1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_matcher.cpp.incl"
  27 
  28 OptoReg::Name OptoReg::c_frame_pointer;
  29 
  30 
  31 
  32 const int Matcher::base2reg[Type::lastype] = {
  33   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
  34   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
  35   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
  36   0, 0/*abio*/,
  37   Op_RegP /* Return address */, 0, /* the memories */
  38   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
  39   0  /*bottom*/
  40 };
  41 
  42 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  43 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  44 RegMask Matcher::STACK_ONLY_mask;
  45 RegMask Matcher::c_frame_ptr_mask;
  46 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  47 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  48 
  49 //---------------------------Matcher-------------------------------------------
  50 Matcher::Matcher( Node_List &proj_list ) :
  51   PhaseTransform( Phase::Ins_Select ),
  52 #ifdef ASSERT
  53   _old2new_map(C->comp_arena()),
  54   _new2old_map(C->comp_arena()),
  55 #endif
  56   _shared_nodes(C->comp_arena()),
  57   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  58   _swallowed(swallowed),
  59   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  60   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  61   _must_clone(must_clone), _proj_list(proj_list),
  62   _register_save_policy(register_save_policy),
  63   _c_reg_save_policy(c_reg_save_policy),
  64   _register_save_type(register_save_type),
  65   _ruleName(ruleName),
  66   _allocation_started(false),
  67   _states_arena(Chunk::medium_size),
  68   _visited(&_states_arena),
  69   _shared(&_states_arena),
  70   _dontcare(&_states_arena) {
  71   C->set_matcher(this);
  72 
  73   idealreg2spillmask[Op_RegI] = NULL;
  74   idealreg2spillmask[Op_RegN] = NULL;
  75   idealreg2spillmask[Op_RegL] = NULL;
  76   idealreg2spillmask[Op_RegF] = NULL;
  77   idealreg2spillmask[Op_RegD] = NULL;
  78   idealreg2spillmask[Op_RegP] = NULL;
  79 
  80   idealreg2debugmask[Op_RegI] = NULL;
  81   idealreg2debugmask[Op_RegN] = NULL;
  82   idealreg2debugmask[Op_RegL] = NULL;
  83   idealreg2debugmask[Op_RegF] = NULL;
  84   idealreg2debugmask[Op_RegD] = NULL;
  85   idealreg2debugmask[Op_RegP] = NULL;
  86   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
  87 }
  88 
  89 //------------------------------warp_incoming_stk_arg------------------------
  90 // This warps a VMReg into an OptoReg::Name
  91 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
  92   OptoReg::Name warped;
  93   if( reg->is_stack() ) {  // Stack slot argument?
  94     warped = OptoReg::add(_old_SP, reg->reg2stack() );
  95     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
  96     if( warped >= _in_arg_limit )
  97       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
  98     if (!RegMask::can_represent(warped)) {
  99       // the compiler cannot represent this method's calling sequence
 100       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 101       return OptoReg::Bad;
 102     }
 103     return warped;
 104   }
 105   return OptoReg::as_OptoReg(reg);
 106 }
 107 
 108 //---------------------------compute_old_SP------------------------------------
 109 OptoReg::Name Compile::compute_old_SP() {
 110   int fixed    = fixed_slots();
 111   int preserve = in_preserve_stack_slots();
 112   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 113 }
 114 
 115 
 116 
 117 #ifdef ASSERT
 118 void Matcher::verify_new_nodes_only(Node* xroot) {
 119   // Make sure that the new graph only references new nodes
 120   ResourceMark rm;
 121   Unique_Node_List worklist;
 122   VectorSet visited(Thread::current()->resource_area());
 123   worklist.push(xroot);
 124   while (worklist.size() > 0) {
 125     Node* n = worklist.pop();
 126     visited <<= n->_idx;
 127     assert(C->node_arena()->contains(n), "dead node");
 128     for (uint j = 0; j < n->req(); j++) {
 129       Node* in = n->in(j);
 130       if (in != NULL) {
 131         assert(C->node_arena()->contains(in), "dead node");
 132         if (!visited.test(in->_idx)) {
 133           worklist.push(in);
 134         }
 135       }
 136     }
 137   }
 138 }
 139 #endif
 140 
 141 
 142 //---------------------------match---------------------------------------------
 143 void Matcher::match( ) {
 144   // One-time initialization of some register masks.
 145   init_spill_mask( C->root()->in(1) );
 146   _return_addr_mask = return_addr();
 147 #ifdef _LP64
 148   // Pointers take 2 slots in 64-bit land
 149   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 150 #endif
 151 
 152   // Map a Java-signature return type into return register-value
 153   // machine registers for 0, 1 and 2 returned values.
 154   const TypeTuple *range = C->tf()->range();
 155   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 156     // Get ideal-register return type
 157     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
 158     // Get machine return register
 159     uint sop = C->start()->Opcode();
 160     OptoRegPair regs = return_value(ireg, false);
 161 
 162     // And mask for same
 163     _return_value_mask = RegMask(regs.first());
 164     if( OptoReg::is_valid(regs.second()) )
 165       _return_value_mask.Insert(regs.second());
 166   }
 167 
 168   // ---------------
 169   // Frame Layout
 170 
 171   // Need the method signature to determine the incoming argument types,
 172   // because the types determine which registers the incoming arguments are
 173   // in, and this affects the matched code.
 174   const TypeTuple *domain = C->tf()->domain();
 175   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 176   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 177   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 178   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 179   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 180   uint i;
 181   for( i = 0; i<argcnt; i++ ) {
 182     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 183   }
 184 
 185   // Pass array of ideal registers and length to USER code (from the AD file)
 186   // that will convert this to an array of register numbers.
 187   const StartNode *start = C->start();
 188   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 189 #ifdef ASSERT
 190   // Sanity check users' calling convention.  Real handy while trying to
 191   // get the initial port correct.
 192   { for (uint i = 0; i<argcnt; i++) {
 193       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 194         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 195         _parm_regs[i].set_bad();
 196         continue;
 197       }
 198       VMReg parm_reg = vm_parm_regs[i].first();
 199       assert(parm_reg->is_valid(), "invalid arg?");
 200       if (parm_reg->is_reg()) {
 201         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 202         assert(can_be_java_arg(opto_parm_reg) ||
 203                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 204                opto_parm_reg == inline_cache_reg(),
 205                "parameters in register must be preserved by runtime stubs");
 206       }
 207       for (uint j = 0; j < i; j++) {
 208         assert(parm_reg != vm_parm_regs[j].first(),
 209                "calling conv. must produce distinct regs");
 210       }
 211     }
 212   }
 213 #endif
 214 
 215   // Do some initial frame layout.
 216 
 217   // Compute the old incoming SP (may be called FP) as
 218   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 219   _old_SP = C->compute_old_SP();
 220   assert( is_even(_old_SP), "must be even" );
 221 
 222   // Compute highest incoming stack argument as
 223   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 224   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 225   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 226   for( i = 0; i < argcnt; i++ ) {
 227     // Permit args to have no register
 228     _calling_convention_mask[i].Clear();
 229     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 230       continue;
 231     }
 232     // calling_convention returns stack arguments as a count of
 233     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 234     // the allocators point of view, taking into account all the
 235     // preserve area, locks & pad2.
 236 
 237     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 238     if( OptoReg::is_valid(reg1))
 239       _calling_convention_mask[i].Insert(reg1);
 240 
 241     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 242     if( OptoReg::is_valid(reg2))
 243       _calling_convention_mask[i].Insert(reg2);
 244 
 245     // Saved biased stack-slot register number
 246     _parm_regs[i].set_pair(reg2, reg1);
 247   }
 248 
 249   // Finally, make sure the incoming arguments take up an even number of
 250   // words, in case the arguments or locals need to contain doubleword stack
 251   // slots.  The rest of the system assumes that stack slot pairs (in
 252   // particular, in the spill area) which look aligned will in fact be
 253   // aligned relative to the stack pointer in the target machine.  Double
 254   // stack slots will always be allocated aligned.
 255   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 256 
 257   // Compute highest outgoing stack argument as
 258   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 259   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 260   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 261 
 262   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
 263     // the compiler cannot represent this method's calling sequence
 264     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 265   }
 266 
 267   if (C->failing())  return;  // bailed out on incoming arg failure
 268 
 269   // ---------------
 270   // Collect roots of matcher trees.  Every node for which
 271   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 272   // can be a valid interior of some tree.
 273   find_shared( C->root() );
 274   find_shared( C->top() );
 275 
 276   C->print_method("Before Matching");
 277 
 278   // Swap out to old-space; emptying new-space
 279   Arena *old = C->node_arena()->move_contents(C->old_arena());
 280 
 281   // Save debug and profile information for nodes in old space:
 282   _old_node_note_array = C->node_note_array();
 283   if (_old_node_note_array != NULL) {
 284     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 285                            (C->comp_arena(), _old_node_note_array->length(),
 286                             0, NULL));
 287   }
 288 
 289   // Pre-size the new_node table to avoid the need for range checks.
 290   grow_new_node_array(C->unique());
 291 
 292   // Reset node counter so MachNodes start with _idx at 0
 293   int nodes = C->unique(); // save value
 294   C->set_unique(0);
 295 
 296   // Recursively match trees from old space into new space.
 297   // Correct leaves of new-space Nodes; they point to old-space.
 298   _visited.Clear();             // Clear visit bits for xform call
 299   C->set_cached_top_node(xform( C->top(), nodes ));
 300   if (!C->failing()) {
 301     Node* xroot =        xform( C->root(), 1 );
 302     if (xroot == NULL) {
 303       Matcher::soft_match_failure();  // recursive matching process failed
 304       C->record_method_not_compilable("instruction match failed");
 305     } else {
 306       // During matching shared constants were attached to C->root()
 307       // because xroot wasn't available yet, so transfer the uses to
 308       // the xroot.
