1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_deoptimization.cpp.incl"
  27 
  28 bool DeoptimizationMarker::_is_active = false;
  29 
  30 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  31                                          int  caller_adjustment,
  32                                          int  number_of_frames,
  33                                          intptr_t* frame_sizes,
  34                                          address* frame_pcs,
  35                                          BasicType return_type) {
  36   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  37   _caller_adjustment         = caller_adjustment;
  38   _number_of_frames          = number_of_frames;
  39   _frame_sizes               = frame_sizes;
  40   _frame_pcs                 = frame_pcs;
  41   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
  42   _return_type               = return_type;
  43   // PD (x86 only)
  44   _counter_temp              = 0;
  45   _initial_fp                = 0;
  46   _unpack_kind               = 0;
  47   _sender_sp_temp            = 0;
  48 
  49   _total_frame_sizes         = size_of_frames();
  50 }
  51 
  52 
  53 Deoptimization::UnrollBlock::~UnrollBlock() {
  54   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  55   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  56   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  57 }
  58 
  59 
  60 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
  61   assert(register_number < RegisterMap::reg_count, "checking register number");
  62   return &_register_block[register_number * 2];
  63 }
  64 
  65 
  66 
  67 int Deoptimization::UnrollBlock::size_of_frames() const {
  68   // Acount first for the adjustment of the initial frame
  69   int result = _caller_adjustment;
  70   for (int index = 0; index < number_of_frames(); index++) {
  71     result += frame_sizes()[index];
  72   }
  73   return result;
  74 }
  75 
  76 
  77 void Deoptimization::UnrollBlock::print() {
  78   ttyLocker ttyl;
  79   tty->print_cr("UnrollBlock");
  80   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
  81   tty->print(   "  frame_sizes: ");
  82   for (int index = 0; index < number_of_frames(); index++) {
  83     tty->print("%d ", frame_sizes()[index]);
  84   }
  85   tty->cr();
  86 }
  87 
  88 
  89 // In order to make fetch_unroll_info work properly with escape
  90 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
  91 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
  92 // of previously eliminated objects occurs in realloc_objects, which is
  93 // called from the method fetch_unroll_info_helper below.
  94 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
  95   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
  96   // but makes the entry a little slower. There is however a little dance we have to
  97   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
  98 
  99   // fetch_unroll_info() is called at the beginning of the deoptimization
 100   // handler. Note this fact before we start generating temporary frames
 101   // that can confuse an asynchronous stack walker. This counter is
 102   // decremented at the end of unpack_frames().
 103   thread->inc_in_deopt_handler();
 104 
 105   return fetch_unroll_info_helper(thread);
 106 JRT_END
 107 
 108 
 109 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 110 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 111 
 112   // Note: there is a safepoint safety issue here. No matter whether we enter
 113   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 114   // the vframeArray is created.
 115   //
 116 
 117   // Allocate our special deoptimization ResourceMark
 118   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 119   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 120   thread->set_deopt_mark(dmark);
 121 
 122   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 123   RegisterMap map(thread, true);
 124   RegisterMap dummy_map(thread, false);
 125   // Now get the deoptee with a valid map
 126   frame deoptee = stub_frame.sender(&map);
 127 
 128   // Create a growable array of VFrames where each VFrame represents an inlined
 129   // Java frame.  This storage is allocated with the usual system arena.
 130   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 131   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 132   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 133   while (!vf->is_top()) {
 134     assert(vf->is_compiled_frame(), "Wrong frame type");
 135     chunk->push(compiledVFrame::cast(vf));
 136     vf = vf->sender();
 137   }
 138   assert(vf->is_compiled_frame(), "Wrong frame type");
 139   chunk->push(compiledVFrame::cast(vf));
 140 
 141 #ifdef COMPILER2
 142   // Reallocate the non-escaping objects and restore their fields. Then
 143   // relock objects if synchronization on them was eliminated.
 144   if (DoEscapeAnalysis) {
 145     if (EliminateAllocations) {
 146       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 147       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 148       bool reallocated = false;
 149       if (objects != NULL) {
 150         JRT_BLOCK
 151           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
 152         JRT_END
 153       }
 154       if (reallocated) {
 155         reassign_fields(&deoptee, &map, objects);
 156 #ifndef PRODUCT
 157         if (TraceDeoptimization) {
 158           ttyLocker ttyl;
 159           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 160           print_objects(objects);
 161       }
 162 #endif
 163       }
 164     }
 165     if (EliminateLocks) {
 166 #ifndef PRODUCT
 167       bool first = true;
 168 #endif
 169       for (int i = 0; i < chunk->length(); i++) {
 170         compiledVFrame* cvf = chunk->at(i);
 171         assert (cvf->scope() != NULL,"expect only compiled java frames");
 172         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 173         if (monitors->is_nonempty()) {
 174           relock_objects(monitors, thread);
 175 #ifndef PRODUCT
 176           if (TraceDeoptimization) {
 177             ttyLocker ttyl;
 178             for (int j = 0; j < monitors->length(); j++) {
 179               MonitorInfo* mi = monitors->at(j);
 180               if (mi->eliminated()) {
 181                 if (first) {
 182                   first = false;
 183                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 184                 }
 185                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
 186               }
 187             }
 188           }
 189 #endif
 190         }
 191       }
 192     }
 193   }
 194 #endif // COMPILER2
 195   // Ensure that no safepoint is taken after pointers have been stored
 196   // in fields of rematerialized objects.  If a safepoint occurs from here on
 197   // out the java state residing in the vframeArray will be missed.
 198   No_Safepoint_Verifier no_safepoint;
 199 
 200   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
 201 
 202   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
 203   thread->set_vframe_array_head(array);
 204 
 205   // Now that the vframeArray has been created if we have any deferred local writes
 206   // added by jvmti then we can free up that structure as the data is now in the
 207   // vframeArray
 208 
 209   if (thread->deferred_locals() != NULL) {
 210     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 211     int i = 0;
 212     do {
 213       // Because of inlining we could have multiple vframes for a single frame
 214       // and several of the vframes could have deferred writes. Find them all.
 215       if (list->at(i)->id() == array->original().id()) {
 216         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 217         list->remove_at(i);
 218         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 219         delete dlv;
 220       } else {
 221         i++;
 222       }
 223     } while ( i < list->length() );
 224     if (list->length() == 0) {
 225       thread->set_deferred_locals(NULL);
 226       // free the list and elements back to C heap.
 227       delete list;
 228     }
 229 
 230   }
 231 
 232   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 233   CodeBlob* cb = stub_frame.cb();
 234   // Verify we have the right vframeArray
 235   assert(cb->frame_size() >= 0, "Unexpected frame size");
 236   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 237 
 238 #ifdef ASSERT
 239   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 240   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
 241 #endif
 242   // This is a guarantee instead of an assert because if vframe doesn't match
 243   // we will unpack the wrong deoptimized frame and wind up in strange places
 244   // where it will be very difficult to figure out what went wrong. Better
 245   // to die an early death here than some very obscure death later when the
 246   // trail is cold.
 247   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 248   // in that it will fail to detect a problem when there is one. This needs
 249   // more work in tiger timeframe.
 250   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 251 
 252   int number_of_frames = array->frames();
 253 
 254   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 255   // virtual activation, which is the reverse of the elements in the vframes array.
 256   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
 257   // +1 because we always have an interpreter return address for the final slot.
 258   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
 259   int callee_parameters = 0;
 260   int callee_locals = 0;
 261   int popframe_extra_args = 0;
 262   // Create an interpreter return address for the stub to use as its return
 263   // address so the skeletal frames are perfectly walkable
 264   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 265 
 266   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 267   // activation be put back on the expression stack of the caller for reexecution
 268   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 269     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 270   }
 271 
 272   //
 273   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 274   // frame_sizes/frame_pcs[1] next oldest frame (int)
 275   // frame_sizes/frame_pcs[n] youngest frame (int)
 276   //
 277   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 278   // owns the space for the return address to it's caller).  Confusing ain't it.
