1 /*
   2  * Copyright 2000-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 class BytecodeStream;
  26 
  27 // The MethodData object collects counts and other profile information
  28 // during zeroth-tier (interpretive) and first-tier execution.
  29 // The profile is used later by compilation heuristics.  Some heuristics
  30 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  31 // optimization often has a down-side, a corner case that it handles
  32 // poorly, but which is thought to be rare.  The profile provides
  33 // evidence of this rarity for a given method or even BCI.  It allows
  34 // the compiler to back out of the optimization at places where it
  35 // has historically been a poor choice.  Other heuristics try to use
  36 // specific information gathered about types observed at a given site.
  37 //
  38 // All data in the profile is approximate.  It is expected to be accurate
  39 // on the whole, but the system expects occasional inaccuraces, due to
  40 // counter overflow, multiprocessor races during data collection, space
  41 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  42 // optimization quality but will not affect correctness.  Also, each MDO
  43 // is marked with its birth-date ("creation_mileage") which can be used
  44 // to assess the quality ("maturity") of its data.
  45 //
  46 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  47 // state.  Also, certain recorded per-BCI events are given one-bit counters
  48 // which overflow to a saturated state which applied to all counters at
  49 // that BCI.  In other words, there is a small lattice which approximates
  50 // the ideal of an infinite-precision counter for each event at each BCI,
  51 // and the lattice quickly "bottoms out" in a state where all counters
  52 // are taken to be indefinitely large.
  53 //
  54 // The reader will find many data races in profile gathering code, starting
  55 // with invocation counter incrementation.  None of these races harm correct
  56 // execution of the compiled code.
  57 
  58 // forward decl
  59 class ProfileData;
  60 
  61 // DataLayout
  62 //
  63 // Overlay for generic profiling data.
  64 class DataLayout VALUE_OBJ_CLASS_SPEC {
  65 private:
  66   // Every data layout begins with a header.  This header
  67   // contains a tag, which is used to indicate the size/layout
  68   // of the data, 4 bits of flags, which can be used in any way,
  69   // 4 bits of trap history (none/one reason/many reasons),
  70   // and a bci, which is used to tie this piece of data to a
  71   // specific bci in the bytecodes.
  72   union {
  73     intptr_t _bits;
  74     struct {
  75       u1 _tag;
  76       u1 _flags;
  77       u2 _bci;
  78     } _struct;
  79   } _header;
  80 
  81   // The data layout has an arbitrary number of cells, each sized
  82   // to accomodate a pointer or an integer.
  83   intptr_t _cells[1];
  84 
  85   // Some types of data layouts need a length field.
  86   static bool needs_array_len(u1 tag);
  87 
  88 public:
  89   enum {
  90     counter_increment = 1
  91   };
  92 
  93   enum {
  94     cell_size = sizeof(intptr_t)
  95   };
  96 
  97   // Tag values
  98   enum {
  99     no_tag,
 100     bit_data_tag,
 101     counter_data_tag,
 102     jump_data_tag,
 103     receiver_type_data_tag,
 104     virtual_call_data_tag,
 105     ret_data_tag,
 106     branch_data_tag,
 107     multi_branch_data_tag,
 108     arg_info_data_tag
 109   };
 110 
 111   enum {
 112     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 113     // The trap state breaks down further as [recompile:1 | reason:3].
 114     // This further breakdown is defined in deoptimization.cpp.
 115     // See Deoptimization::trap_state_reason for an assert that
 116     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 117     //
 118     // The trap_state is collected only if ProfileTraps is true.
 119     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 120     trap_shift = BitsPerByte - trap_bits,
 121     trap_mask = right_n_bits(trap_bits),
 122     trap_mask_in_place = (trap_mask << trap_shift),
 123     flag_limit = trap_shift,
 124     flag_mask = right_n_bits(flag_limit),
 125     first_flag = 0
 126   };
 127 
 128   // Size computation
 129   static int header_size_in_bytes() {
 130     return cell_size;
 131   }
 132   static int header_size_in_cells() {
 133     return 1;
 134   }
 135 
 136   static int compute_size_in_bytes(int cell_count) {
 137     return header_size_in_bytes() + cell_count * cell_size;
 138   }
 139 
 140   // Initialization
 141   void initialize(u1 tag, u2 bci, int cell_count);
 142 
 143   // Accessors
 144   u1 tag() {
 145     return _header._struct._tag;
 146   }
 147 
 148   // Return a few bits of trap state.  Range is [0..trap_mask].
 149   // The state tells if traps with zero, one, or many reasons have occurred.
 150   // It also tells whether zero or many recompilations have occurred.
 151   // The associated trap histogram in the MDO itself tells whether
 152   // traps are common or not.  If a BCI shows that a trap X has
 153   // occurred, and the MDO shows N occurrences of X, we make the
 154   // simplifying assumption that all N occurrences can be blamed
 155   // on that BCI.
