1 /*
   2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 class Compile;
  26 class Node;
  27 class MachNode;
  28 class MachTypeNode;
  29 class MachOper;
  30 
  31 //---------------------------Matcher-------------------------------------------
  32 class Matcher : public PhaseTransform {
  33   friend class VMStructs;
  34   // Private arena of State objects
  35   ResourceArea _states_arena;
  36 
  37   VectorSet   _visited;         // Visit bits
  38 
  39   // Used to control the Label pass
  40   VectorSet   _shared;          // Shared Ideal Node
  41   VectorSet   _dontcare;        // Nothing the matcher cares about
  42 
  43   // Private methods which perform the actual matching and reduction
  44   // Walks the label tree, generating machine nodes
  45   MachNode *ReduceInst( State *s, int rule, Node *&mem);
  46   void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
  47   uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
  48   void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
  49 
  50   // If this node already matched using "rule", return the MachNode for it.
  51   MachNode* find_shared_node(Node* n, uint rule);
  52 
  53   // Convert a dense opcode number to an expanded rule number
  54   const int *_reduceOp;
  55   const int *_leftOp;
  56   const int *_rightOp;
  57 
  58   // Map dense opcode number to info on when rule is swallowed constant.
  59   const bool *_swallowed;
  60 
  61   // Map dense rule number to determine if this is an instruction chain rule
  62   const uint _begin_inst_chain_rule;
  63   const uint _end_inst_chain_rule;
  64 
  65   // We want to clone constants and possible CmpI-variants.
  66   // If we do not clone CmpI, then we can have many instances of
  67   // condition codes alive at once.  This is OK on some chips and
  68   // bad on others.  Hence the machine-dependent table lookup.
  69   const char *_must_clone;
  70 
  71   // Find shared Nodes, or Nodes that otherwise are Matcher roots
  72   void find_shared( Node *n );
  73 
  74   // Debug and profile information for nodes in old space:
  75   GrowableArray<Node_Notes*>* _old_node_note_array;
  76 
  77   // Node labeling iterator for instruction selection
  78   Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
  79 
  80   Node *transform( Node *dummy );
  81 
  82   Node_List &_proj_list;        // For Machine nodes killing many values
  83 
  84   Node_Array _shared_nodes;
  85 
  86   debug_only(Node_Array _old2new_map;)   // Map roots of ideal-trees to machine-roots
  87   debug_only(Node_Array _new2old_map;)   // Maps machine nodes back to ideal
  88 
  89   // Accessors for the inherited field PhaseTransform::_nodes:
  90   void   grow_new_node_array(uint idx_limit) {
  91     _nodes.map(idx_limit-1, NULL);
  92   }
  93   bool    has_new_node(const Node* n) const {
  94     return _nodes.at(n->_idx) != NULL;
  95   }
  96   Node*       new_node(const Node* n) const {
  97     assert(has_new_node(n), "set before get");
  98     return _nodes.at(n->_idx);
  99   }
 100   void    set_new_node(const Node* n, Node *nn) {
 101     assert(!has_new_node(n), "set only once");
 102     _nodes.map(n->_idx, nn);
 103   }
 104 
 105 #ifdef ASSERT
 106   // Make sure only new nodes are reachable from this node
 107   void verify_new_nodes_only(Node* root);
 108 
 109   Node* _mem_node;   // Ideal memory node consumed by mach node
 110 #endif
 111 
 112 public:
 113   int LabelRootDepth;
 114   static const int base2reg[];        // Map Types to machine register types
 115   // Convert ideal machine register to a register mask for spill-loads
 116   static const RegMask *idealreg2regmask[];
 117   RegMask *idealreg2spillmask[_last_machine_leaf];
 118   RegMask *idealreg2debugmask[_last_machine_leaf];
 119   void init_spill_mask( Node *ret );
 120   // Convert machine register number to register mask
 121   static uint mreg2regmask_max;
 122   static RegMask mreg2regmask[];
 123   static RegMask STACK_ONLY_mask;
 124 
 125   bool    is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
 126   void   set_shared( Node *n ) {  _shared.set(n->_idx); }
 127   bool   is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
 128   void  set_visited( Node *n ) { _visited.set(n->_idx); }
 129   bool  is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
 130   void set_dontcare( Node *n ) {  _dontcare.set(n->_idx); }
 131 
 132   // Mode bit to tell DFA and expand rules whether we are running after
 133   // (or during) register selection.  Usually, the matcher runs before,
 134   // but it will also get called to generate post-allocation spill code.