 279   //
 280   // The vframe array can address vframes with indices running from
 281   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 282   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 283   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 284   // so things look a little strange in this loop.
 285   //
 286   for (int index = 0; index < array->frames(); index++ ) {
 287     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 288     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 289     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 290     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 291                                                                                                     callee_locals,
 292                                                                                                     index == 0,
 293                                                                                                     popframe_extra_args);
 294     // This pc doesn't have to be perfect just good enough to identify the frame
 295     // as interpreted so the skeleton frame will be walkable
 296     // The correct pc will be set when the skeleton frame is completely filled out
 297     // The final pc we store in the loop is wrong and will be overwritten below
 298     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 299 
 300     callee_parameters = array->element(index)->method()->size_of_parameters();
 301     callee_locals = array->element(index)->method()->max_locals();
 302     popframe_extra_args = 0;
 303   }
 304 
 305   // Compute whether the root vframe returns a float or double value.
 306   BasicType return_type;
 307   {
 308     HandleMark hm;
 309     methodHandle method(thread, array->element(0)->method());
 310     Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
 311     return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
 312   }
 313 
 314   // Compute information for handling adapters and adjusting the frame size of the caller.
 315   int caller_adjustment = 0;
 316 
 317   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 318   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 319   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 320   //
 321   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 322   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 323 
 324   // Compute the amount the oldest interpreter frame will have to adjust
 325   // its caller's stack by. If the caller is a compiled frame then
 326   // we pretend that the callee has no parameters so that the
 327   // extension counts for the full amount of locals and not just
 328   // locals-parms. This is because without a c2i adapter the parm
 329   // area as created by the compiled frame will not be usable by
 330   // the interpreter. (Depending on the calling convention there
 331   // may not even be enough space).
 332 
 333   // QQQ I'd rather see this pushed down into last_frame_adjust
 334   // and have it take the sender (aka caller).
 335 
 336   if (deopt_sender.is_compiled_frame()) {
 337     caller_adjustment = last_frame_adjust(0, callee_locals);
 338   } else if (callee_locals > callee_parameters) {
 339     // The caller frame may need extending to accommodate
 340     // non-parameter locals of the first unpacked interpreted frame.
 341     // Compute that adjustment.
 342     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 343   }
 344 
 345 
 346   // If the sender is deoptimized the we must retrieve the address of the handler
 347   // since the frame will "magically" show the original pc before the deopt
 348   // and we'd undo the deopt.
 349 
 350   frame_pcs[0] = deopt_sender.raw_pc();
 351 
 352   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 353 
 354   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 355                                       caller_adjustment * BytesPerWord,
 356                                       number_of_frames,
 357                                       frame_sizes,
 358                                       frame_pcs,
 359                                       return_type);
 360 #if defined(IA32) || defined(AMD64)
 361   // We need a way to pass fp to the unpacking code so the skeletal frames
 362   // come out correct. This is only needed for x86 because of c2 using ebp
 363   // as an allocatable register. So this update is useless (and harmless)
 364   // on the other platforms. It would be nice to do this in a different
 365   // way but even the old style deoptimization had a problem with deriving
 366   // this value. NEEDS_CLEANUP
 367   // Note: now that c1 is using c2's deopt blob we must do this on all
 368   // x86 based platforms
 369   intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
 370   *fp_addr = array->sender().fp(); // was adapter_caller
 371 #endif /* IA32 || AMD64 */
 372 
 373   if (array->frames() > 1) {
 374     if (VerifyStack && TraceDeoptimization) {
 375       tty->print_cr("Deoptimizing method containing inlining");
 376     }
 377   }
 378 
 379   array->set_unroll_block(info);
 380   return info;
 381 }
 382 
 383 // Called to cleanup deoptimization data structures in normal case
 384 // after unpacking to stack and when stack overflow error occurs
 385 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 386                                         vframeArray *array) {
 387 
 388   // Get array if coming from exception
 389   if (array == NULL) {
 390     array = thread->vframe_array_head();
 391   }
 392   thread->set_vframe_array_head(NULL);
 393 
 394   // Free the previous UnrollBlock
 395   vframeArray* old_array = thread->vframe_array_last();
 396   thread->set_vframe_array_last(array);
 397 
 398   if (old_array != NULL) {
 399     UnrollBlock* old_info = old_array->unroll_block();
 400     old_array->set_unroll_block(NULL);
 401     delete old_info;
 402     delete old_array;
 403   }
 404 
 405   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 406   // inside the vframeArray (StackValueCollections)
 407 
 408   delete thread->deopt_mark();
 409   thread->set_deopt_mark(NULL);
 410 
 411 
 412   if (JvmtiExport::can_pop_frame()) {
 413 #ifndef CC_INTERP
 414     // Regardless of whether we entered this routine with the pending
 415     // popframe condition bit set, we should always clear it now
 416     thread->clear_popframe_condition();
 417 #else
 418     // C++ interpeter will clear has_pending_popframe when it enters
 419     // with method_resume. For deopt_resume2 we clear it now.
 420     if (thread->popframe_forcing_deopt_reexecution())
 421         thread->clear_popframe_condition();
 422 #endif /* CC_INTERP */
 423   }
 424 
 425   // unpack_frames() is called at the end of the deoptimization handler
 426   // and (in C2) at the end of the uncommon trap handler. Note this fact
 427   // so that an asynchronous stack walker can work again. This counter is
 428   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 429   // the beginning of uncommon_trap().
 430   thread->dec_in_deopt_handler();
 431 }
 432 
 433 
 434 // Return BasicType of value being returned
 435 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 436 
 437   // We are already active int he special DeoptResourceMark any ResourceObj's we
 438   // allocate will be freed at the end of the routine.
 439 
 440   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 441   // but makes the entry a little slower. There is however a little dance we have to
 442   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 443   ResetNoHandleMark rnhm; // No-op in release/product versions
 444   HandleMark hm;
 445 
 446   frame stub_frame = thread->last_frame();
 447 
 448   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 449   // must point to the vframeArray for the unpack frame.
 450   vframeArray* array = thread->vframe_array_head();
 451 
 452 #ifndef PRODUCT
 453   if (TraceDeoptimization) {
 454     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 455   }
 456 #endif
 457 
 458   UnrollBlock* info = array->unroll_block();
 459 
 460   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 461   array->unpack_to_stack(stub_frame, exec_mode);
 462 
 463   BasicType bt = info->return_type();
 464 
 465   // If we have an exception pending, claim that the return type is an oop
 466   // so the deopt_blob does not overwrite the exception_oop.