 156   int trap_state() {
 157     return ((_header._struct._flags >> trap_shift) & trap_mask);
 158   }
 159 
 160   void set_trap_state(int new_state) {
 161     assert(ProfileTraps, "used only under +ProfileTraps");
 162     uint old_flags = (_header._struct._flags & flag_mask);
 163     _header._struct._flags = (new_state << trap_shift) | old_flags;
 164   }
 165 
 166   u1 flags() {
 167     return _header._struct._flags;
 168   }
 169 
 170   u2 bci() {
 171     return _header._struct._bci;
 172   }
 173 
 174   void set_header(intptr_t value) {
 175     _header._bits = value;
 176   }
 177   void release_set_header(intptr_t value) {
 178     OrderAccess::release_store_ptr(&_header._bits, value);
 179   }
 180   intptr_t header() {
 181     return _header._bits;
 182   }
 183   void set_cell_at(int index, intptr_t value) {
 184     _cells[index] = value;
 185   }
 186   void release_set_cell_at(int index, intptr_t value) {
 187     OrderAccess::release_store_ptr(&_cells[index], value);
 188   }
 189   intptr_t cell_at(int index) {
 190     return _cells[index];
 191   }
 192   intptr_t* adr_cell_at(int index) {
 193     return &_cells[index];
 194   }
 195   oop* adr_oop_at(int index) {
 196     return (oop*)&(_cells[index]);
 197   }
 198 
 199   void set_flag_at(int flag_number) {
 200     assert(flag_number < flag_limit, "oob");
 201     _header._struct._flags |= (0x1 << flag_number);
 202   }
 203   bool flag_at(int flag_number) {
 204     assert(flag_number < flag_limit, "oob");
 205     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 206   }
 207 
 208   // Low-level support for code generation.
 209   static ByteSize header_offset() {
 210     return byte_offset_of(DataLayout, _header);
 211   }
 212   static ByteSize tag_offset() {
 213     return byte_offset_of(DataLayout, _header._struct._tag);
 214   }
 215   static ByteSize flags_offset() {
 216     return byte_offset_of(DataLayout, _header._struct._flags);
 217   }
 218   static ByteSize bci_offset() {
 219     return byte_offset_of(DataLayout, _header._struct._bci);
 220   }
 221   static ByteSize cell_offset(int index) {
 222     return byte_offset_of(DataLayout, _cells[index]);
 223   }
 224   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 225   static int flag_number_to_byte_constant(int flag_number) {
 226     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 227     DataLayout temp; temp.set_header(0);
 228     temp.set_flag_at(flag_number);
 229     return temp._header._struct._flags;
 230   }
 231   // Return a value which, when or-ed as a word into _header, sets the flag.
 232   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 233     DataLayout temp; temp.set_header(0);
 234     temp._header._struct._flags = byte_constant;
 235     return temp._header._bits;
 236   }
 237 
 238   // GC support
 239   ProfileData* data_in();
 240   void follow_weak_refs(BoolObjectClosure* cl);
 241 };
 242 
 243 
 244 // ProfileData class hierarchy
 245 class ProfileData;
 246 class   BitData;
 247 class     CounterData;
 248 class       ReceiverTypeData;
 249 class         VirtualCallData;
 250 class       RetData;
 251 class   JumpData;
 252 class     BranchData;
 253 class   ArrayData;
 254 class     MultiBranchData;
 255 class     ArgInfoData;
 256 
 257 
 258 // ProfileData
 259 //
 260 // A ProfileData object is created to refer to a section of profiling
 261 // data in a structured way.
 262 class ProfileData : public ResourceObj {
 263 private:
 264 #ifndef PRODUCT
 265   enum {
 266     tab_width_one = 16,
 267     tab_width_two = 36
 268   };
 269 #endif // !PRODUCT
 270 
 271   // This is a pointer to a section of profiling data.
 272   DataLayout* _data;
 273 
 274 protected:
 275   DataLayout* data() { return _data; }
 276 
 277   enum {
 278     cell_size = DataLayout::cell_size
 279   };
 280 
 281 public:
 282   // How many cells are in this?
 283   virtual int cell_count() {
 284     ShouldNotReachHere();
 285     return -1;
 286   }
 287 
 288   // Return the size of this data.
 289   int size_in_bytes() {
 290     return DataLayout::compute_size_in_bytes(cell_count());
 291   }
 292 
 293 protected:
 294   // Low-level accessors for underlying data
 295   void set_intptr_at(int index, intptr_t value) {
 296     assert(0 <= index && index < cell_count(), "oob");
 297     data()->set_cell_at(index, value);
 298   }
 299   void release_set_intptr_at(int index, intptr_t value) {
 300     assert(0 <= index && index < cell_count(), "oob");
 301     data()->release_set_cell_at(index, value);
 302   }
 303   intptr_t intptr_at(int index) {
 304     assert(0 <= index && index < cell_count(), "oob");
 305     return data()->cell_at(index);
 306   }
 307   void set_uint_at(int index, uint value) {
 308     set_intptr_at(index, (intptr_t) value);
 309   }
 310   void release_set_uint_at(int index, uint value) {
 311     release_set_intptr_at(index, (intptr_t) value);
 312   }
 313   uint uint_at(int index) {
 314     return (uint)intptr_at(index);
 315   }
 316   void set_int_at(int index, int value) {
 317     set_intptr_at(index, (intptr_t) value);
 318   }
 319   void release_set_int_at(int index, int value) {
 320     release_set_intptr_at(index, (intptr_t) value);
 321   }
 322   int int_at(int index) {
 323     return (int)intptr_at(index);
 324   }
 325   int int_at_unchecked(int index) {
 326     return (int)data()->cell_at(index);
 327   }
 328   void set_oop_at(int index, oop value) {
 329     set_intptr_at(index, (intptr_t) value);
 330   }
 331   oop oop_at(int index) {
 332     return (oop)intptr_at(index);
 333   }
 334   oop* adr_oop_at(int index) {
 335     assert(0 <= index && index < cell_count(), "oob");
 336     return data()->adr_oop_at(index);
 337   }
 338 
 339   void set_flag_at(int flag_number) {
 340     data()->set_flag_at(flag_number);
 341   }
 342   bool flag_at(int flag_number) {
 343     return data()->flag_at(flag_number);
 344   }
 345 
 346   // two convenient imports for use by subclasses:
 347   static ByteSize cell_offset(int index) {
 348     return DataLayout::cell_offset(index);
 349   }
 350   static int flag_number_to_byte_constant(int flag_number) {
 351     return DataLayout::flag_number_to_byte_constant(flag_number);
 352   }
 353 
 354   ProfileData(DataLayout* data) {
 355     _data = data;
 356   }
 357 
 358 public:
 359   // Constructor for invalid ProfileData.
