1 /*
   2  * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "compiler/compileLog.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/divnode.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/mulnode.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/superword.hpp"
  36 #include "opto/vectornode.hpp"
  37 
  38 //
  39 //                  S U P E R W O R D   T R A N S F O R M
  40 //=============================================================================
  41 
  42 //------------------------------SuperWord---------------------------
  43 SuperWord::SuperWord(PhaseIdealLoop* phase) :
  44   _phase(phase),
  45   _igvn(phase->_igvn),
  46   _arena(phase->C->comp_arena()),
  47   _packset(arena(), 8,  0, NULL),         // packs for the current block
  48   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
  49   _block(arena(), 8,  0, NULL),           // nodes in current block
  50   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
  51   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
  52   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
  53   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
  54   _align_to_ref(NULL),                    // memory reference to align vectors to
  55   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
  56   _dg(_arena),                            // dependence graph
  57   _visited(arena()),                      // visited node set
  58   _post_visited(arena()),                 // post visited node set
  59   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
  60   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
  61   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
  62   _lpt(NULL),                             // loop tree node
  63   _lp(NULL),                              // LoopNode
  64   _bb(NULL),                              // basic block
  65   _iv(NULL)                               // induction var
  66 {}
  67 
  68 //------------------------------transform_loop---------------------------
  69 void SuperWord::transform_loop(IdealLoopTree* lpt) {
  70   assert(UseSuperWord, "should be");
  71   // Do vectors exist on this architecture?
  72   if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
  73 
  74   assert(lpt->_head->is_CountedLoop(), "must be");
  75   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
  76 
  77   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
  78 
  79   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
  80 
  81   // Check for no control flow in body (other than exit)
  82   Node *cl_exit = cl->loopexit();
  83   if (cl_exit->in(0) != lpt->_head) return;
  84 
  85   // Make sure the are no extra control users of the loop backedge
  86   if (cl->back_control()->outcnt() != 1) {
  87     return;
  88   }
  89 
  90   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
  91   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
  92   if (pre_end == NULL) return;
  93   Node *pre_opaq1 = pre_end->limit();
  94   if (pre_opaq1->Opcode() != Op_Opaque1) return;
  95 
  96   init(); // initialize data structures
  97 
  98   set_lpt(lpt);
  99   set_lp(cl);
 100 
 101   // For now, define one block which is the entire loop body
 102   set_bb(cl);
 103 
 104   assert(_packset.length() == 0, "packset must be empty");
 105   SLP_extract();
 106 }
 107 
 108 //------------------------------SLP_extract---------------------------
 109 // Extract the superword level parallelism
 110 //
 111 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
 112 //    this list from first to last, all definitions are visited before their uses.
 113 //
 114 // 2) A point-to-point dependence graph is constructed between memory references.
 115 //    This simplies the upcoming "independence" checker.
 116 //
 117 // 3) The maximum depth in the node graph from the beginning of the block
 118 //    to each node is computed.  This is used to prune the graph search
 119 //    in the independence checker.
 120 //
 121 // 4) For integer types, the necessary bit width is propagated backwards
 122 //    from stores to allow packed operations on byte, char, and short
 123 //    integers.  This reverses the promotion to type "int" that javac
 124 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
 125 //
 126 // 5) One of the memory references is picked to be an aligned vector reference.
 127 //    The pre-loop trip count is adjusted to align this reference in the
 128 //    unrolled body.
 129 //
 130 // 6) The initial set of pack pairs is seeded with memory references.
 131 //
 132 // 7) The set of pack pairs is extended by following use->def and def->use links.
 133 //
 134 // 8) The pairs are combined into vector sized packs.
 135 //
 136 // 9) Reorder the memory slices to co-locate members of the memory packs.
 137 //
 138 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
 139 //    inserting scalar promotion, vector creation from multiple scalars, and
 140 //    extraction of scalar values from vectors.
 141 //
 142 void SuperWord::SLP_extract() {
 143 
 144   // Ready the block
 145 
 146   construct_bb();
 147 
 148   dependence_graph();
 149 
 150   compute_max_depth();
 151 
 152   compute_vector_element_type();
 153 
 154   // Attempt vectorization
 155 
 156   find_adjacent_refs();
 157 
 158   extend_packlist();
 159 
 160   combine_packs();
 161 
 162   construct_my_pack_map();
 163 
 164   filter_packs();
 165 
 166   schedule();
 167 
 168   output();
 169 }
 170 
 171 //------------------------------find_adjacent_refs---------------------------
 172 // Find the adjacent memory references and create pack pairs for them.
 173 // This is the initial set of packs that will then be extended by
 174 // following use->def and def->use links.  The align positions are
 175 // assigned relative to the reference "align_to_ref"
 176 void SuperWord::find_adjacent_refs() {
 177   // Get list of memory operations
 178   Node_List memops;
 179   for (int i = 0; i < _block.length(); i++) {
 180     Node* n = _block.at(i);
 181     if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
 182         is_java_primitive(n->as_Mem()->memory_type())) {
 183       int align = memory_alignment(n->as_Mem(), 0);
 184       if (align != bottom_align) {
 185         memops.push(n);
 186       }
 187     }
 188   }
 189 
 190   Node_List align_to_refs;
 191   int best_iv_adjustment = 0;
 192   MemNode* best_align_to_mem_ref = NULL;
 193 
 194   while (memops.size() != 0) {
 195     // Find a memory reference to align to.
 196     MemNode* mem_ref = find_align_to_ref(memops);
 197     if (mem_ref == NULL) break;
 198     align_to_refs.push(mem_ref);
 199     int iv_adjustment = get_iv_adjustment(mem_ref);
 200 
 201     if (best_align_to_mem_ref == NULL) {
 202       // Set memory reference which is the best from all memory operations
 203       // to be used for alignment. The pre-loop trip count is modified to align
 204       // this reference to a vector-aligned address.
 205       best_align_to_mem_ref = mem_ref;
 206       best_iv_adjustment = iv_adjustment;
 207     }
 208 
 209     SWPointer align_to_ref_p(mem_ref, this);
 210     // Set alignment relative to "align_to_ref" for all related memory operations.
 211     for (int i = memops.size() - 1; i >= 0; i--) {
 212       MemNode* s = memops.at(i)->as_Mem();
 213       if (isomorphic(s, mem_ref)) {
 214         SWPointer p2(s, this);
 215         if (p2.comparable(align_to_ref_p)) {
 216           int align = memory_alignment(s, iv_adjustment);
 217           set_alignment(s, align);
 218         }
 219       }
 220     }
 221 
 222     // Create initial pack pairs of memory operations for which
 223     // alignment is set and vectors will be aligned.
 224     bool create_pack = true;
 225     if (memory_alignment(mem_ref, best_iv_adjustment) == 0) {
 226       if (!Matcher::misaligned_vectors_ok()) {
 227         int vw = vector_width(mem_ref);
 228         int vw_best = vector_width(best_align_to_mem_ref);
 229         if (vw > vw_best) {
 230           // Do not vectorize a memory access with more elements per vector
 231           // if unaligned memory access is not allowed because number of
 232           // iterations in pre-loop will be not enough to align it.
 233           create_pack = false;
 234         }
 235       }
 236     } else {
 237       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
 238         // Can't allow vectorization of unaligned memory accesses with the
 239         // same type since it could be overlapped accesses to the same array.
 240         create_pack = false;
 241       } else {
 242         // Allow independent (different type) unaligned memory operations
 243         // if HW supports them.
 244         if (!Matcher::misaligned_vectors_ok()) {
 245           create_pack = false;
 246         } else {
 247           // Check if packs of the same memory type but
 248           // with a different alignment were created before.
 249           for (uint i = 0; i < align_to_refs.size(); i++) {
 250             MemNode* mr = align_to_refs.at(i)->as_Mem();
 251             if (same_velt_type(mr, mem_ref) &&
 252                 memory_alignment(mr, iv_adjustment) != 0)
 253               create_pack = false;
 254           }
 255         }
 256       }
 257     }
 258     if (create_pack) {
 259       for (uint i = 0; i < memops.size(); i++) {
 260         Node* s1 = memops.at(i);
 261         int align = alignment(s1);
 262         if (align == top_align) continue;
 263         for (uint j = 0; j < memops.size(); j++) {
 264           Node* s2 = memops.at(j);
 265           if (alignment(s2) == top_align) continue;
 266           if (s1 != s2 && are_adjacent_refs(s1, s2)) {
 267             if (stmts_can_pack(s1, s2, align)) {
 268               Node_List* pair = new Node_List();
 269               pair->push(s1);
 270               pair->push(s2);
 271               _packset.append(pair);
 272             }
 273           }
 274         }
 275       }
 276     } else { // Don't create unaligned pack
 277       // First, remove remaining memory ops of the same type from the list.
 278       for (int i = memops.size() - 1; i >= 0; i--) {
 279         MemNode* s = memops.at(i)->as_Mem();
 280         if (same_velt_type(s, mem_ref)) {
 281           memops.remove(i);
 282         }
 283       }
 284 
 285       // Second, remove already constructed packs of the same type.
 286       for (int i = _packset.length() - 1; i >= 0; i--) {
 287         Node_List* p = _packset.at(i);
 288         MemNode* s = p->at(0)->as_Mem();
 289         if (same_velt_type(s, mem_ref)) {
 290           remove_pack_at(i);
 291         }
 292       }
 293 
 294       // If needed find the best memory reference for loop alignment again.
 295       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
 296         // Put memory ops from remaining packs back on memops list for
 297         // the best alignment search.
 298         uint orig_msize = memops.size();
 299         for (int i = 0; i < _packset.length(); i++) {
 300           Node_List* p = _packset.at(i);
 301           MemNode* s = p->at(0)->as_Mem();
 302           assert(!same_velt_type(s, mem_ref), "sanity");
 303           memops.push(s);
 304         }
 305         MemNode* best_align_to_mem_ref = find_align_to_ref(memops);
 306         if (best_align_to_mem_ref == NULL) break;
 307         best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
 308         // Restore list.
 309         while (memops.size() > orig_msize)
 310           (void)memops.pop();
 311       }
 312     } // unaligned memory accesses
 313 
 314     // Remove used mem nodes.
 315     for (int i = memops.size() - 1; i >= 0; i--) {
 316       MemNode* m = memops.at(i)->as_Mem();
 317       if (alignment(m) != top_align) {
 318         memops.remove(i);
 319       }
 320     }
 321 
 322   } // while (memops.size() != 0
 323   set_align_to_ref(best_align_to_mem_ref);
 324 
 325 #ifndef PRODUCT
 326   if (TraceSuperWord) {
 327     tty->print_cr("\nAfter find_adjacent_refs");
 328     print_packset();
 329   }
 330 #endif
 331 }
 332 
 333 //------------------------------find_align_to_ref---------------------------
 334 // Find a memory reference to align the loop induction variable to.
 335 // Looks first at stores then at loads, looking for a memory reference
 336 // with the largest number of references similar to it.