 309       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 310         Node* n = C->root()->fast_out(j);
 311         if (C->node_arena()->contains(n)) {
 312           assert(n->in(0) == C->root(), "should be control user");
 313           n->set_req(0, xroot);
 314           --j;
 315           --jmax;
 316         }
 317       }
 318 
 319       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 320 #ifdef ASSERT
 321       verify_new_nodes_only(xroot);
 322 #endif
 323     }
 324   }
 325   if (C->top() == NULL || C->root() == NULL) {
 326     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 327   }
 328   if (C->failing()) {
 329     // delete old;
 330     old->destruct_contents();
 331     return;
 332   }
 333   assert( C->top(), "" );
 334   assert( C->root(), "" );
 335   validate_null_checks();
 336 
 337   // Now smoke old-space
 338   NOT_DEBUG( old->destruct_contents() );
 339 
 340   // ------------------------
 341   // Set up save-on-entry registers
 342   Fixup_Save_On_Entry( );
 343 }
 344 
 345 
 346 //------------------------------Fixup_Save_On_Entry----------------------------
 347 // The stated purpose of this routine is to take care of save-on-entry
 348 // registers.  However, the overall goal of the Match phase is to convert into
 349 // machine-specific instructions which have RegMasks to guide allocation.
 350 // So what this procedure really does is put a valid RegMask on each input
 351 // to the machine-specific variations of all Return, TailCall and Halt
 352 // instructions.  It also adds edgs to define the save-on-entry values (and of
 353 // course gives them a mask).
 354 
 355 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 356   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 357   // Do all the pre-defined register masks
 358   rms[TypeFunc::Control  ] = RegMask::Empty;
 359   rms[TypeFunc::I_O      ] = RegMask::Empty;
 360   rms[TypeFunc::Memory   ] = RegMask::Empty;
 361   rms[TypeFunc::ReturnAdr] = ret_adr;
 362   rms[TypeFunc::FramePtr ] = fp;
 363   return rms;
 364 }
 365 
 366 //---------------------------init_first_stack_mask-----------------------------
 367 // Create the initial stack mask used by values spilling to the stack.
 368 // Disallow any debug info in outgoing argument areas by setting the
 369 // initial mask accordingly.
 370 void Matcher::init_first_stack_mask() {
 371 
 372   // Allocate storage for spill masks as masks for the appropriate load type.
 373   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask)*12);
 374   idealreg2spillmask[Op_RegN] = &rms[0];
 375   idealreg2spillmask[Op_RegI] = &rms[1];
 376   idealreg2spillmask[Op_RegL] = &rms[2];
 377   idealreg2spillmask[Op_RegF] = &rms[3];
 378   idealreg2spillmask[Op_RegD] = &rms[4];
 379   idealreg2spillmask[Op_RegP] = &rms[5];
 380   idealreg2debugmask[Op_RegN] = &rms[6];
 381   idealreg2debugmask[Op_RegI] = &rms[7];
 382   idealreg2debugmask[Op_RegL] = &rms[8];
 383   idealreg2debugmask[Op_RegF] = &rms[9];
 384   idealreg2debugmask[Op_RegD] = &rms[10];
 385   idealreg2debugmask[Op_RegP] = &rms[11];
 386 
 387   OptoReg::Name i;
 388 
 389   // At first, start with the empty mask
 390   C->FIRST_STACK_mask().Clear();
 391 
 392   // Add in the incoming argument area
 393   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 394   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
 395     C->FIRST_STACK_mask().Insert(i);
 396 
 397   // Add in all bits past the outgoing argument area
 398   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
 399             "must be able to represent all call arguments in reg mask");
 400   init = _out_arg_limit;
 401   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 402     C->FIRST_STACK_mask().Insert(i);
 403 
 404   // Finally, set the "infinite stack" bit.
 405   C->FIRST_STACK_mask().set_AllStack();
 406 
 407   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 408 #ifdef _LP64
 409   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 410    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 411 #endif
 412   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 413    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 414   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 415    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
 416   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 417    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 418   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 419    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
 420   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 421    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 422 
 423   // Make up debug masks.  Any spill slot plus callee-save registers.
 424   // Caller-save registers are assumed to be trashable by the various
 425   // inline-cache fixup routines.
 426   *idealreg2debugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 427   *idealreg2debugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 428   *idealreg2debugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 429   *idealreg2debugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 430   *idealreg2debugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 431   *idealreg2debugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 432 
 433   // Prevent stub compilations from attempting to reference
 434   // callee-saved registers from debug info
 435   bool exclude_soe = !Compile::current()->is_method_compilation();
 436 
 437   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 438     // registers the caller has to save do not work
 439     if( _register_save_policy[i] == 'C' ||
 440         _register_save_policy[i] == 'A' ||
 441         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 442       idealreg2debugmask[Op_RegN]->Remove(i);
 443       idealreg2debugmask[Op_RegI]->Remove(i); // Exclude save-on-call
 444       idealreg2debugmask[Op_RegL]->Remove(i); // registers from debug
 445       idealreg2debugmask[Op_RegF]->Remove(i); // masks
 446       idealreg2debugmask[Op_RegD]->Remove(i);
 447       idealreg2debugmask[Op_RegP]->Remove(i);
 448     }
 449   }
 450 }
 451 
 452 //---------------------------is_save_on_entry----------------------------------
 453 bool Matcher::is_save_on_entry( int reg ) {
 454   return
 455     _register_save_policy[reg] == 'E' ||
 456     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 457     // Also save argument registers in the trampolining stubs
 458     (C->save_argument_registers() && is_spillable_arg(reg));
 459 }
 460 
 461 //---------------------------Fixup_Save_On_Entry-------------------------------
 462 void Matcher::Fixup_Save_On_Entry( ) {
 463   init_first_stack_mask();
 464 
 465   Node *root = C->root();       // Short name for root
 466   // Count number of save-on-entry registers.
 467   uint soe_cnt = number_of_saved_registers();
 468   uint i;
 469 
 470   // Find the procedure Start Node
 471   StartNode *start = C->start();
 472   assert( start, "Expect a start node" );
 473 
 474   // Save argument registers in the trampolining stubs
 475   if( C->save_argument_registers() )
 476     for( i = 0; i < _last_Mach_Reg; i++ )
 477       if( is_spillable_arg(i) )
 478         soe_cnt++;
 479 
 480   // Input RegMask array shared by all Returns.
 481   // The type for doubles and longs has a count of 2, but
 482   // there is only 1 returned value
 483   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 484   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 485   // Returns have 0 or 1 returned values depending on call signature.
 486   // Return register is specified by return_value in the AD file.
 487   if (ret_edge_cnt > TypeFunc::Parms)
 488     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 489 
 490   // Input RegMask array shared by all Rethrows.
 491   uint reth_edge_cnt = TypeFunc::Parms+1;
 492   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 493   // Rethrow takes exception oop only, but in the argument 0 slot.
 494   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 495 #ifdef _LP64
 496   // Need two slots for ptrs in 64-bit land
 497   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 498 #endif
 499 
 500   // Input RegMask array shared by all TailCalls
 501   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 502   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 503 
 504   // Input RegMask array shared by all TailJumps
 505   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 506   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 507 
 508   // TailCalls have 2 returned values (target & moop), whose masks come
 509   // from the usual MachNode/MachOper mechanism.  Find a sample
 510   // TailCall to extract these masks and put the correct masks into
 511   // the tail_call_rms array.
 512   for( i=1; i < root->req(); i++ ) {
 513     MachReturnNode *m = root->in(i)->as_MachReturn();
 514     if( m->ideal_Opcode() == Op_TailCall ) {
 515       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 516       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 517       break;
 518     }
 519   }
 520 
 521   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 522   // from the usual MachNode/MachOper mechanism.  Find a sample
 523   // TailJump to extract these masks and put the correct masks into
 524   // the tail_jump_rms array.
 525   for( i=1; i < root->req(); i++ ) {
 526     MachReturnNode *m = root->in(i)->as_MachReturn();
 527     if( m->ideal_Opcode() == Op_TailJump ) {
 528       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 529       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 530       break;
 531     }
 532   }
 533 
 534   // Input RegMask array shared by all Halts
 535   uint halt_edge_cnt = TypeFunc::Parms;
 536   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 537 
 538   // Capture the return input masks into each exit flavor
 539   for( i=1; i < root->req(); i++ ) {
 540     MachReturnNode *exit = root->in(i)->as_MachReturn();
 541     switch( exit->ideal_Opcode() ) {
 542       case Op_Return   : exit->_in_rms = ret_rms;  break;
 543       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 544       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 545       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 546       case Op_Halt     : exit->_in_rms = halt_rms; break;
 547       default          : ShouldNotReachHere();
 548     }
 549   }
 550 
 551   // Next unused projection number from Start.
 552   int proj_cnt = C->tf()->domain()->cnt();
 553 
 554   // Do all the save-on-entry registers.  Make projections from Start for
 555   // them, and give them a use at the exit points.  To the allocator, they
 556   // look like incoming register arguments.
 557   for( i = 0; i < _last_Mach_Reg; i++ ) {
 558     if( is_save_on_entry(i) ) {
 559 
 560       // Add the save-on-entry to the mask array
 561       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 562       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 563       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 564       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 565       // Halts need the SOE registers, but only in the stack as debug info.
 566       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 567       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 568 
 569       Node *mproj;
 570 
 571       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 572       // into a single RegD.
 573       if( (i&1) == 0 &&
 574           _register_save_type[i  ] == Op_RegF &&
 575           _register_save_type[i+1] == Op_RegF &&
 576           is_save_on_entry(i+1) ) {
 577         // Add other bit for double
 578         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 579         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 580         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 581         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 582         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 583         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 584         proj_cnt += 2;          // Skip 2 for doubles
 585       }
 586       else if( (i&1) == 1 &&    // Else check for high half of double
 587                _register_save_type[i-1] == Op_RegF &&
 588                _register_save_type[i  ] == Op_RegF &&
 589                is_save_on_entry(i-1) ) {
 590         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 591         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 592         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 593         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 594         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 595         mproj = C->top();
 596       }
 597       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 598       // into a single RegL.