 360   ProfileData();
 361 
 362   u2 bci() {
 363     return data()->bci();
 364   }
 365 
 366   address dp() {
 367     return (address)_data;
 368   }
 369 
 370   int trap_state() {
 371     return data()->trap_state();
 372   }
 373   void set_trap_state(int new_state) {
 374     data()->set_trap_state(new_state);
 375   }
 376 
 377   // Type checking
 378   virtual bool is_BitData()         { return false; }
 379   virtual bool is_CounterData()     { return false; }
 380   virtual bool is_JumpData()        { return false; }
 381   virtual bool is_ReceiverTypeData(){ return false; }
 382   virtual bool is_VirtualCallData() { return false; }
 383   virtual bool is_RetData()         { return false; }
 384   virtual bool is_BranchData()      { return false; }
 385   virtual bool is_ArrayData()       { return false; }
 386   virtual bool is_MultiBranchData() { return false; }
 387   virtual bool is_ArgInfoData()     { return false; }
 388 
 389 
 390   BitData* as_BitData() {
 391     assert(is_BitData(), "wrong type");
 392     return is_BitData()         ? (BitData*)        this : NULL;
 393   }
 394   CounterData* as_CounterData() {
 395     assert(is_CounterData(), "wrong type");
 396     return is_CounterData()     ? (CounterData*)    this : NULL;
 397   }
 398   JumpData* as_JumpData() {
 399     assert(is_JumpData(), "wrong type");
 400     return is_JumpData()        ? (JumpData*)       this : NULL;
 401   }
 402   ReceiverTypeData* as_ReceiverTypeData() {
 403     assert(is_ReceiverTypeData(), "wrong type");
 404     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 405   }
 406   VirtualCallData* as_VirtualCallData() {
 407     assert(is_VirtualCallData(), "wrong type");
 408     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 409   }
 410   RetData* as_RetData() {
 411     assert(is_RetData(), "wrong type");
 412     return is_RetData()         ? (RetData*)        this : NULL;
 413   }
 414   BranchData* as_BranchData() {
 415     assert(is_BranchData(), "wrong type");
 416     return is_BranchData()      ? (BranchData*)     this : NULL;
 417   }
 418   ArrayData* as_ArrayData() {
 419     assert(is_ArrayData(), "wrong type");
 420     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 421   }
 422   MultiBranchData* as_MultiBranchData() {
 423     assert(is_MultiBranchData(), "wrong type");
 424     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 425   }
 426   ArgInfoData* as_ArgInfoData() {
 427     assert(is_ArgInfoData(), "wrong type");
 428     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 429   }
 430 
 431 
 432   // Subclass specific initialization
 433   virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {}
 434 
 435   // GC support
 436   virtual void follow_contents() {}
 437   virtual void oop_iterate(OopClosure* blk) {}
 438   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {}
 439   virtual void adjust_pointers() {}
 440   virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure) {}
 441 
 442 #ifndef SERIALGC
 443   // Parallel old support
 444   virtual void follow_contents(ParCompactionManager* cm) {}
 445   virtual void update_pointers() {}
 446   virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {}
 447 #endif // SERIALGC
 448 
 449   // CI translation: ProfileData can represent both MethodDataOop data
 450   // as well as CIMethodData data. This function is provided for translating
 451   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 452   // most ProfileData don't require any translation, so we provide the null
 453   // translation here, and the required translators are in the ci subclasses.
 454   virtual void translate_from(ProfileData* data) {}
 455 
 456   virtual void print_data_on(outputStream* st) {
 457     ShouldNotReachHere();
 458   }
 459 
 460 #ifndef PRODUCT
 461   void print_shared(outputStream* st, const char* name);
 462   void tab(outputStream* st);
 463 #endif
 464 };
 465 
 466 // BitData
 467 //
 468 // A BitData holds a flag or two in its header.
 469 class BitData : public ProfileData {
 470 protected:
 471   enum {
 472     // null_seen:
 473     //  saw a null operand (cast/aastore/instanceof)
 474     null_seen_flag              = DataLayout::first_flag + 0
 475   };
 476   enum { bit_cell_count = 0 };  // no additional data fields needed.
 477 public:
 478   BitData(DataLayout* layout) : ProfileData(layout) {
 479   }
 480 
 481   virtual bool is_BitData() { return true; }
 482 
 483   static int static_cell_count() {
 484     return bit_cell_count;
 485   }
 486 
 487   virtual int cell_count() {
 488     return static_cell_count();
 489   }
 490 
 491   // Accessor
 492 
 493   // The null_seen flag bit is specially known to the interpreter.
 494   // Consulting it allows the compiler to avoid setting up null_check traps.
 495   bool null_seen()     { return flag_at(null_seen_flag); }
 496   void set_null_seen()    { set_flag_at(null_seen_flag); }
 497 
 498 
 499   // Code generation support
 500   static int null_seen_byte_constant() {
 501     return flag_number_to_byte_constant(null_seen_flag);
 502   }
 503 
 504   static ByteSize bit_data_size() {
 505     return cell_offset(bit_cell_count);
 506   }
 507 
 508 #ifndef PRODUCT
 509   void print_data_on(outputStream* st);
 510 #endif
 511 };
 512 
 513 // CounterData
 514 //
 515 // A CounterData corresponds to a simple counter.
