1 /*
   2  * Copyright 2005-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_macro.cpp.incl"
  27 
  28 
  29 //
  30 // Replace any references to "oldref" in inputs to "use" with "newref".
  31 // Returns the number of replacements made.
  32 //
  33 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  34   int nreplacements = 0;
  35   uint req = use->req();
  36   for (uint j = 0; j < use->len(); j++) {
  37     Node *uin = use->in(j);
  38     if (uin == oldref) {
  39       if (j < req)
  40         use->set_req(j, newref);
  41       else
  42         use->set_prec(j, newref);
  43       nreplacements++;
  44     } else if (j >= req && uin == NULL) {
  45       break;
  46     }
  47   }
  48   return nreplacements;
  49 }
  50 
  51 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  52   // Copy debug information and adjust JVMState information
  53   uint old_dbg_start = oldcall->tf()->domain()->cnt();
  54   uint new_dbg_start = newcall->tf()->domain()->cnt();
  55   int jvms_adj  = new_dbg_start - old_dbg_start;
  56   assert (new_dbg_start == newcall->req(), "argument count mismatch");
  57 
  58   Dict* sosn_map = new Dict(cmpkey,hashkey);
  59   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  60     Node* old_in = oldcall->in(i);
  61     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
  62     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
  63       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
  64       uint old_unique = C->unique();
  65       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
  66       if (old_unique != C->unique()) {
  67         new_in->set_req(0, newcall->in(0)); // reset control edge
  68         new_in = transform_later(new_in); // Register new node.
  69       }
  70       old_in = new_in;
  71     }
  72     newcall->add_req(old_in);
  73   }
  74 
  75   newcall->set_jvms(oldcall->jvms());
  76   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
  77     jvms->set_map(newcall);
  78     jvms->set_locoff(jvms->locoff()+jvms_adj);
  79     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
  80     jvms->set_monoff(jvms->monoff()+jvms_adj);
  81     jvms->set_scloff(jvms->scloff()+jvms_adj);
  82     jvms->set_endoff(jvms->endoff()+jvms_adj);
  83   }
  84 }
  85 
  86 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
  87   Node* cmp;
  88   if (mask != 0) {
  89     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
  90     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
  91   } else {
  92     cmp = word;
  93   }
  94   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
  95   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
  96   transform_later(iff);
  97 
  98   // Fast path taken.
  99   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
 100 
 101   // Fast path not-taken, i.e. slow path
 102   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
 103 
 104   if (return_fast_path) {
 105     region->init_req(edge, slow_taken); // Capture slow-control
 106     return fast_taken;
 107   } else {
 108     region->init_req(edge, fast_taken); // Capture fast-control
 109     return slow_taken;
 110   }
 111 }
 112 
 113 //--------------------copy_predefined_input_for_runtime_call--------------------
 114 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 115   // Set fixed predefined input arguments
 116   call->init_req( TypeFunc::Control, ctrl );
 117   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 118   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 119   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 120   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 121 }
 122 
 123 //------------------------------make_slow_call---------------------------------
 124 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
 125 
 126   // Slow-path call
 127   int size = slow_call_type->domain()->cnt();
 128  CallNode *call = leaf_name
 129    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 130    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
 131 
 132   // Slow path call has no side-effects, uses few values
 133   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 134   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
 135   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
 136   copy_call_debug_info(oldcall, call);
 137   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 138   _igvn.hash_delete(oldcall);
 139   _igvn.subsume_node(oldcall, call);
 140   transform_later(call);
 141 
 142   return call;
 143 }
 144 
 145 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
 146   _fallthroughproj = NULL;
 147   _fallthroughcatchproj = NULL;
 148   _ioproj_fallthrough = NULL;
 149   _ioproj_catchall = NULL;
 150   _catchallcatchproj = NULL;
 151   _memproj_fallthrough = NULL;
 152   _memproj_catchall = NULL;
 153   _resproj = NULL;
 154   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 155     ProjNode *pn = call->fast_out(i)->as_Proj();
 156     switch (pn->_con) {
 157       case TypeFunc::Control:
 158       {
 159         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 160         _fallthroughproj = pn;
 161         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 162         const Node *cn = pn->fast_out(j);
 163         if (cn->is_Catch()) {
 164           ProjNode *cpn = NULL;
 165           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 166             cpn = cn->fast_out(k)->as_Proj();
 167             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 168             if (cpn->_con == CatchProjNode::fall_through_index)
 169               _fallthroughcatchproj = cpn;
 170             else {
 171               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 172               _catchallcatchproj = cpn;
 173             }
 174           }
 175         }
 176         break;
 177       }
 178       case TypeFunc::I_O:
 179         if (pn->_is_io_use)
 180           _ioproj_catchall = pn;
 181         else
 182           _ioproj_fallthrough = pn;
 183         break;
 184       case TypeFunc::Memory:
 185         if (pn->_is_io_use)
 186           _memproj_catchall = pn;
 187         else
 188           _memproj_fallthrough = pn;
 189         break;
 190       case TypeFunc::Parms:
 191         _resproj = pn;
 192         break;
 193       default:
 194         assert(false, "unexpected projection from allocation node.");
 195     }
 196   }
 197 
 198 }
 199 
 200 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
 201 void PhaseMacroExpand::eliminate_card_mark(Node *p2x) {
 202   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
 203   Node *shift = p2x->unique_out();
 204   Node *addp = shift->unique_out();
 205   for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 206     Node *st = addp->last_out(j);
 207     assert(st->is_Store(), "store required");
 208     _igvn.replace_node(st, st->in(MemNode::Memory));
 209   }
 210 }
 211 
 212 // Search for a memory operation for the specified memory slice.
 213 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 214   Node *orig_mem = mem;
 215   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 216   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 217   while (true) {
 218     if (mem == alloc_mem || mem == start_mem ) {
 219       return mem;  // hit one of our sentinels
 220     } else if (mem->is_MergeMem()) {
 221       mem = mem->as_MergeMem()->memory_at(alias_idx);
 222     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 223       Node *in = mem->in(0);
 224       // we can safely skip over safepoints, calls, locks and membars because we
 225       // already know that the object is safe to eliminate.
 226       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 227         return in;
 228       } else if (in->is_Call()) {
 229         CallNode *call = in->as_Call();
 230         if (!call->may_modify(tinst, phase)) {
 231           mem = call->in(TypeFunc::Memory);
 232         }
 233         mem = in->in(TypeFunc::Memory);
 234       } else if (in->is_MemBar()) {
 235         mem = in->in(TypeFunc::Memory);
 236       } else {
 237         assert(false, "unexpected projection");
 238       }
 239     } else if (mem->is_Store()) {
 240       const TypePtr* atype = mem->as_Store()->adr_type();
 241       int adr_idx = Compile::current()->get_alias_index(atype);
 242       if (adr_idx == alias_idx) {
 243         assert(atype->isa_oopptr(), "address type must be oopptr");
 244         int adr_offset = atype->offset();
 245         uint adr_iid = atype->is_oopptr()->instance_id();
 246         // Array elements references have the same alias_idx
 247         // but different offset and different instance_id.
 248         if (adr_offset == offset && adr_iid == alloc->_idx)
 249           return mem;
 250       } else {
 251         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 252       }
 253       mem = mem->in(MemNode::Memory);
 254     } else if (mem->Opcode() == Op_SCMemProj) {
 255       assert(mem->in(0)->is_LoadStore(), "sanity");
 256       const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
 257       int adr_idx = Compile::current()->get_alias_index(atype);
 258       if (adr_idx == alias_idx) {
 259         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 260         return NULL;
 261       }
 262       mem = mem->in(0)->in(MemNode::Memory);
 263     } else {
 264       return mem;
 265     }
 266     assert(mem != orig_mem, "dead memory loop");
 267   }
 268 }
 269 
 270 //
 271 // Given a Memory Phi, compute a value Phi containing the values from stores
 272 // on the input paths.
 273 // Note: this function is recursive, its depth is limied by the "level" argument
 274 // Returns the computed Phi, or NULL if it cannot compute it.
 275 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
 276   assert(mem->is_Phi(), "sanity");
 277   int alias_idx = C->get_alias_index(adr_t);
 278   int offset = adr_t->offset();
 279   int instance_id = adr_t->instance_id();
 280 
 281   // Check if an appropriate value phi already exists.
 282   Node* region = mem->in(0);
 283   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 284     Node* phi = region->fast_out(k);
 285     if (phi->is_Phi() && phi != mem &&
 286         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
 287       return phi;
 288     }
 289   }
 290   // Check if an appropriate new value phi already exists.