 599       else if( (i&1) == 0 &&
 600           _register_save_type[i  ] == Op_RegI &&
 601           _register_save_type[i+1] == Op_RegI &&
 602         is_save_on_entry(i+1) ) {
 603         // Add other bit for long
 604         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 605         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 606         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 607         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 608         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 609         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 610         proj_cnt += 2;          // Skip 2 for longs
 611       }
 612       else if( (i&1) == 1 &&    // Else check for high half of long
 613                _register_save_type[i-1] == Op_RegI &&
 614                _register_save_type[i  ] == Op_RegI &&
 615                is_save_on_entry(i-1) ) {
 616         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 617         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 618         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 619         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 620         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 621         mproj = C->top();
 622       } else {
 623         // Make a projection for it off the Start
 624         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 625       }
 626 
 627       ret_edge_cnt ++;
 628       reth_edge_cnt ++;
 629       tail_call_edge_cnt ++;
 630       tail_jump_edge_cnt ++;
 631       halt_edge_cnt ++;
 632 
 633       // Add a use of the SOE register to all exit paths
 634       for( uint j=1; j < root->req(); j++ )
 635         root->in(j)->add_req(mproj);
 636     } // End of if a save-on-entry register
 637   } // End of for all machine registers
 638 }
 639 
 640 //------------------------------init_spill_mask--------------------------------
 641 void Matcher::init_spill_mask( Node *ret ) {
 642   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 643 
 644   OptoReg::c_frame_pointer = c_frame_pointer();
 645   c_frame_ptr_mask = c_frame_pointer();
 646 #ifdef _LP64
 647   // pointers are twice as big
 648   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 649 #endif
 650 
 651   // Start at OptoReg::stack0()
 652   STACK_ONLY_mask.Clear();
 653   OptoReg::Name init = OptoReg::stack2reg(0);
 654   // STACK_ONLY_mask is all stack bits
 655   OptoReg::Name i;
 656   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 657     STACK_ONLY_mask.Insert(i);
 658   // Also set the "infinite stack" bit.
 659   STACK_ONLY_mask.set_AllStack();
 660 
 661   // Copy the register names over into the shared world
 662   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 663     // SharedInfo::regName[i] = regName[i];
 664     // Handy RegMasks per machine register
 665     mreg2regmask[i].Insert(i);
 666   }
 667 
 668   // Grab the Frame Pointer
 669   Node *fp  = ret->in(TypeFunc::FramePtr);
 670   Node *mem = ret->in(TypeFunc::Memory);
 671   const TypePtr* atp = TypePtr::BOTTOM;
 672   // Share frame pointer while making spill ops
 673   set_shared(fp);
 674 
 675   // Compute generic short-offset Loads
 676 #ifdef _LP64
 677   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 678 #endif
 679   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
 680   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
 681   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
 682   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
 683   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 684   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 685          spillD != NULL && spillP != NULL, "");
 686 
 687   // Get the ADLC notion of the right regmask, for each basic type.
 688 #ifdef _LP64
 689   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 690 #endif
 691   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 692   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 693   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 694   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 695   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 696 }
 697 
 698 #ifdef ASSERT
 699 static void match_alias_type(Compile* C, Node* n, Node* m) {
 700   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 701   const TypePtr* nat = n->adr_type();
 702   const TypePtr* mat = m->adr_type();
 703   int nidx = C->get_alias_index(nat);
 704   int midx = C->get_alias_index(mat);
 705   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 706   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 707     for (uint i = 1; i < n->req(); i++) {
 708       Node* n1 = n->in(i);
 709       const TypePtr* n1at = n1->adr_type();
 710       if (n1at != NULL) {
 711         nat = n1at;
 712         nidx = C->get_alias_index(n1at);
 713       }
 714     }
 715   }
 716   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 717   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 718     switch (n->Opcode()) {
 719     case Op_PrefetchRead:
 720     case Op_PrefetchWrite:
 721       nidx = Compile::AliasIdxRaw;
 722       nat = TypeRawPtr::BOTTOM;
 723       break;
 724     }
 725   }
 726   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 727     switch (n->Opcode()) {
 728     case Op_ClearArray:
 729       midx = Compile::AliasIdxRaw;
 730       mat = TypeRawPtr::BOTTOM;
 731       break;
 732     }
 733   }
 734   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 735     switch (n->Opcode()) {
 736     case Op_Return:
 737     case Op_Rethrow:
 738     case Op_Halt:
 739     case Op_TailCall:
 740     case Op_TailJump:
 741       nidx = Compile::AliasIdxBot;
 742       nat = TypePtr::BOTTOM;
 743       break;
 744     }
 745   }
 746   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 747     switch (n->Opcode()) {
 748     case Op_StrComp:
 749     case Op_StrEquals:
 750     case Op_StrIndexOf:
 751     case Op_AryEq:
 752     case Op_MemBarVolatile:
 753     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 754       nidx = Compile::AliasIdxTop;
 755       nat = NULL;
 756       break;
 757     }
 758   }
 759   if (nidx != midx) {
 760     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 761       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 762       n->dump();
 763       m->dump();
 764     }
 765     assert(C->subsume_loads() && C->must_alias(nat, midx),
 766            "must not lose alias info when matching");
 767   }
 768 }
 769 #endif
 770 
 771 
 772 //------------------------------MStack-----------------------------------------
 773 // State and MStack class used in xform() and find_shared() iterative methods.
 774 enum Node_State { Pre_Visit,  // node has to be pre-visited
 775                       Visit,  // visit node
 776                  Post_Visit,  // post-visit node
 777              Alt_Post_Visit   // alternative post-visit path
 778                 };
 779 
 780 class MStack: public Node_Stack {
 781   public:
 782     MStack(int size) : Node_Stack(size) { }
 783 
 784     void push(Node *n, Node_State ns) {
 785       Node_Stack::push(n, (uint)ns);
 786     }
 787     void push(Node *n, Node_State ns, Node *parent, int indx) {
 788       ++_inode_top;
 789       if ((_inode_top + 1) >= _inode_max) grow();
 790       _inode_top->node = parent;
 791       _inode_top->indx = (uint)indx;
 792       ++_inode_top;
 793       _inode_top->node = n;
 794       _inode_top->indx = (uint)ns;
 795     }
 796     Node *parent() {
 797       pop();
 798       return node();
 799     }
 800     Node_State state() const {
 801       return (Node_State)index();
 802     }
 803     void set_state(Node_State ns) {
 804       set_index((uint)ns);
 805     }
 806 };
 807 
 808 
 809 //------------------------------xform------------------------------------------
 810 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 811 // Node in new-space.  Given a new-space Node, recursively walk his children.
 812 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 813 Node *Matcher::xform( Node *n, int max_stack ) {
 814   // Use one stack to keep both: child's node/state and parent's node/index
 815   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
 816   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 817 
 818   while (mstack.is_nonempty()) {
 819     n = mstack.node();          // Leave node on stack
 820     Node_State nstate = mstack.state();
 821     if (nstate == Visit) {
 822       mstack.set_state(Post_Visit);
 823       Node *oldn = n;
 824       // Old-space or new-space check
 825       if (!C->node_arena()->contains(n)) {
 826         // Old space!
 827         Node* m;
 828         if (has_new_node(n)) {  // Not yet Label/Reduced
 829           m = new_node(n);
 830         } else {
 831           if (!is_dontcare(n)) { // Matcher can match this guy
 832             // Calls match special.  They match alone with no children.
 833             // Their children, the incoming arguments, match normally.
 834             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
 835             if (C->failing())  return NULL;
 836             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
 837           } else {                  // Nothing the matcher cares about
 838             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
 839               // Convert to machine-dependent projection
 840               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
 841 #ifdef ASSERT
 842               _new2old_map.map(m->_idx, n);
 843 #endif
 844               if (m->in(0) != NULL) // m might be top
 845                 collect_null_checks(m, n);
 846             } else {                // Else just a regular 'ol guy
 847               m = n->clone();       // So just clone into new-space
 848 #ifdef ASSERT
 849               _new2old_map.map(m->_idx, n);
 850 #endif
 851               // Def-Use edges will be added incrementally as Uses
 852               // of this node are matched.
 853               assert(m->outcnt() == 0, "no Uses of this clone yet");
 854             }
 855           }
 856 
 857           set_new_node(n, m);       // Map old to new
 858           if (_old_node_note_array != NULL) {
 859             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
 860                                                   n->_idx);
 861             C->set_node_notes_at(m->_idx, nn);
 862           }
 863           debug_only(match_alias_type(C, n, m));
 864         }
 865         n = m;    // n is now a new-space node
 866         mstack.set_node(n);
 867       }
 868 
 869       // New space!
 870       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
 871 
 872       int i;
 873       // Put precedence edges on stack first (match them last).
 874       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
 875         Node *m = oldn->in(i);
 876         if (m == NULL) break;
 877         // set -1 to call add_prec() instead of set_req() during Step1
 878         mstack.push(m, Visit, n, -1);
 879       }
 880 
 881       // For constant debug info, I'd rather have unmatched constants.
 882       int cnt = n->req();
 883       JVMState* jvms = n->jvms();
 884       int debug_cnt = jvms ? jvms->debug_start() : cnt;
 885 
 886       // Now do only debug info.  Clone constants rather than matching.
 887       // Constants are represented directly in the debug info without
 888       // the need for executable machine instructions.
 889       // Monitor boxes are also represented directly.
 890       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
 891         Node *m = n->in(i);          // Get input
 892         int op = m->Opcode();
 893         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
 894         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
 895             op == Op_ConF || op == Op_ConD || op == Op_ConL
 896             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
 897             ) {
 898           m = m->clone();
 899 #ifdef ASSERT
 900           _new2old_map.map(m->_idx, n);
 901 #endif
 902           mstack.push(m, Post_Visit, n, i); // Don't need to visit
 903           mstack.push(m->in(0), Visit, m, 0);
 904         } else {
 905           mstack.push(m, Visit, n, i);
 906         }
 907       }
 908 
 909       // And now walk his children, and convert his inputs to new-space.