 516 class CounterData : public BitData {
 517 protected:
 518   enum {
 519     count_off,
 520     counter_cell_count
 521   };
 522 public:
 523   CounterData(DataLayout* layout) : BitData(layout) {}
 524 
 525   virtual bool is_CounterData() { return true; }
 526 
 527   static int static_cell_count() {
 528     return counter_cell_count;
 529   }
 530 
 531   virtual int cell_count() {
 532     return static_cell_count();
 533   }
 534 
 535   // Direct accessor
 536   uint count() {
 537     return uint_at(count_off);
 538   }
 539 
 540   // Code generation support
 541   static ByteSize count_offset() {
 542     return cell_offset(count_off);
 543   }
 544   static ByteSize counter_data_size() {
 545     return cell_offset(counter_cell_count);
 546   }
 547 
 548 #ifndef PRODUCT
 549   void print_data_on(outputStream* st);
 550 #endif
 551 };
 552 
 553 // JumpData
 554 //
 555 // A JumpData is used to access profiling information for a direct
 556 // branch.  It is a counter, used for counting the number of branches,
 557 // plus a data displacement, used for realigning the data pointer to
 558 // the corresponding target bci.
 559 class JumpData : public ProfileData {
 560 protected:
 561   enum {
 562     taken_off_set,
 563     displacement_off_set,
 564     jump_cell_count
 565   };
 566 
 567   void set_displacement(int displacement) {
 568     set_int_at(displacement_off_set, displacement);
 569   }
 570 
 571 public:
 572   JumpData(DataLayout* layout) : ProfileData(layout) {
 573     assert(layout->tag() == DataLayout::jump_data_tag ||
 574       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 575   }
 576 
 577   virtual bool is_JumpData() { return true; }
 578 
 579   static int static_cell_count() {
 580     return jump_cell_count;
 581   }
 582 
 583   virtual int cell_count() {
 584     return static_cell_count();
 585   }
 586 
 587   // Direct accessor
 588   uint taken() {
 589     return uint_at(taken_off_set);
 590   }
 591   // Saturating counter
 592   uint inc_taken() {
 593     uint cnt = taken() + 1;
 594     // Did we wrap? Will compiler screw us??
 595     if (cnt == 0) cnt--;
 596     set_uint_at(taken_off_set, cnt);
 597     return cnt;
 598   }
 599 
 600   int displacement() {
 601     return int_at(displacement_off_set);
 602   }
 603 
 604   // Code generation support
 605   static ByteSize taken_offset() {
 606     return cell_offset(taken_off_set);
 607   }
 608 
 609   static ByteSize displacement_offset() {
 610     return cell_offset(displacement_off_set);
 611   }
 612 
 613   // Specific initialization.
 614   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
 615 
 616 #ifndef PRODUCT
 617   void print_data_on(outputStream* st);
 618 #endif
 619 };
 620 
 621 // ReceiverTypeData
 622 //
 623 // A ReceiverTypeData is used to access profiling information about a
 624 // dynamic type check.  It consists of a counter which counts the total times
 625 // that the check is reached, and a series of (klassOop, count) pairs
 626 // which are used to store a type profile for the receiver of the check.
 627 class ReceiverTypeData : public CounterData {
 628 protected:
 629   enum {
 630     receiver0_offset = counter_cell_count,
 631     count0_offset,
 632     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
 633   };
 634 
 635 public:
 636   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
 637     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
 638            layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
 639   }
 640 
 641   virtual bool is_ReceiverTypeData() { return true; }
 642 
 643   static int static_cell_count() {
 644     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
 645   }
 646 
 647   virtual int cell_count() {
 648     return static_cell_count();
 649   }
 650 
 651   // Direct accessors
 652   static uint row_limit() {
 653     return TypeProfileWidth;
 654   }
 655   static int receiver_cell_index(uint row) {
 656     return receiver0_offset + row * receiver_type_row_cell_count;
 657   }
 658   static int receiver_count_cell_index(uint row) {
 659     return count0_offset + row * receiver_type_row_cell_count;
 660   }
 661 
 662   // Get the receiver at row.  The 'unchecked' version is needed by parallel old
 663   // gc; it does not assert the receiver is a klass.  During compaction of the
 664   // perm gen, the klass may already have moved, so the is_klass() predicate
 665   // would fail.  The 'normal' version should be used whenever possible.
 666   klassOop receiver_unchecked(uint row) {
 667     assert(row < row_limit(), "oob");
 668     oop recv = oop_at(receiver_cell_index(row));
 669     return (klassOop)recv;
 670   }
 671 
 672   klassOop receiver(uint row) {
 673     klassOop recv = receiver_unchecked(row);
 674     assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type");
 675     return recv;
 676   }
 677 
 678   void set_receiver(uint row, oop p) {
 679     assert((uint)row < row_limit(), "oob");
 680     set_oop_at(receiver_cell_index(row), p);
 681   }
 682 
 683   uint receiver_count(uint row) {
 684     assert(row < row_limit(), "oob");
 685     return uint_at(receiver_count_cell_index(row));
 686   }
 687 
 688   void set_receiver_count(uint row, uint count) {
 689     assert(row < row_limit(), "oob");
 690     set_uint_at(receiver_count_cell_index(row), count);
 691   }
 692 
 693   void clear_row(uint row) {
 694     assert(row < row_limit(), "oob");
 695     set_receiver(row, NULL);
 696     set_receiver_count(row, 0);
 697   }
 698 
 699   // Code generation support
 700   static ByteSize receiver_offset(uint row) {
 701     return cell_offset(receiver_cell_index(row));
 702   }
 703   static ByteSize receiver_count_offset(uint row) {
 704     return cell_offset(receiver_count_cell_index(row));
 705   }
 706   static ByteSize receiver_type_data_size() {
 707     return cell_offset(static_cell_count());
 708   }
 709 
 710   // GC support
 711   virtual void follow_contents();
 712   virtual void oop_iterate(OopClosure* blk);
 713   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr);
 714   virtual void adjust_pointers();
 715   virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure);
 716 
 717 #ifndef SERIALGC
 718   // Parallel old support
 719   virtual void follow_contents(ParCompactionManager* cm);
 720   virtual void update_pointers();
 721   virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr);
 722 #endif // SERIALGC
 723 
 724   oop* adr_receiver(uint row) {
 725     return adr_oop_at(receiver_cell_index(row));
 726   }
 727 
 728 #ifndef PRODUCT
 729   void print_receiver_data_on(outputStream* st);
 730   void print_data_on(outputStream* st);
 731 #endif
 732 };
 733 
 734 // VirtualCallData
 735 //
 736 // A VirtualCallData is used to access profiling information about a
 737 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
 738 class VirtualCallData : public ReceiverTypeData {
 739 public:
 740   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
 741     assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
 742   }
 743 
 744   virtual bool is_VirtualCallData() { return true; }
 745 
 746   static int static_cell_count() {
 747     // At this point we could add more profile state, e.g., for arguments.
