9917 
9918 instruct atanDPR_reg(regDPR dst, regDPR src) %{
9919   predicate (UseSSE<=1);
9920   match(Set dst(AtanD dst src));
9921   format %{ "DATA   $dst,$src" %}
9922   opcode(0xD9, 0xF3);
9923   ins_encode( Push_Reg_DPR(src),
9924               OpcP, OpcS, RegOpc(dst) );
9925   ins_pipe( pipe_slow );
9926 %}
9927 
9928 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
9929   predicate (UseSSE>=2);
9930   match(Set dst(AtanD dst src));
9931   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9932   format %{ "DATA   $dst,$src" %}
9933   opcode(0xD9, 0xF3);
9934   ins_encode( Push_SrcD(src),
9935               OpcP, OpcS, Push_ResultD(dst) );
9936   ins_pipe( pipe_slow );
9937 %}
9938 
9939 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
9940   predicate (UseSSE<=1);
9941   match(Set dst (SqrtD src));
9942   format %{ "DSQRT  $dst,$src" %}
9943   opcode(0xFA, 0xD9);
9944   ins_encode( Push_Reg_DPR(src),
9945               OpcS, OpcP, Pop_Reg_DPR(dst) );
9946   ins_pipe( pipe_slow );
9947 %}
9948 
9949 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9950   predicate (UseSSE<=1);
9951   match(Set Y (PowD X Y));  // Raise X to the Yth power
9952   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
9953   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
9954   ins_encode %{
9955     __ subptr(rsp, 8);
9956     __ fld_s($X$$reg - 1);
9957     __ fast_pow();
9958     __ addptr(rsp, 8);
9959   %}
9960   ins_pipe( pipe_slow );
9961 %}
9962 
9963 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9964   predicate (UseSSE>=2);
9965   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
9966   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
9967   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
9968   ins_encode %{
9969     __ subptr(rsp, 8);
9970     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
9971     __ fld_d(Address(rsp, 0));
9972     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
9973     __ fld_d(Address(rsp, 0));
9974     __ fast_pow();
9975     __ fstp_d(Address(rsp, 0));
9976     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
9977     __ addptr(rsp, 8);
9978   %}
9979   ins_pipe( pipe_slow );
9980 %}
9981 
9982 
9983 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9984   predicate (UseSSE<=1);
9985   match(Set dpr1 (ExpD dpr1));
9986   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
9987   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
9988   ins_encode %{
9989     __ fast_exp();
9990   %}
9991   ins_pipe( pipe_slow );
9992 %}
9993 
9994 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9995   predicate (UseSSE>=2);
9996   match(Set dst (ExpD src));
9997   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
9998   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
9999   ins_encode %{
10000     __ subptr(rsp, 8);
10001     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10002     __ fld_d(Address(rsp, 0));
10003     __ fast_exp();
10004     __ fstp_d(Address(rsp, 0));
10005     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
10006     __ addptr(rsp, 8);
10007   %}
10008   ins_pipe( pipe_slow );
10009 %}
10010 
10011 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
10012   predicate (UseSSE<=1);
10013   // The source Double operand on FPU stack
10014   match(Set dst (Log10D src));
10015   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10016   // fxch         ; swap ST(0) with ST(1)
10017   // fyl2x        ; compute log_10(2) * log_2(x)
10018   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10019             "FXCH   \n\t"
10020             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10021          %}
10022   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10023               Opcode(0xD9), Opcode(0xC9),   // fxch
10024               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10025 
10026   ins_pipe( pipe_slow );
10027 %}
10028 
10029 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
10030   predicate (UseSSE>=2);
10031   effect(KILL cr);
10032   match(Set dst (Log10D src));
10033   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10034   // fyl2x        ; compute log_10(2) * log_2(x)
10035   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10036             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10037          %}
10038   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10039               Push_SrcD(src),
10040               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10041               Push_ResultD(dst));
10042 
10043   ins_pipe( pipe_slow );
10044 %}
10045 
10046 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
10047   predicate (UseSSE<=1);
10048   // The source Double operand on FPU stack
10049   match(Set dst (LogD src));
10050   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10051   // fxch         ; swap ST(0) with ST(1)
10052   // fyl2x        ; compute log_e(2) * log_2(x)
10053   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10054             "FXCH   \n\t"
10055             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10056          %}
10057   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10058               Opcode(0xD9), Opcode(0xC9),   // fxch
10059               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10060 
10061   ins_pipe( pipe_slow );
10062 %}
10063 
10064 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
10065   predicate (UseSSE>=2);
10066   effect(KILL cr);
10067   // The source and result Double operands in XMM registers
10068   match(Set dst (LogD src));
10069   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10070   // fyl2x        ; compute log_e(2) * log_2(x)
10071   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10072             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10073          %}
10074   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10075               Push_SrcD(src),
10076               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10077               Push_ResultD(dst));
10078   ins_pipe( pipe_slow );
10079 %}
10080 
10081 //-------------Float Instructions-------------------------------
10082 // Float Math
10083 
10084 // Code for float compare:
10085 //     fcompp();
10086 //     fwait(); fnstsw_ax();
10087 //     sahf();
10088 //     movl(dst, unordered_result);
10089 //     jcc(Assembler::parity, exit);
10090 //     movl(dst, less_result);
10091 //     jcc(Assembler::below, exit);
10092 //     movl(dst, equal_result);
10093 //     jcc(Assembler::equal, exit);
10094 //     movl(dst, greater_result);
10095 //   exit:
10096 
10097 // P6 version of float compare, sets condition codes in EFLAGS
10098 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10099   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10100   match(Set cr (CmpF src1 src2));
10101   effect(KILL rax);
10102   ins_cost(150);
10103   format %{ "FLD    $src1\n\t"
10104             "FUCOMIP ST,$src2  // P6 instruction\n\t"
10105             "JNP    exit\n\t"
10106             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10107             "SAHF\n"
10108      "exit:\tNOP               // avoid branch to branch" %}
10109   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10110   ins_encode( Push_Reg_DPR(src1),
10111               OpcP, RegOpc(src2),
10112               cmpF_P6_fixup );
10113   ins_pipe( pipe_slow );
10114 %}
10115 
10116 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
10117   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10118   match(Set cr (CmpF src1 src2));
10119   ins_cost(100);
10120   format %{ "FLD    $src1\n\t"
10121             "FUCOMIP ST,$src2  // P6 instruction" %}
10122   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10123   ins_encode( Push_Reg_DPR(src1),
10124               OpcP, RegOpc(src2));
10125   ins_pipe( pipe_slow );
10126 %}
10127 
10128 
10129 // Compare & branch
10130 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10131   predicate(UseSSE == 0);
10132   match(Set cr (CmpF src1 src2));
10133   effect(KILL rax);
10134   ins_cost(200);
10135   format %{ "FLD    $src1\n\t"
10136             "FCOMp  $src2\n\t"
10137             "FNSTSW AX\n\t"
10138             "TEST   AX,0x400\n\t"
10139             "JZ,s   flags\n\t"
10140             "MOV    AH,1\t# unordered treat as LT\n"
10141     "flags:\tSAHF" %}
10142   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10143   ins_encode( Push_Reg_DPR(src1),
10144               OpcP, RegOpc(src2),
10145               fpu_flags);
10146   ins_pipe( pipe_slow );
10147 %}
10148 
10149 // Compare vs zero into -1,0,1
10150 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
10151   predicate(UseSSE == 0);
10152   match(Set dst (CmpF3 src1 zero));
10153   effect(KILL cr, KILL rax);
10154   ins_cost(280);
10155   format %{ "FTSTF  $dst,$src1" %}
10156   opcode(0xE4, 0xD9);
10157   ins_encode( Push_Reg_DPR(src1),
10158               OpcS, OpcP, PopFPU,
10159               CmpF_Result(dst));
10160   ins_pipe( pipe_slow );
10161 %}
10162 
10163 // Compare into -1,0,1
10164 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10165   predicate(UseSSE == 0);
10166   match(Set dst (CmpF3 src1 src2));
10167   effect(KILL cr, KILL rax);
10168   ins_cost(300);
10169   format %{ "FCMPF  $dst,$src1,$src2" %}
10170   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10171   ins_encode( Push_Reg_DPR(src1),
10172               OpcP, RegOpc(src2),
10173               CmpF_Result(dst));
10174   ins_pipe( pipe_slow );
10175 %}
10176 
10177 // float compare and set condition codes in EFLAGS by XMM regs
10178 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
10179   predicate(UseSSE>=1);
10180   match(Set cr (CmpF src1 src2));
10181   ins_cost(145);
10182   format %{ "UCOMISS $src1,$src2\n\t"
10183             "JNP,s   exit\n\t"
10184             "PUSHF\t# saw NaN, set CF\n\t"
10185             "AND     [rsp], #0xffffff2b\n\t"
10186             "POPF\n"
10187     "exit:" %}
10188   ins_encode %{
10189     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10190     emit_cmpfp_fixup(_masm);
10191   %}
10192   ins_pipe( pipe_slow );
10193 %}
10194 
10195 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
10196   predicate(UseSSE>=1);
10197   match(Set cr (CmpF src1 src2));
10198   ins_cost(100);
10199   format %{ "UCOMISS $src1,$src2" %}
10200   ins_encode %{
10201     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10202   %}
10203   ins_pipe( pipe_slow );
10204 %}
10205 
10206 // float compare and set condition codes in EFLAGS by XMM regs
10207 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
10208   predicate(UseSSE>=1);
10209   match(Set cr (CmpF src1 (LoadF src2)));
10210   ins_cost(165);
10211   format %{ "UCOMISS $src1,$src2\n\t"
10212             "JNP,s   exit\n\t"
10213             "PUSHF\t# saw NaN, set CF\n\t"
10214             "AND     [rsp], #0xffffff2b\n\t"
10215             "POPF\n"
10216     "exit:" %}
10217   ins_encode %{
10218     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10219     emit_cmpfp_fixup(_masm);
10220   %}
10221   ins_pipe( pipe_slow );
10222 %}
10223 
10224 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
10225   predicate(UseSSE>=1);
10226   match(Set cr (CmpF src1 (LoadF src2)));
10227   ins_cost(100);
10228   format %{ "UCOMISS $src1,$src2" %}
10229   ins_encode %{
10230     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10231   %}
10232   ins_pipe( pipe_slow );
10233 %}
10234 
10235 // Compare into -1,0,1 in XMM
10236 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
10237   predicate(UseSSE>=1);
10238   match(Set dst (CmpF3 src1 src2));
10239   effect(KILL cr);
10240   ins_cost(255);
10241   format %{ "UCOMISS $src1, $src2\n\t"
10242             "MOV     $dst, #-1\n\t"
10243             "JP,s    done\n\t"
10244             "JB,s    done\n\t"
10245             "SETNE   $dst\n\t"
10246             "MOVZB   $dst, $dst\n"
10247     "done:" %}
10248   ins_encode %{
10249     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10250     emit_cmpfp3(_masm, $dst$$Register);
10251   %}
10252   ins_pipe( pipe_slow );
10253 %}
10254 
10255 // Compare into -1,0,1 in XMM and memory
10256 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
10257   predicate(UseSSE>=1);
10258   match(Set dst (CmpF3 src1 (LoadF src2)));
10259   effect(KILL cr);
10260   ins_cost(275);
10261   format %{ "UCOMISS $src1, $src2\n\t"
10262             "MOV     $dst, #-1\n\t"
10263             "JP,s    done\n\t"
10264             "JB,s    done\n\t"
10265             "SETNE   $dst\n\t"
10266             "MOVZB   $dst, $dst\n"
10267     "done:" %}
10268   ins_encode %{
10269     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10270     emit_cmpfp3(_masm, $dst$$Register);
10271   %}
10272   ins_pipe( pipe_slow );
10273 %}
10274 
10275 // Spill to obtain 24-bit precision
10276 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10277   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10278   match(Set dst (SubF src1 src2));
10279 
10280   format %{ "FSUB   $dst,$src1 - $src2" %}
10281   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10282   ins_encode( Push_Reg_FPR(src1),
10283               OpcReg_FPR(src2),
10284               Pop_Mem_FPR(dst) );
10285   ins_pipe( fpu_mem_reg_reg );
10286 %}
10287 //
10288 // This instruction does not round to 24-bits
10289 instruct subFPR_reg(regFPR dst, regFPR src) %{
10290   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10291   match(Set dst (SubF dst src));
10292 
10293   format %{ "FSUB   $dst,$src" %}
10294   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10295   ins_encode( Push_Reg_FPR(src),
10296               OpcP, RegOpc(dst) );
10297   ins_pipe( fpu_reg_reg );
10298 %}
10299 
10300 // Spill to obtain 24-bit precision
10301 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10302   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10303   match(Set dst (AddF src1 src2));
10304 
10305   format %{ "FADD   $dst,$src1,$src2" %}
10306   opcode(0xD8, 0x0); /* D8 C0+i */
10307   ins_encode( Push_Reg_FPR(src2),
10308               OpcReg_FPR(src1),
10309               Pop_Mem_FPR(dst) );
10310   ins_pipe( fpu_mem_reg_reg );
10311 %}
10312 //
10313 // This instruction does not round to 24-bits
10314 instruct addFPR_reg(regFPR dst, regFPR src) %{
10315   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10316   match(Set dst (AddF dst src));
10317 
10318   format %{ "FLD    $src\n\t"
10319             "FADDp  $dst,ST" %}
10320   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10321   ins_encode( Push_Reg_FPR(src),
10322               OpcP, RegOpc(dst) );
10323   ins_pipe( fpu_reg_reg );