 910       for( ; i >= 0; --i ) { // For all normal inputs do
 911         Node *m = n->in(i);  // Get input
 912         if(m != NULL)
 913           mstack.push(m, Visit, n, i);
 914       }
 915 
 916     }
 917     else if (nstate == Post_Visit) {
 918       // Set xformed input
 919       Node *p = mstack.parent();
 920       if (p != NULL) { // root doesn't have parent
 921         int i = (int)mstack.index();
 922         if (i >= 0)
 923           p->set_req(i, n); // required input
 924         else if (i == -1)
 925           p->add_prec(n);   // precedence input
 926         else
 927           ShouldNotReachHere();
 928       }
 929       mstack.pop(); // remove processed node from stack
 930     }
 931     else {
 932       ShouldNotReachHere();
 933     }
 934   } // while (mstack.is_nonempty())
 935   return n; // Return new-space Node
 936 }
 937 
 938 //------------------------------warp_outgoing_stk_arg------------------------
 939 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
 940   // Convert outgoing argument location to a pre-biased stack offset
 941   if (reg->is_stack()) {
 942     OptoReg::Name warped = reg->reg2stack();
 943     // Adjust the stack slot offset to be the register number used
 944     // by the allocator.
 945     warped = OptoReg::add(begin_out_arg_area, warped);
 946     // Keep track of the largest numbered stack slot used for an arg.
 947     // Largest used slot per call-site indicates the amount of stack
 948     // that is killed by the call.
 949     if( warped >= out_arg_limit_per_call )
 950       out_arg_limit_per_call = OptoReg::add(warped,1);
 951     if (!RegMask::can_represent(warped)) {
 952       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
 953       return OptoReg::Bad;
 954     }
 955     return warped;
 956   }
 957   return OptoReg::as_OptoReg(reg);
 958 }
 959 
 960 
 961 //------------------------------match_sfpt-------------------------------------
 962 // Helper function to match call instructions.  Calls match special.
 963 // They match alone with no children.  Their children, the incoming
 964 // arguments, match normally.
 965 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
 966   MachSafePointNode *msfpt = NULL;
 967   MachCallNode      *mcall = NULL;
 968   uint               cnt;
 969   // Split out case for SafePoint vs Call
 970   CallNode *call;
 971   const TypeTuple *domain;
 972   ciMethod*        method = NULL;
 973   if( sfpt->is_Call() ) {
 974     call = sfpt->as_Call();
 975     domain = call->tf()->domain();
 976     cnt = domain->cnt();
 977 
 978     // Match just the call, nothing else
 979     MachNode *m = match_tree(call);
 980     if (C->failing())  return NULL;
 981     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
 982 
 983     // Copy data from the Ideal SafePoint to the machine version
 984     mcall = m->as_MachCall();
 985 
 986     mcall->set_tf(         call->tf());
 987     mcall->set_entry_point(call->entry_point());
 988     mcall->set_cnt(        call->cnt());
 989 
 990     if( mcall->is_MachCallJava() ) {
 991       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
 992       const CallJavaNode *call_java =  call->as_CallJava();
 993       method = call_java->method();
 994       mcall_java->_method = method;
 995       mcall_java->_bci = call_java->_bci;
 996       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
 997       if( mcall_java->is_MachCallStaticJava() )
 998         mcall_java->as_MachCallStaticJava()->_name =
 999          call_java->as_CallStaticJava()->_name;
1000       if( mcall_java->is_MachCallDynamicJava() )
1001         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1002          call_java->as_CallDynamicJava()->_vtable_index;
1003     }
1004     else if( mcall->is_MachCallRuntime() ) {
1005       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1006     }
1007     msfpt = mcall;
1008   }
1009   // This is a non-call safepoint
1010   else {
1011     call = NULL;
1012     domain = NULL;
1013     MachNode *mn = match_tree(sfpt);
1014     if (C->failing())  return NULL;
1015     msfpt = mn->as_MachSafePoint();
1016     cnt = TypeFunc::Parms;
1017   }
1018 
1019   // Advertise the correct memory effects (for anti-dependence computation).
1020   msfpt->set_adr_type(sfpt->adr_type());
1021 
1022   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1023   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1024   // Empty them all.
1025   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1026 
1027   // Do all the pre-defined non-Empty register masks
1028   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1029   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1030 
1031   // Place first outgoing argument can possibly be put.
1032   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1033   assert( is_even(begin_out_arg_area), "" );
1034   // Compute max outgoing register number per call site.
1035   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1036   // Calls to C may hammer extra stack slots above and beyond any arguments.
1037   // These are usually backing store for register arguments for varargs.
1038   if( call != NULL && call->is_CallRuntime() )
1039     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1040 
1041 
1042   // Do the normal argument list (parameters) register masks
1043   int argcnt = cnt - TypeFunc::Parms;
1044   if( argcnt > 0 ) {          // Skip it all if we have no args
1045     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1046     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1047     int i;
1048     for( i = 0; i < argcnt; i++ ) {
1049       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1050     }
1051     // V-call to pick proper calling convention
1052     call->calling_convention( sig_bt, parm_regs, argcnt );
1053 
1054 #ifdef ASSERT
1055     // Sanity check users' calling convention.  Really handy during
1056     // the initial porting effort.  Fairly expensive otherwise.
1057     { for (int i = 0; i<argcnt; i++) {
1058       if( !parm_regs[i].first()->is_valid() &&
1059           !parm_regs[i].second()->is_valid() ) continue;
1060       VMReg reg1 = parm_regs[i].first();
1061       VMReg reg2 = parm_regs[i].second();
1062       for (int j = 0; j < i; j++) {
1063         if( !parm_regs[j].first()->is_valid() &&
1064             !parm_regs[j].second()->is_valid() ) continue;
1065         VMReg reg3 = parm_regs[j].first();
1066         VMReg reg4 = parm_regs[j].second();
1067         if( !reg1->is_valid() ) {
1068           assert( !reg2->is_valid(), "valid halvsies" );
1069         } else if( !reg3->is_valid() ) {
1070           assert( !reg4->is_valid(), "valid halvsies" );
1071         } else {
1072           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1073           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1074           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1075           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1076           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1077           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1078         }
1079       }
1080     }
1081     }
1082 #endif
1083 
1084     // Visit each argument.  Compute its outgoing register mask.
1085     // Return results now can have 2 bits returned.
1086     // Compute max over all outgoing arguments both per call-site
1087     // and over the entire method.
1088     for( i = 0; i < argcnt; i++ ) {
1089       // Address of incoming argument mask to fill in
1090       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1091       if( !parm_regs[i].first()->is_valid() &&
1092           !parm_regs[i].second()->is_valid() ) {
1093         continue;               // Avoid Halves
1094       }
1095       // Grab first register, adjust stack slots and insert in mask.
1096       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1097       if (OptoReg::is_valid(reg1))
1098         rm->Insert( reg1 );
1099       // Grab second register (if any), adjust stack slots and insert in mask.
1100       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1101       if (OptoReg::is_valid(reg2))
1102         rm->Insert( reg2 );
1103     } // End of for all arguments
1104 
1105     // Compute number of stack slots needed to restore stack in case of
1106     // Pascal-style argument popping.
1107     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1108   }
1109 
1110   // Compute the max stack slot killed by any call.  These will not be
1111   // available for debug info, and will be used to adjust FIRST_STACK_mask
1112   // after all call sites have been visited.
1113   if( _out_arg_limit < out_arg_limit_per_call)
1114     _out_arg_limit = out_arg_limit_per_call;
1115 
1116   if (mcall) {
1117     // Kill the outgoing argument area, including any non-argument holes and
1118     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1119     // Since the max-per-method covers the max-per-call-site and debug info
1120     // is excluded on the max-per-method basis, debug info cannot land in
1121     // this killed area.
1122     uint r_cnt = mcall->tf()->range()->cnt();
1123     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1124     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
1125       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1126     } else {
1127       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1128         proj->_rout.Insert(OptoReg::Name(i));
1129     }
1130     if( proj->_rout.is_NotEmpty() )
1131       _proj_list.push(proj);
1132   }
1133   // Transfer the safepoint information from the call to the mcall
1134   // Move the JVMState list
1135   msfpt->set_jvms(sfpt->jvms());
1136   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1137     jvms->set_map(sfpt);
1138   }
1139 
1140   // Debug inputs begin just after the last incoming parameter
1141   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1142           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1143 
1144   // Move the OopMap
1145   msfpt->_oop_map = sfpt->_oop_map;
1146 
1147   // Registers killed by the call are set in the local scheduling pass
1148   // of Global Code Motion.
1149   return msfpt;
1150 }
1151 
1152 //---------------------------match_tree----------------------------------------
1153 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1154 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1155 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1156 // a Load's result RegMask for memoization in idealreg2regmask[]
1157 MachNode *Matcher::match_tree( const Node *n ) {
1158   assert( n->Opcode() != Op_Phi, "cannot match" );
1159   assert( !n->is_block_start(), "cannot match" );
1160   // Set the mark for all locally allocated State objects.
1161   // When this call returns, the _states_arena arena will be reset
1162   // freeing all State objects.