 291   Node* new_phi = NULL;
 292   uint size = value_phis->size();
 293   for (uint i=0; i < size; i++) {
 294     if ( mem->_idx == value_phis->index_at(i) ) {
 295       return value_phis->node_at(i);
 296     }
 297   }
 298 
 299   if (level <= 0) {
 300     return NULL; // Give up: phi tree too deep
 301   }
 302   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 303   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 304 
 305   uint length = mem->req();
 306   GrowableArray <Node *> values(length, length, NULL);
 307 
 308   // create a new Phi for the value
 309   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
 310   transform_later(phi);
 311   value_phis->push(phi, mem->_idx);
 312 
 313   for (uint j = 1; j < length; j++) {
 314     Node *in = mem->in(j);
 315     if (in == NULL || in->is_top()) {
 316       values.at_put(j, in);
 317     } else  {
 318       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 319       if (val == start_mem || val == alloc_mem) {
 320         // hit a sentinel, return appropriate 0 value
 321         values.at_put(j, _igvn.zerocon(ft));
 322         continue;
 323       }
 324       if (val->is_Initialize()) {
 325         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 326       }
 327       if (val == NULL) {
 328         return NULL;  // can't find a value on this path
 329       }
 330       if (val == mem) {
 331         values.at_put(j, mem);
 332       } else if (val->is_Store()) {
 333         values.at_put(j, val->in(MemNode::ValueIn));
 334       } else if(val->is_Proj() && val->in(0) == alloc) {
 335         values.at_put(j, _igvn.zerocon(ft));
 336       } else if (val->is_Phi()) {
 337         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 338         if (val == NULL) {
 339           return NULL;
 340         }
 341         values.at_put(j, val);
 342       } else if (val->Opcode() == Op_SCMemProj) {
 343         assert(val->in(0)->is_LoadStore(), "sanity");
 344         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 345         return NULL;
 346       } else {
 347 #ifdef ASSERT
 348         val->dump();
 349         assert(false, "unknown node on this path");
 350 #endif
 351         return NULL;  // unknown node on this path
 352       }
 353     }
 354   }
 355   // Set Phi's inputs
 356   for (uint j = 1; j < length; j++) {
 357     if (values.at(j) == mem) {
 358       phi->init_req(j, phi);
 359     } else {
 360       phi->init_req(j, values.at(j));
 361     }
 362   }
 363   return phi;
 364 }
 365 
 366 // Search the last value stored into the object's field.
 367 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
 368   assert(adr_t->is_known_instance_field(), "instance required");
 369   int instance_id = adr_t->instance_id();
 370   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 371 
 372   int alias_idx = C->get_alias_index(adr_t);
 373   int offset = adr_t->offset();
 374   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 375   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 376   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 377   Arena *a = Thread::current()->resource_area();
 378   VectorSet visited(a);
 379 
 380 
 381   bool done = sfpt_mem == alloc_mem;
 382   Node *mem = sfpt_mem;
 383   while (!done) {
 384     if (visited.test_set(mem->_idx)) {
 385       return NULL;  // found a loop, give up
 386     }
 387     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 388     if (mem == start_mem || mem == alloc_mem) {
 389       done = true;  // hit a sentinel, return appropriate 0 value
 390     } else if (mem->is_Initialize()) {
 391       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 392       if (mem == NULL) {
 393         done = true; // Something go wrong.
 394       } else if (mem->is_Store()) {
 395         const TypePtr* atype = mem->as_Store()->adr_type();
 396         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 397         done = true;
 398       }
 399     } else if (mem->is_Store()) {
 400       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 401       assert(atype != NULL, "address type must be oopptr");
 402       assert(C->get_alias_index(atype) == alias_idx &&
 403              atype->is_known_instance_field() && atype->offset() == offset &&
 404              atype->instance_id() == instance_id, "store is correct memory slice");
 405       done = true;
 406     } else if (mem->is_Phi()) {
 407       // try to find a phi's unique input
 408       Node *unique_input = NULL;
 409       Node *top = C->top();
 410       for (uint i = 1; i < mem->req(); i++) {
 411         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 412         if (n == NULL || n == top || n == mem) {
 413           continue;
 414         } else if (unique_input == NULL) {
 415           unique_input = n;
 416         } else if (unique_input != n) {
 417           unique_input = top;
 418           break;
 419         }
 420       }
 421       if (unique_input != NULL && unique_input != top) {
 422         mem = unique_input;
 423       } else {
 424         done = true;
 425       }
 426     } else {
 427       assert(false, "unexpected node");
 428     }
 429   }
 430   if (mem != NULL) {
 431     if (mem == start_mem || mem == alloc_mem) {
 432       // hit a sentinel, return appropriate 0 value
 433       return _igvn.zerocon(ft);
 434     } else if (mem->is_Store()) {
 435       return mem->in(MemNode::ValueIn);
 436     } else if (mem->is_Phi()) {
 437       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 438       Node_Stack value_phis(a, 8);
 439       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 440       if (phi != NULL) {
 441         return phi;
 442       } else {
 443         // Kill all new Phis
 444         while(value_phis.is_nonempty()) {
 445           Node* n = value_phis.node();
 446           _igvn.hash_delete(n);
 447           _igvn.subsume_node(n, C->top());
 448           value_phis.pop();
 449         }
 450       }
 451     }
 452   }
 453   // Something go wrong.
 454   return NULL;
 455 }
 456 
 457 // Check the possibility of scalar replacement.
 458 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 459   //  Scan the uses of the allocation to check for anything that would
 460   //  prevent us from eliminating it.
 461   NOT_PRODUCT( const char* fail_eliminate = NULL; )
 462   DEBUG_ONLY( Node* disq_node = NULL; )
 463   bool  can_eliminate = true;
 464 
 465   Node* res = alloc->result_cast();
 466   const TypeOopPtr* res_type = NULL;
 467   if (res == NULL) {
 468     // All users were eliminated.
 469   } else if (!res->is_CheckCastPP()) {
 470     alloc->_is_scalar_replaceable = false;  // don't try again
 471     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 472     can_eliminate = false;
 473   } else {
 474     res_type = _igvn.type(res)->isa_oopptr();
 475     if (res_type == NULL) {
 476       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 477       can_eliminate = false;
 478     } else if (res_type->isa_aryptr()) {
 479       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 480       if (length < 0) {
 481         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 482         can_eliminate = false;
 483       }
 484     }
 485   }
 486 
 487   if (can_eliminate && res != NULL) {
 488     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 489                                j < jmax && can_eliminate; j++) {
 490       Node* use = res->fast_out(j);
 491 
 492       if (use->is_AddP()) {
 493         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 494         int offset = addp_type->offset();
 495 
 496         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 497           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
 498           can_eliminate = false;
 499           break;
 500         }
 501         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 502                                    k < kmax && can_eliminate; k++) {
 503           Node* n = use->fast_out(k);
 504           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
 505             DEBUG_ONLY(disq_node = n;)
 506             if (n->is_Load() || n->is_LoadStore()) {
 507               NOT_PRODUCT(fail_eliminate = "Field load";)
 508             } else {
 509               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
 510             }
 511             can_eliminate = false;
 512           }
 513         }
 514       } else if (use->is_SafePoint()) {
 515         SafePointNode* sfpt = use->as_SafePoint();
 516         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 517           // Object is passed as argument.
 518           DEBUG_ONLY(disq_node = use;)
 519           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 520           can_eliminate = false;
 521         }
 522         Node* sfptMem = sfpt->memory();
 523         if (sfptMem == NULL || sfptMem->is_top()) {
 524           DEBUG_ONLY(disq_node = use;)
 525           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
 526           can_eliminate = false;
 527         } else {
 528           safepoints.append_if_missing(sfpt);
 529         }
 530       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 531         if (use->is_Phi()) {
 532           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 533             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 534           } else {
 535             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 536           }
 537           DEBUG_ONLY(disq_node = use;)
 538         } else {
 539           if (use->Opcode() == Op_Return) {
 540             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 541           }else {
 542             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 543           }
 544           DEBUG_ONLY(disq_node = use;)
 545         }
 546         can_eliminate = false;
 547       }
 548     }
 549   }
 550 
 551 #ifndef PRODUCT
 552   if (PrintEliminateAllocations) {
 553     if (can_eliminate) {
 554       tty->print("Scalar ");
 555       if (res == NULL)
 556         alloc->dump();
 557       else
 558         res->dump();
 559     } else {
 560       tty->print("NotScalar (%s)", fail_eliminate);
 561       if (res == NULL)
 562         alloc->dump();
 563       else
 564         res->dump();
 565 #ifdef ASSERT
 566       if (disq_node != NULL) {
 567           tty->print("  >>>> ");
 568           disq_node->dump();
 569       }
 570 #endif /*ASSERT*/
 571     }
 572   }
 573 #endif
 574   return can_eliminate;
 575 }
 576 
 577 // Do scalar replacement.