 467 
 468   if (exec_mode == Unpack_exception)
 469     bt = T_OBJECT;
 470 
 471   // Cleanup thread deopt data
 472   cleanup_deopt_info(thread, array);
 473 
 474 #ifndef PRODUCT
 475   if (VerifyStack) {
 476     ResourceMark res_mark;
 477 
 478     // Verify that the just-unpacked frames match the interpreter's
 479     // notions of expression stack and locals
 480     vframeArray* cur_array = thread->vframe_array_last();
 481     RegisterMap rm(thread, false);
 482     rm.set_include_argument_oops(false);
 483     bool is_top_frame = true;
 484     int callee_size_of_parameters = 0;
 485     int callee_max_locals = 0;
 486     for (int i = 0; i < cur_array->frames(); i++) {
 487       vframeArrayElement* el = cur_array->element(i);
 488       frame* iframe = el->iframe();
 489       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 490 
 491       // Get the oop map for this bci
 492       InterpreterOopMap mask;
 493       int cur_invoke_parameter_size = 0;
 494       bool try_next_mask = false;
 495       int next_mask_expression_stack_size = -1;
 496       int top_frame_expression_stack_adjustment = 0;
 497       methodHandle mh(thread, iframe->interpreter_frame_method());
 498       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 499       BytecodeStream str(mh);
 500       str.set_start(iframe->interpreter_frame_bci());
 501       int max_bci = mh->code_size();
 502       // Get to the next bytecode if possible
 503       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 504       // Check to see if we can grab the number of outgoing arguments
 505       // at an uncommon trap for an invoke (where the compiler
 506       // generates debug info before the invoke has executed)
 507       Bytecodes::Code cur_code = str.next();
 508       if (cur_code == Bytecodes::_invokevirtual ||
 509           cur_code == Bytecodes::_invokespecial ||
 510           cur_code == Bytecodes::_invokestatic  ||
 511           cur_code == Bytecodes::_invokeinterface) {
 512         Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
 513         symbolHandle signature(thread, invoke->signature());
 514         ArgumentSizeComputer asc(signature);
 515         cur_invoke_parameter_size = asc.size();
 516         if (cur_code != Bytecodes::_invokestatic) {
 517           // Add in receiver
 518           ++cur_invoke_parameter_size;
 519         }
 520       }
 521       if (str.bci() < max_bci) {
 522         Bytecodes::Code bc = str.next();
 523         if (bc >= 0) {
 524           // The interpreter oop map generator reports results before
 525           // the current bytecode has executed except in the case of
 526           // calls. It seems to be hard to tell whether the compiler
 527           // has emitted debug information matching the "state before"
 528           // a given bytecode or the state after, so we try both
 529           switch (cur_code) {
 530             case Bytecodes::_invokevirtual:
 531             case Bytecodes::_invokespecial:
 532             case Bytecodes::_invokestatic:
 533             case Bytecodes::_invokeinterface:
 534             case Bytecodes::_athrow:
 535               break;
 536             default: {
 537               InterpreterOopMap next_mask;
 538               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 539               next_mask_expression_stack_size = next_mask.expression_stack_size();
 540               // Need to subtract off the size of the result type of
 541               // the bytecode because this is not described in the
 542               // debug info but returned to the interpreter in the TOS
 543               // caching register
 544               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 545               if (bytecode_result_type != T_ILLEGAL) {
 546                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 547               }
 548               assert(top_frame_expression_stack_adjustment >= 0, "");
 549               try_next_mask = true;
 550               break;
 551             }
 552           }
 553         }
 554       }
 555 
 556       // Verify stack depth and oops in frame
 557       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 558       if (!(
 559             /* SPARC */
 560             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 561             /* x86 */
 562             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 563             (try_next_mask &&
 564              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 565                                                                     top_frame_expression_stack_adjustment))) ||
 566             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 567             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
 568              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 569             )) {
 570         ttyLocker ttyl;
 571 
 572         // Print out some information that will help us debug the problem
 573         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 574         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 575         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 576                       iframe->interpreter_frame_expression_stack_size());
 577         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 578         tty->print_cr("  try_next_mask = %d", try_next_mask);
 579         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 580         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 581         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 582         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 583         tty->print_cr("  exec_mode = %d", exec_mode);
 584         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 585         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 586         tty->print_cr("  Interpreted frames:");
 587         for (int k = 0; k < cur_array->frames(); k++) {
 588           vframeArrayElement* el = cur_array->element(k);
 589           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 590         }
 591         cur_array->print_on_2(tty);
 592         guarantee(false, "wrong number of expression stack elements during deopt");
 593       }
 594       VerifyOopClosure verify;
 595       iframe->oops_interpreted_do(&verify, &rm, false);
 596       callee_size_of_parameters = mh->size_of_parameters();
 597       callee_max_locals = mh->max_locals();
 598       is_top_frame = false;
 599     }
 600   }
 601 #endif /* !PRODUCT */
 602 
 603 
 604   return bt;
 605 JRT_END
 606 
 607 
 608 int Deoptimization::deoptimize_dependents() {
 609   Threads::deoptimized_wrt_marked_nmethods();
 610   return 0;
 611 }
 612 
 613 
 614 #ifdef COMPILER2
 615 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 616   Handle pending_exception(thread->pending_exception());
 617   const char* exception_file = thread->exception_file();
 618   int exception_line = thread->exception_line();
 619   thread->clear_pending_exception();
 620 
 621   for (int i = 0; i < objects->length(); i++) {
 622     assert(objects->at(i)->is_object(), "invalid debug information");
 623     ObjectValue* sv = (ObjectValue*) objects->at(i);
 624 
 625     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 626     oop obj = NULL;
 627 
 628     if (k->oop_is_instance()) {
 629       instanceKlass* ik = instanceKlass::cast(k());
 630       obj = ik->allocate_instance(CHECK_(false));
 631     } else if (k->oop_is_typeArray()) {
 632       typeArrayKlass* ak = typeArrayKlass::cast(k());
 633       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 634       int len = sv->field_size() / type2size[ak->element_type()];
 635       obj = ak->allocate(len, CHECK_(false));
 636     } else if (k->oop_is_objArray()) {
 637       objArrayKlass* ak = objArrayKlass::cast(k());
 638       obj = ak->allocate(sv->field_size(), CHECK_(false));
 639     }
 640 
 641     assert(obj != NULL, "allocation failed");
 642     assert(sv->value().is_null(), "redundant reallocation");
 643     sv->set_value(obj);
 644   }
 645 
 646   if (pending_exception.not_null()) {
 647     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 648   }
 649 
 650   return true;
 651 }
 652 
 653 // This assumes that the fields are stored in ObjectValue in the same order
 654 // they are yielded by do_nonstatic_fields.
 655 class FieldReassigner: public FieldClosure {
 656   frame* _fr;
 657   RegisterMap* _reg_map;
 658   ObjectValue* _sv;
 659   instanceKlass* _ik;
 660   oop _obj;
 661 
 662   int _i;
 663 public:
 664   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 665     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 666 
 667   int i() const { return _i; }
 668 
 669 
 670   void do_field(fieldDescriptor* fd) {
 671     intptr_t val;
 672     StackValue* value =
 673       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 674     int offset = fd->offset();
 675     switch (fd->field_type()) {
 676     case T_OBJECT: case T_ARRAY:
 677       assert(value->type() == T_OBJECT, "Agreement.");
 678       _obj->obj_field_put(offset, value->get_obj()());
 679       break;
 680 
 681     case T_LONG: case T_DOUBLE: {
 682       assert(value->type() == T_INT, "Agreement.");
 683       StackValue* low =
 684         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 685 #ifdef _LP64
 686       jlong res = (jlong)low->get_int();
 687 #else
 688 #ifdef SPARC
 689       // For SPARC we have to swap high and low words.
 690       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 691 #else
 692       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 693 #endif //SPARC
 694 #endif
 695       _obj->long_field_put(offset, res);
 696       break;
 697     }
 698     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 699     case T_INT: case T_FLOAT: // 4 bytes.
 700       assert(value->type() == T_INT, "Agreement.");
 701       val = value->get_int();
 702       _obj->int_field_put(offset, (jint)*((jint*)&val));
 703       break;
 704 
 705     case T_SHORT: case T_CHAR: // 2 bytes
 706       assert(value->type() == T_INT, "Agreement.");
 707       val = value->get_int();
 708       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 709       break;
 710 
 711     case T_BOOLEAN: case T_BYTE: // 1 byte
 712       assert(value->type() == T_INT, "Agreement.");
 713       val = value->get_int();
 714       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 715       break;
 716 
 717     default:
 718       ShouldNotReachHere();
 719     }
 720     _i++;
 721   }
 722 };
 723 
 724 // restore elements of an eliminated type array
 725 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 726   int index = 0;
 727   intptr_t val;
 728 
 729   for (int i = 0; i < sv->field_size(); i++) {
 730     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 731     switch(type) {
 732     case T_LONG: case T_DOUBLE: {
 733       assert(value->type() == T_INT, "Agreement.");
 734       StackValue* low =
 735         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 736 #ifdef _LP64
 737       jlong res = (jlong)low->get_int();
 738 #else
 739 #ifdef SPARC
 740       // For SPARC we have to swap high and low words.