 337 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
 338   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
 339 
 340   // Count number of comparable memory ops
 341   for (uint i = 0; i < memops.size(); i++) {
 342     MemNode* s1 = memops.at(i)->as_Mem();
 343     SWPointer p1(s1, this);
 344     // Discard if pre loop can't align this reference
 345     if (!ref_is_alignable(p1)) {
 346       *cmp_ct.adr_at(i) = 0;
 347       continue;
 348     }
 349     for (uint j = i+1; j < memops.size(); j++) {
 350       MemNode* s2 = memops.at(j)->as_Mem();
 351       if (isomorphic(s1, s2)) {
 352         SWPointer p2(s2, this);
 353         if (p1.comparable(p2)) {
 354           (*cmp_ct.adr_at(i))++;
 355           (*cmp_ct.adr_at(j))++;
 356         }
 357       }
 358     }
 359   }
 360 
 361   // Find Store (or Load) with the greatest number of "comparable" references,
 362   // biggest vector size, smallest data size and smallest iv offset.
 363   int max_ct        = 0;
 364   int max_vw        = 0;
 365   int max_idx       = -1;
 366   int min_size      = max_jint;
 367   int min_iv_offset = max_jint;
 368   for (uint j = 0; j < memops.size(); j++) {
 369     MemNode* s = memops.at(j)->as_Mem();
 370     if (s->is_Store()) {
 371       int vw = vector_width_in_bytes(s);
 372       assert(vw > 1, "sanity");
 373       SWPointer p(s, this);
 374       if (cmp_ct.at(j) >  max_ct ||
 375           cmp_ct.at(j) == max_ct &&
 376             (vw >  max_vw ||
 377              vw == max_vw &&
 378               (data_size(s) <  min_size ||
 379                data_size(s) == min_size &&
 380                  (p.offset_in_bytes() < min_iv_offset)))) {
 381         max_ct = cmp_ct.at(j);
 382         max_vw = vw;
 383         max_idx = j;
 384         min_size = data_size(s);
 385         min_iv_offset = p.offset_in_bytes();
 386       }
 387     }
 388   }
 389   // If no stores, look at loads
 390   if (max_ct == 0) {
 391     for (uint j = 0; j < memops.size(); j++) {
 392       MemNode* s = memops.at(j)->as_Mem();
 393       if (s->is_Load()) {
 394         int vw = vector_width_in_bytes(s);
 395         assert(vw > 1, "sanity");
 396         SWPointer p(s, this);
 397         if (cmp_ct.at(j) >  max_ct ||
 398             cmp_ct.at(j) == max_ct &&
 399               (vw >  max_vw ||
 400                vw == max_vw &&
 401                 (data_size(s) <  min_size ||
 402                  data_size(s) == min_size &&
 403                    (p.offset_in_bytes() < min_iv_offset)))) {
 404           max_ct = cmp_ct.at(j);
 405           max_vw = vw;
 406           max_idx = j;
 407           min_size = data_size(s);
 408           min_iv_offset = p.offset_in_bytes();
 409         }
 410       }
 411     }
 412   }
 413 
 414 #ifdef ASSERT
 415   if (TraceSuperWord && Verbose) {
 416     tty->print_cr("\nVector memops after find_align_to_refs");
 417     for (uint i = 0; i < memops.size(); i++) {
 418       MemNode* s = memops.at(i)->as_Mem();
 419       s->dump();
 420     }
 421   }
 422 #endif
 423 
 424   if (max_ct > 0) {
 425 #ifdef ASSERT
 426     if (TraceSuperWord) {
 427       tty->print("\nVector align to node: ");
 428       memops.at(max_idx)->as_Mem()->dump();
 429     }
 430 #endif
 431     return memops.at(max_idx)->as_Mem();
 432   }
 433   return NULL;
 434 }
 435 
 436 //------------------------------ref_is_alignable---------------------------
 437 // Can the preloop align the reference to position zero in the vector?
 438 bool SuperWord::ref_is_alignable(SWPointer& p) {
 439   if (!p.has_iv()) {
 440     return true;   // no induction variable
 441   }
 442   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
 443   assert(pre_end->stride_is_con(), "pre loop stride is constant");
 444   int preloop_stride = pre_end->stride_con();
 445 
 446   int span = preloop_stride * p.scale_in_bytes();
 447 
 448   // Stride one accesses are alignable.
 449   if (ABS(span) == p.memory_size())
 450     return true;
 451 
 452   // If initial offset from start of object is computable,
 453   // compute alignment within the vector.
 454   int vw = vector_width_in_bytes(p.mem());
 455   assert(vw > 1, "sanity");
 456   if (vw % span == 0) {
 457     Node* init_nd = pre_end->init_trip();
 458     if (init_nd->is_Con() && p.invar() == NULL) {
 459       int init = init_nd->bottom_type()->is_int()->get_con();
 460 
 461       int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
 462       assert(init_offset >= 0, "positive offset from object start");
 463 
 464       if (span > 0) {
 465         return (vw - (init_offset % vw)) % span == 0;
 466       } else {
 467         assert(span < 0, "nonzero stride * scale");
 468         return (init_offset % vw) % -span == 0;
 469       }
 470     }
 471   }
 472   return false;
 473 }
 474 
 475 //---------------------------get_iv_adjustment---------------------------
 476 // Calculate loop's iv adjustment for this memory ops.
 477 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
 478   SWPointer align_to_ref_p(mem_ref, this);
 479   int offset = align_to_ref_p.offset_in_bytes();
 480   int scale  = align_to_ref_p.scale_in_bytes();
 481   int vw       = vector_width_in_bytes(mem_ref);
 482   assert(vw > 1, "sanity");
 483   int stride_sign   = (scale * iv_stride()) > 0 ? 1 : -1;
 484   int iv_adjustment = (stride_sign * vw - (offset % vw)) % vw;
 485 
 486 #ifndef PRODUCT
 487   if (TraceSuperWord)
 488     tty->print_cr("\noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d",
 489                   offset, iv_adjustment, align_to_ref_p.memory_size(), scale, iv_stride(), vw);
 490 #endif
 491   return iv_adjustment;
 492 }
 493 
 494 //---------------------------dependence_graph---------------------------
 495 // Construct dependency graph.
 496 // Add dependence edges to load/store nodes for memory dependence
 497 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
 498 void SuperWord::dependence_graph() {
 499   // First, assign a dependence node to each memory node
 500   for (int i = 0; i < _block.length(); i++ ) {
 501     Node *n = _block.at(i);
 502     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
 503       _dg.make_node(n);
 504     }
 505   }
 506 
 507   // For each memory slice, create the dependences
 508   for (int i = 0; i < _mem_slice_head.length(); i++) {
 509     Node* n      = _mem_slice_head.at(i);
 510     Node* n_tail = _mem_slice_tail.at(i);
 511 
 512     // Get slice in predecessor order (last is first)
 513     mem_slice_preds(n_tail, n, _nlist);
 514 
 515     // Make the slice dependent on the root
 516     DepMem* slice = _dg.dep(n);
 517     _dg.make_edge(_dg.root(), slice);
 518 
 519     // Create a sink for the slice
 520     DepMem* slice_sink = _dg.make_node(NULL);
 521     _dg.make_edge(slice_sink, _dg.tail());
 522 
 523     // Now visit each pair of memory ops, creating the edges
 524     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
 525       Node* s1 = _nlist.at(j);
 526 
 527       // If no dependency yet, use slice
 528       if (_dg.dep(s1)->in_cnt() == 0) {
 529         _dg.make_edge(slice, s1);
 530       }
 531       SWPointer p1(s1->as_Mem(), this);
 532       bool sink_dependent = true;
 533       for (int k = j - 1; k >= 0; k--) {
 534         Node* s2 = _nlist.at(k);
 535         if (s1->is_Load() && s2->is_Load())
 536           continue;
 537         SWPointer p2(s2->as_Mem(), this);
 538 
 539         int cmp = p1.cmp(p2);
 540         if (SuperWordRTDepCheck &&
 541             p1.base() != p2.base() && p1.valid() && p2.valid()) {
 542           // Create a runtime check to disambiguate
 543           OrderedPair pp(p1.base(), p2.base());
 544           _disjoint_ptrs.append_if_missing(pp);
 545         } else if (!SWPointer::not_equal(cmp)) {
 546           // Possibly same address
 547           _dg.make_edge(s1, s2);
 548           sink_dependent = false;
 549         }
 550       }
 551       if (sink_dependent) {
 552         _dg.make_edge(s1, slice_sink);
 553       }
 554     }
 555 #ifndef PRODUCT
 556     if (TraceSuperWord) {
 557       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
 558       for (int q = 0; q < _nlist.length(); q++) {
 559         _dg.print(_nlist.at(q));
 560       }
 561       tty->cr();
 562     }
 563 #endif
 564     _nlist.clear();
 565   }
 566 
 567 #ifndef PRODUCT
 568   if (TraceSuperWord) {
 569     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
 570     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
 571       _disjoint_ptrs.at(r).print();
 572       tty->cr();
 573     }
 574     tty->cr();
 575   }
 576 #endif
 577 }
 578 
 579 //---------------------------mem_slice_preds---------------------------
 580 // Return a memory slice (node list) in predecessor order starting at "start"
 581 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
 582   assert(preds.length() == 0, "start empty");
 583   Node* n = start;
 584   Node* prev = NULL;
 585   while (true) {
 586     assert(in_bb(n), "must be in block");
 587     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 588       Node* out = n->fast_out(i);
 589       if (out->is_Load()) {
 590         if (in_bb(out)) {
 591           preds.push(out);
 592         }
 593       } else {
 594         // FIXME
 595         if (out->is_MergeMem() && !in_bb(out)) {
 596           // Either unrolling is causing a memory edge not to disappear,
 597           // or need to run igvn.optimize() again before SLP
 598         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
 599           // Ditto.  Not sure what else to check further.
 600         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
 601           // StoreCM has an input edge used as a precedence edge.
 602           // Maybe an issue when oop stores are vectorized.
 603         } else {
 604           assert(out == prev || prev == NULL, "no branches off of store slice");
 605         }
 606       }
 607     }
 608     if (n == stop) break;
 609     preds.push(n);
 610     prev = n;
 611     n = n->in(MemNode::Memory);
 612   }
 613 }
 614 
 615 //------------------------------stmts_can_pack---------------------------
 616 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
 617 // s1 aligned at "align"
 618 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
 619 
 620   // Do not use superword for non-primitives
 621   BasicType bt1 = velt_basic_type(s1);
 622   BasicType bt2 = velt_basic_type(s2);
 623   if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
 624     return false;
 625   if (Matcher::max_vector_size(bt1) < 2) {
 626     return false; // No vectors for this type
 627   }
 628 
 629   if (isomorphic(s1, s2)) {
 630     if (independent(s1, s2)) {
 631       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
 632         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
 633           int s1_align = alignment(s1);
 634           int s2_align = alignment(s2);
 635           if (s1_align == top_align || s1_align == align) {
 636             if (s2_align == top_align || s2_align == align + data_size(s1)) {
 637               return true;
 638             }
 639           }
 640         }
 641       }
 642     }
 643   }
 644   return false;
 645 }
 646 
 647 //------------------------------exists_at---------------------------
 648 // Does s exist in a pack at position pos?