 135   // In this situation, it is a deadly error to attempt to allocate more
 136   // temporary registers.
 137   bool _allocation_started;
 138 
 139   // Machine register names
 140   static const char *regName[];
 141   // Machine register encodings
 142   static const unsigned char _regEncode[];
 143   // Machine Node names
 144   const char **_ruleName;
 145   // Rules that are cheaper to rematerialize than to spill
 146   static const uint _begin_rematerialize;
 147   static const uint _end_rematerialize;
 148 
 149   // An array of chars, from 0 to _last_Mach_Reg.
 150   // No Save       = 'N' (for register windows)
 151   // Save on Entry = 'E'
 152   // Save on Call  = 'C'
 153   // Always Save   = 'A' (same as SOE + SOC)
 154   const char *_register_save_policy;
 155   const char *_c_reg_save_policy;
 156   // Convert a machine register to a machine register type, so-as to
 157   // properly match spill code.
 158   const int *_register_save_type;
 159   // Maps from machine register to boolean; true if machine register can
 160   // be holding a call argument in some signature.
 161   static bool can_be_java_arg( int reg );
 162   // Maps from machine register to boolean; true if machine register holds
 163   // a spillable argument.
 164   static bool is_spillable_arg( int reg );
 165 
 166   // List of IfFalse or IfTrue Nodes that indicate a taken null test.
 167   // List is valid in the post-matching space.
 168   Node_List _null_check_tests;
 169   void collect_null_checks( Node *proj, Node *orig_proj );
 170   void validate_null_checks( );
 171 
 172   Matcher( Node_List &proj_list );
 173 
 174   // Select instructions for entire method
 175   void  match( );
 176   // Helper for match
 177   OptoReg::Name warp_incoming_stk_arg( VMReg reg );
 178 
 179   // Transform, then walk.  Does implicit DCE while walking.
 180   // Name changed from "transform" to avoid it being virtual.
 181   Node *xform( Node *old_space_node, int Nodes );
 182 
 183   // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
 184   MachNode *match_tree( const Node *n );
 185   MachNode *match_sfpt( SafePointNode *sfpt );
 186   // Helper for match_sfpt
 187   OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
 188 
 189   // Initialize first stack mask and related masks.
 190   void init_first_stack_mask();
 191 
 192   // If we should save-on-entry this register
 193   bool is_save_on_entry( int reg );
 194 
 195   // Fixup the save-on-entry registers
 196   void Fixup_Save_On_Entry( );
 197 
 198   // --- Frame handling ---
 199 
 200   // Register number of the stack slot corresponding to the incoming SP.
 201   // Per the Big Picture in the AD file, it is:
 202   //   SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
 203   OptoReg::Name _old_SP;
 204 
 205   // Register number of the stack slot corresponding to the highest incoming
 206   // argument on the stack.  Per the Big Picture in the AD file, it is:
 207   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 208   OptoReg::Name _in_arg_limit;
 209 
 210   // Register number of the stack slot corresponding to the new SP.
 211   // Per the Big Picture in the AD file, it is:
 212   //   _in_arg_limit + pad0
 213   OptoReg::Name _new_SP;
 214 
 215   // Register number of the stack slot corresponding to the highest outgoing
 216   // argument on the stack.  Per the Big Picture in the AD file, it is:
 217   //   _new_SP + max outgoing arguments of all calls
 218   OptoReg::Name _out_arg_limit;
 219 
 220   OptoRegPair *_parm_regs;        // Array of machine registers per argument
 221   RegMask *_calling_convention_mask; // Array of RegMasks per argument
 222 
 223   // Does matcher support this ideal node?