 741       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 742 #else
 743       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 744 #endif //SPARC
 745 #endif
 746       obj->long_at_put(index, res);
 747       break;
 748     }
 749 
 750     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 751     case T_INT: case T_FLOAT: // 4 bytes.
 752       assert(value->type() == T_INT, "Agreement.");
 753       val = value->get_int();
 754       obj->int_at_put(index, (jint)*((jint*)&val));
 755       break;
 756 
 757     case T_SHORT: case T_CHAR: // 2 bytes
 758       assert(value->type() == T_INT, "Agreement.");
 759       val = value->get_int();
 760       obj->short_at_put(index, (jshort)*((jint*)&val));
 761       break;
 762 
 763     case T_BOOLEAN: case T_BYTE: // 1 byte
 764       assert(value->type() == T_INT, "Agreement.");
 765       val = value->get_int();
 766       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 767       break;
 768 
 769       default:
 770         ShouldNotReachHere();
 771     }
 772     index++;
 773   }
 774 }
 775 
 776 
 777 // restore fields of an eliminated object array
 778 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 779   for (int i = 0; i < sv->field_size(); i++) {
 780     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 781     assert(value->type() == T_OBJECT, "object element expected");
 782     obj->obj_at_put(i, value->get_obj()());
 783   }
 784 }
 785 
 786 
 787 // restore fields of all eliminated objects and arrays
 788 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
 789   for (int i = 0; i < objects->length(); i++) {
 790     ObjectValue* sv = (ObjectValue*) objects->at(i);
 791     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 792     Handle obj = sv->value();
 793     assert(obj.not_null(), "reallocation was missed");
 794 
 795     if (k->oop_is_instance()) {
 796       instanceKlass* ik = instanceKlass::cast(k());
 797       FieldReassigner reassign(fr, reg_map, sv, obj());
 798       ik->do_nonstatic_fields(&reassign);
 799     } else if (k->oop_is_typeArray()) {
 800       typeArrayKlass* ak = typeArrayKlass::cast(k());
 801       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 802     } else if (k->oop_is_objArray()) {
 803       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 804     }
 805   }
 806 }
 807 
 808 
 809 // relock objects for which synchronization was eliminated
 810 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
 811   for (int i = 0; i < monitors->length(); i++) {
 812     MonitorInfo* mon_info = monitors->at(i);
 813     if (mon_info->eliminated()) {
 814       assert(mon_info->owner() != NULL, "reallocation was missed");
 815       Handle obj = Handle(mon_info->owner());
 816       markOop mark = obj->mark();
 817       if (UseBiasedLocking && mark->has_bias_pattern()) {
 818         // New allocated objects may have the mark set to anonymously biased.
 819         // Also the deoptimized method may called methods with synchronization
 820         // where the thread-local object is bias locked to the current thread.
 821         assert(mark->is_biased_anonymously() ||
 822                mark->biased_locker() == thread, "should be locked to current thread");
 823         // Reset mark word to unbiased prototype.
 824         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 825         obj->set_mark(unbiased_prototype);
 826       }
 827       BasicLock* lock = mon_info->lock();
 828       ObjectSynchronizer::slow_enter(obj, lock, thread);
 829     }
 830     assert(mon_info->owner()->is_locked(), "object must be locked now");
 831   }
 832 }
 833 
 834 
 835 #ifndef PRODUCT
 836 // print information about reallocated objects
 837 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
 838   fieldDescriptor fd;
 839 
 840   for (int i = 0; i < objects->length(); i++) {
 841     ObjectValue* sv = (ObjectValue*) objects->at(i);
 842     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 843     Handle obj = sv->value();
 844 
 845     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
 846     k->as_klassOop()->print_value();
 847     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
 848     tty->cr();
 849 
 850     if (Verbose) {
 851       k->oop_print_on(obj(), tty);
 852     }
 853   }
 854 }
 855 #endif
 856 #endif // COMPILER2
 857 
 858 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
 859 
 860 #ifndef PRODUCT
 861   if (TraceDeoptimization) {
 862     ttyLocker ttyl;
 863     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
 864     fr.print_on(tty);
 865     tty->print_cr("     Virtual frames (innermost first):");
 866     for (int index = 0; index < chunk->length(); index++) {
 867       compiledVFrame* vf = chunk->at(index);
 868       tty->print("       %2d - ", index);
 869       vf->print_value();
 870       int bci = chunk->at(index)->raw_bci();
 871       const char* code_name;
 872       if (bci == SynchronizationEntryBCI) {
 873         code_name = "sync entry";
 874       } else {
 875         Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
 876         code_name = Bytecodes::name(code);
 877       }
 878       tty->print(" - %s", code_name);
 879       tty->print_cr(" @ bci %d ", bci);
 880       if (Verbose) {
 881         vf->print();
 882         tty->cr();
 883       }
 884     }
 885   }
 886 #endif
 887 
 888   // Register map for next frame (used for stack crawl).  We capture
 889   // the state of the deopt'ing frame's caller.  Thus if we need to
 890   // stuff a C2I adapter we can properly fill in the callee-save
 891   // register locations.
 892   frame caller = fr.sender(reg_map);
 893   int frame_size = caller.sp() - fr.sp();
 894 
 895   frame sender = caller;
 896 
 897   // Since the Java thread being deoptimized will eventually adjust it's own stack,
 898   // the vframeArray containing the unpacking information is allocated in the C heap.
 899   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
 900   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
 901 
 902   // Compare the vframeArray to the collected vframes
 903   assert(array->structural_compare(thread, chunk), "just checking");
 904   Events::log("# vframes = %d", (intptr_t)chunk->length());
 905 
 906 #ifndef PRODUCT
 907   if (TraceDeoptimization) {
 908     ttyLocker ttyl;
 909     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
 910     if (Verbose) {
 911       int count = 0;
 912       // this used to leak deoptimizedVFrame like it was going out of style!!!
 913       for (int index = 0; index < array->frames(); index++ ) {
 914         vframeArrayElement* e = array->element(index);
 915         e->print(tty);
 916 
 917         /*
 918           No printing yet.
 919         array->vframe_at(index)->print_activation(count++);
 920         // better as...
 921         array->print_activation_for(index, count++);
 922         */
 923       }
 924     }
 925   }
 926 #endif // PRODUCT
 927 
 928   return array;
 929 }
 930 
 931 
 932 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
 933   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 934   for (int i = 0; i < monitors->length(); i++) {
 935     MonitorInfo* mon_info = monitors->at(i);
 936     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
 937       objects_to_revoke->append(Handle(mon_info->owner()));
 938     }
 939   }
 940 }
 941 
 942 
 943 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
 944   if (!UseBiasedLocking) {
 945     return;
 946   }
 947 
 948   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 949 
 950   // Unfortunately we don't have a RegisterMap available in most of
 951   // the places we want to call this routine so we need to walk the
 952   // stack again to update the register map.