 649 bool SuperWord::exists_at(Node* s, uint pos) {
 650   for (int i = 0; i < _packset.length(); i++) {
 651     Node_List* p = _packset.at(i);
 652     if (p->at(pos) == s) {
 653       return true;
 654     }
 655   }
 656   return false;
 657 }
 658 
 659 //------------------------------are_adjacent_refs---------------------------
 660 // Is s1 immediately before s2 in memory?
 661 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
 662   if (!s1->is_Mem() || !s2->is_Mem()) return false;
 663   if (!in_bb(s1)    || !in_bb(s2))    return false;
 664 
 665   // Do not use superword for non-primitives
 666   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
 667       !is_java_primitive(s2->as_Mem()->memory_type())) {
 668     return false;
 669   }
 670 
 671   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
 672   // only pack memops that are in the same alias set until that's fixed.
 673   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
 674       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
 675     return false;
 676   SWPointer p1(s1->as_Mem(), this);
 677   SWPointer p2(s2->as_Mem(), this);
 678   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
 679   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
 680   return diff == data_size(s1);
 681 }
 682 
 683 //------------------------------isomorphic---------------------------
 684 // Are s1 and s2 similar?
 685 bool SuperWord::isomorphic(Node* s1, Node* s2) {
 686   if (s1->Opcode() != s2->Opcode()) return false;
 687   if (s1->req() != s2->req()) return false;
 688   if (s1->in(0) != s2->in(0)) return false;
 689   if (!same_velt_type(s1, s2)) return false;
 690   return true;
 691 }
 692 
 693 //------------------------------independent---------------------------
 694 // Is there no data path from s1 to s2 or s2 to s1?
 695 bool SuperWord::independent(Node* s1, Node* s2) {
 696   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
 697   int d1 = depth(s1);
 698   int d2 = depth(s2);
 699   if (d1 == d2) return s1 != s2;
 700   Node* deep    = d1 > d2 ? s1 : s2;
 701   Node* shallow = d1 > d2 ? s2 : s1;
 702 
 703   visited_clear();
 704 
 705   return independent_path(shallow, deep);
 706 }
 707 
 708 //------------------------------independent_path------------------------------
 709 // Helper for independent
 710 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
 711   if (dp >= 1000) return false; // stop deep recursion
 712   visited_set(deep);
 713   int shal_depth = depth(shallow);
 714   assert(shal_depth <= depth(deep), "must be");
 715   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
 716     Node* pred = preds.current();
 717     if (in_bb(pred) && !visited_test(pred)) {
 718       if (shallow == pred) {
 719         return false;
 720       }
 721       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
 722         return false;
 723       }
 724     }
 725   }
 726   return true;
 727 }
 728 
 729 //------------------------------set_alignment---------------------------
 730 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
 731   set_alignment(s1, align);
 732   if (align == top_align || align == bottom_align) {
 733     set_alignment(s2, align);
 734   } else {
 735     set_alignment(s2, align + data_size(s1));
 736   }
 737 }
 738 
 739 //------------------------------data_size---------------------------
 740 int SuperWord::data_size(Node* s) {
 741   int bsize = type2aelembytes(velt_basic_type(s));
 742   assert(bsize != 0, "valid size");
 743   return bsize;
 744 }
 745 
 746 //------------------------------extend_packlist---------------------------
 747 // Extend packset by following use->def and def->use links from pack members.
 748 void SuperWord::extend_packlist() {
 749   bool changed;
 750   do {
 751     changed = false;
 752     for (int i = 0; i < _packset.length(); i++) {
 753       Node_List* p = _packset.at(i);
 754       changed |= follow_use_defs(p);
 755       changed |= follow_def_uses(p);
 756     }
 757   } while (changed);
 758 
 759 #ifndef PRODUCT
 760   if (TraceSuperWord) {
 761     tty->print_cr("\nAfter extend_packlist");
 762     print_packset();
 763   }
 764 #endif
 765 }
 766 
 767 //------------------------------follow_use_defs---------------------------
 768 // Extend the packset by visiting operand definitions of nodes in pack p
 769 bool SuperWord::follow_use_defs(Node_List* p) {
 770   assert(p->size() == 2, "just checking");
 771   Node* s1 = p->at(0);
 772   Node* s2 = p->at(1);
 773   assert(s1->req() == s2->req(), "just checking");
 774   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
 775 
 776   if (s1->is_Load()) return false;
 777 
 778   int align = alignment(s1);
 779   bool changed = false;
 780   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
 781   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
 782   for (int j = start; j < end; j++) {
 783     Node* t1 = s1->in(j);
 784     Node* t2 = s2->in(j);
 785     if (!in_bb(t1) || !in_bb(t2))
 786       continue;
 787     if (stmts_can_pack(t1, t2, align)) {
 788       if (est_savings(t1, t2) >= 0) {
 789         Node_List* pair = new Node_List();
 790         pair->push(t1);
 791         pair->push(t2);
 792         _packset.append(pair);
 793         set_alignment(t1, t2, align);
 794         changed = true;
 795       }
 796     }
 797   }
 798   return changed;
 799 }
 800 
 801 //------------------------------follow_def_uses---------------------------
 802 // Extend the packset by visiting uses of nodes in pack p
 803 bool SuperWord::follow_def_uses(Node_List* p) {
 804   bool changed = false;
 805   Node* s1 = p->at(0);
 806   Node* s2 = p->at(1);
 807   assert(p->size() == 2, "just checking");
 808   assert(s1->req() == s2->req(), "just checking");
 809   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
 810 
 811   if (s1->is_Store()) return false;
 812 
 813   int align = alignment(s1);
 814   int savings = -1;
 815   Node* u1 = NULL;
 816   Node* u2 = NULL;
 817   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
 818     Node* t1 = s1->fast_out(i);
 819     if (!in_bb(t1)) continue;
 820     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
 821       Node* t2 = s2->fast_out(j);
 822       if (!in_bb(t2)) continue;
 823       if (!opnd_positions_match(s1, t1, s2, t2))
 824         continue;
 825       if (stmts_can_pack(t1, t2, align)) {
 826         int my_savings = est_savings(t1, t2);
 827         if (my_savings > savings) {
 828           savings = my_savings;
 829           u1 = t1;
 830           u2 = t2;
 831         }
 832       }
 833     }
 834   }
 835   if (savings >= 0) {
 836     Node_List* pair = new Node_List();
 837     pair->push(u1);
 838     pair->push(u2);
 839     _packset.append(pair);
 840     set_alignment(u1, u2, align);
 841     changed = true;
 842   }
 843   return changed;
 844 }
 845 
 846 //---------------------------opnd_positions_match-------------------------
 847 // Is the use of d1 in u1 at the same operand position as d2 in u2?
 848 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
 849   uint ct = u1->req();
 850   if (ct != u2->req()) return false;
 851   uint i1 = 0;
 852   uint i2 = 0;
 853   do {
 854     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
 855     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
 856     if (i1 != i2) {
 857       if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
 858         // Further analysis relies on operands position matching.
 859         u2->swap_edges(i1, i2);
 860       } else {
 861         return false;
 862       }
 863     }
 864   } while (i1 < ct);
 865   return true;
 866 }
 867 
 868 //------------------------------est_savings---------------------------
 869 // Estimate the savings from executing s1 and s2 as a pack
 870 int SuperWord::est_savings(Node* s1, Node* s2) {
 871   int save_in = 2 - 1; // 2 operations per instruction in packed form
 872 
 873   // inputs
 874   for (uint i = 1; i < s1->req(); i++) {
 875     Node* x1 = s1->in(i);
 876     Node* x2 = s2->in(i);
 877     if (x1 != x2) {
 878       if (are_adjacent_refs(x1, x2)) {
 879         save_in += adjacent_profit(x1, x2);
 880       } else if (!in_packset(x1, x2)) {
 881         save_in -= pack_cost(2);
 882       } else {
 883         save_in += unpack_cost(2);
 884       }
 885     }
 886   }
 887 
 888   // uses of result
 889   uint ct = 0;
 890   int save_use = 0;
 891   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
 892     Node* s1_use = s1->fast_out(i);
 893     for (int j = 0; j < _packset.length(); j++) {
 894       Node_List* p = _packset.at(j);
 895       if (p->at(0) == s1_use) {
 896         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
 897           Node* s2_use = s2->fast_out(k);
 898           if (p->at(p->size()-1) == s2_use) {
 899             ct++;
 900             if (are_adjacent_refs(s1_use, s2_use)) {
 901               save_use += adjacent_profit(s1_use, s2_use);
 902             }
 903           }
 904         }
 905       }
 906     }
 907   }
 908 
 909   if (ct < s1->outcnt()) save_use += unpack_cost(1);
 910   if (ct < s2->outcnt()) save_use += unpack_cost(1);
 911 
 912   return MAX2(save_in, save_use);
 913 }
 914 
 915 //------------------------------costs---------------------------
 916 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
 917 int SuperWord::pack_cost(int ct)   { return ct; }
 918 int SuperWord::unpack_cost(int ct) { return ct; }
 919 
 920 //------------------------------combine_packs---------------------------
 921 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
 922 void SuperWord::combine_packs() {
 923   bool changed = true;
 924   // Combine packs regardless max vector size.
 925   while (changed) {
 926     changed = false;
 927     for (int i = 0; i < _packset.length(); i++) {
 928       Node_List* p1 = _packset.at(i);
 929       if (p1 == NULL) continue;
 930       for (int j = 0; j < _packset.length(); j++) {
 931         Node_List* p2 = _packset.at(j);
 932         if (p2 == NULL) continue;
 933         if (i == j) continue;
 934         if (p1->at(p1->size()-1) == p2->at(0)) {
 935           for (uint k = 1; k < p2->size(); k++) {
 936             p1->push(p2->at(k));
 937           }
 938           _packset.at_put(j, NULL);
 939           changed = true;
 940         }
 941       }
 942     }
 943   }
 944 
 945   // Split packs which have size greater then max vector size.
 946   for (int i = 0; i < _packset.length(); i++) {
 947     Node_List* p1 = _packset.at(i);
 948     if (p1 != NULL) {
 949       BasicType bt = velt_basic_type(p1->at(0));
 950       uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
 951       assert(is_power_of_2(max_vlen), "sanity");
 952       uint psize = p1->size();
 953       if (!is_power_of_2(psize)) {
 954         // Skip pack which can't be vector.