10324 %}
10325 
10326 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
10327   predicate(UseSSE==0);
10328   match(Set dst (AbsF src));
10329   ins_cost(100);
10330   format %{ "FABS" %}
10331   opcode(0xE1, 0xD9);
10332   ins_encode( OpcS, OpcP );
10333   ins_pipe( fpu_reg_reg );
10334 %}
10335 
10336 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
10337   predicate(UseSSE==0);
10338   match(Set dst (NegF src));
10339   ins_cost(100);
10340   format %{ "FCHS" %}
10341   opcode(0xE0, 0xD9);
10342   ins_encode( OpcS, OpcP );
10343   ins_pipe( fpu_reg_reg );
10344 %}
10345 
10346 // Cisc-alternate to addFPR_reg
10347 // Spill to obtain 24-bit precision
10348 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10349   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10350   match(Set dst (AddF src1 (LoadF src2)));
10351 
10352   format %{ "FLD    $src2\n\t"
10353             "FADD   ST,$src1\n\t"
10354             "FSTP_S $dst" %}
10355   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10356   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10357               OpcReg_FPR(src1),
10358               Pop_Mem_FPR(dst) );
10359   ins_pipe( fpu_mem_reg_mem );
10360 %}
10361 //
10362 // Cisc-alternate to addFPR_reg
10363 // This instruction does not round to 24-bits
10364 instruct addFPR_reg_mem(regFPR dst, memory src) %{
10365   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10366   match(Set dst (AddF dst (LoadF src)));
10367 
10368   format %{ "FADD   $dst,$src" %}
10369   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
10370   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10371               OpcP, RegOpc(dst) );
10372   ins_pipe( fpu_reg_mem );
10373 %}
10374 
10375 // // Following two instructions for _222_mpegaudio
10376 // Spill to obtain 24-bit precision
10377 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
10378   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10379   match(Set dst (AddF src1 src2));
10380 
10381   format %{ "FADD   $dst,$src1,$src2" %}
10382   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10383   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
10384               OpcReg_FPR(src2),
10385               Pop_Mem_FPR(dst) );
10386   ins_pipe( fpu_mem_reg_mem );
10387 %}
10388 
10389 // Cisc-spill variant
10390 // Spill to obtain 24-bit precision
10391 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
10392   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10393   match(Set dst (AddF src1 (LoadF src2)));
10394 
10395   format %{ "FADD   $dst,$src1,$src2 cisc" %}
10396   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10397   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10398               set_instruction_start,
10399               OpcP, RMopc_Mem(secondary,src1),
10400               Pop_Mem_FPR(dst) );
10401   ins_pipe( fpu_mem_mem_mem );
10402 %}
10403 
10404 // Spill to obtain 24-bit precision
10405 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10406   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10407   match(Set dst (AddF src1 src2));
10408 
10409   format %{ "FADD   $dst,$src1,$src2" %}
10410   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
10411   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10412               set_instruction_start,
10413               OpcP, RMopc_Mem(secondary,src1),
10414               Pop_Mem_FPR(dst) );
10415   ins_pipe( fpu_mem_mem_mem );
10416 %}
10417 
10418 
10419 // Spill to obtain 24-bit precision
10420 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10421   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10422   match(Set dst (AddF src con));
10423   format %{ "FLD    $src\n\t"
10424             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10425             "FSTP_S $dst"  %}
10426   ins_encode %{
10427     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10428     __ fadd_s($constantaddress($con));
10429     __ fstp_s(Address(rsp, $dst$$disp));
10430   %}
10431   ins_pipe(fpu_mem_reg_con);
10432 %}
10433 //
10434 // This instruction does not round to 24-bits
10435 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10436   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10437   match(Set dst (AddF src con));
10438   format %{ "FLD    $src\n\t"
10439             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10440             "FSTP   $dst"  %}
10441   ins_encode %{
10442     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10443     __ fadd_s($constantaddress($con));
10444     __ fstp_d($dst$$reg);
10445   %}
10446   ins_pipe(fpu_reg_reg_con);
10447 %}
10448 
10449 // Spill to obtain 24-bit precision
10450 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10451   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10452   match(Set dst (MulF src1 src2));
10453 
10454   format %{ "FLD    $src1\n\t"
10455             "FMUL   $src2\n\t"
10456             "FSTP_S $dst"  %}
10457   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
10458   ins_encode( Push_Reg_FPR(src1),
10459               OpcReg_FPR(src2),
10460               Pop_Mem_FPR(dst) );
10461   ins_pipe( fpu_mem_reg_reg );
10462 %}
10463 //
10464 // This instruction does not round to 24-bits
10465 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
10466   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10467   match(Set dst (MulF src1 src2));
10468 
10469   format %{ "FLD    $src1\n\t"
10470             "FMUL   $src2\n\t"
10471             "FSTP_S $dst"  %}
10472   opcode(0xD8, 0x1); /* D8 C8+i */
10473   ins_encode( Push_Reg_FPR(src2),
10474               OpcReg_FPR(src1),
10475               Pop_Reg_FPR(dst) );
10476   ins_pipe( fpu_reg_reg_reg );
10477 %}
10478 
10479 
10480 // Spill to obtain 24-bit precision
10481 // Cisc-alternate to reg-reg multiply
10482 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10483   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10484   match(Set dst (MulF src1 (LoadF src2)));
10485 
10486   format %{ "FLD_S  $src2\n\t"
10487             "FMUL   $src1\n\t"
10488             "FSTP_S $dst"  %}
10489   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
10490   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10491               OpcReg_FPR(src1),
10492               Pop_Mem_FPR(dst) );
10493   ins_pipe( fpu_mem_reg_mem );
10494 %}
10495 //
10496 // This instruction does not round to 24-bits
10497 // Cisc-alternate to reg-reg multiply
10498 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
10499   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10500   match(Set dst (MulF src1 (LoadF src2)));
10501 
10502   format %{ "FMUL   $dst,$src1,$src2" %}
10503   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
10504   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10505               OpcReg_FPR(src1),
10506               Pop_Reg_FPR(dst) );
10507   ins_pipe( fpu_reg_reg_mem );
10508 %}
10509 
10510 // Spill to obtain 24-bit precision
10511 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10512   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10513   match(Set dst (MulF src1 src2));
10514 
10515   format %{ "FMUL   $dst,$src1,$src2" %}
10516   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
10517   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10518               set_instruction_start,
10519               OpcP, RMopc_Mem(secondary,src1),
10520               Pop_Mem_FPR(dst) );
10521   ins_pipe( fpu_mem_mem_mem );
10522 %}
10523 
10524 // Spill to obtain 24-bit precision
10525 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10526   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10527   match(Set dst (MulF src con));
10528 
10529   format %{ "FLD    $src\n\t"
10530             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10531             "FSTP_S $dst"  %}
10532   ins_encode %{
10533     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10534     __ fmul_s($constantaddress($con));
10535     __ fstp_s(Address(rsp, $dst$$disp));
10536   %}
10537   ins_pipe(fpu_mem_reg_con);
10538 %}
10539 //
10540 // This instruction does not round to 24-bits
10541 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10542   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10543   match(Set dst (MulF src con));
10544 
10545   format %{ "FLD    $src\n\t"
10546             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10547             "FSTP   $dst"  %}
10548   ins_encode %{
10549     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10550     __ fmul_s($constantaddress($con));
10551     __ fstp_d($dst$$reg);
10552   %}
10553   ins_pipe(fpu_reg_reg_con);
10554 %}
10555 
10556 
10557 //
10558 // MACRO1 -- subsume unshared load into mulFPR
10559 // This instruction does not round to 24-bits
10560 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
10561   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10562   match(Set dst (MulF (LoadF mem1) src));
10563 
10564   format %{ "FLD    $mem1    ===MACRO1===\n\t"
10565             "FMUL   ST,$src\n\t"
10566             "FSTP   $dst" %}
10567   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
10568   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
10569               OpcReg_FPR(src),
10570               Pop_Reg_FPR(dst) );
10571   ins_pipe( fpu_reg_reg_mem );
10572 %}
10573 //
10574 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
10575 // This instruction does not round to 24-bits
10576 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
10577   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10578   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
10579   ins_cost(95);
10580 
10581   format %{ "FLD    $mem1     ===MACRO2===\n\t"
10582             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
10583             "FADD   ST,$src2\n\t"
10584             "FSTP   $dst" %}
10585   opcode(0xD9); /* LoadF D9 /0 */
10586   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
10587               FMul_ST_reg(src1),
10588               FAdd_ST_reg(src2),
10589               Pop_Reg_FPR(dst) );
10590   ins_pipe( fpu_reg_mem_reg_reg );
10591 %}
10592 
10593 // MACRO3 -- addFPR a mulFPR
10594 // This instruction does not round to 24-bits.  It is a '2-address'
10595 // instruction in that the result goes back to src2.  This eliminates
10596 // a move from the macro; possibly the register allocator will have
10597 // to add it back (and maybe not).
10598 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
10599   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10600   match(Set src2 (AddF (MulF src0 src1) src2));
10601 
10602   format %{ "FLD    $src0     ===MACRO3===\n\t"
10603             "FMUL   ST,$src1\n\t"
10604             "FADDP  $src2,ST" %}
10605   opcode(0xD9); /* LoadF D9 /0 */
10606   ins_encode( Push_Reg_FPR(src0),
10607               FMul_ST_reg(src1),
10608               FAddP_reg_ST(src2) );
10609   ins_pipe( fpu_reg_reg_reg );
10610 %}
10611 
10612 // MACRO4 -- divFPR subFPR
10613 // This instruction does not round to 24-bits
10614 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
10615   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10616   match(Set dst (DivF (SubF src2 src1) src3));
10617 
10618   format %{ "FLD    $src2   ===MACRO4===\n\t"
10619             "FSUB   ST,$src1\n\t"
10620             "FDIV   ST,$src3\n\t"
10621             "FSTP  $dst" %}
10622   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10623   ins_encode( Push_Reg_FPR(src2),
10624               subFPR_divFPR_encode(src1,src3),
10625               Pop_Reg_FPR(dst) );
10626   ins_pipe( fpu_reg_reg_reg_reg );
10627 %}
10628 
10629 // Spill to obtain 24-bit precision
10630 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10631   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10632   match(Set dst (DivF src1 src2));
10633 
10634   format %{ "FDIV   $dst,$src1,$src2" %}
10635   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
10636   ins_encode( Push_Reg_FPR(src1),
10637               OpcReg_FPR(src2),
10638               Pop_Mem_FPR(dst) );
10639   ins_pipe( fpu_mem_reg_reg );
10640 %}
10641 //
10642 // This instruction does not round to 24-bits
10643 instruct divFPR_reg(regFPR dst, regFPR src) %{
10644   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10645   match(Set dst (DivF dst src));
10646 
10647   format %{ "FDIV   $dst,$src" %}
10648   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10649   ins_encode( Push_Reg_FPR(src),
10650               OpcP, RegOpc(dst) );
10651   ins_pipe( fpu_reg_reg );
10652 %}
10653 
10654 
10655 // Spill to obtain 24-bit precision
10656 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10657   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
10658   match(Set dst (ModF src1 src2));
10659   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10660 
10661   format %{ "FMOD   $dst,$src1,$src2" %}
10662   ins_encode( Push_Reg_Mod_DPR(src1, src2),
10663               emitModDPR(),
10664               Push_Result_Mod_DPR(src2),
10665               Pop_Mem_FPR(dst));
10666   ins_pipe( pipe_slow );
10667 %}
10668 //
10669 // This instruction does not round to 24-bits
10670 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
10671   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
10672   match(Set dst (ModF dst src));
10673   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10674 
10675   format %{ "FMOD   $dst,$src" %}
10676   ins_encode(Push_Reg_Mod_DPR(dst, src),
10677               emitModDPR(),
10678               Push_Result_Mod_DPR(src),
10679               Pop_Reg_FPR(dst));
10680   ins_pipe( pipe_slow );
10681 %}
10682 
10683 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
10684   predicate(UseSSE>=1);
10685   match(Set dst (ModF src0 src1));
10686   effect(KILL rax, KILL cr);
10687   format %{ "SUB    ESP,4\t # FMOD\n"
10688           "\tMOVSS  [ESP+0],$src1\n"
10689           "\tFLD_S  [ESP+0]\n"
10690           "\tMOVSS  [ESP+0],$src0\n"
10691           "\tFLD_S  [ESP+0]\n"
10692      "loop:\tFPREM\n"
10693           "\tFWAIT\n"
10694           "\tFNSTSW AX\n"
10695           "\tSAHF\n"
10696           "\tJP     loop\n"
10697           "\tFSTP_S [ESP+0]\n"
10698           "\tMOVSS  $dst,[ESP+0]\n"
10699           "\tADD    ESP,4\n"
10700           "\tFSTP   ST0\t # Restore FPU Stack"
10701     %}
10702   ins_cost(250);
10703   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
10704   ins_pipe( pipe_slow );
10705 %}
10706 
10707 
10708 //----------Arithmetic Conversion Instructions---------------------------------
10709 // The conversions operations are all Alpha sorted.  Please keep it that way!