1163   ResourceMark rm( &_states_arena );
1164 
1165   LabelRootDepth = 0;
1166 
1167   // StoreNodes require their Memory input to match any LoadNodes
1168   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1169 #ifdef ASSERT
1170   Node* save_mem_node = _mem_node;
1171   _mem_node = n->is_Store() ? (Node*)n : NULL;
1172 #endif
1173   // State object for root node of match tree
1174   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1175   State *s = new (&_states_arena) State;
1176   s->_kids[0] = NULL;
1177   s->_kids[1] = NULL;
1178   s->_leaf = (Node*)n;
1179   // Label the input tree, allocating labels from top-level arena
1180   Label_Root( n, s, n->in(0), mem );
1181   if (C->failing())  return NULL;
1182 
1183   // The minimum cost match for the whole tree is found at the root State
1184   uint mincost = max_juint;
1185   uint cost = max_juint;
1186   uint i;
1187   for( i = 0; i < NUM_OPERANDS; i++ ) {
1188     if( s->valid(i) &&                // valid entry and
1189         s->_cost[i] < cost &&         // low cost and
1190         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1191       cost = s->_cost[mincost=i];
1192   }
1193   if (mincost == max_juint) {
1194 #ifndef PRODUCT
1195     tty->print("No matching rule for:");
1196     s->dump();
1197 #endif
1198     Matcher::soft_match_failure();
1199     return NULL;
1200   }
1201   // Reduce input tree based upon the state labels to machine Nodes
1202   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1203 #ifdef ASSERT
1204   _old2new_map.map(n->_idx, m);
1205   _new2old_map.map(m->_idx, (Node*)n);
1206 #endif
1207 
1208   // Add any Matcher-ignored edges
1209   uint cnt = n->req();
1210   uint start = 1;
1211   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1212   if( n->is_AddP() ) {
1213     assert( mem == (Node*)1, "" );
1214     start = AddPNode::Base+1;
1215   }
1216   for( i = start; i < cnt; i++ ) {
1217     if( !n->match_edge(i) ) {
1218       if( i < m->req() )
1219         m->ins_req( i, n->in(i) );
1220       else
1221         m->add_req( n->in(i) );
1222     }
1223   }
1224 
1225   debug_only( _mem_node = save_mem_node; )
1226   return m;
1227 }
1228 
1229 
1230 //------------------------------match_into_reg---------------------------------
1231 // Choose to either match this Node in a register or part of the current
1232 // match tree.  Return true for requiring a register and false for matching
1233 // as part of the current match tree.
1234 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1235 
1236   const Type *t = m->bottom_type();
1237 
1238   if( t->singleton() ) {
1239     // Never force constants into registers.  Allow them to match as
1240     // constants or registers.  Copies of the same value will share
1241     // the same register.  See find_shared_node.
1242     return false;
1243   } else {                      // Not a constant
1244     // Stop recursion if they have different Controls.
1245     // Slot 0 of constants is not really a Control.
1246     if( control && m->in(0) && control != m->in(0) ) {
1247 
1248       // Actually, we can live with the most conservative control we
1249       // find, if it post-dominates the others.  This allows us to
1250       // pick up load/op/store trees where the load can float a little
1251       // above the store.
1252       Node *x = control;
1253       const uint max_scan = 6;   // Arbitrary scan cutoff
1254       uint j;
1255       for( j=0; j<max_scan; j++ ) {
1256         if( x->is_Region() )    // Bail out at merge points
1257           return true;
1258         x = x->in(0);
1259         if( x == m->in(0) )     // Does 'control' post-dominate
1260           break;                // m->in(0)?  If so, we can use it
1261       }
1262       if( j == max_scan )       // No post-domination before scan end?
1263         return true;            // Then break the match tree up
1264     }
1265     if (m->is_DecodeN() && Matcher::clone_shift_expressions) {
1266       // These are commonly used in address expressions and can
1267       // efficiently fold into them on X64 in some cases.
1268       return false;
1269     }
1270   }
1271 
1272   // Not forceable cloning.  If shared, put it into a register.
1273   return shared;
1274 }
1275 
1276 
1277 //------------------------------Instruction Selection--------------------------
1278 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1279 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1280 // things the Matcher does not match (e.g., Memory), and things with different
1281 // Controls (hence forced into different blocks).  We pass in the Control
1282 // selected for this entire State tree.
1283 
1284 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1285 // Store and the Load must have identical Memories (as well as identical
1286 // pointers).  Since the Matcher does not have anything for Memory (and
1287 // does not handle DAGs), I have to match the Memory input myself.  If the
1288 // Tree root is a Store, I require all Loads to have the identical memory.
1289 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1290   // Since Label_Root is a recursive function, its possible that we might run
1291   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1292   LabelRootDepth++;
1293   if (LabelRootDepth > MaxLabelRootDepth) {
1294     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1295     return NULL;
1296   }
1297   uint care = 0;                // Edges matcher cares about
1298   uint cnt = n->req();
1299   uint i = 0;
1300 
1301   // Examine children for memory state
1302   // Can only subsume a child into your match-tree if that child's memory state
1303   // is not modified along the path to another input.
1304   // It is unsafe even if the other inputs are separate roots.
1305   Node *input_mem = NULL;
1306   for( i = 1; i < cnt; i++ ) {
1307     if( !n->match_edge(i) ) continue;
1308     Node *m = n->in(i);         // Get ith input
1309     assert( m, "expect non-null children" );
1310     if( m->is_Load() ) {
1311       if( input_mem == NULL ) {
1312         input_mem = m->in(MemNode::Memory);
1313       } else if( input_mem != m->in(MemNode::Memory) ) {
1314         input_mem = NodeSentinel;
1315       }
1316     }
1317   }
1318 
1319   for( i = 1; i < cnt; i++ ){// For my children
1320     if( !n->match_edge(i) ) continue;
1321     Node *m = n->in(i);         // Get ith input
1322     // Allocate states out of a private arena
1323     State *s = new (&_states_arena) State;
1324     svec->_kids[care++] = s;
1325     assert( care <= 2, "binary only for now" );
1326 
1327     // Recursively label the State tree.
1328     s->_kids[0] = NULL;
1329     s->_kids[1] = NULL;
1330     s->_leaf = m;
1331 
1332     // Check for leaves of the State Tree; things that cannot be a part of
1333     // the current tree.  If it finds any, that value is matched as a
1334     // register operand.  If not, then the normal matching is used.
1335     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1336         //
1337         // Stop recursion if this is LoadNode and the root of this tree is a
1338         // StoreNode and the load & store have different memories.
1339         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1340         // Can NOT include the match of a subtree when its memory state
1341         // is used by any of the other subtrees
1342         (input_mem == NodeSentinel) ) {
1343 #ifndef PRODUCT
1344       // Print when we exclude matching due to different memory states at input-loads
1345       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1346         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1347         tty->print_cr("invalid input_mem");
1348       }
1349 #endif
1350       // Switch to a register-only opcode; this value must be in a register
1351       // and cannot be subsumed as part of a larger instruction.
1352       s->DFA( m->ideal_reg(), m );
1353 
1354     } else {
1355       // If match tree has no control and we do, adopt it for entire tree
1356       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1357         control = m->in(0);         // Pick up control
1358       // Else match as a normal part of the match tree.
1359       control = Label_Root(m,s,control,mem);
1360       if (C->failing()) return NULL;
1361     }
1362   }
1363 
1364 
1365   // Call DFA to match this node, and return
1366   svec->DFA( n->Opcode(), n );
1367 
1368 #ifdef ASSERT
1369   uint x;
1370   for( x = 0; x < _LAST_MACH_OPER; x++ )
1371     if( svec->valid(x) )
1372       break;
1373 
1374   if (x >= _LAST_MACH_OPER) {
1375     n->dump();
1376     svec->dump();
1377     assert( false, "bad AD file" );
1378   }
1379 #endif
1380   return control;
1381 }
1382 
1383 
1384 // Con nodes reduced using the same rule can share their MachNode
1385 // which reduces the number of copies of a constant in the final
1386 // program.  The register allocator is free to split uses later to
1387 // split live ranges.
1388 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1389   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
1390 
1391   // See if this Con has already been reduced using this rule.
1392   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1393   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1394   if (last != NULL && rule == last->rule()) {
1395     // Don't expect control change for DecodeN
1396     if (leaf->is_DecodeN())
1397       return last;
1398     // Get the new space root.
1399     Node* xroot = new_node(C->root());
1400     if (xroot == NULL) {
1401       // This shouldn't happen give the order of matching.
1402       return NULL;
1403     }
1404 
1405     // Shared constants need to have their control be root so they
1406     // can be scheduled properly.
1407     Node* control = last->in(0);
1408     if (control != xroot) {
1409       if (control == NULL || control == C->root()) {
1410         last->set_req(0, xroot);
1411       } else {
1412         assert(false, "unexpected control");
1413         return NULL;
1414       }
1415     }
1416     return last;
1417   }
1418   return NULL;
1419 }
1420 
1421 
1422 //------------------------------ReduceInst-------------------------------------
1423 // Reduce a State tree (with given Control) into a tree of MachNodes.
1424 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1425 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1426 // Each MachNode has a number of complicated MachOper operands; each
1427 // MachOper also covers a further tree of Ideal Nodes.
1428 
1429 // The root of the Ideal match tree is always an instruction, so we enter
1430 // the recursion here.  After building the MachNode, we need to recurse
1431 // the tree checking for these cases:
1432 // (1) Child is an instruction -
1433 //     Build the instruction (recursively), add it as an edge.
1434 //     Build a simple operand (register) to hold the result of the instruction.
1435 // (2) Child is an interior part of an instruction -
1436 //     Skip over it (do nothing)
1437 // (3) Child is the start of a operand -
1438 //     Build the operand, place it inside the instruction
1439 //     Call ReduceOper.
1440 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1441   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1442 
1443   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1444   if (shared_node != NULL) {
1445     return shared_node;
1446   }
1447 
1448   // Build the object to represent this state & prepare for recursive calls
1449   MachNode *mach = s->MachNodeGenerator( rule, C );
1450   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1451   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1452   Node *leaf = s->_leaf;
1453   // Check for instruction or instruction chain rule
1454   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1455     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1456            "duplicating node that's already been matched");
1457     // Instruction
1458     mach->add_req( leaf->in(0) ); // Set initial control
1459     // Reduce interior of complex instruction
1460     ReduceInst_Interior( s, rule, mem, mach, 1 );
1461   } else {
1462     // Instruction chain rules are data-dependent on their inputs
1463     mach->add_req(0);             // Set initial control to none
1464     ReduceInst_Chain_Rule( s, rule, mem, mach );
1465   }
1466 
1467   // If a Memory was used, insert a Memory edge
1468   if( mem != (Node*)1 ) {
1469     mach->ins_req(MemNode::Memory,mem);
1470 #ifdef ASSERT
1471     // Verify adr type after matching memory operation
1472     const MachOper* oper = mach->memory_operand();
1473     if (oper != NULL && oper != (MachOper*)-1 &&
1474         mach->adr_type() != TypeRawPtr::BOTTOM) { // non-direct addressing mode
1475       // It has a unique memory operand.  Find corresponding ideal mem node.