 955         // case1: for(...) { a[i] = i; }    elements values are different (i+x)
 956         // case2: for(...) { a[i] = b[i+1]; }  can't align both, load and store
 957         _packset.at_put(i, NULL);
 958         continue;
 959       }
 960       if (psize > max_vlen) {
 961         Node_List* pack = new Node_List();
 962         for (uint j = 0; j < psize; j++) {
 963           pack->push(p1->at(j));
 964           if (pack->size() >= max_vlen) {
 965             assert(is_power_of_2(pack->size()), "sanity");
 966             _packset.append(pack);
 967             pack = new Node_List();
 968           }
 969         }
 970         _packset.at_put(i, NULL);
 971       }
 972     }
 973   }
 974 
 975   // Compress list.
 976   for (int i = _packset.length() - 1; i >= 0; i--) {
 977     Node_List* p1 = _packset.at(i);
 978     if (p1 == NULL) {
 979       _packset.remove_at(i);
 980     }
 981   }
 982 
 983 #ifndef PRODUCT
 984   if (TraceSuperWord) {
 985     tty->print_cr("\nAfter combine_packs");
 986     print_packset();
 987   }
 988 #endif
 989 }
 990 
 991 //-----------------------------construct_my_pack_map--------------------------
 992 // Construct the map from nodes to packs.  Only valid after the
 993 // point where a node is only in one pack (after combine_packs).
 994 void SuperWord::construct_my_pack_map() {
 995   Node_List* rslt = NULL;
 996   for (int i = 0; i < _packset.length(); i++) {
 997     Node_List* p = _packset.at(i);
 998     for (uint j = 0; j < p->size(); j++) {
 999       Node* s = p->at(j);
1000       assert(my_pack(s) == NULL, "only in one pack");
1001       set_my_pack(s, p);
1002     }
1003   }
1004 }
1005 
1006 //------------------------------filter_packs---------------------------
1007 // Remove packs that are not implemented or not profitable.
1008 void SuperWord::filter_packs() {
1009 
1010   // Remove packs that are not implemented
1011   for (int i = _packset.length() - 1; i >= 0; i--) {
1012     Node_List* pk = _packset.at(i);
1013     bool impl = implemented(pk);
1014     if (!impl) {
1015 #ifndef PRODUCT
1016       if (TraceSuperWord && Verbose) {
1017         tty->print_cr("Unimplemented");
1018         pk->at(0)->dump();
1019       }
1020 #endif
1021       remove_pack_at(i);
1022     }
1023   }
1024 
1025   // Remove packs that are not profitable
1026   bool changed;
1027   do {
1028     changed = false;
1029     for (int i = _packset.length() - 1; i >= 0; i--) {
1030       Node_List* pk = _packset.at(i);
1031       bool prof = profitable(pk);
1032       if (!prof) {
1033 #ifndef PRODUCT
1034         if (TraceSuperWord && Verbose) {
1035           tty->print_cr("Unprofitable");
1036           pk->at(0)->dump();
1037         }
1038 #endif
1039         remove_pack_at(i);
1040         changed = true;
1041       }
1042     }
1043   } while (changed);
1044 
1045 #ifndef PRODUCT
1046   if (TraceSuperWord) {
1047     tty->print_cr("\nAfter filter_packs");
1048     print_packset();
1049     tty->cr();
1050   }
1051 #endif
1052 }
1053 
1054 //------------------------------implemented---------------------------
1055 // Can code be generated for pack p?
1056 bool SuperWord::implemented(Node_List* p) {
1057   Node* p0 = p->at(0);
1058   return VectorNode::implemented(p0->Opcode(), p->size(), velt_basic_type(p0));
1059 }
1060 
1061 //------------------------------profitable---------------------------
1062 // For pack p, are all operands and all uses (with in the block) vector?
1063 bool SuperWord::profitable(Node_List* p) {
1064   Node* p0 = p->at(0);
1065   uint start, end;
1066   vector_opd_range(p0, &start, &end);
1067 
1068   // Return false if some input is not vector and inside block
1069   for (uint i = start; i < end; i++) {
1070     if (!is_vector_use(p0, i)) {
1071       // For now, return false if not scalar promotion case (inputs are the same.)
1072       // Later, implement PackNode and allow differing, non-vector inputs
1073       // (maybe just the ones from outside the block.)
1074       Node* p0_def = p0->in(i);
1075       for (uint j = 1; j < p->size(); j++) {
1076         Node* use = p->at(j);
1077         Node* def = use->in(i);
1078         if (p0_def != def)
1079           return false;
1080       }
1081     }
1082   }
1083   if (!p0->is_Store()) {
1084     // For now, return false if not all uses are vector.
1085     // Later, implement ExtractNode and allow non-vector uses (maybe
1086     // just the ones outside the block.)
1087     for (uint i = 0; i < p->size(); i++) {
1088       Node* def = p->at(i);
1089       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1090         Node* use = def->fast_out(j);
1091         for (uint k = 0; k < use->req(); k++) {
1092           Node* n = use->in(k);
1093           if (def == n) {
1094             if (!is_vector_use(use, k)) {
1095               return false;
1096             }
1097           }
1098         }
1099       }
1100     }
1101   }
1102   return true;
1103 }
1104 
1105 //------------------------------schedule---------------------------
1106 // Adjust the memory graph for the packed operations
1107 void SuperWord::schedule() {
1108 
1109   // Co-locate in the memory graph the members of each memory pack
1110   for (int i = 0; i < _packset.length(); i++) {
1111     co_locate_pack(_packset.at(i));
1112   }
1113 }
1114 
1115 //-------------------------------remove_and_insert-------------------
1116 // Remove "current" from its current position in the memory graph and insert
1117 // it after the appropriate insertion point (lip or uip).
1118 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
1119                                   Node *uip, Unique_Node_List &sched_before) {
1120   Node* my_mem = current->in(MemNode::Memory);
1121   bool sched_up = sched_before.member(current);
1122 
1123   // remove current_store from its current position in the memmory graph
1124   for (DUIterator i = current->outs(); current->has_out(i); i++) {
1125     Node* use = current->out(i);
1126     if (use->is_Mem()) {
1127       assert(use->in(MemNode::Memory) == current, "must be");
1128       if (use == prev) { // connect prev to my_mem
1129           _igvn.replace_input_of(use, MemNode::Memory, my_mem);
1130           --i; //deleted this edge; rescan position
1131       } else if (sched_before.member(use)) {
1132         if (!sched_up) { // Will be moved together with current
1133           _igvn.replace_input_of(use, MemNode::Memory, uip);
1134           --i; //deleted this edge; rescan position
1135         }
1136       } else {
1137         if (sched_up) { // Will be moved together with current
1138           _igvn.replace_input_of(use, MemNode::Memory, lip);
1139           --i; //deleted this edge; rescan position
1140         }
1141       }
1142     }
1143   }
1144 
1145   Node *insert_pt =  sched_up ?  uip : lip;
1146 
1147   // all uses of insert_pt's memory state should use current's instead
1148   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
1149     Node* use = insert_pt->out(i);
1150     if (use->is_Mem()) {
1151       assert(use->in(MemNode::Memory) == insert_pt, "must be");
1152       _igvn.replace_input_of(use, MemNode::Memory, current);
1153       --i; //deleted this edge; rescan position
1154     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
1155       uint pos; //lip (lower insert point) must be the last one in the memory slice
1156       for (pos=1; pos < use->req(); pos++) {
1157         if (use->in(pos) == insert_pt) break;
1158       }
1159       _igvn.replace_input_of(use, pos, current);
1160       --i;
1161     }
1162   }
1163 
1164   //connect current to insert_pt
1165   _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
1166 }
1167 
1168 //------------------------------co_locate_pack----------------------------------
1169 // To schedule a store pack, we need to move any sandwiched memory ops either before
1170 // or after the pack, based upon dependence information:
1171 // (1) If any store in the pack depends on the sandwiched memory op, the
1172 //     sandwiched memory op must be scheduled BEFORE the pack;
1173 // (2) If a sandwiched memory op depends on any store in the pack, the
1174 //     sandwiched memory op must be scheduled AFTER the pack;
1175 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
1176 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
1177 //     scheduled before the pack, memB must also be scheduled before the pack;
1178 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
1179 //     schedule this store AFTER the pack
1180 // (5) We know there is no dependence cycle, so there in no other case;
1181 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
1182 //
1183 // To schedule a load pack, we use the memory state of either the first or the last load in
1184 // the pack, based on the dependence constraint.
1185 void SuperWord::co_locate_pack(Node_List* pk) {
1186   if (pk->at(0)->is_Store()) {
1187     MemNode* first     = executed_first(pk)->as_Mem();
1188     MemNode* last      = executed_last(pk)->as_Mem();
1189     Unique_Node_List schedule_before_pack;
1190     Unique_Node_List memops;
1191 
1192     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
1193     MemNode* previous  = last;
1194     while (true) {
1195       assert(in_bb(current), "stay in block");
1196       memops.push(previous);
1197       for (DUIterator i = current->outs(); current->has_out(i); i++) {
1198         Node* use = current->out(i);
1199         if (use->is_Mem() && use != previous)
1200           memops.push(use);
1201       }
1202       if (current == first) break;
1203       previous = current;
1204       current  = current->in(MemNode::Memory)->as_Mem();
1205     }
1206 
1207     // determine which memory operations should be scheduled before the pack
1208     for (uint i = 1; i < memops.size(); i++) {
1209       Node *s1 = memops.at(i);
1210       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
1211         for (uint j = 0; j< i; j++) {
1212           Node *s2 = memops.at(j);
1213           if (!independent(s1, s2)) {
1214             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
1215               schedule_before_pack.push(s1); // s1 must be scheduled before
1216               Node_List* mem_pk = my_pack(s1);
1217               if (mem_pk != NULL) {
1218                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
1219                   Node* s = mem_pk->at(ii);  // follow partner
1220                   if (memops.member(s) && !schedule_before_pack.member(s))
1221                     schedule_before_pack.push(s);
1222                 }
1223               }
1224               break;
1225             }
1226           }
1227         }
1228       }
1229     }
1230 
1231     Node*    upper_insert_pt = first->in(MemNode::Memory);
1232     // Following code moves loads connected to upper_insert_pt below aliased stores.
1233     // Collect such loads here and reconnect them back to upper_insert_pt later.
1234     memops.clear();
1235     for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
1236       Node* use = upper_insert_pt->out(i);
1237       if (!use->is_Store())
1238         memops.push(use);
1239     }
1240 
1241     MemNode* lower_insert_pt = last;
1242     previous                 = last; //previous store in pk
1243     current                  = last->in(MemNode::Memory)->as_Mem();
1244 
1245     // start scheduling from "last" to "first"
1246     while (true) {
1247       assert(in_bb(current), "stay in block");
1248       assert(in_pack(previous, pk), "previous stays in pack");
1249       Node* my_mem = current->in(MemNode::Memory);
1250 
1251       if (in_pack(current, pk)) {
1252         // Forward users of my memory state (except "previous) to my input memory state
1253         for (DUIterator i = current->outs(); current->has_out(i); i++) {
1254           Node* use = current->out(i);
1255           if (use->is_Mem() && use != previous) {
1256             assert(use->in(MemNode::Memory) == current, "must be");
1257             if (schedule_before_pack.member(use)) {
1258               _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
1259             } else {
1260               _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
1261             }
1262             --i; // deleted this edge; rescan position
1263           }
1264         }
1265         previous = current;
1266       } else { // !in_pack(current, pk) ==> a sandwiched store
1267         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
1268       }
1269 
1270       if (current == first) break;
1271       current = my_mem->as_Mem();
1272     } // end while
1273 
1274     // Reconnect loads back to upper_insert_pt.