 953   if (map == NULL || !map->update_map()) {
 954     StackFrameStream sfs(thread, true);
 955     bool found = false;
 956     while (!found && !sfs.is_done()) {
 957       frame* cur = sfs.current();
 958       sfs.next();
 959       found = cur->id() == fr.id();
 960     }
 961     assert(found, "frame to be deoptimized not found on target thread's stack");
 962     map = sfs.register_map();
 963   }
 964 
 965   vframe* vf = vframe::new_vframe(&fr, map, thread);
 966   compiledVFrame* cvf = compiledVFrame::cast(vf);
 967   // Revoke monitors' biases in all scopes
 968   while (!cvf->is_top()) {
 969     collect_monitors(cvf, objects_to_revoke);
 970     cvf = compiledVFrame::cast(cvf->sender());
 971   }
 972   collect_monitors(cvf, objects_to_revoke);
 973 
 974   if (SafepointSynchronize::is_at_safepoint()) {
 975     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
 976   } else {
 977     BiasedLocking::revoke(objects_to_revoke);
 978   }
 979 }
 980 
 981 
 982 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
 983   if (!UseBiasedLocking) {
 984     return;
 985   }
 986 
 987   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
 988   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 989   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
 990     if (jt->has_last_Java_frame()) {
 991       StackFrameStream sfs(jt, true);
 992       while (!sfs.is_done()) {
 993         frame* cur = sfs.current();
 994         if (cb->contains(cur->pc())) {
 995           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
 996           compiledVFrame* cvf = compiledVFrame::cast(vf);
 997           // Revoke monitors' biases in all scopes
 998           while (!cvf->is_top()) {
 999             collect_monitors(cvf, objects_to_revoke);
1000             cvf = compiledVFrame::cast(cvf->sender());
1001           }
1002           collect_monitors(cvf, objects_to_revoke);
1003         }
1004         sfs.next();
1005       }
1006     }
1007   }
1008   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1009 }
1010 
1011 
1012 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1013   assert(fr.can_be_deoptimized(), "checking frame type");
1014 
1015   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1016 
1017   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
1018 
1019   // Patch the nmethod so that when execution returns to it we will
1020   // deopt the execution state and return to the interpreter.
1021   fr.deoptimize(thread);
1022 }
1023 
1024 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1025   // Deoptimize only if the frame comes from compile code.
1026   // Do not deoptimize the frame which is already patched
1027   // during the execution of the loops below.
1028   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1029     return;
1030   }
1031   ResourceMark rm;
1032   DeoptimizationMarker dm;
1033   if (UseBiasedLocking) {
1034     revoke_biases_of_monitors(thread, fr, map);
1035   }
1036   deoptimize_single_frame(thread, fr);
1037 
1038 }
1039 
1040 
1041 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1042   // Compute frame and register map based on thread and sp.
1043   RegisterMap reg_map(thread, UseBiasedLocking);
1044   frame fr = thread->last_frame();
1045   while (fr.id() != id) {
1046     fr = fr.sender(&reg_map);
1047   }
1048   deoptimize(thread, fr, &reg_map);
1049 }
1050 
1051 
1052 // JVMTI PopFrame support
1053 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1054 {
1055   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1056 }
1057 JRT_END
1058 
1059 
1060 #ifdef COMPILER2
1061 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1062   // in case of an unresolved klass entry, load the class.
1063   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1064     klassOop tk = constant_pool->klass_at(index, CHECK);
1065     return;
1066   }
1067 
1068   if (!constant_pool->tag_at(index).is_symbol()) return;
1069 
1070   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
1071   symbolHandle symbol (THREAD, constant_pool->symbol_at(index));
1072 
1073   // class name?
1074   if (symbol->byte_at(0) != '(') {
1075     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1076     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1077     return;
1078   }
1079 
1080   // then it must be a signature!
1081   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1082     if (ss.is_object()) {
1083       symbolOop s = ss.as_symbol(CHECK);
1084       symbolHandle class_name (THREAD, s);
1085       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1086       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1087     }
1088   }
1089 }
1090 
1091 
1092 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1093   EXCEPTION_MARK;
1094   load_class_by_index(constant_pool, index, THREAD);
1095   if (HAS_PENDING_EXCEPTION) {
1096     // Exception happened during classloading. We ignore the exception here, since it
1097     // is going to be rethrown since the current activation is going to be deoptimzied and
1098     // the interpreter will re-execute the bytecode.
1099     CLEAR_PENDING_EXCEPTION;
1100   }
1101 }
1102 
1103 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1104   HandleMark hm;
1105 
1106   // uncommon_trap() is called at the beginning of the uncommon trap
1107   // handler. Note this fact before we start generating temporary frames
1108   // that can confuse an asynchronous stack walker. This counter is
1109   // decremented at the end of unpack_frames().
1110   thread->inc_in_deopt_handler();
1111 
1112   // We need to update the map if we have biased locking.
1113   RegisterMap reg_map(thread, UseBiasedLocking);
1114   frame stub_frame = thread->last_frame();
1115   frame fr = stub_frame.sender(&reg_map);
1116   // Make sure the calling nmethod is not getting deoptimized and removed
1117   // before we are done with it.
1118   nmethodLocker nl(fr.pc());
1119 
1120   {
1121     ResourceMark rm;
1122 
1123     // Revoke biases of any monitors in the frame to ensure we can migrate them
1124     revoke_biases_of_monitors(thread, fr, &reg_map);
1125 
1126     DeoptReason reason = trap_request_reason(trap_request);
1127     DeoptAction action = trap_request_action(trap_request);
1128     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1129 
1130     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
1131     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1132     compiledVFrame* cvf = compiledVFrame::cast(vf);
1133 
1134     nmethod* nm = cvf->code();
1135 
1136     ScopeDesc*      trap_scope  = cvf->scope();
1137     methodHandle    trap_method = trap_scope->method();
1138     int             trap_bci    = trap_scope->bci();
1139     Bytecodes::Code trap_bc     = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();
1140 
1141     // Record this event in the histogram.
1142     gather_statistics(reason, action, trap_bc);
1143 
1144     // Ensure that we can record deopt. history:
1145     bool create_if_missing = ProfileTraps;
1146 
1147     methodDataHandle trap_mdo
1148       (THREAD, get_method_data(thread, trap_method, create_if_missing));
1149 
1150     // Print a bunch of diagnostics, if requested.
1151     if (TraceDeoptimization || LogCompilation) {
1152       ResourceMark rm;
1153       ttyLocker ttyl;
1154       char buf[100];
1155       if (xtty != NULL) {
1156         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1157                          os::current_thread_id(),
1158                          format_trap_request(buf, sizeof(buf), trap_request));
1159         nm->log_identity(xtty);
1160       }
1161       symbolHandle class_name;
1162       bool unresolved = false;
1163       if (unloaded_class_index >= 0) {
1164         constantPoolHandle constants (THREAD, trap_method->constants());
1165         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1166           class_name = symbolHandle(THREAD,
1167             constants->klass_name_at(unloaded_class_index));
1168           unresolved = true;
1169           if (xtty != NULL)
1170             xtty->print(" unresolved='1'");
1171         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1172           class_name = symbolHandle(THREAD,
1173             constants->symbol_at(unloaded_class_index));
1174         }
1175         if (xtty != NULL)
1176           xtty->name(class_name);
1177       }
1178       if (xtty != NULL && trap_mdo.not_null()) {
1179         // Dump the relevant MDO state.
1180         // This is the deopt count for the current reason, any previous
1181         // reasons or recompiles seen at this point.