10710 
10711 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
10712   predicate(UseSSE==0);
10713   match(Set dst (RoundFloat src));
10714   ins_cost(125);
10715   format %{ "FST_S  $dst,$src\t# F-round" %}
10716   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
10717   ins_pipe( fpu_mem_reg );
10718 %}
10719 
10720 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
10721   predicate(UseSSE<=1);
10722   match(Set dst (RoundDouble src));
10723   ins_cost(125);
10724   format %{ "FST_D  $dst,$src\t# D-round" %}
10725   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
10726   ins_pipe( fpu_mem_reg );
10727 %}
10728 
10729 // Force rounding to 24-bit precision and 6-bit exponent
10730 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
10731   predicate(UseSSE==0);
10732   match(Set dst (ConvD2F src));
10733   format %{ "FST_S  $dst,$src\t# F-round" %}
10734   expand %{
10735     roundFloat_mem_reg(dst,src);
10736   %}
10737 %}
10738 
10739 // Force rounding to 24-bit precision and 6-bit exponent
10740 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
10741   predicate(UseSSE==1);
10742   match(Set dst (ConvD2F src));
10743   effect( KILL cr );
10744   format %{ "SUB    ESP,4\n\t"
10745             "FST_S  [ESP],$src\t# F-round\n\t"
10746             "MOVSS  $dst,[ESP]\n\t"
10747             "ADD ESP,4" %}
10748   ins_encode %{
10749     __ subptr(rsp, 4);
10750     if ($src$$reg != FPR1L_enc) {
10751       __ fld_s($src$$reg-1);
10752       __ fstp_s(Address(rsp, 0));
10753     } else {
10754       __ fst_s(Address(rsp, 0));
10755     }
10756     __ movflt($dst$$XMMRegister, Address(rsp, 0));
10757     __ addptr(rsp, 4);
10758   %}
10759   ins_pipe( pipe_slow );
10760 %}
10761 
10762 // Force rounding double precision to single precision
10763 instruct convD2F_reg(regF dst, regD src) %{
10764   predicate(UseSSE>=2);
10765   match(Set dst (ConvD2F src));
10766   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
10767   ins_encode %{
10768     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10769   %}
10770   ins_pipe( pipe_slow );
10771 %}
10772 
10773 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
10774   predicate(UseSSE==0);
10775   match(Set dst (ConvF2D src));
10776   format %{ "FST_S  $dst,$src\t# D-round" %}
10777   ins_encode( Pop_Reg_Reg_DPR(dst, src));
10778   ins_pipe( fpu_reg_reg );
10779 %}
10780 
10781 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
10782   predicate(UseSSE==1);
10783   match(Set dst (ConvF2D src));
10784   format %{ "FST_D  $dst,$src\t# D-round" %}
10785   expand %{
10786     roundDouble_mem_reg(dst,src);
10787   %}
10788 %}
10789 
10790 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
10791   predicate(UseSSE==1);
10792   match(Set dst (ConvF2D src));
10793   effect( KILL cr );
10794   format %{ "SUB    ESP,4\n\t"
10795             "MOVSS  [ESP] $src\n\t"
10796             "FLD_S  [ESP]\n\t"
10797             "ADD    ESP,4\n\t"
10798             "FSTP   $dst\t# D-round" %}
10799   ins_encode %{
10800     __ subptr(rsp, 4);
10801     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10802     __ fld_s(Address(rsp, 0));
10803     __ addptr(rsp, 4);
10804     __ fstp_d($dst$$reg);
10805   %}
10806   ins_pipe( pipe_slow );
10807 %}
10808 
10809 instruct convF2D_reg(regD dst, regF src) %{
10810   predicate(UseSSE>=2);
10811   match(Set dst (ConvF2D src));
10812   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
10813   ins_encode %{
10814     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10815   %}
10816   ins_pipe( pipe_slow );
10817 %}
10818 
10819 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10820 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
10821   predicate(UseSSE<=1);
10822   match(Set dst (ConvD2I src));
10823   effect( KILL tmp, KILL cr );
10824   format %{ "FLD    $src\t# Convert double to int \n\t"
10825             "FLDCW  trunc mode\n\t"
10826             "SUB    ESP,4\n\t"
10827             "FISTp  [ESP + #0]\n\t"
10828             "FLDCW  std/24-bit mode\n\t"
10829             "POP    EAX\n\t"
10830             "CMP    EAX,0x80000000\n\t"
10831             "JNE,s  fast\n\t"
10832             "FLD_D  $src\n\t"
10833             "CALL   d2i_wrapper\n"
10834       "fast:" %}
10835   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
10836   ins_pipe( pipe_slow );
10837 %}
10838 
10839 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10840 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
10841   predicate(UseSSE>=2);
10842   match(Set dst (ConvD2I src));
10843   effect( KILL tmp, KILL cr );
10844   format %{ "CVTTSD2SI $dst, $src\n\t"
10845             "CMP    $dst,0x80000000\n\t"
10846             "JNE,s  fast\n\t"
10847             "SUB    ESP, 8\n\t"
10848             "MOVSD  [ESP], $src\n\t"
10849             "FLD_D  [ESP]\n\t"
10850             "ADD    ESP, 8\n\t"
10851             "CALL   d2i_wrapper\n"
10852       "fast:" %}
10853   ins_encode %{
10854     Label fast;
10855     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
10856     __ cmpl($dst$$Register, 0x80000000);
10857     __ jccb(Assembler::notEqual, fast);
10858     __ subptr(rsp, 8);
10859     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10860     __ fld_d(Address(rsp, 0));
10861     __ addptr(rsp, 8);
10862     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
10863     __ bind(fast);
10864   %}
10865   ins_pipe( pipe_slow );
10866 %}
10867 
10868 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
10869   predicate(UseSSE<=1);
10870   match(Set dst (ConvD2L src));
10871   effect( KILL cr );
10872   format %{ "FLD    $src\t# Convert double to long\n\t"
10873             "FLDCW  trunc mode\n\t"
10874             "SUB    ESP,8\n\t"
10875             "FISTp  [ESP + #0]\n\t"
10876             "FLDCW  std/24-bit mode\n\t"
10877             "POP    EAX\n\t"
10878             "POP    EDX\n\t"
10879             "CMP    EDX,0x80000000\n\t"
10880             "JNE,s  fast\n\t"
10881             "TEST   EAX,EAX\n\t"
10882             "JNE,s  fast\n\t"
10883             "FLD    $src\n\t"
10884             "CALL   d2l_wrapper\n"
10885       "fast:" %}
10886   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
10887   ins_pipe( pipe_slow );
10888 %}
10889 
10890 // XMM lacks a float/double->long conversion, so use the old FPU stack.
10891 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
10892   predicate (UseSSE>=2);
10893   match(Set dst (ConvD2L src));
10894   effect( KILL cr );
10895   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
10896             "MOVSD  [ESP],$src\n\t"
10897             "FLD_D  [ESP]\n\t"
10898             "FLDCW  trunc mode\n\t"
10899             "FISTp  [ESP + #0]\n\t"
10900             "FLDCW  std/24-bit mode\n\t"
10901             "POP    EAX\n\t"
10902             "POP    EDX\n\t"
10903             "CMP    EDX,0x80000000\n\t"
10904             "JNE,s  fast\n\t"
10905             "TEST   EAX,EAX\n\t"
10906             "JNE,s  fast\n\t"
10907             "SUB    ESP,8\n\t"
10908             "MOVSD  [ESP],$src\n\t"
10909             "FLD_D  [ESP]\n\t"
10910             "ADD    ESP,8\n\t"
10911             "CALL   d2l_wrapper\n"
10912       "fast:" %}
10913   ins_encode %{
10914     Label fast;
10915     __ subptr(rsp, 8);
10916     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10917     __ fld_d(Address(rsp, 0));
10918     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
10919     __ fistp_d(Address(rsp, 0));
10920     // Restore the rounding mode, mask the exception
10921     if (Compile::current()->in_24_bit_fp_mode()) {
10922       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
10923     } else {
10924       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
10925     }
10926     // Load the converted long, adjust CPU stack
10927     __ pop(rax);
10928     __ pop(rdx);
10929     __ cmpl(rdx, 0x80000000);
10930     __ jccb(Assembler::notEqual, fast);
10931     __ testl(rax, rax);
10932     __ jccb(Assembler::notEqual, fast);
10933     __ subptr(rsp, 8);
10934     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10935     __ fld_d(Address(rsp, 0));
10936     __ addptr(rsp, 8);
10937     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
10938     __ bind(fast);
10939   %}
10940   ins_pipe( pipe_slow );
10941 %}
10942 
10943 // Convert a double to an int.  Java semantics require we do complex
10944 // manglations in the corner cases.  So we set the rounding mode to
10945 // 'zero', store the darned double down as an int, and reset the
10946 // rounding mode to 'nearest'.  The hardware stores a flag value down
10947 // if we would overflow or converted a NAN; we check for this and
10948 // and go the slow path if needed.
10949 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
10950   predicate(UseSSE==0);
10951   match(Set dst (ConvF2I src));
10952   effect( KILL tmp, KILL cr );
10953   format %{ "FLD    $src\t# Convert float to int \n\t"
10954             "FLDCW  trunc mode\n\t"
10955             "SUB    ESP,4\n\t"
10956             "FISTp  [ESP + #0]\n\t"
10957             "FLDCW  std/24-bit mode\n\t"
10958             "POP    EAX\n\t"
10959             "CMP    EAX,0x80000000\n\t"
10960             "JNE,s  fast\n\t"
10961             "FLD    $src\n\t"
10962             "CALL   d2i_wrapper\n"
10963       "fast:" %}
10964   // DPR2I_encoding works for FPR2I
10965   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
10966   ins_pipe( pipe_slow );
10967 %}
10968 
10969 // Convert a float in xmm to an int reg.
10970 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
10971   predicate(UseSSE>=1);
10972   match(Set dst (ConvF2I src));
10973   effect( KILL tmp, KILL cr );
10974   format %{ "CVTTSS2SI $dst, $src\n\t"
10975             "CMP    $dst,0x80000000\n\t"
10976             "JNE,s  fast\n\t"
10977             "SUB    ESP, 4\n\t"
10978             "MOVSS  [ESP], $src\n\t"
10979             "FLD    [ESP]\n\t"
10980             "ADD    ESP, 4\n\t"
10981             "CALL   d2i_wrapper\n"
10982       "fast:" %}
10983   ins_encode %{
10984     Label fast;
10985     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
10986     __ cmpl($dst$$Register, 0x80000000);
10987     __ jccb(Assembler::notEqual, fast);
10988     __ subptr(rsp, 4);
10989     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10990     __ fld_s(Address(rsp, 0));
10991     __ addptr(rsp, 4);
10992     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
10993     __ bind(fast);
10994   %}
10995   ins_pipe( pipe_slow );
10996 %}
10997 
10998 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
10999   predicate(UseSSE==0);
11000   match(Set dst (ConvF2L src));
11001   effect( KILL cr );
11002   format %{ "FLD    $src\t# Convert float to long\n\t"
11003             "FLDCW  trunc mode\n\t"
11004             "SUB    ESP,8\n\t"
11005             "FISTp  [ESP + #0]\n\t"
11006             "FLDCW  std/24-bit mode\n\t"
11007             "POP    EAX\n\t"
11008             "POP    EDX\n\t"
11009             "CMP    EDX,0x80000000\n\t"
11010             "JNE,s  fast\n\t"
11011             "TEST   EAX,EAX\n\t"
11012             "JNE,s  fast\n\t"
11013             "FLD    $src\n\t"
11014             "CALL   d2l_wrapper\n"
11015       "fast:" %}
11016   // DPR2L_encoding works for FPR2L
11017   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
11018   ins_pipe( pipe_slow );
11019 %}
11020 
11021 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11022 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11023   predicate (UseSSE>=1);
11024   match(Set dst (ConvF2L src));
11025   effect( KILL cr );
11026   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
11027             "MOVSS  [ESP],$src\n\t"
11028             "FLD_S  [ESP]\n\t"
11029             "FLDCW  trunc mode\n\t"
11030             "FISTp  [ESP + #0]\n\t"
11031             "FLDCW  std/24-bit mode\n\t"
11032             "POP    EAX\n\t"
11033             "POP    EDX\n\t"
11034             "CMP    EDX,0x80000000\n\t"
11035             "JNE,s  fast\n\t"
11036             "TEST   EAX,EAX\n\t"
11037             "JNE,s  fast\n\t"
11038             "SUB    ESP,4\t# Convert float to long\n\t"
11039             "MOVSS  [ESP],$src\n\t"
11040             "FLD_S  [ESP]\n\t"
11041             "ADD    ESP,4\n\t"
11042             "CALL   d2l_wrapper\n"
11043       "fast:" %}
11044   ins_encode %{
11045     Label fast;
11046     __ subptr(rsp, 8);
11047     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11048     __ fld_s(Address(rsp, 0));
11049     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
11050     __ fistp_d(Address(rsp, 0));
11051     // Restore the rounding mode, mask the exception
11052     if (Compile::current()->in_24_bit_fp_mode()) {
11053       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
11054     } else {
11055       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
11056     }
11057     // Load the converted long, adjust CPU stack
11058     __ pop(rax);
11059     __ pop(rdx);
11060     __ cmpl(rdx, 0x80000000);
11061     __ jccb(Assembler::notEqual, fast);
11062     __ testl(rax, rax);
11063     __ jccb(Assembler::notEqual, fast);
11064     __ subptr(rsp, 4);
11065     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11066     __ fld_s(Address(rsp, 0));
11067     __ addptr(rsp, 4);
11068     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
11069     __ bind(fast);
11070   %}
11071   ins_pipe( pipe_slow );
11072 %}
11073 
11074 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
11075   predicate( UseSSE<=1 );
11076   match(Set dst (ConvI2D src));
11077   format %{ "FILD   $src\n\t"
11078             "FSTP   $dst" %}
11079   opcode(0xDB, 0x0);  /* DB /0 */
11080   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
11081   ins_pipe( fpu_reg_mem );
11082 %}
11083 
11084 instruct convI2D_reg(regD dst, rRegI src) %{
11085   predicate( UseSSE>=2 && !UseXmmI2D );
11086   match(Set dst (ConvI2D src));
11087   format %{ "CVTSI2SD $dst,$src" %}
11088   ins_encode %{
11089     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
11090   %}
11091   ins_pipe( pipe_slow );
11092 %}
11093 
11094 instruct convI2D_mem(regD dst, memory mem) %{
11095   predicate( UseSSE>=2 );
11096   match(Set dst (ConvI2D (LoadI mem)));
11097   format %{ "CVTSI2SD $dst,$mem" %}
11098   ins_encode %{
11099     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
11100   %}
11101   ins_pipe( pipe_slow );
11102 %}
11103 
11104 instruct convXI2D_reg(regD dst, rRegI src)
11105 %{
11106   predicate( UseSSE>=2 && UseXmmI2D );
11107   match(Set dst (ConvI2D src));
11108 
11109   format %{ "MOVD  $dst,$src\n\t"
11110             "CVTDQ2PD $dst,$dst\t# i2d" %}
11111   ins_encode %{
11112     __ movdl($dst$$XMMRegister, $src$$Register);
11113     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11114   %}
11115   ins_pipe(pipe_slow); // XXX
11116 %}
11117 
11118 instruct convI2DPR_mem(regDPR dst, memory mem) %{
11119   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11120   match(Set dst (ConvI2D (LoadI mem)));
11121   format %{ "FILD   $mem\n\t"
11122             "FSTP   $dst" %}
11123   opcode(0xDB);      /* DB /0 */
11124   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11125               Pop_Reg_DPR(dst));
11126   ins_pipe( fpu_reg_mem );
11127 %}
11128 
11129 // Convert a byte to a float; no rounding step needed.