 748     // But for now it's the same size as the base record type.
 749     return ReceiverTypeData::static_cell_count();
 750   }
 751 
 752   virtual int cell_count() {
 753     return static_cell_count();
 754   }
 755 
 756   // Direct accessors
 757   static ByteSize virtual_call_data_size() {
 758     return cell_offset(static_cell_count());
 759   }
 760 
 761 #ifndef PRODUCT
 762   void print_data_on(outputStream* st);
 763 #endif
 764 };
 765 
 766 // RetData
 767 //
 768 // A RetData is used to access profiling information for a ret bytecode.
 769 // It is composed of a count of the number of times that the ret has
 770 // been executed, followed by a series of triples of the form
 771 // (bci, count, di) which count the number of times that some bci was the
 772 // target of the ret and cache a corresponding data displacement.
 773 class RetData : public CounterData {
 774 protected:
 775   enum {
 776     bci0_offset = counter_cell_count,
 777     count0_offset,
 778     displacement0_offset,
 779     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
 780   };
 781 
 782   void set_bci(uint row, int bci) {
 783     assert((uint)row < row_limit(), "oob");
 784     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
 785   }
 786   void release_set_bci(uint row, int bci) {
 787     assert((uint)row < row_limit(), "oob");
 788     // 'release' when setting the bci acts as a valid flag for other
 789     // threads wrt bci_count and bci_displacement.
 790     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
 791   }
 792   void set_bci_count(uint row, uint count) {
 793     assert((uint)row < row_limit(), "oob");
 794     set_uint_at(count0_offset + row * ret_row_cell_count, count);
 795   }
 796   void set_bci_displacement(uint row, int disp) {
 797     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
 798   }
 799 
 800 public:
 801   RetData(DataLayout* layout) : CounterData(layout) {
 802     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
 803   }
 804 
 805   virtual bool is_RetData() { return true; }
 806 
 807   enum {
 808     no_bci = -1 // value of bci when bci1/2 are not in use.
 809   };
 810 
 811   static int static_cell_count() {
 812     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
 813   }
 814 
 815   virtual int cell_count() {
 816     return static_cell_count();
 817   }
 818 
 819   static uint row_limit() {
 820     return BciProfileWidth;
 821   }
 822   static int bci_cell_index(uint row) {
 823     return bci0_offset + row * ret_row_cell_count;
 824   }
 825   static int bci_count_cell_index(uint row) {
 826     return count0_offset + row * ret_row_cell_count;
 827   }
 828   static int bci_displacement_cell_index(uint row) {
 829     return displacement0_offset + row * ret_row_cell_count;
 830   }
 831 
 832   // Direct accessors
 833   int bci(uint row) {
 834     return int_at(bci_cell_index(row));
 835   }
 836   uint bci_count(uint row) {
 837     return uint_at(bci_count_cell_index(row));
 838   }
 839   int bci_displacement(uint row) {
 840     return int_at(bci_displacement_cell_index(row));
 841   }
 842 
 843   // Interpreter Runtime support
 844   address fixup_ret(int return_bci, methodDataHandle mdo);
 845 
 846   // Code generation support
 847   static ByteSize bci_offset(uint row) {
 848     return cell_offset(bci_cell_index(row));
 849   }
 850   static ByteSize bci_count_offset(uint row) {
 851     return cell_offset(bci_count_cell_index(row));
 852   }
 853   static ByteSize bci_displacement_offset(uint row) {
 854     return cell_offset(bci_displacement_cell_index(row));
 855   }
 856 
 857   // Specific initialization.
 858   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
 859 
 860 #ifndef PRODUCT
 861   void print_data_on(outputStream* st);
 862 #endif
 863 };
 864 
 865 // BranchData
 866 //
 867 // A BranchData is used to access profiling data for a two-way branch.
 868 // It consists of taken and not_taken counts as well as a data displacement
 869 // for the taken case.
 870 class BranchData : public JumpData {
 871 protected:
 872   enum {
 873     not_taken_off_set = jump_cell_count,
 874     branch_cell_count
 875   };
 876 
 877   void set_displacement(int displacement) {
 878     set_int_at(displacement_off_set, displacement);
 879   }
 880 
 881 public:
 882   BranchData(DataLayout* layout) : JumpData(layout) {
 883     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
 884   }
 885 
 886   virtual bool is_BranchData() { return true; }
 887 
 888   static int static_cell_count() {
 889     return branch_cell_count;
 890   }
 891 
 892   virtual int cell_count() {
 893     return static_cell_count();
 894   }
 895 
 896   // Direct accessor
 897   uint not_taken() {
 898     return uint_at(not_taken_off_set);
 899   }
 900 
 901   uint inc_not_taken() {
 902     uint cnt = not_taken() + 1;
 903     // Did we wrap? Will compiler screw us??