1182         int dcnt = trap_mdo->trap_count(reason);
1183         if (dcnt != 0)
1184           xtty->print(" count='%d'", dcnt);
1185         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1186         int dos = (pdata == NULL)? 0: pdata->trap_state();
1187         if (dos != 0) {
1188           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1189           if (trap_state_is_recompiled(dos)) {
1190             int recnt2 = trap_mdo->overflow_recompile_count();
1191             if (recnt2 != 0)
1192               xtty->print(" recompiles2='%d'", recnt2);
1193           }
1194         }
1195       }
1196       if (xtty != NULL) {
1197         xtty->stamp();
1198         xtty->end_head();
1199       }
1200       if (TraceDeoptimization) {  // make noise on the tty
1201         tty->print("Uncommon trap occurred in");
1202         nm->method()->print_short_name(tty);
1203         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
1204                    fr.pc(),
1205                    (int) os::current_thread_id(),
1206                    trap_reason_name(reason),
1207                    trap_action_name(action),
1208                    unloaded_class_index);
1209         if (class_name.not_null()) {
1210           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1211           class_name->print_symbol_on(tty);
1212         }
1213         tty->cr();
1214       }
1215       if (xtty != NULL) {
1216         // Log the precise location of the trap.
1217         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1218           xtty->begin_elem("jvms bci='%d'", sd->bci());
1219           xtty->method(sd->method());
1220           xtty->end_elem();
1221           if (sd->is_top())  break;
1222         }
1223         xtty->tail("uncommon_trap");
1224       }
1225     }
1226     // (End diagnostic printout.)
1227 
1228     // Load class if necessary
1229     if (unloaded_class_index >= 0) {
1230       constantPoolHandle constants(THREAD, trap_method->constants());
1231       load_class_by_index(constants, unloaded_class_index);
1232     }
1233 
1234     // Flush the nmethod if necessary and desirable.
1235     //
1236     // We need to avoid situations where we are re-flushing the nmethod
1237     // because of a hot deoptimization site.  Repeated flushes at the same
1238     // point need to be detected by the compiler and avoided.  If the compiler
1239     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1240     // module must take measures to avoid an infinite cycle of recompilation
1241     // and deoptimization.  There are several such measures:
1242     //
1243     //   1. If a recompilation is ordered a second time at some site X
1244     //   and for the same reason R, the action is adjusted to 'reinterpret',
1245     //   to give the interpreter time to exercise the method more thoroughly.
1246     //   If this happens, the method's overflow_recompile_count is incremented.
1247     //
1248     //   2. If the compiler fails to reduce the deoptimization rate, then
1249     //   the method's overflow_recompile_count will begin to exceed the set
1250     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1251     //   is adjusted to 'make_not_compilable', and the method is abandoned
1252     //   to the interpreter.  This is a performance hit for hot methods,
1253     //   but is better than a disastrous infinite cycle of recompilations.
1254     //   (Actually, only the method containing the site X is abandoned.)
1255     //
1256     //   3. In parallel with the previous measures, if the total number of
1257     //   recompilations of a method exceeds the much larger set limit
1258     //   PerMethodRecompilationCutoff, the method is abandoned.
1259     //   This should only happen if the method is very large and has
1260     //   many "lukewarm" deoptimizations.  The code which enforces this
1261     //   limit is elsewhere (class nmethod, class methodOopDesc).
1262     //
1263     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1264     // to recompile at each bytecode independently of the per-BCI cutoff.
1265     //
1266     // The decision to update code is up to the compiler, and is encoded
1267     // in the Action_xxx code.  If the compiler requests Action_none
1268     // no trap state is changed, no compiled code is changed, and the
1269     // computation suffers along in the interpreter.
1270     //
1271     // The other action codes specify various tactics for decompilation
1272     // and recompilation.  Action_maybe_recompile is the loosest, and
1273     // allows the compiled code to stay around until enough traps are seen,
1274     // and until the compiler gets around to recompiling the trapping method.
1275     //
1276     // The other actions cause immediate removal of the present code.
1277 
1278     bool update_trap_state = true;
1279     bool make_not_entrant = false;
1280     bool make_not_compilable = false;
1281     bool reset_counters = false;
1282     switch (action) {
1283     case Action_none:
1284       // Keep the old code.
1285       update_trap_state = false;
1286       break;
1287     case Action_maybe_recompile:
1288       // Do not need to invalidate the present code, but we can
1289       // initiate another
1290       // Start compiler without (necessarily) invalidating the nmethod.
1291       // The system will tolerate the old code, but new code should be
1292       // generated when possible.
1293       break;
1294     case Action_reinterpret:
1295       // Go back into the interpreter for a while, and then consider
1296       // recompiling form scratch.
1297       make_not_entrant = true;
1298       // Reset invocation counter for outer most method.
1299       // This will allow the interpreter to exercise the bytecodes
1300       // for a while before recompiling.
1301       // By contrast, Action_make_not_entrant is immediate.
1302       //
1303       // Note that the compiler will track null_check, null_assert,
1304       // range_check, and class_check events and log them as if they
1305       // had been traps taken from compiled code.  This will update
1306       // the MDO trap history so that the next compilation will
1307       // properly detect hot trap sites.
1308       reset_counters = true;
1309       break;
1310     case Action_make_not_entrant:
1311       // Request immediate recompilation, and get rid of the old code.
1312       // Make them not entrant, so next time they are called they get
1313       // recompiled.  Unloaded classes are loaded now so recompile before next
1314       // time they are called.  Same for uninitialized.  The interpreter will
1315       // link the missing class, if any.
1316       make_not_entrant = true;
1317       break;
1318     case Action_make_not_compilable:
1319       // Give up on compiling this method at all.
1320       make_not_entrant = true;
1321       make_not_compilable = true;
1322       break;
1323     default:
1324       ShouldNotReachHere();
1325     }
1326 
1327     // Setting +ProfileTraps fixes the following, on all platforms:
1328     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1329     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1330     // recompile relies on a methodDataOop to record heroic opt failures.
1331 
1332     // Whether the interpreter is producing MDO data or not, we also need
1333     // to use the MDO to detect hot deoptimization points and control
1334     // aggressive optimization.
1335     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
1336       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
1337       uint this_trap_count = 0;
1338       bool maybe_prior_trap = false;
1339       bool maybe_prior_recompile = false;
1340       ProfileData* pdata
1341         = query_update_method_data(trap_mdo, trap_bci, reason,
1342                                    //outputs:
1343                                    this_trap_count,
1344                                    maybe_prior_trap,
1345                                    maybe_prior_recompile);
1346       // Because the interpreter also counts null, div0, range, and class
1347       // checks, these traps from compiled code are double-counted.
1348       // This is harmless; it just means that the PerXTrapLimit values
1349       // are in effect a little smaller than they look.
1350 
1351       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1352       if (per_bc_reason != Reason_none) {
1353         // Now take action based on the partially known per-BCI history.
1354         if (maybe_prior_trap
1355             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1356           // If there are too many traps at this BCI, force a recompile.
1357           // This will allow the compiler to see the limit overflow, and
1358           // take corrective action, if possible.  The compiler generally
1359           // does not use the exact PerBytecodeTrapLimit value, but instead
1360           // changes its tactics if it sees any traps at all.  This provides
1361           // a little hysteresis, delaying a recompile until a trap happens
1362           // several times.
1363           //
1364           // Actually, since there is only one bit of counter per BCI,
1365           // the possible per-BCI counts are {0,1,(per-method count)}.
1366           // This produces accurate results if in fact there is only
1367           // one hot trap site, but begins to get fuzzy if there are
1368           // many sites.  For example, if there are ten sites each
1369           // trapping two or more times, they each get the blame for
1370           // all of their traps.
1371           make_not_entrant = true;
1372         }
1373 
1374         // Detect repeated recompilation at the same BCI, and enforce a limit.
1375         if (make_not_entrant && maybe_prior_recompile) {
1376           // More than one recompile at this point.
1377           trap_mdo->inc_overflow_recompile_count();
1378           if (maybe_prior_trap
1379               && ((uint)trap_mdo->overflow_recompile_count()
1380                   > (uint)PerBytecodeRecompilationCutoff)) {
1381             // Give up on the method containing the bad BCI.