 578 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 579   GrowableArray <SafePointNode *> safepoints_done;
 580 
 581   ciKlass* klass = NULL;
 582   ciInstanceKlass* iklass = NULL;
 583   int nfields = 0;
 584   int array_base;
 585   int element_size;
 586   BasicType basic_elem_type;
 587   ciType* elem_type;
 588 
 589   Node* res = alloc->result_cast();
 590   const TypeOopPtr* res_type = NULL;
 591   if (res != NULL) { // Could be NULL when there are no users
 592     res_type = _igvn.type(res)->isa_oopptr();
 593   }
 594 
 595   if (res != NULL) {
 596     klass = res_type->klass();
 597     if (res_type->isa_instptr()) {
 598       // find the fields of the class which will be needed for safepoint debug information
 599       assert(klass->is_instance_klass(), "must be an instance klass.");
 600       iklass = klass->as_instance_klass();
 601       nfields = iklass->nof_nonstatic_fields();
 602     } else {
 603       // find the array's elements which will be needed for safepoint debug information
 604       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 605       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
 606       elem_type = klass->as_array_klass()->element_type();
 607       basic_elem_type = elem_type->basic_type();
 608       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 609       element_size = type2aelembytes(basic_elem_type);
 610     }
 611   }
 612   //
 613   // Process the safepoint uses
 614   //
 615   while (safepoints.length() > 0) {
 616     SafePointNode* sfpt = safepoints.pop();
 617     Node* mem = sfpt->memory();
 618     uint first_ind = sfpt->req();
 619     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
 620 #ifdef ASSERT
 621                                                  alloc,
 622 #endif
 623                                                  first_ind, nfields);
 624     sobj->init_req(0, sfpt->in(TypeFunc::Control));
 625     transform_later(sobj);
 626 
 627     // Scan object's fields adding an input to the safepoint for each field.
 628     for (int j = 0; j < nfields; j++) {
 629       intptr_t offset;
 630       ciField* field = NULL;
 631       if (iklass != NULL) {
 632         field = iklass->nonstatic_field_at(j);
 633         offset = field->offset();
 634         elem_type = field->type();
 635         basic_elem_type = field->layout_type();
 636       } else {
 637         offset = array_base + j * (intptr_t)element_size;
 638       }
 639 
 640       const Type *field_type;
 641       // The next code is taken from Parse::do_get_xxx().
 642       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
 643         if (!elem_type->is_loaded()) {
 644           field_type = TypeInstPtr::BOTTOM;
 645         } else if (field != NULL && field->is_constant()) {
 646           // This can happen if the constant oop is non-perm.
 647           ciObject* con = field->constant_value().as_object();
 648           // Do not "join" in the previous type; it doesn't add value,
 649           // and may yield a vacuous result if the field is of interface type.
 650           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 651           assert(field_type != NULL, "field singleton type must be consistent");
 652         } else {
 653           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 654         }
 655         if (UseCompressedOops) {
 656           field_type = field_type->make_narrowoop();
 657           basic_elem_type = T_NARROWOOP;
 658         }
 659       } else {
 660         field_type = Type::get_const_basic_type(basic_elem_type);
 661       }
 662 
 663       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 664 
 665       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
 666       if (field_val == NULL) {
 667         // we weren't able to find a value for this field,
 668         // give up on eliminating this allocation
 669         alloc->_is_scalar_replaceable = false;  // don't try again
 670         // remove any extra entries we added to the safepoint
 671         uint last = sfpt->req() - 1;
 672         for (int k = 0;  k < j; k++) {
 673           sfpt->del_req(last--);
 674         }
 675         // rollback processed safepoints
 676         while (safepoints_done.length() > 0) {
 677           SafePointNode* sfpt_done = safepoints_done.pop();
 678           // remove any extra entries we added to the safepoint
 679           last = sfpt_done->req() - 1;
 680           for (int k = 0;  k < nfields; k++) {
 681             sfpt_done->del_req(last--);
 682           }
 683           JVMState *jvms = sfpt_done->jvms();
 684           jvms->set_endoff(sfpt_done->req());
 685           // Now make a pass over the debug information replacing any references
 686           // to SafePointScalarObjectNode with the allocated object.
 687           int start = jvms->debug_start();
 688           int end   = jvms->debug_end();
 689           for (int i = start; i < end; i++) {
 690             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 691               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 692               if (scobj->first_index() == sfpt_done->req() &&
 693                   scobj->n_fields() == (uint)nfields) {
 694                 assert(scobj->alloc() == alloc, "sanity");
 695                 sfpt_done->set_req(i, res);
 696               }
 697             }
 698           }
 699         }
 700 #ifndef PRODUCT
 701         if (PrintEliminateAllocations) {
 702           if (field != NULL) {
 703             tty->print("=== At SafePoint node %d can't find value of Field: ",
 704                        sfpt->_idx);
 705             field->print();
 706             int field_idx = C->get_alias_index(field_addr_type);
 707             tty->print(" (alias_idx=%d)", field_idx);
 708           } else { // Array's element
 709             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 710                        sfpt->_idx, j);
 711           }
 712           tty->print(", which prevents elimination of: ");
 713           if (res == NULL)
 714             alloc->dump();
 715           else
 716             res->dump();
 717         }
 718 #endif
 719         return false;
 720       }
 721       if (UseCompressedOops && field_type->isa_narrowoop()) {
 722         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 723         // to be able scalar replace the allocation.
 724         if (field_val->is_EncodeP()) {
 725           field_val = field_val->in(1);
 726         } else {
 727           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
 728         }
 729       }
 730       sfpt->add_req(field_val);
 731     }
 732     JVMState *jvms = sfpt->jvms();
 733     jvms->set_endoff(sfpt->req());
 734     // Now make a pass over the debug information replacing any references
 735     // to the allocated object with "sobj"
 736     int start = jvms->debug_start();
 737     int end   = jvms->debug_end();
 738     for (int i = start; i < end; i++) {
 739       if (sfpt->in(i) == res) {
 740         sfpt->set_req(i, sobj);
 741       }
 742     }
 743     safepoints_done.append_if_missing(sfpt); // keep it for rollback
 744   }
 745   return true;
 746 }
 747 
 748 // Process users of eliminated allocation.
 749 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
 750   Node* res = alloc->result_cast();
 751   if (res != NULL) {
 752     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 753       Node *use = res->last_out(j);
 754       uint oc1 = res->outcnt();
 755 
 756       if (use->is_AddP()) {
 757         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 758           Node *n = use->last_out(k);
 759           uint oc2 = use->outcnt();
 760           if (n->is_Store()) {
 761             _igvn.replace_node(n, n->in(MemNode::Memory));
 762           } else {
 763             assert( n->Opcode() == Op_CastP2X, "CastP2X required");
 764             eliminate_card_mark(n);
 765           }
 766           k -= (oc2 - use->outcnt());
 767         }
 768       } else {
 769         assert( !use->is_SafePoint(), "safepoint uses must have been already elimiated");
 770         assert( use->Opcode() == Op_CastP2X, "CastP2X required");
 771         eliminate_card_mark(use);
 772       }
 773       j -= (oc1 - res->outcnt());
 774     }
 775     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
 776     _igvn.remove_dead_node(res);
 777   }
 778 
 779   //
 780   // Process other users of allocation's projections
 781   //
 782   if (_resproj != NULL && _resproj->outcnt() != 0) {
 783     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
 784       Node *use = _resproj->last_out(j);
 785       uint oc1 = _resproj->outcnt();
 786       if (use->is_Initialize()) {
 787         // Eliminate Initialize node.