 904     if (cnt == 0) cnt--;
 905     set_uint_at(not_taken_off_set, cnt);
 906     return cnt;
 907   }
 908 
 909   // Code generation support
 910   static ByteSize not_taken_offset() {
 911     return cell_offset(not_taken_off_set);
 912   }
 913   static ByteSize branch_data_size() {
 914     return cell_offset(branch_cell_count);
 915   }
 916 
 917   // Specific initialization.
 918   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
 919 
 920 #ifndef PRODUCT
 921   void print_data_on(outputStream* st);
 922 #endif
 923 };
 924 
 925 // ArrayData
 926 //
 927 // A ArrayData is a base class for accessing profiling data which does
 928 // not have a statically known size.  It consists of an array length
 929 // and an array start.
 930 class ArrayData : public ProfileData {
 931 protected:
 932   friend class DataLayout;
 933 
 934   enum {
 935     array_len_off_set,
 936     array_start_off_set
 937   };
 938 
 939   uint array_uint_at(int index) {
 940     int aindex = index + array_start_off_set;
 941     return uint_at(aindex);
 942   }
 943   int array_int_at(int index) {
 944     int aindex = index + array_start_off_set;
 945     return int_at(aindex);
 946   }
 947   oop array_oop_at(int index) {
 948     int aindex = index + array_start_off_set;
 949     return oop_at(aindex);
 950   }
 951   void array_set_int_at(int index, int value) {
 952     int aindex = index + array_start_off_set;
 953     set_int_at(aindex, value);
 954   }
 955 
 956   // Code generation support for subclasses.
 957   static ByteSize array_element_offset(int index) {
 958     return cell_offset(array_start_off_set + index);
 959   }
 960 
 961 public:
 962   ArrayData(DataLayout* layout) : ProfileData(layout) {}
 963 
 964   virtual bool is_ArrayData() { return true; }
 965 
 966   static int static_cell_count() {
 967     return -1;
 968   }
 969 
 970   int array_len() {
 971     return int_at_unchecked(array_len_off_set);
 972   }
 973 
 974   virtual int cell_count() {
 975     return array_len() + 1;
 976   }
 977 
 978   // Code generation support
 979   static ByteSize array_len_offset() {
 980     return cell_offset(array_len_off_set);
 981   }
 982   static ByteSize array_start_offset() {
 983     return cell_offset(array_start_off_set);
 984   }
 985 };
 986 
 987 // MultiBranchData
 988 //
 989 // A MultiBranchData is used to access profiling information for
 990 // a multi-way branch (*switch bytecodes).  It consists of a series
 991 // of (count, displacement) pairs, which count the number of times each
 992 // case was taken and specify the data displacment for each branch target.
 993 class MultiBranchData : public ArrayData {
 994 protected:
 995   enum {
 996     default_count_off_set,
 997     default_disaplacement_off_set,
 998     case_array_start
 999   };
1000   enum {
1001     relative_count_off_set,
1002     relative_displacement_off_set,
1003     per_case_cell_count
1004   };
1005 
1006   void set_default_displacement(int displacement) {
1007     array_set_int_at(default_disaplacement_off_set, displacement);
1008   }
1009   void set_displacement_at(int index, int displacement) {
1010     array_set_int_at(case_array_start +
1011                      index * per_case_cell_count +
1012                      relative_displacement_off_set,
1013                      displacement);
1014   }
1015 
1016 public:
1017   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1018     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1019   }
1020 
1021   virtual bool is_MultiBranchData() { return true; }
1022 
1023   static int compute_cell_count(BytecodeStream* stream);
1024 
1025   int number_of_cases() {
1026     int alen = array_len() - 2; // get rid of default case here.
1027     assert(alen % per_case_cell_count == 0, "must be even");
1028     return (alen / per_case_cell_count);
1029   }
1030 
1031   uint default_count() {
1032     return array_uint_at(default_count_off_set);
1033   }
1034   int default_displacement() {
1035     return array_int_at(default_disaplacement_off_set);
1036   }
1037 
1038   uint count_at(int index) {
1039     return array_uint_at(case_array_start +
1040                          index * per_case_cell_count +
1041                          relative_count_off_set);
1042   }
1043   int displacement_at(int index) {
1044     return array_int_at(case_array_start +
1045                         index * per_case_cell_count +
1046                         relative_displacement_off_set);
1047   }
1048 
1049   // Code generation support
1050   static ByteSize default_count_offset() {
1051     return array_element_offset(default_count_off_set);
1052   }
1053   static ByteSize default_displacement_offset() {
1054     return array_element_offset(default_disaplacement_off_set);
1055   }
1056   static ByteSize case_count_offset(int index) {
1057     return case_array_offset() +
1058            (per_case_size() * index) +
1059            relative_count_offset();
1060   }
1061   static ByteSize case_array_offset() {
1062     return array_element_offset(case_array_start);
1063   }
1064   static ByteSize per_case_size() {
1065     return in_ByteSize(per_case_cell_count) * cell_size;
1066   }
1067   static ByteSize relative_count_offset() {
1068     return in_ByteSize(relative_count_off_set) * cell_size;
1069   }
1070   static ByteSize relative_displacement_offset() {
1071     return in_ByteSize(relative_displacement_off_set) * cell_size;
1072   }
1073 
1074   // Specific initialization.