11130 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
11131   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11132   match(Set dst (ConvI2F src));
11133   format %{ "FILD   $src\n\t"
11134             "FSTP   $dst" %}
11135 
11136   opcode(0xDB, 0x0);  /* DB /0 */
11137   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
11138   ins_pipe( fpu_reg_mem );
11139 %}
11140 
11141 // In 24-bit mode, force exponent rounding by storing back out
11142 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
11143   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11144   match(Set dst (ConvI2F src));
11145   ins_cost(200);
11146   format %{ "FILD   $src\n\t"
11147             "FSTP_S $dst" %}
11148   opcode(0xDB, 0x0);  /* DB /0 */
11149   ins_encode( Push_Mem_I(src),
11150               Pop_Mem_FPR(dst));
11151   ins_pipe( fpu_mem_mem );
11152 %}
11153 
11154 // In 24-bit mode, force exponent rounding by storing back out
11155 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
11156   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11157   match(Set dst (ConvI2F (LoadI mem)));
11158   ins_cost(200);
11159   format %{ "FILD   $mem\n\t"
11160             "FSTP_S $dst" %}
11161   opcode(0xDB);  /* DB /0 */
11162   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11163               Pop_Mem_FPR(dst));
11164   ins_pipe( fpu_mem_mem );
11165 %}
11166 
11167 // This instruction does not round to 24-bits
11168 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
11169   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11170   match(Set dst (ConvI2F src));
11171   format %{ "FILD   $src\n\t"
11172             "FSTP   $dst" %}
11173   opcode(0xDB, 0x0);  /* DB /0 */
11174   ins_encode( Push_Mem_I(src),
11175               Pop_Reg_FPR(dst));
11176   ins_pipe( fpu_reg_mem );
11177 %}
11178 
11179 // This instruction does not round to 24-bits
11180 instruct convI2FPR_mem(regFPR dst, memory mem) %{
11181   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11182   match(Set dst (ConvI2F (LoadI mem)));
11183   format %{ "FILD   $mem\n\t"
11184             "FSTP   $dst" %}
11185   opcode(0xDB);      /* DB /0 */
11186   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11187               Pop_Reg_FPR(dst));
11188   ins_pipe( fpu_reg_mem );
11189 %}
11190 
11191 // Convert an int to a float in xmm; no rounding step needed.
11192 instruct convI2F_reg(regF dst, rRegI src) %{
11193   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11194   match(Set dst (ConvI2F src));
11195   format %{ "CVTSI2SS $dst, $src" %}
11196   ins_encode %{
11197     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
11198   %}
11199   ins_pipe( pipe_slow );
11200 %}
11201 
11202  instruct convXI2F_reg(regF dst, rRegI src)
11203 %{
11204   predicate( UseSSE>=2 && UseXmmI2F );
11205   match(Set dst (ConvI2F src));
11206 
11207   format %{ "MOVD  $dst,$src\n\t"
11208             "CVTDQ2PS $dst,$dst\t# i2f" %}
11209   ins_encode %{
11210     __ movdl($dst$$XMMRegister, $src$$Register);
11211     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11212   %}
11213   ins_pipe(pipe_slow); // XXX
11214 %}
11215 
11216 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
11217   match(Set dst (ConvI2L src));
11218   effect(KILL cr);
11219   ins_cost(375);
11220   format %{ "MOV    $dst.lo,$src\n\t"
11221             "MOV    $dst.hi,$src\n\t"
11222             "SAR    $dst.hi,31" %}
11223   ins_encode(convert_int_long(dst,src));
11224   ins_pipe( ialu_reg_reg_long );
11225 %}
11226 
11227 // Zero-extend convert int to long
11228 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
11229   match(Set dst (AndL (ConvI2L src) mask) );
11230   effect( KILL flags );
11231   ins_cost(250);
11232   format %{ "MOV    $dst.lo,$src\n\t"
11233             "XOR    $dst.hi,$dst.hi" %}
11234   opcode(0x33); // XOR
11235   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11236   ins_pipe( ialu_reg_reg_long );
11237 %}
11238 
11239 // Zero-extend long
11240 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11241   match(Set dst (AndL src mask) );
11242   effect( KILL flags );
11243   ins_cost(250);
11244   format %{ "MOV    $dst.lo,$src.lo\n\t"
11245             "XOR    $dst.hi,$dst.hi\n\t" %}
11246   opcode(0x33); // XOR
11247   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11248   ins_pipe( ialu_reg_reg_long );
11249 %}
11250 
11251 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
11252   predicate (UseSSE<=1);
11253   match(Set dst (ConvL2D src));
11254   effect( KILL cr );
11255   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11256             "PUSH   $src.lo\n\t"
11257             "FILD   ST,[ESP + #0]\n\t"
11258             "ADD    ESP,8\n\t"
11259             "FSTP_D $dst\t# D-round" %}
11260   opcode(0xDF, 0x5);  /* DF /5 */
11261   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
11262   ins_pipe( pipe_slow );
11263 %}
11264 
11265 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
11266   predicate (UseSSE>=2);
11267   match(Set dst (ConvL2D src));
11268   effect( KILL cr );
11269   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11270             "PUSH   $src.lo\n\t"
11271             "FILD_D [ESP]\n\t"
11272             "FSTP_D [ESP]\n\t"
11273             "MOVSD  $dst,[ESP]\n\t"
11274             "ADD    ESP,8" %}
11275   opcode(0xDF, 0x5);  /* DF /5 */
11276   ins_encode(convert_long_double2(src), Push_ResultD(dst));
11277   ins_pipe( pipe_slow );
11278 %}
11279 
11280 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
11281   predicate (UseSSE>=1);
11282   match(Set dst (ConvL2F src));
11283   effect( KILL cr );
11284   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11285             "PUSH   $src.lo\n\t"
11286             "FILD_D [ESP]\n\t"
11287             "FSTP_S [ESP]\n\t"
11288             "MOVSS  $dst,[ESP]\n\t"
11289             "ADD    ESP,8" %}
11290   opcode(0xDF, 0x5);  /* DF /5 */
11291   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
11292   ins_pipe( pipe_slow );
11293 %}
11294 
11295 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
11296   match(Set dst (ConvL2F src));
11297   effect( KILL cr );
11298   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11299             "PUSH   $src.lo\n\t"
11300             "FILD   ST,[ESP + #0]\n\t"
11301             "ADD    ESP,8\n\t"
11302             "FSTP_S $dst\t# F-round" %}
11303   opcode(0xDF, 0x5);  /* DF /5 */
11304   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
11305   ins_pipe( pipe_slow );
11306 %}
11307 
11308 instruct convL2I_reg( rRegI dst, eRegL src ) %{
11309   match(Set dst (ConvL2I src));
11310   effect( DEF dst, USE src );
11311   format %{ "MOV    $dst,$src.lo" %}
11312   ins_encode(enc_CopyL_Lo(dst,src));
11313   ins_pipe( ialu_reg_reg );
11314 %}
11315 
11316 
11317 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
11318   match(Set dst (MoveF2I src));
11319   effect( DEF dst, USE src );
11320   ins_cost(100);
11321   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
11322   ins_encode %{
11323     __ movl($dst$$Register, Address(rsp, $src$$disp));
11324   %}
11325   ins_pipe( ialu_reg_mem );
11326 %}
11327 
11328 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
11329   predicate(UseSSE==0);
11330   match(Set dst (MoveF2I src));
11331   effect( DEF dst, USE src );
11332 
11333   ins_cost(125);
11334   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
11335   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
11336   ins_pipe( fpu_mem_reg );
11337 %}
11338 
11339 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
11340   predicate(UseSSE>=1);
11341   match(Set dst (MoveF2I src));
11342   effect( DEF dst, USE src );
11343 
11344   ins_cost(95);
11345   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
11346   ins_encode %{
11347     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
11348   %}
11349   ins_pipe( pipe_slow );
11350 %}
11351 
11352 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
11353   predicate(UseSSE>=2);
11354   match(Set dst (MoveF2I src));
11355   effect( DEF dst, USE src );
11356   ins_cost(85);
11357   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
11358   ins_encode %{
11359     __ movdl($dst$$Register, $src$$XMMRegister);
11360   %}
11361   ins_pipe( pipe_slow );
11362 %}
11363 
11364 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
11365   match(Set dst (MoveI2F src));
11366   effect( DEF dst, USE src );
11367 
11368   ins_cost(100);
11369   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
11370   ins_encode %{
11371     __ movl(Address(rsp, $dst$$disp), $src$$Register);
11372   %}
11373   ins_pipe( ialu_mem_reg );
11374 %}
11375 
11376 
11377 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
11378   predicate(UseSSE==0);
11379   match(Set dst (MoveI2F src));
11380   effect(DEF dst, USE src);
11381 
11382   ins_cost(125);
11383   format %{ "FLD_S  $src\n\t"
11384             "FSTP   $dst\t# MoveI2F_stack_reg" %}
11385   opcode(0xD9);               /* D9 /0, FLD m32real */
11386   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11387               Pop_Reg_FPR(dst) );
11388   ins_pipe( fpu_reg_mem );
11389 %}
11390 
11391 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
11392   predicate(UseSSE>=1);
11393   match(Set dst (MoveI2F src));
11394   effect( DEF dst, USE src );
11395 
11396   ins_cost(95);
11397   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
11398   ins_encode %{
11399     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
11400   %}
11401   ins_pipe( pipe_slow );
11402 %}
11403 
11404 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
11405   predicate(UseSSE>=2);
11406   match(Set dst (MoveI2F src));
11407   effect( DEF dst, USE src );
11408 
11409   ins_cost(85);
11410   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
11411   ins_encode %{
11412     __ movdl($dst$$XMMRegister, $src$$Register);
11413   %}
11414   ins_pipe( pipe_slow );
11415 %}
11416 
11417 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
11418   match(Set dst (MoveD2L src));
11419   effect(DEF dst, USE src);
11420 
11421   ins_cost(250);
11422   format %{ "MOV    $dst.lo,$src\n\t"
11423             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
11424   opcode(0x8B, 0x8B);
11425   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
11426   ins_pipe( ialu_mem_long_reg );
11427 %}
11428 
11429 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
11430   predicate(UseSSE<=1);
11431   match(Set dst (MoveD2L src));
11432   effect(DEF dst, USE src);
11433 
11434   ins_cost(125);
11435   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
11436   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
11437   ins_pipe( fpu_mem_reg );
11438 %}
11439 
11440 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
11441   predicate(UseSSE>=2);
11442   match(Set dst (MoveD2L src));
11443   effect(DEF dst, USE src);
11444   ins_cost(95);
11445   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
11446   ins_encode %{
11447     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
11448   %}
11449   ins_pipe( pipe_slow );
11450 %}
11451 
11452 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
11453   predicate(UseSSE>=2);
11454   match(Set dst (MoveD2L src));
11455   effect(DEF dst, USE src, TEMP tmp);
11456   ins_cost(85);
11457   format %{ "MOVD   $dst.lo,$src\n\t"
11458             "PSHUFLW $tmp,$src,0x4E\n\t"
11459             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
11460   ins_encode %{
11461     __ movdl($dst$$Register, $src$$XMMRegister);
11462     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
11463     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
11464   %}
11465   ins_pipe( pipe_slow );
11466 %}
11467 
11468 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
11469   match(Set dst (MoveL2D src));
11470   effect(DEF dst, USE src);
11471 
11472   ins_cost(200);
11473   format %{ "MOV    $dst,$src.lo\n\t"
11474             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
11475   opcode(0x89, 0x89);
11476   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
11477   ins_pipe( ialu_mem_long_reg );
11478 %}
11479 
11480 
11481 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
11482   predicate(UseSSE<=1);
11483   match(Set dst (MoveL2D src));
11484   effect(DEF dst, USE src);
11485   ins_cost(125);
11486 
11487   format %{ "FLD_D  $src\n\t"
11488             "FSTP   $dst\t# MoveL2D_stack_reg" %}
11489   opcode(0xDD);               /* DD /0, FLD m64real */
11490   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11491               Pop_Reg_DPR(dst) );
11492   ins_pipe( fpu_reg_mem );
11493 %}