 788         InitializeNode *init = use->as_Initialize();
 789         assert(init->outcnt() <= 2, "only a control and memory projection expected");
 790         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
 791         if (ctrl_proj != NULL) {
 792            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
 793           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
 794         }
 795         Node *mem_proj = init->proj_out(TypeFunc::Memory);
 796         if (mem_proj != NULL) {
 797           Node *mem = init->in(TypeFunc::Memory);
 798 #ifdef ASSERT
 799           if (mem->is_MergeMem()) {
 800             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
 801           } else {
 802             assert(mem == _memproj_fallthrough, "allocation memory projection");
 803           }
 804 #endif
 805           _igvn.replace_node(mem_proj, mem);
 806         }
 807       } else if (use->is_AddP()) {
 808         // raw memory addresses used only by the initialization
 809         _igvn.replace_node(use, C->top());
 810       } else  {
 811         assert(false, "only Initialize or AddP expected");
 812       }
 813       j -= (oc1 - _resproj->outcnt());
 814     }
 815   }
 816   if (_fallthroughcatchproj != NULL) {
 817     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
 818   }
 819   if (_memproj_fallthrough != NULL) {
 820     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
 821   }
 822   if (_memproj_catchall != NULL) {
 823     _igvn.replace_node(_memproj_catchall, C->top());
 824   }
 825   if (_ioproj_fallthrough != NULL) {
 826     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
 827   }
 828   if (_ioproj_catchall != NULL) {
 829     _igvn.replace_node(_ioproj_catchall, C->top());
 830   }
 831   if (_catchallcatchproj != NULL) {
 832     _igvn.replace_node(_catchallcatchproj, C->top());
 833   }
 834 }
 835 
 836 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
 837 
 838   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
 839     return false;
 840   }
 841 
 842   extract_call_projections(alloc);
 843 
 844   GrowableArray <SafePointNode *> safepoints;
 845   if (!can_eliminate_allocation(alloc, safepoints)) {
 846     return false;
 847   }
 848 
 849   if (!scalar_replacement(alloc, safepoints)) {
 850     return false;
 851   }
 852 
 853   process_users_of_allocation(alloc);
 854 
 855 #ifndef PRODUCT
 856 if (PrintEliminateAllocations) {
 857   if (alloc->is_AllocateArray())
 858     tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
 859   else
 860     tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
 861 }
 862 #endif
 863 
 864   return true;
 865 }
 866 
 867 
 868 //---------------------------set_eden_pointers-------------------------
 869 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
 870   if (UseTLAB) {                // Private allocation: load from TLS
 871     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
 872     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
 873     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
 874     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
 875     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
 876   } else {                      // Shared allocation: load from globals
 877     CollectedHeap* ch = Universe::heap();
 878     address top_adr = (address)ch->top_addr();
 879     address end_adr = (address)ch->end_addr();
 880     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
 881     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
 882   }
 883 }
 884 
 885 
 886 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
 887   Node* adr = basic_plus_adr(base, offset);
 888   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
 889   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
 890   transform_later(value);
 891   return value;
 892 }
 893 
 894 
 895 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
 896   Node* adr = basic_plus_adr(base, offset);
 897   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
 898   transform_later(mem);
 899   return mem;
 900 }
 901 
 902 //=============================================================================
 903 //
 904 //                              A L L O C A T I O N
 905 //
 906 // Allocation attempts to be fast in the case of frequent small objects.
 907 // It breaks down like this:
 908 //
 909 // 1) Size in doublewords is computed.  This is a constant for objects and
 910 // variable for most arrays.  Doubleword units are used to avoid size
 911 // overflow of huge doubleword arrays.  We need doublewords in the end for
 912 // rounding.
 913 //
 914 // 2) Size is checked for being 'too large'.  Too-large allocations will go
 915 // the slow path into the VM.  The slow path can throw any required
 916 // exceptions, and does all the special checks for very large arrays.  The
 917 // size test can constant-fold away for objects.  For objects with
 918 // finalizers it constant-folds the otherway: you always go slow with
 919 // finalizers.
 920 //
 921 // 3) If NOT using TLABs, this is the contended loop-back point.
 922 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
 923 //
 924 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
 925 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
 926 // "size*8" we always enter the VM, where "largish" is a constant picked small
 927 // enough that there's always space between the eden max and 4Gig (old space is
 928 // there so it's quite large) and large enough that the cost of entering the VM
 929 // is dwarfed by the cost to initialize the space.
 930 //
 931 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
 932 // down.  If contended, repeat at step 3.  If using TLABs normal-store
 933 // adjusted heap top back down; there is no contention.
 934 //
 935 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
 936 // fields.
 937 //
 938 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
 939 // oop flavor.
 940 //
 941 //=============================================================================
 942 // FastAllocateSizeLimit value is in DOUBLEWORDS.
 943 // Allocations bigger than this always go the slow route.
 944 // This value must be small enough that allocation attempts that need to
 945 // trigger exceptions go the slow route.  Also, it must be small enough so
 946 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
 947 //=============================================================================j//
 948 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
 949 // The allocator will coalesce int->oop copies away.  See comment in
 950 // coalesce.cpp about how this works.  It depends critically on the exact
 951 // code shape produced here, so if you are changing this code shape
 952 // make sure the GC info for the heap-top is correct in and around the
 953 // slow-path call.
 954 //
 955 
 956 void PhaseMacroExpand::expand_allocate_common(
 957             AllocateNode* alloc, // allocation node to be expanded
 958             Node* length,  // array length for an array allocation
 959             const TypeFunc* slow_call_type, // Type of slow call
 960             address slow_call_address  // Address of slow call
 961     )
 962 {
 963 
 964   Node* ctrl = alloc->in(TypeFunc::Control);
 965   Node* mem  = alloc->in(TypeFunc::Memory);
 966   Node* i_o  = alloc->in(TypeFunc::I_O);
 967   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
 968   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
 969   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
 970 
 971   assert(ctrl != NULL, "must have control");
 972   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
 973   // they will not be used if "always_slow" is set
 974   enum { slow_result_path = 1, fast_result_path = 2 };
 975   Node *result_region;
 976   Node *result_phi_rawmem;
 977   Node *result_phi_rawoop;
 978   Node *result_phi_i_o;
 979 
 980   // The initial slow comparison is a size check, the comparison
 981   // we want to do is a BoolTest::gt
 982   bool always_slow = false;
 983   int tv = _igvn.find_int_con(initial_slow_test, -1);
 984   if (tv >= 0) {
 985     always_slow = (tv == 1);
 986     initial_slow_test = NULL;
 987   } else {
 988     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
 989   }
 990 
 991   if (DTraceAllocProbes ||
 992       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
 993                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
 994     // Force slow-path allocation
 995     always_slow = true;
 996     initial_slow_test = NULL;
 997   }
 998 
 999 
1000   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1001   Node *slow_region = NULL;
1002   Node *toobig_false = ctrl;
1003 
1004   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1005   // generate the initial test if necessary
1006   if (initial_slow_test != NULL ) {
1007     slow_region = new (C, 3) RegionNode(3);
1008 
1009     // Now make the initial failure test.  Usually a too-big test but
1010     // might be a TRUE for finalizers or a fancy class check for
1011     // newInstance0.
1012     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1013     transform_later(toobig_iff);
1014     // Plug the failing-too-big test into the slow-path region
1015     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
1016     transform_later(toobig_true);
1017     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1018     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
1019     transform_later(toobig_false);
1020   } else {         // No initial test, just fall into next case
1021     toobig_false = ctrl;
1022     debug_only(slow_region = NodeSentinel);
1023   }
1024 
1025   Node *slow_mem = mem;  // save the current memory state for slow path
1026   // generate the fast allocation code unless we know that the initial test will always go slow
1027   if (!always_slow) {
1028     // Fast path modifies only raw memory.
1029     if (mem->is_MergeMem()) {
1030       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1031     }
1032 
1033     Node* eden_top_adr;
1034     Node* eden_end_adr;
1035 
1036     set_eden_pointers(eden_top_adr, eden_end_adr);
1037 
1038     // Load Eden::end.  Loop invariant and hoisted.
1039     //
1040     // Note: We set the control input on "eden_end" and "old_eden_top" when using
1041     //       a TLAB to work around a bug where these values were being moved across
1042     //       a safepoint.  These are not oops, so they cannot be include in the oop
1043     //       map, but the can be changed by a GC.   The proper way to fix this would
1044     //       be to set the raw memory state when generating a  SafepointNode.  However
1045     //       this will require extensive changes to the loop optimization in order to
1046     //       prevent a degradation of the optimization.
1047     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1048     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1049 
1050     // allocate the Region and Phi nodes for the result
1051     result_region = new (C, 3) RegionNode(3);
1052     result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
1053     result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
1054     result_phi_i_o    = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
1055 
1056     // We need a Region for the loop-back contended case.