1275     for (uint i = 0; i < memops.size(); i++) {
1276       Node *ld = memops.at(i);
1277       if (ld->in(MemNode::Memory) != upper_insert_pt) {
1278         _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
1279       }
1280     }
1281   } else if (pk->at(0)->is_Load()) { //load
1282     // all loads in the pack should have the same memory state. By default,
1283     // we use the memory state of the last load. However, if any load could
1284     // not be moved down due to the dependence constraint, we use the memory
1285     // state of the first load.
1286     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
1287     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
1288     bool schedule_last = true;
1289     for (uint i = 0; i < pk->size(); i++) {
1290       Node* ld = pk->at(i);
1291       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
1292            current=current->in(MemNode::Memory)) {
1293         assert(current != first_mem, "corrupted memory graph");
1294         if(current->is_Mem() && !independent(current, ld)){
1295           schedule_last = false; // a later store depends on this load
1296           break;
1297         }
1298       }
1299     }
1300 
1301     Node* mem_input = schedule_last ? last_mem : first_mem;
1302     _igvn.hash_delete(mem_input);
1303     // Give each load the same memory state
1304     for (uint i = 0; i < pk->size(); i++) {
1305       LoadNode* ld = pk->at(i)->as_Load();
1306       _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
1307     }
1308   }
1309 }
1310 
1311 //------------------------------output---------------------------
1312 // Convert packs into vector node operations
1313 void SuperWord::output() {
1314   if (_packset.length() == 0) return;
1315 
1316 #ifndef PRODUCT
1317   if (TraceLoopOpts) {
1318     tty->print("SuperWord    ");
1319     lpt()->dump_head();
1320   }
1321 #endif
1322 
1323   // MUST ENSURE main loop's initial value is properly aligned:
1324   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
1325 
1326   align_initial_loop_index(align_to_ref());
1327 
1328   // Insert extract (unpack) operations for scalar uses
1329   for (int i = 0; i < _packset.length(); i++) {
1330     insert_extracts(_packset.at(i));
1331   }
1332 
1333   for (int i = 0; i < _block.length(); i++) {
1334     Node* n = _block.at(i);
1335     Node_List* p = my_pack(n);
1336     if (p && n == executed_last(p)) {
1337       uint vlen = p->size();
1338       Node* vn = NULL;
1339       Node* low_adr = p->at(0);
1340       Node* first   = executed_first(p);
1341       int   opc = n->Opcode();
1342       if (n->is_Load()) {
1343         Node* ctl = n->in(MemNode::Control);
1344         Node* mem = first->in(MemNode::Memory);
1345         Node* adr = low_adr->in(MemNode::Address);
1346         const TypePtr* atyp = n->adr_type();
1347         vn = LoadVectorNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n));
1348       } else if (n->is_Store()) {
1349         // Promote value to be stored to vector
1350         Node* val = vector_opd(p, MemNode::ValueIn);
1351         Node* ctl = n->in(MemNode::Control);
1352         Node* mem = first->in(MemNode::Memory);
1353         Node* adr = low_adr->in(MemNode::Address);
1354         const TypePtr* atyp = n->adr_type();
1355         vn = StoreVectorNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
1356       } else if (n->req() == 3) {
1357         // Promote operands to vector
1358         Node* in1 = vector_opd(p, 1);
1359         Node* in2 = vector_opd(p, 2);
1360         vn = VectorNode::make(_phase->C, opc, in1, in2, vlen, velt_basic_type(n));
1361       } else {
1362         ShouldNotReachHere();
1363       }
1364       assert(vn != NULL, "sanity");
1365       _phase->_igvn.register_new_node_with_optimizer(vn);
1366       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
1367       for (uint j = 0; j < p->size(); j++) {
1368         Node* pm = p->at(j);
1369         _igvn.replace_node(pm, vn);
1370       }
1371       _igvn._worklist.push(vn);
1372 #ifdef ASSERT
1373       if (TraceNewVectors) {
1374         tty->print("new Vector node: ");
1375         vn->dump();
1376       }
1377 #endif
1378     }
1379   }
1380 }
1381 
1382 //------------------------------vector_opd---------------------------
1383 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
1384 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
1385   Node* p0 = p->at(0);
1386   uint vlen = p->size();
1387   Node* opd = p0->in(opd_idx);
1388 
1389   bool same_opd = true;
1390   for (uint i = 1; i < vlen; i++) {
1391     Node* pi = p->at(i);
1392     Node* in = pi->in(opd_idx);
1393     if (opd != in) {
1394       same_opd = false;
1395       break;
1396     }
1397   }
1398 
1399   if (same_opd) {
1400     if (opd->is_Vector() || opd->is_LoadVector()) {
1401       return opd; // input is matching vector
1402     }
1403     if (!VectorNode::needs_vector_input(p0, opd_idx)) {
1404       // no vector is needed (shifts count)
1405       if (!opd->is_Con()) {
1406         assert(opd->bottom_type()->isa_int(), "int type only");
1407         // Move int value to xmm register
1408         Node* in = new (_phase->C, 2) MoveI2FNode(opd);
1409         _phase->_igvn.register_new_node_with_optimizer(in);
1410         _phase->set_ctrl(in, _phase->get_ctrl(opd));
1411         opd = in;
1412       }
1413       return opd;
1414     }
1415     assert(!opd->is_StoreVector(), "such vector is not expected here");
1416     // Convert scalar input to vector with the same number of elements as
1417     // p0's vector. Use p0's type because size of operand's container in
1418     // vector should match p0's size regardless operand's size.
1419     const Type* p0_t = velt_type(p0);
1420     VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, p0_t);
1421 
1422     _phase->_igvn.register_new_node_with_optimizer(vn);
1423     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
1424 #ifdef ASSERT
1425     if (TraceNewVectors) {
1426       tty->print("new Vector node: ");
1427       vn->dump();
1428     }
1429 #endif
1430     return vn;
1431   }
1432 
1433   // Insert pack operation
1434   BasicType bt = velt_basic_type(p0);
1435   PackNode* pk = PackNode::make(_phase->C, opd, vlen, bt);
1436   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
1437 
1438   for (uint i = 1; i < vlen; i++) {
1439     Node* pi = p->at(i);
1440     Node* in = pi->in(opd_idx);
1441     assert(my_pack(in) == NULL, "Should already have been unpacked");
1442     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
1443     pk->add_opd(i, in);
1444   }
1445   _phase->_igvn.register_new_node_with_optimizer(pk);
1446   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
1447 #ifdef ASSERT
1448     if (TraceNewVectors) {
1449       tty->print("new Vector node: ");
1450       pk->dump();
1451     }
1452 #endif
1453   return pk;
1454 }
1455 
1456 //------------------------------insert_extracts---------------------------
1457 // If a use of pack p is not a vector use, then replace the
1458 // use with an extract operation.
1459 void SuperWord::insert_extracts(Node_List* p) {
1460   if (p->at(0)->is_Store()) return;
1461   assert(_n_idx_list.is_empty(), "empty (node,index) list");
1462 
1463   // Inspect each use of each pack member.  For each use that is
1464   // not a vector use, replace the use with an extract operation.
1465 
1466   for (uint i = 0; i < p->size(); i++) {
1467     Node* def = p->at(i);
1468     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1469       Node* use = def->fast_out(j);
1470       for (uint k = 0; k < use->req(); k++) {
1471         Node* n = use->in(k);
1472         if (def == n) {
1473           if (!is_vector_use(use, k)) {
1474             _n_idx_list.push(use, k);
1475           }
1476         }
1477       }
1478     }
1479   }
1480 
1481   while (_n_idx_list.is_nonempty()) {
1482     Node* use = _n_idx_list.node();
1483     int   idx = _n_idx_list.index();
1484     _n_idx_list.pop();
1485     Node* def = use->in(idx);
1486 
1487     // Insert extract operation
1488     _igvn.hash_delete(def);
1489     int def_pos = alignment(def) / data_size(def);
1490 
1491     Node* ex = ExtractNode::make(_phase->C, def, def_pos, velt_basic_type(def));
1492     _phase->_igvn.register_new_node_with_optimizer(ex);
1493     _phase->set_ctrl(ex, _phase->get_ctrl(def));
1494     _igvn.replace_input_of(use, idx, ex);
1495     _igvn._worklist.push(def);
1496 
1497     bb_insert_after(ex, bb_idx(def));
1498     set_velt_type(ex, velt_type(def));
1499   }
1500 }
1501 
1502 //------------------------------is_vector_use---------------------------
1503 // Is use->in(u_idx) a vector use?
1504 bool SuperWord::is_vector_use(Node* use, int u_idx) {
1505   Node_List* u_pk = my_pack(use);
1506   if (u_pk == NULL) return false;
1507   Node* def = use->in(u_idx);
1508   Node_List* d_pk = my_pack(def);
1509   if (d_pk == NULL) {
1510     // check for scalar promotion
1511     Node* n = u_pk->at(0)->in(u_idx);
1512     for (uint i = 1; i < u_pk->size(); i++) {
1513       if (u_pk->at(i)->in(u_idx) != n) return false;
1514     }
1515     return true;
1516   }
1517   if (u_pk->size() != d_pk->size())
1518     return false;
1519   for (uint i = 0; i < u_pk->size(); i++) {
1520     Node* ui = u_pk->at(i);
1521     Node* di = d_pk->at(i);
1522     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
1523       return false;
1524   }
1525   return true;
1526 }
1527 
1528 //------------------------------construct_bb---------------------------
1529 // Construct reverse postorder list of block members
1530 void SuperWord::construct_bb() {
1531   Node* entry = bb();
1532 
1533   assert(_stk.length() == 0,            "stk is empty");
1534   assert(_block.length() == 0,          "block is empty");
1535   assert(_data_entry.length() == 0,     "data_entry is empty");
1536   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
1537   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
1538 
1539   // Find non-control nodes with no inputs from within block,
1540   // create a temporary map from node _idx to bb_idx for use
1541   // by the visited and post_visited sets,
1542   // and count number of nodes in block.