1476       Node* m = NULL;
1477       if (leaf->is_Mem()) {
1478         m = leaf;
1479       } else {
1480         m = _mem_node;
1481         assert(m != NULL && m->is_Mem(), "expecting memory node");
1482       }
1483       const Type* mach_at = mach->adr_type();
1484       // DecodeN node consumed by an address may have different type
1485       // then its input. Don't compare types for such case.
1486       if (m->adr_type() != mach_at &&
1487           (m->in(MemNode::Address)->is_DecodeN() ||
1488            m->in(MemNode::Address)->is_AddP() &&
1489            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
1490            m->in(MemNode::Address)->is_AddP() &&
1491            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1492            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
1493         mach_at = m->adr_type();
1494       }
1495       if (m->adr_type() != mach_at) {
1496         m->dump();
1497         tty->print_cr("mach:");
1498         mach->dump(1);
1499       }
1500       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1501     }
1502 #endif
1503   }
1504 
1505   // If the _leaf is an AddP, insert the base edge
1506   if( leaf->is_AddP() )
1507     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1508 
1509   uint num_proj = _proj_list.size();
1510 
1511   // Perform any 1-to-many expansions required
1512   MachNode *ex = mach->Expand(s,_proj_list);
1513   if( ex != mach ) {
1514     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1515     if( ex->in(1)->is_Con() )
1516       ex->in(1)->set_req(0, C->root());
1517     // Remove old node from the graph
1518     for( uint i=0; i<mach->req(); i++ ) {
1519       mach->set_req(i,NULL);
1520     }
1521 #ifdef ASSERT
1522     _new2old_map.map(ex->_idx, s->_leaf);
1523 #endif
1524   }
1525 
1526   // PhaseChaitin::fixup_spills will sometimes generate spill code
1527   // via the matcher.  By the time, nodes have been wired into the CFG,
1528   // and any further nodes generated by expand rules will be left hanging
1529   // in space, and will not get emitted as output code.  Catch this.
1530   // Also, catch any new register allocation constraints ("projections")
1531   // generated belatedly during spill code generation.
1532   if (_allocation_started) {
1533     guarantee(ex == mach, "no expand rules during spill generation");
1534     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1535   }
1536 
1537   if (leaf->is_Con() || leaf->is_DecodeN()) {
1538     // Record the con for sharing
1539     _shared_nodes.map(leaf->_idx, ex);
1540   }
1541 
1542   return ex;
1543 }
1544 
1545 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1546   // 'op' is what I am expecting to receive
1547   int op = _leftOp[rule];
1548   // Operand type to catch childs result
1549   // This is what my child will give me.
1550   int opnd_class_instance = s->_rule[op];
1551   // Choose between operand class or not.
1552   // This is what I will receive.
1553   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1554   // New rule for child.  Chase operand classes to get the actual rule.
1555   int newrule = s->_rule[catch_op];
1556 
1557   if( newrule < NUM_OPERANDS ) {
1558     // Chain from operand or operand class, may be output of shared node
1559     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1560             "Bad AD file: Instruction chain rule must chain from operand");
1561     // Insert operand into array of operands for this instruction
1562     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1563 
1564     ReduceOper( s, newrule, mem, mach );
1565   } else {
1566     // Chain from the result of an instruction
1567     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1568     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1569     Node *mem1 = (Node*)1;
1570     debug_only(Node *save_mem_node = _mem_node;)
1571     mach->add_req( ReduceInst(s, newrule, mem1) );
1572     debug_only(_mem_node = save_mem_node;)
1573   }
1574   return;
1575 }
1576 
1577 
1578 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1579   if( s->_leaf->is_Load() ) {
1580     Node *mem2 = s->_leaf->in(MemNode::Memory);
1581     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1582     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1583     mem = mem2;
1584   }
1585   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1586     if( mach->in(0) == NULL )
1587       mach->set_req(0, s->_leaf->in(0));
1588   }
1589 
1590   // Now recursively walk the state tree & add operand list.
1591   for( uint i=0; i<2; i++ ) {   // binary tree
1592     State *newstate = s->_kids[i];
1593     if( newstate == NULL ) break;      // Might only have 1 child
1594     // 'op' is what I am expecting to receive
1595     int op;
1596     if( i == 0 ) {
1597       op = _leftOp[rule];
1598     } else {
1599       op = _rightOp[rule];
1600     }
1601     // Operand type to catch childs result
1602     // This is what my child will give me.
1603     int opnd_class_instance = newstate->_rule[op];
1604     // Choose between operand class or not.
1605     // This is what I will receive.
1606     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1607     // New rule for child.  Chase operand classes to get the actual rule.
1608     int newrule = newstate->_rule[catch_op];
1609 
1610     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1611       // Operand/operandClass
1612       // Insert operand into array of operands for this instruction
1613       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1614       ReduceOper( newstate, newrule, mem, mach );
1615 
1616     } else {                    // Child is internal operand or new instruction
1617       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1618         // internal operand --> call ReduceInst_Interior
1619         // Interior of complex instruction.  Do nothing but recurse.
1620         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1621       } else {
1622         // instruction --> call build operand(  ) to catch result
1623         //             --> ReduceInst( newrule )
1624         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1625         Node *mem1 = (Node*)1;
1626         debug_only(Node *save_mem_node = _mem_node;)
1627         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1628         debug_only(_mem_node = save_mem_node;)
1629       }
1630     }
1631     assert( mach->_opnds[num_opnds-1], "" );
1632   }
1633   return num_opnds;
1634 }
1635 
1636 // This routine walks the interior of possible complex operands.
1637 // At each point we check our children in the match tree:
1638 // (1) No children -
1639 //     We are a leaf; add _leaf field as an input to the MachNode
1640 // (2) Child is an internal operand -
1641 //     Skip over it ( do nothing )
1642 // (3) Child is an instruction -
1643 //     Call ReduceInst recursively and
1644 //     and instruction as an input to the MachNode
1645 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1646   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1647   State *kid = s->_kids[0];
1648   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1649 
1650   // Leaf?  And not subsumed?
1651   if( kid == NULL && !_swallowed[rule] ) {
1652     mach->add_req( s->_leaf );  // Add leaf pointer
1653     return;                     // Bail out
1654   }
1655 
1656   if( s->_leaf->is_Load() ) {
1657     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1658     mem = s->_leaf->in(MemNode::Memory);
1659     debug_only(_mem_node = s->_leaf;)
1660   }
1661   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1662     if( !mach->in(0) )
1663       mach->set_req(0,s->_leaf->in(0));
1664     else {
1665       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1666     }
1667   }
1668 
1669   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1670     int newrule;
1671     if( i == 0 )
1672       newrule = kid->_rule[_leftOp[rule]];
1673     else
1674       newrule = kid->_rule[_rightOp[rule]];
1675 
1676     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1677       // Internal operand; recurse but do nothing else
1678       ReduceOper( kid, newrule, mem, mach );
1679 
1680     } else {                    // Child is a new instruction
1681       // Reduce the instruction, and add a direct pointer from this
1682       // machine instruction to the newly reduced one.
1683       Node *mem1 = (Node*)1;
1684       debug_only(Node *save_mem_node = _mem_node;)
1685       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1686       debug_only(_mem_node = save_mem_node;)
1687     }
1688   }
1689 }
1690 
1691 
1692 // -------------------------------------------------------------------------
1693 // Java-Java calling convention
1694 // (what you use when Java calls Java)
1695 
1696 //------------------------------find_receiver----------------------------------
1697 // For a given signature, return the OptoReg for parameter 0.
1698 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1699   VMRegPair regs;
1700   BasicType sig_bt = T_OBJECT;
1701   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1702   // Return argument 0 register.  In the LP64 build pointers
1703   // take 2 registers, but the VM wants only the 'main' name.
1704   return OptoReg::as_OptoReg(regs.first());
1705 }
1706 
1707 // A method-klass-holder may be passed in the inline_cache_reg
1708 // and then expanded into the inline_cache_reg and a method_oop register
1709 //   defined in ad_<arch>.cpp
1710 
1711 
1712 //------------------------------find_shared------------------------------------
1713 // Set bits if Node is shared or otherwise a root
1714 void Matcher::find_shared( Node *n ) {
1715   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1716   MStack mstack(C->unique() * 2);
1717   // Mark nodes as address_visited if they are inputs to an address expression
1718   VectorSet address_visited(Thread::current()->resource_area());
1719   mstack.push(n, Visit);     // Don't need to pre-visit root node
1720   while (mstack.is_nonempty()) {
1721     n = mstack.node();       // Leave node on stack
1722     Node_State nstate = mstack.state();
1723     uint nop = n->Opcode();
1724     if (nstate == Pre_Visit) {
1725       if (address_visited.test(n->_idx)) { // Visited in address already?
1726         // Flag as visited and shared now.
1727         set_visited(n);
1728       }
1729       if (is_visited(n)) {   // Visited already?
1730         // Node is shared and has no reason to clone.  Flag it as shared.
1731         // This causes it to match into a register for the sharing.
1732         set_shared(n);       // Flag as shared and
1733         mstack.pop();        // remove node from stack
1734         continue;
1735       }
1736       nstate = Visit; // Not already visited; so visit now
1737     }
1738     if (nstate == Visit) {
1739       mstack.set_state(Post_Visit);
1740       set_visited(n);   // Flag as visited now
1741       bool mem_op = false;
1742 
1743       switch( nop ) {  // Handle some opcodes special
1744       case Op_Phi:             // Treat Phis as shared roots
1745       case Op_Parm:
1746       case Op_Proj:            // All handled specially during matching
1747       case Op_SafePointScalarObject:
1748         set_shared(n);
1749         set_dontcare(n);
1750         break;
1751       case Op_If:
1752       case Op_CountedLoopEnd:
1753         mstack.set_state(Alt_Post_Visit); // Alternative way
1754         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1755         // with matching cmp/branch in 1 instruction.  The Matcher needs the
1756         // Bool and CmpX side-by-side, because it can only get at constants
1757         // that are at the leaves of Match trees, and the Bool's condition acts
1758         // as a constant here.