11494 
11495 
11496 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
11497   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
11498   match(Set dst (MoveL2D src));
11499   effect(DEF dst, USE src);
11500 
11501   ins_cost(95);
11502   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
11503   ins_encode %{
11504     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11505   %}
11506   ins_pipe( pipe_slow );
11507 %}
11508 
11509 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
11510   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
11511   match(Set dst (MoveL2D src));
11512   effect(DEF dst, USE src);
11513 
11514   ins_cost(95);
11515   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
11516   ins_encode %{
11517     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11518   %}
11519   ins_pipe( pipe_slow );
11520 %}
11521 
11522 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
11523   predicate(UseSSE>=2);
11524   match(Set dst (MoveL2D src));
11525   effect(TEMP dst, USE src, TEMP tmp);
11526   ins_cost(85);
11527   format %{ "MOVD   $dst,$src.lo\n\t"
11528             "MOVD   $tmp,$src.hi\n\t"
11529             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
11530   ins_encode %{
11531     __ movdl($dst$$XMMRegister, $src$$Register);
11532     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
11533     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
11534   %}
11535   ins_pipe( pipe_slow );
11536 %}
11537 
11538 
11539 // =======================================================================
11540 // fast clearing of an array
11541 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11542   match(Set dummy (ClearArray cnt base));
11543   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11544   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
11545             "XOR    EAX,EAX\n\t"
11546             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
11547   opcode(0,0x4);
11548   ins_encode( Opcode(0xD1), RegOpc(ECX),
11549               OpcRegReg(0x33,EAX,EAX),
11550               Opcode(0xF3), Opcode(0xAB) );
11551   ins_pipe( pipe_slow );
11552 %}
11553 
11554 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
11555                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
11556   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11557   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11558 
11559   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11560   ins_encode %{
11561     __ string_compare($str1$$Register, $str2$$Register,
11562                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11563                       $tmp1$$XMMRegister);
11564   %}
11565   ins_pipe( pipe_slow );
11566 %}
11567 
11568 // fast string equals
11569 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
11570                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
11571   match(Set result (StrEquals (Binary str1 str2) cnt));
11572   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11573 
11574   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11575   ins_encode %{
11576     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
11577                           $cnt$$Register, $result$$Register, $tmp3$$Register,
11578                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11579   %}
11580   ins_pipe( pipe_slow );
11581 %}
11582 
11583 // fast search of substring with known size.
11584 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
11585                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
11586   predicate(UseSSE42Intrinsics);
11587   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11588   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11589 
11590   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11591   ins_encode %{
11592     int icnt2 = (int)$int_cnt2$$constant;
11593     if (icnt2 >= 8) {
11594       // IndexOf for constant substrings with size >= 8 elements
11595       // which don't need to be loaded through stack.
11596       __ string_indexofC8($str1$$Register, $str2$$Register,
11597                           $cnt1$$Register, $cnt2$$Register,
11598                           icnt2, $result$$Register,
11599                           $vec$$XMMRegister, $tmp$$Register);
11600     } else {
11601       // Small strings are loaded through stack if they cross page boundary.
11602       __ string_indexof($str1$$Register, $str2$$Register,
11603                         $cnt1$$Register, $cnt2$$Register,
11604                         icnt2, $result$$Register,
11605                         $vec$$XMMRegister, $tmp$$Register);
11606     }
11607   %}
11608   ins_pipe( pipe_slow );
11609 %}
11610 
11611 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
11612                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
11613   predicate(UseSSE42Intrinsics);
11614   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11615   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11616 
11617   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11618   ins_encode %{
11619     __ string_indexof($str1$$Register, $str2$$Register,
11620                       $cnt1$$Register, $cnt2$$Register,
11621                       (-1), $result$$Register,
11622                       $vec$$XMMRegister, $tmp$$Register);
11623   %}
11624   ins_pipe( pipe_slow );
11625 %}
11626 
11627 // fast array equals
11628 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
11629                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
11630 %{
11631   match(Set result (AryEq ary1 ary2));
11632   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11633   //ins_cost(300);
11634 
11635   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11636   ins_encode %{
11637     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
11638                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
11639                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11640   %}
11641   ins_pipe( pipe_slow );
11642 %}
11643 
11644 //----------Control Flow Instructions------------------------------------------
11645 // Signed compare Instructions
11646 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
11647   match(Set cr (CmpI op1 op2));
11648   effect( DEF cr, USE op1, USE op2 );
11649   format %{ "CMP    $op1,$op2" %}
11650   opcode(0x3B);  /* Opcode 3B /r */
11651   ins_encode( OpcP, RegReg( op1, op2) );
11652   ins_pipe( ialu_cr_reg_reg );
11653 %}
11654 
11655 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
11656   match(Set cr (CmpI op1 op2));
11657   effect( DEF cr, USE op1 );
11658   format %{ "CMP    $op1,$op2" %}
11659   opcode(0x81,0x07);  /* Opcode 81 /7 */
11660   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
11661   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11662   ins_pipe( ialu_cr_reg_imm );
11663 %}
11664 
11665 // Cisc-spilled version of cmpI_eReg
11666 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
11667   match(Set cr (CmpI op1 (LoadI op2)));
11668 
11669   format %{ "CMP    $op1,$op2" %}
11670   ins_cost(500);
11671   opcode(0x3B);  /* Opcode 3B /r */
11672   ins_encode( OpcP, RegMem( op1, op2) );
11673   ins_pipe( ialu_cr_reg_mem );
11674 %}
11675 
11676 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
11677   match(Set cr (CmpI src zero));
11678   effect( DEF cr, USE src );
11679 
11680   format %{ "TEST   $src,$src" %}
11681   opcode(0x85);
11682   ins_encode( OpcP, RegReg( src, src ) );
11683   ins_pipe( ialu_cr_reg_imm );
11684 %}
11685 
11686 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
11687   match(Set cr (CmpI (AndI src con) zero));
11688 
11689   format %{ "TEST   $src,$con" %}
11690   opcode(0xF7,0x00);
11691   ins_encode( OpcP, RegOpc(src), Con32(con) );
11692   ins_pipe( ialu_cr_reg_imm );
11693 %}
11694 
11695 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
11696   match(Set cr (CmpI (AndI src mem) zero));
11697 
11698   format %{ "TEST   $src,$mem" %}
11699   opcode(0x85);
11700   ins_encode( OpcP, RegMem( src, mem ) );
11701   ins_pipe( ialu_cr_reg_mem );
11702 %}
11703 
11704 // Unsigned compare Instructions; really, same as signed except they
11705 // produce an eFlagsRegU instead of eFlagsReg.
11706 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
11707   match(Set cr (CmpU op1 op2));
11708 
11709   format %{ "CMPu   $op1,$op2" %}
11710   opcode(0x3B);  /* Opcode 3B /r */
11711   ins_encode( OpcP, RegReg( op1, op2) );
11712   ins_pipe( ialu_cr_reg_reg );
11713 %}
11714 
11715 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
11716   match(Set cr (CmpU op1 op2));
11717 
11718   format %{ "CMPu   $op1,$op2" %}
11719   opcode(0x81,0x07);  /* Opcode 81 /7 */
11720   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11721   ins_pipe( ialu_cr_reg_imm );
11722 %}
11723 
11724 // // Cisc-spilled version of cmpU_eReg
11725 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
11726   match(Set cr (CmpU op1 (LoadI op2)));
11727 
11728   format %{ "CMPu   $op1,$op2" %}
11729   ins_cost(500);
11730   opcode(0x3B);  /* Opcode 3B /r */
11731   ins_encode( OpcP, RegMem( op1, op2) );
11732   ins_pipe( ialu_cr_reg_mem );
11733 %}
11734 
11735 // // Cisc-spilled version of cmpU_eReg
11736 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
11737 //  match(Set cr (CmpU (LoadI op1) op2));
11738 //
11739 //  format %{ "CMPu   $op1,$op2" %}
11740 //  ins_cost(500);
11741 //  opcode(0x39);  /* Opcode 39 /r */
11742 //  ins_encode( OpcP, RegMem( op1, op2) );
11743 //%}
11744 
11745 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
11746   match(Set cr (CmpU src zero));
11747 
11748   format %{ "TESTu  $src,$src" %}
11749   opcode(0x85);
11750   ins_encode( OpcP, RegReg( src, src ) );
11751   ins_pipe( ialu_cr_reg_imm );
11752 %}
11753 
11754 // Unsigned pointer compare Instructions
11755 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
11756   match(Set cr (CmpP op1 op2));
11757 
11758   format %{ "CMPu   $op1,$op2" %}
11759   opcode(0x3B);  /* Opcode 3B /r */
11760   ins_encode( OpcP, RegReg( op1, op2) );
11761   ins_pipe( ialu_cr_reg_reg );
11762 %}
11763 
11764 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
11765   match(Set cr (CmpP op1 op2));
11766 
11767   format %{ "CMPu   $op1,$op2" %}
11768   opcode(0x81,0x07);  /* Opcode 81 /7 */
11769   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11770   ins_pipe( ialu_cr_reg_imm );
11771 %}
11772 
11773 // // Cisc-spilled version of cmpP_eReg
11774 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
11775   match(Set cr (CmpP op1 (LoadP op2)));
11776 
11777   format %{ "CMPu   $op1,$op2" %}
11778   ins_cost(500);
11779   opcode(0x3B);  /* Opcode 3B /r */
11780   ins_encode( OpcP, RegMem( op1, op2) );
11781   ins_pipe( ialu_cr_reg_mem );
11782 %}
11783 
11784 // // Cisc-spilled version of cmpP_eReg
11785 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
11786 //  match(Set cr (CmpP (LoadP op1) op2));
11787 //
11788 //  format %{ "CMPu   $op1,$op2" %}
11789 //  ins_cost(500);
11790 //  opcode(0x39);  /* Opcode 39 /r */
11791 //  ins_encode( OpcP, RegMem( op1, op2) );
11792 //%}
11793 
11794 // Compare raw pointer (used in out-of-heap check).
11795 // Only works because non-oop pointers must be raw pointers
11796 // and raw pointers have no anti-dependencies.
11797 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
11798   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
11799   match(Set cr (CmpP op1 (LoadP op2)));
11800 
11801   format %{ "CMPu   $op1,$op2" %}
11802   opcode(0x3B);  /* Opcode 3B /r */
11803   ins_encode( OpcP, RegMem( op1, op2) );
11804   ins_pipe( ialu_cr_reg_mem );
11805 %}
11806 
11807 //
11808 // This will generate a signed flags result. This should be ok
11809 // since any compare to a zero should be eq/neq.
11810 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
11811   match(Set cr (CmpP src zero));
11812 
11813   format %{ "TEST   $src,$src" %}
11814   opcode(0x85);
11815   ins_encode( OpcP, RegReg( src, src ) );
11816   ins_pipe( ialu_cr_reg_imm );
11817 %}
11818 
11819 // Cisc-spilled version of testP_reg
11820 // This will generate a signed flags result. This should be ok
11821 // since any compare to a zero should be eq/neq.
11822 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
11823   match(Set cr (CmpP (LoadP op) zero));
11824 
11825   format %{ "TEST   $op,0xFFFFFFFF" %}
11826   ins_cost(500);
11827   opcode(0xF7);               /* Opcode F7 /0 */
11828   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
11829   ins_pipe( ialu_cr_reg_imm );
11830 %}
11831 
11832 // Yanked all unsigned pointer compare operations.