 224   static const bool has_match_rule(int opcode);
 225   static const bool _hasMatchRule[_last_opcode];
 226 
 227   // Used to determine if we have fast l2f conversion
 228   // USII has it, USIII doesn't
 229   static const bool convL2FSupported(void);
 230 
 231   // Vector width in bytes
 232   static const uint vector_width_in_bytes(void);
 233 
 234   // Vector ideal reg
 235   static const uint vector_ideal_reg(void);
 236 
 237   // Used to determine a "low complexity" 64-bit constant.  (Zero is simple.)
 238   // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
 239   // Depends on the details of 64-bit constant generation on the CPU.
 240   static const bool isSimpleConstant64(jlong con);
 241 
 242   // These calls are all generated by the ADLC
 243 
 244   // TRUE - grows up, FALSE - grows down (Intel)
 245   virtual bool stack_direction() const;
 246 
 247   // Java-Java calling convention
 248   // (what you use when Java calls Java)
 249 
 250   // Alignment of stack in bytes, standard Intel word alignment is 4.
 251   // Sparc probably wants at least double-word (8).
 252   static uint stack_alignment_in_bytes();
 253   // Alignment of stack, measured in stack slots.
 254   // The size of stack slots is defined by VMRegImpl::stack_slot_size.
 255   static uint stack_alignment_in_slots() {
 256     return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
 257   }
 258 
 259   // Array mapping arguments to registers.  Argument 0 is usually the 'this'
 260   // pointer.  Registers can include stack-slots and regular registers.
 261   static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
 262 
 263   // Convert a sig into a calling convention register layout
 264   // and find interesting things about it.
 265   static OptoReg::Name  find_receiver( bool is_outgoing );
 266   // Return address register.  On Intel it is a stack-slot.  On PowerPC
 267   // it is the Link register.  On Sparc it is r31?
 268   virtual OptoReg::Name return_addr() const;
 269   RegMask              _return_addr_mask;
 270   // Return value register.  On Intel it is EAX.  On Sparc i0/o0.
 271   static OptoRegPair   return_value(int ideal_reg, bool is_outgoing);
 272   static OptoRegPair c_return_value(int ideal_reg, bool is_outgoing);
 273   RegMask                     _return_value_mask;
 274   // Inline Cache Register
 275   static OptoReg::Name  inline_cache_reg();
 276   static const RegMask &inline_cache_reg_mask();
 277   static int            inline_cache_reg_encode();
 278 
 279   // Register for DIVI projection of divmodI
 280   static RegMask divI_proj_mask();
 281   // Register for MODI projection of divmodI
 282   static RegMask modI_proj_mask();
 283 
 284   // Register for DIVL projection of divmodL
 285   static RegMask divL_proj_mask();
 286   // Register for MODL projection of divmodL
 287   static RegMask modL_proj_mask();
 288 
 289   // Java-Interpreter calling convention
 290   // (what you use when calling between compiled-Java and Interpreted-Java
 291 
 292   // Number of callee-save + always-save registers
 293   // Ignores frame pointer and "special" registers
 294   static int  number_of_saved_registers();
 295 
 296   // The Method-klass-holder may be passed in the inline_cache_reg
 297   // and then expanded into the inline_cache_reg and a method_oop register
 298 
 299   static OptoReg::Name  interpreter_method_oop_reg();
 300   static const RegMask &interpreter_method_oop_reg_mask();
 301   static int            interpreter_method_oop_reg_encode();
 302 
 303   static OptoReg::Name  compiler_method_oop_reg();
 304   static const RegMask &compiler_method_oop_reg_mask();
 305   static int            compiler_method_oop_reg_encode();
 306 
 307   // Interpreter's Frame Pointer Register
 308   static OptoReg::Name  interpreter_frame_pointer_reg();
 309   static const RegMask &interpreter_frame_pointer_reg_mask();
 310 
 311   // Java-Native calling convention
 312   // (what you use when intercalling between Java and C++ code)
 313 
 314   // Array mapping arguments to registers.  Argument 0 is usually the 'this'
 315   // pointer.  Registers can include stack-slots and regular registers.