1075   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
1076 
1077 #ifndef PRODUCT
1078   void print_data_on(outputStream* st);
1079 #endif
1080 };
1081 
1082 class ArgInfoData : public ArrayData {
1083 
1084 public:
1085   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1086     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1087   }
1088 
1089   virtual bool is_ArgInfoData() { return true; }
1090 
1091 
1092   int number_of_args() {
1093     return array_len();
1094   }
1095 
1096   uint arg_modified(int arg) {
1097     return array_uint_at(arg);
1098   }
1099 
1100   void set_arg_modified(int arg, uint val) {
1101     array_set_int_at(arg, val);
1102   }
1103 
1104 #ifndef PRODUCT
1105   void print_data_on(outputStream* st);
1106 #endif
1107 };
1108 
1109 // methodDataOop
1110 //
1111 // A methodDataOop holds information which has been collected about
1112 // a method.  Its layout looks like this:
1113 //
1114 // -----------------------------
1115 // | header                    |
1116 // | klass                     |
1117 // -----------------------------
1118 // | method                    |
1119 // | size of the methodDataOop |
1120 // -----------------------------
1121 // | Data entries...           |
1122 // |   (variable size)         |
1123 // |                           |
1124 // .                           .
1125 // .                           .
1126 // .                           .
1127 // |                           |
1128 // -----------------------------
1129 //
1130 // The data entry area is a heterogeneous array of DataLayouts. Each
1131 // DataLayout in the array corresponds to a specific bytecode in the
1132 // method.  The entries in the array are sorted by the corresponding
1133 // bytecode.  Access to the data is via resource-allocated ProfileData,
1134 // which point to the underlying blocks of DataLayout structures.
1135 //
1136 // During interpretation, if profiling in enabled, the interpreter
1137 // maintains a method data pointer (mdp), which points at the entry
1138 // in the array corresponding to the current bci.  In the course of
1139 // intepretation, when a bytecode is encountered that has profile data
1140 // associated with it, the entry pointed to by mdp is updated, then the
1141 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
1142 // is NULL to begin with, the interpreter assumes that the current method
1143 // is not (yet) being profiled.
1144 //
1145 // In methodDataOop parlance, "dp" is a "data pointer", the actual address
1146 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
1147 // from the base of the data entry array.  A "displacement" is the byte offset
1148 // in certain ProfileData objects that indicate the amount the mdp must be
1149 // adjusted in the event of a change in control flow.
1150 //
1151 
1152 class methodDataOopDesc : public oopDesc {
1153   friend class VMStructs;
1154 private:
1155   friend class ProfileData;
1156 
1157   // Back pointer to the methodOop
1158   methodOop _method;
1159 
1160   // Size of this oop in bytes
1161   int _size;
1162 
1163   // Cached hint for bci_to_dp and bci_to_data
1164   int _hint_di;
1165 
1166   // Whole-method sticky bits and flags
1167 public:
1168   enum {
1169     _trap_hist_limit    = 16,   // decoupled from Deoptimization::Reason_LIMIT
1170     _trap_hist_mask     = max_jubyte,
1171     _extra_data_count   = 4     // extra DataLayout headers, for trap history
1172   }; // Public flag values
1173 private:
1174   uint _nof_decompiles;             // count of all nmethod removals
1175   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
1176   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
1177   union {
1178     intptr_t _align;
1179     u1 _array[_trap_hist_limit];
1180   } _trap_hist;
1181 
1182   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1183   intx              _eflags;          // flags on escape information
1184   intx              _arg_local;       // bit set of non-escaping arguments
1185   intx              _arg_stack;       // bit set of stack-allocatable arguments
1186   intx              _arg_returned;    // bit set of returned arguments
1187 
1188   int _creation_mileage;            // method mileage at MDO creation
1189 
1190   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
1191   int _data_size;
1192 
1193   // Beginning of the data entries
1194   intptr_t _data[1];
1195 
1196   // Helper for size computation
1197   static int compute_data_size(BytecodeStream* stream);
1198   static int bytecode_cell_count(Bytecodes::Code code);
1199   enum { no_profile_data = -1, variable_cell_count = -2 };
1200 
1201   // Helper for initialization
1202   DataLayout* data_layout_at(int data_index) {
1203     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
1204     return (DataLayout*) (((address)_data) + data_index);
1205   }
1206 
1207   // Initialize an individual data segment.  Returns the size of
1208   // the segment in bytes.
1209   int initialize_data(BytecodeStream* stream, int data_index);
1210 
1211   // Helper for data_at
1212   DataLayout* limit_data_position() {
1213     return (DataLayout*)((address)data_base() + _data_size);
1214   }
1215   bool out_of_bounds(int data_index) {
1216     return data_index >= data_size();
1217   }
1218 
1219   // Give each of the data entries a chance to perform specific
1220   // data initialization.
1221   void post_initialize(BytecodeStream* stream);
1222 
1223   // hint accessors
1224   int      hint_di() const  { return _hint_di; }
1225   void set_hint_di(int di)  {
1226     assert(!out_of_bounds(di), "hint_di out of bounds");
1227     _hint_di = di;
1228   }
1229   ProfileData* data_before(int bci) {
1230     // avoid SEGV on this edge case
1231     if (data_size() == 0)
1232       return NULL;
1233     int hint = hint_di();
1234     if (data_layout_at(hint)->bci() <= bci)
1235       return data_at(hint);
1236     return first_data();
1237   }
1238 
1239   // What is the index of the first data entry?
1240   int first_di() { return 0; }
1241 
1242   // Find or create an extra ProfileData:
1243   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
1244 
1245   // return the argument info cell
1246   ArgInfoData *arg_info();
1247 
1248 public:
1249   static int header_size() {
1250     return sizeof(methodDataOopDesc)/wordSize;
1251   }
1252 
1253   // Compute the size of a methodDataOop before it is created.