1759         mstack.push(n->in(1), Visit);         // Clone the Bool
1760         mstack.push(n->in(0), Pre_Visit);     // Visit control input
1761         continue; // while (mstack.is_nonempty())
1762       case Op_ConvI2D:         // These forms efficiently match with a prior
1763       case Op_ConvI2F:         //   Load but not a following Store
1764         if( n->in(1)->is_Load() &&        // Prior load
1765             n->outcnt() == 1 &&           // Not already shared
1766             n->unique_out()->is_Store() ) // Following store
1767           set_shared(n);       // Force it to be a root
1768         break;
1769       case Op_ReverseBytesI:
1770       case Op_ReverseBytesL:
1771         if( n->in(1)->is_Load() &&        // Prior load
1772             n->outcnt() == 1 )            // Not already shared
1773           set_shared(n);                  // Force it to be a root
1774         break;
1775       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1776       case Op_IfFalse:
1777       case Op_IfTrue:
1778       case Op_MachProj:
1779       case Op_MergeMem:
1780       case Op_Catch:
1781       case Op_CatchProj:
1782       case Op_CProj:
1783       case Op_JumpProj:
1784       case Op_JProj:
1785       case Op_NeverBranch:
1786         set_dontcare(n);
1787         break;
1788       case Op_Jump:
1789         mstack.push(n->in(1), Visit);         // Switch Value
1790         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1791         continue;                             // while (mstack.is_nonempty())
1792       case Op_StrComp:
1793       case Op_StrEquals:
1794       case Op_StrIndexOf:
1795       case Op_AryEq:
1796         set_shared(n); // Force result into register (it will be anyways)
1797         break;
1798       case Op_ConP: {  // Convert pointers above the centerline to NUL
1799         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1800         const TypePtr* tp = tn->type()->is_ptr();
1801         if (tp->_ptr == TypePtr::AnyNull) {
1802           tn->set_type(TypePtr::NULL_PTR);
1803         }
1804         break;
1805       }
1806       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1807         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1808         const TypePtr* tp = tn->type()->make_ptr();
1809         if (tp && tp->_ptr == TypePtr::AnyNull) {
1810           tn->set_type(TypeNarrowOop::NULL_PTR);
1811         }
1812         break;
1813       }
1814       case Op_Binary:         // These are introduced in the Post_Visit state.
1815         ShouldNotReachHere();
1816         break;
1817       case Op_StoreB:         // Do match these, despite no ideal reg
1818       case Op_StoreC:
1819       case Op_StoreCM:
1820       case Op_StoreD:
1821       case Op_StoreF:
1822       case Op_StoreI:
1823       case Op_StoreL:
1824       case Op_StoreP:
1825       case Op_StoreN:
1826       case Op_Store16B:
1827       case Op_Store8B:
1828       case Op_Store4B:
1829       case Op_Store8C:
1830       case Op_Store4C:
1831       case Op_Store2C:
1832       case Op_Store4I:
1833       case Op_Store2I:
1834       case Op_Store2L:
1835       case Op_Store4F:
1836       case Op_Store2F:
1837       case Op_Store2D:
1838       case Op_ClearArray:
1839       case Op_SafePoint:
1840         mem_op = true;
1841         break;
1842       case Op_LoadB:
1843       case Op_LoadUS:
1844       case Op_LoadD:
1845       case Op_LoadF:
1846       case Op_LoadI:
1847       case Op_LoadKlass:
1848       case Op_LoadNKlass:
1849       case Op_LoadL:
1850       case Op_LoadS:
1851       case Op_LoadP:
1852       case Op_LoadN:
1853       case Op_LoadRange:
1854       case Op_LoadD_unaligned:
1855       case Op_LoadL_unaligned:
1856       case Op_Load16B:
1857       case Op_Load8B:
1858       case Op_Load4B:
1859       case Op_Load4C:
1860       case Op_Load2C:
1861       case Op_Load8C:
1862       case Op_Load8S:
1863       case Op_Load4S:
1864       case Op_Load2S:
1865       case Op_Load4I:
1866       case Op_Load2I:
1867       case Op_Load2L:
1868       case Op_Load4F:
1869       case Op_Load2F:
1870       case Op_Load2D:
1871         mem_op = true;
1872         // Must be root of match tree due to prior load conflict
1873         if( C->subsume_loads() == false ) {
1874           set_shared(n);
1875         }
1876         // Fall into default case
1877       default:
1878         if( !n->ideal_reg() )
1879           set_dontcare(n);  // Unmatchable Nodes
1880       } // end_switch
1881 
1882       for(int i = n->req() - 1; i >= 0; --i) { // For my children
1883         Node *m = n->in(i); // Get ith input
1884         if (m == NULL) continue;  // Ignore NULLs
1885         uint mop = m->Opcode();
1886 
1887         // Must clone all producers of flags, or we will not match correctly.
1888         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
1889         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
1890         // are also there, so we may match a float-branch to int-flags and
1891         // expect the allocator to haul the flags from the int-side to the
1892         // fp-side.  No can do.
1893         if( _must_clone[mop] ) {
1894           mstack.push(m, Visit);
1895           continue; // for(int i = ...)
1896         }
1897 
1898         // Clone addressing expressions as they are "free" in most instructions
1899         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
1900           if (m->in(AddPNode::Base)->Opcode() == Op_DecodeN) {
1901             // Bases used in addresses must be shared but since
1902             // they are shared through a DecodeN they may appear
1903             // to have a single use so force sharing here.
1904             set_shared(m->in(AddPNode::Base)->in(1));
1905           }
1906 
1907           // Some inputs for address expression are not put on stack
1908           // to avoid marking them as shared and forcing them into register
1909           // if they are used only in address expressions.
1910           // But they should be marked as shared if there are other uses
1911           // besides address expressions.
1912 
1913           Node *off = m->in(AddPNode::Offset);
1914           if( off->is_Con() &&
1915               // When there are other uses besides address expressions
1916               // put it on stack and mark as shared.
1917               !is_visited(m) ) {
1918             address_visited.test_set(m->_idx); // Flag as address_visited
1919             Node *adr = m->in(AddPNode::Address);
1920 
1921             // Intel, ARM and friends can handle 2 adds in addressing mode
1922             if( clone_shift_expressions && adr->is_AddP() &&
1923                 // AtomicAdd is not an addressing expression.
1924                 // Cheap to find it by looking for screwy base.
1925                 !adr->in(AddPNode::Base)->is_top() &&
1926                 // Are there other uses besides address expressions?
1927                 !is_visited(adr) ) {
1928               address_visited.set(adr->_idx); // Flag as address_visited
1929               Node *shift = adr->in(AddPNode::Offset);
1930               // Check for shift by small constant as well
1931               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
1932                   shift->in(2)->get_int() <= 3 &&
1933                   // Are there other uses besides address expressions?
1934                   !is_visited(shift) ) {
1935                 address_visited.set(shift->_idx); // Flag as address_visited
1936                 mstack.push(shift->in(2), Visit);
1937                 Node *conv = shift->in(1);
1938 #ifdef _LP64
1939                 // Allow Matcher to match the rule which bypass
1940                 // ConvI2L operation for an array index on LP64
1941                 // if the index value is positive.
1942                 if( conv->Opcode() == Op_ConvI2L &&
1943                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
1944                     // Are there other uses besides address expressions?
1945                     !is_visited(conv) ) {
1946                   address_visited.set(conv->_idx); // Flag as address_visited
1947                   mstack.push(conv->in(1), Pre_Visit);
1948                 } else
1949 #endif
1950                 mstack.push(conv, Pre_Visit);
1951               } else {
1952                 mstack.push(shift, Pre_Visit);
1953               }
1954               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
1955               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
1956             } else {  // Sparc, Alpha, PPC and friends
1957               mstack.push(adr, Pre_Visit);
1958             }
1959 
1960             // Clone X+offset as it also folds into most addressing expressions
1961             mstack.push(off, Visit);
1962             mstack.push(m->in(AddPNode::Base), Pre_Visit);
1963             continue; // for(int i = ...)
1964           } // if( off->is_Con() )
1965         }   // if( mem_op &&
1966         mstack.push(m, Pre_Visit);
1967       }     // for(int i = ...)
1968     }
1969     else if (nstate == Alt_Post_Visit) {
1970       mstack.pop(); // Remove node from stack
1971       // We cannot remove the Cmp input from the Bool here, as the Bool may be
1972       // shared and all users of the Bool need to move the Cmp in parallel.
1973       // This leaves both the Bool and the If pointing at the Cmp.  To
1974       // prevent the Matcher from trying to Match the Cmp along both paths
1975       // BoolNode::match_edge always returns a zero.
1976 
1977       // We reorder the Op_If in a pre-order manner, so we can visit without
1978       // accidentally sharing the Cmp (the Bool and the If make 2 users).
1979       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
1980     }
1981     else if (nstate == Post_Visit) {
1982       mstack.pop(); // Remove node from stack
1983 
1984       // Now hack a few special opcodes
1985       switch( n->Opcode() ) {       // Handle some opcodes special
1986       case Op_StorePConditional:
1987       case Op_StoreIConditional:
1988       case Op_StoreLConditional:
1989       case Op_CompareAndSwapI:
1990       case Op_CompareAndSwapL:
1991       case Op_CompareAndSwapP:
1992       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
1993         Node *newval = n->in(MemNode::ValueIn );
1994         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
1995         Node *pair = new (C, 3) BinaryNode( oldval, newval );
1996         n->set_req(MemNode::ValueIn,pair);
1997         n->del_req(LoadStoreNode::ExpectedIn);
1998         break;
1999       }
2000       case Op_CMoveD:              // Convert trinary to binary-tree
2001       case Op_CMoveF:
2002       case Op_CMoveI:
2003       case Op_CMoveL:
2004       case Op_CMoveN:
2005       case Op_CMoveP: {
2006         // Restructure into a binary tree for Matching.  It's possible that
2007         // we could move this code up next to the graph reshaping for IfNodes
2008         // or vice-versa, but I do not want to debug this for Ladybird.