1057     enum { fall_in_path = 1, contended_loopback_path = 2 };
1058     Node *contended_region;
1059     Node *contended_phi_rawmem;
1060     if( UseTLAB ) {
1061       contended_region = toobig_false;
1062       contended_phi_rawmem = mem;
1063     } else {
1064       contended_region = new (C, 3) RegionNode(3);
1065       contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1066       // Now handle the passing-too-big test.  We fall into the contended
1067       // loop-back merge point.
1068       contended_region    ->init_req( fall_in_path, toobig_false );
1069       contended_phi_rawmem->init_req( fall_in_path, mem );
1070       transform_later(contended_region);
1071       transform_later(contended_phi_rawmem);
1072     }
1073 
1074     // Load(-locked) the heap top.
1075     // See note above concerning the control input when using a TLAB
1076     Node *old_eden_top = UseTLAB
1077       ? new (C, 3) LoadPNode     ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
1078       : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
1079 
1080     transform_later(old_eden_top);
1081     // Add to heap top to get a new heap top
1082     Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
1083     transform_later(new_eden_top);
1084     // Check for needing a GC; compare against heap end
1085     Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
1086     transform_later(needgc_cmp);
1087     Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
1088     transform_later(needgc_bol);
1089     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1090     transform_later(needgc_iff);
1091 
1092     // Plug the failing-heap-space-need-gc test into the slow-path region
1093     Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
1094     transform_later(needgc_true);
1095     if( initial_slow_test ) {
1096       slow_region    ->init_req( need_gc_path, needgc_true );
1097       // This completes all paths into the slow merge point
1098       transform_later(slow_region);
1099     } else {                      // No initial slow path needed!
1100       // Just fall from the need-GC path straight into the VM call.
1101       slow_region    = needgc_true;
1102     }
1103     // No need for a GC.  Setup for the Store-Conditional
1104     Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
1105     transform_later(needgc_false);
1106 
1107     // Grab regular I/O before optional prefetch may change it.
1108     // Slow-path does no I/O so just set it to the original I/O.
1109     result_phi_i_o->init_req( slow_result_path, i_o );
1110 
1111     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1112                               old_eden_top, new_eden_top, length);
1113 
1114     // Store (-conditional) the modified eden top back down.
1115     // StorePConditional produces flags for a test PLUS a modified raw
1116     // memory state.
1117     Node *store_eden_top;
1118     Node *fast_oop_ctrl;
1119     if( UseTLAB ) {
1120       store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
1121       transform_later(store_eden_top);
1122       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1123     } else {
1124       store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
1125       transform_later(store_eden_top);
1126       Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
1127       transform_later(contention_check);
1128       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
1129       transform_later(store_eden_top);
1130 
1131       // If not using TLABs, check to see if there was contention.
1132       IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
1133       transform_later(contention_iff);
1134       Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
1135       transform_later(contention_true);
1136       // If contention, loopback and try again.
1137       contended_region->init_req( contended_loopback_path, contention_true );
1138       contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
1139 
1140       // Fast-path succeeded with no contention!
1141       Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
1142       transform_later(contention_false);
1143       fast_oop_ctrl = contention_false;
1144     }
1145 
1146     // Rename successful fast-path variables to make meaning more obvious
1147     Node* fast_oop        = old_eden_top;
1148     Node* fast_oop_rawmem = store_eden_top;
1149     fast_oop_rawmem = initialize_object(alloc,
1150                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1151                                         klass_node, length, size_in_bytes);
1152 
1153     if (ExtendedDTraceProbes) {
1154       // Slow-path call
1155       int size = TypeFunc::Parms + 2;
1156       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1157                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1158                                                       "dtrace_object_alloc",
1159                                                       TypeRawPtr::BOTTOM);
1160 
1161       // Get base of thread-local storage area
1162       Node* thread = new (C, 1) ThreadLocalNode();
1163       transform_later(thread);
1164 
1165       call->init_req(TypeFunc::Parms+0, thread);
1166       call->init_req(TypeFunc::Parms+1, fast_oop);
1167       call->init_req( TypeFunc::Control, fast_oop_ctrl );
1168       call->init_req( TypeFunc::I_O    , top() )        ;   // does no i/o
1169       call->init_req( TypeFunc::Memory , fast_oop_rawmem );
1170       call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1171       call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1172       transform_later(call);
1173       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
1174       transform_later(fast_oop_ctrl);
1175       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
1176       transform_later(fast_oop_rawmem);
1177     }
1178 
1179     // Plug in the successful fast-path into the result merge point
1180     result_region    ->init_req( fast_result_path, fast_oop_ctrl );
1181     result_phi_rawoop->init_req( fast_result_path, fast_oop );
1182     result_phi_i_o   ->init_req( fast_result_path, i_o );
1183     result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
1184   } else {
1185     slow_region = ctrl;
1186   }
1187 
1188   // Generate slow-path call
1189   CallNode *call = new (C, slow_call_type->domain()->cnt())
1190     CallStaticJavaNode(slow_call_type, slow_call_address,
1191                        OptoRuntime::stub_name(slow_call_address),
1192                        alloc->jvms()->bci(),
1193                        TypePtr::BOTTOM);
1194   call->init_req( TypeFunc::Control, slow_region );
1195   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1196   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1197   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1198   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1199 
1200   call->init_req(TypeFunc::Parms+0, klass_node);
1201   if (length != NULL) {
1202     call->init_req(TypeFunc::Parms+1, length);
1203   }
1204 
1205   // Copy debug information and adjust JVMState information, then replace
1206   // allocate node with the call
1207   copy_call_debug_info((CallNode *) alloc,  call);
1208   if (!always_slow) {
1209     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1210   }
1211   _igvn.hash_delete(alloc);
1212   _igvn.subsume_node(alloc, call);
1213   transform_later(call);
1214 
1215   // Identify the output projections from the allocate node and
1216   // adjust any references to them.
1217   // The control and io projections look like:
1218   //
1219   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1220   //  Allocate                   Catch
1221   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1222   //
1223   //  We are interested in the CatchProj nodes.
1224   //
1225   extract_call_projections(call);
1226 
1227   // An allocate node has separate memory projections for the uses on the control and i_o paths
1228   // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
1229   if (!always_slow && _memproj_fallthrough != NULL) {
1230     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1231       Node *use = _memproj_fallthrough->fast_out(i);
1232       _igvn.hash_delete(use);
1233       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1234       _igvn._worklist.push(use);
1235       // back up iterator
1236       --i;
1237     }
1238   }
1239   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
1240   // we end up with a call that has only 1 memory projection
1241   if (_memproj_catchall != NULL ) {
1242     if (_memproj_fallthrough == NULL) {
1243       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
1244       transform_later(_memproj_fallthrough);
1245     }
1246     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1247       Node *use = _memproj_catchall->fast_out(i);
1248       _igvn.hash_delete(use);
1249       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1250       _igvn._worklist.push(use);
1251       // back up iterator
1252       --i;
1253     }
1254   }
1255 
1256   // An allocate node has separate i_o projections for the uses on the control and i_o paths
1257   // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
1258   if (_ioproj_fallthrough == NULL) {
1259     _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
1260     transform_later(_ioproj_fallthrough);
1261   } else if (!always_slow) {
1262     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1263       Node *use = _ioproj_fallthrough->fast_out(i);
1264 
1265       _igvn.hash_delete(use);
1266       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1267       _igvn._worklist.push(use);
1268       // back up iterator
1269       --i;
1270     }
1271   }
1272   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
1273   // we end up with a call that has only 1 control projection
1274   if (_ioproj_catchall != NULL ) {
1275     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1276       Node *use = _ioproj_catchall->fast_out(i);
1277       _igvn.hash_delete(use);
1278       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1279       _igvn._worklist.push(use);
1280       // back up iterator
1281       --i;
1282     }
1283   }
1284 
1285   // if we generated only a slow call, we are done
1286   if (always_slow)
1287     return;
1288 
1289 
1290   if (_fallthroughcatchproj != NULL) {
1291     ctrl = _fallthroughcatchproj->clone();
1292     transform_later(ctrl);
1293     _igvn.replace_node(_fallthroughcatchproj, result_region);
1294   } else {
1295     ctrl = top();
1296   }
1297   Node *slow_result;
1298   if (_resproj == NULL) {
1299     // no uses of the allocation result
1300     slow_result = top();
1301   } else {
1302     slow_result = _resproj->clone();
1303     transform_later(slow_result);
1304     _igvn.replace_node(_resproj, result_phi_rawoop);
1305   }
1306 
1307   // Plug slow-path into result merge point
1308   result_region    ->init_req( slow_result_path, ctrl );
1309   result_phi_rawoop->init_req( slow_result_path, slow_result);
1310   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1311   transform_later(result_region);
1312   transform_later(result_phi_rawoop);
1313   transform_later(result_phi_rawmem);
1314   transform_later(result_phi_i_o);
1315   // This completes all paths into the result merge point
1316 }
1317 
1318 
1319 // Helper for PhaseMacroExpand::expand_allocate_common.