1543   int bb_ct = 0;
1544   for (uint i = 0; i < lpt()->_body.size(); i++ ) {
1545     Node *n = lpt()->_body.at(i);
1546     set_bb_idx(n, i); // Create a temporary map
1547     if (in_bb(n)) {
1548       bb_ct++;
1549       if (!n->is_CFG()) {
1550         bool found = false;
1551         for (uint j = 0; j < n->req(); j++) {
1552           Node* def = n->in(j);
1553           if (def && in_bb(def)) {
1554             found = true;
1555             break;
1556           }
1557         }
1558         if (!found) {
1559           assert(n != entry, "can't be entry");
1560           _data_entry.push(n);
1561         }
1562       }
1563     }
1564   }
1565 
1566   // Find memory slices (head and tail)
1567   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
1568     Node *n = lp()->fast_out(i);
1569     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
1570       Node* n_tail  = n->in(LoopNode::LoopBackControl);
1571       if (n_tail != n->in(LoopNode::EntryControl)) {
1572         _mem_slice_head.push(n);
1573         _mem_slice_tail.push(n_tail);
1574       }
1575     }
1576   }
1577 
1578   // Create an RPO list of nodes in block
1579 
1580   visited_clear();
1581   post_visited_clear();
1582 
1583   // Push all non-control nodes with no inputs from within block, then control entry
1584   for (int j = 0; j < _data_entry.length(); j++) {
1585     Node* n = _data_entry.at(j);
1586     visited_set(n);
1587     _stk.push(n);
1588   }
1589   visited_set(entry);
1590   _stk.push(entry);
1591 
1592   // Do a depth first walk over out edges
1593   int rpo_idx = bb_ct - 1;
1594   int size;
1595   while ((size = _stk.length()) > 0) {
1596     Node* n = _stk.top(); // Leave node on stack
1597     if (!visited_test_set(n)) {
1598       // forward arc in graph
1599     } else if (!post_visited_test(n)) {
1600       // cross or back arc
1601       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1602         Node *use = n->fast_out(i);
1603         if (in_bb(use) && !visited_test(use) &&
1604             // Don't go around backedge
1605             (!use->is_Phi() || n == entry)) {
1606           _stk.push(use);
1607         }
1608       }
1609       if (_stk.length() == size) {
1610         // There were no additional uses, post visit node now
1611         _stk.pop(); // Remove node from stack
1612         assert(rpo_idx >= 0, "");
1613         _block.at_put_grow(rpo_idx, n);
1614         rpo_idx--;
1615         post_visited_set(n);
1616         assert(rpo_idx >= 0 || _stk.is_empty(), "");
1617       }
1618     } else {
1619       _stk.pop(); // Remove post-visited node from stack
1620     }
1621   }
1622 
1623   // Create real map of block indices for nodes
1624   for (int j = 0; j < _block.length(); j++) {
1625     Node* n = _block.at(j);
1626     set_bb_idx(n, j);
1627   }
1628 
1629   initialize_bb(); // Ensure extra info is allocated.
1630 
1631 #ifndef PRODUCT
1632   if (TraceSuperWord) {
1633     print_bb();
1634     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
1635     for (int m = 0; m < _data_entry.length(); m++) {
1636       tty->print("%3d ", m);
1637       _data_entry.at(m)->dump();
1638     }
1639     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
1640     for (int m = 0; m < _mem_slice_head.length(); m++) {
1641       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
1642       tty->print("    ");    _mem_slice_tail.at(m)->dump();
1643     }
1644   }
1645 #endif
1646   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
1647 }
1648 
1649 //------------------------------initialize_bb---------------------------
1650 // Initialize per node info
1651 void SuperWord::initialize_bb() {
1652   Node* last = _block.at(_block.length() - 1);
1653   grow_node_info(bb_idx(last));
1654 }
1655 
1656 //------------------------------bb_insert_after---------------------------
1657 // Insert n into block after pos
1658 void SuperWord::bb_insert_after(Node* n, int pos) {
1659   int n_pos = pos + 1;
1660   // Make room
1661   for (int i = _block.length() - 1; i >= n_pos; i--) {
1662     _block.at_put_grow(i+1, _block.at(i));
1663   }
1664   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
1665     _node_info.at_put_grow(j+1, _node_info.at(j));
1666   }
1667   // Set value
1668   _block.at_put_grow(n_pos, n);
1669   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
1670   // Adjust map from node->_idx to _block index
1671   for (int i = n_pos; i < _block.length(); i++) {
1672     set_bb_idx(_block.at(i), i);
1673   }
1674 }
1675 
1676 //------------------------------compute_max_depth---------------------------
1677 // Compute max depth for expressions from beginning of block
1678 // Use to prune search paths during test for independence.
1679 void SuperWord::compute_max_depth() {
1680   int ct = 0;
1681   bool again;
1682   do {
1683     again = false;
1684     for (int i = 0; i < _block.length(); i++) {
1685       Node* n = _block.at(i);
1686       if (!n->is_Phi()) {
1687         int d_orig = depth(n);
1688         int d_in   = 0;
1689         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
1690           Node* pred = preds.current();
1691           if (in_bb(pred)) {
1692             d_in = MAX2(d_in, depth(pred));
1693           }
1694         }
1695         if (d_in + 1 != d_orig) {
1696           set_depth(n, d_in + 1);
1697           again = true;
1698         }
1699       }
1700     }
1701     ct++;
1702   } while (again);
1703 #ifndef PRODUCT
1704   if (TraceSuperWord && Verbose)
1705     tty->print_cr("compute_max_depth iterated: %d times", ct);
1706 #endif
1707 }
1708 
1709 //-------------------------compute_vector_element_type-----------------------
1710 // Compute necessary vector element type for expressions
1711 // This propagates backwards a narrower integer type when the
1712 // upper bits of the value are not needed.
1713 // Example:  char a,b,c;  a = b + c;
1714 // Normally the type of the add is integer, but for packed character
1715 // operations the type of the add needs to be char.
1716 void SuperWord::compute_vector_element_type() {
1717 #ifndef PRODUCT
1718   if (TraceSuperWord && Verbose)
1719     tty->print_cr("\ncompute_velt_type:");
1720 #endif
1721 
1722   // Initial type
1723   for (int i = 0; i < _block.length(); i++) {
1724     Node* n = _block.at(i);
1725     set_velt_type(n, container_type(n));
1726   }
1727 
1728   // Propagate narrowed type backwards through operations
1729   // that don't depend on higher order bits
1730   for (int i = _block.length() - 1; i >= 0; i--) {
1731     Node* n = _block.at(i);
1732     // Only integer types need be examined
1733     const Type* vt = velt_type(n);
1734     if (vt->basic_type() == T_INT) {
1735       uint start, end;
1736       vector_opd_range(n, &start, &end);
1737       const Type* vt = velt_type(n);
1738 
1739       for (uint j = start; j < end; j++) {
1740         Node* in  = n->in(j);
1741         // Don't propagate through a type conversion
1742         if (in_bb(in) && velt_type(in)->basic_type() == T_INT) {
1743           bool same_type = true;
1744           for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
1745             Node *use = in->fast_out(k);
1746             if (!in_bb(use) || !same_velt_type(use, n)) {
1747               same_type = false;
1748               break;
1749             }
1750           }
1751           if (same_type) {
1752             set_velt_type(in, vt);
1753           }
1754         }
1755       }
1756     }
1757   }
1758 #ifndef PRODUCT
1759   if (TraceSuperWord && Verbose) {
1760     for (int i = 0; i < _block.length(); i++) {
1761       Node* n = _block.at(i);
1762       velt_type(n)->dump();
1763       tty->print("\t");
1764       n->dump();
1765     }
1766   }
1767 #endif
1768 }
1769 
1770 //------------------------------memory_alignment---------------------------
1771 // Alignment within a vector memory reference
1772 int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
1773   SWPointer p(s, this);
1774   if (!p.valid()) {
1775     return bottom_align;
1776   }
1777   int vw = vector_width_in_bytes(s);
1778   if (vw < 2) {
1779     return bottom_align; // No vectors for this type
1780   }
1781   int offset  = p.offset_in_bytes();
1782   offset     += iv_adjust_in_bytes;
1783   int off_rem = offset % vw;
1784   int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
1785   return off_mod;
1786 }
1787 
1788 //---------------------------container_type---------------------------
1789 // Smallest type containing range of values
1790 const Type* SuperWord::container_type(Node* n) {
1791   if (n->is_Mem()) {
1792     return Type::get_const_basic_type(n->as_Mem()->memory_type());
1793   }
1794   const Type* t = _igvn.type(n);
1795   if (t->basic_type() == T_INT) {
1796     if (t->higher_equal(TypeInt::BOOL))  return TypeInt::BOOL;
1797     if (t->higher_equal(TypeInt::BYTE))  return TypeInt::BYTE;
1798     if (t->higher_equal(TypeInt::CHAR))  return TypeInt::CHAR;
1799     if (t->higher_equal(TypeInt::SHORT)) return TypeInt::SHORT;
1800     return TypeInt::INT;
1801   }
1802   return t;
1803 }
1804 
1805 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
1806   const Type* vt1 = velt_type(n1);
1807   const Type* vt2 = velt_type(n1);
1808   if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
1809     // Compare vectors element sizes for integer types.
1810     return data_size(n1) == data_size(n2);
1811   }
1812   return vt1 == vt2;
1813 }
1814 
1815 //-------------------------vector_opd_range-----------------------
1816 // (Start, end] half-open range defining which operands are vector
1817 void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
1818   switch (n->Opcode()) {
1819   case Op_LoadB:   case Op_LoadUB:
1820   case Op_LoadS:   case Op_LoadUS:
1821   case Op_LoadI:   case Op_LoadL:
1822   case Op_LoadF:   case Op_LoadD:
1823   case Op_LoadP:
1824     *start = 0;
1825     *end   = 0;
1826     return;
1827   case Op_StoreB:  case Op_StoreC:
1828   case Op_StoreI:  case Op_StoreL:
1829   case Op_StoreF:  case Op_StoreD:
1830   case Op_StoreP:
1831     *start = MemNode::ValueIn;
1832     *end   = *start + 1;
1833     return;
1834   case Op_LShiftI: case Op_LShiftL:
1835     *start = 1;
1836     *end   = 2;
1837     return;
1838   case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
1839     *start = 2;
1840     *end   = n->req();
1841     return;
1842   }
1843   *start = 1;
1844   *end   = n->req(); // default is all operands
1845 }
1846 
1847 //------------------------------in_packset---------------------------
1848 // Are s1 and s2 in a pack pair and ordered as s1,s2?
1849 bool SuperWord::in_packset(Node* s1, Node* s2) {
1850   for (int i = 0; i < _packset.length(); i++) {
1851     Node_List* p = _packset.at(i);
1852     assert(p->size() == 2, "must be");
1853     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
1854       return true;
1855     }
1856   }
1857   return false;
1858 }
1859 
1860 //------------------------------in_pack---------------------------
1861 // Is s in pack p?