1254   static int compute_allocation_size_in_bytes(methodHandle method);
1255   static int compute_allocation_size_in_words(methodHandle method);
1256   static int compute_extra_data_count(int data_size, int empty_bc_count);
1257 
1258   // Determine if a given bytecode can have profile information.
1259   static bool bytecode_has_profile(Bytecodes::Code code) {
1260     return bytecode_cell_count(code) != no_profile_data;
1261   }
1262 
1263   // Perform initialization of a new methodDataOop
1264   void initialize(methodHandle method);
1265 
1266   // My size
1267   int object_size_in_bytes() { return _size; }
1268   int object_size() {
1269     return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord);
1270   }
1271 
1272   int      creation_mileage() const  { return _creation_mileage; }
1273   void set_creation_mileage(int x)   { _creation_mileage = x; }
1274   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
1275   static int mileage_of(methodOop m);
1276 
1277   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1278   enum EscapeFlag {
1279     estimated    = 1 << 0,
1280     return_local = 1 << 1,
1281     return_allocated = 1 << 2,
1282     allocated_escapes = 1 << 3,
1283     unknown_modified = 1 << 4
1284   };
1285 
1286   intx eflags()                                  { return _eflags; }
1287   intx arg_local()                               { return _arg_local; }
1288   intx arg_stack()                               { return _arg_stack; }
1289   intx arg_returned()                            { return _arg_returned; }
1290   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
1291                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
1292                                                    return aid->arg_modified(a); }
1293 
1294   void set_eflags(intx v)                        { _eflags = v; }
1295   void set_arg_local(intx v)                     { _arg_local = v; }
1296   void set_arg_stack(intx v)                     { _arg_stack = v; }
1297   void set_arg_returned(intx v)                  { _arg_returned = v; }
1298   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
1299                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
1300 
1301                                                    aid->set_arg_modified(a, v); }
1302 
1303   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
1304 
1305   // Location and size of data area
1306   address data_base() const {
1307     return (address) _data;
1308   }
1309   int data_size() {
1310     return _data_size;
1311   }
1312 
1313   // Accessors
1314   methodOop method() { return _method; }
1315 
1316   // Get the data at an arbitrary (sort of) data index.
1317   ProfileData* data_at(int data_index);
1318 
1319   // Walk through the data in order.
1320   ProfileData* first_data() { return data_at(first_di()); }
1321   ProfileData* next_data(ProfileData* current);
1322   bool is_valid(ProfileData* current) { return current != NULL; }
1323 
1324   // Convert a dp (data pointer) to a di (data index).
1325   int dp_to_di(address dp) {
1326     return dp - ((address)_data);
1327   }
1328 
1329   address di_to_dp(int di) {
1330     return (address)data_layout_at(di);
1331   }
1332 
1333   // bci to di/dp conversion.
1334   address bci_to_dp(int bci);
1335   int bci_to_di(int bci) {
1336     return dp_to_di(bci_to_dp(bci));
1337   }
1338 
1339   // Get the data at an arbitrary bci, or NULL if there is none.
1340   ProfileData* bci_to_data(int bci);
1341 
1342   // Same, but try to create an extra_data record if one is needed:
1343   ProfileData* allocate_bci_to_data(int bci) {
1344     ProfileData* data = bci_to_data(bci);
1345     return (data != NULL) ? data : bci_to_extra_data(bci, true);
1346   }
1347 
1348   // Add a handful of extra data records, for trap tracking.
1349   DataLayout* extra_data_base() { return limit_data_position(); }
1350   DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); }
1351   int extra_data_size() { return (address)extra_data_limit()
1352                                - (address)extra_data_base(); }
1353   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
1354 
1355   // Return (uint)-1 for overflow.
1356   uint trap_count(int reason) const {
1357     assert((uint)reason < _trap_hist_limit, "oob");
1358     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
1359   }
1360   // For loops:
1361   static uint trap_reason_limit() { return _trap_hist_limit; }
1362   static uint trap_count_limit()  { return _trap_hist_mask; }
1363   uint inc_trap_count(int reason) {
1364     // Count another trap, anywhere in this method.
1365     assert(reason >= 0, "must be single trap");
1366     if ((uint)reason < _trap_hist_limit) {
1367       uint cnt1 = 1 + _trap_hist._array[reason];
1368       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
1369         _trap_hist._array[reason] = cnt1;
1370         return cnt1;
1371       } else {
1372         return _trap_hist_mask + (++_nof_overflow_traps);
1373       }
1374     } else {
1375       // Could not represent the count in the histogram.
1376       return (++_nof_overflow_traps);
1377     }
1378   }
1379 
1380   uint overflow_trap_count() const {
1381     return _nof_overflow_traps;
1382   }
1383   uint overflow_recompile_count() const {
1384     return _nof_overflow_recompiles;
1385   }
1386   void inc_overflow_recompile_count() {
1387     _nof_overflow_recompiles += 1;
1388   }
1389   uint decompile_count() const {
1390     return _nof_decompiles;
1391   }
1392   void inc_decompile_count() {
1393     _nof_decompiles += 1;
1394   }
1395 
1396   // Support for code generation
1397   static ByteSize data_offset() {
1398     return byte_offset_of(methodDataOopDesc, _data[0]);
1399   }
1400 
1401   // GC support
1402   oop* adr_method() const { return (oop*)&_method; }
1403   bool object_is_parsable() const { return _size != 0; }
1404   void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; }
1405 
1406 #ifndef PRODUCT
1407   // printing support for method data
1408   void print_data_on(outputStream* st);
1409 #endif
1410 
1411   // verification
1412   void verify_data_on(outputStream* st);
1413 };