1320 // Initializes the newly-allocated storage.
1321 Node*
1322 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1323                                     Node* control, Node* rawmem, Node* object,
1324                                     Node* klass_node, Node* length,
1325                                     Node* size_in_bytes) {
1326   InitializeNode* init = alloc->initialization();
1327   // Store the klass & mark bits
1328   Node* mark_node = NULL;
1329   // For now only enable fast locking for non-array types
1330   if (UseBiasedLocking && (length == NULL)) {
1331     mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
1332   } else {
1333     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1334   }
1335   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1336 
1337   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
1338   int header_size = alloc->minimum_header_size();  // conservatively small
1339 
1340   // Array length
1341   if (length != NULL) {         // Arrays need length field
1342     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1343     // conservatively small header size:
1344     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1345     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1346     if (k->is_array_klass())    // we know the exact header size in most cases:
1347       header_size = Klass::layout_helper_header_size(k->layout_helper());
1348   }
1349 
1350   // Clear the object body, if necessary.
1351   if (init == NULL) {
1352     // The init has somehow disappeared; be cautious and clear everything.
1353     //
1354     // This can happen if a node is allocated but an uncommon trap occurs
1355     // immediately.  In this case, the Initialize gets associated with the
1356     // trap, and may be placed in a different (outer) loop, if the Allocate
1357     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1358     // there can be two Allocates to one Initialize.  The answer in all these
1359     // edge cases is safety first.  It is always safe to clear immediately
1360     // within an Allocate, and then (maybe or maybe not) clear some more later.
1361     if (!ZeroTLAB)
1362       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1363                                             header_size, size_in_bytes,
1364                                             &_igvn);
1365   } else {
1366     if (!init->is_complete()) {
1367       // Try to win by zeroing only what the init does not store.
1368       // We can also try to do some peephole optimizations,
1369       // such as combining some adjacent subword stores.
1370       rawmem = init->complete_stores(control, rawmem, object,
1371                                      header_size, size_in_bytes, &_igvn);
1372     }
1373     // We have no more use for this link, since the AllocateNode goes away:
1374     init->set_req(InitializeNode::RawAddress, top());
1375     // (If we keep the link, it just confuses the register allocator,
1376     // who thinks he sees a real use of the address by the membar.)
1377   }
1378 
1379   return rawmem;
1380 }
1381 
1382 // Generate prefetch instructions for next allocations.
1383 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1384                                         Node*& contended_phi_rawmem,
1385                                         Node* old_eden_top, Node* new_eden_top,
1386                                         Node* length) {
1387    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1388       // Generate prefetch allocation with watermark check.
1389       // As an allocation hits the watermark, we will prefetch starting
1390       // at a "distance" away from watermark.
1391       enum { fall_in_path = 1, pf_path = 2 };
1392 
1393       Node *pf_region = new (C, 3) RegionNode(3);
1394       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1395                                                 TypeRawPtr::BOTTOM );
1396       // I/O is used for Prefetch
1397       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
1398 
1399       Node *thread = new (C, 1) ThreadLocalNode();
1400       transform_later(thread);
1401 
1402       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
1403                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1404       transform_later(eden_pf_adr);
1405 
1406       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
1407                                    contended_phi_rawmem, eden_pf_adr,
1408                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
1409       transform_later(old_pf_wm);
1410 
1411       // check against new_eden_top
1412       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
1413       transform_later(need_pf_cmp);
1414       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
1415       transform_later(need_pf_bol);
1416       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
1417                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1418       transform_later(need_pf_iff);
1419 
1420       // true node, add prefetchdistance
1421       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
1422       transform_later(need_pf_true);
1423 
1424       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
1425       transform_later(need_pf_false);
1426 
1427       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
1428                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1429       transform_later(new_pf_wmt );
1430       new_pf_wmt->set_req(0, need_pf_true);
1431 
1432       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
1433                                        contended_phi_rawmem, eden_pf_adr,
1434                                        TypeRawPtr::BOTTOM, new_pf_wmt );
1435       transform_later(store_new_wmt);
1436 
1437       // adding prefetches
1438       pf_phi_abio->init_req( fall_in_path, i_o );
1439 
1440       Node *prefetch_adr;
1441       Node *prefetch;
1442       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
1443       uint step_size = AllocatePrefetchStepSize;
1444       uint distance = 0;
1445 
1446       for ( uint i = 0; i < lines; i++ ) {
1447         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
1448                                             _igvn.MakeConX(distance) );
1449         transform_later(prefetch_adr);
1450         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
1451         transform_later(prefetch);
1452         distance += step_size;
1453         i_o = prefetch;
1454       }
1455       pf_phi_abio->set_req( pf_path, i_o );
1456 
1457       pf_region->init_req( fall_in_path, need_pf_false );
1458       pf_region->init_req( pf_path, need_pf_true );
1459 
1460       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1461       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1462 
1463       transform_later(pf_region);
1464       transform_later(pf_phi_rawmem);
1465       transform_later(pf_phi_abio);
1466 
1467       needgc_false = pf_region;
1468       contended_phi_rawmem = pf_phi_rawmem;
1469       i_o = pf_phi_abio;
1470    } else if( AllocatePrefetchStyle > 0 ) {
1471       // Insert a prefetch for each allocation only on the fast-path
1472       Node *prefetch_adr;
1473       Node *prefetch;
1474       // Generate several prefetch instructions only for arrays.
1475       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
1476       uint step_size = AllocatePrefetchStepSize;
1477       uint distance = AllocatePrefetchDistance;
1478       for ( uint i = 0; i < lines; i++ ) {
1479         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
1480                                             _igvn.MakeConX(distance) );
1481         transform_later(prefetch_adr);
1482         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
1483         // Do not let it float too high, since if eden_top == eden_end,
1484         // both might be null.
1485         if( i == 0 ) { // Set control for first prefetch, next follows it
1486           prefetch->init_req(0, needgc_false);
1487         }
1488         transform_later(prefetch);
1489         distance += step_size;
1490         i_o = prefetch;
1491       }
1492    }
1493    return i_o;
1494 }
1495 
1496 
1497 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1498   expand_allocate_common(alloc, NULL,
1499                          OptoRuntime::new_instance_Type(),
1500                          OptoRuntime::new_instance_Java());
1501 }
1502 
1503 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1504   Node* length = alloc->in(AllocateNode::ALength);
1505   expand_allocate_common(alloc, length,
1506                          OptoRuntime::new_array_Type(),
1507                          OptoRuntime::new_array_Java());
1508 }
1509 
1510 
1511 // we have determined that this lock/unlock can be eliminated, we simply
1512 // eliminate the node without expanding it.
1513 //
1514 // Note:  The membar's associated with the lock/unlock are currently not
1515 //        eliminated.  This should be investigated as a future enhancement.
1516 //
1517 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
1518 
1519   if (!alock->is_eliminated()) {
1520     return false;
1521   }
1522   if (alock->is_Lock() && !alock->is_coarsened()) {
1523       // Create new "eliminated" BoxLock node and use it
1524       // in monitor debug info for the same object.
1525       BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
1526       Node* obj = alock->obj_node();
1527       if (!oldbox->is_eliminated()) {
1528         BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1529         newbox->set_eliminated();
1530         transform_later(newbox);
1531         // Replace old box node with new box for all users
1532         // of the same object.
1533         for (uint i = 0; i < oldbox->outcnt();) {
1534 
1535           bool next_edge = true;
1536           Node* u = oldbox->raw_out(i);
1537           if (u == alock) {
1538             i++;
1539             continue; // It will be removed below
1540           }
1541           if (u->is_Lock() &&
1542               u->as_Lock()->obj_node() == obj &&
1543               // oldbox could be referenced in debug info also
1544               u->as_Lock()->box_node() == oldbox) {
1545             assert(u->as_Lock()->is_eliminated(), "sanity");
1546             _igvn.hash_delete(u);
1547             u->set_req(TypeFunc::Parms + 1, newbox);
1548             next_edge = false;
1549 #ifdef ASSERT
1550           } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
1551             assert(u->as_Unlock()->is_eliminated(), "sanity");
1552 #endif
1553           }
1554           // Replace old box in monitor debug info.