1382             if (trap_method() == nm->method()) {
1383               make_not_compilable = true;
1384             } else {
1385               trap_method->set_not_compilable();
1386               // But give grace to the enclosing nm->method().
1387             }
1388           }
1389         }
1390       } else {
1391         // For reasons which are not recorded per-bytecode, we simply
1392         // force recompiles unconditionally.
1393         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1394         make_not_entrant = true;
1395       }
1396 
1397       // Go back to the compiler if there are too many traps in this method.
1398       if (this_trap_count >= (uint)PerMethodTrapLimit) {
1399         // If there are too many traps in this method, force a recompile.
1400         // This will allow the compiler to see the limit overflow, and
1401         // take corrective action, if possible.
1402         // (This condition is an unlikely backstop only, because the
1403         // PerBytecodeTrapLimit is more likely to take effect first,
1404         // if it is applicable.)
1405         make_not_entrant = true;
1406       }
1407 
1408       // Here's more hysteresis:  If there has been a recompile at
1409       // this trap point already, run the method in the interpreter
1410       // for a while to exercise it more thoroughly.
1411       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1412         reset_counters = true;
1413       }
1414 
1415       if (make_not_entrant && pdata != NULL) {
1416         // Record the recompilation event, if any.
1417         int tstate0 = pdata->trap_state();
1418         int tstate1 = trap_state_set_recompiled(tstate0, true);
1419         if (tstate1 != tstate0)
1420           pdata->set_trap_state(tstate1);
1421       }
1422     }
1423 
1424     // Take requested actions on the method:
1425 
1426     // Reset invocation counters
1427     if (reset_counters) {
1428       if (nm->is_osr_method())
1429         reset_invocation_counter(trap_scope, CompileThreshold);
1430       else
1431         reset_invocation_counter(trap_scope);
1432     }
1433 
1434     // Recompile
1435     if (make_not_entrant) {
1436       nm->make_not_entrant();
1437     }
1438 
1439     // Give up compiling
1440     if (make_not_compilable) {
1441       assert(make_not_entrant, "consistent");
1442       nm->method()->set_not_compilable();
1443     }
1444 
1445   } // Free marked resources
1446 
1447 }
1448 JRT_END
1449 
1450 methodDataOop
1451 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1452                                 bool create_if_missing) {
1453   Thread* THREAD = thread;
1454   methodDataOop mdo = m()->method_data();
1455   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1456     // Build an MDO.  Ignore errors like OutOfMemory;
1457     // that simply means we won't have an MDO to update.
1458     methodOopDesc::build_interpreter_method_data(m, THREAD);
1459     if (HAS_PENDING_EXCEPTION) {
1460       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1461       CLEAR_PENDING_EXCEPTION;
1462     }
1463     mdo = m()->method_data();
1464   }
1465   return mdo;
1466 }
1467 
1468 ProfileData*
1469 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
1470                                          int trap_bci,
1471                                          Deoptimization::DeoptReason reason,
1472                                          //outputs:
1473                                          uint& ret_this_trap_count,
1474                                          bool& ret_maybe_prior_trap,
1475                                          bool& ret_maybe_prior_recompile) {
1476   uint prior_trap_count = trap_mdo->trap_count(reason);
1477   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1478 
1479   // If the runtime cannot find a place to store trap history,
1480   // it is estimated based on the general condition of the method.
1481   // If the method has ever been recompiled, or has ever incurred
1482   // a trap with the present reason , then this BCI is assumed
1483   // (pessimistically) to be the culprit.
1484   bool maybe_prior_trap      = (prior_trap_count != 0);
1485   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1486   ProfileData* pdata = NULL;
1487 
1488 
1489   // For reasons which are recorded per bytecode, we check per-BCI data.
1490   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1491   if (per_bc_reason != Reason_none) {
1492     // Find the profile data for this BCI.  If there isn't one,
1493     // try to allocate one from the MDO's set of spares.
1494     // This will let us detect a repeated trap at this point.
1495     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
1496 
1497     if (pdata != NULL) {
1498       // Query the trap state of this profile datum.
1499       int tstate0 = pdata->trap_state();
1500       if (!trap_state_has_reason(tstate0, per_bc_reason))
1501         maybe_prior_trap = false;
1502       if (!trap_state_is_recompiled(tstate0))
1503         maybe_prior_recompile = false;
1504 
1505       // Update the trap state of this profile datum.
1506       int tstate1 = tstate0;
1507       // Record the reason.
1508       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1509       // Store the updated state on the MDO, for next time.
1510       if (tstate1 != tstate0)
1511         pdata->set_trap_state(tstate1);
1512     } else {
1513       if (LogCompilation && xtty != NULL)
1514         // Missing MDP?  Leave a small complaint in the log.
1515         xtty->elem("missing_mdp bci='%d'", trap_bci);
1516     }
1517   }
1518 
1519   // Return results:
1520   ret_this_trap_count = this_trap_count;
1521   ret_maybe_prior_trap = maybe_prior_trap;
1522   ret_maybe_prior_recompile = maybe_prior_recompile;
1523   return pdata;
1524 }
1525 
1526 void
1527 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1528   ResourceMark rm;
1529   // Ignored outputs:
1530   uint ignore_this_trap_count;
1531   bool ignore_maybe_prior_trap;
1532   bool ignore_maybe_prior_recompile;
1533   query_update_method_data(trap_mdo, trap_bci,
1534                            (DeoptReason)reason,
1535                            ignore_this_trap_count,
1536                            ignore_maybe_prior_trap,
1537                            ignore_maybe_prior_recompile);
1538 }
1539 
1540 void Deoptimization::reset_invocation_counter(ScopeDesc* trap_scope, jint top_count) {
1541   ScopeDesc* sd = trap_scope;
1542   for (; !sd->is_top(); sd = sd->sender()) {
1543     // Reset ICs of inlined methods, since they can trigger compilations also.
1544     sd->method()->invocation_counter()->reset();
1545   }
1546   InvocationCounter* c = sd->method()->invocation_counter();
1547   if (top_count != _no_count) {
1548     // It was an OSR method, so bump the count higher.
1549     c->set(c->state(), top_count);
1550   } else {
1551     c->reset();
1552   }
1553   sd->method()->backedge_counter()->reset();
1554 }
1555 
1556 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1557 
1558   // Still in Java no safepoints
1559   {
1560     // This enters VM and may safepoint
1561     uncommon_trap_inner(thread, trap_request);
1562   }
1563   return fetch_unroll_info_helper(thread);
1564 }
1565 
1566 // Local derived constants.
1567 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1568 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1569 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1570 
1571 //---------------------------trap_state_reason---------------------------------
1572 Deoptimization::DeoptReason
1573 Deoptimization::trap_state_reason(int trap_state) {
1574   // This assert provides the link between the width of DataLayout::trap_bits
1575   // and the encoding of "recorded" reasons.  It ensures there are enough
1576   // bits to store all needed reasons in the per-BCI MDO profile.