1862 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
1863   for (uint i = 0; i < p->size(); i++) {
1864     if (p->at(i) == s) {
1865       return p;
1866     }
1867   }
1868   return NULL;
1869 }
1870 
1871 //------------------------------remove_pack_at---------------------------
1872 // Remove the pack at position pos in the packset
1873 void SuperWord::remove_pack_at(int pos) {
1874   Node_List* p = _packset.at(pos);
1875   for (uint i = 0; i < p->size(); i++) {
1876     Node* s = p->at(i);
1877     set_my_pack(s, NULL);
1878   }
1879   _packset.remove_at(pos);
1880 }
1881 
1882 //------------------------------executed_first---------------------------
1883 // Return the node executed first in pack p.  Uses the RPO block list
1884 // to determine order.
1885 Node* SuperWord::executed_first(Node_List* p) {
1886   Node* n = p->at(0);
1887   int n_rpo = bb_idx(n);
1888   for (uint i = 1; i < p->size(); i++) {
1889     Node* s = p->at(i);
1890     int s_rpo = bb_idx(s);
1891     if (s_rpo < n_rpo) {
1892       n = s;
1893       n_rpo = s_rpo;
1894     }
1895   }
1896   return n;
1897 }
1898 
1899 //------------------------------executed_last---------------------------
1900 // Return the node executed last in pack p.
1901 Node* SuperWord::executed_last(Node_List* p) {
1902   Node* n = p->at(0);
1903   int n_rpo = bb_idx(n);
1904   for (uint i = 1; i < p->size(); i++) {
1905     Node* s = p->at(i);
1906     int s_rpo = bb_idx(s);
1907     if (s_rpo > n_rpo) {
1908       n = s;
1909       n_rpo = s_rpo;
1910     }
1911   }
1912   return n;
1913 }
1914 
1915 //----------------------------align_initial_loop_index---------------------------
1916 // Adjust pre-loop limit so that in main loop, a load/store reference
1917 // to align_to_ref will be a position zero in the vector.
1918 //   (iv + k) mod vector_align == 0
1919 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
1920   CountedLoopNode *main_head = lp()->as_CountedLoop();
1921   assert(main_head->is_main_loop(), "");
1922   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
1923   assert(pre_end != NULL, "");
1924   Node *pre_opaq1 = pre_end->limit();
1925   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
1926   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
1927   Node *lim0 = pre_opaq->in(1);
1928 
1929   // Where we put new limit calculations
1930   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
1931 
1932   // Ensure the original loop limit is available from the
1933   // pre-loop Opaque1 node.
1934   Node *orig_limit = pre_opaq->original_loop_limit();
1935   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
1936 
1937   SWPointer align_to_ref_p(align_to_ref, this);
1938   assert(align_to_ref_p.valid(), "sanity");
1939 
1940   // Given:
1941   //     lim0 == original pre loop limit
1942   //     V == v_align (power of 2)
1943   //     invar == extra invariant piece of the address expression
1944   //     e == k [ +/- invar ]
1945   //
1946   // When reassociating expressions involving '%' the basic rules are:
1947   //     (a - b) % k == 0   =>  a % k == b % k
1948   // and:
1949   //     (a + b) % k == 0   =>  a % k == (k - b) % k
1950   //
1951   // For stride > 0 && scale > 0,
1952   //   Derive the new pre-loop limit "lim" such that the two constraints:
1953   //     (1) lim = lim0 + N           (where N is some positive integer < V)
1954   //     (2) (e + lim) % V == 0
1955   //   are true.
1956   //
1957   //   Substituting (1) into (2),
1958   //     (e + lim0 + N) % V == 0
1959   //   solve for N:
1960   //     N = (V - (e + lim0)) % V
1961   //   substitute back into (1), so that new limit
1962   //     lim = lim0 + (V - (e + lim0)) % V
1963   //
1964   // For stride > 0 && scale < 0
1965   //   Constraints:
1966   //     lim = lim0 + N
1967   //     (e - lim) % V == 0
1968   //   Solving for lim:
1969   //     (e - lim0 - N) % V == 0
1970   //     N = (e - lim0) % V
1971   //     lim = lim0 + (e - lim0) % V
1972   //
1973   // For stride < 0 && scale > 0
1974   //   Constraints:
1975   //     lim = lim0 - N
1976   //     (e + lim) % V == 0
1977   //   Solving for lim:
1978   //     (e + lim0 - N) % V == 0
1979   //     N = (e + lim0) % V
1980   //     lim = lim0 - (e + lim0) % V
1981   //
1982   // For stride < 0 && scale < 0
1983   //   Constraints:
1984   //     lim = lim0 - N
1985   //     (e - lim) % V == 0
1986   //   Solving for lim:
1987   //     (e - lim0 + N) % V == 0
1988   //     N = (V - (e - lim0)) % V
1989   //     lim = lim0 - (V - (e - lim0)) % V
1990 
1991   int vw = vector_width_in_bytes(align_to_ref);
1992   int stride   = iv_stride();
1993   int scale    = align_to_ref_p.scale_in_bytes();
1994   int elt_size = align_to_ref_p.memory_size();
1995   int v_align  = vw / elt_size;
1996   assert(v_align > 1, "sanity");
1997   int k        = align_to_ref_p.offset_in_bytes() / elt_size;
1998 
1999   Node *kn   = _igvn.intcon(k);
2000 
2001   Node *e = kn;
2002   if (align_to_ref_p.invar() != NULL) {
2003     // incorporate any extra invariant piece producing k +/- invar >>> log2(elt)
2004     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
2005     Node* aref     = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
2006     _phase->_igvn.register_new_node_with_optimizer(aref);
2007     _phase->set_ctrl(aref, pre_ctrl);
2008     if (align_to_ref_p.negate_invar()) {
2009       e = new (_phase->C, 3) SubINode(e, aref);
2010     } else {
2011       e = new (_phase->C, 3) AddINode(e, aref);
2012     }
2013     _phase->_igvn.register_new_node_with_optimizer(e);
2014     _phase->set_ctrl(e, pre_ctrl);
2015   }
2016   if (vw > ObjectAlignmentInBytes) {
2017     // incorporate base e +/- base && Mask >>> log2(elt)
2018     Node* mask = _igvn.MakeConX(~(-1 << exact_log2(vw)));
2019     Node* xbase = new(_phase->C, 2) CastP2XNode(NULL, align_to_ref_p.base());
2020     _phase->_igvn.register_new_node_with_optimizer(xbase);
2021     Node* masked_xbase  = new (_phase->C, 3) AndXNode(xbase, mask);
2022     _phase->_igvn.register_new_node_with_optimizer(masked_xbase);
2023 #ifdef _LP64
2024     masked_xbase  = new (_phase->C, 2) ConvL2INode(masked_xbase);
2025     _phase->_igvn.register_new_node_with_optimizer(masked_xbase);
2026 #endif
2027     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
2028     Node* bref     = new (_phase->C, 3) URShiftINode(masked_xbase, log2_elt);
2029     _phase->_igvn.register_new_node_with_optimizer(bref);
2030     _phase->set_ctrl(bref, pre_ctrl);
2031     e = new (_phase->C, 3) AddINode(e, bref);
2032     _phase->_igvn.register_new_node_with_optimizer(e);
2033     _phase->set_ctrl(e, pre_ctrl);
2034   }
2035 
2036   // compute e +/- lim0
2037   if (scale < 0) {
2038     e = new (_phase->C, 3) SubINode(e, lim0);
2039   } else {
2040     e = new (_phase->C, 3) AddINode(e, lim0);
2041   }
2042   _phase->_igvn.register_new_node_with_optimizer(e);
2043   _phase->set_ctrl(e, pre_ctrl);
2044 
2045   if (stride * scale > 0) {
2046     // compute V - (e +/- lim0)
2047     Node* va  = _igvn.intcon(v_align);
2048     e = new (_phase->C, 3) SubINode(va, e);
2049     _phase->_igvn.register_new_node_with_optimizer(e);
2050     _phase->set_ctrl(e, pre_ctrl);
2051   }
2052   // compute N = (exp) % V
2053   Node* va_msk = _igvn.intcon(v_align - 1);
2054   Node* N = new (_phase->C, 3) AndINode(e, va_msk);
2055   _phase->_igvn.register_new_node_with_optimizer(N);
2056   _phase->set_ctrl(N, pre_ctrl);
2057 
2058   //   substitute back into (1), so that new limit
2059   //     lim = lim0 + N
2060   Node* lim;
2061   if (stride < 0) {
2062     lim = new (_phase->C, 3) SubINode(lim0, N);
2063   } else {
2064     lim = new (_phase->C, 3) AddINode(lim0, N);
2065   }
2066   _phase->_igvn.register_new_node_with_optimizer(lim);
2067   _phase->set_ctrl(lim, pre_ctrl);
2068   Node* constrained =
2069     (stride > 0) ? (Node*) new (_phase->C,3) MinINode(lim, orig_limit)
2070                  : (Node*) new (_phase->C,3) MaxINode(lim, orig_limit);
2071   _phase->_igvn.register_new_node_with_optimizer(constrained);
2072   _phase->set_ctrl(constrained, pre_ctrl);
2073   _igvn.hash_delete(pre_opaq);
2074   pre_opaq->set_req(1, constrained);
2075 }
2076 
2077 //----------------------------get_pre_loop_end---------------------------
2078 // Find pre loop end from main loop.  Returns null if none.
2079 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
2080   Node *ctrl = cl->in(LoopNode::EntryControl);
2081   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
2082   Node *iffm = ctrl->in(0);
2083   if (!iffm->is_If()) return NULL;
2084   Node *p_f = iffm->in(0);
2085   if (!p_f->is_IfFalse()) return NULL;
2086   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
2087   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
2088   if (!pre_end->loopnode()->is_pre_loop()) return NULL;
2089   return pre_end;
2090 }
2091 
2092 
2093 //------------------------------init---------------------------
2094 void SuperWord::init() {
2095   _dg.init();
2096   _packset.clear();
2097   _disjoint_ptrs.clear();
2098   _block.clear();
2099   _data_entry.clear();
2100   _mem_slice_head.clear();
2101   _mem_slice_tail.clear();
2102   _node_info.clear();
2103   _align_to_ref = NULL;
2104   _lpt = NULL;
2105   _lp = NULL;
2106   _bb = NULL;
2107   _iv = NULL;
2108 }
2109 
2110 //------------------------------print_packset---------------------------
2111 void SuperWord::print_packset() {
2112 #ifndef PRODUCT
2113   tty->print_cr("packset");
2114   for (int i = 0; i < _packset.length(); i++) {
2115     tty->print_cr("Pack: %d", i);
2116     Node_List* p = _packset.at(i);
2117     print_pack(p);
2118   }
2119 #endif
2120 }
2121 
2122 //------------------------------print_pack---------------------------
2123 void SuperWord::print_pack(Node_List* p) {
2124   for (uint i = 0; i < p->size(); i++) {
2125     print_stmt(p->at(i));
2126   }
2127 }
2128 
2129 //------------------------------print_bb---------------------------
2130 void SuperWord::print_bb() {
2131 #ifndef PRODUCT
2132   tty->print_cr("\nBlock");
2133   for (int i = 0; i < _block.length(); i++) {
2134     Node* n = _block.at(i);
2135     tty->print("%d ", i);
2136     if (n) {
2137       n->dump();
2138     }
2139   }
2140 #endif
2141 }
2142 
2143 //------------------------------print_stmt---------------------------
2144 void SuperWord::print_stmt(Node* s) {
2145 #ifndef PRODUCT
2146   tty->print(" align: %d \t", alignment(s));
2147   s->dump();
2148 #endif
2149 }
2150 
2151 //------------------------------blank---------------------------
2152 char* SuperWord::blank(uint depth) {
2153   static char blanks[101];
2154   assert(depth < 101, "too deep");
2155   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
2156   blanks[depth] = '\0';
2157   return blanks;
2158 }
2159 
2160 
2161 //==============================SWPointer===========================
2162 
2163 //----------------------------SWPointer------------------------
2164 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
2165   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
2166   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
2167 
2168   Node* adr = mem->in(MemNode::Address);
2169   if (!adr->is_AddP()) {
2170     assert(!valid(), "too complex");
2171     return;
2172   }
2173   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
2174   Node* base = adr->in(AddPNode::Base);
2175   //unsafe reference could not be aligned appropriately without runtime checking
2176   if (base == NULL || base->bottom_type() == Type::TOP) {
2177     assert(!valid(), "unsafe access");
2178     return;
2179   }
2180   for (int i = 0; i < 3; i++) {
2181     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
2182       assert(!valid(), "too complex");
2183       return;
2184     }
2185     adr = adr->in(AddPNode::Address);
2186     if (base == adr || !adr->is_AddP()) {
2187       break; // stop looking at addp's
2188     }
2189   }
2190   _base = base;
2191   _adr  = adr;
2192   assert(valid(), "Usable");
2193 }
2194 
2195 // Following is used to create a temporary object during
2196 // the pattern match of an address expression.