1555           if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
1556             SafePointNode* sfn = u->as_SafePoint();
1557             JVMState* youngest_jvms = sfn->jvms();
1558             int max_depth = youngest_jvms->depth();
1559             for (int depth = 1; depth <= max_depth; depth++) {
1560               JVMState* jvms = youngest_jvms->of_depth(depth);
1561               int num_mon  = jvms->nof_monitors();
1562               // Loop over monitors
1563               for (int idx = 0; idx < num_mon; idx++) {
1564                 Node* obj_node = sfn->monitor_obj(jvms, idx);
1565                 Node* box_node = sfn->monitor_box(jvms, idx);
1566                 if (box_node == oldbox && obj_node == obj) {
1567                   int j = jvms->monitor_box_offset(idx);
1568                   _igvn.hash_delete(u);
1569                   u->set_req(j, newbox);
1570                   next_edge = false;
1571                 }
1572               } // for (int idx = 0;
1573             } // for (int depth = 1;
1574           } // if (u->is_SafePoint()
1575           if (next_edge) i++;
1576         } // for (uint i = 0; i < oldbox->outcnt();)
1577       } // if (!oldbox->is_eliminated())
1578   } // if (alock->is_Lock() && !lock->is_coarsened())
1579 
1580   #ifndef PRODUCT
1581   if (PrintEliminateLocks) {
1582     if (alock->is_Lock()) {
1583       tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
1584     } else {
1585       tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
1586     }
1587   }
1588   #endif
1589 
1590   Node* mem  = alock->in(TypeFunc::Memory);
1591   Node* ctrl = alock->in(TypeFunc::Control);
1592 
1593   extract_call_projections(alock);
1594   // There are 2 projections from the lock.  The lock node will
1595   // be deleted when its last use is subsumed below.
1596   assert(alock->outcnt() == 2 &&
1597          _fallthroughproj != NULL &&
1598          _memproj_fallthrough != NULL,
1599          "Unexpected projections from Lock/Unlock");
1600 
1601   Node* fallthroughproj = _fallthroughproj;
1602   Node* memproj_fallthrough = _memproj_fallthrough;
1603 
1604   // The memory projection from a lock/unlock is RawMem
1605   // The input to a Lock is merged memory, so extract its RawMem input
1606   // (unless the MergeMem has been optimized away.)
1607   if (alock->is_Lock()) {
1608     // Seach for MemBarAcquire node and delete it also.
1609     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
1610     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
1611     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
1612     Node* memproj = membar->proj_out(TypeFunc::Memory);
1613     _igvn.replace_node(ctrlproj, fallthroughproj);
1614     _igvn.replace_node(memproj, memproj_fallthrough);
1615 
1616     // Delete FastLock node also if this Lock node is unique user
1617     // (a loop peeling may clone a Lock node).
1618     Node* flock = alock->as_Lock()->fastlock_node();
1619     if (flock->outcnt() == 1) {
1620       assert(flock->unique_out() == alock, "sanity");
1621       _igvn.replace_node(flock, top());
1622     }
1623   }
1624 
1625   // Seach for MemBarRelease node and delete it also.
1626   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
1627       ctrl->in(0)->is_MemBar()) {
1628     MemBarNode* membar = ctrl->in(0)->as_MemBar();
1629     assert(membar->Opcode() == Op_MemBarRelease &&
1630            mem->is_Proj() && membar == mem->in(0), "");
1631     _igvn.replace_node(fallthroughproj, ctrl);
1632     _igvn.replace_node(memproj_fallthrough, mem);
1633     fallthroughproj = ctrl;
1634     memproj_fallthrough = mem;
1635     ctrl = membar->in(TypeFunc::Control);
1636     mem  = membar->in(TypeFunc::Memory);
1637   }
1638 
1639   _igvn.replace_node(fallthroughproj, ctrl);
1640   _igvn.replace_node(memproj_fallthrough, mem);
1641   return true;
1642 }
1643 
1644 
1645 //------------------------------expand_lock_node----------------------
1646 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
1647 
1648   Node* ctrl = lock->in(TypeFunc::Control);
1649   Node* mem = lock->in(TypeFunc::Memory);
1650   Node* obj = lock->obj_node();
1651   Node* box = lock->box_node();
1652   Node* flock = lock->fastlock_node();
1653 
1654   // Make the merge point
1655   Node *region;
1656   Node *mem_phi;
1657   Node *slow_path;
1658 
1659   if (UseOptoBiasInlining) {
1660     /*
1661      *  See the full description in MacroAssembler::biased_locking_enter().
1662      *
1663      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
1664      *    // The object is biased.
1665      *    proto_node = klass->prototype_header;
1666      *    o_node = thread | proto_node;
1667      *    x_node = o_node ^ mark_word;
1668      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
1669      *      // Done.
1670      *    } else {
1671      *      if( (x_node & biased_lock_mask) != 0 ) {
1672      *        // The klass's prototype header is no longer biased.
1673      *        cas(&mark_word, mark_word, proto_node)
1674      *        goto cas_lock;
1675      *      } else {
1676      *        // The klass's prototype header is still biased.
1677      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
1678      *          old = mark_word;
1679      *          new = o_node;
1680      *        } else {
1681      *          // Different thread or anonymous biased.
1682      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
1683      *          new = thread | old;
1684      *        }
1685      *        // Try to rebias.
1686      *        if( cas(&mark_word, old, new) == 0 ) {
1687      *          // Done.
1688      *        } else {
1689      *          goto slow_path; // Failed.
1690      *        }
1691      *      }
1692      *    }
1693      *  } else {
1694      *    // The object is not biased.
1695      *    cas_lock:
1696      *    if( FastLock(obj) == 0 ) {
1697      *      // Done.
1698      *    } else {
1699      *      slow_path:
1700      *      OptoRuntime::complete_monitor_locking_Java(obj);
1701      *    }
1702      *  }
1703      */
1704 
1705     region  = new (C, 5) RegionNode(5);
1706     // create a Phi for the memory state
1707     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1708 
1709     Node* fast_lock_region  = new (C, 3) RegionNode(3);
1710     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1711 
1712     // First, check mark word for the biased lock pattern.
1713     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
1714 
1715     // Get fast path - mark word has the biased lock pattern.
1716     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
1717                          markOopDesc::biased_lock_mask_in_place,
1718                          markOopDesc::biased_lock_pattern, true);
1719     // fast_lock_region->in(1) is set to slow path.
1720     fast_lock_mem_phi->init_req(1, mem);
1721 
1722     // Now check that the lock is biased to the current thread and has
1723     // the same epoch and bias as Klass::_prototype_header.
1724 
1725     // Special-case a fresh allocation to avoid building nodes:
1726     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
1727     if (klass_node == NULL) {
1728       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1729       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
1730 #ifdef _LP64
1731       if (UseCompressedOops && klass_node->is_DecodeN()) {
1732         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
1733         klass_node->in(1)->init_req(0, ctrl);
1734       } else
1735 #endif
1736       klass_node->init_req(0, ctrl);
1737     }
1738     Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
1739 
1740     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
1741     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1742     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
1743     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
1744 
1745     // Get slow path - mark word does NOT match the value.
1746     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
1747                                       (~markOopDesc::age_mask_in_place), 0);
1748     // region->in(3) is set to fast path - the object is biased to the current thread.
1749     mem_phi->init_req(3, mem);
1750 
1751 
1752     // Mark word does NOT match the value (thread | Klass::_prototype_header).
1753 
1754 
1755     // First, check biased pattern.
1756     // Get fast path - _prototype_header has the same biased lock pattern.
1757     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
1758                           markOopDesc::biased_lock_mask_in_place, 0, true);
1759 
1760     not_biased_ctrl = fast_lock_region->in(2); // Slow path
1761     // fast_lock_region->in(2) - the prototype header is no longer biased
1762     // and we have to revoke the bias on this object.
1763     // We are going to try to reset the mark of this object to the prototype
1764     // value and fall through to the CAS-based locking scheme.
1765     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
1766     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
1767                                                  proto_node, mark_node);
1768     transform_later(cas);
1769     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
1770     fast_lock_mem_phi->init_req(2, proj);
1771 
1772 
1773     // Second, check epoch bits.
1774     Node* rebiased_region  = new (C, 3) RegionNode(3);
1775     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1776     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1777 
1778     // Get slow path - mark word does NOT match epoch bits.
1779     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
1780                                       markOopDesc::epoch_mask_in_place, 0);
1781     // The epoch of the current bias is not valid, attempt to rebias the object
1782     // toward the current thread.