 316   static void c_calling_convention( BasicType*, VMRegPair *, uint );
 317   // Frame pointer. The frame pointer is kept at the base of the stack
 318   // and so is probably the stack pointer for most machines.  On Intel
 319   // it is ESP.  On the PowerPC it is R1.  On Sparc it is SP.
 320   OptoReg::Name  c_frame_pointer() const;
 321   static RegMask c_frame_ptr_mask;
 322 
 323   // !!!!! Special stuff for building ScopeDescs
 324   virtual int      regnum_to_fpu_offset(int regnum);
 325 
 326   // Is this branch offset small enough to be addressed by a short branch?
 327   bool is_short_branch_offset(int rule, int offset);
 328 
 329   // Optional scaling for the parameter to the ClearArray/CopyArray node.
 330   static const bool init_array_count_is_in_bytes;
 331 
 332   // Threshold small size (in bytes) for a ClearArray/CopyArray node.
 333   // Anything this size or smaller may get converted to discrete scalar stores.
 334   static const int init_array_short_size;
 335 
 336   // Should the Matcher clone shifts on addressing modes, expecting them to
 337   // be subsumed into complex addressing expressions or compute them into
 338   // registers?  True for Intel but false for most RISCs
 339   static const bool clone_shift_expressions;
 340 
 341   // Is it better to copy float constants, or load them directly from memory?
 342   // Intel can load a float constant from a direct address, requiring no
 343   // extra registers.  Most RISCs will have to materialize an address into a
 344   // register first, so they may as well materialize the constant immediately.
 345   static const bool rematerialize_float_constants;
 346 
 347   // If CPU can load and store mis-aligned doubles directly then no fixup is
 348   // needed.  Else we split the double into 2 integer pieces and move it
 349   // piece-by-piece.  Only happens when passing doubles into C code or when
 350   // calling i2c adapters as the Java calling convention forces doubles to be
 351   // aligned.
 352   static const bool misaligned_doubles_ok;
 353 
 354   // Perform a platform dependent implicit null fixup.  This is needed
 355   // on windows95 to take care of some unusual register constraints.
 356   void pd_implicit_null_fixup(MachNode *load, uint idx);
 357 
 358   // Advertise here if the CPU requires explicit rounding operations
 359   // to implement the UseStrictFP mode.
 360   static const bool strict_fp_requires_explicit_rounding;
 361 
 362   // Do floats take an entire double register or just half?
 363   static const bool float_in_double;
 364   // Do ints take an entire long register or just half?
 365   static const bool int_in_long;
 366 
 367   // This routine is run whenever a graph fails to match.
 368   // If it returns, the compiler should bailout to interpreter without error.
 369   // In non-product mode, SoftMatchFailure is false to detect non-canonical
 370   // graphs.  Print a message and exit.
 371   static void soft_match_failure() {
 372     if( SoftMatchFailure ) return;
 373     else { fatal("SoftMatchFailure is not allowed except in product"); }
 374   }
 375 
 376   // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
 377   // acting as an Acquire and thus we don't need an Acquire here.  We
 378   // retain the Node to act as a compiler ordering barrier.
 379   static bool prior_fast_lock( const Node *acq );
 380 
 381   // Used by the DFA in dfa_sparc.cpp.  Check for a following
 382   // FastUnLock acting as a Release and thus we don't need a Release
 383   // here.  We retain the Node to act as a compiler ordering barrier.
 384   static bool post_fast_unlock( const Node *rel );
 385 
 386   // Check for a following volatile memory barrier without an
 387   // intervening load and thus we don't need a barrier here.  We
 388   // retain the Node to act as a compiler ordering barrier.
 389   static bool post_store_load_barrier(const Node* mb);
 390 
 391 
 392 #ifdef ASSERT
 393   void dump_old2new_map();      // machine-independent to machine-dependent
 394 
 395   Node* find_old_node(Node* new_node) {
 396     return _new2old_map[new_node->_idx];
 397   }
 398 #endif
 399 };