1577   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1578   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1579   trap_state -= recompile_bit;
1580   if (trap_state == DS_REASON_MASK) {
1581     return Reason_many;
1582   } else {
1583     assert((int)Reason_none == 0, "state=0 => Reason_none");
1584     return (DeoptReason)trap_state;
1585   }
1586 }
1587 //-------------------------trap_state_has_reason-------------------------------
1588 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1589   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1590   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1591   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1592   trap_state -= recompile_bit;
1593   if (trap_state == DS_REASON_MASK) {
1594     return -1;  // true, unspecifically (bottom of state lattice)
1595   } else if (trap_state == reason) {
1596     return 1;   // true, definitely
1597   } else if (trap_state == 0) {
1598     return 0;   // false, definitely (top of state lattice)
1599   } else {
1600     return 0;   // false, definitely
1601   }
1602 }
1603 //-------------------------trap_state_add_reason-------------------------------
1604 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1605   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1606   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1607   trap_state -= recompile_bit;
1608   if (trap_state == DS_REASON_MASK) {
1609     return trap_state + recompile_bit;     // already at state lattice bottom
1610   } else if (trap_state == reason) {
1611     return trap_state + recompile_bit;     // the condition is already true
1612   } else if (trap_state == 0) {
1613     return reason + recompile_bit;          // no condition has yet been true
1614   } else {
1615     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1616   }
1617 }
1618 //-----------------------trap_state_is_recompiled------------------------------
1619 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1620   return (trap_state & DS_RECOMPILE_BIT) != 0;
1621 }
1622 //-----------------------trap_state_set_recompiled-----------------------------
1623 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1624   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1625   else    return trap_state & ~DS_RECOMPILE_BIT;
1626 }
1627 //---------------------------format_trap_state---------------------------------
1628 // This is used for debugging and diagnostics, including hotspot.log output.
1629 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1630                                               int trap_state) {
1631   DeoptReason reason      = trap_state_reason(trap_state);
1632   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1633   // Re-encode the state from its decoded components.
1634   int decoded_state = 0;
1635   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1636     decoded_state = trap_state_add_reason(decoded_state, reason);
1637   if (recomp_flag)
1638     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1639   // If the state re-encodes properly, format it symbolically.
1640   // Because this routine is used for debugging and diagnostics,
1641   // be robust even if the state is a strange value.
1642   size_t len;
1643   if (decoded_state != trap_state) {
1644     // Random buggy state that doesn't decode??
1645     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1646   } else {
1647     len = jio_snprintf(buf, buflen, "%s%s",
1648                        trap_reason_name(reason),
1649                        recomp_flag ? " recompiled" : "");
1650   }
1651   if (len >= buflen)
1652     buf[buflen-1] = '\0';
1653   return buf;
1654 }
1655 
1656 
1657 //--------------------------------statics--------------------------------------
1658 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1659   = Deoptimization::Action_reinterpret;
1660 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
1661   // Note:  Keep this in sync. with enum DeoptReason.
1662   "none",
1663   "null_check",
1664   "null_assert",
1665   "range_check",
1666   "class_check",
1667   "array_check",
1668   "intrinsic",
1669   "unloaded",
1670   "uninitialized",
1671   "unreached",
1672   "unhandled",
1673   "constraint",
1674   "div0_check",
1675   "age",
1676   "predicate"
1677 };
1678 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
1679   // Note:  Keep this in sync. with enum DeoptAction.
1680   "none",
1681   "maybe_recompile",
1682   "reinterpret",
1683   "make_not_entrant",
1684   "make_not_compilable"
1685 };
1686 
1687 const char* Deoptimization::trap_reason_name(int reason) {
1688   if (reason == Reason_many)  return "many";
1689   if ((uint)reason < Reason_LIMIT)
1690     return _trap_reason_name[reason];
1691   static char buf[20];
1692   sprintf(buf, "reason%d", reason);
1693   return buf;
1694 }
1695 const char* Deoptimization::trap_action_name(int action) {
1696   if ((uint)action < Action_LIMIT)
1697     return _trap_action_name[action];
1698   static char buf[20];
1699   sprintf(buf, "action%d", action);
1700   return buf;
1701 }
1702 
1703 // This is used for debugging and diagnostics, including hotspot.log output.
1704 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1705                                                 int trap_request) {
1706   jint unloaded_class_index = trap_request_index(trap_request);
1707   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1708   const char* action = trap_action_name(trap_request_action(trap_request));
1709   size_t len;
1710   if (unloaded_class_index < 0) {
1711     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1712                        reason, action);
1713   } else {
1714     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1715                        reason, action, unloaded_class_index);
1716   }
1717   if (len >= buflen)
1718     buf[buflen-1] = '\0';
1719   return buf;
1720 }
1721 
1722 juint Deoptimization::_deoptimization_hist
1723         [Deoptimization::Reason_LIMIT]
1724     [1 + Deoptimization::Action_LIMIT]
1725         [Deoptimization::BC_CASE_LIMIT]
1726   = {0};
1727 
1728 enum {
1729   LSB_BITS = 8,
1730   LSB_MASK = right_n_bits(LSB_BITS)
1731 };
1732 
1733 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1734                                        Bytecodes::Code bc) {
1735   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1736   assert(action >= 0 && action < Action_LIMIT, "oob");
1737   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1738   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1739   juint* cases = _deoptimization_hist[reason][1+action];
1740   juint* bc_counter_addr = NULL;
1741   juint  bc_counter      = 0;
1742   // Look for an unused counter, or an exact match to this BC.
1743   if (bc != Bytecodes::_illegal) {
1744     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1745       juint* counter_addr = &cases[bc_case];
1746       juint  counter = *counter_addr;
1747       if ((counter == 0 && bc_counter_addr == NULL)
1748           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1749         // this counter is either free or is already devoted to this BC
1750         bc_counter_addr = counter_addr;
1751         bc_counter = counter | bc;
1752       }
1753     }
1754   }
1755   if (bc_counter_addr == NULL) {
1756     // Overflow, or no given bytecode.
1757     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1758     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1759   }
1760   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1761 }
1762 
1763 jint Deoptimization::total_deoptimization_count() {
1764   return _deoptimization_hist[Reason_none][0][0];
1765 }
1766 
1767 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1768   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1769   return _deoptimization_hist[reason][0][0];
1770 }
1771 
1772 void Deoptimization::print_statistics() {
1773   juint total = total_deoptimization_count();
1774   juint account = total;
1775   if (total != 0) {
1776     ttyLocker ttyl;
1777     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1778     tty->print_cr("Deoptimization traps recorded:");
1779     #define PRINT_STAT_LINE(name, r) \
1780       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1781     PRINT_STAT_LINE("total", total);
1782     // For each non-zero entry in the histogram, print the reason,
1783     // the action, and (if specifically known) the type of bytecode.
1784     for (int reason = 0; reason < Reason_LIMIT; reason++) {
1785       for (int action = 0; action < Action_LIMIT; action++) {
1786         juint* cases = _deoptimization_hist[reason][1+action];
1787         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1788           juint counter = cases[bc_case];
1789           if (counter != 0) {
1790             char name[1*K];
1791             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1792             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1793               bc = Bytecodes::_illegal;
1794             sprintf(name, "%s/%s/%s",
1795                     trap_reason_name(reason),
1796                     trap_action_name(action),
1797                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1798             juint r = counter >> LSB_BITS;
1799             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1800             account -= r;
1801           }
1802         }
1803       }
1804     }
1805     if (account != 0) {
1806       PRINT_STAT_LINE("unaccounted", account);
1807     }
1808     #undef PRINT_STAT_LINE
1809     if (xtty != NULL)  xtty->tail("statistics");
1810   }
1811 }
1812 #else // COMPILER2
1813 
1814 
1815 // Stubs for C1 only system.
1816 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1817   return false;
1818 }
1819 
1820 const char* Deoptimization::trap_reason_name(int reason) {
1821   return "unknown";
1822 }
1823 
1824 void Deoptimization::print_statistics() {
1825   // no output
1826 }
1827 
1828 void
1829 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1830   // no udpate
1831 }
1832 
1833 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1834   return 0;
1835 }
1836 
1837 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1838                                        Bytecodes::Code bc) {
1839   // no update
1840 }
1841 
1842 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1843                                               int trap_state) {
1844   jio_snprintf(buf, buflen, "#%d", trap_state);
1845   return buf;
1846 }
1847 
1848 #endif // COMPILER2