11833 // Pointer compares are done with CmpP which is already unsigned.
11834 
11835 //----------Max and Min--------------------------------------------------------
11836 // Min Instructions
11837 ////
11838 //   *** Min and Max using the conditional move are slower than the
11839 //   *** branch version on a Pentium III.
11840 // // Conditional move for min
11841 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
11842 //  effect( USE_DEF op2, USE op1, USE cr );
11843 //  format %{ "CMOVlt $op2,$op1\t! min" %}
11844 //  opcode(0x4C,0x0F);
11845 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11846 //  ins_pipe( pipe_cmov_reg );
11847 //%}
11848 //
11849 //// Min Register with Register (P6 version)
11850 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
11851 //  predicate(VM_Version::supports_cmov() );
11852 //  match(Set op2 (MinI op1 op2));
11853 //  ins_cost(200);
11854 //  expand %{
11855 //    eFlagsReg cr;
11856 //    compI_eReg(cr,op1,op2);
11857 //    cmovI_reg_lt(op2,op1,cr);
11858 //  %}
11859 //%}
11860 
11861 // Min Register with Register (generic version)
11862 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
11863   match(Set dst (MinI dst src));
11864   effect(KILL flags);
11865   ins_cost(300);
11866 
11867   format %{ "MIN    $dst,$src" %}
11868   opcode(0xCC);
11869   ins_encode( min_enc(dst,src) );
11870   ins_pipe( pipe_slow );
11871 %}
11872 
11873 // Max Register with Register
11874 //   *** Min and Max using the conditional move are slower than the
11875 //   *** branch version on a Pentium III.
11876 // // Conditional move for max
11877 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
11878 //  effect( USE_DEF op2, USE op1, USE cr );
11879 //  format %{ "CMOVgt $op2,$op1\t! max" %}
11880 //  opcode(0x4F,0x0F);
11881 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11882 //  ins_pipe( pipe_cmov_reg );
11883 //%}
11884 //
11885 // // Max Register with Register (P6 version)
11886 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
11887 //  predicate(VM_Version::supports_cmov() );
11888 //  match(Set op2 (MaxI op1 op2));
11889 //  ins_cost(200);
11890 //  expand %{
11891 //    eFlagsReg cr;
11892 //    compI_eReg(cr,op1,op2);
11893 //    cmovI_reg_gt(op2,op1,cr);
11894 //  %}
11895 //%}
11896 
11897 // Max Register with Register (generic version)
11898 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
11899   match(Set dst (MaxI dst src));
11900   effect(KILL flags);
11901   ins_cost(300);
11902 
11903   format %{ "MAX    $dst,$src" %}
11904   opcode(0xCC);
11905   ins_encode( max_enc(dst,src) );
11906   ins_pipe( pipe_slow );
11907 %}
11908 
11909 // ============================================================================
11910 // Counted Loop limit node which represents exact final iterator value.
11911 // Note: the resulting value should fit into integer range since
11912 // counted loops have limit check on overflow.
11913 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
11914   match(Set limit (LoopLimit (Binary init limit) stride));
11915   effect(TEMP limit_hi, TEMP tmp, KILL flags);
11916   ins_cost(300);
11917 
11918   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
11919   ins_encode %{
11920     int strd = (int)$stride$$constant;
11921     assert(strd != 1 && strd != -1, "sanity");
11922     int m1 = (strd > 0) ? 1 : -1;
11923     // Convert limit to long (EAX:EDX)
11924     __ cdql();
11925     // Convert init to long (init:tmp)
11926     __ movl($tmp$$Register, $init$$Register);
11927     __ sarl($tmp$$Register, 31);
11928     // $limit - $init
11929     __ subl($limit$$Register, $init$$Register);
11930     __ sbbl($limit_hi$$Register, $tmp$$Register);
11931     // + ($stride - 1)
11932     if (strd > 0) {
11933       __ addl($limit$$Register, (strd - 1));
11934       __ adcl($limit_hi$$Register, 0);
11935       __ movl($tmp$$Register, strd);
11936     } else {
11937       __ addl($limit$$Register, (strd + 1));
11938       __ adcl($limit_hi$$Register, -1);
11939       __ lneg($limit_hi$$Register, $limit$$Register);
11940       __ movl($tmp$$Register, -strd);
11941     }
11942     // signed devision: (EAX:EDX) / pos_stride
11943     __ idivl($tmp$$Register);
11944     if (strd < 0) {
11945       // restore sign
11946       __ negl($tmp$$Register);
11947     }
11948     // (EAX) * stride
11949     __ mull($tmp$$Register);
11950     // + init (ignore upper bits)
11951     __ addl($limit$$Register, $init$$Register);
11952   %}
11953   ins_pipe( pipe_slow );
11954 %}
11955 
11956 // ============================================================================
11957 // Branch Instructions
11958 // Jump Table
11959 instruct jumpXtnd(rRegI switch_val) %{
11960   match(Jump switch_val);
11961   ins_cost(350);
11962   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
11963   ins_encode %{
11964     // Jump to Address(table_base + switch_reg)
11965     Address index(noreg, $switch_val$$Register, Address::times_1);
11966     __ jump(ArrayAddress($constantaddress, index));
11967   %}
11968   ins_pipe(pipe_jmp);
11969 %}
11970 
11971 // Jump Direct - Label defines a relative address from JMP+1
11972 instruct jmpDir(label labl) %{
11973   match(Goto);
11974   effect(USE labl);
11975 
11976   ins_cost(300);
11977   format %{ "JMP    $labl" %}
11978   size(5);
11979   ins_encode %{
11980     Label* L = $labl$$label;
11981     __ jmp(*L, false); // Always long jump
11982   %}
11983   ins_pipe( pipe_jmp );
11984 %}
11985 
11986 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11987 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
11988   match(If cop cr);
11989   effect(USE labl);
11990 
11991   ins_cost(300);
11992   format %{ "J$cop    $labl" %}
11993   size(6);
11994   ins_encode %{
11995     Label* L = $labl$$label;
11996     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11997   %}
11998   ins_pipe( pipe_jcc );
11999 %}
12000 
12001 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12002 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
12003   match(CountedLoopEnd cop cr);
12004   effect(USE labl);
12005 
12006   ins_cost(300);
12007   format %{ "J$cop    $labl\t# Loop end" %}
12008   size(6);
12009   ins_encode %{
12010     Label* L = $labl$$label;
12011     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12012   %}
12013   ins_pipe( pipe_jcc );
12014 %}
12015 
12016 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12017 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12018   match(CountedLoopEnd cop cmp);
12019   effect(USE labl);
12020 
12021   ins_cost(300);
12022   format %{ "J$cop,u  $labl\t# Loop end" %}
12023   size(6);
12024   ins_encode %{
12025     Label* L = $labl$$label;
12026     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12027   %}
12028   ins_pipe( pipe_jcc );
12029 %}
12030 
12031 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12032   match(CountedLoopEnd cop cmp);
12033   effect(USE labl);
12034 
12035   ins_cost(200);
12036   format %{ "J$cop,u  $labl\t# Loop end" %}
12037   size(6);
12038   ins_encode %{
12039     Label* L = $labl$$label;
12040     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12041   %}
12042   ins_pipe( pipe_jcc );
12043 %}
12044 
12045 // Jump Direct Conditional - using unsigned comparison
12046 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12047   match(If cop cmp);
12048   effect(USE labl);
12049 
12050   ins_cost(300);
12051   format %{ "J$cop,u  $labl" %}
12052   size(6);
12053   ins_encode %{
12054     Label* L = $labl$$label;
12055     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12056   %}
12057   ins_pipe(pipe_jcc);
12058 %}
12059 
12060 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12061   match(If cop cmp);
12062   effect(USE labl);
12063 
12064   ins_cost(200);
12065   format %{ "J$cop,u  $labl" %}
12066   size(6);
12067   ins_encode %{
12068     Label* L = $labl$$label;
12069     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12070   %}
12071   ins_pipe(pipe_jcc);
12072 %}
12073 
12074 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12075   match(If cop cmp);
12076   effect(USE labl);
12077 
12078   ins_cost(200);
12079   format %{ $$template
12080     if ($cop$$cmpcode == Assembler::notEqual) {
12081       $$emit$$"JP,u   $labl\n\t"
12082       $$emit$$"J$cop,u   $labl"
12083     } else {
12084       $$emit$$"JP,u   done\n\t"
12085       $$emit$$"J$cop,u   $labl\n\t"
12086       $$emit$$"done:"
12087     }
12088   %}
12089   ins_encode %{
12090     Label* l = $labl$$label;
12091     if ($cop$$cmpcode == Assembler::notEqual) {
12092       __ jcc(Assembler::parity, *l, false);
12093       __ jcc(Assembler::notEqual, *l, false);
12094     } else if ($cop$$cmpcode == Assembler::equal) {
12095       Label done;
12096       __ jccb(Assembler::parity, done);
12097       __ jcc(Assembler::equal, *l, false);
12098       __ bind(done);
12099     } else {
12100        ShouldNotReachHere();
12101     }
12102   %}
12103   ins_pipe(pipe_jcc);
12104 %}
12105 
12106 // ============================================================================
12107 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12108 // array for an instance of the superklass.  Set a hidden internal cache on a
12109 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
12110 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12111 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12112   match(Set result (PartialSubtypeCheck sub super));
12113   effect( KILL rcx, KILL cr );
12114 
12115   ins_cost(1100);  // slightly larger than the next version
12116   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12117             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12118             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12119             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12120             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12121             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12122             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12123      "miss:\t" %}
12124 
12125   opcode(0x1); // Force a XOR of EDI
12126   ins_encode( enc_PartialSubtypeCheck() );
12127   ins_pipe( pipe_slow );
12128 %}
12129 
12130 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12131   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12132   effect( KILL rcx, KILL result );
12133 
12134   ins_cost(1000);
12135   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12136             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12137             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12138             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12139             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12140             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12141      "miss:\t" %}
12142 
12143   opcode(0x0);  // No need to XOR EDI
12144   ins_encode( enc_PartialSubtypeCheck() );
12145   ins_pipe( pipe_slow );
12146 %}
12147 
12148 // ============================================================================
12149 // Branch Instructions -- short offset versions
12150 //
12151 // These instructions are used to replace jumps of a long offset (the default
12152 // match) with jumps of a shorter offset.  These instructions are all tagged
12153 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12154 // match rules in general matching.  Instead, the ADLC generates a conversion
12155 // method in the MachNode which can be used to do in-place replacement of the
12156 // long variant with the shorter variant.  The compiler will determine if a
12157 // branch can be taken by the is_short_branch_offset() predicate in the machine
12158 // specific code section of the file.
12159 
12160 // Jump Direct - Label defines a relative address from JMP+1
12161 instruct jmpDir_short(label labl) %{
12162   match(Goto);
12163   effect(USE labl);
12164 
12165   ins_cost(300);
12166   format %{ "JMP,s  $labl" %}
12167   size(2);
12168   ins_encode %{
12169     Label* L = $labl$$label;
12170     __ jmpb(*L);
12171   %}
12172   ins_pipe( pipe_jmp );
12173   ins_short_branch(1);
12174 %}
12175 
12176 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12177 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12178   match(If cop cr);
12179   effect(USE labl);
12180 
12181   ins_cost(300);
12182   format %{ "J$cop,s  $labl" %}
12183   size(2);
12184   ins_encode %{
12185     Label* L = $labl$$label;
12186     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12187   %}
12188   ins_pipe( pipe_jcc );
12189   ins_short_branch(1);
12190 %}
12191 
12192 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12193 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12194   match(CountedLoopEnd cop cr);
12195   effect(USE labl);
12196 
12197   ins_cost(300);
12198   format %{ "J$cop,s  $labl\t# Loop end" %}
12199   size(2);
12200   ins_encode %{
12201     Label* L = $labl$$label;
12202     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12203   %}
12204   ins_pipe( pipe_jcc );
12205   ins_short_branch(1);
12206 %}
12207 
12208 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12209 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12210   match(CountedLoopEnd cop cmp);
12211   effect(USE labl);
12212 
12213   ins_cost(300);
12214   format %{ "J$cop,us $labl\t# Loop end" %}
12215   size(2);
12216   ins_encode %{
12217     Label* L = $labl$$label;
12218     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12219   %}
12220   ins_pipe( pipe_jcc );
12221   ins_short_branch(1);
12222 %}
12223 
12224 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12225   match(CountedLoopEnd cop cmp);
12226   effect(USE labl);
12227 
12228   ins_cost(300);
12229   format %{ "J$cop,us $labl\t# Loop end" %}
12230   size(2);
12231   ins_encode %{
12232     Label* L = $labl$$label;
12233     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12234   %}
12235   ins_pipe( pipe_jcc );
12236   ins_short_branch(1);
12237 %}
12238 
12239 // Jump Direct Conditional - using unsigned comparison
12240 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12241   match(If cop cmp);
12242   effect(USE labl);
12243 
12244   ins_cost(300);
12245   format %{ "J$cop,us $labl" %}
12246   size(2);
12247   ins_encode %{
12248     Label* L = $labl$$label;
12249     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12250   %}
12251   ins_pipe( pipe_jcc );
12252   ins_short_branch(1);
12253 %}
12254 
12255 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12256   match(If cop cmp);
12257   effect(USE labl);
12258 
12259   ins_cost(300);
12260   format %{ "J$cop,us $labl" %}
12261   size(2);
12262   ins_encode %{
12263     Label* L = $labl$$label;
12264     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12265   %}
12266   ins_pipe( pipe_jcc );
12267   ins_short_branch(1);
12268 %}
12269 
12270 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12271   match(If cop cmp);
12272   effect(USE labl);
12273 
12274   ins_cost(300);
12275   format %{ $$template
12276     if ($cop$$cmpcode == Assembler::notEqual) {
12277       $$emit$$"JP,u,s   $labl\n\t"
12278       $$emit$$"J$cop,u,s   $labl"
12279     } else {
12280       $$emit$$"JP,u,s   done\n\t"
12281       $$emit$$"J$cop,u,s  $labl\n\t"
12282       $$emit$$"done:"
12283     }
12284   %}
12285   size(4);
12286   ins_encode %{
12287     Label* l = $labl$$label;
12288     if ($cop$$cmpcode == Assembler::notEqual) {
12289       __ jccb(Assembler::parity, *l);
12290       __ jccb(Assembler::notEqual, *l);
12291     } else if ($cop$$cmpcode == Assembler::equal) {
12292       Label done;
12293       __ jccb(Assembler::parity, done);
12294       __ jccb(Assembler::equal, *l);
12295       __ bind(done);
12296     } else {
12297        ShouldNotReachHere();
12298     }
12299   %}
12300   ins_pipe(pipe_jcc);
12301   ins_short_branch(1);
12302 %}
12303 
12304 // ============================================================================
12305 // Long Compare
12306 //
12307 // Currently we hold longs in 2 registers.  Comparing such values efficiently
12308 // is tricky.  The flavor of compare used depends on whether we are testing
12309 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
12310 // The GE test is the negated LT test.  The LE test can be had by commuting
12311 // the operands (yielding a GE test) and then negating; negate again for the
12312 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
12313 // NE test is negated from that.