2009         // 10/2/2000 CNC.
2010         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
2011         n->set_req(1,pair1);
2012         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2013         n->set_req(2,pair2);
2014         n->del_req(3);
2015         break;
2016       }
2017       default:
2018         break;
2019       }
2020     }
2021     else {
2022       ShouldNotReachHere();
2023     }
2024   } // end of while (mstack.is_nonempty())
2025 }
2026 
2027 #ifdef ASSERT
2028 // machine-independent root to machine-dependent root
2029 void Matcher::dump_old2new_map() {
2030   _old2new_map.dump();
2031 }
2032 #endif
2033 
2034 //---------------------------collect_null_checks-------------------------------
2035 // Find null checks in the ideal graph; write a machine-specific node for
2036 // it.  Used by later implicit-null-check handling.  Actually collects
2037 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2038 // value being tested.
2039 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2040   Node *iff = proj->in(0);
2041   if( iff->Opcode() == Op_If ) {
2042     // During matching If's have Bool & Cmp side-by-side
2043     BoolNode *b = iff->in(1)->as_Bool();
2044     Node *cmp = iff->in(2);
2045     int opc = cmp->Opcode();
2046     if (opc != Op_CmpP && opc != Op_CmpN) return;
2047 
2048     const Type* ct = cmp->in(2)->bottom_type();
2049     if (ct == TypePtr::NULL_PTR ||
2050         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2051 
2052       bool push_it = false;
2053       if( proj->Opcode() == Op_IfTrue ) {
2054         extern int all_null_checks_found;
2055         all_null_checks_found++;
2056         if( b->_test._test == BoolTest::ne ) {
2057           push_it = true;
2058         }
2059       } else {
2060         assert( proj->Opcode() == Op_IfFalse, "" );
2061         if( b->_test._test == BoolTest::eq ) {
2062           push_it = true;
2063         }
2064       }
2065       if( push_it ) {
2066         _null_check_tests.push(proj);
2067         Node* val = cmp->in(1);
2068 #ifdef _LP64
2069         if (UseCompressedOops && !Matcher::clone_shift_expressions &&
2070             val->bottom_type()->isa_narrowoop()) {
2071           //
2072           // Look for DecodeN node which should be pinned to orig_proj.
2073           // On platforms (Sparc) which can not handle 2 adds
2074           // in addressing mode we have to keep a DecodeN node and
2075           // use it to do implicit NULL check in address.
2076           //
2077           // DecodeN node was pinned to non-null path (orig_proj) during
2078           // CastPP transformation in final_graph_reshaping_impl().
2079           //
2080           uint cnt = orig_proj->outcnt();
2081           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2082             Node* d = orig_proj->raw_out(i);
2083             if (d->is_DecodeN() && d->in(1) == val) {
2084               val = d;
2085               val->set_req(0, NULL); // Unpin now.
2086               break;
2087             }
2088           }
2089         }
2090 #endif
2091         _null_check_tests.push(val);
2092       }
2093     }
2094   }
2095 }
2096 
2097 //---------------------------validate_null_checks------------------------------
2098 // Its possible that the value being NULL checked is not the root of a match
2099 // tree.  If so, I cannot use the value in an implicit null check.
2100 void Matcher::validate_null_checks( ) {
2101   uint cnt = _null_check_tests.size();
2102   for( uint i=0; i < cnt; i+=2 ) {
2103     Node *test = _null_check_tests[i];
2104     Node *val = _null_check_tests[i+1];
2105     if (has_new_node(val)) {
2106       // Is a match-tree root, so replace with the matched value
2107       _null_check_tests.map(i+1, new_node(val));
2108     } else {
2109       // Yank from candidate list
2110       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2111       _null_check_tests.map(i,_null_check_tests[--cnt]);
2112       _null_check_tests.pop();
2113       _null_check_tests.pop();
2114       i-=2;
2115     }
2116   }
2117 }
2118 
2119 
2120 // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
2121 // acting as an Acquire and thus we don't need an Acquire here.  We
2122 // retain the Node to act as a compiler ordering barrier.
2123 bool Matcher::prior_fast_lock( const Node *acq ) {
2124   Node *r = acq->in(0);
2125   if( !r->is_Region() || r->req() <= 1 ) return false;
2126   Node *proj = r->in(1);
2127   if( !proj->is_Proj() ) return false;
2128   Node *call = proj->in(0);
2129   if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
2130     return false;
2131 
2132   return true;
2133 }
2134 
2135 // Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
2136 // acting as a Release and thus we don't need a Release here.  We
2137 // retain the Node to act as a compiler ordering barrier.
2138 bool Matcher::post_fast_unlock( const Node *rel ) {
2139   Compile *C = Compile::current();
2140   assert( rel->Opcode() == Op_MemBarRelease, "" );
2141   const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
2142   DUIterator_Fast imax, i = mem->fast_outs(imax);
2143   Node *ctrl = NULL;
2144   while( true ) {
2145     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2146     assert( ctrl->is_Proj(), "only projections here" );
2147     ProjNode *proj = (ProjNode*)ctrl;
2148     if( proj->_con == TypeFunc::Control &&
2149         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2150       break;
2151     i++;
2152   }
2153   Node *iff = NULL;
2154   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2155     Node *x = ctrl->fast_out(j);
2156     if( x->is_If() && x->req() > 1 &&
2157         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2158       iff = x;
2159       break;
2160     }
2161   }
2162   if( !iff ) return false;
2163   Node *bol = iff->in(1);
2164   // The iff might be some random subclass of If or bol might be Con-Top
2165   if (!bol->is_Bool())  return false;
2166   assert( bol->req() > 1, "" );
2167   return (bol->in(1)->Opcode() == Op_FastUnlock);
2168 }
2169 
2170 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2171 // atomic instruction acting as a store_load barrier without any
2172 // intervening volatile load, and thus we don't need a barrier here.
2173 // We retain the Node to act as a compiler ordering barrier.
2174 bool Matcher::post_store_load_barrier(const Node *vmb) {
2175   Compile *C = Compile::current();
2176   assert( vmb->is_MemBar(), "" );
2177   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2178   const MemBarNode *mem = (const MemBarNode*)vmb;
2179 
2180   // Get the Proj node, ctrl, that can be used to iterate forward
2181   Node *ctrl = NULL;
2182   DUIterator_Fast imax, i = mem->fast_outs(imax);
2183   while( true ) {
2184     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2185     assert( ctrl->is_Proj(), "only projections here" );
2186     ProjNode *proj = (ProjNode*)ctrl;
2187     if( proj->_con == TypeFunc::Control &&
2188         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2189       break;
2190     i++;
2191   }
2192 
2193   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2194     Node *x = ctrl->fast_out(j);
2195     int xop = x->Opcode();
2196 
2197     // We don't need current barrier if we see another or a lock
2198     // before seeing volatile load.
2199     //
2200     // Op_Fastunlock previously appeared in the Op_* list below.
2201     // With the advent of 1-0 lock operations we're no longer guaranteed
2202     // that a monitor exit operation contains a serializing instruction.
2203 
2204     if (xop == Op_MemBarVolatile ||
2205         xop == Op_FastLock ||
2206         xop == Op_CompareAndSwapL ||
2207         xop == Op_CompareAndSwapP ||
2208         xop == Op_CompareAndSwapN ||
2209         xop == Op_CompareAndSwapI)
2210       return true;
2211 
2212     if (x->is_MemBar()) {
2213       // We must retain this membar if there is an upcoming volatile
2214       // load, which will be preceded by acquire membar.
2215       if (xop == Op_MemBarAcquire)
2216         return false;
2217       // For other kinds of barriers, check by pretending we
2218       // are them, and seeing if we can be removed.
2219       else
2220         return post_store_load_barrier((const MemBarNode*)x);
2221     }
2222 
2223     // Delicate code to detect case of an upcoming fastlock block
2224     if( x->is_If() && x->req() > 1 &&
2225         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2226       Node *iff = x;
2227       Node *bol = iff->in(1);
2228       // The iff might be some random subclass of If or bol might be Con-Top
2229       if (!bol->is_Bool())  return false;
2230       assert( bol->req() > 1, "" );
2231       return (bol->in(1)->Opcode() == Op_FastUnlock);
2232     }
2233     // probably not necessary to check for these
2234     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2235       return false;
2236   }
2237   return false;
2238 }
2239 
2240 //=============================================================================
2241 //---------------------------State---------------------------------------------
2242 State::State(void) {
2243 #ifdef ASSERT
2244   _id = 0;
2245   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2246   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2247   //memset(_cost, -1, sizeof(_cost));
2248   //memset(_rule, -1, sizeof(_rule));
2249 #endif
2250   memset(_valid, 0, sizeof(_valid));
2251 }
2252 
2253 #ifdef ASSERT
2254 State::~State() {
2255   _id = 99;
2256   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2257   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2258   memset(_cost, -3, sizeof(_cost));
2259   memset(_rule, -3, sizeof(_rule));
2260 }
2261 #endif
2262 
2263 #ifndef PRODUCT
2264 //---------------------------dump----------------------------------------------
2265 void State::dump() {
2266   tty->print("\n");
2267   dump(0);
2268 }
2269 
2270 void State::dump(int depth) {
2271   for( int j = 0; j < depth; j++ )
2272     tty->print("   ");
2273   tty->print("--N: ");
2274   _leaf->dump();
2275   uint i;
2276   for( i = 0; i < _LAST_MACH_OPER; i++ )
2277     // Check for valid entry
2278     if( valid(i) ) {
2279       for( int j = 0; j < depth; j++ )
2280         tty->print("   ");
2281         assert(_cost[i] != max_juint, "cost must be a valid value");
2282         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2283         tty->print_cr("%s  %d  %s",
2284                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2285       }
2286   tty->print_cr("");
2287 
2288   for( i=0; i<2; i++ )
2289     if( _kids[i] )
2290       _kids[i]->dump(depth+1);
2291 }
2292 #endif