1783     rebiased_region->init_req(2, epoch_ctrl);
1784     old_phi->init_req(2, mark_node);
1785     new_phi->init_req(2, o_node);
1786 
1787     // rebiased_region->in(1) is set to fast path.
1788     // The epoch of the current bias is still valid but we know
1789     // nothing about the owner; it might be set or it might be clear.
1790     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
1791                              markOopDesc::age_mask_in_place |
1792                              markOopDesc::epoch_mask_in_place);
1793     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
1794     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1795     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
1796     old_phi->init_req(1, old);
1797     new_phi->init_req(1, new_mark);
1798 
1799     transform_later(rebiased_region);
1800     transform_later(old_phi);
1801     transform_later(new_phi);
1802 
1803     // Try to acquire the bias of the object using an atomic operation.
1804     // If this fails we will go in to the runtime to revoke the object's bias.
1805     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
1806                                            new_phi, old_phi);
1807     transform_later(cas);
1808     proj = transform_later( new (C, 1) SCMemProjNode(cas));
1809 
1810     // Get slow path - Failed to CAS.
1811     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
1812     mem_phi->init_req(4, proj);
1813     // region->in(4) is set to fast path - the object is rebiased to the current thread.
1814 
1815     // Failed to CAS.
1816     slow_path  = new (C, 3) RegionNode(3);
1817     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
1818 
1819     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
1820     slow_mem->init_req(1, proj);
1821 
1822     // Call CAS-based locking scheme (FastLock node).
1823 
1824     transform_later(fast_lock_region);
1825     transform_later(fast_lock_mem_phi);
1826 
1827     // Get slow path - FastLock failed to lock the object.
1828     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
1829     mem_phi->init_req(2, fast_lock_mem_phi);
1830     // region->in(2) is set to fast path - the object is locked to the current thread.
1831 
1832     slow_path->init_req(2, ctrl); // Capture slow-control
1833     slow_mem->init_req(2, fast_lock_mem_phi);
1834 
1835     transform_later(slow_path);
1836     transform_later(slow_mem);
1837     // Reset lock's memory edge.
1838     lock->set_req(TypeFunc::Memory, slow_mem);
1839 
1840   } else {
1841     region  = new (C, 3) RegionNode(3);
1842     // create a Phi for the memory state
1843     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1844 
1845     // Optimize test; set region slot 2
1846     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
1847     mem_phi->init_req(2, mem);
1848   }
1849 
1850   // Make slow path call
1851   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
1852 
1853   extract_call_projections(call);
1854 
1855   // Slow path can only throw asynchronous exceptions, which are always
1856   // de-opted.  So the compiler thinks the slow-call can never throw an
1857   // exception.  If it DOES throw an exception we would need the debug
1858   // info removed first (since if it throws there is no monitor).
1859   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
1860            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
1861 
1862   // Capture slow path
1863   // disconnect fall-through projection from call and create a new one
1864   // hook up users of fall-through projection to region
1865   Node *slow_ctrl = _fallthroughproj->clone();
1866   transform_later(slow_ctrl);
1867   _igvn.hash_delete(_fallthroughproj);
1868   _fallthroughproj->disconnect_inputs(NULL);
1869   region->init_req(1, slow_ctrl);
1870   // region inputs are now complete
1871   transform_later(region);
1872   _igvn.replace_node(_fallthroughproj, region);
1873 
1874   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
1875   mem_phi->init_req(1, memproj );
1876   transform_later(mem_phi);
1877   _igvn.replace_node(_memproj_fallthrough, mem_phi);
1878 }
1879 
1880 //------------------------------expand_unlock_node----------------------
1881 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
1882 
1883   Node* ctrl = unlock->in(TypeFunc::Control);
1884   Node* mem = unlock->in(TypeFunc::Memory);
1885   Node* obj = unlock->obj_node();
1886   Node* box = unlock->box_node();
1887 
1888   // No need for a null check on unlock
1889 
1890   // Make the merge point
1891   Node *region;
1892   Node *mem_phi;
1893 
1894   if (UseOptoBiasInlining) {
1895     // Check for biased locking unlock case, which is a no-op.
1896     // See the full description in MacroAssembler::biased_locking_exit().
1897     region  = new (C, 4) RegionNode(4);
1898     // create a Phi for the memory state
1899     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1900     mem_phi->init_req(3, mem);
1901 
1902     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
1903     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
1904                          markOopDesc::biased_lock_mask_in_place,
1905                          markOopDesc::biased_lock_pattern);
1906   } else {
1907     region  = new (C, 3) RegionNode(3);
1908     // create a Phi for the memory state
1909     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1910   }
1911 
1912   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
1913   funlock = transform_later( funlock )->as_FastUnlock();
1914   // Optimize test; set region slot 2
1915   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
1916 
1917   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
1918 
1919   extract_call_projections(call);
1920 
1921   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
1922            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
1923 
1924   // No exceptions for unlocking
1925   // Capture slow path
1926   // disconnect fall-through projection from call and create a new one
1927   // hook up users of fall-through projection to region
1928   Node *slow_ctrl = _fallthroughproj->clone();
1929   transform_later(slow_ctrl);
1930   _igvn.hash_delete(_fallthroughproj);
1931   _fallthroughproj->disconnect_inputs(NULL);
1932   region->init_req(1, slow_ctrl);
1933   // region inputs are now complete
1934   transform_later(region);
1935   _igvn.replace_node(_fallthroughproj, region);
1936 
1937   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
1938   mem_phi->init_req(1, memproj );
1939   mem_phi->init_req(2, mem);
1940   transform_later(mem_phi);
1941   _igvn.replace_node(_memproj_fallthrough, mem_phi);
1942 }
1943 
1944 //------------------------------expand_macro_nodes----------------------
1945 //  Returns true if a failure occurred.
1946 bool PhaseMacroExpand::expand_macro_nodes() {
1947   if (C->macro_count() == 0)
1948     return false;
1949   // First, attempt to eliminate locks
1950   bool progress = true;
1951   while (progress) {
1952     progress = false;
1953     for (int i = C->macro_count(); i > 0; i--) {
1954       Node * n = C->macro_node(i-1);
1955       bool success = false;
1956       debug_only(int old_macro_count = C->macro_count(););
1957       if (n->is_AbstractLock()) {
1958         success = eliminate_locking_node(n->as_AbstractLock());
1959       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
1960         _igvn.replace_node(n, n->in(1));
1961         success = true;
1962       }
1963       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
1964       progress = progress || success;
1965     }
1966   }
1967   // Next, attempt to eliminate allocations
1968   progress = true;
1969   while (progress) {
1970     progress = false;
1971     for (int i = C->macro_count(); i > 0; i--) {
1972       Node * n = C->macro_node(i-1);
1973       bool success = false;
1974       debug_only(int old_macro_count = C->macro_count(););
1975       switch (n->class_id()) {
1976       case Node::Class_Allocate:
1977       case Node::Class_AllocateArray:
1978         success = eliminate_allocate_node(n->as_Allocate());
1979         break;
1980       case Node::Class_Lock:
1981       case Node::Class_Unlock:
1982         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
1983         break;
1984       default:
1985         assert(false, "unknown node type in macro list");
1986       }
1987       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
1988       progress = progress || success;
1989     }
1990   }
1991   // Make sure expansion will not cause node limit to be exceeded.
1992   // Worst case is a macro node gets expanded into about 50 nodes.
1993   // Allow 50% more for optimization.
1994   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
1995     return true;
1996 
1997   // expand "macro" nodes
1998   // nodes are removed from the macro list as they are processed
1999   while (C->macro_count() > 0) {
2000     int macro_count = C->macro_count();
2001     Node * n = C->macro_node(macro_count-1);
2002     assert(n->is_macro(), "only macro nodes expected here");
2003     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2004       // node is unreachable, so don't try to expand it
2005       C->remove_macro_node(n);
2006       continue;
2007     }
2008     switch (n->class_id()) {
2009     case Node::Class_Allocate:
2010       expand_allocate(n->as_Allocate());
2011       break;
2012     case Node::Class_AllocateArray:
2013       expand_allocate_array(n->as_AllocateArray());
2014       break;
2015     case Node::Class_Lock:
2016       expand_lock_node(n->as_Lock());
2017       break;
2018     case Node::Class_Unlock:
2019       expand_unlock_node(n->as_Unlock());
2020       break;
2021     default:
2022       assert(false, "unknown node type in macro list");
2023     }
2024     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2025     if (C->failing())  return true;
2026   }
2027 
2028   _igvn.set_delay_transform(false);
2029   _igvn.optimize();
2030   return false;
2031 }