2197 SWPointer::SWPointer(SWPointer* p) :
2198   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
2199   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
2200 
2201 //------------------------scaled_iv_plus_offset--------------------
2202 // Match: k*iv + offset
2203 // where: k is a constant that maybe zero, and
2204 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
2205 bool SWPointer::scaled_iv_plus_offset(Node* n) {
2206   if (scaled_iv(n)) {
2207     return true;
2208   }
2209   if (offset_plus_k(n)) {
2210     return true;
2211   }
2212   int opc = n->Opcode();
2213   if (opc == Op_AddI) {
2214     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
2215       return true;
2216     }
2217     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
2218       return true;
2219     }
2220   } else if (opc == Op_SubI) {
2221     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
2222       return true;
2223     }
2224     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
2225       _scale *= -1;
2226       return true;
2227     }
2228   }
2229   return false;
2230 }
2231 
2232 //----------------------------scaled_iv------------------------
2233 // Match: k*iv where k is a constant that's not zero
2234 bool SWPointer::scaled_iv(Node* n) {
2235   if (_scale != 0) {
2236     return false;  // already found a scale
2237   }
2238   if (n == iv()) {
2239     _scale = 1;
2240     return true;
2241   }
2242   int opc = n->Opcode();
2243   if (opc == Op_MulI) {
2244     if (n->in(1) == iv() && n->in(2)->is_Con()) {
2245       _scale = n->in(2)->get_int();
2246       return true;
2247     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
2248       _scale = n->in(1)->get_int();
2249       return true;
2250     }
2251   } else if (opc == Op_LShiftI) {
2252     if (n->in(1) == iv() && n->in(2)->is_Con()) {
2253       _scale = 1 << n->in(2)->get_int();
2254       return true;
2255     }
2256   } else if (opc == Op_ConvI2L) {
2257     if (scaled_iv_plus_offset(n->in(1))) {
2258       return true;
2259     }
2260   } else if (opc == Op_LShiftL) {
2261     if (!has_iv() && _invar == NULL) {
2262       // Need to preserve the current _offset value, so
2263       // create a temporary object for this expression subtree.
2264       // Hacky, so should re-engineer the address pattern match.
2265       SWPointer tmp(this);
2266       if (tmp.scaled_iv_plus_offset(n->in(1))) {
2267         if (tmp._invar == NULL) {
2268           int mult = 1 << n->in(2)->get_int();
2269           _scale   = tmp._scale  * mult;
2270           _offset += tmp._offset * mult;
2271           return true;
2272         }
2273       }
2274     }
2275   }
2276   return false;
2277 }
2278 
2279 //----------------------------offset_plus_k------------------------
2280 // Match: offset is (k [+/- invariant])
2281 // where k maybe zero and invariant is optional, but not both.
2282 bool SWPointer::offset_plus_k(Node* n, bool negate) {
2283   int opc = n->Opcode();
2284   if (opc == Op_ConI) {
2285     _offset += negate ? -(n->get_int()) : n->get_int();
2286     return true;
2287   } else if (opc == Op_ConL) {
2288     // Okay if value fits into an int
2289     const TypeLong* t = n->find_long_type();
2290     if (t->higher_equal(TypeLong::INT)) {
2291       jlong loff = n->get_long();
2292       jint  off  = (jint)loff;
2293       _offset += negate ? -off : loff;
2294       return true;
2295     }
2296     return false;
2297   }
2298   if (_invar != NULL) return false; // already have an invariant
2299   if (opc == Op_AddI) {
2300     if (n->in(2)->is_Con() && invariant(n->in(1))) {
2301       _negate_invar = negate;
2302       _invar = n->in(1);
2303       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
2304       return true;
2305     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
2306       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
2307       _negate_invar = negate;
2308       _invar = n->in(2);
2309       return true;
2310     }
2311   }
2312   if (opc == Op_SubI) {
2313     if (n->in(2)->is_Con() && invariant(n->in(1))) {
2314       _negate_invar = negate;
2315       _invar = n->in(1);
2316       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
2317       return true;
2318     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
2319       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
2320       _negate_invar = !negate;
2321       _invar = n->in(2);
2322       return true;
2323     }
2324   }
2325   if (invariant(n)) {
2326     _negate_invar = negate;
2327     _invar = n;
2328     return true;
2329   }
2330   return false;
2331 }
2332 
2333 //----------------------------print------------------------
2334 void SWPointer::print() {
2335 #ifndef PRODUCT
2336   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
2337              _base != NULL ? _base->_idx : 0,
2338              _adr  != NULL ? _adr->_idx  : 0,
2339              _scale, _offset,
2340              _negate_invar?'-':'+',
2341              _invar != NULL ? _invar->_idx : 0);
2342 #endif
2343 }
2344 
2345 // ========================= OrderedPair =====================
2346 
2347 const OrderedPair OrderedPair::initial;
2348 
2349 // ========================= SWNodeInfo =====================
2350 
2351 const SWNodeInfo SWNodeInfo::initial;
2352 
2353 
2354 // ============================ DepGraph ===========================
2355 
2356 //------------------------------make_node---------------------------
2357 // Make a new dependence graph node for an ideal node.
2358 DepMem* DepGraph::make_node(Node* node) {
2359   DepMem* m = new (_arena) DepMem(node);
2360   if (node != NULL) {
2361     assert(_map.at_grow(node->_idx) == NULL, "one init only");
2362     _map.at_put_grow(node->_idx, m);
2363   }
2364   return m;
2365 }
2366 
2367 //------------------------------make_edge---------------------------
2368 // Make a new dependence graph edge from dpred -> dsucc
2369 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
2370   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
2371   dpred->set_out_head(e);
2372   dsucc->set_in_head(e);
2373   return e;
2374 }
2375 
2376 // ========================== DepMem ========================
2377 
2378 //------------------------------in_cnt---------------------------
2379 int DepMem::in_cnt() {
2380   int ct = 0;
2381   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
2382   return ct;
2383 }
2384 
2385 //------------------------------out_cnt---------------------------
2386 int DepMem::out_cnt() {
2387   int ct = 0;
2388   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
2389   return ct;
2390 }
2391 
2392 //------------------------------print-----------------------------
2393 void DepMem::print() {
2394 #ifndef PRODUCT
2395   tty->print("  DepNode %d (", _node->_idx);
2396   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
2397     Node* pred = p->pred()->node();
2398     tty->print(" %d", pred != NULL ? pred->_idx : 0);
2399   }
2400   tty->print(") [");
2401   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
2402     Node* succ = s->succ()->node();
2403     tty->print(" %d", succ != NULL ? succ->_idx : 0);
2404   }
2405   tty->print_cr(" ]");
2406 #endif
2407 }
2408 
2409 // =========================== DepEdge =========================
2410 
2411 //------------------------------DepPreds---------------------------
2412 void DepEdge::print() {
2413 #ifndef PRODUCT
2414   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
2415 #endif
2416 }
2417 
2418 // =========================== DepPreds =========================
2419 // Iterator over predecessor edges in the dependence graph.
2420 
2421 //------------------------------DepPreds---------------------------
2422 DepPreds::DepPreds(Node* n, DepGraph& dg) {
2423   _n = n;
2424   _done = false;
2425   if (_n->is_Store() || _n->is_Load()) {
2426     _next_idx = MemNode::Address;
2427     _end_idx  = n->req();
2428     _dep_next = dg.dep(_n)->in_head();
2429   } else if (_n->is_Mem()) {
2430     _next_idx = 0;
2431     _end_idx  = 0;
2432     _dep_next = dg.dep(_n)->in_head();
2433   } else {
2434     _next_idx = 1;
2435     _end_idx  = _n->req();
2436     _dep_next = NULL;
2437   }
2438   next();
2439 }
2440 
2441 //------------------------------next---------------------------
2442 void DepPreds::next() {
2443   if (_dep_next != NULL) {
2444     _current  = _dep_next->pred()->node();
2445     _dep_next = _dep_next->next_in();
2446   } else if (_next_idx < _end_idx) {
2447     _current  = _n->in(_next_idx++);
2448   } else {
2449     _done = true;
2450   }
2451 }
2452 
2453 // =========================== DepSuccs =========================
2454 // Iterator over successor edges in the dependence graph.
2455 
2456 //------------------------------DepSuccs---------------------------
2457 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
2458   _n = n;
2459   _done = false;
2460   if (_n->is_Load()) {
2461     _next_idx = 0;
2462     _end_idx  = _n->outcnt();
2463     _dep_next = dg.dep(_n)->out_head();
2464   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
2465     _next_idx = 0;
2466     _end_idx  = 0;
2467     _dep_next = dg.dep(_n)->out_head();
2468   } else {
2469     _next_idx = 0;
2470     _end_idx  = _n->outcnt();
2471     _dep_next = NULL;
2472   }
2473   next();
2474 }
2475 
2476 //-------------------------------next---------------------------
2477 void DepSuccs::next() {
2478   if (_dep_next != NULL) {
2479     _current  = _dep_next->succ()->node();
2480     _dep_next = _dep_next->next_out();
2481   } else if (_next_idx < _end_idx) {
2482     _current  = _n->raw_out(_next_idx++);
2483   } else {
2484     _done = true;
2485   }
2486 }