12314 
12315 // Due to a shortcoming in the ADLC, it mixes up expressions like:
12316 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
12317 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
12318 // are collapsed internally in the ADLC's dfa-gen code.  The match for
12319 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
12320 // foo match ends up with the wrong leaf.  One fix is to not match both
12321 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
12322 // both forms beat the trinary form of long-compare and both are very useful
12323 // on Intel which has so few registers.
12324 
12325 // Manifest a CmpL result in an integer register.  Very painful.
12326 // This is the test to avoid.
12327 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
12328   match(Set dst (CmpL3 src1 src2));
12329   effect( KILL flags );
12330   ins_cost(1000);
12331   format %{ "XOR    $dst,$dst\n\t"
12332             "CMP    $src1.hi,$src2.hi\n\t"
12333             "JLT,s  m_one\n\t"
12334             "JGT,s  p_one\n\t"
12335             "CMP    $src1.lo,$src2.lo\n\t"
12336             "JB,s   m_one\n\t"
12337             "JEQ,s  done\n"
12338     "p_one:\tINC    $dst\n\t"
12339             "JMP,s  done\n"
12340     "m_one:\tDEC    $dst\n"
12341      "done:" %}
12342   ins_encode %{
12343     Label p_one, m_one, done;
12344     __ xorptr($dst$$Register, $dst$$Register);
12345     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
12346     __ jccb(Assembler::less,    m_one);
12347     __ jccb(Assembler::greater, p_one);
12348     __ cmpl($src1$$Register, $src2$$Register);
12349     __ jccb(Assembler::below,   m_one);
12350     __ jccb(Assembler::equal,   done);
12351     __ bind(p_one);
12352     __ incrementl($dst$$Register);
12353     __ jmpb(done);
12354     __ bind(m_one);
12355     __ decrementl($dst$$Register);
12356     __ bind(done);
12357   %}
12358   ins_pipe( pipe_slow );
12359 %}
12360 
12361 //======
12362 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12363 // compares.  Can be used for LE or GT compares by reversing arguments.
12364 // NOT GOOD FOR EQ/NE tests.
12365 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
12366   match( Set flags (CmpL src zero ));
12367   ins_cost(100);
12368   format %{ "TEST   $src.hi,$src.hi" %}
12369   opcode(0x85);
12370   ins_encode( OpcP, RegReg_Hi2( src, src ) );
12371   ins_pipe( ialu_cr_reg_reg );
12372 %}
12373 
12374 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12375 // compares.  Can be used for LE or GT compares by reversing arguments.
12376 // NOT GOOD FOR EQ/NE tests.
12377 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12378   match( Set flags (CmpL src1 src2 ));
12379   effect( TEMP tmp );
12380   ins_cost(300);
12381   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12382             "MOV    $tmp,$src1.hi\n\t"
12383             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
12384   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
12385   ins_pipe( ialu_cr_reg_reg );
12386 %}
12387 
12388 // Long compares reg < zero/req OR reg >= zero/req.
12389 // Just a wrapper for a normal branch, plus the predicate test.
12390 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
12391   match(If cmp flags);
12392   effect(USE labl);
12393   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12394   expand %{
12395     jmpCon(cmp,flags,labl);    // JLT or JGE...
12396   %}
12397 %}
12398 
12399 // Compare 2 longs and CMOVE longs.
12400 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
12401   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12402   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12403   ins_cost(400);
12404   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12405             "CMOV$cmp $dst.hi,$src.hi" %}
12406   opcode(0x0F,0x40);
12407   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12408   ins_pipe( pipe_cmov_reg_long );
12409 %}
12410 
12411 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
12412   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12413   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12414   ins_cost(500);
12415   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12416             "CMOV$cmp $dst.hi,$src.hi" %}
12417   opcode(0x0F,0x40);
12418   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12419   ins_pipe( pipe_cmov_reg_long );
12420 %}
12421 
12422 // Compare 2 longs and CMOVE ints.
12423 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
12424   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12425   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12426   ins_cost(200);
12427   format %{ "CMOV$cmp $dst,$src" %}
12428   opcode(0x0F,0x40);
12429   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12430   ins_pipe( pipe_cmov_reg );
12431 %}
12432 
12433 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
12434   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12435   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12436   ins_cost(250);
12437   format %{ "CMOV$cmp $dst,$src" %}
12438   opcode(0x0F,0x40);
12439   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12440   ins_pipe( pipe_cmov_mem );
12441 %}
12442 
12443 // Compare 2 longs and CMOVE ints.
12444 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
12445   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12446   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12447   ins_cost(200);
12448   format %{ "CMOV$cmp $dst,$src" %}
12449   opcode(0x0F,0x40);
12450   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12451   ins_pipe( pipe_cmov_reg );
12452 %}
12453 
12454 // Compare 2 longs and CMOVE doubles
12455 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
12456   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12457   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12458   ins_cost(200);
12459   expand %{
12460     fcmovDPR_regS(cmp,flags,dst,src);
12461   %}
12462 %}
12463 
12464 // Compare 2 longs and CMOVE doubles
12465 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
12466   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12467   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12468   ins_cost(200);
12469   expand %{
12470     fcmovD_regS(cmp,flags,dst,src);
12471   %}
12472 %}
12473 
12474 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
12475   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12476   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12477   ins_cost(200);
12478   expand %{
12479     fcmovFPR_regS(cmp,flags,dst,src);
12480   %}
12481 %}
12482 
12483 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
12484   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12485   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12486   ins_cost(200);
12487   expand %{
12488     fcmovF_regS(cmp,flags,dst,src);
12489   %}
12490 %}
12491 
12492 //======
12493 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12494 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
12495   match( Set flags (CmpL src zero ));
12496   effect(TEMP tmp);
12497   ins_cost(200);
12498   format %{ "MOV    $tmp,$src.lo\n\t"
12499             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
12500   ins_encode( long_cmp_flags0( src, tmp ) );
12501   ins_pipe( ialu_reg_reg_long );
12502 %}
12503 
12504 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12505 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
12506   match( Set flags (CmpL src1 src2 ));
12507   ins_cost(200+300);
12508   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12509             "JNE,s  skip\n\t"
12510             "CMP    $src1.hi,$src2.hi\n\t"
12511      "skip:\t" %}
12512   ins_encode( long_cmp_flags1( src1, src2 ) );
12513   ins_pipe( ialu_cr_reg_reg );
12514 %}
12515 
12516 // Long compare reg == zero/reg OR reg != zero/reg
12517 // Just a wrapper for a normal branch, plus the predicate test.
12518 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
12519   match(If cmp flags);
12520   effect(USE labl);
12521   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12522   expand %{
12523     jmpCon(cmp,flags,labl);    // JEQ or JNE...
12524   %}
12525 %}
12526 
12527 // Compare 2 longs and CMOVE longs.
12528 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
12529   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12530   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12531   ins_cost(400);
12532   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12533             "CMOV$cmp $dst.hi,$src.hi" %}
12534   opcode(0x0F,0x40);
12535   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12536   ins_pipe( pipe_cmov_reg_long );
12537 %}
12538 
12539 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
12540   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12541   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12542   ins_cost(500);
12543   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12544             "CMOV$cmp $dst.hi,$src.hi" %}
12545   opcode(0x0F,0x40);
12546   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12547   ins_pipe( pipe_cmov_reg_long );
12548 %}
12549 
12550 // Compare 2 longs and CMOVE ints.
12551 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
12552   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12553   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12554   ins_cost(200);
12555   format %{ "CMOV$cmp $dst,$src" %}
12556   opcode(0x0F,0x40);
12557   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12558   ins_pipe( pipe_cmov_reg );
12559 %}
12560 
12561 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
12562   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12563   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12564   ins_cost(250);
12565   format %{ "CMOV$cmp $dst,$src" %}
12566   opcode(0x0F,0x40);
12567   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12568   ins_pipe( pipe_cmov_mem );
12569 %}
12570 
12571 // Compare 2 longs and CMOVE ints.
12572 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
12573   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12574   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12575   ins_cost(200);
12576   format %{ "CMOV$cmp $dst,$src" %}
12577   opcode(0x0F,0x40);
12578   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12579   ins_pipe( pipe_cmov_reg );
12580 %}
12581 
12582 // Compare 2 longs and CMOVE doubles
12583 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
12584   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12585   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12586   ins_cost(200);
12587   expand %{
12588     fcmovDPR_regS(cmp,flags,dst,src);
12589   %}
12590 %}
12591 
12592 // Compare 2 longs and CMOVE doubles
12593 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
12594   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12595   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12596   ins_cost(200);
12597   expand %{
12598     fcmovD_regS(cmp,flags,dst,src);
12599   %}
12600 %}
12601 
12602 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
12603   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12604   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12605   ins_cost(200);
12606   expand %{
12607     fcmovFPR_regS(cmp,flags,dst,src);
12608   %}
12609 %}
12610 
12611 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
12612   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12613   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12614   ins_cost(200);
12615   expand %{
12616     fcmovF_regS(cmp,flags,dst,src);
12617   %}
12618 %}
12619 
12620 //======
12621 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12622 // Same as cmpL_reg_flags_LEGT except must negate src
12623 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
12624   match( Set flags (CmpL src zero ));
12625   effect( TEMP tmp );
12626   ins_cost(300);
12627   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
12628             "CMP    $tmp,$src.lo\n\t"
12629             "SBB    $tmp,$src.hi\n\t" %}
12630   ins_encode( long_cmp_flags3(src, tmp) );
12631   ins_pipe( ialu_reg_reg_long );
12632 %}
12633 
12634 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12635 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
12636 // requires a commuted test to get the same result.
12637 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12638   match( Set flags (CmpL src1 src2 ));
12639   effect( TEMP tmp );
12640   ins_cost(300);
12641   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
12642             "MOV    $tmp,$src2.hi\n\t"
12643             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
12644   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
12645   ins_pipe( ialu_cr_reg_reg );
12646 %}
12647 
12648 // Long compares reg < zero/req OR reg >= zero/req.
12649 // Just a wrapper for a normal branch, plus the predicate test
12650 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
12651   match(If cmp flags);
12652   effect(USE labl);
12653   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
12654   ins_cost(300);
12655   expand %{
12656     jmpCon(cmp,flags,labl);    // JGT or JLE...
12657   %}
12658 %}
12659 
12660 // Compare 2 longs and CMOVE longs.
12661 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
12662   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12663   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12664   ins_cost(400);
12665   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12666             "CMOV$cmp $dst.hi,$src.hi" %}
12667   opcode(0x0F,0x40);
12668   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12669   ins_pipe( pipe_cmov_reg_long );
12670 %}
12671 
12672 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
12673   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12674   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12675   ins_cost(500);
12676   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12677             "CMOV$cmp $dst.hi,$src.hi+4" %}
12678   opcode(0x0F,0x40);
12679   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12680   ins_pipe( pipe_cmov_reg_long );
12681 %}
12682 
12683 // Compare 2 longs and CMOVE ints.
12684 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
12685   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12686   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12687   ins_cost(200);
12688   format %{ "CMOV$cmp $dst,$src" %}
12689   opcode(0x0F,0x40);
12690   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12691   ins_pipe( pipe_cmov_reg );
12692 %}
12693 
12694 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
12695   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12696   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12697   ins_cost(250);
12698   format %{ "CMOV$cmp $dst,$src" %}
12699   opcode(0x0F,0x40);
12700   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12701   ins_pipe( pipe_cmov_mem );
12702 %}
12703 
12704 // Compare 2 longs and CMOVE ptrs.
12705 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
12706   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12707   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12708   ins_cost(200);
12709   format %{ "CMOV$cmp $dst,$src" %}
12710   opcode(0x0F,0x40);
12711   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12712   ins_pipe( pipe_cmov_reg );
12713 %}
12714 
12715 // Compare 2 longs and CMOVE doubles
12716 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
12717   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12718   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12719   ins_cost(200);
12720   expand %{
12721     fcmovDPR_regS(cmp,flags,dst,src);
12722   %}
12723 %}
12724 
12725 // Compare 2 longs and CMOVE doubles
12726 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
12727   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12728   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12729   ins_cost(200);
12730   expand %{
12731     fcmovD_regS(cmp,flags,dst,src);
12732   %}
12733 %}
12734 
12735 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
12736   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12737   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12738   ins_cost(200);
12739   expand %{
12740     fcmovFPR_regS(cmp,flags,dst,src);
12741   %}
12742 %}
12743 
12744 
12745 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
12746   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12747   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12748   ins_cost(200);
12749   expand %{
12750     fcmovF_regS(cmp,flags,dst,src);
12751   %}
12752 %}
12753 
12754 
12755 // ============================================================================
12756 // Procedure Call/Return Instructions
12757 // Call Java Static Instruction
12758 // Note: If this code changes, the corresponding ret_addr_offset() and
12759 //       compute_padding() functions will have to be adjusted.
12760 instruct CallStaticJavaDirect(method meth) %{
12761   match(CallStaticJava);
12762   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
12763   effect(USE meth);
12764 
12765   ins_cost(300);
12766   format %{ "CALL,static " %}
12767   opcode(0xE8); /* E8 cd */
12768   ins_encode( pre_call_FPU,
12769               Java_Static_Call( meth ),
12770               call_epilog,
12771               post_call_FPU );
12772   ins_pipe( pipe_slow );
12773   ins_alignment(4);
12774 %}
12775 
12776 // Call Java Static Instruction (method handle version)
12777 // Note: If this code changes, the corresponding ret_addr_offset() and
12778 //       compute_padding() functions will have to be adjusted.
12779 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
12780   match(CallStaticJava);
12781   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
12782   effect(USE meth);
12783   // EBP is saved by all callees (for interpreter stack correction).
12784   // We use it here for a similar purpose, in {preserve,restore}_SP.
12785 
12786   ins_cost(300);
12787   format %{ "CALL,static/MethodHandle " %}
12788   opcode(0xE8); /* E8 cd */
12789   ins_encode( pre_call_FPU,
12790               preserve_SP,
12791               Java_Static_Call( meth ),
12792               restore_SP,
12793               call_epilog,
12794               post_call_FPU );
12795   ins_pipe( pipe_slow );
12796   ins_alignment(4);
12797 %}
12798 
12799 // Call Java Dynamic Instruction
12800 // Note: If this code changes, the corresponding ret_addr_offset() and
12801 //       compute_padding() functions will have to be adjusted.
12802 instruct CallDynamicJavaDirect(method meth) %{
12803   match(CallDynamicJava);
12804   effect(USE meth);
12805 
12806   ins_cost(300);
12807   format %{ "MOV    EAX,(oop)-1\n\t"
12808             "CALL,dynamic" %}
12809   opcode(0xE8); /* E8 cd */
12810   ins_encode( pre_call_FPU,
12811               Java_Dynamic_Call( meth ),
12812               call_epilog,
12813               post_call_FPU );
12814   ins_pipe( pipe_slow );
12815   ins_alignment(4);
12816 %}
12817 
12818 // Call Runtime Instruction
12819 instruct CallRuntimeDirect(method meth) %{
12820   match(CallRuntime );
12821   effect(USE meth);
12822 
12823   ins_cost(300);
12824   format %{ "CALL,runtime " %}
12825   opcode(0xE8); /* E8 cd */
12826   // Use FFREEs to clear entries in float stack
12827   ins_encode( pre_call_FPU,
12828               FFree_Float_Stack_All,
12829               Java_To_Runtime( meth ),
12830               post_call_FPU );
12831   ins_pipe( pipe_slow );
12832 %}
12833 
12834 // Call runtime without safepoint
12835 instruct CallLeafDirect(method meth) %{
12836   match(CallLeaf);
12837   effect(USE meth);
12838 
12839   ins_cost(300);
12840   format %{ "CALL_LEAF,runtime " %}
12841   opcode(0xE8); /* E8 cd */
12842   ins_encode( pre_call_FPU,
12843               FFree_Float_Stack_All,
12844               Java_To_Runtime( meth ),
12845               Verify_FPU_For_Leaf, post_call_FPU );
12846   ins_pipe( pipe_slow );
12847 %}
12848 
12849 instruct CallLeafNoFPDirect(method meth) %{
12850   match(CallLeafNoFP);
12851   effect(USE meth);
12852 
12853   ins_cost(300);
12854   format %{ "CALL_LEAF_NOFP,runtime " %}
12855   opcode(0xE8); /* E8 cd */
12856   ins_encode(Java_To_Runtime(meth));
12857   ins_pipe( pipe_slow );
12858 %}
12859 
12860 
12861 // Return Instruction
12862 // Remove the return address & jump to it.
12863 instruct Ret() %{
12864   match(Return);
12865   format %{ "RET" %}
12866   opcode(0xC3);
12867   ins_encode(OpcP);
12868   ins_pipe( pipe_jmp );
12869 %}
12870 
12871 // Tail Call; Jump from runtime stub to Java code.
12872 // Also known as an 'interprocedural jump'.
12873 // Target of jump will eventually return to caller.
12874 // TailJump below removes the return address.
12875 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
12876   match(TailCall jump_target method_oop );
12877   ins_cost(300);
12878   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
12879   opcode(0xFF, 0x4);  /* Opcode FF /4 */
12880   ins_encode( OpcP, RegOpc(jump_target) );
12881   ins_pipe( pipe_jmp );
12882 %}
12883 
12884 
12885 // Tail Jump; remove the return address; jump to target.
12886 // TailCall above leaves the return address around.
12887 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
12888   match( TailJump jump_target ex_oop );
12889   ins_cost(300);
12890   format %{ "POP    EDX\t# pop return address into dummy\n\t"
12891             "JMP    $jump_target " %}
12892   opcode(0xFF, 0x4);  /* Opcode FF /4 */
12893   ins_encode( enc_pop_rdx,
12894               OpcP, RegOpc(jump_target) );
12895   ins_pipe( pipe_jmp );
12896 %}
12897 
12898 // Create exception oop: created by stack-crawling runtime code.
12899 // Created exception is now available to this handler, and is setup
12900 // just prior to jumping to this handler.  No code emitted.
12901 instruct CreateException( eAXRegP ex_oop )
12902 %{
12903   match(Set ex_oop (CreateEx));
12904 
12905   size(0);
12906   // use the following format syntax
12907   format %{ "# exception oop is in EAX; no code emitted" %}
12908   ins_encode();
12909   ins_pipe( empty );
12910 %}
12911 
12912 
12913 // Rethrow exception:
12914 // The exception oop will come in the first argument position.
12915 // Then JUMP (not call) to the rethrow stub code.
12916 instruct RethrowException()
12917 %{
12918   match(Rethrow);
12919 
12920   // use the following format syntax
12921   format %{ "JMP    rethrow_stub" %}
12922   ins_encode(enc_rethrow);
12923   ins_pipe( pipe_jmp );
12924 %}
12925 
12926 // inlined locking and unlocking
12927 
12928 
12929 instruct cmpFastLock( eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
12930   match( Set cr (FastLock object box) );
12931   effect( TEMP tmp, TEMP scr, USE_KILL box );
12932   ins_cost(300);
12933   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
12934   ins_encode( Fast_Lock(object,box,tmp,scr) );
12935   ins_pipe( pipe_slow );
12936 %}
12937 
12938 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
12939   match( Set cr (FastUnlock object box) );
12940   effect( TEMP tmp, USE_KILL box );
12941   ins_cost(300);
12942   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
12943   ins_encode( Fast_Unlock(object,box,tmp) );
12944   ins_pipe( pipe_slow );
12945 %}
12946 
12947 
12948 
12949 // ============================================================================
12950 // Safepoint Instruction
12951 instruct safePoint_poll(eFlagsReg cr) %{
12952   match(SafePoint);
12953   effect(KILL cr);
12954 
12955   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
12956   // On SPARC that might be acceptable as we can generate the address with
12957   // just a sethi, saving an or.  By polling at offset 0 we can end up
12958   // putting additional pressure on the index-0 in the D$.  Because of
12959   // alignment (just like the situation at hand) the lower indices tend
12960   // to see more traffic.  It'd be better to change the polling address
12961   // to offset 0 of the last $line in the polling page.
12962 
12963   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
12964   ins_cost(125);
12965   size(6) ;
12966   ins_encode( Safepoint_Poll() );
12967   ins_pipe( ialu_reg_mem );
12968 %}
12969 
12970 
12971 // ============================================================================
12972 // This name is KNOWN by the ADLC and cannot be changed.
12973 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
12974 // for this guy.
12975 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
12976   match(Set dst (ThreadLocal));
12977   effect(DEF dst, KILL cr);
12978 
12979   format %{ "MOV    $dst, Thread::current()" %}
12980   ins_encode %{
12981     Register dstReg = as_Register($dst$$reg);
12982     __ get_thread(dstReg);
12983   %}
12984   ins_pipe( ialu_reg_fat );
12985 %}
12986 
12987 
12988 
12989 //----------PEEPHOLE RULES-----------------------------------------------------
12990 // These must follow all instruction definitions as they use the names
12991 // defined in the instructions definitions.
12992 //
12993 // peepmatch ( root_instr_name [preceding_instruction]* );
12994 //
12995 // peepconstraint %{
12996 // (instruction_number.operand_name relational_op instruction_number.operand_name
12997 //  [, ...] );
12998 // // instruction numbers are zero-based using left to right order in peepmatch
12999 //
13000 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
13001 // // provide an instruction_number.operand_name for each operand that appears
13002 // // in the replacement instruction's match rule
13003 //
13004 // ---------VM FLAGS---------------------------------------------------------
13005 //
13006 // All peephole optimizations can be turned off using -XX:-OptoPeephole
13007 //
13008 // Each peephole rule is given an identifying number starting with zero and
13009 // increasing by one in the order seen by the parser.  An individual peephole
13010 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
13011 // on the command-line.
13012 //
13013 // ---------CURRENT LIMITATIONS----------------------------------------------
13014 //
13015 // Only match adjacent instructions in same basic block
13016 // Only equality constraints
13017 // Only constraints between operands, not (0.dest_reg == EAX_enc)
13018 // Only one replacement instruction
13019 //
13020 // ---------EXAMPLE----------------------------------------------------------
13021 //
13022 // // pertinent parts of existing instructions in architecture description
13023 // instruct movI(rRegI dst, rRegI src) %{
13024 //   match(Set dst (CopyI src));
13025 // %}
13026 //
13027 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
13028 //   match(Set dst (AddI dst src));
13029 //   effect(KILL cr);
13030 // %}
13031 //
13032 // // Change (inc mov) to lea
13033 // peephole %{
13034 //   // increment preceeded by register-register move
13035 //   peepmatch ( incI_eReg movI );
13036 //   // require that the destination register of the increment
13037 //   // match the destination register of the move
13038 //   peepconstraint ( 0.dst == 1.dst );
13039 //   // construct a replacement instruction that sets
13040 //   // the destination to ( move's source register + one )
13041 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13042 // %}
13043 //
13044 // Implementation no longer uses movX instructions since
13045 // machine-independent system no longer uses CopyX nodes.
13046 //
13047 // peephole %{
13048 //   peepmatch ( incI_eReg movI );
13049 //   peepconstraint ( 0.dst == 1.dst );
13050 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13051 // %}
13052 //
13053 // peephole %{
13054 //   peepmatch ( decI_eReg movI );
13055 //   peepconstraint ( 0.dst == 1.dst );
13056 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13057 // %}
13058 //
13059 // peephole %{
13060 //   peepmatch ( addI_eReg_imm movI );
13061 //   peepconstraint ( 0.dst == 1.dst );
13062 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13063 // %}
13064 //
13065 // peephole %{
13066 //   peepmatch ( addP_eReg_imm movP );
13067 //   peepconstraint ( 0.dst == 1.dst );
13068 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
13069 // %}
13070 
13071 // // Change load of spilled value to only a spill
13072 // instruct storeI(memory mem, rRegI src) %{
13073 //   match(Set mem (StoreI mem src));
13074 // %}
13075 //
13076 // instruct loadI(rRegI dst, memory mem) %{
13077 //   match(Set dst (LoadI mem));
13078 // %}
13079 //
13080 peephole %{
13081   peepmatch ( loadI storeI );
13082   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
13083   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
13084 %}
13085 
13086 //----------SMARTSPILL RULES---------------------------------------------------
13087 // These must follow all instruction definitions as they use the names
13088 // defined in the instructions definitions.